九上25.2用列举法求概率(2)课件

合集下载

25.2 随机事件的概率(第二课时)

25.2 随机事件的概率(第二课时)
成来活越情大况,, 频计 率算m成活越的来频越率稳。定如于果某随个着常移数植,棵那树么n这的个越常 数就可以被当作n成活率的近似值
张小明承包了一片荒山,他想把这片荒山改造成一个苹果果园, 现在有两批幼苗可以选择,它们的成活率如下两个表格示:
例题解析A类树苗:
B类树苗:
移植总数 (m)
10
成活数 (m)
探究
材料1:
则估计抛掷一枚硬币正面朝上的概率为_o._5
探究
材料2:
则估计油菜籽发芽的概率为_0_.9 _
2 观察归纳,探究新知
当试验次数很大时,一个事件发生频率 也稳定在相应的概率附近.因此,我们可 以通过多次试验,用一个事件发生的频率 来估计这一事件发生的概率.
在相同情况下随机的抽取若干个体进行实验,
25.2.2 频率与概率
复习
必然事件
不可能事件 随机事件(不确定事件) 可能性
0
不可 能发

½(50%)
可 能 发 生
1(100%)
必然 发生
概率 事件发生的可能性,也称为事件发生 的概率.
必然事件发生的概率为1(或100%), 记作P(必然事件)=1;
不可能事件发生的概率为0, 记作P(不可能事件)=0;
律.
例题解析
某水果公司以2元/千克的成本新进 了10 000千克的柑橘,如果公司希 望这些柑橘能够获得利润5 000元, 那么在出售柑橘(已去掉损坏的柑
橘)时,每千克大约定价为多少元 比较合适?
销售人员首先从所有的柑橘中随机地抽取 若干柑橘,进行了“柑橘损坏率”统计,并 把获得的数据记录在表中,请你帮忙完成此
1 创设情景、引入新知
1.从一定高度落下的图钉,会有几种可能的结果? 它们发生的可能性相等吗?

人教版九年级数学上册优质课课件《25.2列表法求概率》

人教版九年级数学上册优质课课件《25.2列表法求概率》

拓广探索
• 在围棋盒中有x颗黑色棋子 和y颗白色棋子,从盒中随 机地取出一个棋子,如果它 是黑色棋子的概率是3/8, 写出表示x和y关系的表达 式.如果往盒中再放进10颗 黑色棋子,则取得颗黑色棋 子的概率为1/2,求x和y的 值.
小结
拓展
从表面上看,随机现象的每一次观察结果都是偶 然的,但多次观察某个随机现象,立即可以发现: 在大量的偶然之中存在着必然的规律.
本题中元音字母: A E I 辅音字母: B C D H
• 例题选讲 • 甲乙两个同学做“石头、剪刀、布”的 游戏,在一个回合中两人能分出胜负的 概率是多少? • 分析:(1)一个回合:那么是几次等 可能试验?树形图应该画几级?(甲、 乙独立出拳的,应该算两次) • (2)每一个级别里应该画几条树枝? (每个试验的结果有几种可能性)
用列表法求概率时应注意各种结果出现的 可能性必须相同. 用列表格法的优缺点及局限性. 有放回还是无放回的问题
要学会建立适当的数学模型
小结
拓展
回 味 无 穷
用树状图或表格表示概率
1、利用树状图或表格可以清晰地表示出某 个事件发生的所有可能出现的结果;从而较 方便地求出某些事件发生的概率.
2 根据不同的情况选择恰当的方法表示某个事 件发生的所有可能结果。 3.当试验包含两步时,列表法比较方便,当然, 此时也可以用树形图法,当试验在三步或三 步以上时,用树形图法方便.
.“手心手背”是同学们中间广为流传的游戏, 游戏时甲、乙、丙三方每次做“手心”“手背” 两种手势中的一种,规定:⑴出现三个相同手 势不分胜负须继续比赛;⑵出现一个“手心” 和或一个“手背”和两个“手心”时,则一种 手势者为胜,两种相同手势者为负。 假定甲、乙、丙三人每次都是等可能地做这 两种手势,那么,甲、乙、丙三位同学胜的 概率是否一样?这个游戏对三方是否公平? 若公平,请说明理由,若不公平,如何修改 游戏规则才能使游戏对三方都公平?

人教版数学九上25.2 用列举法求概率(精品课件共2课时52页)

人教版数学九上25.2 用列举法求概率(精品课件共2课时52页)
3
于4为事件B. () = 16
第1次
第2次
1
2
3
4
1
2
3
4
(1,1)
(2,1)
(3,1)
(4,1)
(1,2)
(2,2 )
(3,2)
(4,2)
(1,3)
15
5
2.一个不透明的袋中有四个完全相同的小球,把它们分别标号为
1,2,3,4.随机地摸取一个小球然后放回,再随机地摸出一个小球.
求下列事件的概率:
(1)两次取出的小球标号相同;
(2)两次取出的小球标号和等于4.
解:(1)记两次取出的小球标号
4
1
相同为事件A. () = 16 = 4
(2)记两次取出的小球标号和等
一共有结果
4种
一正一反的结果 2种
2
1
P(老师赢) = = .
4
2
2
1
P(学生赢)= = .
4
2
两面一样的结果 2种
答:因为P(老师赢) = P(学生赢),
所以这个游戏公平.
“同时掷两枚质地均匀的硬币”与“先后两次掷
一枚硬币”,这两种试验的所有可能结果一样吗?
第一次 第二次 所有可能的结果
(正,正)
的m种结果)求事件发生的概率的方法,我们称为直接列举法.
注意:(1)为保证结果不重不漏,直接列举时,要有一定的顺序性.
(2)用列举法求概率的前提条件有两个:
①所有可能出现的结果是有限个;
②每个结果出现的可能性相等.
(3)所求概率是一个准确数,一般用分数表示.
新知探究 跟踪训练
例1 若我们把十位上的数字比个位和百位上数字都小的三位数称

人教版九年级数学上册25.2 用列举法求概率课件(共42张PPT)

人教版九年级数学上册25.2 用列举法求概率课件(共42张PPT)

过程与方法
理解 的结果,其中A包含m种)的意义,并能解决 一些实际问题。探究用特殊方法 “列举法” 求概率的简便方法,然后应用这种方法解决 一些实际问题。
P(A) = m (在一次试验中有n种可能 n
教学目标
情感态度与价值观
通过丰富的数学活动,交流成功的经 验,体验数学活动充满着探索和创造,体 验数学方法的多样性灵活性,提高解题能 力。
3 1 = 6 2
(3)点数大于2且小于5有2种可能,即点数 为 3, 4,
P(点数大于2且小于5)=
2 1 = 6 3
例2:掷两枚硬币,求下列事件的概率:
(1)两枚硬币全部正面朝上;
(2)两枚硬币全部反面朝上; (3)一枚硬币正面朝上,一枚硬币反面朝上。
解:我们把掷两枚硬币所能产生的结果全部 列举出来,它们是:正正,正反,反正,反 反。所有的结果共有4个,并且这4个节结果 出现的可能性相等。 (1)所有的结果中,满足两枚硬币全部正面 朝上(记为事件A)的结果只有一个,即“正 1 正”,所以P(A)=
6
(1)以上两个试验有什么共同的特点? 一次试验中,可能出现的结果有限个。一 次试验中,各种结果发生的可能性相等。 (2)对于上述所说的试验,如何求事件的概率? 一般地,如果在一次试验中,有n种可 能的结果,并且它们发生的可能性都相等, 事件A包含其中的m种结果,那么事件A发生 m 的概率为 . P A =
(2)满足两个骰子的点数之和是9(记为事 件B)的结果有4个,则
4 1 P( B) = = 9 36
(3)满足至少有一个骰子的点数为2(记为 事件C)的结果有11个,则
P(C)=
11 36
想一想
“同时掷两枚硬币”,与“先后两次掷 一枚硬币”,这两种试验的所有可能结果 一样吗?

25.2.2 用列表法求概率(二)

25.2.2   用列表法求概率(二)

3、有100张卡片(从1号到100号), 从中任取1张,取到的卡号是7的倍数 的概率为( )。
4、一个口袋内装有大小相等的1个白球 和已编有不同号码的3个黑球,从中摸 出2个球. (1)共有多少种不同的结果? (2)摸出2个黑球有多种不同的结果? (3)摸出两个黑球的概率是多少?
5.一张圆桌旁有 四个座位,A先坐 在如图所示的座 位上,B.C.D三人 随机坐到其他三 个座位上.则A与 B不相邻而坐的 概率为___;
作业:
教科书P139—141习题25.2 第4、5、6题。
(第7、8、9题共同探讨
(2).什么时候使用”列表法”方便?
(3).什么时候使用”树形图法”方便?
(1)当试验在一个因素时,用枚举 答: 法方便; (2)当试验包含两个因素时,列表 法比较方便,当然,此时也可以用树 形图法;
(3)当试验在三个或三个以上因 素时,用树形图法方便.
学以至用:
1.小明是个小马虎,晚上睡觉时将 两双不同的袜子放在床头,早上 起床没看清随便穿了两只就去上 学,问小明正好穿的是相同的一 双袜子的概率是多少?
1. 有一对酷爱运动的年轻夫妇给他们12 个月大的婴儿拼排3块分别写有“20”, “08"和“北京”的字块,如果婴儿能够 排成"2008北京”或者“北京2008".则 他们就给婴儿奖励,假设婴儿能将字块 横着正排,那么这个婴儿能得到奖励的 概率是___________.
2、先后抛掷三枚均匀的硬币,至少出现 一次正面的概率是( )
(1)取出的3个小球上恰好有1个、2 个和3个元音字母的概率分别是多少?
(2)取出的3个小球上全是辅音字母 的概率是多少?
解:画树状图为
甲 乙 丙 A B

人教版九年级上册《25.2 用列举法求概率(2)》课件( (共30张PPT)

人教版九年级上册《25.2 用列举法求概率(2)》课件( (共30张PPT)

AB
EDC
HI
(1)取出的3个小球中恰好有1个,2个,3个写
有元音字母的概率各是多少?

A
B
解:由树状图得,所有
乙 C D E C D E 可能出现的结果有12个,
丙H I H I H I H I H I H I
A AA AA A B B B B B B C CD DE E C C D D E E H I H I H I HI H I HI
7 6 -2
解:根据题意,画出树状图如下
第一个数字
6
-2
7
第二个数字 6 -2 7 6 -2 7 6 -2 7
(1)两次取出的小球上的数字相同的可能性只有3种,所以 P(数字相同)= 3 = 1
99
(2)两次取出的小球上的数字之和大于10的可能性只有4种,
所以P(数字之和大于10)= 4 9
5.甲、乙、丙三个盒中分别装有大小、形状、质 地相同的小球若干,甲盒中装有2个小球,分别写有 字母A和B;乙盒中装有3个小球,分别写有字母C、D 和E;丙盒中装有2个小球,分别写有字母H和I;现 要从3个盒中各随机取出1个小球.

1 P(正面向上)= 4

(反,反)
树状图的画法
如一个试验中涉及2个因素,第一个因素中有2种可能情况;第 二个因素中有3种可能的情况. 则其树形图如下图:
一个试验
第一个因素
A
B
第二个因素 1 2 3 1 2 3 n=2×3=6
树状图法:按事件发生的次序,列出事件可能出现的结果.
活动:石头、剪刀、布 同学们:你们玩过“石头、剪刀、布”的游戏吗, 小明和小华正在兴致勃勃的玩这个游戏,你想 一想,这个游戏能用概率分析解答吗?

人教版九年级数学上册--25.用列表法求概率-课件

人教版九年级数学上册--25.用列表法求概率-课件
币反面向上(记为事件B)有2种,
由当上一表次可实知验共涉有及4种两等个可因能素性时的(如结掷果两,个骰子∴)P,(且B)可=2能/4出=1现/2的,结果较多
时,为不重复不遗漏地列出所有可能的结果,用列表法.
当堂训练
用列表法求概率
同时掷两枚质地均匀的骰子,计算下列事件的概率
知识点二
(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;
6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 为事件C)有11种,
由上表可知共有36种等可能性的结果, ∴P(C)=11/36,
课堂小结
列举法 求概率
用列表法求概率
知识梳理
当一次实验涉及一个因素时(如掷一枚骰子),用直接列举法.
列表法
前提条件:确保实验中每种结果出现的可能性大小相等. 适用对象:两个实验因素或分两步进行的实验.
用列表法求概率
提升能力
2.在6张卡片上分别写有1~6,随机的抽取一张后放不回放回,再随机的抽取一
张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?
解:列表如下:
其中第一次取出的数字能够整除第
1 2 3 4 5 6 2次取出的数字(记为事件A)有14种,
1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
你们赢,如果落地后朝上的是一正一反,老师赢.请问,你们觉得这个游戏
公平吗?
你能把这问题改编成数学问题吗?
典例精讲
用直接列举法求概率
【例1】“先同后时将掷一两硬枚币硬掷币两”次,试求下列事件的概率: 第1枚 (1)两枚硬币全部正面向上;
(2)一枚硬币正面向上,一枚硬币反面向上;
知识点一

人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

板书设计
把两枚骰子分别记为第1枚和第2枚,这样就可以用下面的方形表格列举出
所有可能出现的结果.
解决问题
两枚骰子分别记为第1枚和第2枚,所有可能的结果列表如下:
(1)满足两枚骰子点数相同(记为事件A)的结果有6个
6
1
(表中斜体加粗部分),所以P(A)= 36 = 6.
(2)满足两枚骰子的和是9(记为事件B)的结果有4个
2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的
百分比. 若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是
%.
达标检测
1.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为


1
A.
3
11
B.
36
5
C.
12
1
D.
4
2.不透明的袋子中装有红球1个、绿球1个、白球2个,这些球除颜色外无
出场,由于人为指定出场顺序不合规,要重新抽签确定出场顺序,则抽签后三个
运动员出场顺序都发生变化的概率是
.
达标检测
5.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,
2
3
其中红球1个,若从中随机摸出一个球,这个球是白球的概率为 .
(1)求袋子中白球的个数;
(2)随机摸出一个球后放回并搅匀,再随机摸出一个球,请用画树状图
5
,全是辅音字母的结果有两个,
12
2
1
即BCH,BDH,所以P(三个辅音)= = .
12
6
P(一个元音)=
练习巩固
1.经过某十字路口的汽车,可能直行,也可能左转或右转. 如果这三种可能

九年级数学上册第二十五章概率初步25.2用列举法求概率第2课时用列表和树状图法求概率课件新版新人教版

九年级数学上册第二十五章概率初步25.2用列举法求概率第2课时用列表和树状图法求概率课件新版新人教版
讲课内容——对实际材料的讲解课可能需要做大量的笔记。 最讲授的主题是否熟悉——越不熟悉的学科,笔记就越需要完整。 所讲授的知识材料在教科书或别的书刊上是否能够很容易看到——如果很难从别的来源得到这些知识,那么就必须做完整的笔记。 有的同学一味追求课堂笔记做得“漂亮”,把主要精力放在做笔记上,常常为看不清黑板上一个字或一句话,不断向四周同学询问。特意把笔记做得很
一般地,当一次试验要涉及两个因素(或两个步骤), 且可能出现的结果数目较多时,可用“列表法”,当一 次试验要涉及三个或更多的因素(或步骤)时,可采用 “树形图法”。
三、巩固练习
1
2
1
1
25
25
20
10
(4)
方案(4)获奖的可能性大
五、归纳小结
1.为了正确地求出所求的概率,我们要求出各 种可能的结果,通常有哪些方法求出各种可能 的结果?
由上表可以看出,同时掷两枚骰子,可能出现的结 果有36种,并且它们出现的可能性相等.
当一个事件要涉及两个因素并且可能出现的结果 数目较多时,通常采用列表法。
运用列表法求概率的步骤如下:
(1)列表;
(2)通过表格确定公式中m,n的值; m
(3)利用P(A)= n 计算事件的概率.
把“同时掷两个骰子”改为“把一个骰子 掷两次”,还可以使用列表法来做吗?
全的人,主要是担心漏掉重要内容,影响以后的复习与思考.,这样不仅失去了做笔记的意义,也将课堂“听”与“记”的关系本末倒置了﹙太忙于记录, 便无暇紧跟老师的思路﹚。 如果只是零星记下一些突出的短语或使你感兴趣的内容,那你的笔记就可能显得有些凌乱。 做提纲式笔记因不是自始至终全都埋头做笔记,故可在听课时把时间更多地用于理解所听到的内容.事实上,理解正是做好提纲式笔记的关键。 课堂笔记要注意这五种方法:一是简明扼要,纲目清楚,首先要记下所讲章节的标题、副标题,按要点进行分段;二是要选择笔记语句,利用短语、数 字、图表、缩写或符号进行速记;三是英语、语文课的重点词汇、句型可直接记在书页边,这样便于复习时查找﹙当然也可以记在笔记本上,前提是你 能听懂﹚;四是数理化生等,主要记老师解题的新思路、补充的定义、定理、公式及例题;五是政治、历史等,着重记下老师对问题的综合阐述。

列举法求概率2

列举法求概率2

“同时掷两枚硬币”与“先后两次掷 一枚硬币”,这两种试验的所有可能 结果一样吗?
例2.袋子中装有红.绿各一个小球,随机摸出一个小球后 放回,再随机摸出一个.求下列事件的概率: (1)第一次摸到红球,第二次摸到绿球; (2)两次都摸到相同颜色的球;
(3)两次摸到的球中有一个绿球和一个红球.
随堂练习
总结经验: 当一次试验要涉及两个因素,并且可能出 现的结果数目较多时,为了不重不漏的列 出所有可能的结果,通常采用列表的办法
1 4
思考: 从1,2,3,4的4个数中任取两个,他们的和 是偶数的概率是多少?
; https:/// 加盟网 ; ; 2019.1 ;
自觉自己实在找到了个好丈夫,他待人真的很好.可惜,大家都处于战争状态下,那些日子她一个姑娘已经见过了太多的生与死.新型的战争改变了女孩所有的游击战经验,新的敌人比倭寇敌人还有残酷. 她刚刚获悉,前方参与歼灭战的友军,他们屠杀了所有的德国战俘.那种行为和政委们说 的不一样,结果政委们又有了新的说辞."对于法西斯魔鬼我们不能有一丁点怜悯,战争开始后他们已经在屠杀手无寸铁的斯拉夫人们.所有的德剧士兵都是魔鬼,如果不杀死他们,明天死亡的就是你自己." 战士们对于敌人的侵略满怀仇恨,如今又多了一丝恐惧,或许政委们希望那样子,士兵 会宁可战死也不会去做悲催的俘虏.其实德国人对苏力俘虏确实毫无人性,李小克直接告诉妻子,各级政委的说辞都是正确的,毕竟不是日内瓦公约签署国. 希特勒也在他的著作写的非常清楚."不是说学会了德语就是德国人,比如说白人、中国人,他们即使学会了德语依旧是劣等的." 所以 李小克不会同情他的敌人,再说苏军正在撤退,为了避免节外生枝最好还是如此. 然而杀俘行为确实激怒了冯冯克.德军被俘士兵是成片的被枪毙,为了泄愤他们甚至一直暴尸荒野.愤怒全

九年级数学《用列举法求概率(2)》课件

九年级数学《用列举法求概率(2)》课件

解:(2)120×16=96(个).
20
答:估计达到良好及以上的社区有 96 个. (3)将干垃圾、湿垃圾、可回收垃圾、有害垃圾分别用a,b,c,d表 示,根据题意画树状图如下:
共有 12 种等可能的情况数,其中小明恰好提到干垃圾和湿垃圾的有 2 种, 则小明恰好提到干垃圾和湿垃圾的概率是 2 = 1.
答案图
共有 12 种等可能的结果数,其中两次摸到红球的结果数为 2, 所以两次摸到红球的概率= 2 = 1.
12 6
6.(2020无锡)现有4张正面分别写有数字1,2,3,4的卡片,将4张 卡片的背面朝上,洗匀.
(1)若从中任意抽取 1 张,抽的卡片上的数字恰好为 3 的概率
1
是 4;
(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取 1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用 “画树状图”或“列表”等方法写出分析过程)
பைடு நூலகம்
为( C )
A.1
B.1
C.1
D.2
4
3
2
3
8.(创新题)数学课上,李老师准备了四张背面看上去无差别的 卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如 图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中 随机抽取一张卡片后不放回,再随机抽取一张.
a=1 b= 2 c=3 A
解:(1)画树状图得:
答案图
则点Q所有可能的坐标有 (1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3) 共12种.
(2)∵共有 12 种等可能的结果,其中在函数 y=-x+5 的图象上

九年级数学上册25.2用列举法求概率第2课时用树状图法求概率习题课件新版新人教版

九年级数学上册25.2用列举法求概率第2课时用树状图法求概率习题课件新版新人教版
(1)求两次传球后,球恰在B手中的概率; (2)求三次传球后,球恰在A手中的概率.
∵共有 4 种等可能的结果,两次传球后, 球恰在 B 手中的只有 1 种情况,∴两次传球 后,球恰在 B 手中的概率为14.
(2)画树状图得:
∵共有 8 种等可能的结果,三次传球后,球恰在 A 手中的有 2 种情况, ∴三次传球后,球恰在 A 手中的概率为28=14.
摸到相同颜色的小球的概率.(请结合树状图或列表解答)
8.(1)设袋子中白球有 x 个,根据题意,得x+x 1=23,解得 x=2,经检验, x=2 是原分式方程的解,∴袋子中白球有 2 个. (2)画树状图得:
∵共有 9 种等可能的结果,两次都摸到相同颜色的小球的有 5 种情况, ∴两次都摸到相同颜色的小球的概率为59.
13.某市初中毕业女生体育中考考试项目有四项,其中“立定跳
远”“1 000米跑”“篮球运球”为必测项目,另一项从“掷实心
球”“一分钟跳绳”中选一项测试.则甲、乙、丙三位女生从“掷实 心球”或“一分钟跳绳”中选择同一个考试项14目的概率是________.
14.如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行 涂色,每个区域必须涂色并且只能涂一种颜色,请用树状图法求A, C两个区域所涂颜色不相同的概率.
共 8 种情况,完全相同的有 2 种,则 P(完全相同)=28=14. 1
(3)2n-1.
(请用“画树状图”的方法给出分析过程,并求出结果)
15.画树状图为:
共有 8 种等可能的结果数,其中至少有两瓶为红枣口味的结果数为 4, 所以该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率=48=12.
16.甲、乙、丙、丁四名运动员参加4×100米接力赛,如果甲必须 安排在第二棒,那么,这四名运动员在比赛中的接棒顺序有( C )

人教版初中数学九年级上册 用列举法求概率(第2课时) 课件PPT

人教版初中数学九年级上册 用列举法求概率(第2课时) 课件PPT
(1)P(三辆车全部继续前行)=
1

27
(2)P(两车向右,一车向左)=
1
;
9
(3)P(至少两车向左)=
7
27

13
新课讲解
例2 小刚、小军、小丽三人参加课外兴趣小组,他们都计划从航模小
组、科技小组、美术小组中选择一个、
(1)求三人选择同一个兴趣小组的概率;
(2)求三人都选择不同兴趣小组的概率、
14
第 二十五章 概率初步
25.2 用列举法求概率
第2课时 树状图法
1
学习目标
1
用列举法(画树状图法)求事件的概率(重点)、
2
进一步学习分类思想方法,掌握有关数学技能、
2
新课导入
知识回顾
一般地,如果在一次试验中,有n种可能的结果,并
且它们 发生的可能性相等 ,事件A包含其中的 m 种
m
n
结果,那么事件A发生的概率P(A)=

A A
C C
H I
A A
D D
H I
A
E
H
A B B B B B B
E C C D D E E
I H I H I H I
这些结果的可能性相等、
有 2 个元音字母的结果有4 种, 即ACI, ADI, AEH, BEI,


所以P(2 个元音)=
= 、

8
新课讲解
由树状图可以看出,所有可能出现的结果共有 12种,
(1)两次取出的小球上的数字相同;
(2)两次取出的小球上的数字之和大于10、
19
随堂训练
解:根据题意,画出树状图如下
第一个数字

(人教版)九年级数学上册课件:25.2 第2课时 用列表法

(人教版)九年级数学上册课件:25.2 第2课时 用列表法

第2课时 用列表法和树状图法求概率
例2 小颖的爸爸只有一张《十二生肖》的电影票,她和哥哥 两人都很想去观看,哥哥想了一个办法,他拿了8张扑克牌, 将数字为2,3,5,9的四张牌给小颖,将数字为4,6,7,10 的四张牌留给自己,并按如下游戏规则进行:小颖和哥哥从各 自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相 加,如果和为偶数,则小颖去;如果和为奇数,则哥哥去.
红色
蓝色
红色1
(红1,红)
(红1,蓝)
红色2
(红2,红)
(红2,蓝)
蓝色
(蓝,红)
(蓝,蓝)
你认为谁做得对?说说你的理由.
第2课时 用列表法和树状图法求概率
解: 小亮做得对,用列表法或树状图应注意各种情况的可 能性务必相同,左边转盘红色、蓝色区域出现的可能性不相同: 红色的概率为23,蓝色的概率为13,故要把左边转盘的红色区域 等分成 2 份.
第2课时 用列表法和树状图法求概率
第2课时 用列表法和树状图法求概率
[归纳总结] 树状图用于分析具有两个或两个以上因素的 试验.在画树状图时,每一行都表示一个因素.为分析方便,一 般把因素中分支多的安排在上面.
第2课时 用列表法和树状图法求概率
备选探究问题 应用概率设计游戏规则 例1 用图25-2-13所示的转盘进行“配紫色”游戏.(即
4
(4,1) (4,2) (4,3) (4,4)
以上共有 16 种等可能结果. (1)两次摸出的乒乓球标号相同的结果有 4 种,故 P(标 号相同)=146=14. (2)两次摸出的乒乓球的标号的和等于 5 的结果有 4 种, 故 P(标号和等于 5)=146=14.
第2课时 用列表法和树状图法求概率

《用列举法求概率》九年级初三数学上册PPT课件

《用列举法求概率》九年级初三数学上册PPT课件
2.两次结果点数的和是9,
6
36
1.满足条件的可能有6种,P(两次结果点数相同)=
2.满足条件的可能有4种,P(两次结果点数和为9)=
3.至少有一次结果的点数为2。
=
4
36
=
3.满足条件的可能有11种,P(至少一次结果点数为2)=
解:通过题意可以画出如下树状图,可能出现的36种结果,并且它们出现的概率是相同的。
时间:20XX
3.满足条件的可能有2种,即“正反”“反正”
P(两枚硬币正面和反面朝上各一枚)=
2 1
=
4 2
观察这两个问题,抛掷方法改变后,
试验产生的结果一样吗?
情景引入
观察这两个问题,抛掷方法改变后,得到的结果一样吗?为什么?
把一枚质地均匀的骰子投两次,观察向上一面的点数,求下列事件的概率.
1.两次结果的点数相同,
时间:20XX
前言
学习目标
1.用列举法(包括列表、画树状图)计算简单事件发生的概率。
2.能画“两级”树状图求简单事件概率。
3.通过观察列举法的结果是否重复和遗漏。
重点难点
重点:能够运用列表法和树状图法计算简单事件发生的概率。
难点:不重复不遗漏的列出所有可能的情况。
情景引入
【分析】在一次试验中,如果可能出现的结果
I H
I
H
I H
I H
I
A A A A A A B B B B B B
C C D D E E C C D D E E
H I H I H I H I H I H I
① ② ① ② ② ③ 辅 ① 辅 ① ① ②
1
2)全是辅音有2种可能,P(1个元音)=6

人教版九年级上 25.2用列举法求概率(2)(15张ppt)

人教版九年级上  25.2用列举法求概率(2)(15张ppt)
2、列表时要注意顺序、括号及逗号的正 确使用。
(1)点数为2; (2)点数为奇数; (3)点数大于2小于5.
解:(1)点数为2有1种可能,因此P(点数为2)= 1 ; 6
(2)点数为奇数有3种可能,即点数为1,3,5, 因此P(点数为奇数)= 1 ;
2
(3)点数大于2且小于5有2种可能,即点数为3,4, 因此 P(点数大于2且小于5)= 1 .
解:一共有7种等可能的结果.
(1)指向红色有3种结果, P(指向红色)=__73___;
(2)指向红色或黄色一共有5种
5
等可能的结果,P( 指向红或黄)=__7___; (3)不指向红色有4种等可能的结果
4
P( 不指向红色)= ___7___.
例4、同时掷两个质地均匀的骰子,计算 下列事件的概率: (1)两个骰子的点数相同 (2)两个骰子点数之和是9 (3)至少有一个骰子的点数为2
(2)如果随机取出一个球是白球的概 率为1/6,则应往纸箱内加放几个红 球?
2. 为活跃联欢晚会的气氛,组织者设计了
以下转盘游戏:A、B两个带指针的转盘分别
被分成三个面积相等的扇形,转盘A上的数字
分别是1,6,8,转盘B上的数字分别是4,5,
7(两个转盘除表面数字不同外,其他完全相
同)。每次选择2名同学分别拨动A、B两个转
• 25.2. 用列举法求概率(2)
学习目标
1.理解一个事件概率的意义. 2.会在具体情境中求出一个事件的概率.(重点) 3.会进行简单的概率计算及应用.(难点)
复习引入
等可能性事件(古典概形)的两个特征: 1.出现的结果有限多个; 2.各结果发生的可能性相等;
等可能性事件的概率-------列举法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:这里涉及到两个因素,所以先用列表法把 所有可能的结果列举出来,然后再分析每个事件 所包含的可能结果种数即可求出相应事件的概率
版权所有
第 第 一个 二个
1
(1,1)
2
(2,1)
3
(3,1)
4
(4,1)
5
(5,1)
6
(6,1)
1 2 3 4 5 6
(1,2)
(1,3) (1,4) (1,5) (1,6)
第 第 一个 二个
想一想,什么时候用“列表法”方便,什么时候用“树形图”方便?
1
2
3
4
5
6
C H I H
A D I H E I H C I H
B D I H E I
1 2 3 4 5 6
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) A A A A A A B B B B B B (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) C C D D E E C C D D E E H I H I H I H I H I H I (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 当一次试验涉及3个因素或3个以上 的因素时,列表法就不方便了,为不 重复不遗漏地列出所有可能的结果, 通常用 树形图 版权所有
用列举法求概率
(2,2)
(2,3) (2,4) (2,5) (2,6)
(3,2)
(3,3) (3,4) (3,5) (3,6)
(4,2)
(4,3) (4,4) (4,5) (4,6)
(5,2)
(5,3) (5,4) (5,5) (5,6)
(6,2)
(6,3) (6,4) (6,5) (6,6)
解:两个骰子的点数相同(记为事件A) ∴P(A)=6/36=1/6 两个骰子点数之和是9(记为事件B) ∴ P(B)=4/36=1/9 至少有一个骰子的点数为2 (记为事件C) ∴ P(C)=11/36
版权所有
12 满足只有两个元音字母的结果有 41 个, 4 I 则 P(两个元音)= = 12 3 B 满足三个全部为元音字母的结果有1 E 1 个,则 P (三个元音) = I 12 (2)满足全是辅音字母的结果有2 个,则 P(三个辅音)= 2 = 1 12 6
用列举法求概率

A C I H D I H E I H C I H
B D I H
解:由树形图得,所有可能出现的 结果有12个,它们出现的可能性相 等。 E (1)满足只有一个元音字母的结果 5 有5个,则 P(一个元音)=

丙 H
A A A A A A B B B B B C C D D E E C C D D E H I H I H I H I H I H
第一辆车
左 直 右 左
直 直 右 左
右 直 右
第二辆车

第三辆车 左
直 右左 直 右 左 直 右 左 直 右左 直 右 左 直 右 左 直 右左 直 右 左 直 右
左 左 左 左 左 左 左 左 左直 直 直直 直 直 直 直 直 右 右 右右 右 右 右 右 右 左 左 左 直 直 直 右 右 右左 左 左直 直 直 右 右 右 左 左 左直 直 直 右 右 右 左 直 右 左 直 右 左 直 右左 直 右左 直 右 左 直 右 左 直 右左 直 右 左 直 右
当一次试验涉及两个因素时,且可能 出现的结果较多时,为不重复不遗漏地 列出所有可能的结果,通常用列表法
用列举法求概率
练习:经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果 这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下 列事件的概率:(1)三辆车全部继续直行(2)两辆车右转,一辆车左转 (3)至少有两辆车左转
版权所有
用列举法求概率
练习:口袋中一红三黑共4个 小球,⑴第一次从中取出一个小 球后放回,再取第二次,求 “两 次取出的小球都是黑球”的概率. ⑵一次取出两个小球,求“两个小 球都是黑球”的概率。
版权所有
用列举法求概率ຫໍສະໝຸດ 例2、甲口袋中装有2个相同的小球,它们分别 写有字母A和B; 乙口袋中装有3个相同的小 球,它们分别写有字母C、D和E;丙口袋中装 有2个相同的小球,它们分别写有字母H和I。 从3个口袋中各随机地取出1个小球。 (1)取出的3个小球上恰好有1个、2个和3个 元音字母的概率分别是多少?
用列举法求概率
版权所有
用列举法求概率
复习:什么时候用“列表法”方便?
当一次试验涉及两个因素时,且 可能出现的结果较多时,为不重复不 遗漏地列出所有可能的结果,通常用 列表法。
版权所有
例1、同时掷两个质地均匀的骰子,计 算下列事件的概率: (1)两个骰子的点数相同 (2)两个骰子点数之和是9 (3)至少有一个骰子的点数为2
(2)取出的3个小球上全是辅音字母的概率是 多少?
本题中元音字母: A E I 辅音字母: B C D H
版权所有
用列举法求概率
甲口袋中装有2个相同的小球,它们分别写有字母A和B; 乙口袋中装有3个相同的小球,它们 分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I。 从3个口袋中 各随机地取出1个小球。 (1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少? (2)取出的3个小球上全是辅音字母的概率是多少?
解:由树形图得,所有可能出现的结果有27个,它们出现的可能性相等。 (1)三辆车全部继续直行的结果有1个,则 P(三辆车全部继续直行)= (2)两辆车右转,一辆车左转的结果有3个,则
1 27
3 1 P(两辆车右转,一辆车左转)= = 27 9 7 (3)至少有两辆车左转的结果有7个,则 P(至少有两辆车左转)= 27 版权所有
相关文档
最新文档