制冷知识
制冷人必备的制冷技术知识(图解)
制冷⼈必备的制冷技术知识(图解)⼀、制冷术语1、制冷:物体或流体中取出热量,并将热量排放到环境介质中去,以产⽣低于环境温度的过程。
2、制冷剂:在制冷装置中不断完成循环的⼯作物质。
常⽤制冷剂:氨、氟利昂(R22、R134A、R407C、R410A)、⽔。
3、载冷剂:是在间接制冷系统中⽤来传送冷量的中间介质。
常⽤的载冷剂: 冰河冷媒、⽔、盐⽔、⼄⼆醇⽔溶液。
制冷量:单位时间⾥由制冷机(空调器)从低温物体向⾼温物体所转移的热量。
制热量:单位时间内由空调器(热泵型)从外界吸热后向室内输送的热量。
COP = 制冷量/压缩机电功率。
冬季热泵循环性能系数和夏季热泵的能效⽐表达形式均采⽤COP(能效⽐)表⽰。
EER = 制冷量/空调系统总电功率(EER值越⾼,表⽰空调中蒸发吸收较多的热量或压缩机所耗的电较少)。
在夏季制冷时,制冷量(W或Btu/h)与输⼊功率(W)的⽐率定义为热泵的能效⽐EER。
标准单位:⽡(W)或千⽡(KW)1KW = 860kcal/h1美国冷吨 = 3.526kw = 3024kcal/h(注:1冷吨就是使1吨0℃的⽔在24⼩所内变为0℃的冰所需要的制冷量。
)显热: 物质在吸热或放热过程中,温度上升或下降,但是物质的形态不发⽣变化,这种热称为显热。
潜热: 物质在吸收或放出热量的过程中,其形态发⽣变化,但温度不发⽣变化,这种热量⽆法⽤温度计测量出来,⼈体也⽆法感觉到,但可通过实验计算出来,这种热量就称为潜热。
1.⼲球温度:(符号DB)普通的温度。
2.湿球温度:(符号WB)温度计的球体上湿润时的温度,受湿度的影响。
3.露点温度:(符号DP)对空⽓进⾏冷却,空⽓中的⽔分开始结露⽔的温度。
湿度:空⽓中⽔蒸汽的含量。
绝对湿度:1m3的湿空⽓中所含⽔蒸⽓的质量。
(单位:公⽄·⽔/公⽄·⼲燥空⽓)相对湿度:湿空⽓的绝对湿度与同温度下饱和湿空⽓的绝对湿度之⽐。
(单位%,符号RH)饱和湿空⽓:空⽓中含⽔蒸⽓量是有限度的,达到最⼤容量时的湿空⽓称为饱和湿空⽓。
制冷技术基础知识
然对流是由于温度不均匀而引起的。强制对流 是由于外界因素对流的影响而形成的。
直冷式电冰箱箱内的低温是箱内空气自然
制
对流的结果;而间冷式电冰箱内的低温主要是
冷 通过强迫箱内空气对流来获得的。
原
理
与
技
术
十七 压焓图
制冷剂的压焓图
定义:压焓图的结构如图下图所示。 以压力的对数值 为纵坐标,以焓值为横坐标所构成。
二、工质与介质
工质:就是工作的物质,在制冷技术中工质也
称为制冷剂,氟利昂R12、氟利昂R22、
制
R134a和R600a等。
冷
介质:在制冷技术中,凡是可以传递热量和冷量
原 理
的物质称为介质,如空气和水。
三、压力
与
压力:垂直作用于物质表面的力称为压力。 压强:物体单位面积上所受到的压力称为压强。
技
术
在工程上将压强称为压力。用P表示。 P=F/S
整个系统包括两个系统中使用的工作流体是制冷剂和吸收剂,
冷
我们称它为吸收是制冷的工质对。吸收剂使
原
液体,它对制冷剂有很强的吸收能力。吸收 剂吸收了制冷剂气体后形成溶液。溶液加热
理 与
又能放出制冷剂气体。因此,我么可以用溶 液回路取代压缩机的作用,构成蒸汽吸收式 制冷循环。
制
冷
原
十、凝结 与汽化相反,当蒸气在一定压力下冷却一
理
定温度时,它就会由蒸气状态转变化为液
与
体状态,称这一过程为凝固。
技
电冰箱中R12在冷凝器中的变化过程就
术
是凝固过程。
十二、过热和过冷
1、过冷水:比饱和温度低的水称为过水。
2、湿蒸气:饱和水和饱和蒸气的混合物。
制冷维修入门知识点总结
制冷维修入门知识点总结一、制冷原理1. 压缩机制冷原理压缩机是制冷系统中最重要的组成部分,它能够将低温低压的蒸汽吸入,通过增压和压缩转化为高温高压的高温蒸汽,从而实现对物体降温的目的。
2. 蒸发器制冷原理蒸发器是制冷系统中另一个重要的组成部分,它能够将高温高压的液态制冷剂通过膨胀阀进入蒸发器中,从而蒸发并吸收空气中的热能,从而降低空气温度。
3. 制冷循环原理制冷循环主要是指制冷系统中的制冷剂在压缩机、冷凝器、膨胀阀和蒸发器之间的流动,从而实现热能的转移和降温。
二、制冷设备维修1. 制冷设备的故障检测制冷设备可能会出现诸如制冷效果不佳、噪音大、漏水等故障,维修人员需要通过检查设备的压缩机、蒸发器、冷凝器等部件,来判断出故障原因并进行维修。
2. 制冷设备的清洗保养定期对制冷设备进行清洗和保养是非常重要的,可以有效延长设备的使用寿命,减少故障的出现。
清洗保养主要包括清洗冷凝器、更换滤网、清洗蒸发器等操作。
3. 制冷设备的维修保养维修保养主要包括对制冷设备中的部件进行检修、更换、维修等,以保证设备的正常运行和性能。
这些工作需要维修人员具备一定的电气知识和制冷技术。
三、常见制冷设备故障及处理方法1. 制冷设备制冷效果不佳可能是由于制冷剂不足、蒸发器积灰、过滤器堵塞等原因引起的。
处理方法包括添加制冷剂、清洗蒸发器、更换过滤器等。
2. 制冷设备无法制冷可能是由于压缩机故障、膨胀阀堵塞、制冷剂泄漏等原因引起的。
处理方法包括更换压缩机、清洗膨胀阀、修复泄漏等。
3. 制冷设备出现噪音可能是由于制冷设备安装不平衡、压缩机轴承磨损等原因引起的。
处理方法包括重新安装设备、更换噪音部件等。
四、制冷设备维修的安全注意事项1. 制冷设备维修过程中,维修人员需要关注设备的高压、高温以及制冷剂的毒性等特点,做好防护措施。
2. 制冷设备维修过程中,维修人员需要遵守相关的操作规程和标准,严格按照维修流程进行维修。
五、制冷设备维修人员的技能要求1. 维修人员需要具备一定的机械、电气和制冷知识,以判断设备故障的原因并进行维修。
制冷原理知识-简单易懂
目录一、蒸气压缩式制冷原理 (1)二、制冷循环 (2)三、制冷剂在制冷系统中状态 (2)四、制冷量 (3)五、制冷剂 (3)对制冷剂的要求 (3)制冷剂的种类 (3)制冷剂的使用与存放 (4)六、制冷系统的构造及组成 (4)压缩机 (4)冷凝器 (5)蒸发器 (6)节流装置 (6)七、吸收式制冷原理 (8)基本原理 (8)溴化锂吸收式制冷 (9)一、蒸气压缩式制冷原理蒸气制冷是利用某些低沸点的液态制冷剂在不同压力下汽化时吸热的性质来实现人工制冷的。
在制冷技术中,蒸发是指液态制冷剂达到沸腾时变成气态的过程。
液态变成气态必须从外界吸收热能才能实现,因此是吸热过程,液态制冷剂蒸发汽化时的温度叫做蒸发温度,凝结是指蒸汽冷却到等于或低于饱和温度,使蒸汽转化为液态。
在日常生活中,我们能够观察到许多蒸发吸热的现象。
比如,我们在手上擦一些酒精,酒精很快蒸发,这时我们感到擦酒精部分反应很凉。
又如常用的制冷剂氟利昂F—12液体喷洒在物体上时,我们会看到物体表面很快结上一层白霜,这是因为F—12的液体喷到物体表面立即吸热,使物体表面温度迅速下降(当然这是不实用的制冷方法,制冷剂F—12不能回收和循环使用)。
目前一些医疗机构采用的冷冻疗法即是利用了这一原理。
蒸气压缩式制冷是利用液态制冷剂汽化时吸热,蒸汽凝结时放热的原理进行制冷的。
二、制冷循环压缩机是保证制冷的动力,利用压缩机增加系统内制冷剂的压力,使制冷剂在制冷系统内循环,达到制冷目的。
开始压缩机吸入蒸发制冷后的低温低压制冷剂气体,然后压缩成高温高压气体送冷凝器;高压高温气体经冷凝器冷却后使气体冷凝变为常温高压液体;当常温高压液体流入热力膨胀阀,经节流成低温低压的湿蒸气,流入蒸发器,从周围物体吸热,经过风道系统使空调房间温度冷却下来,蒸发后的制冷剂回到压缩机中,又重复下一个制冷循环,从而实现制冷目的。
三、制冷剂在制冷系统中状态从压缩机出口经冷凝器到膨胀阀前这一段称为制冷系统高压侧;这一段的压力等于冷凝温度下制冷剂的饱和压力。
制冷基础知识
制冷基础知识制冷基础知识⼀、制冷术语:什么叫⼯质?凡是⽤来实现热能与机械能的转换或⽤来传递热能的⼯作物质统称为⼯质。
在制冷装置中,不断循环流动以实现能量转换的⼯作物质称为⼯质。
也是制冷系统中完成制冷循环的⼯作介质。
例如:氟利昂、氨、⽔等。
什么叫制冷剂?制冷剂即制冷⼯质,是制冷系统中完成制冷循环的⼯作介质。
制冷剂在蒸发器内吸取被冷却对象的热量⽽蒸发,在冷凝器内将热量传递给周围空⽓或⽔⽽被冷凝成液体。
制冷机借助于制冷剂的状态变化,达到制冷的⽬的。
什么叫载冷剂?载冷剂也称冷媒是指在间接制冷系统中⽤以传送冷量的中间介质。
载冷剂在蒸发器中被制冷剂冷却后,送到冷却设备中,吸收被冷却物体或环境的热量,再返回蒸发器被制冷剂重新冷却,如此不断的循环,以达到连续制冷的⽬的。
载冷剂传递冷量是依靠显热作⽤,⽽不象别的制冷剂那样依靠蒸发潜热来实现制冷。
例如:空⽓、⽔、盐⽔、有机化合物及其⽔溶液等。
⼆、制冷系统中的⼯作参数的概念1、温度:温度是表⽰物质冷热程度的量度。
常⽤的温度单位(温标)有三种:摄⽒温度、华⽒温度、绝对温度。
1)摄⽒温度(t ,℃):我们经常⽤的温度。
⽤摄⽒温度计测得的温度。
2)华⽒温度(F ,℉):欧美国家常⽤的温度。
3)绝对温标(T,oK):⼀般在理论计算中使⽤。
三种温度单位之间换算:A、华⽒温度F (℉) = 9/5×摄⽒温度t(℃) +32 (已知摄⽒温度求华⽒温度)B、摄⽒温度t (℃)= [华⽒温度F(℉)-32]×5/9 (已知华⽒温度求摄⽒温度)例: F (℉) t (℃)212 10032 05 -150 -17.8C、绝对温标T(oK)= 摄⽒温度t (℃) +273 (已知摄⽒温度求绝对温度)例:t (℃) T(oK)-30 243-10 2630 27330 3032、压⼒(P):在制冷中,压⼒是单位⾯积上所受的垂直作⽤⼒,即压强。
通常⽤压⼒表、压⼒计测得。
1)压⼒的常⽤单位有:Mpa(兆帕),Kpa(千帕),Pa(帕),bar(巴或巴帕),kgf/cm2(平⽅厘⽶公⽄⼒),atm或B0 (即标准⼤⽓压,⼀般看作是:1bar、0.1MPa),at(⼯程⼤⽓压),mmHg(毫⽶汞柱),mmH2O(毫⽶⽔柱)。
制冷知识基础
制冷知识基础制冷是指将物体的温度降低到低于周围环境温度的过程。
制冷技术广泛应用于家庭、商业和工业领域,为人们提供舒适的环境和保鲜的食品。
本文将从制冷原理、制冷剂、制冷循环和制冷设备等方面介绍制冷知识的基础内容。
一、制冷原理制冷原理基于热力学的第一和第二定律。
第一定律表明能量守恒,热量会从高温物体传递到低温物体,使得高温物体温度降低,低温物体温度升高。
而第二定律则说明热量自然向低温传递的趋势,即热量不会自发地从低温物体传递到高温物体。
利用这些原理,制冷系统可以将热量从室内或食品中移除,使其温度降低。
二、制冷剂制冷剂是制冷系统中用于传递热量的介质。
常见的制冷剂有氨、氟利昂、丙烷等。
制冷剂具有低沸点和高蒸发潜热的特性,可以在低温下蒸发吸收热量,然后在高温下冷凝释放热量。
制冷剂在制冷循环中循环流动,起到传递热量的作用。
三、制冷循环制冷循环是制冷系统中的核心部分,通过循环流动的制冷剂实现热量的传递。
常见的制冷循环有蒸发冷凝循环和吸收制冷循环。
蒸发冷凝循环由压缩机、冷凝器、膨胀阀和蒸发器组成,通过制冷剂的蒸发和冷凝来实现热量的传递。
吸收制冷循环则利用制冷剂和吸收剂的吸收和析出来实现热量的传递。
四、制冷设备制冷设备是实现制冷过程的关键装置。
常见的制冷设备包括冰箱、空调和冷库等。
冰箱利用制冷循环原理,将室内的热量传递到冷凝器外,使冷藏室内温度降低。
空调则通过循环流动的制冷剂将室内的热量带走,实现室内温度的调节。
冷库则利用制冷设备将空间内的温度降低到低于周围环境温度,用于食品的储存和保鲜。
五、制冷效率制冷效率是衡量制冷设备性能的重要指标。
制冷效率通常用COP (Coefficient of Performance)来表示,即单位制冷量所需的功率。
COP越高,表示制冷设备的能效越高。
提高制冷效率可以通过优化制冷循环、选择高效制冷剂和改进设备设计等方式来实现。
六、制冷系统的应用制冷技术在日常生活中得到广泛应用。
家用制冷设备如冰箱、空调等为人们提供了舒适的居住环境和新鲜的食品。
制冷技术入门知识点总结
制冷技术入门知识点总结一、基本原理1. 制冷效应制冷效应是指通过外界的助力,把热能从低温的物体或物体的低温部分转移到高温的物体或物体的高温部分的现象。
在自然界中,有几种使物体变凉的方法,如蒸汽凝结、蒸发冷却、压缩膨胀等,就是其中的一些例子。
2. 理想制冷循环制冷循环是制冷系统的核心部分,它由四个基本过程组成:蒸发、压缩、冷凝和膨胀。
这些过程按照一定的顺序循环进行,从而实现将热量从低温的物体或系统中移开的目的。
二、常见制冷设备1. 制冰机制冰机是一种常见的制冷设备,它是用来冻结水或其它液体的设备,将液体冷冻成固体状态,从而实现冷却的目的。
2. 冰箱冰箱是一种家庭电器,用于储藏食物和保鲜食物。
它通过制冷剂的循环往复运动,将室内的热量带走,从而实现室内温度的降低。
3. 空调空调是一种用于调节室内空气温度、湿度、流速等参数的设备。
它通过压缩机、冷凝器、蒸发器、膨胀阀等部件,配合制冷剂循环工作的方式,将室内的热量转移到室外,从而实现室内温度的调节。
4. 制冷舱制冷舱是一种用于运输食品、药品、化工品等易变质品的车辆或设备,它通过制冷系统的工作方式,将舱内的温度控制在一定的范围内,从而实现货物的保鲜和保质。
三、制冷剂1. 制冷剂的选择制冷剂是制冷系统中起着传递热量和吸收热量作用的物质。
常见的制冷剂有氨、氯氟烃等。
在选择制冷剂时,需要考虑其对环境的影响、安全性、可靠性以及性能等因素。
2. 制冷剂的循环制冷剂在制冷系统中循环起到传热、吸热的作用,是制冷系统能够正常工作的关键部件。
一般来说,制冷剂需要具备一定的蒸汽压、凝固点等性能参数,才能满足制冷系统的工作要求。
四、制冷系统1. 制冷系统的组成制冷系统主要由压缩机、冷凝器、蒸发器、膨胀阀等部件组成。
这些部件按照一定的顺序循环工作,通过制冷剂的循环,实现对物体或系统的制冷效果。
2. 制冷系统的工作原理制冷系统的工作原理是通过压缩机对制冷剂进行压缩,然后通过冷凝器散热,将制冷剂冷却成液体,再通过膨胀阀降压并将制冷剂喷射到蒸发器中,实现对空气或物体的制冷效果。
第1章 制冷基本知识
3、低温制冷(低温):-200℃ (73K)至-268.95℃(4.2K)。 4.2K是液氦的沸点。
4、极低温制冷(极低温):低于 4.2K。
1.1.2 无温差传热的逆卡诺循环
根据热力学第二定律,热量不会自发地从 低温环境传向高温环境。要实现这种逆向传热 过程,必须要伴随一个补偿过程使整个孤立系 统的熵增等于或大于零。蒸气压缩式制冷就是 以消耗机械能作为补偿条件,借助制冷工质的 状态变化将热量从温度较低的环境(通常是空 调房间、冷库等)不断地传给温度较高的环境 (通常是自然界的水或空气)中去。逆卡诺循 环由两个可逆等温过程和两个可逆绝热过程组 成,循环沿逆时针方向进行,该循环过程的示 意图和T-s图如图1-4所示。
目前全国生产制冷设备的厂家有近 100家,生产空调设备的厂家有近200家。 自1989年来工业产值平均年增长20%左 右。
目前我国制冷空调行业产值约占全球 总量的12%以上,成为继美国、日本之后 的第三大制冷空调生产国。
我国电冰箱、家用空调器产量已居世 界第一位,分别占到世界总产量的30%和 16%。
q0 q0 T0 c w0 qk q0 Tk T0 (1-1)
此外,逆卡诺循环也可用来获得供热效 果,例如冬季将大气环境作为低温热源,将 供热房间作为高温热源进行供热。这样工作 的装置称为热泵,也就是向泵那样把低位热 源的热能转移至高位热源。热泵的经济性用 供热系数 c表示,其值为单位耗功量所获取 的热量
到1874年林德(Linde)设计成功氨 制冷机,被公认为制冷机的始祖,这些都 对制冷技术的发展起了重大作用; 1913年美国工程师拉森(Lnvsen) 制造出世界上第一台手操纵家用电冰箱; 1918年美国开尔文纳特(Kelvinator )公司首次在市场上推出自动电冰箱;
制冷知识点总结
制冷知识点总结制冷技术是现代社会中不可或缺的一项重要技术,它在保鲜、储存、交通运输、医药、化工、航天和军工等各个领域都有广泛的应用。
制冷技术不仅可以让人们在炎热的夏天享受清凉舒适的环境,也能有效保障食品、医药等物品的质量和安全。
同时,随着全球气候变暖和能源资源的日益枯竭,制冷技术的能耗和环保问题也备受关注。
因此,对制冷知识的深入了解和掌握对于从事相关行业的人员来说非常重要。
本文将从基本原理、常见制冷设备、能源利用、环保等方面进行制冷知识点的总结,并给出一些案例和实践应用。
一、制冷基本原理1. 制冷循环制冷循环是一种通过不断循环流动的化学药剂将热量从一个地方转移到另一个地方的技术。
在制冷循环中,常用的介质包括制冷剂、空气、水等。
制冷循环包括蒸发器、压缩机、冷凝器和膨胀阀等四个主要组成部分。
其中,蒸发器是用于吸收外部热量的部件,压缩机是用于将低温低压的气体压缩为高温高压的气体的设备,冷凝器则是用于散热的部件,膨胀阀则是用于降低制冷剂压力和温度的部件。
2. 制冷剂的选择制冷剂是制冷循环的核心组成部分,它负责在制冷循环中循环流动,完成热量转移的任务。
制冷剂应具备一定的物理化学性质,如低沸点、低凝点、不易燃烧、不易爆炸和对环境友好等特点。
常见的制冷剂包括氨、氟利昂、丙酮、氟化碳等。
3. 制冷循环中的热力学原理制冷循环的热力学原理主要是基于热力学第一定律和第二定律。
根据热力学第一定律,热量不会自发地从低温物体传递给高温物体,因此需要通过外力的作用才能完成。
而根据热力学第二定律,热量是自然流动的,从高温物体传递给低温物体,而不会反向流动。
通过这些热力学原理,制冷循环可以实现对热量的转移和控制。
4. 制冷循环中的熵增原理在制冷循环中,熵增原理是很重要的一个概念。
熵是热力学中的一个基本概念,它反映的是系统的混乱度和无序度。
根据熵增原理,任何一个封闭系统中,熵都会不可逆地增大。
在制冷循环中,通过控制系统的混乱度和无序度,可以有效地实现对热量的转移和控制。
制冷专业必备的知识
制冷专业必备的知识制冷专业是一个研究和应用制冷技术的学科,涉及到许多基础知识和技能。
本文将介绍制冷专业必备的知识,包括制冷循环、制冷剂、制冷设备和控制系统等方面。
1. 制冷循环制冷循环是制冷系统的基础,也是制冷专业必备的知识之一。
常见的制冷循环有蒸发-压缩-冷凝-膨胀四个过程组成。
在制冷循环中,制冷剂在不同的压力和温度下进行相态变化,从而实现热量的转移和降温。
2. 制冷剂制冷剂是实现制冷循环的关键物质。
制冷剂应具有适当的饱和蒸汽压、温度滑动、热导率和危险性低等特点。
常见的制冷剂有氨、氟利昂和丙烷等。
制冷专业的学生需要了解不同制冷剂的性质和应用范围,以及制冷剂的环保性和安全性。
3. 制冷设备制冷设备是制冷系统的核心部件,包括压缩机、冷凝器、蒸发器和膨胀阀等。
压缩机是制冷系统的动力源,负责将制冷剂压缩成高温高压气体。
冷凝器将压缩机输出的高温高压气体冷却并转化为高温高压液体。
蒸发器通过蒸发过程吸收外界热量,使制冷剂从液体转化为蒸汽。
膨胀阀调节制冷剂的流量,将高压液体膨胀成低压蒸汽。
4. 控制系统制冷系统的控制是保证制冷效果和安全运行的关键。
制冷专业的学生需要了解控制系统的组成和原理,包括传感器、控制器和执行器等。
传感器用于获取制冷系统的参数,控制器根据传感器的反馈信号进行控制策略的制定,执行器根据控制器的指令进行相应的操作。
5. 热传导热传导是制冷专业中重要的热力学知识之一。
热传导是指通过固体、液体或气体的分子间相互碰撞传递热量的过程。
制冷专业的学生需要了解热传导的基本原理和计算方法,以便在制冷系统的设计和优化中应用。
6. 热辐射热辐射是热量通过电磁波传递的过程,也是制冷专业必备的知识之一。
热辐射可以通过黑体辐射定律进行计算和分析。
制冷专业的学生需要了解热辐射的特性和计算方法,以便在制冷系统中考虑热辐射对热量传递的影响。
7. 空气流动空气流动是制冷系统中常见的热传递方式之一。
制冷专业的学生需要了解空气流动的基本原理和计算方法,以便在制冷系统的设计和优化中考虑空气流动的影响。
制冷原理及基础知识
制冷原理及基础知识制冷技术是一种利用机械或其他手段将其中一系统中的热量转移至另一系统中的技术。
制冷的原理是通过创造低温区使得热量从高温区向低温区传递,最终使得低温区的温度降低。
本文将介绍制冷的基础知识,包括空气制冷和液体制冷。
1.空气制冷:空气制冷是常见的一种制冷方法。
其基本原理是利用空气的物理性质,将空气进行压缩或膨胀,从而实现制冷目的。
空气制冷的循环包括压缩、冷却、膨胀和蒸发四个过程。
首先,通过压缩机将气体压缩,使其温度升高。
然后,通过冷凝器将高温高压的气体冷却至低温高压的液体。
接下来,通过节流阀膨胀器将高压液体膨胀为低温低压液体。
最后,通过蒸发器将低温低压液体转化为低温低压气体并吸收热量。
2.液体制冷:液体制冷是利用液体的物理性质来实现制冷的方法,常用的液体制冷剂有氨、氟利昂等。
液体制冷的循环包括蒸发、压缩、冷凝和膨胀四个过程。
首先,制冷剂在蒸发器中自液体转化为气体,吸收周围的热量。
然后,通过压缩机将低温低压的气体压缩为高温高压气体。
接下来,通过冷凝器将高温高压气体冷却至高温高压液体。
最后,通过膨胀阀使高温高压液体变为低温低压液体,并进入蒸发器循环。
3.制冷循环中的关键设备:a.压缩机:将低温低压的气体压缩为高温高压气体的设备。
b.冷凝器:将高温高压气体冷却为高温高压液体的设备。
c.膨胀阀:控制制冷剂的流量和压力,使高温高压液体变为低温低压液体的设备。
d.蒸发器:将低温低压液体转化为低温低压气体并吸收热量的设备。
4.制冷剂的选择:制冷剂是制冷系统中的重要组成部分,能够在低温下蒸发吸收热量,然后在高温下冷凝放热。
制冷剂的选择需要考虑其热物理性质、化学稳定性和环境友好性等因素。
5.制冷系统的应用:制冷技术广泛应用于空调、冷冻设备、冷藏设备、工业制冷等领域。
其应用可以提供舒适的室内环境、延长食品的保质期、实现工业生产过程中的冷却和冷冻等。
总而言之,制冷技术是一种将热量从高温区传递至低温区的技术。
制冷专业必备的知识
制冷专业必备的知识制冷专业是一个涉及制冷技术和制冷设备的学科领域。
在这个领域中,掌握一些必备的知识对于从事制冷工作的人员来说是非常重要的。
本文将从制冷原理、制冷循环、制冷剂以及制冷设备四个方面介绍制冷专业必备的知识。
一、制冷原理制冷原理是制冷专业的基础知识,它涉及到物质的热力学性质和热传导规律。
制冷原理的核心是利用物质的相变过程来吸收或释放热量,实现温度的降低。
常用的制冷原理有蒸发制冷、吸收制冷和压缩制冷等。
了解这些原理可以帮助制冷工程师选择合适的制冷循环和制冷设备,从而提高制冷系统的效率和性能。
二、制冷循环制冷循环是制冷系统中的核心部分,它包括蒸发器、压缩机、冷凝器和节流装置等组成。
蒸发器是制冷循环中的热交换器,通过蒸发剂与外部的低温介质进行热交换,从而吸收热量。
压缩机是制冷循环中的能量转换装置,它将低温低压的蒸发剂压缩成高温高压的气体,提高其温度和压力。
冷凝器是制冷循环中的热交换器,通过冷却剂与外部的高温介质进行热交换,从而释放热量。
节流装置是制冷循环中的控制装置,通过减小蒸发剂的流量和压力,使其进入蒸发器时呈现饱和状态,从而实现制冷效果。
三、制冷剂制冷剂是制冷系统中的工质,它起到传递热量和实现温度降低的作用。
常用的制冷剂有氨、氟利昂、丙烷等。
制冷剂的选择要考虑到其物理性质、环境影响和安全性等因素。
制冷剂的物理性质包括饱和蒸汽温度、气化热、比容等,这些性质直接影响到制冷系统的性能和效率。
制冷剂的环境影响主要涉及到其对臭氧层的破坏和温室效应,因此要选择对环境影响较小的制冷剂。
制冷剂的安全性包括其毒性、燃烧性和爆炸性等,要选择对人身安全和设备安全影响较小的制冷剂。
四、制冷设备制冷设备是制冷专业中的实体部分,它包括冷库、冷藏车、冷冻机组、空调设备等。
冷库是用于存储冷冻或冷藏食品的设备,它通过制冷循环实现温度的控制和保持。
冷藏车是一种用于运输冷藏货物的专用车辆,它通常配备有制冷机组,可以保持货物在一定的温度范围内。
制冷知识点全套
制冷知识点全套1、空调冷热源设备空调冷热源系统:中央空调冷源通常是制冷机组,提供冷冻水用于夏季制冷中,央空调热源通常是蒸汽或热水锅炉,或者市政管网提供的热水或蒸汽。
冷水机组:水冷离心式、风冷螺杆式、蒸汽吸收式、直燃吸收式;热泵机组:风冷螺杆式、地源热泵、水源热泵;锅炉:热水锅炉、蒸汽锅炉、电锅炉;冷却塔:开式、闭式、横流、逆流;水泵:卧式、立式、端吸、双吸;空调末端设备:风机盘管、柜式空气处理机组、组合式空气处理机组、冷辐射板。
2、中央空调系统由主机和末段系统按负担室内热湿负荷,所用的介质可分为全空气系统、全水系统、空气-水系统、冷剂系统。
按空气处理设备的集中程度可分为集中式和半集中式。
按被处理空气的来源可分为封闭式、直流式、混合式。
主要组成设备有空调主机(冷热源)风柜,风机盘管等等。
3、冷冻水泵冷冻水带着冷量,到空调系统末端(如风机盘管)循环与空气进行热交换,温度升高后再回到冷水机组的蒸发器内,放出热量(吸收冷量),再到空调系统末端循环,这样构成冷冻水的制冷循环系统,在这个系统上的泵称为冷冻水泵。
4、冷却水泵制冷剂在冷水机组里循环,经过压缩机吸气、压缩、排气,制冷剂高温过热气体,在冷凝器里放出热量,凝结为液态制冷剂,是通过冷却水来完成的,冷却水通过冷却水泵把制冷主机所产生的热量带走,再经过冷却塔把热量释放到(环境介质)空气中,再回到冷水机组冷凝器循环,这样构成一个冷却水循环系统,在这个系统上的泵是冷却水泵。
5、冷却塔通过冷却水泵将温度较高的水送到冷却塔通过冷却塔布水管喷头,让水自上而下流动,一方面,通过自然空气带走水中热量;另一方面,通过轴流风机带动空气加速运动,通过空气带走热量的同时加快蒸发,让水温降低。
温度降低后的冷却水再次循环进入制冷主机,带走制冷主机产生的热量,如此循环。
6、风机盘管风机盘管空调系统是将由风机和盘管组成的机组直接放在房间内,工作时盘管内根据需要流动热水或冷水,风机把室内空气吸进机组,经过过滤后再经盘管冷却或加热后送回室内,如此循环以达到调节室内温度和湿度的目的。
知识点一 制冷基础知识_制冷设备维修技术基本功_[共3页]
60制冷设备维修技术基本功二、项目基本知识知识点一 制冷基础知识1.制冷的分类根据制冷产生的低温温度不同,通常分为如下3种。
① 普通制冷:制冷温度在−153.15℃(120K )以上。
② 深度制冷:制冷温度在−153.15~−253.15℃之间。
③ 低温和超低温制冷:制冷温度在−253.15℃到接近绝对零度(−273.15℃)之间。
电冰箱和空调器属于普通制冷,普通制冷又分为3个温区。
① 低温区(−100℃以下),主要用于气体液化、气体分离、低温物理、超导等。
② 中温区(−100~+5℃),主要用于食品冷冻、冷藏保鲜、冷藏运输等。
③ 高温区(5~50℃),主要用于空气调节和热泵设备。
2.制冷方法常用的人工制冷方法有4种。
(1)液体汽化法在皮肤上擦些酒精,立刻会有凉感,这是由于低沸点的酒精在常压下挥发,吸收了皮肤的热量。
液体汽化法就是利用常压下沸点较低的液态制冷剂沸腾汽化,吸收周围物体或空间的热量,实现制冷。
在普通制冷范围内主要采用液体汽化法制冷。
液体汽化法又可分为蒸气压缩式制冷、吸收式制冷、蒸气喷射式等。
(2)温差电制冷(又叫半导体制冷)将两种不同的导体连接成闭合环路,两个连接点称为节点,这两种导体的组合称为电偶对。
在环路中接入直流电源,其中一个节点的温度会升高,向外放出热量称为热端,另一个节点的温度会降低,吸收周围热量产生制冷效应称为冷端,如图2-39所示。
改变电源极性冷热端互相变换,即原冷端变为热端,原热端变为端,这种电温差效应称为珀尔帖效应。
金属导体的珀尔帖效应十分微弱,而采用P型半导体和N 型半导体用铜片焊接成电偶对时,如图2-40所示,珀尔帖效应较为显著。
实际应用都采用半导体材料制作电偶对,所以温差电制冷又称半导体制冷。
一个半导体电偶对的制冷能力很小,约为1.163W ,往往将几十对电偶串联而成,将冷端排在一起,热端排在一起,串联组成热电堆,就可获得较大的制冷量,如图2-41所示。
半导体制冷的优点是不需要机械传动部分,体积小,无振动,无噪声,无磨损,运行可靠,维修方便,冷却速度快,无需制冷剂,易于控制。
制冷方面的知识
制冷方面的知识1.制冷原理制冷原理是利用各种物理原理和技术手段,将物体保持在低于环境温度的状态下,以满足人们对低温环境的需求。
制冷技术的基本原理包括热力学和传热学的基本原理,以及物质相变和能量转化等原理。
制冷循环是制冷技术的核心,它包括压缩、冷凝、膨胀和蒸发等四个主要过程。
2.制冷剂种类制冷剂是制冷系统中用于传递冷量和实现制冷作用的介质。
常用的制冷剂包括氨、氟利昂、氢、氦和二氧化碳等。
这些制冷剂具有不同的物理和化学性质,如沸点、临界点、毒性、可燃性和对环境的影响等。
制冷剂的选择应考虑制冷温度范围、设备的能效比、环境友好性以及使用安全性等因素。
3.制冷系统组成制冷系统由制冷剂、压缩机、冷凝器、膨胀阀和蒸发器等主要部件组成。
制冷剂在压缩机中被压缩并输送到冷凝器中,然后在冷凝器中放出热量并液化。
液化后的制冷剂通过膨胀阀进入蒸发器,在蒸发器中吸收热量并汽化,从而实现制冷作用。
4.制冷设备与维护制冷设备包括各种类型的制冷机组、冰箱、空调等。
不同类型的制冷设备具有不同的特点和用途。
在使用制冷设备时,应注意设备的安装和使用环境,定期进行维护和保养,如清洗冷凝器、更换润滑油和制冷剂等。
同时,应根据设备的实际情况制定合理的维护计划,确保设备的正常运转和延长使用寿命。
5.制冷安全与环保制冷技术在使用过程中涉及到各种安全和环保问题。
在使用制冷设备时,应确保设备的安全性,遵守安全操作规程,避免发生事故。
此外,制冷剂的排放和处理也需要注意环保问题。
一些制冷剂对环境的影响较大,需要采取措施进行回收和处理,以减少对环境的污染。
同时,应积极推广环保型的制冷技术和设备,减少对环境的影响。
6.制冷应用领域制冷技术在许多领域都有广泛的应用,如工业、建筑、交通等。
在工业领域中,制冷技术被广泛应用于石油、化工、制药等行业的生产过程中,为工艺流程提供所需的低温环境。
在建筑领域中,制冷技术为建筑物的空调和通风系统提供冷量,为人们提供舒适的生活和工作环境。
制冷专业知识点总结
制冷专业知识点总结引言制冷技术是指利用机械或化学手段降低物质温度,从而达到保鲜、存储、制冷等目的的技术。
随着工业和生活水平的不断提高,制冷技术已经广泛应用在食品加工、医药、航空航天、地铁、电子、石化、建筑等各个领域。
本文将对制冷技术进行全面的知识点总结,包括制冷原理、制冷剂、制冷循环、制冷设备、制冷系统等方面的内容,以期为相关专业人士提供一份全面的制冷知识手册。
一、制冷原理1.1 制冷原理概述制冷原理是指利用机械或化学手段将一个物质的热力学状况改变,使其温度降低到预期的值,从而来实现降温的目的。
其中包含了一系列的物理、化学和热力学原理,如压缩、膨胀、蒸发、凝结、传热等基本概念。
1.2 制冷原理的基本夯制冷的基本夯可以通过热力学循环来实现,这包括了压缩、冷却、蒸发、凝结等过程。
在这一过程中,制冷系统会对待制冷物体进行热交换,将热量从制冷物体中抽走,从而使其温度下降。
1.3 制冷原理的热力学基础制冷原理的热力学基础是指利用热力学循环对制冷系统内的热量进行调节和平衡,从而实现制冷的目的。
热力学循环包括了很多个环节,如压缩、冷却、膨胀、蒸发、凝结等过程,并且需要符合热力学基本定律。
1.4 制冷原理的应用制冷原理广泛应用于食品加工、医药、航空航天、地铁、电子、石化、建筑等各个领域,从而达到保鲜、存储、制冷等目的。
具体的应用范围包括了冷链物流、冷藏、冷冻、空调等多种技术。
二、制冷剂2.1 制冷剂的概念制冷剂是指用于制冷系统内的一种流体介质,它可以在循环中进行相变,从而实现对系统内热量的吸收和放出。
典型的制冷剂包括氨、氯氟烃、二氧化碳等多种气体或液体。
2.2 制冷剂的分类制冷剂可以根据其物理状态、化工性质、环保性能等方面来进行分类。
其主要包括了气态制冷剂和液态制冷剂,常用的有氨、氟利昂、二氧化碳、甲烷等。
2.3 制冷剂的作用制冷剂的作用是通过其相变过程,对制冷系统内的热量进行调节和平衡,从而使得系统内的温度降低。
制冷专业必学知识点总结
制冷专业必学知识点总结第一部分:热力学基础1. 热力学基础概念热力学是研究热能和其转化的科学,制冷工程基础是在热力学基础上建立的。
温度、压力、热量、热容量等基本概念是制冷工程的基础理论。
2. 热传导、热对流和热辐射制冷系统中热量的传递主要通过热传导、热对流和热辐射来实现。
掌握热传导原理和传热计算方法对于设计和优化制冷系统至关重要。
3. 热工作界限和效率热机和热泵的工作效率受到热工作界限的制约。
制冷专业人员需要了解热机效率和制冷效率的原理,以便在实际工程中选择合适的技术和设备。
第二部分:制冷循环1. 制冷循环基本原理制冷循环是在制冷剂的作用下,通过一定的热力学循环过程实现热量的转移和降温。
常见的制冷循环包括蒸发冷凝循环、压缩-膨胀循环等,制冷工程师需要了解这些循环的原理和特点。
2. 制冷剂的选择和应用制冷剂是制冷循环中的重要组成部分,不同的制冷剂具有不同的性能和适用范围。
制冷工程师需要了解不同制冷剂的性质和应用,以及环保和安全方面的考虑。
3. 压缩机和膨胀阀压缩机是制冷循环中的核心设备,膨胀阀则用于控制制冷剂的流量和温度。
制冷工程师需要了解不同类型的压缩机和膨胀阀的工作原理和选用方法。
第三部分:制冷系统设计1. 制冷负荷计算制冷负荷计算是制冷系统设计的基础,它涉及到室内外环境、建筑结构和使用要求等多个方面的因素。
制冷工程师需要掌握负荷计算的方法和工具,以及如何根据负荷计算结果选择合适的制冷设备。
2. 制冷系统布局和管道设计制冷系统的布局和管道设计对系统的运行效率和稳定性产生重要影响。
制冷工程师需要了解不同布局和管道设计方案的特点和适用范围,以及在实际设计中如何避免常见问题和优化系统性能。
3. 控制系统和自动化控制系统是制冷系统中的关键组成部分,它涉及到温度、压力、流量等参数的监测和调节。
制冷工程师需要掌握不同类型的控制系统和自动化设备,以及如何设计和调试一个稳定可靠的控制系统。
第四部分:制冷设备维护与管理1. 制冷设备的安装和调试制冷设备的正确安装和调试对于系统的长期稳定运行至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论:一、制冷(Refrigeration )1. 定义:通过人工的方法,把某物体或某空间的温度降低到低于周围环境的温度,并使之维持在这一低温的过程。
实质:热量的转移的过程。
(注意和“冷却”的区别)2. 制冷途径:a. 天然冷源b. 人工制冷天然冷源:用深井水或“冬季采冰以供夏用”。
二、人工制冷我们都知道,热量传递终是从高温物体传向低温物体,直至二者温度相等。
热量决不可能自发地从低温物体传向高温物体,这是自然界的客观规律。
然而,现代人类的生活与生产经常需要某个物体或空间的温度低于环境温度,甚至低得很多。
例如,储藏食品需要把食品冷却到0℃左右或-15℃左右,甚至更低;合金钢在-70℃~-90℃低温下处理后可以提高硬度和强度。
而这种低温要求天然冷却是达不到的,要实现这一要求必须有另外的补偿过程(如消耗一定的功作为补偿过程)进行制冷。
这种借助于一种专门装置,消耗一定的外界能量,迫使热量从温度较低的被冷却物体或空间转移到温度较高的周围环境中去,得到人们所需要的各种低温,称为人工制冷。
而这种实现制冷所需要的机器和设备的总和就称为制冷装置或制冷机。
制冷机中使用的工作物质称为制冷剂。
制冷程度:人工制冷可以获得的温度。
制冷的方法:1. 液体汽化制冷(蒸汽制冷):利用液体汽化吸热标准大气压下,1kg 液氨汽化可吸收1371 的热量,且气体温度低达-33.4 ℃;p =870pa 时,水在5 ℃下即可沸腾,吸热2489kJ/kg 。
分类:蒸汽压缩制冷、吸收式制冷、蒸汽喷射式制冷, 吸附式制冷2. 气体膨胀制冷:将高压气体做绝热膨胀,使其压力、温度下降,利用降温后的气体来吸取被冷却物体的热量从而制冷。
3. 热电制冷(半导体制冷):利用某种半导体材料的热电效应。
建立在帕尔帖(peltire) 效应(电流流过两种不同导体的界面时,将从外界吸收热量,或向外界放出热量)原理上。
三、发展概况及应用1. 发展概况:制冷技术是从19 世纪中叶开始发展起来的,1934 年美国人波尔金斯试制成功了第一台以乙醚为工质、闭式循环的蒸汽压缩式制冷机。
发展的三个阶段:1. 1830 ~1930 ,主要采取NH 3 、HC S 、CO2、空气等作为制冷剂,这些制冷剂有的有毒,有的可燃,有的效率很低,使用了一百年之久;2. 1930~1990,主要采用氟里昂作为制冷剂;3.1990~,积极寻找无污染的制冷剂,替代氟利昂的使用。
2. 应用:( 1 )空调工艺性空调:满足生产工艺对室内温湿度、洁净度的要求舒适性空调:满足人们工作、生活对室内温湿度的要求( 2 )食品工程冷库;家用冰箱、冰柜( 3 )机械与电子工业工业的许多生产过程需要在低温下进行( 4 )医疗卫生事业血浆、疫苗及某些特殊药品需要低温保存。
低温麻醉、低温手术及高烧患者的冷敷降温等也需制冷技术。
( 5 )国防工业和现代科学在高寒地区使用的发动机、汽车、坦克、大炮等常规武器的性能需要作环境模拟试验,火箭、航天器也需要在模拟高空的低温条件下进行试验,这些都需要人工制冷技术。
人工降雨也需要制冷。
四、主要内容空调用制冷属于普通制冷范围,主要采用液体汽化制冷法。
1. 制冷原理及相应的制冷循环;2. 制冷工质,即制冷剂和载冷剂;3. 蒸汽压缩制冷的概念、理论、原理、习题、设备、设计、安装等。
第一章蒸汽压缩式制冷的热力学原理第一节蒸汽压缩式制冷的基本原理一、热力学基本定律热力学第一定律:能量守恒和转换定律热力学第二定律:能量贬值原理表述:不可能把热从低温物体传向高温物体而不引起其它变化。
热量由低温物体传向高温物体,必须有一个补偿过程。
循环:实现能量的转移和转换正循环:热能转换为机械能逆循环:消耗能量使热量从低温热源传给高温热源。
二、逆卡诺循环1. 循环组成:两个恒温热源、两个等温过程、两个等熵过程。
2. 循环结果(1)从被冷却介质吸热q0(即单位制冷量);(2)向冷却介质放热q c;(3)循环净功w0=w1-w2=q c-q0→q c=w0+q0。
3. 制冷系数:消耗单位功量所能获得的制冷量逆卡诺循环:说明:(1)εc与制冷工质的性质无关,只和T L、T H有关;(2)T L↗或T H↘→εc↗循环经济性越好;4. 如何实现逆卡诺循环(图1-1)(1)湿蒸汽区域内进行(2)设备:蒸发器(4-1)、冷凝器(2-3)、压缩机(1-2)、膨胀机(3-4)(3)可逆循环→传热无温差,运动无摩擦三、有传热温差的制冷循环有传热温差的制冷循环的制冷系数小于逆卡诺循环的制冷系数热力完善度:工作于相同温度间的实际制冷循环的制冷系数与逆卡诺循环制冷系数的比值。
η =ε / εc≤1η的大小反映了实际制冷循环接近逆卡诺循环的程度两种补偿方法:1. 消耗机械能或电能2. 消耗热能蒸汽压缩制冷:消耗机械能(压缩机)卡诺循环:4-3-2-1-4逆卡诺循环:1-2-3-4-1单位制冷量:1kg 制冷剂在蒸发器中吸收被冷却介质的热量。
逆卡诺循环既可制冷,又可供热。
T L 的变化比T H 的变化对制冷系数的影响更大。
指出了提高制冷系数的方法。
如何实现逆卡诺循环,关键是两个等温过程,而只有液体的定压蒸发吸热过程和蒸汽的定压凝结放热过程是等温过程,故湿蒸汽区域内进行有可能易于实现逆卡诺循环。
任何实际制冷循环的制冷系数都小于逆卡诺循环的制冷系数。
逆卡诺循环不仅从理论上指出了提高制冷装置经济性的方向(如应使制冷工质蒸发温度不要过低,冷凝温度不要过高),同时还可用作评价实际制冷循环完善程度的指标。
实际制冷循环,工质在流动或状态变化过程中,因摩擦、扰动及内部不平衡等因素而引起一定的损失,在换热器中,因存在传热温差而引起传热损失。
可用热力完善度来衡量其不可逆程度。
二节蒸汽压缩式制冷的理论循环湿蒸汽区域可能实现理想制冷循环,但:一、逆卡诺循环难以实现1. 无温差的传热过程难以实现,Q=K A △t m2. 膨胀机等熵膨胀不经济;3. 湿压缩不利于压缩机正常工作(湿压缩、减少制冷量、“液击”)二、蒸汽压缩制冷理论循环1. 循环(是简化了的实际制冷循环)逆卡诺循环:1’-3-4-5’-1’蒸汽压缩制冷循环:1-2-3-4-5-11-2(压缩机):等熵压缩;2-3-4(冷凝器):等压放热;4-5(节流阀):绝热节流,等焓;5-1(蒸发器):等压吸热而制冷。
压缩-放热(冷却与冷凝)-节流-吸热(汽化、蒸发)2. 设备压缩机:“心脏”压缩和输送制冷剂蒸汽;节流阀:节流降压,并调节进入蒸发器的制冷剂流量;蒸发器:吸收热量(输出冷量)从而制冷;冷凝器:输出热量。
3. 特点(对比逆卡诺循环)(1)干压缩代替了湿压缩:1点为干饱和蒸汽状态(2)节流阀代替了膨胀机:节流损失三、压焓图“一点、两线、三区、五态”◆六种:等压线—水平线等焓线—垂直线等干度线—湿蒸汽区域内等熵线—向右上方倾斜等容线—向右上方倾斜,但比等熵线平坦等温线—垂直线(未)→水平线(湿)→向右下方弯曲(过)◆作用:确定状态参数,表示热力过程,分析能量变化。
四、蒸发制冷理论循环压焓图五、蒸汽压缩制冷理论循环热力计算计算目的:确定循环的性能指标、压缩机的容量及功率以及换热设备的热负荷,为选择制冷设备提供依据。
1. 单位质量制冷量q0q0:1kg制冷剂在蒸发器内从被冷却物体吸收的热量,kJ/kg。
q0=h1-h5=h1-h4亦可表示为:q0=r0(1-x5)2. 单位容积制冷量q vq v:压缩机每吸入1m3制冷剂蒸汽(按吸气状态计),在蒸发器中所产生的制冷量,kJ/ m3。
q v=q0 / v1=(h1-h5)/v13. 制冷剂的质量流量M R和体积流量V RM R和V R:压缩机每秒吸入制冷剂的质量和体积。
M R=Q0 / q0 V R=M R·v1=Q0 / q v4. 单位冷凝负荷q kq k:1kg制冷剂在冷却和冷凝过程中放出的热量,kJ/kg。
q k=h2-h45. 冷凝器热负荷Q kQ k:制冷剂在冷凝器中放给冷却介质的热量。
Q k=M R·q k=M R·(h2-h4)6. 单位理论压缩功w0w0:压缩机每压缩并输送1kg制冷剂所消耗的压缩功,kJ/kg。
w0=h2-h1压缩机理论耗功率p th=M R·w0=M R·(h2-h1)7. 制冷系数ε08. 热力完善度η例1:假定循环为单级压缩蒸汽制冷的理论循环,蒸发温度t0=-10℃,冷凝温度为t k=35℃,工质为R22,循环的制冷量Q0=55kW,试对该循环进行热力计算。
解:该循环在压焓图上可表示为:根据R22的热力性质表,查出处于饱和线上各点的参数值:h1=401.18kJ/kg,,v1=0.0654m3/kg,h3=242.93 kJ/kg,p0=355.0kPa,p k=1349.8kPa在p-h图上,点1由等p0线和干饱和蒸汽线相交确定,由点1作等熵线,与等p k线相交确定点2。
由图知,t2=57℃,h2=435.2kJ/kg。
节流前后焓值不变,故h4=h3=242.93 kJ/kg。
1)单位质量制冷量q0=h1-h4=158.25 kJ/kg2)单位容积制冷量q v=q0/v1=2420 kJ/ m33)制冷剂质量流量M R=Q0/q0=0.3476 kg/s4)制冷剂体积流量V R=M R·v1=0.0227 m3/s5)单位理论压缩功w0=h2-h1=34.02 kJ/kg6)压缩机理论耗功率p th=M R·w0=11.83 kW7)冷凝器单位热负荷q k=h2-h3=192.27 kJ/kg8)冷凝器热负荷Q k=M R·q k=66.83 kJ9)制冷系数ε0=q0 / w0=4.6510)逆卡诺循环制冷系数εc=T0/(T k-T0)=5.85热力完善度η=ε0 / εc=0.7951. 冷凝器中,制冷剂凝结时的温度高于高温热源的温度;蒸发器中,制冷剂汽化时的温度低于低温热源的温度。
2. 液体制冷剂的比容远比蒸汽小,可获得的膨胀功小,有时尚不足以克服机器本身的摩擦阻力。
液体膨胀机尺寸很小,设计、制造很困难。
3. 吸入湿蒸汽,在压缩机中有一部分液体要被压缩,称为湿压缩。
湿蒸汽被吸入气缸后,气缸壁与制冷剂之间进行强烈的热交换,湿蒸汽中的液滴迅速汽化,占据气缸容积,使压缩机吸入的制冷剂量减少,制冷量降低。
且液滴进入气缸后很难全部汽化,容易发生压缩液体的液击现象,损坏压缩机。
工作流程:压缩机吸入蒸发器内产生的低压(低温)制冷剂蒸汽,保持蒸发器内的低压状态,创造了蒸发器内制冷剂液体在低温下沸腾的条件;吸入的蒸汽经过压缩,压力和温度都升高,创造了制冷剂能在常温下液化的条件;高温高压的制冷剂蒸汽排入冷凝器后,压力不变,被冷却介质(水或空气)冷却,放出热量,温度降低,最后凝结成液体从冷凝器排出;高压制冷剂液体经节流阀节流降压,导致部分制冷剂液体汽化,吸收汽化潜热,使其本身的稳定液相应降低,成为低压低温的湿蒸汽,进入蒸发器;蒸发器中,制冷剂液体在压力不变的情况下,吸收被冷却介质的热量而汽化,形成低温低压蒸汽再被压缩机吸走,如此不断循环。