备战物理高考与模拟题分类解析 专题12 圆周运动
高考物理生活中的圆周运动专题训练答案及解析
高考物理生活中的圆周运动专题训练答案及分析一、高中物理精讲专题测试生活中的圆周运动1.如下图,竖直圆形轨道固定在木板 B 上,木板 B 固定在水平川面上,一个质量为3m 小球 A 静止在木板 B 上圆形轨道的左边.一质量为m 的子弹以速度v0水平射入小球并停留在此中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为 R,木板 B 和圆形轨道总质量为 12m,重力加快度为 g,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不离开圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.32mv024 2gR 或 45gR v0 8 2gR【答案】 (1)mv0(2) 16mg(3) v084R【分析】此题观察完整非弹性碰撞、机械能与曲线运动相联合的问题.(1)子弹射入小球的过程,由动量守恒定律得:mv0 (m3m)v1由能量守恒定律得:Q 1mv0214mv12 22代入数值解得: Q3mv028(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式(m3m)v12得F1(m3m) gR以木板为对象受力剖析得F212mg F1依据牛顿第三定律得木板对水平的压力大小为F2木板对水平面的压力的大小F216mg mv024R(3)小球不离开圆形轨有两种可能性:① 若小球滑行的高度不超出圆形轨道半径R由机械能守恒定律得:1m 3m v12m 3m gR2解得: v0 4 2gR② 若小球能经过圆形轨道的最高点小球能经过最高点有:(m 3m)v (m 3m) gR22由机械能守恒定律得:1(m 3m)v122(m 3m)gR1( m 3m)v22 22代入数值解得:v0 4 5gR要使木板不会在竖直方向上跳起,木板对球的压力:F312mg(m 3m)v 在最高点有:F3(m 3m)gR 2 3由机械能守恒定律得:1(m 3m)v122(m 3m)gR1( m 3m)v32 22解得:v08 2gR综上所述为保证小球不离开圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是v0 4 2gR 或 4 5gR v08 2gR2.如下图,一根长为0.1 m 的细线,一端系着一个质量是0.18kg 的小球,拉住线的另一端,使球在圆滑的水平桌面上做匀速圆周运动,当小球的转速增添到原转速的 3 倍时,细线断裂,这时测得线的拉力比本来大40 N.求:(1)线断裂的瞬时,线的拉力;(2)这时小球运动的线速度;(3)假如桌面超出地面 0.8 m,线断裂后小球沿垂直于桌子边沿的方向水平飞出去落在离桌面的水平距离.【答案】( 1)线断裂的瞬时,线的拉力为45N;(2)线断裂时小球运动的线速度为5m/s ;(3)落地址离桌面边沿的水平距离2m.【分析】【剖析】【详解】(1) 小球在圆滑桌面上做匀速圆周运动时受三个力作用;重力 mg 、桌面弹力F N和细线的拉力 F,重力 mg 和弹力 F N均衡,线的拉力供给向心力,有:F N=F=mω2R,设本来的角速度为ω00ω,线断时的拉力是1,线上的拉力是 F ,加快后的角速度为 F ,则有:1022F :F =ω :0 =9:1,又 F1=F0+40N,因此 F01=5N,线断时有: F =45N.(2) 设线断时小球的线速度大小为v,由 F1= m v2,R代入数据得: v=5m/ s.(3) 由平抛运动规律得小球在空中运动的时间为:t=2h 2 0.8s =0.4s,g10则落地址离桌面的水平距离为:x=vt=5×0.4=2m.3.如下图,水平长直轨道AB 与半径为R=0.8m 的圆滑1 竖直圆轨道BC 相切于B, BC 4与半径为r=0.4m 的圆滑1 竖直圆轨道CD相切于C,质量m=1kg 的小球静止在 A 点,现用4F=18N 的水平恒力向右拉小球,在抵达AB 中点时撤去拉力,小球恰能经过球与水平面的动摩擦因数μ=0.2,取 g=10m/s 2.求:D 点.已知小(1)小球在 D 点的速度 v D大小;(2)小球在 B 点对圆轨道的压力 N B大小;(3) A、B 两点间的距离 x.【答案】 (1) v D2m / s( 2)45N (3)2m【分析】【剖析】【详解】(1)小球恰巧过最高点D,有:mg m v D 2r解得: v D2m/s(2)从 B 到 D ,由动能定理:mg(R r )1mv D 21mv B 22 2设小球在 B 点遇到轨道支持力为 N ,由牛顿定律有:2 N mgmv BRN B =N联解③④⑤得: N=45N(3)小球从 A 到 B ,由动能定理:Fxmgx1mv B 222解得: x 2m故此题答案是: (1) v D 2m / s ( 2) 45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加快阶段的位移,4. 如下图,水平转台上有一个质量为 m 的物块,用长为 2L 的轻质细绳将物块连结在转轴上,细绳与竖直转轴的夹角 θ= 30°,此时细绳挺直但无张力,物块与转台间动摩擦因数为 μ,设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始迟缓加快转动,重力加快度为 g ,求:( 1)当转台角速度 ω1 为多大时,细绳开始有张力出现;( 2)当转台角速度 ω2 为多大时,转台对物块支持力为零;g(3)转台从静止开始加快到角速度3的过程中,转台对物块做的功 .L【答案】 (1)g3g ( 3)1 1(2)23 mgLL3L2【分析】【剖析】【详解】(1)当最大静摩擦力不可以知足所需要向心力时,细绳上开始有张力:mg m 12 2 L sin 代入数据得1g L(2)当支持力为零时,物块所需要的向心力由重力和细绳拉力的协力供给mg tan m22 2L sin代入数据得23g 3L(3)∵3 2 ,∴物块已经走开转台在空中做圆周运动.设细绳与竖直方向夹角为α,有mg tan m32 2L sin代入数据得60转台对物块做的功等于物块动能增添量与重力势能增添量的总和即W 1m(3 2L sin 60o )2mg (2 L cos30o2L cos60 o ) 2代入数据得:1W (3) mgL【点睛】此题观察牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的剖析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N=0, f=0.依据能量守恒定律求转台对物块所做的功.5.如下图, ABCD是一个地面和轨道均圆滑的过山车轨道模型,现对静止在 A 处的滑块施加一个水平向右的推力F,使它从 A 点开始做匀加快直线运动,当它水光滑行 2.5 m 时抵达 B 点,此时撤去推力F、滑块滑入半径为0.5 m 且内壁圆滑的竖直固定圆轨道,并恰好经过最高点C,当滑块滑过水平BD 部分后,又滑上静止在 D 处,且与ABD 等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平川面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s 2,求:(1)水平推力 F 的大小;(2)滑块抵达 D 点的速度大小;(3)木板起码为多长时,滑块才能不从木板上掉下来?在该状况下,木板在水平川面上最后滑行的总位移为多少?【答案】( 1) 1N( 2)(3)t= 1 s ;【分析】【剖析】【详解】(1)因为滑块恰巧过 C 点,则有:m1g= m1从 A 到 C 由动能定理得:2Fx- m1g·2R= m1 v C- 0代入数据联立解得:F=1 N(2)从 A 到 D 由动能定理得:Fx= m1v D2代入数据解得:v D= 5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g= 3 m/s 2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2= 2 m/s2滑块恰巧不从木板上滑下,此时滑块滑到木板的右端时恰巧与木板速度同样,有:v 共= v D- a1 tv 共= a2t,代入数据解得:t= 1 s此时滑块的位移为:x1= v D t-a1t2,木板的位移为:x2= a2t2, L=x1- x2,代入数据解得:L= 2.5 mv 共= 2 m/sx2= 1 m达到共同速度后木板又滑行x′,则有:v 共2= 2μ2gx′,代入数据解得:x′= 1.5 m木板在水平川面上最后滑行的总位移为:x 木= x2+ x′=2.5 m点睛:此题观察了动能定理和牛顿第二定律、运动学公式的综合运用,解决此题的重点理清滑块和木板在整个过程中的运动规律,选择适合的规律进行求解.6.如下图, A、 B 两球质量均为m,用一长为l 的轻绳相连, A 球中间有孔套在圆滑的足够长的水平横杆上,两球处于静止状态.现给 B 球水平向右的初速度v0,经一段时间后B 球第一次抵达最高点,此时小球位于水平横杆下方l/2 处.(忽视轻绳形变)求:(1)B 球刚开始运动时,绳索对小球 B 的拉力大小 T;(2)B 球第一次抵达最高点时, A 球的速度大小v ;1(3)从开始到 B 球第一次抵达最高点的过程中,轻绳对 B 球做的功 W.【答案】( 1) mg+m v02v02gl( 3)mgl mv02(2) v124l【分析】【详解】(1) B 球刚开始运动时, A 球静止,因此 B 球做圆周运动对 B 球: T-mg=m v 02 l得:T=mg+m v2l(2) B 球第一次抵达最高点时,A、 B 速度大小、方向均同样,均为v1以 A、B 系统为研究对象,以水平横杆为零势能参照平面,从开始到 B 球第一次抵达最高点,依据机械能守恒定律,1mv02mgl 1mv121mv12mgl2222得:v1v02gl2(3)从开始到 B 球第一次抵达最高点的过程,对 B 球应用动能定理W-mg l1mv121mv02 222得: W= mglmv0247.如下图,AB 为倾角37的斜面轨道,BP 为半径R=1m 的竖直圆滑圆弧轨道,O 为圆心,两轨道相切于 B 点, P、 O 两点在同一竖直线上,轻弹簧一端固定在 A 点,另一端在斜面上 C 点处,轨道的AC 部分圆滑,CB部分粗拙,CB长L= 1.25m,物块与斜面间的动摩擦因数为= 0.25,现有一质量m=2kg 的物块在外力作用下将弹簧迟缓压缩到 D 点后开释 (不栓接 ),物块经过 B 点后抵达P 点,在P 点物块对轨道的压力大小为其重力的 1.5倍,sin370.6,cos370.8 , g=10m/s 2. 求:(1)物块抵达 P 点时的速度大小v P;(2)物块走开弹簧时的速度大小v C;(3)若要使物块一直不离开轨道运动,则物块走开弹簧时速度的最大值v m.【答案】 (1) v P5m/s (2)v C=9m/s (3)v m6m/s【分析】【详解】(1)在 P 点,依据牛顿第二定律:v2Pmg N P mR解得 : v P 2.5gR5m/s(2)由几何关系可知BP 间的高度差h BP R(1 cos37 )物块 C 至 P 过程中,依据动能定理:mgL sin37mgh BP mgLcos37 =1m v P21m v C222联立可得: v C=9m/s(3)若要使物块一直不离开轨道运动,则物块可以抵达的最大高度为与O 等高处的 E 点,物块 C 至 E 过程中依据动能定理:mgL cos37mgLsin37 mgRsin 53 =01mv m22解得: v m6m/s8.圆滑水平面上放着质量m A BB, A 与 B 均可视为质=1kg 的物块 A 与质量 m =2kg 的物块点, A 靠在竖直墙壁上,A、 B 间夹一个被压缩的轻弹簧(弹簧与 A、 B 均不拴接 ),在 A、 B 间系一轻质细绳,细绳长度大于弹簧的自然长度,用手挡住 B 不动,此时弹簧弹性势能E =49J。
备战2020高考物理-高三第一轮基础练习:圆周运动(包含答案)
备战2020高考物理-高三第一轮基础练习:圆周运动一、单选题 1.如图所示,某物体沿光滑圆弧轨道由最高点滑到最低点过程中,物体的速率逐渐增大,则()A. 物体的合外力为零B. 物体的合力大小不变,方向始终指向圆心OC. 物体的合外力就是向心力D. 物体的合力方向始终与其运动方向不垂直(最低点除外)2.明代出版的《天工开物》一书中就有牛力齿轮翻车的图画(如图),记录了我们祖先的劳动智慧.若A、B、C三齿轮半径的大小关系如图,则()A. 齿轮A的角速度比C的大B. 齿轮A与B角速度大小相等C. 齿轮B与C边缘的线速度大小相等D. 齿轮A边缘的线速度比C边缘的大3.如图所示,一半径为R的球体绕轴O1O2以角速度ω匀速转动,A、B为球体上两点。
下列说法中正确的是()A. A,B两点具有相同的角速度B. A,B两点具有相同的线速度C. A,B两点具有相同的向心加速度D. A,B两点的向心加速度方向都指向球心4.如图所示,轻杆的一端固定在水平轴上的O点,另一端固定一个小球.小球以O为圆心在竖直平面内做圆周运动,且能通过最高点.小球可视为质点,下列说法正确的是()A. 小球通过最低点时所受轻杆的作用力方向一定竖直向上B. 小球通过最高点时所受轻杆的作用力方向一定竖直向上C. 小球通过最高点时所受轻杆的作用力方向一定竖直向下D. 小球到达最高点时所受轻杆作用力不可能为零5.如图所示,O1为皮带传动的主动轮的轴心,轮半径为r1,O2为从动轮的轴心,轮半径为r3;r2为固定在从动轮上的小轮半径.已知r3=2r1,r2=1.5r1.A、B和C分别是3个轮边缘上的点,质点A、B、C的线速度之比是()A. 3:3:4B. 4:4:3C. 3:4:3D. 3:4:46.如图,匀速转动的圆盘上有a、b、c三点,已知,则下面说法中错误的是()A. a、b、c三点的角速度相同B. a、b两点线速度相等C. c点的线速度大小是a点线速度大小的一半D. a点的加速度是c点的两倍7.铁路在弯道处的内外轨道高度是不同的,如图5所示,已知内外轨道平面对水平面倾角为θ,弯道处的圆弧半径为R,若质量为m的火车转弯时速度小于,则()A. 内轨对内侧车轮轮缘有挤压B. 外轨对外侧车轮轮缘有挤压C. 这时铁轨对火车的支持力等于D. 这时铁轨对火车的支持力等于8.在中轴线竖直且固定的光滑圆锥形容器中,固定了一根光滑的竖直细杆,细杆与圆锥的中轴线重合,细杆上穿有小环(小环可以自由转动,但不能上下移动),小环上连接了一轻绳,与一质量为m的光滑小球相连,让小球在圆锥内作水平面上的匀速圆周运动,并与圆锥内壁接触,如图所示,图(a)中小环与小球在同一水平Ian上,图(b)中轻绳与竖直轴成θ角,设(a)图和(b)图中轻绳对小球的拉力分别为T a和T b,圆锥内壁对小球的支持力分别为N a和N b,则在下列说法中正确的是()A. T a一定为零,T b一定为零B. T a可以为零,T b可以为零C. N a一定不为零,N b一定不为零D. N a可以为零,N b可以为零9.下列关于甲、乙两个做匀速圆周运动的物体的有关说法,正确的是()A. 甲、乙两物体线速度相等,角速度一定也相等B. 甲、乙两物体角速度相等,线速度一定也相等C. 甲、乙两物体周期相等,角速度一定也相等D. 甲、乙两物体周期相等,线速度一定也相等二、多选题10.在光滑圆锥形容器中,固定了一根光滑的竖直细杆,细杆与圆锥的中轴线重合,细杆上穿有小环(小环可以自由转动,但不能上下移动),小环上连接一轻绳,与一质量为m的光滑小球相连,让小球在圆锥内做水平面上的匀速圆周运动,并与圆锥内壁接触.如图所示,图a中小环与小球在同一水平面上,图b中轻绳与竖直轴成θ(θ<90°)角.设图a和图b 中轻绳对小球的拉力分别为T a和T b,圆锥内壁对小球的支持力分别为N a和N b,则在下列说法中正确的是()A. T a一定为零,T b一定为零B. T a、T b是否为零取决于小球速度的大小C. N a一定不为零,N b可以为零D. N a、N b的大小与小球的速度无关11.在修筑铁路时,弯道处的外轨会略高于内轨,当火车在弯道处以规定的速度v转弯时,弯道内外轨均不会受到轮缘的挤压,则下列说法正确的是()A. 火车可能受到重力、支持力和向心力作用B. 当火车速率小于v时,外轨将受到轮缘的挤压C. 当火车速率大于v时,外轨将受到轮缘的挤压D. 当火车的质量改变时,规定的行驶速度v不改变12.如图所示,小球m在竖直放置的光滑圆形管道内做圆周运动,下列说法中正确的有()A. 小球通过最高点的最小速度为v=B. 小球通过最高点的最小速度为0C. 小球在水平线ab以下管道中运动时,外侧管壁对小球一定有作用力D. 小球在水平线ab以上管道中运动时,内侧管壁对小球可能有作用力13.如图所示,自行车车轮的半径为,小齿轮的半径为,大齿轮的半径为.某种向自行车车灯供电的小发电机的上端有一半径为的摩擦小轮紧贴车轮,当车轮转动时,因静摩擦作用而带动摩擦小轮转动,从而使发电机工作.在这四个转动轮中()A. 摩擦小轮边缘质点的向心加速度最大B. 摩擦小轮的线速度最小C. 大、小齿轮的角速度之比为D. 小齿轮与摩擦小轮的角速度之比为14.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶的速度为v,则下列说法中正确的是()A. 当火车以v的速度通过此弯路时,火车所受重力与轨道面支持力的合力提供向心力B. 当火车以v的速度通过此弯路时,火车所受重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力C. 当火车速度大于v时,轮缘挤压外轨D. 当火车速度小于v时,轮缘挤压外轨15.(多选)一小球质量为m,用长为L的悬绳(不可伸长,质量不计)固定于O点,在O点正下方处钉有一颗钉子.如图所示,将悬线沿水平方向拉直无初速度释放后,当悬线碰到钉子后的瞬间,则()A. 小球的角速度突然增大B. 小球的线速度突然减小到零C. 小球的向心加速度突然增大D. 小球的向心加速度不变16.在如图所示的皮带传动装置中,轮A和B同轴、B、C分别是三个轮边缘的质点,且,如果三质点的线速度分别为、、,三质点的角速度分别为、、,向心加速度分别为、、,则下列说法正确的是A. ::2B. ::2C. ::1D. ::117.如图所示,可视为质点的、质量为m的小球,在半径为R的竖直放置的光滑圆形管道内做圆周运动,下列有关说法中正确的是:()A. 小球能够通过最高点时的最小速度为0B. 小球能够通过最高点时的最小速度为C. 如果小球在最高点时的速度大小为2 ,则此时小球对管道的外壁有作用力D. 如果小球在最低点时的速度大小为,则小球对管道的作用力为5mg三、实验探究题18.用如图所示的实验装置来探究小球作圆周运动所需向心力的大小F与质量m、角速度ω和半径r之间的关系,转动手柄使长槽和短槽分别随变速轮塔匀速转动,槽内的球就做匀速圆周运动。
高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析
高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
2023年高考物理圆周运动最新模拟题精练-向心力和向心加速度(解析版)
高考物理《圆周运动》常用模型最新模拟题精练专题02.向心力和向心加速度一.选择题1..(2023浙江台州期中联考)晋代孙绰在《游天台山赋》中写道:“过灵溪而一灌,疏烦不想于心胸”。
灵江是台州的母亲河,也是浙江的第三大河,全长197.7公里,上游为仙居的永安溪和天台的始丰溪,中游为灵江,下游为椒江。
如图所示为百度地图中飞云江某段,河水沿着河床做曲线运动。
图中A B C D 、、、四处,受河水冲击最严重的是哪处()A.A 处B.B 处C.C 处D.D 处【参考答案】B【名师解析】河水沿着河床做曲线运动,在B 处,河水在河岸的作用下转弯,需要受到河岸作用较大的向心力,根据牛顿第三定律,B 处受河水冲击最严重,选项B 正确。
2.(2022年9月甘肃张掖一诊)如图所示,两个可视为质点的、相同的木块甲和乙放在转盘上,两者用长为L 的不计伸长的细绳连接(细绳能够承受足够大的拉力),木块与转盘的最大静摩擦力均为各自重力的K 倍,连线过圆心,甲到圆心距离1r ,乙到圆心距离2r ,且14L r =,234Lr =,水平圆盘可绕过圆心的竖直轴OO'转动,两物体随圆盘一起以角速度ω转动,当ω从0开始缓慢增加时,甲、乙与转盘始终保持相对静止,则下列说法错误的是(已知重力加速度为g )()A.当2Kgr ω=时,乙的静摩擦力恰为最大值B.ω取不同的值时,甲、乙所受静摩擦力都指向圆心C.ω取不同值时,乙所受静摩擦力始终指向圆心;甲所受静摩擦力可能指向圆心,也可能背向圆心D.如果KgLω>【参考答案】B 【名师解析】根据2Kmg mr ω=,可得Kg rω=乙的半径大,知乙先达到最大静摩擦力,故A 正确,不符合题意;甲乙随转盘一起做匀速圆周运动,由于乙的半径较大,故需要的向心力较大,则22Kmg m r ω=解得23Kg Lω=即若3KgLω 时,甲、乙所受静摩擦力都指向圆心。
当角速度增大,绳子出现张力,乙靠张力和静摩擦力的合力提供向心力,甲也靠拉力和静摩擦力的合力提供向心力,角速度增大,绳子的拉力逐渐增大,甲所受的静摩擦力先减小后反向增大,当反向增大到最大值,角速度再增大,甲乙与圆盘发生相对滑动。
2024年高考物理一轮复习:圆周运动常考模型(解析版)
1圆周运动常考模型1.目录题型一圆周运动中的运动学分析题型二水平面内的圆周运动类型1 圆锥摆模型类型2 生活中的圆周运动题型三圆周运动中的临界极值问题类型1水平面内圆周运动的临界问题类型2 竖直面内的圆周运动的临界问题类型3 斜面上圆周运动的临界问题题型四圆周运动与图像结合问题类型1 水平面内圆周运动与图像结合问题类型2 竖直面内圆周运动与图像结合题型一:圆周运动中的运动学分析【解题指导】1.对公式v =ωr 的理解当ω一定时,v 与r 成正比.当v 一定时,ω与r 成反比.2.对a n =v 2r=ω2r 的理解在v 一定时,a n 与r 成反比;在ω一定时,a n 与r 成正比.3.常见的传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B .(2)摩擦传动和齿轮传动:如图甲、乙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B .(3)同轴转动:如图所示,绕同一转轴转动的物体,角速度相同,ωA =ωB ,由v =ωr 知v 与r 成正比.1(2023·浙江·模拟预测)在东北严寒的冬天,人们经常玩一项“泼水成冰”的游戏,具体操作是把一杯开水沿弧线均匀快速地泼向空中。
图甲所示是某人玩“泼水成冰”游戏的瞬间,其示意图如图乙所示。
泼水过程中杯子的运动可看成匀速圆周运动,人的手臂伸直,在0.5s 内带动杯子旋转了210°,人的臂长约为0.6m 。
下列说法正确的是()2A.泼水时杯子的旋转方向为顺时针方向B.P 位置飞出的小水珠初速度沿1方向C.杯子在旋转时的角速度大小为7π6rad/sD.杯子在旋转时的线速度大小约为7π5m/s【答案】D【详解】AB .由图乙中做离心运动的轨迹可知,杯子的旋转方向为逆时针方向,P 位置飞出的小水珠初速度沿2方向,故AB 错误。
C .杯子旋转的角速度为ω=ΔθΔt=76π0.5rad/s =7π3rad/s 故C 错误。
高中物理高考物理生活中圆周运动解题技巧及经典题型及练习题(含)
高中物理高考物理生活中的圆周运动解题技巧及经典题型及练习题( 含答案 )一、高中物理精讲专题测试生活中的圆周运动1.如下图,半径R=2.5m 的竖直半圆圆滑轨道在 B 点与水平面光滑连结,一个质量m=0.50kg 的小滑块 (可视为质点 )静止在 A 点 .一刹时冲量使滑块以必定的初速度从 A 点开始运动 ,经 B 点进入圆轨道,沿圆轨道运动到最高点C,并从 C 点水平飞出 ,落在水平面上的 D 点 .经丈量 ,D、B 间的距离s1=10m,A、B 间的距离s2=15m,滑块与水平面的动摩擦因数重力加快度.求 :,(1)滑块经过 C 点时的速度大小 ;(2)滑块刚进入圆轨道时 ,在 B 点轨道对滑块的弹力 ;(3)滑块在 A 点遇到的刹时冲量的大小 .【答案】( 1)(2) 45N(3)【分析】【详解】(1)设滑块从 C 点飞出时的速度为v c,从 C 点运动到 D 点时间为t滑块从 C 点飞出后,做平抛运动,竖直方向:2R= gt2水平方向: s1=v c t解得: v c=10m/s(2)设滑块经过 B 点时的速度为v B,依据机械能守恒定律mv B2= mv c2+2mgR解得: v B=10m/s设在 B 点滑块受轨道的压力为解得: N=45NN,依据牛顿第二定律: N-mg=m(3)设滑块从 A 点开始运动时的速度为A2B2- mvA2v,依据动能定理; -μ mgs= mv解得: v A设滑块在 A 点遇到的冲量大小为I,依据动量定理I=mv A解得: I=8.1kg?m/s ;【点睛】此题综合考察动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意剖析物体运动的过程,选择正确的物理规律求解.2. 如下图,一轨道由半径 R 2m 的四分之一竖直圆弧轨道AB 和水平直轨道 BC 在 B 点光滑连结而成.现有一质量为m 1Kg 的小球从 A 点正上方 R处的 O 点由静止开释,小2球经过圆弧上的 B 点时,轨道对小球的支持力大小F N18N ,最后从 C 点水平飞离轨 道,落到水平川面上的 P . B 点与地面间的高度 h3.2m ,小球与 BC段轨道间的动 点 已知 摩擦因数 0.2 ,小球运动过程中可视为质点 . (不计空气阻力,g 取 10 m/s 2). 求:(1)小球运动至 B 点时的速度大小 v B(2)小球在圆弧轨道 AB 上运动过程中战胜摩擦力所做的功 W f(3)水平轨道 BC 的长度 L 多大时,小球落点P 与 B 点的水平距最大.【答案】( 1) v B =4?m / s ( 2) W f =22?J (3) L【分析】试题剖析: ( 1)小球在 B 点遇到的重力与支持力的协力供给向心力,由此即可求出 B 点的速度;( 2)依据动能定理即可求出小球在圆弧轨道上战胜摩擦力所做的功;( 3)联合平抛运动的公式,即可求出为使小球落点P 与 B 点的水平距离最大时BC 段的长度 .(1)小球在 B 点遇到的重力与支持力的协力供给向心力,则有: F Nmg m v B 2R解得: v B 4m / s(2)从 O 到 B 的过程中重力和阻力做功,由动能定理可得:mg RRW f 1 mv B 2 022解得: W f22J(3)由 B 到 C 的过程中,由动能定理得:mgL BC1mv C21mv B 222解得: L BCv B 2v C 22g从 C 点到落地的时间:t 02hgB 到 P 的水平距离:Lv B2v C22v C t0g代入数据,联立并整理可得:L 41v C24v C45由数学知识可知,当 v C 1.6m / s时, P 到 B 的水平距离最大,为:【点睛】该题联合机械能守恒考察平抛运动以及竖直平面内的圆周运动,解题的重点就是对每一个过程进行受力剖析,依据运动性质确立运动的方程,再依据几何关系求出最大值.3.如下图,物体 A 置于静止在圆滑水平面上的平板小车 B 的左端,物体在 A 的上方 O 点用细线悬挂一小球C(可视为质点 ),线长 L= 0.8m .现将小球 C 拉至水平无初速度开释,并在最低点与物体 A 发生水公正碰,碰撞后小球 C 反弹的速度为2m/s.已知 A、 B、 C的质量分别为 m A= 4kg、 m B= 8kg 和 m C=1kg, A、 B 间的动摩擦因数μ=, A、 C碰撞时间极短,且只碰一次,取重力加快度g= 10m/s 2.(1)求小球 C 与物体 A 碰撞前瞬时遇到细线的拉力大小;(2)求 A、 C 碰撞后瞬时 A 的速度大小;(3)若物体 A 未从小车 B 上掉落,小车 B 的最小长度为多少?【答案】 (1)30 N(2)1.5 m/s(3)0.375 m【分析】【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m0gl 1002 2m v代入数据解得: v0= 4m/s ,对小球,由牛顿第二定律得:v02 F﹣m0g=m0l代入数据解得: F=30N(2)小球 C 与 A 碰撞后向左摇动的过程中机械能守恒,得:1mv C2mgh 2因此: v C2gh 2 100.2 2m/s小球与 A 碰撞过程系统动量守恒,以小球的初速度方向为正方向,由动量守恒定律得:m0v0=﹣ m0v c+mv A代入数据解得: v A=(3)物块 A 与木板 B 互相作用过程,系统动量守恒,以A 的速度方向为正方向,由动量守恒定律得: mv A =( m+M )v代入数据解得: v =1 2 1 2由能量守恒定律得: μmgxmv A2(m+M ) v2代入数据解得: x =;4. 如下图,一质量 M =4kg 的小车静置于圆滑水平川面上,左边用固定在地面上的销钉挡住。
专题12 圆周运动模型(原卷版)-2021届高考物理热点题型归纳与变式演练
2021届高考物理一轮复习热点题型归纳与变式演练专题12 圆周运动模型【专题导航】目录热点题型一圆周运动的运动学问题 (1)热点题型二圆周运动中的动力学问题 (3)模型一车辆转弯问题 (4)模型二圆锥摆模型 (5)热点题型三竖直面内圆周运动中的临界问题的分析方法 (6)模型一汽车过拱桥模型 (7)模型二轻绳模型 (8)模型三轻杆模型 (9)热点题型四圆周运动中的两类临界问题 (10)热点题型五实验:验证向心力的影响因素 (12)【题型归纳】热点题型一圆周运动的运动学问题【题型要点】1.运动参量当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比. 3.对a n =v 2r=ω2r 的理解在v 一定时,a n 与r 成反比;在ω一定时,a n 与r 成正比. 4.常见的传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B .(2)摩擦传动和齿轮传动:如图甲、乙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A=v B.(3)同轴转动:如图甲、乙所示,绕同一转轴转动的物体,角速度相同,ωA=ωB,由v=ωr知v与r成正比.【例1】(多选)(2020·辽宁丹东质检)在如图所示的齿轮传动中,三个齿轮的半径之比为2∶3∶6,当齿轮转动的时候,小齿轮边缘的A点和大齿轮边缘的B点()A.A点和B点的线速度大小之比为1∶1 B.A点和B点的角速度之比为1∶1C.A点和B点的角速度之比为3∶1 D.以上三个选项只有一个是正确的【变式1】(多选)(2019·福建漳州市第二次教学质量监测)明代出版的《天工开物》一书中记载:“其湖池不流水,或以牛力转盘,或聚数人踏转.”并附有牛力齿轮翻车的图画如图5所示,翻车通过齿轮传动,将湖水翻入农田.已知A、B齿轮啮合且齿轮之间不打滑,B、C齿轮同轴,若A、B、C三齿轮半径的大小关系为r A>r B>r C,则()A.齿轮A、B的角速度相等B.齿轮A的角速度比齿轮C的角速度小C.齿轮B、C的角速度相等D.齿轮A边缘的线速度比齿轮C边缘的线速度小【变式2】如图所示,轮O1、O3固定在同一转轴上,轮O1、O2用皮带连接且不打滑.在O1、O2、O3三个轮的边缘各取一点A、B、C,已知三个轮的半径之比r1∶r2∶r3=2∶1∶1,求:(1)A、B、C三点的线速度大小之比v A∶v B∶v C;(2)A、B、C三点的角速度之比ωA∶ωB∶ωC;(3)A、B、C三点的向心加速度大小之比a A∶a B∶a C.热点题型二圆周运动中的动力学问题【题型要点】1.向心力的来源向心力是按力的作用效果命名的,不是物体又受到的一个力,它可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力.2.几种典型运动模型模型一车辆转弯问题【例1】(多选)(2020·安徽合肥市第二次质检)如图所示为运动员在水平道路上转弯的情景,转弯轨迹可看成一段半径为R的圆弧,运动员始终与自行车在同一平面内.转弯时,只有当地面对车的作用力通过车(包括人)的重心时,车才不会倾倒.设自行车和人的总质量为M,轮胎与路面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g.下列说法正确的是()A.车受到地面的支持力方向与车所在平面平行B.转弯时车不发生侧滑的最大速度为μgRC.转弯时车与地面间的静摩擦力一定为μMg D.转弯速度越大,车所在平面与地面的夹角越小【变式1】.(2020·四川遂宁三诊)如图所示,图1是甲汽车在水平路面转弯行驶,图2是乙汽车在倾斜路面上转弯行驶.关于两辆汽车的受力情况,以下说法正确的是()A.两车都受到路面竖直向上的支持力作用B.两车都一定受平行路面指向弯道内侧的摩擦力C.甲车可能不受平行路面指向弯道内侧的摩擦力D.乙车可能受平行路面指向弯道外侧的摩擦力【变式2】(多选)(2020·天津市南开区下学期二模)飞机飞行时除受到发动机的推力和空气阻力外,还受到重力和机翼的升力,机翼的升力垂直于机翼所在平面向上,当飞机在空中盘旋时机翼倾斜(如图9所示),以保证重力和机翼升力的合力提供向心力.设飞机以速率v在水平面内做半径为R的匀速圆周运动时机翼与水平面成θ角,飞行周期为T.则下列说法正确的是()A.若飞行速率v不变,θ增大,则半径R增大B.若飞行速率v不变,θ增大,则周期T增大C.若θ不变,飞行速率v增大,则半径R增大D.若飞行速率v增大,θ增大,则周期T可能不变模型二圆锥摆模型【例2】(多选)(2020·四川成都七中5月测试)天花板下悬挂的轻质光滑小圆环P可绕过悬挂点的竖直轴无摩擦地旋转.一根轻绳穿过P,两端分别连接质量为m1和m2的小球A、B(m1≠m2).设两球同时做如图6所示的圆锥摆运动,且在任意时刻两球均在同一水平面内,则()A.两球运动的周期相等B.两球的向心加速度大小相等C.球A、B到P的距离之比等于m2∶m1 D.球A、B到P的距离之比等于m1∶m2【变式1】(多选)如图所示,两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O点,设法让两个小球均在水平面上做匀速圆周运动.已知L1跟竖直方向的夹角为60°,L2跟竖直方向的夹角为30°,下列说法正确的是()A.细线L1和细线L2所受的拉力大小之比为3∶1 B.小球m1和m2的角速度大小之比为3∶1C.小球m1和m2的向心力大小之比为3∶1 D.小球m1和m2的线速度大小之比为33∶1【变式2】(2020·河南省八市重点高中联盟第三次模拟)如图所示,用一根细绳一端系一个小球,另一端固定,给小球不同的初速度,使小球在水平面内做角速度不同的圆周运动,则下列细绳拉力F、悬点到轨迹圆心高度h、向心加速度a、线速度v与角速度平方ω2的关系图象正确的是()【变式3】.(2020·黄冈中学模拟)“飞车走壁”杂技表演比较受青少年的喜爱,这项运动由杂技演员驾驶摩托车,沿表演台的侧壁做匀速圆周运动.简化后的模型如图所示,若表演时杂技演员和摩托车的总质量不变,摩托车与侧壁间沿侧壁倾斜方向的摩擦力恰好为零,轨道平面离地面的高度为H,侧壁倾斜角度α不变,则下列说法中正确的是()A.摩托车做圆周运动的H越高,向心力越大B.摩托车做圆周运动的H越高,线速度越大C.摩托车做圆周运动的H越高,向心力做功越多D.摩托车对侧壁的压力随高度H变大而减小热点题型三竖直面内圆周运动中的临界问题的分析方法【题型要点】常见模型【解题技巧】(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同.(2)确定临界点:抓住绳模型中最高点v≥gR及杆模型中v≥0这两个临界条件.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程:F合=F向.(5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程.模型一 汽车过拱桥模型【例1】.一辆汽车匀速率通过一座圆弧形拱形桥后,接着又以相同速率通过一圆弧形凹形桥.设两圆弧半径相等,汽车通过拱形桥桥顶时,对桥面的压力F N1为车重的一半,汽车通过圆弧形凹形桥的最低点时,对桥面的压力为F N2,则F N1与F N2之比为( ) A .3∶1B .3∶2C .1∶3D .1∶2【变式1】如图,在一固定在水平地面上A 点的半径为R 的球体顶端放一质量为m 的物块,现给物块一水平初速度v 0,则( )A .若v 0=gR ,则物块落地点距离A 点为 2RB .若球面是粗糙的,当v 0<gR 时,物块一定会沿球面下滑一段,再斜抛离开球面C .若v 0<gR ,则物块落地点离A 点为RD .若v 0≥gR ,则物块落地点离A 点至少为2R模型二 轻绳模型【例2】.(多选)(2020·黑龙江哈尔滨三中期中)如图所示,长为L 的细绳一端拴一质量为m 的小球,另一端固定在O 点,绳的最大承受能力为11mg ,在O 点正下方O ′点有一小钉,先把绳拉至水平再释放小球,为使绳不被拉断且小球能以O ′为轴完成竖直面内完整的圆周运动,则钉的位置到O 点的距离为( )A .最小为25LB .最小为35LC .最大为45LD .最大为910L 【例2】如图甲所示,一轻杆一端固定在O 点,另一端固定一小球,在竖直平面内做半径为R 的圆周运动。
(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析
(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤2.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。
高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析
高考物理生活中的圆周运动解题技巧及经典题型及练习题( 含答案 ) 含分析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的1倍.地球表面的重力加快度2为 g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为 L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加快度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能蒙受的最大拉力?【答案】(1)1(2)s 2 g0(3)T1s2g星 = g v0[1] mg 04H L40 42(H L)L【分析】【剖析】【详解】(1)由万有引力等于向心力可知G Mm m v2R2R G Mm mgR2v2可得gR则 g星=1g0 4(2)由平抛运动的规律: H L 1g星t 22s v0t解得 v s2g004H L2(3)由牛顿定律,在最低点时:T mg星= mvL解得:T11s2mg042( H L )L【点睛】此题考察了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的根源是解决此题的重点.2.有一水平搁置的圆盘,上边放一劲度系数为k 的弹簧,如下图,弹簧的一端固定于轴O 上,另一端系一质量为m 的物体 A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体 A 开始滑动?(2)当转速迟缓增大到 2 ω0时, A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少?【答案】( 1)g3mgl ( 2)4 mgl kl【分析】【剖析】(1)物体 A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力供给向心力;当圆盘转速较大时,弹力与摩擦力的协力供给向心力.物体 A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力供给向心力,依据牛顿第二定律求解角速度ω0.(2)当角速度达到 2 ω0时,由弹力与摩擦力的协力供给向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力供给向心力,当圆盘转速较大时,弹力与静摩擦力的协力供给向心力.(1)当圆盘转速为 n0时, A 马上开始滑动,此时它所受的最大静摩擦力供给向心力,则有:μmg= mlω02,解得:ω0g .=l即当ω0g时物体 A 开始滑动.=l(2)当圆盘转速达到 2 ω0时,物体遇到的最大静摩擦力已不足以供给向心力,需要弹簧的弹力来增补,即:μmg +k△x= mrω12,r=l+△x解得: Vx=3 mglkl 4 mg【点睛】当物体相关于接触物体刚要滑动时,静摩擦力达到最大,这是常常用到的临界条件.此题重点是剖析物体的受力状况.3.如下图,高为L 的倾斜直轨道AB、 CD 与水平面的夹角均为53°,分别与竖直平面内的圆滑圆弧轨道相切于B、D 两点,圆弧的半径也为L 。
高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)含解析
高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】(1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】(1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s水平分速度v x =v y tan450=10m/s则B 点与C 点的水平距离为:x=v x t=10m (2)根据牛顿运动定律,在B 点N B +mg=m 2v R解得 N B =50N根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上 【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.2.如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD 光滑,内圆的上半部分B′C′D′粗糙,下半部分B′A′D′光滑.一质量m=0.2kg 的小球从轨道的最低点A 处以初速度v 0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m ,取g=10m/s 2.(1)若要使小球始终紧贴着外圆做完整的圆周运动,初速度v 0至少为多少? (2)若v 0=3m/s ,经过一段时间小球到达最高点,内轨道对小球的支持力F C =2N ,则小球在这段时间内克服摩擦力做的功是多少?(3)若v 0=3.1m/s ,经过足够长的时间后,小球经过最低点A 时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保留三位有效数字) 【答案】(1)0v 10m/s (2)0.1J (3)6N ;0.56J 【解析】 【详解】(1)在最高点重力恰好充当向心力2Cmv mg R= 从到机械能守恒220112-22C mgR mv mv =解得010m/s v =(2)最高点'2-CC mv mg F R= 从A 到C 用动能定理'22011-2--22f C mgR W mv mv =得=0.1J f W(3)由0=3.1m/s<10m/s v 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,由于摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做往复运动.设此时小球经过最低点的速度为A v ,受到的支持力为A F212A mgR mv =2-AA mv F mg R= 得=6N A F整个运动过程中小球减小的机械能201-2E mv mgR ∆=得=0.56J E ∆3.如图所示,ABCD 是一个地面和轨道均光滑的过山车轨道模型,现对静止在A 处的滑块施加一个水平向右的推力F ,使它从A 点开始做匀加速直线运动,当它水平滑行2.5 m 时到达B 点,此时撤去推力F 、滑块滑入半径为0.5 m 且内壁光滑的竖直固定圆轨道,并恰好通过最高点C ,当滑块滑过水平BD 部分后,又滑上静止在D 处,且与ABD 等高的长木板上,已知滑块与长木板的质量分别为0.2 kg 、0.1 kg ,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、 ,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g =10 m/s 2,求:(1)水平推力F 的大小; (2)滑块到达D 点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少? 【答案】(1)1N (2) (3)t =1 s ;【解析】 【分析】 【详解】(1)由于滑块恰好过C 点,则有:m 1g =m 1从A 到C 由动能定理得:Fx -m 1g ·2R =m 1v C 2-0代入数据联立解得:F =1 N(2)从A 到D 由动能定理得:Fx =m 1v D 2代入数据解得:v D =5 m/s(3)滑块滑到木板上时,对滑块:μ1m 1g =m 1a 1,解得:a 1=μ1g =3 m/s 2对木板有:μ1m 1g -μ2(m 1+m 2)g =m 2a 2,代入数据解得:a 2=2 m/s 2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同, 有:v 共=v D -a 1t v 共=a 2t ,代入数据解得:t =1 s此时滑块的位移为:x 1=v D t -a 1t 2,木板的位移为:x 2=a 2t 2,L =x 1-x 2,代入数据解得:L =2.5 m v 共=2 m/s x 2=1 m达到共同速度后木板又滑行x ′,则有:v 共2=2μ2gx ′,代入数据解得:x ′=1.5 m木板在水平地面上最终滑行的总位移为:x 木=x 2+x ′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.4.某工厂在竖直平面内安装了如图所示的传送装置,圆心为O 的光滑圆弧轨道AB 与足够长倾斜传送带BC 在B 处相切且平滑连接,OA 连线水平、OB 连线与竖直线的夹角为37θ=︒,圆弧的半径为 1.0m R =,在某次调试中传送带以速度2m/s v =顺时针转动,现将质量为13kg m =的物块P (可视为质点)从A 点位置静止释放,经圆弧轨道冲上传送带,当物块P 刚好到达B 点时,在C 点附近某一位置轻轻地释放一个质量为21kg m =的物块Q 在传送带上,经时间 1.2s t =后与物块P 相遇并发生碰撞,碰撞后粘合在一起成为粘合体A .已知物块P 、Q 、粘合体S 与传送带间的动摩擦因数均为0.5μ=,重力加速度210m/s g =,sin370.6︒=,cos370.8︒=.试求:(1)物块P 在B 点的速度大小; (2)传送带BC 两端距离的最小值;(3)粘合体回到圆弧轨道上B 点时对轨道的压力.【答案】(1)4m/s (2)3.04m (3)59.04N ,方向沿OB 向下。
高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析
高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,半径R=2.5m的竖直半圆光滑轨道在B点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A点.一瞬时冲量使滑块以一定的初速度从A点开始运动,经B点进入圆轨道,沿圆轨道运动到最高点C,并从C点水平飞出,落在水平面上的D点.经测量,D、B间的距离s1=10m,A、B间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C点时的速度大小;(2)滑块刚进入圆轨道时,在B点轨道对滑块的弹力;(3)滑块在A点受到的瞬时冲量的大小.【答案】(1)(2)45N(3)【解析】【详解】(1)设滑块从C点飞出时的速度为v c,从C点运动到D点时间为t滑块从C点飞出后,做平抛运动,竖直方向:2R=gt2水平方向:s1=v c t解得:v c=10m/s(2)设滑块通过B点时的速度为v B,根据机械能守恒定律mv B2=mv c2+2mgR解得:v B=10m/s设在B点滑块受轨道的压力为N,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A=16.1m/s设滑块在A点受到的冲量大小为I,根据动量定理I=mv A解得:I=8.1kg•m/s;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.如图所示,在竖直平面内有一“∞”管道装置,它是由两个完全相同的圆弧管道和两直管道组成。
高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析
高考物理生活中的圆周运动解题技巧及经典题型及练习题( 含答案 ) 及分析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的圆滑圆弧轨道ABC 和水平轨道PA 在 A 点相切. BC 为圆弧轨道的直径.3O 为圆心, OA 和 OB 之间的夹角为α, sin α=,一质量为 m5的小球沿水平轨道向右运动,经 A 点沿圆弧轨道经过C点,落至水平轨道;在整个过程中,除遇到重力及轨道作使劲外,小球还向来遇到一水平恒力的作用,已知小球在 C 点所受协力的方向指向圆心,且此时小球对轨道的压力恰巧为零.重力加快度大小为g.求:(1)水平恒力的大小和小球抵达C 点时速度的大小;(2)小球抵达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间.【答案】( 1)5gR (2) m23gR (3) 35R225g【分析】试题剖析本题考察小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动及其有关的知识点,意在考察考生灵巧运用有关知识解决问题的的能力.分析( 1)设水平恒力的大小为F0,小球抵达C点时所受协力的大小为F.由力的合成法例有F0tan①mgF 2(mg )2F02②设小球抵达 C 点时的速度大小为v,由牛顿第二定律得v2F m③R由①②③式和题给数据得F03mg ④4v5gR ⑤2(2)设小球抵达 A 点的速度大小为v1,作CD PA ,交PA于D点,由几何关系得DA R sin⑥CD R(1 cos)⑦由动能定理有mg CD F0DA 1 mv21mv12⑧22由④⑤⑥⑦⑧式和题给数据得,小球在 A 点的动量大小为p mv1m23gR ⑨2(3)小球走开 C 点后在竖直方向上做初速度不为零的匀加快运动,加快度大小为g.设小球在竖直方向的初速度为v ,从 C 点落至水平轨道上所用时间为t .由运动学公式有v t1gt 2CD ⑩2v vsin由⑤⑦⑩式和题给数据得35Rtg5点睛小球在竖直面内的圆周运动是常有经典模型,本题将小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动有机联合,经典创新.2.如下图,粗拙水平川面与半径为R=0.4m 的粗拙半圆轨道BCD相连结,且在同一竖直平面内, O 是 BCD的圆心, BOD 在同一竖直线上.质量为m=1kg 的小物块在水平恒力F=15N 的作用下,从 A 点由静止开始做匀加快直线运动,当小物块运动到 B 点时撤去 F,小物块沿半圆轨道运动恰巧能经过 D 点,已知 A、 B 间的距离为 3m ,小物块与地面间的动摩擦因数为0.5,重力加快度g 取 10m/s 2.求:(1)小物块运动到 B 点时对圆轨道 B 点的压力大小.(2)小物块走开 D 点后落到地面上的点与 D 点之间的距离【答案】( 1) 160N( 2)0.8 2 m【分析】【详解】(1)小物块在水平面上从 A 运动到 B 过程中,依据动能定理,有:(F-μmg) x AB1mv B2=-02在 B 点,以物块为研究对象,依据牛顿第二定律得:N mg m v B2R联立解得小物块运动到B 点时轨道对物块的支持力为: N=160N由牛顿第三定律可得,小物块运动到 B 点时对圆轨道 B 点的压力大小为: N ′=N=160N (2)因为小物块恰能经过 D 点,因此在 D 点小物块所受的重力等于向心力,即:2 mgmv DR可得: v D =2m/s设小物块落地址距B 点之间的距离为 x ,着落时间为 t ,依据平抛运动的规律有:x=v D t ,2R= 1gt 22解得: x=0.8m则小物块走开 D 点后落到地面上的点与D 点之间的距离l2x 0.8 2m3. 如下图,在水平桌面上离桌面右边沿3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F=1.0N作用于铁球,作用一段时间后撤去。
高中物理圆周运动最全高考模拟题附有详细解析
高中物理圆周运动最新最全高考模拟题附有详细解析(总36页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除高中物理圆周运动最新最全高考模拟题一.选择题(共19小题)1.(2015•娄星区模拟)物体做匀速圆周运动时,下列说法正确的是()A.物体必须受到恒力的作用B.物体所受合力必须等于零C.物体所受合力的大小可能变化D.物体所受合力的大小不变,方向不断改变2.(2015•徐州模拟)一个物体做匀速圆周运动时,线速度大小保持不变,下列说法中正确的是()A.轨道半径越大角速度越大B.轨道半径越大向心加速度越大C.轨道半径越小角速度越大D.轨道半径越小周期越长3.(2012•珠海校级模拟)氢原子中的电子绕原子核做匀速圆周运动和人造卫星绕地球做匀速圆周运动比较()A.电子可以在大于基态轨道半径的任意圆轨道上运动,卫星也可以在大于地球半径的任意圆轨道上运动B.轨道半径越大,线速度都越大C.轨道半径越大,周期都越大D.轨道半径越大,能量都越小4.(2010•浙江)宇宙飞船以周期为T绕地球作圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示.已知地球的半径为R,地球质量为M,引力常量为G,地球自转周期为T0.太阳光可看作平行光,宇航员在A点测出的张角为α,则()A.飞船绕地球运动的线速度为B.一天内飞船经历“日全食”的次数为C.飞船每次“日全食”过程的时间为D.飞船周期为T=5.(2015•徐州模拟)匀速圆周运动中的向心加速度是描述()A.线速度大小变化的物理量B.线速度大小变化快慢的物理量C.线速度方向变化的物理量D.线速度方向变化快慢的物理量6.(2015•宿迁模拟)A、B两个质点分别做匀速圆周运动,在相等时问内通过的弧长之比S A:S B=4:3,转过的圆心角之比θA:θB=3:2.则下列说法中正确的是()A.它们的线速度之比v:v B=4:3AB.它们的角速度之比ω:ωB=2:3AC.它们的周期之比T:T B=3:2AD.它们的向心加速度之比a:a B=3:2A7.(2015•云南校级学业考试)如图所示,一个小球绕圆心O做匀速圆周运动,已知圆周半径为r,该小球运动的线速度大小为v,则它运动的向心加速度大小为()A.B.νr C.D.νr28.(2015•临潼区)两颗人造地球卫星A和B的轨道半径分别为R A和R B,则它们的运动速率v A和v B,角速度ωA和ωB,向心加速度a A和a B,运动周期TA和TB之间的关系为正确的是()A.v:v B=R B:R A B.ωA:ωB=R AAC.a:a B=R2B:R2A D.T A:T B=R BA9.(2015•遂宁模拟)图中所示为一皮带传动装置,右轮的半径范围r,a是它边缘上的一点.左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r.c点和d点分别位于小轮和大轮的边缘上.若在传动过程中,皮带不打滑.则()A.a点与b点的线速度大小相等B.a点与b点的角速度大小相等C.b点与d点的向心加速度大小相等D.a点与c点的线速度大小相等10.(2015春•娄底期中)如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g,若圆盘从静止开始绕转轴缓慢地加速运动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a,b所受的摩擦力始终相等C.ω=是b开始滑动的临界角速度D.当ω=时,a所受摩擦力的大小为kmg11.(2015•安庆校级四模)如图,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内:套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g,当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.M g﹣5mg B.M g+mg C.M g+5mg D.M g+10mg12.(2015•廉江市校级模拟)如图所示,小物体A与水平圆盘保持相对静止,跟着圆盘一起做匀速圆周运动,则A的受力情况是()A.受重力、支持力B.受重力、支持力和指向圆心的摩擦力C.重力、支持力、向心力、摩擦力D.以上均不正确13.(2015•广州)如图所示,质量相等的a、b两物体放在圆盘上,到圆心的距离之比是2:3,圆盘绕圆心做匀速圆周运动,两物体相对圆盘静止,a、b两物体做圆周运动的向心力之比是()A.1:1B.3:2C.2:3D.9:414.(2015•江苏校级模拟)关于离心运动,下列说法中正确的是()A.物体突然受到向心力的作用,将做离心运动B.做匀速圆周运动的物体,在外界提供的向心力突然变大时将做离心运动C.做匀速圆周运动的物体,只要向心力的数值发生变化,就将做离心运动D.做匀速圆周运动的物体,当外界提供的向心力突然消失或变小时将做离心运动15.(2015•贵阳校级模拟)如图所示为洗衣机脱水筒工作时的示意图,衣物随洗衣机的脱水筒高速旋转而达到脱水的目的.下列关于洗衣机脱水过程的说法,不正确的是()A.脱水过程中,衣物是紧贴筒壁的B.水会从筒中甩出是因为水滴受到向心力很大的缘故C.加快脱水筒转动角速度,脱水效果会更好D.靠近中心的衣物脱水效果不如四周的衣物脱水效果好16.(2015春•怀化期末)如图所示,光滑水平面上,质量为m的小球在拉力F作用下做匀速圆周运动.若小球运动到P点时,拉力F发生变化,下列关于小球运动情况的说法中正确的是()A.若拉力突然消失,小球将沿轨迹Pa做离心运动B.若拉力突然变小,小球将沿轨迹Pa做离心运动C.若拉力突然变大,小球将沿轨迹Pb做离心运动D.若拉力突然变小,小球将沿轨迹Pc做向心运动17.(2011•高州市校级模拟)如图所示,小球用细绳悬挂于O点,在O点正下方有一固定的钉子C,把小球拉到水平位置后无初速释放,当细线转到竖直位置时有一定大小的速度,与钉子C相碰的前后瞬间()A.小球的线速度变大B.小球的向心加速度不变C.小球的向心加速度突然增大D.绳中张力突然增大18.(2006•济南模拟)如图所示,用一连接体一端与一小球相连,绕过O点的水平轴在竖直平面内做圆周运动,设轨道半径为r,图中P、Q两点分别表示小球轨道的最高点和最低点,则以下说法正确的是()A.若连接体是轻质细绳时,小球到达P点的速度可以为零B.若连接体是轻质细杆时,小球到达P点的速度可以为零C.若连接体是轻质细绳时,小球在P点受到细绳的拉力可能为零D.若连接体是轻质细杆时,小球在P点受到细杆的作用力为拉力,在Q点受到细杆的作用力为推力19.(2011•江西校级二模)“六十甲子”是古人发明用来计时的方法,也是一种表示自然界五行之气循环流转的直观表示法.某学校物理兴趣小组用空心透明粗糙塑料管制作了如图所示的竖直“60”造型.两个“0”字型圆的半径均为R.让一质量为m、直径略小于管径的小球从入口A处无初速度放入,B、C、D是轨道上的三点,E为出口,其高度低于入口A.已知BC是“0”字型的一条竖直方向的直径,D点是左侧“0”字型上的一点,与圆心等高,A比C高R,当地的重力加速度为g,则小球在整个运动过程中,下列说法错误的是()A.如果是光滑小球,在D点处,塑料管的左侧对小球的压力4mgB.如果是光滑小球,小球一定能从E点射出C.如果是不光滑小球,且能通过C点,此处塑料管对小球的作用力小于mgD.如果是不光滑小球,小球不可能停在B点二.解答题(共11小题)20.(2015•山西模拟)如图所示,水平放置的圆盘边缘C点有一个小洞,圆盘半径R=1m,在圆盘直径CD的正上方,与CD平行放置一条长为R的水平滑道AB,滑道右端B与圆盘圆心O在同一条竖直线上,且B点距离圆盘圆心的竖直高度h=.在滑道左端静止放置质量为m=的物块(可视为质点),小球与滑道间的动摩擦因数为μ=.现使小球以某一水平向左的初速度运动,同时圆盘从图示位置以图中所示的角速度ω绕通过圆心O的竖直轴匀速转动,最终小球恰好落入圆盘边缘的小洞内,重力加速度取10m/s2.(1)小球运动的初速度v0的大小;(2)圆盘运动的角速度ω的值.21.(2015春•双鸭山校级期中)小球P用长L=1m的细绳系着,在水平面内绕O点做匀速圆周运动,其角速度ω=2πrad/s.另一质量m=1kg的小球Q放在高出水平面h=的粗糙水平槽上,槽与绳平行,小球Q与槽之间的动摩擦因数为μ=,槽的端点A在O点正上方.当小球P运动到图示位置时,小球Q以初速度v0向A点运动然后做平抛运动,Q落到水平面时P恰好与它相碰.(g取10m/s2)求:(1)若P与Q相碰时还没转够一周,则Q的初速度v0和到达A的速度 v A各为多少;(2)若P与Q相碰时转动的时间大于一个周期,求Q运动到A点的时间和相应的Q在桌面上滑行的距离分别满足什么关系?22.(2015•重庆)同学们参照伽利略时期演示平抛运动的方法制作了如图所示的实验装置.图中水平放置的底板上竖直地固定有M板和N板.M板上部有一半径为R的圆弧形的粗糙轨道,P为最高点,Q为最低点,Q点处的切线水平,距底板高为H.N板上固定有三个圆环.将质量为m的小球从P处静止释放,小球运动至Q飞出后无阻碍地通过各圆环中心,落到底板上距Q水平距离为L处.不考虑空气阻力,重力加速度为g.求:(1)距Q水平距离为的圆环中心到底板的高度;(2)小球运动到Q点时速度的大小以及对轨道压力的大小和方向;(3)摩擦力对小球做的功.23.(2015•海南)如图,位于竖直平面内的光滑轨道由四分之一圆弧ab和抛物线bc组成,圆弧半径Oa水平,b点为抛物线顶点.已知h=2m,s=m.取重力加速度大小g=10m/s2.(1)一小环套在轨道上从a点由静止滑下,当其在bc段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b点由静止因微小扰动而开始滑下,求环到达c点时速度的水平分量的大小.24.(2015•武清区校级学业考试)如图所示,ABC为一细圆管构成的圆轨道,固定在竖直平面内,轨道半径为R(比细圆管的半径大得多),OA水平,OC竖直,最低点为B,最高点为C,细圆管内壁光滑.在A点正上方某位置处有一质量为m的小球(可视为质点)由静止开始下落,刚好进入细圆管内运动.已知细圆管的内径稍大于小球的直径,不计空气阻力.(1)若小球刚好能到达轨道的最高点C,求小球经过最低点B时的速度大小和轨道对小球的支持力大小;(2)若小球从C点水平飞出后恰好能落到A点,求小球刚开始下落时离A点的高度为多大.25.(2015•张掖模拟)如图所示,有一个可视为质点的质量为m=1kg的小物块,从光滑平台上的A点以v0=2m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M=3kg的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑,小物块与长木板间的动摩擦因数μ=,圆弧轨道的半径为R=,C点和圆弧的圆心连线与竖直方向的夹角θ=60°,不计空气阻力,g取10m/s2.求:(1)小物块刚要到达圆弧轨道末端D点时对轨道的压力;(2)要使小物块不滑出长木板,木板的长度L至少多大?26.(2012•重庆模拟)如图所示,水平地面上方被竖直线MN分隔成两部分,M点左侧地面粗糙,动摩擦因数为μ=,右侧光滑.MN右侧空间有一范围足够大的匀强电场.在O点用长为R=5m的轻质绝缘细绳,拴一个质量m A=,带电量为q=+2×10﹣4的小球A,在竖直平面内以v=10m/s的速度做顺时针匀速圆周运动,运动到最低点时与地面刚好不接触.处于原长的弹簧左端连在墙上,右端与不带电的小球B接触但不粘连,B球的质量m B=,此时B 球刚好位于M点.现用水平向左的推力将B球缓慢推至P点(弹簧仍在弹性限度内),MP 之间的距离为L=10cm,推力所做的功是W=,当撤去推力后,B球沿地面右滑恰好能和A球在最低点处发生正碰,并瞬间成为一个整体C(A、B、C均可视为质点),碰后瞬间立即把匀强电场的场强大小变为E=6×103N/C,电场方向不变.(取g=10m/s2)求:(1)A、B两球在碰前匀强电场的大小和方向.(2)碰撞后整体C的速度.(3)整体C运动到最高点时绳的拉力大小.27.(2012•利州区校级一模)如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R.一个质量为m的物体(可以看作质点)从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动.已知P点与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ.求:(1)物体做往返运动的整个过程中在AB轨道上通过的总路程;(2)最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力;(3)为使物体能顺利到达圆弧轨道的最高点D,释放点距B点的距离L′应满足什么条件?28.(2011•崇川区校级模拟)如图所示,一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线的夹角θ=30°,一条长为l的绳,一端固定在圆锥体的顶点O,另一端系一个质量为m的小球(可视为质点),小球以角速度ω绕圆锥体的轴线在水平面内做匀速圆周运动.试分析:(1)小球以角速度ω=转动时,绳子的拉力和圆锥体对小球的支持力;(2)小球以角速度ω=转动时,绳子的拉力和圆锥体对小球的支持力.29.(2015•福州校级模拟)山地滑雪是人们喜爱的一项体育运动,一滑雪坡由AB和BC组成,AB是倾角为37°的斜坡,BC是半径为R=5m的圆弧面,圆弧面和斜面相切于B,与水平面相切于C,如图所示,AB竖直高度差h=,运动员连同滑雪装备总质量为80kg,从A点由静止滑下通过C点后飞落(不计一切阻力,g取10m/s2,sin37°=,cos37°=).求:(1)运动员到达C点的速度大小.(2)运动员经过C点时轨道受到的压力大小.30.(2015•闵行区二模)如图所示,一不可伸长的轻质细绳,绳长为L,一端固定于O 点,另一端系一质量为m的小球,小球绕O点在竖直平面内做圆周运动(不计空气阻力).(1)若小球通过最高点A时的速度为v,求v的最小值和此时绳对小球拉力F的大小;(2)若小球恰好通过最高点A且悬点距地面的高度h=2L,小球经过B点或D点时绳突然断开,求两种情况下小球从抛出到落地所用时间之差△t;(3)若小球运动到最低点C或最高点A时,绳突然断开,两种情况下小球从抛出到落地水平位移大小相等,则O点距离地面高度h与绳长L之间应满足怎样的关系?高中物理圆周运动最新最全高考模拟题参考答案与试题解析一.选择题(共19小题)1.(2015•娄星区模拟)物体做匀速圆周运动时,下列说法正确的是()A.物体必须受到恒力的作用B.物体所受合力必须等于零C.物体所受合力的大小可能变化D.物体所受合力的大小不变,方向不断改变考点:匀速圆周运动;向心力.分析:做匀速圆周运动的物体,它的速度的大小是不变的,只改变速度的方向,所以合力一定和速度的方向垂直,由于物体的速度不变,所以向心力的大小肯定也不变.解答:解:A、匀速圆周运动的向心力的大小是恒定的,说的只是力的大小不变,力的方向要指向圆心,所以时刻在变,而恒力指的是大小和方向都不变的力,所以A选项错误;B、同A的分析,力的大小是不变的,但不能是零,否则的话,不会做圆周运动,所以B选项错误;C、同A的分析,匀速圆周运动的向心力的大小是恒定的,由牛顿第二定律可知受的合力的大小是不变的,故C选项错误;D、所受合力的大小不变,力的方向要指向圆心,所以时刻在变,故D选项正确.故选:D.点评:考查学生对匀速圆周运动的理解,还有匀速圆周运动向心力的理解,这里的匀速只是指它的速度的大小不变,方向是时刻在变化的.2.(2015•徐州模拟)一个物体做匀速圆周运动时,线速度大小保持不变,下列说法中正确的是()A.轨道半径越大角速度越大B.轨道半径越大向心加速度越大C.轨道半径越小角速度越大D.轨道半径越小周期越长考点:匀速圆周运动.专题:匀速圆周运动专题.分析:根据题目知道物体做匀速圆周运动,线速度大小不变,因此把握这一条件,根据据,,则可以判断角速度、向心加速度、周期的变化情况.解答:解:A、根据v=ωr可知,线速度大小保持不变,半径越大,角速度越小,故A错误;B、根据可知,线速度大小保持不变,半径越大,向心加速度越小,故B错误;C、根据v=ωr可知,线速度大小保持不变,半径越小,角速度越大,故C正确;D、根据可知,线速度大小保持不变,半径越小,周期越长,故D错误.故选C.点评:描述圆周运动物理量很多,要正确理解各个物理量含义以及它们之间联系,在讨论物理量的变化时注意要用不变的物理量讨论变化的.3.(2012•珠海校级模拟)氢原子中的电子绕原子核做匀速圆周运动和人造卫星绕地球做匀速圆周运动比较()A.电子可以在大于基态轨道半径的任意圆轨道上运动,卫星也可以在大于地球半径的任意圆轨道上运动B.轨道半径越大,线速度都越大C.轨道半径越大,周期都越大D.轨道半径越大,能量都越小考点:匀速圆周运动.专题:压轴题;匀速圆周运动专题.分析:氢原子中的电子绕原子核做匀速圆周运动有固定的轨道,不是任意轨道,电子绕核运动时,半径增大,电场力做负功,电势能增大,动能减小;根据库仑力提供向心力可分析周期的变化和卫星绕地球运动类似.根据万有引力提供向心力公式即可求解;解答:解:A、氢原子中的电子绕原子核做匀速圆周运动有固定的轨道,不是任意轨道,故A错误;B、根据库仑力提供向心力得:,解得:v=,根据G解得:v=,所以轨道半径越大,线速度都越减小,故B错误;C、根据库仑力提供向心力得:,和G,可知轨道半径越大,周期都越大,故C正确;D、氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,库仑力对电子做负功,所以动能变小,电势能变大(动能转为电势能),因为吸收了光子,总能量变大,故D错误.故选C点评:电子绕核运动的规律和卫星绕地球运动规律类似,在学习时可以类比进行学习,加强理解.4.(2010•浙江)宇宙飞船以周期为T绕地球作圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示.已知地球的半径为R,地球质量为M,引力常量为G,地球自转周期为T0.太阳光可看作平行光,宇航员在A点测出的张角为α,则()A.飞船绕地球运动的线速度为B.一天内飞船经历“日全食”的次数为C.飞船每次“日全食”过程的时间为D.飞船周期为T=考点:线速度、角速度和周期、转速;万有引力定律及其应用.专题:压轴题.分析:宇宙飞船绕地球做匀速圆周运动,由飞船的周期及半径可求出飞船的线速度;同时由引力提供向心力的表达式,可列出周期与半径及角度α的关系.当飞船进入地球的影子后出现“日全食”到离开阴影后结束,所以算出在阴影里转动的角度,即可求出发生一次“日全食”的时间;由地球的自转时间与宇宙飞船的转动周期,可求出一天内飞船发生“日全食”的次数.解答:解:A、飞船绕地球匀速圆周运动∵线速度为又由几何关系知∴故A正确;B、地球自转一圈时间为To,飞船绕地球一圈时间为T,飞船绕一圈会有一次日全食,所以每过时间T就有一次日全食,得一天内飞船经历“日全食”的次数为故B不正确;C、由几何关系,飞船每次“日全食”过程的时间内飞船转过α角所需的时间为t=;故C不正确;D、万有引力提供向心力则∵∵故D正确;故选为AD.点评:掌握匀速圆周运动中线速度、角速度及半径的关系,同时理解万有引力定律,并利用几何关系得出转动的角度.5.(2015•徐州模拟)匀速圆周运动中的向心加速度是描述()A.线速度大小变化的物理量B.线速度大小变化快慢的物理量C.线速度方向变化的物理量D.线速度方向变化快慢的物理量考点:向心加速度.专题:匀速圆周运动专题.分析:做匀速圆周运动的物体要受到指向圆心的向心力的作用,从而产生指向圆心的向心加速度,向心加速度只改变物体的速度的方向不改变速度的大小,其物理意义是描述线速度方向变化的快慢.解答:解:做匀速圆周运动的物体,速度方向时刻改变,向心加速度就是描述物体线速度方向变化快慢的物理量,而线速度的大小的变化快慢由切向加速度描述,故ABC错误,D正确.故选D.点评:本题属于基础题目,考查了描述圆周运动的物理量的含义,是一道考查基础知识的好题.6.(2015•宿迁模拟)A、B两个质点分别做匀速圆周运动,在相等时问内通过的弧长之比S A:S B=4:3,转过的圆心角之比θA:θB=3:2.则下列说法中正确的是()A.它们的线速度之比vA:v B=4:3B.它们的角速度之比ωA:ωB=2:3C.它们的周期之比TA:T B=3:2D.它们的向心加速度之比aA:a B=3:2考点:向心加速度;线速度、角速度和周期、转速.专题:匀速圆周运动专题.分析:根据公式v=求解线速度之比,根据公式ω=求解角速度之比,根据公式T=求周期之比,根据a n=ωv,即可求解加速度之比.解答:解:A、B两质点分别做匀速圆周运动,若在相等时间内它们通过的弧长之比为S A:S B=4:3,根据公式公式v=,线速度之比为v A:v B=4:3,故A正确;B、通过的圆心角之比φA:φB=3:2,根据公式ω=,角速度之比为3:2,故B 错误;C、由根据公式T=,周期之比为T A:T B=2:3;故C错误;D、根据a n=ωv,可知a A:a B=2:1,故D错误;故选:A.点评:本题关键是记住线速度、角速度、周期和向心加速度的公式,根据公式列式分析,基础题.7.(2015•云南校级学业考试)如图所示,一个小球绕圆心O做匀速圆周运动,已知圆周半径为r,该小球运动的线速度大小为v,则它运动的向心加速度大小为()A.B.νr C.D.νr2考点:向心加速度.分析:根据向心加速度的公式a=ω2r得出向心加速度的大小.解答:解:根据向心加速度的公式知,a=ω2r.又v=ωr,故a=vω=,故C正确,A、B、D错误.故选:C.点评:解决本题的关键知道向心加速度与线速度以及角速度的关系,并能灵活运用.8.(2015•临潼区)两颗人造地球卫星A和B的轨道半径分别为R A和R B,则它们的运动速率v A和v B,角速度ωA和ωB,向心加速度a A和a B,运动周期TA和TB之间的关系为正确的是()A.vA:v B=R B:R A B.ωA:ωB=R AC.aA:a B=R2B:R2A D.T A:T B=R B考点:向心加速度;线速度、角速度和周期、转速.专题:匀速圆周运动专题.分析:人造卫星受到地球的万有引力提供向心力,分别用卫星的速率、角速度、向心加速度、周期表示向心力,求出它们的表达式,然后由A、B的半径关系判断选项是否正确.解答:解:A、人造卫星受到地球的万有引力提供向心力,即:,因此得:,故A错误.B、人造卫星受到地球的万有引力提供向心力,即:=mω2r,所以,ω=,因此得:ωA:ωB=,故B错误.C、人造卫星受到地球的万有引力提供向心力,即:,所以,a=,因此得:,故C正确.D、人造卫星受到地球的万有引力提供向心力,即:,因此得:,故D错误.故选:C点评:解答本题把握人造卫星受到地球的万有引力提供向心力,分别求出速率、角速度、向心加速度、周期的表达式是关键.9.(2015•遂宁模拟)图中所示为一皮带传动装置,右轮的半径范围r,a是它边缘上的一点.左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r.c点和d点分别位于小轮和大轮的边缘上.若在传动过程中,皮带不打滑.则()A.a点与b点的线速度大小相等B.a点与b点的角速度大小相等C.b点与d点的向心加速度大小相等D.a点与c点的线速度大小相等考点:向心加速度;线速度、角速度和周期、转速.专题:匀速圆周运动专题.分析:共轴转动的各点角速度相等,靠传送带传动轮子上的点线速度大小相等,根据v=rω,a=rω2=半径各点线速度、角速度和向心加速度的大小.解答:解:A、a、c两点的线速度大小相等,b、c两点的角速度相等,根据v=rω,c的线速度大于b的线速度,则a、b两点的线速度不等,故A错误;B、a、c的线速度相等,根据v=rω,知角速度不等,但b、c角速度相等,所以a、b两点的角速度不等,故B错误;C、b点与d点的角速度相等,转动半径不等,根据a=ω2r,向心加速度不等,故C 错误;D、靠传送带传动轮子上的点线速度大小相等,故a点与c点的线速度大小相等,故D正确;故选:D.点评:解决本题的关键知道线速度、角速度、向心加速度与半径的关系,以及知道共轴转动的各点角速度相等,靠传送带传动轮子上的点线速度大小相等.10.(2015春•娄底期中)如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为。
高考必备物理生活中的圆周运动技巧全解及练习题(含答案)
高考必备物理生活中的圆周运动技巧全解及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.3.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)4214μ-=【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 水平方向:2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =+ 从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得42μ-=4.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==5.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m6.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR = (2)123gRv =,253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =,253gR v =7.如图所示,物体A 置于静止在光滑水平面上的平板小车B 的左端,物体在A 的上方O 点用细线悬挂一小球C(可视为质点),线长L =0.8m .现将小球C 拉至水平无初速度释放,并在最低点与物体A 发生水平正碰,碰撞后小球C 反弹的速度为2m/s .已知A 、B 、C 的质量分别为m A =4kg 、m B =8kg 和m C =1kg ,A 、B 间的动摩擦因数μ=0.2,A 、C 碰撞时间极短,且只碰一次,取重力加速度g =10m/s 2.(1)求小球C 与物体A 碰撞前瞬间受到细线的拉力大小; (2)求A 、C 碰撞后瞬间A 的速度大小;(3)若物体A 未从小车B 上掉落,小车B 的最小长度为多少? 【答案】(1)30 N (2)1.5 m/s (3)0.375 m 【解析】 【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m 0gl 12=m 0v 02 代入数据解得:v 0=4m/s ,对小球,由牛顿第二定律得:F ﹣m 0g =m 020v l代入数据解得:F =30N(2)小球C 与A 碰撞后向左摆动的过程中机械能守恒,得:212C mv mgh = 所以:22100.22C v gh ==⨯⨯=m/s小球与A 碰撞过程系统动量守恒,以小球的初速度方向为正方向, 由动量守恒定律得:m 0v 0=﹣m 0v c +mv A 代入数据解得:v A =1.5m/s(3)物块A 与木板B 相互作用过程,系统动量守恒,以A 的速度方向为正方向, 由动量守恒定律得:mv A =(m+M )v 代入数据解得:v =0.5m/s由能量守恒定律得:μmgx 12=mv A 212-(m+M )v 2 代入数据解得:x =0.375m ;8.如图所示,竖直平面内有一光滑的直角细杆MON ,其中ON 水平,OM 竖直,两个小物块A 和B 分别套在OM 和ON 杆上,连接AB 的轻绳长为L =0.5m ,.现将直角杆MON 绕过OM 的轴O 1O 2缓慢地转动起来.已知A 的质量为m 1=2kg ,重力加速度g 取10m/s 2。
2023年高考物理圆周运动最新模拟题精练-车辆转弯模型(解析版)
高考物理《圆周运动》常用模型最新模拟题精练专题12.车辆转弯模型一.选择题1.(2023济南名校质检)如图所示,在德州市的某十字路口,设置有右转弯专用车道。
现有一辆汽车正在水平右转弯车道上行驶,其运动可视作圆周运动,行驶过程中车辆未发生打滑。
司机和副驾驶座上的乘客始终与汽车保持相对静止。
当汽车在水平的右转弯车道上减速行驶时,下列说法正确的是()A.司机和乘客具有相同的线速度B.汽车所受的合力一定指向圆心C.汽车对乘客的作用力小于汽车对司机的作用力D.汽车对乘客的作用力大于乘客所受的重力【参考答案】D 【名师解析】司机和副驾驶座上的乘客始终与汽车保持相对静止,司机和乘客具有相同的角速度,但半径不同,根据线速度与角速度的关系v r ω=,则线速度不同,故A 错误;因汽车做减速圆周运动,汽车所受的合力分解为指向圆心的向心力和与运动方向相反使速率减小的切向力,故合力的方向一定不指向圆心,故B 错误;乘客和司机角速度相同,由牛顿第二定律有2F m rω=右转弯时乘客的半径小,但因不确定乘客和司机的质量大小关系,故汽车对乘客的作用力和对司机的作用力大小关系无法确定,故C 错误;汽车对乘客的作用力有竖直方向的支持力和水平方向使乘客做减速圆周运动合力,竖直方向的支持力与乘客所受的重力平衡,则汽车对乘客两个方向的力的合力一定大于乘客所受的重力,故D 正确。
2.(2022天津河西区二模)汽车在水平地面转弯时,坐在车里的小云发现车内挂饰偏离了竖直方向,如图所示。
设转弯时汽车所受的合外力为F ,关于本次转弯,下列图示可能正确的是()A. B.C. D.【参考答案】A【名师解析】根据图中可知,车内的挂饰偏向了右方,由此可知,汽车正在向左转弯,由于汽车做曲线运动,故合力F 指向轨迹的内侧,故A 正确,BCD 错误。
3.(2022年高考广东梅州二模)上海磁悬浮列车线路需要转弯的地方有三处,其中设计的最大转弯处半径达到8000米,用肉眼看几乎是一条直线,而转弯处最小半径也达到1300米。
2023高三物理模拟考题型总结及分析-圆周运动
第10讲 圆周运动目录考点一 圆周运动中的运动学分析 ............................................................................................. 1 考点二 圆周运动中的动力学分析 ............................................................................................. 1 考点三 圆周运动的临界问题 ..................................................................................................... 4 考点四 竖直平面内圆周运动绳、杆模型 ................................................................................. 7 练出高分 (10)考点一 圆周运动中的运动学分析1.线速度:描述物体圆周运动快慢的物理量.v =Δs Δt =2πrT .2.角速度:描述物体绕圆心转动快慢的物理量.ω=ΔθΔt =2πT. 3.周期和频率:描述物体绕圆心转动快慢的物理量.T =2πr v ,T =1f .4.向心加速度:描述速度方向变化快慢的物理量.a n =rω2=v 2r =ωv =4π2T2r . 5.相互关系:(1)v =ωr =2πTr =2πrf .(2)a n =v 2r =rω2=ωv =4π2T2r =4π2f 2r .[例题1] (2023•崇明区二模)如图为车库出入口采用的曲杆道闸,道闸由转动杆OP 与横杆PQ 链接而成,P 、Q 为横杆的两个端点。
在道闸抬起过程中,杆PQ 始终保持水平,则在抬起过程中P 和Q 两点( )A .线速度相同,角速度相同B.线速度相同,角速度不同C.线速度不同,角速度相同D.线速度不同,角速度不同[例题2](2023•台州二模)某款机械表中有两个相互咬合的齿轮A、B,如图所示,齿轮A、B的齿数之比为1:2,齿轮匀速转动时,则A、B齿轮的()A.周期之比T1:T2=2:1B.角速度之比为ω1:ω2=2:1C.边缘各点的线速度大小之比v1:v2=1:2D.转速之比为n1:n2=1:2[例题3](2023•广东一模)如图,为防止航天员的肌肉萎缩,中国空间站配备了健身自行车作为健身器材。
新高考物理高频考点专项练习:专题四 考点12 圆周运动的规律及应用(A)
新高考物理高频考点专项练习:专题四 考点12 圆周运动的规律及应用(A )1.如图所示,以角速度ω匀速转动的圆锥形斜面上放着两个物体a b 、(可视为质点),转动过程中两个物体没有相对圆锥滑动,其中二者距斜面顶端的高度2a b h h =,则下列说法正确的是( )A.a b 、两物体的线速度相等B.a b 、两物体的角速度之比是1:2C.a b 、两物体的周期之比是1:2D.a b 、两物体的向心加速度大小之比是2:12.如图所示,一倾斜的匀质圆盘绕垂直于盘面的过盘面中心的固定轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取210m/s ,则ω的最大值是( )。
5 3rad/s C.1.0rad/s D.0.5rad/s3.冰面对溜冰运动员的最大摩擦力为运动员重力的k 倍,在水平冰面上沿半径为R 的圆周滑行的运动员,其安全速度为(重力加速度为g )( ) A.v Rg = B.vkRg C.2v kRg D.Rgvk4.下列关于匀速圆周运动的说法中,正确的是( ) A.因为2v a r=,所以向心加速度与半径成反比B.因为2a r ω=,所以向心加速度与半径成正比C.因为vrω=,所以角速度与半径成反比 D.因为2πn ω=,所以角速度与转速成正比5.某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为123r r r 、、,若甲轮的角速度为ω,则丙轮边缘上某点的向心加速度大小为( )A.2213r r ωB.22321r r ωC.22322r r ωD.2123r r r ω6.如图所示,光滑固定的水平圆盘中心有一个光滑的小孔,用一细绳穿过小孔连接质量分别为12,m m 的小球A 和B 。
让两小球同时做圆周运动,B 球绕O 点做圆锥摆运动,细绳与竖直方向的夹角为,A θ球在光滑的圆盘面上绕圆盘中心O 做匀速圆周运动,两球做圆周运动的角速度相同, OA OB 、的绳长相等,则两球的质量之比为( )A. 1 : 1B. 1:sin θC. 1:cos θD. 1:tan θ7.如图所示,粗糙水平圆盘上,质量相等的A B 、两物块叠放在一起,随圆盘一起做匀速圆周运动,(最大静摩擦力等于滑动摩擦力)则下列说法不正确的是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题12 圆周运动一.2012高考题1.(2012·上海物理)图a为测量分子速率分布的装置示意图。
圆筒绕其中心匀速转动,侧面开有狭缝N,内侧贴有记录薄膜,M为正对狭缝的位置。
从原子炉R 中射出的银原子蒸汽穿过屏上S缝后进入狭缝N,在圆筒转动半个周期的时间内相继到达并沉积在薄膜上。
展开的薄膜如图b所示,NP,PQ间距相等。
则()(A)到达M附近的银原子速率较大(B)到达Q附近的银原子速率较大(C)位于PQ区间的分子百分率大于位于NP区间的分子百分率(D)位于PQ区间的分子百分率小于位于NP区间的分子百分率2. (2012·浙江理综)由光滑细管组成的轨道如图所示,其中AB段和BC段是半径为R的四分之一圆弧,轨道固定在竖直平面内。
一质量为m的小球,从距离水平地面为H的管口D处静止释放,最后能够从A端水平抛出落到地面上。
下列说法正确的是()A.小球落到地面时相对于A点的水平位移值为B.小球落到地面时相对于A点的水平位移值为C.小球能从细管A端水平抛出的条件是H>2RD.小球能从细管A端水平抛出的最小高度H min=R.【答案】:BC3.(2012·福建理综)如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动。
现测得转台半径R=0.5 m,离水平地面的高度H=0.8m,物块平抛落地过程水平位移的大小s=0.4m。
设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2。
求:(1)物块做平抛运动的初速度大小v0;(2)物块与转台间的动摩擦因数μ。
二.2012模拟题1 (2012江苏苏州期末)如图,在匀速转动的水平圆盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘面间的动摩擦因数相同. 当匀速转动的圆盘转速恰为两物体刚好未发生滑动时的转速,烧断细线,则两个物体的运动情况将是(A)两物体均沿切线方向滑动(B)两物体均沿半径方向滑动,离圆盘圆心越来越远(C)两物体仍随圆盘一起做匀速圆周运动,不会发生滑动(D )物体B 仍随圆盘一起做匀速圆周运动,物体A 发生滑动,离圆盘圆心越来越远2.(2012上海嘉定期末)如图所示,倾角30°的斜面连接水平面,在水平面上安装半径为R 的半圆竖直挡板,质量m 的小球从斜面上高为R /2处静止释放,到达水平面恰能贴着挡板内侧运动。
不计小球体积,不计摩擦和机械能损失。
则小球沿挡板运动时对挡板的力是[ ]A .0.5mgB .mgC .1.5mgD .2m 3.(2012上海虹口期末)某机器内有两个围绕各自的固定轴匀速转动的铝盘A 、B ,A 盘固定一个信号发射装置P ,能持续沿半径向外发射红外线,P 到圆心的距离为28cm 。
B盘上固定一个带窗口的红外线信号接收装置Q ,Q 到圆心的距离为16cm 。
P 、Q 转动的线速度相同,都是4π m/s 。
当P 、Q 正对时,P 发出的红外线恰好进入Q 的接收窗口,如图所示,则Q 每隔一定时间就能接收到红外线信号,这个时间的最小值应为()(A)0.56s (B)0.28s (C)0.16s (D)0.07s3.答案:A解析:P转动的周期T P=0.14s,Q转动的周期T Q=0.08s,设这个时间的最小值为t,t必须是二者周期的最小公倍数,解得t=0.56s,选项A正确。
4.(2012年2月洛阳五校联考)如图所示,M、N是两个共轴圆筒的横截面,外筒半径为R,内筒半径比R小很多,可以忽略不计,筒的两端是封闭的,两筒之间抽成真空。
两筒以相同的角速度ω绕其中心轴线(图中垂直于纸面)做匀速转动。
设从M筒内部可以通过窄缝s(与M筒的轴线平行)连续向外射出速率分别为v1和v2的粒子,粒子运动方向都沿筒的半径方向,粒子到达N筒后就附着在N筒上。
如果R、v1和v2都不变,而ω取某一合适的值,则()A.粒子落在N筒上的位置可能都在a处一条与s缝平行的窄条上B.粒子落在N筒上的位置可能都在某一处如b处一条与s缝平行的窄条上C.粒子落在N筒上的位置可能分别在某两处如b处和c处与s缝平行的窄条上D.只要时间足够长,N筒上将到处都落有粒子5. (2012年长春第一次调研测试)“飞车走壁” 杂技表演比较受青少年的喜爱,这项运动由杂技演员驾驶摩托车,简化后的模型如图所示,表演者沿表演台的侧壁做匀速圆周运动。
若表演时杂技演员和摩托车的总质量不变,摩托车与侧壁间沿侧壁倾斜方向的摩擦力恰好为零,轨道平面离地面的高度为H,侧壁倾斜角度α不变,则下列说法中正确的是A.摩托车做圆周运动的H越高,向心力越大B.摩托车做圆周运动的H越高,线速度越大C.摩托车做圆周运动的H越高,向心力做功越多.D.摩托车对侧壁的压力随高度H变大而减小6.(2012年3月江西南昌一模)如图所示是用以说明向心力和质量、半径之间关系的仪器,球P和Q可以在光滑杆上无摩擦地滑动,两球之间用一条轻绳连接,m P=2m Q,当整个装置以ω匀速旋转时,两球离转轴的距离保持不变,则此时A.两球受到的向心力大小相等B.P球受到的向心力大于Q球受到的向心力C.当ω增大时,P球将沿杆向外运动D.当ω增大时,Q球将沿杆向外运动7.(2012年4月上海长宁区二模)做圆周运动的两个物体M和N,它们所受的向心力F与轨道半径R之间的关系如图所示,其中图线N为双曲线的一个分支.则由图象可知(A) 物体M和N的线速度均保持不变8、(2012年4月上海崇明县二模)如图所示,M 能在水平光滑杆上自由滑动,滑杆连架装在转盘上.M 用绳跨过在圆心处的光滑滑轮与另一质量为m 的物体相连.当转盘以角速度 转动时,M 离轴距离为r ,且恰能保持稳定转动.当转盘转速增至原来的2倍,调整r 使之达到新的稳定转动状态,则滑块M(A )所受向心力变为原来的4倍(B )线速度变为原来的12(C )半径r 变为原来的12(D )M 的角速度变为原来的129. (2012洛阳一练)如图5所示,从光滑的1/ 4圆弧槽的最高点滑下的小滑块,滑出槽口时速度方向为水平方向,槽口与一个半球顶点相切,半球底面为水平,若要使小物块滑出槽口后不沿半球面下滑,已知圆弧轨道的半径为R1,半球的半径为R2,则R1和R2应满足的关系是A.R1≤R2/2 B.R1≥R2/2 C.R1≤R2 D.R1≥R210.(13分)(2012年5月江西宜春模拟)如图,半径R=0.4m的圆盘水平放置,绕竖直轴OO′匀速转动,在圆心O正上方h=0.8m高处固定一水平轨道PQ,转轴和水平轨道交于O′点。
一质量m=1kg的小车(可视为质点),在F=4N的水平恒力作用下,从O′左侧x0=2m处由静止开始沿轨道向右运动,当小车运动到O′点时,从小车上自由释放一小球,此时圆盘半径OA与x轴重合。
规定经过O点水平向右为x轴正方向。
小车与轨道间的动摩擦因数μ=0.2,g取10m/s2。
⑴若小球刚好落到A点,求小车运动到O′点的速度;⑵为使小球刚好落在A点,圆盘转动的角速度应为多大?⑶为使小球能落到圆盘上,求水平拉力F作用的距离范围。
hO′OP QF圆轨xA11. (14 分) (2012年4月上海长宁区二模)水平地面上有一个半径为R的圆形轨道,竖直平面上边中点P离地面高为h,P正下方一点P′位于COA连线上且与轨道圆心O的距离为L(L>R),如图所示.现从P点水平抛出质量为m的小沙袋,使其击中轨道上的小车(沙袋与小车均视为质点,空气阻力不计).求:(1)小车停在轨道B点时(∠AOB=90°),沙袋抛出后经多长时间击中小车?击中时动能多大?抛出,为使沙袋能在B处击中小车,小车的速率v应满足的条件.(3)若在P、C之间以水平射程为(L+R)的平抛运动轨迹制成一光滑轨道,小沙袋从顶点P由静止下滑击中C点小车时水平速度多大?12.(15分)(2012年5月山东省烟台二模)如图所示,ABC为固定在竖直面内的光滑四分之一圆轨道,其半径为r=10m,N为固定在水平面内的半圆平面,其半径为10R mπ=,轨道ABC与平面N相切于C点:DEF是包围在半圆平面N周围且垂直于N的光滑半圆形挡板,质量为M=1kg的滑块的上表面与平面N 在同一水平面内,且滑块与N接触紧密但不连接,现让物体m自A点由静止开始下滑,进入平面N后立即受到DEF的约束并最终冲上M,已知m=1kg,物体m与平面N之间的动摩擦因数为μ1=0.5、与滑块之间的动摩擦因数为μ2=0.4,滑块M与地面之间是光滑的,滑块的竖直高度为h=0.05m,求:(取g=10m/s2)(1)物体m滑到C处时对圆轨道的压力是多少?(2)物体m运动到F时的速度是多少?(3)当物体m从M上滑落后到达地面时,物体m 与滑块M之间的距离是多少?12.解析:(1)对m从A到C,由机械能守恒定律,mgr=12mv C2,13.(12分)(2012年5月上海浦东三模)如图所示,轻绳一端系一质量为m的小球,另一端做成一个绳圈套在图钉A和B上,此时小球在光滑的水平平台上做半径为a、角速度为ω的匀速圆周运动。
现拔Array掉图钉A让小球飞出,此后绳圈又被A正上方距A高为h的图钉B套住,达稳定后,小球又在平台上做匀速圆周运动。
求:(1)图钉A拔掉前,轻绳对小球的拉力大小;(2)从拔掉图钉A到绳圈被图钉B套住前小球做什么运动?所用的时间为多少?(3)小球最后做匀速圆周运动的角速度。
14. (2012山西太原期末)如图所示,AB为粗糙水平面,长度AB=5R,其右端与光滑的半径为R的14圆弧BC平滑相接,C点的切线沿竖直方向,在C点的正上方有一离C点高度也为R的旋转平台,沿平台直径方向开有两具离心轴心距离相等的小孔P、Q,旋转时两孔均能达到C点的正上方,某时刻,质量为m可看作质点的滑块,与水平地面间的动摩擦因数μ= 0.1,当它以v=的速度由A点开始向B点滑行时:(1)求滑块通过C点的速度.(2)若滑块滑过C点后能通过P孔,又恰能从Q孔落下,则平台转动的角速度ω应满足什么条件?15.(14分)(2012福建三明期末)如图所示,长为R的轻绳,上端固定在O点,下端连一质量为m的小球,小球接近地面,处于静止状态。
现给小球一沿水平方向的初速度v0,小球开始在竖直平面内做圆周运动。
设小球到达最高点时绳突然被剪断。
已知小球最后落在离小球最初位置2R的地面上。
求:(1)小球在最高点的速度v;(2)小球的初速度v0;(3)小球在最低点时球对绳的拉力;16.(2012福建南安一中期末).(16分) 如图所示,将一质量m=0.1kg的小球自水平平台顶端O点水平抛出,小球恰好与斜面无碰撞...的落到平台右侧一倾角为 =53°的光滑斜面顶端A并沿斜面下滑,然后以不变的速率过B点后进入光滑水平轨道BC部分,再进入光滑的竖直圆轨道内侧运动.已知斜面顶端与平台的高度差h=3.2m,斜面顶端高H=15m,竖直圆轨道半径R=5m.(sin530=0.8,cos530=0.6,g=10m/s2).求:(1)小球水平抛出的初速度υo及斜面顶端与平台边缘的水平距离x;(2)小球离开平台后到达斜面底端的速度大小;(3)小球运动到圆轨道最高点D时轨道对小球的弹力大小.17(2012浙江重点中学协作体高考仿真测试)如图所示,一质量为m=1 kg的小物块轻轻放在水平匀速运动的传送带上的A点,随传送带运动到B点,小物块从C点沿圆弧切线进入竖直光滑的半圆轨道恰能做圆周运动.已知圆弧半径R=0.9m,轨道最低点为D,D点距水平面的高度h=0.8m.小物块离开D点后恰好垂直碰击放在水平面上E点的固定倾斜挡板.已知物块与传送带间的动摩擦因数 =0.3,传送带以5 m/s恒定速率顺时针转动(g取10 m/s2),试求:(1)传送带AB两端的距离;(2)小物块经过D点时对轨道的压力的大小;(3)倾斜挡板与水平面间的夹角 的正切值.。