用尺规作角

合集下载

《用尺规作角》课件

《用尺规作角》课件

2023《用尺规作角》课件•课程简介•尺规作角的基本概念•尺规作角的基本方法•尺规作角的实际应用•总结与回顾•本章重点难点•学习建议和拓展阅读目录01课程简介尺规作图是数学几何中的基本技能之一,也是初中数学的重要知识点。

通过学习用尺规作角,学生可以进一步理解角的概念和性质,为后续学习几何打下基础。

课程背景课程目标理解作图的原理和几何证明的方法。

掌握用尺规作角的方法和步骤。

激发学生对数学几何的兴趣和热情。

培养学生对几何图形的观察和推理能力。

02尺规作角的基本概念尺规作角是指使用无刻度的直尺和圆规进行图形绘制的一种方法。

尺规作角是一种精确的几何作图方法,可以用来构造各种几何图形,如线段、角、平行线等。

尺规作角的定义尺规作角的基本规则包括:以给定的两点为端点,使用直尺连接两点;以给定的点为圆心,使用圆规画弧与另一圆心相交;使用直尺连接两个交点。

在使用尺规作角时,必须按照基本规则进行作图,不能随意绘制,以确保所得图形符合几何原理和规律。

尺规作角的基本规则03尺规作角的基本方法总结词准确、直观、简单。

详细描述通过使用直尺和圆规,可以轻松地作出已知角的角平分线。

首先,将已知角用圆规划分为两个相等的部分,然后使用直尺将两个相等部分的角连接起来,得到的就是已知角的角平分线。

作已知角的角平分线总结词快速、准确、易于理解。

详细描述首先,使用圆规量取已知角的大小,然后使用直尺将量取的长度标记下来。

接下来,将标记的点作为圆心,以相同的半径画出一个弧线,这个弧线会与已知角的两边相交于两点。

最后,连接这两点与已知角的顶点,即可得到已知角的补角。

操作简单、准确、实用性强。

总结词首先,使用圆规量取已知角的大小,然后使用直尺将量取的长度标记下来。

接下来,将标记的点作为圆心,以相同的半径画出一个弧线,这个弧线会与已知角的两边相交于两点。

然后,分别连接这两点与已知角的顶点,即可得到两个等长的线段。

最后,将两条等长的线段分别作为半径,以已知角的顶点为圆心画弧线,这两个弧线相交于一点,这个点就是已知角的余角的顶点。

用尺规作角(课件)七年级数学下册(北师大版)

用尺规作角(课件)七年级数学下册(北师大版)

D C
A/ C/
∵∠EO'F在∠AOB的内部 ∴∠AOB>∠EO'F
探究新知
例2: 已知:∠1. 求作:∠MON,使∠MON=2∠1.
1
探究新知
作法:(1)作射线OM; (2)以点B为圆心,以任意长为半径画弧,交BA于点P,交BC
于点Q; (3)以点O为圆心,以BP长为半径画弧,交OM于点D ;
(4)以点D为圆心,以PQ长为半径画弧,交前面弧于点E ;
(5)过点O作射线OF,得到 ∠MOF=∠1.
C
F
Q
E
B1
P
A
D
O
M
探究新知
(6)以点B为圆心,以任意长为半径画弧,交BA于点R, 交BC于点S;
(7)以点O为圆心,以BR长为半径画弧,交OF于点G ; (8)以点G为圆心,以SR长为半径画弧,交前面弧于点H ;
随堂练习
2. 画一个钝角∠AOB,然后以O为顶点,以OA为一边,在角的内 部画一条射线OC,使∠AOC=90°,正确的图形是( D )
随堂练习
3. 下列作图语句正确的是( D ) A. 过点P作线段AB的中垂线 B. 在线段AB的延长线上取一点C,使AB=BC C. 过直线a,直线b外一点P作直线MN使MN∥a∥b D. 过点P作直线AB的垂线
随堂练习
7.已知∠α,∠β (∠α>∠β),如图。 求作∠AOB,使∠AOB=∠α-∠β.
随堂练习
作法:先作∠AOC,使∠AOC=∠α; 再以OC为一边,作∠COB,使∠COB=∠β ,并且使射线OB落在 ∠AOC的内部,则∠AOB就是所要求作的角.
课堂小结
1.作一个角等于已知角可以归纳为“一线三弧” 先画一条射线,再作三次弧.其中前两次弧半径相同,而第三次

《用尺规作角》课件

《用尺规作角》课件

实例三:已知角的补角作法
要点一
总结词
要点二
详细描述
通过已知角,使用尺规工具,我们可以绘制出一个与已知 角大小互补的新角。
首先,使用直尺在纸上确定一个已知角的顶点和两边。然 后,使用圆规以该顶点为圆心,以适当长度为半径画弧, 分别与两边的延长线相交,形成新的交点。接着,连接新 的交点,形成的新角即为与已知角大小互补的角。
已知角的补角作法
总结词
通过已知角的一边和顶点,使用尺规可 以作一个与已知角互为补角的角。
VS
详细描述
首先,使用直尺在已知角的一条边上选择 一个点作为起点。然后,以该点为起点, 用圆规在已知角的另一条边上截取与第一 条边等长的线段。接着,再以同一起点, 用圆规在第三条边上截取与前两条边等长 的线段。最后,连接这两个截取点即可得 到一个与已知角互为补角的角。
简单性原则
尺规作图通常采用最简单 的工具和步骤来完成,避 免了复杂的操作和变换。
可重复性原则
相同的尺规作图条件应该 能够重复构造出相同的图 形,保证了作图的可靠性 和一致性。
01
尺规作角的基本方 法
已知直线的平行线作法
总结词
通过已知直线外一点,使用尺规可以作一条与已知直线平行的直线。
详细描述
首先,使用圆规在已知直线上选择一个点作为起点。然后,以该点为圆心,以适当长度为半径画弧,与已知直线 相交于两点。接着,再以其中一点为圆心,以相同长度为半径画弧,与已知直线相交于另一点。最后,连接这两 点即可得到一条与已知直线平行的直线。
提高应用能力
为了提高应用能力,可以通过多做练习题、参加数学竞赛 等方式来加强训练。同时,也可以参考其他优秀的尺规作 角作品,学习其作图技巧和方法。
感谢观看

《用尺规作角》教案

《用尺规作角》教案

一、教学目标1. 让学生了解尺规作角的概念和基本方法。

2. 使学生掌握用尺规作角的一般步骤。

3. 培养学生的动手操作能力和观察能力,提高解决问题的能力。

二、教学内容1. 尺规作角的概念。

2. 尺规作角的基本方法。

3. 用尺规作角的一般步骤。

三、教学重点与难点1. 教学重点:尺规作角的概念和基本方法,用尺规作角的一般步骤。

2. 教学难点:尺规作角的精确度和操作技巧。

四、教学方法1. 采用直观演示法,让学生直观地了解尺规作角的过程。

2. 采用分组合作法,培养学生的团队协作能力。

3. 采用问题驱动法,激发学生的思考和探究欲望。

五、教学准备1. 教具:尺、圆规、直尺、三角板、多媒体设备。

2. 学具:学生用尺、圆规、直尺、三角板、练习本。

【课堂导入】(时间:5分钟)教师通过一个实际问题引入尺规作角的概念,引导学生思考如何用尺规作角解决问题。

【新课讲解】(时间:15分钟)1. 讲解尺规作角的概念和基本方法。

2. 演示用尺规作角的一般步骤,并解释每一步的操作意义。

3. 引导学生关注尺规作角的精确度和操作技巧。

【课堂练习】(时间:10分钟)学生分组合作,用尺规作角解决问题,教师巡回指导。

【总结与反思】(时间:5分钟)教师引导学生总结课堂所学内容,反思自己在用尺规作角过程中的优点和不足。

【课后作业】1. 复习课堂所学内容,整理笔记。

2. 完成课后练习题,巩固所学知识。

六、教学过程(时间:40分钟)1. 复习上节课所学的尺规作角的概念和基本方法。

2. 讲解用尺规作角的一般步骤,并通过实例演示。

3. 学生分组练习,用尺规作角解决问题,教师巡回指导。

七、课堂互动(时间:10分钟)1. 学生分享自己在练习过程中的心得体会。

2. 教师针对学生分享的内容进行点评和指导。

3. 学生提出疑问,教师解答。

八、拓展与应用(时间:10分钟)1. 教师提出一个实际问题,要求学生用尺规作角的方法解决。

2. 学生独立思考并操作,教师巡回指导。

用尺规作角的原理

用尺规作角的原理

用尺规作角的原理尺规作角,是一种仅采用尺和规这两种简单的几何工具,构造各种角的方法。

这一原理可以追溯到古希腊时期,是学习几何学中的重要知识点之一。

在这篇文章中,我们将分步骤阐述这一原理的具体步骤。

首先,我们需要了解尺和规这两种工具的用途。

尺是一种制作直线以及测量长度的工具,而规则则可以用来量取精确的比例,也可以用来勾画圆形和弧线。

尺与规是勾画几何图形的最基本工具。

接下来,我们来解释尺规作角的步骤。

首先,我们需要做一些准备工作。

准备工作包括在平面上画出一个直线L,然后在这条线上选择两个点A和B,并通过规画出线段AB的倍分数线段AD和BD。

接下来,我们需要用规和尺来完成尺规作角的过程。

1. 选择一段已知线段和一个已知点作为起点。

我们选择点A和线段AD 作为起点。

2. 利用规画出线段AE的长度,其长度应该是已知线段的1倍。

此时,AE和AD将共线。

3. 以点E为圆心,以线段AE为半径,使用规画出一个圆。

4. 选择圆上另一个点F,并从点E引出线段EF。

5. 使用规测量线段EF的长度,并将其应用到原有的线段上。

即,将EF的长度应用到线段BD,得到线段BG。

6. 以点G为圆心,以线段GB为半径,使用规画出另一个圆。

7. 选择圆上的另一个点H,并从点G引出线段GH。

8. 将线段GH的长度应用到线段AD上,得到线段AI。

9. 将线段AD和线段AI连接起来,即可得到所求角度。

尺规作角的原理可以用来构造各种不同的角度,包括锐角、直角和钝角等。

由于只需使用简单的尺和规这两个工具,因此尺规作角的方法具有广泛的应用性和实用性。

通过理解并掌握尺规作角的原理,我们可以更加深入地了解几何学的基础知识,拓展我们的数学能力,以及在现实生活中应用这些知识。

《用尺规作角》课件

《用尺规作角》课件

尺规作角的应用和重要性
尺规作角的应用
在几何学中,尺规作图有着广泛的应用。 例如,在证明几何定理时,常常需要作出 一些特殊的角,这时就可以用尺规作角的 方法来得到这些角。另外,在解决一些几 何问题时,通过使用尺规作图,可以更加 直观地理解题意,并找到解决问题的突破 口。
尺规作角的重要性
尺规作图是一种基本的几何学技能,通过 学习和掌握这种技能,可以更好地理解和 掌握几何学的基本概念和性质。同时,尺 规作图也是一种锻炼逻辑思维能力的好方 法,可以帮助我们提高思维敏捷度和解决 问题的能力。
THANKS
感谢观看
《用尺规作角》课件
xx年xx月xx日
目 录
• 引入 • 尺规作角基本操作 • 尺规作角的应用 • 回顾与总结
01
引入
什么是尺规作图?
尺规作图是指使用没有刻度的直尺和圆规进行作图。 尺规作图最基本的原理是通过构造几何图形,利用其性质进行推导和证明。
尺规作角是什么?
尺规作角是指使用直尺和圆规来作一个已知角的相等角或互 补角。
尺规作角的基本原理和方法
尺规作角的基本原理
几何作图离不开尺规,通过使用圆规和没有刻度的直尺,我们可以精确地作出各种几何图形。其中,用尺规作 角的基本原理是平分法,即通过平分一个已知角来构造一个新的角。
用尺规作已知角的角平分线
对于任何一个已知角,我们都可以通过作角平分线的方法来构造出这个角的角平分线。首先,以角的顶点为圆 心,以任意长为半径作弧,交角的两边于两点,然后,再以这两个交点为圆心,以原来的半径分别向角的两边 作弧,两条弧的交点就是已知角的角平分线。
几何证明
在几何学中,尺规作角可以用来证明一些重要的几何定理,如勾 股定理等。
作图限制

北师大版数学七年级下册第二章4用尺规作角(共28张PPT)

北师大版数学七年级下册第二章4用尺规作角(共28张PPT)

栏目索引
解答题 (2019河北保定十七中期中,29,★★☆)如图2-4-4甲,OA⊥OB,OC⊥OD. (1)∠AOC与∠BOD有何数量关系?依据是什么? (2)小明做完(1)后受到启发,在图2-4-4乙中用尺规作出了OD⊥OC,请你也 试一试.
图2-4-4
4 用尺规作角
解析 (1)∠AOC=∠BOD. 依据是同角的余角相等. (2)如图(在∠AOB外部作∠BOD=∠AOC即可).
4 用尺规作角
2.用尺规作一个角等于已知角 尺规作图一般有以下四步: 已知,求作,作法,写出结论. 如图2-4-1,已知∠AOB,求作∠A'O'B',使∠A'O'B'=∠AOB.
栏目索引
图2-4-1
图2-4-2
作法:①作射线O'A';
②以点O为圆心,任意长为半径画弧,交OA于点C,交OB于点D;
4 用尺规作角
A.以点F为圆心,OE长为半径画弧 B.以点F为圆心,EF长为半径画弧 C.以点E为圆心,OE长为半径画弧 D.以点E为圆心,EF长为半径画弧 答案 D
4 用尺规作角
栏目索引
如图2-4-6所示,用尺规作出∠OBF=∠AOB,作图痕迹弧MN是 ( )
图2-4-6 A.以点B为圆心,OD长为半径的弧 B.以点B为圆心,OC长为半径的弧 C.以点E为圆心,OD长为半径的弧 D.以点E为圆心,DC长为半径的弧
答案 D 圆规有两只脚,一只脚固定,另一只脚旋转.
4 用尺规作角
栏目索引
2.(2017广西南宁中考,7,★☆☆)如图2-4-5,△ABC中,AB>AC,观察图中尺规 作图的痕迹,则下列结论错误的是 ( )
图2-4-5

《用尺规作角》教案

《用尺规作角》教案

一、教学目标:1. 让学生了解尺规作角的概念和方法,掌握用尺规作角的技巧。

2. 培养学生动手操作能力,提高空间想象能力。

3. 引导学生运用数学知识解决实际问题,培养解决问题的能力。

二、教学内容:1. 尺规作角的概念:用直尺和圆规作一个角。

2. 尺规作角的方法:(1)作一个角的平分线;(2)作一个角的补角;(3)作一个角的邻补角。

三、教学重点与难点:1. 教学重点:尺规作角的概念和方法。

2. 教学难点:尺规作角的技巧和应用。

四、教学方法:1. 采用讲授法,讲解尺规作角的概念和方法。

2. 采用示范法,展示用尺规作角的操作过程。

3. 采用练习法,让学生动手实践,巩固所学知识。

五、教学过程:1. 导入新课:引导学生回顾角的概念,引出尺规作角的话题。

2. 讲解与示范:讲解尺规作角的概念和方法,展示用尺规作角的操作过程。

3. 学生练习:让学生动手实践,用尺规作角。

4. 解答疑问:解答学生在练习过程中遇到的问题。

5. 课堂小结:总结本节课所学内容,强调尺规作角的技巧。

6. 课后作业:布置有关尺规作角的练习题,巩固所学知识。

六、教学策略:1. 采用问题驱动法,激发学生探究兴趣,引导学生主动参与课堂。

2. 利用多媒体辅助教学,直观展示尺规作角的过程,提高学生的空间想象能力。

3. 创设生活情境,让学生体验数学与生活的紧密联系,培养学生的应用意识。

七、教学评价:1. 课堂练习:观察学生在练习中的操作准确性,评价其对尺规作角的掌握程度。

2. 课后作业:分析学生作业完成情况,了解其对课堂所学知识的巩固程度。

3. 学生互评:鼓励学生相互评价,提高学生的自我认知和团队协作能力。

八、教学拓展:1. 探讨尺规作角的拓展应用,如在几何图形的构造、实际工程测量等方面中的应用。

2. 介绍尺规作角在数学史上的发展,激发学生对数学文化的兴趣。

九、教学反思:1. 反思教学过程,总结成功与不足之处,不断提高教学质量。

2. 关注学生的学习反馈,调整教学策略,满足学生的个性化需求。

7年级数学北师大版下册教案第2章《用 尺规作角》

7年级数学北师大版下册教案第2章《用 尺规作角》

教学设计用尺规作角一.教材分析《用尺规作角》是北师大版初中数学七年级下册第二章第四节,属于“图形与几何”知识领域。

它是在学生已经学习了基本图形及平行线的基础上进行教学的,学生学好这部分知识将为今后进一步学习三角形和尺规作角平分线等知识打好基础,因此,这部分内容起着承上启下的作用,要使学生切实学好。

二.学情分析新课标指出,数学的学习活动必须建立在学生的认知发展水平和已有的知识经验基础之上,学生虽然已经学习了基本图形及平行线的知识,且具备了一定的观察、推理和归纳概括的能力,但是根据学生的认知规律和年龄特点,他们的逻辑思维正处于由经验型向理论型发展的阶段,因此,在认知上还存在着一定的思维障碍,需要教师加强指导。

三.教学目标1.能按照作图语言来完成作图动作,能用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。

2.能利用尺规作角的和、差、倍等问题3.在尺规作图过程当中,积累数学活动经验,培养动手能力和逻辑分析能力。

四.教学重难点重点:利用尺规作一个角等于已知角的方法及作图语言描述;难点:作图方法及作图语言的掌握;五.教学过程第一环节情景引入:观察课本如图2—14,要在长方形木板上截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB。

⑴请过C点画出与AB平行的另一边。

⑴如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?活动目的:通过创设“作一个角等于已知角”的情境,将平行线的识别与作角的问题比较自然地联系在了一起。

教师引导学生将课本问题转化为:过直线外一点作已知直线的平行线,让学生思考“平行线的判定定理”,进而得到解决方案为“过点C作一个角等于已知∠CAB”。

第二环节用尺规作出一个角等于已知角内容一:利用尺规,作一个角等于已知角已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.(教师在黑板上分五步完成用尺规作一个角等于已知角,学生跟着操作,每完成一步都要求学生口述作法.)内容二:请用没有刻度的直尺和圆规,完成课本中图2-14 的问题活动三:我们已经学会怎样作一个角等于已知角,那么,你能利用尺规作图,比较两个角的大小吗?请完成课本56页的‘议一议’.如图所示,已知∠AOB,∠EO′F,利用尺规作图,比较它们的大小.活动目的:让学生学会使用尺规作一个角等于已知角,并独立完成问题情境中的问题。

北师大版七下《用尺规作角》课件

北师大版七下《用尺规作角》课件
已知:直线l及l外一点P, 求作:直线l′,使l′过P点且l′∥l. 作法:1.过点P任意作直线a与l交于Q. 2.以P为顶点,直线a为角的一边,在直线a同旁作∠2,使∠2=∠1(如图), 则∠2的另一边所在直线l′即为所求.
尺规作图
重点题型二:尺规做平行线
再见
用尺规作角Biblioteka 1 尺规作图尺规作图
1.尺规作图是指用_没__有__刻__度__的__直__尺__和__圆__规__来作图
(1)没有刻度的直尺功能是:_画__一___条__直__线__或___者__射__线___ (2)圆规的功能是:__画__弧____(__一__些_相__等__的__线__段__)__ 2.尺规作图步骤:
3.
作图痕迹
2 用尺规作角
尺规作图
尺规作图
作法:
(1)作射线O′A′; (2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;
(3)以点O′为圆心,同样长为半径画弧,交O′A′于点C′; (4)以点C’为圆心,CD长为半径作弧,交前面的弧于点D’ ; (5) 过点D’作射线O’B’.∠A’O’B’就是所求的角.
B D
B' D'
O
CA
O'
C' A'
尺规作图
小结:作一个角等于已知角可以归纳为“一线三弧” 先画一条射线,再作三次弧.其中前两次弧半径相同,而 第三次以原角的两边与弧的交点之间的距离为半径.
尺规作图
重点题型一:尺规作角
2
尺规作图
重点题型一:尺规作角
3
尺规作图
重点题型一:尺规作角
尺规作图
重点题型二:尺规做平行线 过直线外一点P作已知直线l的平行线.

超实用:用尺规作角

超实用:用尺规作角

2020 10:11:30 AM10:11:302020/12/17
• 11、自己要先看得起自己,别人才会看得起你。12/17/
谢 谢 大 家 2020 10:11 AM12/17/2020 10:11 AM20.12.1720.12.17
• 12、这一秒不放弃,下一秒就会有希望。17-Dec-2017 December 202020.12.17

4、越是无能的人,越喜欢挑剔别人的 错儿。 10:11:3 010:11: 3010:1 1Thursday, December 17, 2020

5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 720.12. 1710:1 1:3010: 11:30D ecembe r 17, 2020
1.本节课主要学习了用无刻度的直尺和圆规作一个角等 于已知角, 虽看似简单, 它却是最基本的几何作图的方 法. 数学历史中称之为几何基本作图法. 2.课外还要加强基本作图工具的使用, 特别是圆规的使 用要领与技巧要勤加操练. 3.练习中还要注意几何语言表述的规范、书写格式的规 范的训练.
• 作业: • 大演草:课本P83第1

8、业余生活要有意义,不要越轨。20 20年12 月17日 星期四 10时11 分30秒 10:11:3 017 December 2020

9、一个人即使已登上顶峰,也仍要自 强不息 。上午 10时11 分30秒 上午10 时11分 10:11:3 020.12. 17
• 10、你要做多大的事情,就该承受多大的压力。12/17/
• 13、无论才能知识多么卓著,如果缺乏热情,则无异 纸上画饼充饥,无补于事。Thursday, December 17, 202

用尺规作角的注意事项

用尺规作角的注意事项

用尺规作角的注意事项使用尺规作角是在进行测量和绘图时常见的工具和方法之一。

在使用尺规作角时,有一些注意事项需要遵守,以确保测量和绘图的准确性和精度。

首先,选择合适的尺规是至关重要的。

尺规的长度应根据具体的测量需求和绘图要求来确定,一般来说,较长的尺规适合用于测量和绘制较大的图形,而较短的尺规适合用于测量和绘制较小的图形。

此外,尺规的刻度应清晰易读,以便准确地进行测量和绘图。

其次,要注意尺规和绘图纸的放置和固定。

在进行测量和绘图时,尺规和绘图纸应平放在桌面上,并使用夹具或胶带固定,以防止它们在测量和绘图过程中移动或晃动,从而影响测量和绘图的准确性。

在使用尺规作角时,要确保尺规的边缘与绘图纸的边缘紧密贴合,避免产生误差。

此外,要注意尺规的放置角度,尽量使尺规的边缘与绘图纸的边缘垂直或平行,以确保所测量和绘制的角度准确。

另外,要注意尺规的使用方法。

在使用尺规作角时,应该尽量保持尺规的稳定,避免在测量和绘图过程中移动尺规,以确保测量和绘图的准确性。

此外,要注意尺规的放置位置,尽量使尺规的边缘和绘图纸的边缘对齐,以确保测量和绘图的准确性。

最后,使用尺规作角时,要注意绘图的精细度和准确性。

在绘图过程中,尺规的使用应尽量精细和准确,以确保所绘制的图形符合要求,尺规的使用过程中,要尽量避免犯错,确保测量和绘图的准确性。

总的来说,使用尺规作角是绘图和测量中的常见方法,但在使用尺规作角时,需要注意尺规的选择、放置和固定、使用方法以及绘图的精细度和准确性,以确保测量和绘图的准确性和精度。

遵守以上的注意事项,可以帮助我们在使用尺规作角时取得更好的效果和更准确的测量和绘图结果。

用尺规作角总结归纳

用尺规作角总结归纳

用尺规作角总结归纳在几何学中,尺规作角是一种通过使用尺和规来构造特定角度的方法。

它是古代希腊数学家所发展的一项技术,被广泛用于解决几何问题。

尺规作角的基本原理是利用尺子和可伸缩的直尺(即规)进行测量和绘制,从而实现对角度的精确构造与计算。

本文将对尺规作角的原理与应用进行归纳总结。

一、尺规作角的原理尺规作角的基本原理在于将现有的角度不断分割,再通过构造等角或平分角的方法来得到所需的角度。

其步骤主要包括以下几个方面:1. 构造90°角:开始时,利用规画一条水平线,再利用垂直尺从一点开始画一条垂直线,且需要调整规的长度使得两线相交于右角。

2. 构造30°角:在已知的90°角上,利用规上的等分线(通常为1:2比例),将垂直线上的段分为3等分。

然后,将规的一端放置于90°角的一个顶点,并将规上的一标记放置于垂直线上的一点,再用尺子将该标记移至另一等分点,即可得到所需的30°角。

3. 构造60°角:在已知的30°角上,利用规上的等分线,将垂直线上的段分为2等分。

然后,将尺子的一端放置于30°角的一个顶点,将尺子的另一端放置于垂直线上的一点,再将规的一端放在尺子的一端,移动规的另一端至垂直线上的另一等分点,即可得到所需的60°角。

通过以上步骤,可以构造出30°、60°和90°三个特定角度。

二、尺规作角的应用1. 解决几何问题:尺规作角是解决几何问题的重要方法之一。

例如,在已知两条边长相等的三角形中,可以通过尺规作角构造等腰三角形。

又如,在画等边四边形时,可以通过尺规作角构造出所需的60°角。

2. 测量角度:尺规作角可以用来测量特定角度。

通过将已知或需要测量的角度不断分割和等分,可以利用尺规作角的方法获得所需的角度。

3. 证明几何定理:尺规作角也可以用于证明几何定理。

通过构造特定角度,并利用已知的公式和定理,可以推导出其他几何性质和定理,从而进一步深化对几何学的理解。

数学课件用尺规作线段和角

数学课件用尺规作线段和角
文化传承与创新
通过尺规作图,可以传承和发展古代数学文化,同时也可以推动现 代数学的创新和发展。
跨学科的交流与合作
尺规作图涉及数学、艺术、工程等多个学科领域,促进了不同学科 之间的交流与合作,推动了跨学科研究的进展。
尺规作图在现代数学中的地位
1 2
基础教育的核心内容
尺规作图是中学数学课程中的重要内容,对于培 养学生的几何直觉和空间思维能力具有重要作用 。
数学课件用尺规作 线段和角
contents
目录
• 用尺规作线段 • 用尺规作角 • 用尺规作线段和角的应用 • 尺规作图的历史与文化
01
CATALOGUE
用尺规作线段
尺规作线段的定义
01
02
03
尺规作图
在几何学中,尺规作图是 一种使用无刻度的直尺和 圆规来构造几何图形的方 法。
线段
线段是由两个点确定,并 且连接这两个点的所有点 的集合。
尺规作角的基本步骤
第一步
根据题目要求,确定角的顶点和角的 度数。
02
第二步
使用圆规在角的一侧取一个点,作为 角的顶点。
01
第五步
检查所画的角是否符合题目要求,如 果符合则结束作图,否则需要重新调 整。
05
03
第三步
以这个顶点为圆心,用圆规量取相应 的半径长度,在角的另一侧画弧,得 到一条边。
04
第四步
验证几何定理
构造特殊图形
使用尺规作图可以构造一些特殊的几 何图形,如正方形、等边三角形等, 这些图形在几何问题解决中有广泛应 用。
通过用尺规作线段和角,可以验证几 何定理的正确性。例如,通过作图可 以证明等腰三角形的性质定理。
在日常生活中的应用

尺规作图画相同角的原理

尺规作图画相同角的原理

尺规作图画相同角的原理
尺规作图是一种基于尺子和圆规的几何作图方法,可以用来作直线、平行线、垂直线、等分线、画圆等等。

而画相同角的原理主要包含以下几个步骤:
1. 给定一个初始角:首先,在纸上用尺子画出一条直线段AB,作为初始角的一条边。

这个线段就是尺规作图的基线。

2. 作基线上的等分线段:利用尺子,在基线上选取一个点C。

然后,以C为圆心,利用圆规量取一个合适的长度,画一个圆弧与线段AB相交于两个点D和E。

3. 以D和E为点作引线:分别以D和E为圆心,利用圆规的同样长度,在纸上画出两个圆弧。

两个圆弧与线段AB相交于两个点F和G。

4. 连接点A和F以及点A和G:用尺子连接点A和F,以及点A和G,得到线段AF和AG。

5. 以线段AF和AG为边作引线:分别以线段AF和AG为边,利用尺子,推定它们的延长线,画出两条无限延长线。

6. 作延长线上的相同角:选择延长线上的一个点H,利用尺子,画出与线段AF 和AG相交的两条直线。

由于线段AF和AG是基线上等分出的,所以相交的两条直线与线段AF和AG分别夹成相等的角。

通过以上步骤,就可以使用尺规作图的方法在纸上画出与初始角相等的角度。

《用尺规作角》课件

《用尺规作角》课件
《用尺规作角》课件
xx年xx月xx日
contents
目录
• 尺规作角的概念 • 尺规作角的基本方法 • 尺规作角的实例 • 尺规作角的应用 • 尺规作角总结与展望
01
尺规作角的概念
尺规作角的定义
尺规作角是指使用尺子和圆规画出角度。
尺规作角的基本步骤包括:使用圆规画出圆弧,将圆弧对齐两个点,然后使用直 尺连接两个点。
技巧3
在步骤5中,用直尺连接起点和终点时,要注意 保持线段的垂直和平行关系。
尺规作角的注意事项
注意事项1
01
在作图过程中,要注意保持准确性,避免误差过大导致作图失
败。
注意事项2
02
在步骤3和步骤4中,要注意保持圆规和射线的相对位置不变,
避免出现不符合要求的作图结果。
注意事项3
03
在步骤5中,要注意保持线段的垂直和平行关系,避免出现不
尺规作角的特点
尺规作角精度高
使用尺子和圆规可以精确地画出角度,避免了手工操作的不 确定性。
尺规作角方便快捷
使用尺子和圆规进行作图,可以迅速地画出角度,提高作图 效率。
尺规作角的意义
尺规作角在数学中有着广泛的应用,如在几何学中,可以使 用尺子和圆规画出角度,帮助理解几何图形。
尺规作角可以锻炼学生的思维能力,通过画角度的过程,可 以更好地理解角度的概念,提高空间思维能力。
符合要求的作图结果。
03
尺规作角的实例
作已知两点的距离
总结词
两点间距离
详细描述
通过作已知两点的距离,可以利用尺规准确地找到两点的距离,具体步骤包括先 作一条直线,然后以一个点为圆心,以两点间的距离为半径作圆弧,最后过另一 个点作这条弧的切线,切线的长度即为已知两点的距离。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导学案
年级 创编 审核 执教人 执教时间
教师寄语 昨天是张过期的支票,明天是张信用卡,只有今天才是现金,要善加利用
学习目标
1、经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识。

2、能按作图语言来完成作图动作,能用尺规作一个角等于已知角。

3、通过与同伴合作练习,体验合作学习的愉快。

学习
重难点 教学重点:能按作图语言来完成作图动作,能用尺规作一个角等于已知角。

教学难点:作图步骤和作图语言的叙述,及作角的综合应用。

学法指导 自主探索、研究、发现法
知识链接
自学探究 一、问题的提出:
如图,要在长方形木板上截一个平行四边形,
使它的一组对边在长方形木板的边缘上,
另一组对边中的一条边为AB 。

(1)请过点C 画出与AB 平行的另一条边
(2)如果你只有一个圆规和一把没有刻度的直尺,
你能解决这个问题吗?
(1) 已知:∠AOB
求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB
大展身手 已知:∠α
求作:∠AOB ,使∠AOB=∠α
A
o B α
大展身手
已知:∠1
求作:∠MON,使∠MON=2∠1
已知:∠1、∠2
求作:①∠AOB,使∠AOB=∠1+∠2
学以致用
已知:∠1
求作:∠COD,使∠COD=3∠1
已知:∠1、∠2、∠3
求作:①∠AOB,使∠AOB=∠1—∠2
思维拓展
(1)已知:线段AB、∠α、∠β
求作:分别过点A、点B作∠CAB=∠α、∠CBA=∠β
收获盘点
1
2
1
1
2。

相关文档
最新文档