七年级数学期末复习

合集下载

新人教版七年级数学(下册)期末复习卷及答案

新人教版七年级数学(下册)期末复习卷及答案

新人教版七年级数学(下册)期末复习卷及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.下列图形中,不是轴对称图形的是( )A .B .C .D .3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.已知x 是整数,当30x -取最小值时,x 的值是( )A .5B .6C .7D .86.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.把1aa-根号外的因式移入根号内的结果是()A.a-B.a--C.a D.a-8.6的相反数为()A.-6 B.6 C.16-D.169.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.求满足不等式组()32813 1322x x x x ⎧--≤⎪⎨--⎪⎩<的所有整数解.2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图是一块长方形的空地,长为x 米,宽为120米,现在它分成甲、乙、丙三部分,其中甲和乙是正方形形状.(1)乙地的边长为 ;(用含x 的代数式表示)(2)若设丙地的面积为S 平方米,求出S 与x 的关系式;(3)当200x =时,求S 的值.4.如图,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:车型运费(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、D5、A6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、20°.3、344、-405、40°6、±3三、解答题(本大题共6小题,共72分)1、不等式组的解集:-1≤x <2,整数解为:-1,0,1.2、353、(1)(0)12x -米 (2)(120)(240)S x x =-- (3)32004、略5、(1)40;(2)72;(3)280.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a ≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。

人教版七年级下册数学期末综合复习卷(含答案)

人教版七年级下册数学期末综合复习卷(含答案)

人教版七年级下册数学期末综合复习卷(含答案)一、选择题1.如图所示,B 与2∠是一对( )A .同位角B .内错角C .同旁内角D .对顶角 2.在下列现象中,属于平移的是( ).A .荡秋千运动B .月亮绕地球运动C .操场上红旗的飘动D .教室可移动黑板的左右移动3.如图,小手盖住的点的坐标可能为( )A .()5,4B .()3,4-C .()2,3-D .()4,5-- 4.给出下列 4 个命题:①不是对顶角的两个角不相等;②三角形最大内角不小于 60°;③多边形的外角和小于内角和;④平行于同一直线的两条直线平行.其中真命题的个数是 ( )A .1B .2C .3D .45.如图,点E 在CA 延长线上,DE 、AB 交于F ,且BDE AEF ∠=∠,B C ∠=∠,EFA 比FDC ∠的余角小10︒,P 为线段DC 上一动点,Q 为PC 上一点,且满足FQP QFP ∠=∠,FM 为EFP ∠的平分线.则下列结论:①//AB CD ;②FQ 平分AFP ∠;③140B E ∠+∠=︒;④QFM ∠的角度为定值.其中正确结论的个数有( )A .1个B .2个C .3个D .4个6.下列说法正确的是( )A .0的立方根是0B .0.25的算术平方根是-0.5C .-1000的立方根是10D .49的算术平方根是237.如图,//a b ,160∠=︒,则2∠的大小是( )A .60︒B .80︒C .100︒D .120︒8.如图,在平面直角坐标系中,点A 从原点O 出发,按A →A 1→A 2→A 3→A 4→A 5…依次不断移动,每次移动1个单位长度,则A 2021的坐标为( )A .(673,﹣1)B .(673,1)C .(674,﹣1)D .(674,1)九、填空题9.已知1x -=8,则x 的值是________________.十、填空题10.点P (﹣2,3)关于x 轴的对称点的坐标是_____.十一、填空题11.如图,已知△ABC 是锐角三角形,BE 、CF 分别为∠ABC 与∠ACB 的角平分线,BE 、CF 相交于点O ,若∠A=50°,则∠BOC=_______.十二、填空题12.如图,//AB CD ,点F 在CD 上,点A 在EF 上,则132∠+∠-∠的度数等于______.十三、填空题13.将长方形纸带沿EF 折叠(如图1)交BF 于点G ,再将四边形EDCF 沿BF 折叠,得到四边形GFC D '',EF 与GD '交于点O (如图2),最后将四边形GFC D ''沿直线AE 折叠(如图3),使得A 、E 、Q 、H 四点在同一条直线上,且D ''恰好落在BF 上若在折叠的过程中,//''EG QD ,且226∠=︒,则1∠=________.十四、填空题14.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.十五、填空题15.如图,直角坐标系中A 、B 两点的坐标分别为()3,1-,()2,1,则该坐标系内点C 的坐标为__________.十六、填空题16.如图所示,动点P 在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),…,按这样的运动规律,经过2021次运动后,动点P 的坐标是________.十七、解答题17.(1)计算:34|22|89-+-; (2)解方程组:1312223x y x y ⎧-=-⎪⎨⎪+=⎩. 十八、解答题18.求下列各式中的x 值:(1)(x ﹣1)2=4;(2)(2x +1)3+64=0;(3)x 3﹣3=38. 十九、解答题19.已知,如图所示,BCE ,AFE 是直线,AB //CD ,∠1=∠2,∠3=∠4.求证:AD //BE证明:∵AB //CD (已知)∴∠4=∠ ( )∵∠3=∠4(已知)∴∠3=∠ ( )∵∠1=∠2(已知)∴∠1+∠CAF =∠2+∠CAF ( )即:∠ =∠ .∴∠3=∠ .∴AD //BE ( )二十、解答题20.如图,在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别是()3,2A -,()0,4B ,()0,2C .(1)求出ABC 的面积;(2)平移ABC ,若点A 的对应点2A 的坐标为()0,2-,画出平移后对应的222A B C △,写出2B 坐标.二十一、解答题21.如图①,将由5个边长为1的小正方形拼成的图形沿虚线剪开,将剪开后的图形拼成如图②所示的大正方形,设图②所示的大正方形的边长为a .(1)求a 的值;(2)若a 的整数部分为m ,小数部分为n ,试求式子2m a an -+的值.二十二、解答题22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:2=1.414,3=1.732,5=2.236)二十三、解答题23.如图1,已知直线m ∥n ,AB 是一个平面镜,光线从直线m 上的点O 射出,在平面镜AB 上经点P 反射后,到达直线n 上的点Q .我们称OP 为入射光线,PQ 为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB .(1)如图1,若∠OPQ =82°,求∠OPA 的度数;(2)如图2,若∠AOP =43°,∠BQP =49°,求∠OPA 的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m 和n 上,另一块在两直线之间,四块平面镜构成四边形ABCD ,光线从点O 以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ 和∠ORQ 的数量关系,并说明理由. 二十四、解答题24.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E ,F 点,且90ACB ∠=︒.(1)将直角ABC 如图1位置摆放,如果56AOG ∠=︒,则CEF ∠=________; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ∠+∠=︒,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由;(3)将直角ABC 如图3位置摆放,若135GOC ∠=︒,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究,POQ OPQ ∠∠与PQF ∠的数量关系,请直接写出结论.二十五、解答题25.在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE ∥AC 交AB 于点E .(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由【参考答案】一、选择题1.B解析:B【分析】根据“同位角、内错角、同旁内角”的意义进行判断即可.【详解】解:∠B与∠2是直线DE和直线BC被直线AB所截得到的内错角,故选:B.【点睛】本题考查“同位角、内错角、同旁内角”的意义,理解和掌握“同位角、内错角、同旁内角”的特征是正确判断的前提.2.D【分析】根据平移的性质依次判断,即可得到答案.【详解】A、荡秋千运动是旋转,故本选项错误;B、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室解析:D【分析】根据平移的性质依次判断,即可得到答案.【详解】A、荡秋千运动是旋转,故本选项错误;B 、月亮绕地球运动是旋转,故本选项错误;C 、操场上红旗的飘动不是平移,故本选项错误;D 、教室可移动黑板的左右移动是平移,故本选项正确.故选:D .【点睛】本题考查了平移的知识;解题的关键是熟练掌握平移性质,从而完成求解.3.C【分析】根据各象限内点的坐标特征判断即可.【详解】由图可知,小手盖住的点在第四象限,∴点的横坐标为正数,纵坐标为负数,∴(2,-3)符合.其余都不符合故选:C .【点睛】本题考查了各象限内点的坐标特征,熟记各象限内点的坐标特征是解题的关键. 4.B【分析】①举反例说明即可,②利用三角形内角和定理判断即可,③举反例说明即可,④根据平行线的判定方法判断即可.【详解】解:①如:两直线平行同位角相等,所以不是对顶角的两个角不相等,错误,; ②若三角形最大内角小于60°,则三角形内角和小于180°,所以三角形最大内角不小于60°,正确;③如:三角形的外角和大于内角和,所以多边形的外角和小于内角和,错误; ④平行于同一直线的两条直线平行,正确.故选:B .【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例. 5.D【分析】①由BDE AEF ∠=∠可得AE ∥BD ,进而得到B EAF ∠=∠,结合B C ∠=∠即可得到结论;②由//AB CD 得出AFQ FQP ∠=∠,结合FQP QFP ∠=∠即可得解;③由平行线的性质和内角和定理判断即可;④根据角平分线的性质求解即可;【详解】∵BDE AEF ∠=∠,∴AE ∥BD ,∴B EAF ∠=∠,∵B C ∠=∠,∴EAF C ∠=∠,∴//AB CD ,结论①正确;∵//AB CD ,∴AFQ FQP ∠=∠,∵FQP QFP ∠=∠,∴AFQ QFP ∠=∠,∴FQ 平分AFP ∠,结论②正确;∵//AB CD ,∴EFA FDC ∠=∠,∵EFA 比FDC ∠的余角小10︒,∴40EFA ∠=︒,∵B EAF ∠=∠,180EFA E EAF ∠+∠+∠=︒,∴180140B E EFA ∠+∠=︒-∠=︒,结论③正确;∵FM 为EFP ∠的平分线, ∴111222MFP EFP EFA AFP ∠=∠=∠+∠, ∵AFQ QFP ∠=∠, ∴12QFP AFP ∠=∠, ∴1202QFM MFP QFP EFA ∠=∠-∠=∠=︒,结论④正确; 故正确的结论是①②③④;故答案选D .【点睛】本题主要考查了平行线的判定与性质、余角和补角的性质,准确分析计算是解题的关键. 6.A【分析】根据算术平方根以及立方根的概念逐一进行凑数即可得.【详解】A .0的立方根是0,正确,符合题意;B .0.25的算术平方根是0.5,故B 选项错误,不符合题意;C .-1000的立方根是-10,故C 选项错误,不符合题意;D .49的算术平方根是23,故D 选项错误,不符合题意, 故选A .【点睛】本题考查了算术平方根、立方根,熟练掌握相关概念以及求解方法是解题的关键.7.D【分析】根据同位角相等,两直线平行即可求解.【详解】解:如图:a b,∠1=60°,因为//所以∠3=∠1=60°.因为∠2+∠3=180°,所以∠2=180°-60°=120°.故选:D.【点睛】本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.8.C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7解析:C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7(2,1),…,点A坐标运动规律可以看作每移动6次一个循环,每个循环向右移动2个单位,则2021÷6=336…5,所以,前336次循环运动点A共向右运动336×2=672个单位,且在x轴上,再运动5次即向右移动2个单位,向下移动一个单位,则A2021的坐标是(674,﹣1).故选:C.【点睛】本题考查了平面直角坐标系点的规律,找到规律是解题的关键.九、填空题9.65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】∵=8∴x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键解析:65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】∵8∴x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键.十、填空题10.(﹣2,﹣3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【详解】点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为解析:(﹣2,﹣3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【详解】点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为(﹣2,﹣3).【点睛】本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.十一、填空题11.115°【详解】因为∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BE、CF分别为∠ABC与∠ACB的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB解析:115°【详解】因为∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BE、CF分别为∠ABC与∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)= 12×130°=65°,在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=180°−65°=115°十二、填空题12.180°【分析】根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案【详解】解:∵AB∥解析:180°【分析】根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案【详解】解:∵AB∥CD,∴∠1=∠AFD,∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°,∴∠2+360°-∠1-∠3=180°,∴∠1+∠3-∠2=180°,故答案为:180°【点睛】本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解十三、填空题13.32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到,,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴∥∴∵∥解析:32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到EQ GD ''∥,=QEG EGB ∠∠,根据EG QD ''∥得到=QD G EGB ''∠∠,从而求得=QEG QD G ''∠∠,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴EQ ∥GD ''∴=QEG EGB ∠∠∵EG ∥QD ''=QD G EGB ''∠∠∴=QEG QD G ''∠∠∵226∠=︒,QD C ''''∠=90°∴=QEG QD G ''∠∠=180°-90°-26°=64°由折叠的性质可知:1=QEO ∠∠ ∴1=2QEG ∠1∠=32°故答案为:32°.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.十四、填空题14.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y =3x +2,如果直接输出结果,则3x +2=161,解得:x =53;如果两次才输出结果:则x =(53-2)÷3=17;如果三次才输出结果:则x =(17-2)÷3=5;如果四次才输出结果:则x =(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.十五、填空题15.【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正解析:()1,3-【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正确建立坐标系.十六、填空题16.(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),…,当n 为奇数时,第n 次运动到点(12n -,12n +), 当n 为偶数时,第n 次运动到点(2n ,2n ), 所以经过2021次运动后,动点P 的坐标是(1010,1011),故答案为:(1010,1011).【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标.十七、解答题17.(1);(2).【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【解析:(1)232)11x y =⎧⎨=⎩. 【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【详解】(1)解:原式=222233-= (2)原方程组可化为:32(1)23(2)x y x y -=-⎧⎨+=⎩ , (1)×2−(2)得:−7y =−7,解得:y =1;把y =1代入(1)得:x−3×1=−2,解得:x =1,故方程组的解为:11x y =⎧⎨=⎩ ; 【点睛】本题考查了实数的运算以及解二元一次方程组,熟知掌握实数运算法则及解一元二次方程的加减消元法和代入消元法是解答此题的关键.十八、解答题18.(1)x =3或x =﹣1;(2)x =﹣2.5;(3)x =1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x﹣1=2或x﹣1=﹣2,解得:x=3或x=﹣1;(2)方程整理得:(2x+1)3=﹣64,开立方得:2x+1=﹣4,解得:x=﹣2.5;(3)方程整理得:x3=278,开立方得:x=1.5.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.十九、解答题19.FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行【分析】根据平行线的性质求出∠4=∠BAF=∠3,求出∠DAC=∠BAF,推出∠3=解析:FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行【分析】根据平行线的性质求出∠4=∠BAF=∠3,求出∠DAC=∠BAF,推出∠3=∠BAF,根据平行线的判定推出即可.【详解】证明:∵AB//CD(已知)∴∠4=∠FAB(两直线平行,同位角相等)∵∠3=∠4(已知)∴∠3=∠FAB(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式的性质)即:∠FAB=∠CAD∴∠3=∠CAD∴AD //BE (内错角相等,两直线平行)故填:BAF ,两直线平行,同位角相等,BAF ,等量代换,DAC ,DAC ,内错角相等,两直线平行.【点睛】本题考查了平行线的性质和判定的应用,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然. 二十、解答题20.(1)3;(2)B2(3,0),画图见解析【分析】(1)先求出AC ,BC 的长,然后根据三角形面积公式求解即可;(2)先根据A 和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次解析:(1)3;(2)B 2(3,0),画图见解析【分析】(1)先求出AC ,BC 的长,然后根据三角形面积公式求解即可;(2)先根据A 和A 2的坐标,确定平移方式,然后求出B 2,C 2的坐标,然后描点,顺次连接即可得到答案【详解】解:(1)∵在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别是()3,2A -,()0,4B ,()0,2C ,∴AC =3,BC =2, ∴1=32ABC S AC BC =△; (2)∵A (-3,2),A 2(0,-2),∴A 2是由A 向右平移3个单位得到的,向下平移4个单位长度得到的,∴B 2,C 2的坐标分别为(3,0),(3,-2),如图所示,即为所求.【点睛】本题主要考查了坐标与图形,三角形面积,根据点的坐标确定平移方式,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21.(1);(2)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:,∵a>0,∴;解析:(152)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:25a=,∵a>0,∴5a=(2)∵459,∴253<<,∴m=2,n2,∴2m a an-+=)222=))222=+-45=1【点睛】本题考查了算术平方根的应用,无理数的估算,解题的关键是能估算出的范围.二十二、解答题22.(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3解析:(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出长方形的长和宽和5比较即可得出答案.试题解析:(1)∵正方形的面积是 25 平方分米,∴正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米,则3x•2x=18,x2=3,x1,x2=5,,即这块正方形工料不合格.二十三、解答题23.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QPB.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QP B.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【详解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×12=(180°-82°)×12=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×12=(180°-92°)×1244°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.二十四、解答题24.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.【详解】解:(1)如图,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如图,作CP//a,则CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ =∠OPN +∠NPQ =∠GOP +∠PQF ,∵∠GOC =∠GOP +∠POQ =135°,∴∠GOP =135°-∠POQ ,∴∠OPQ =135°-∠POQ +∠PQF .如图,当点P 在GF 延长线上时,作PN //a ,连接PQ ,OP ,则PN //a //b ,∴∠GOP =∠OPN ,∠PQF =∠NPQ ,∵∠OPN =∠OPQ +∠QPN ,∴∠GOP =∠OPQ +∠PQF ,∴135°-∠POQ =∠OPQ +∠PQF .【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.二十五、解答题25.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE ∥AC ,∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒ 4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠; 理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠ 1902B =︒+∠; (2)如图2所示:1902AFD B ∠=︒-∠;理由如下: 由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠, ∵∠AHF=∠B+∠BDH ,∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH =︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠ ()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠ 1902B =︒-∠. 【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.。

初中七年级数学上册期末专项复习4套含答案

初中七年级数学上册期末专项复习4套含答案

A. 2.2 104
B. 22 103
C. 2.2 103
8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( )
D. 0.22 105
A.它精确到千分位
B.它精确到0.01
C.它精确到万位
D.它精确到十位
9. 1 3 5 2 013 2 015 2 4 6 2 014 2 016 = ( )
么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?
23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大 约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科 学记数法表示)
【解析】1 3 5 2013 2015 2 4 6 2014 2016 1 2 3 4 2015 2016
1 1 1 1008 .故选D.
10.【答案】B
二、
11.【答案】 7 或 9 12.【答案】713.【答案】 2 , 4 2 , 0.83 3.7 , 2
(2)计算:①
1 1 2
2
1
3
1 3
4
2
019
1
2
020

② 1 1 1
1

13 35 5 7
2 017 2 019
期末专项复习—有理数
答案解析
一、
1.【答案】C 【解析】由题意,得 8℃ 表示下降 8℃ .故选C.
2.【答案】A【解析】 1 的相反数是 1 .故选A.
2020
2020
(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.

七年级上期数学期末计算题复习

七年级上期数学期末计算题复习

计算巩固
1.(1)计算:100÷22﹣×[3﹣(﹣3)2];(2)计算﹣14﹣()×12.
2.(1)若a=﹣2,b=﹣1,c=,先化简再求值:3a2b﹣[3a2b﹣(2abc﹣a2c)﹣4a2c]﹣abc.
3.(10分)(1)解方程:3(20+x)+5=2(5x+1);(2)解方程:x﹣=1+.
4.已知:a是最大的负整数,b是最小的正整数,且c=a+b,请回答下列问题:
(1)请直接写出a,b,c的值:a=;b=;c=;
(2)a,b,c在数轴上所对应的点分别为A,B,C,请在如图的数轴上表示出A,B,C三点;
(3)在(2)的情况下.点A,B,C开始在数轴上运动,若点A,点C以每秒1个单位的速度向左运动,同时,点B以每秒5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,请问:AB﹣BC的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出AB﹣BC的值.。

第1章三角形期末复习训练2022-2023七年级上学期鲁教版数学

第1章三角形期末复习训练2022-2023七年级上学期鲁教版数学

2022-2023七年级上学期鲁教版数学(第1章三角形)期末复习训练一、选择题1.如图,在△ABC中,画出AC边上的高,正确的图形是( )A. B.C. D.2.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A. AB=DEB. ∠A=∠DC. AC=DFD. AC//FD3.现有以下说法:①等边三角形是等腰三角形;②三角形的两边之差大于第三边;③三角形按边分类可分为不等边三角形、等腰三角形、等边三角形;④三角形按角分类可分为锐角三角形、直角三角形和钝角三角形.正确的有( )A. 1个B. 2个C. 3个D. 4个4.下列说法:(1)周长相等的两个三角形是全等三角形;(2)周长相等的两个圆是全等图形;(3)如果两个三角形是全等三角形,那么这两个三角形的面积相等;(4)所有的正方形是全等图形;(5)在△ABC中,当∠A=12∠C,∠B=13∠C时,这个三角形是直角三角形.正确的有( )A. 1个B. 2个C. 3个D. 4个5.如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A. ∠ABC=∠DCBB. AB=DCC. AC=DBD. ∠A=∠D6.如图,AD是△ABC的中线,点E是AD的中点,若△ABC的面积为24cm2,则△CDE的面积为( )A. 8cm2B. 6cm2C. 4cm2D. 3cm27.下列叙述中,正确的是.( )A. 三角形一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的射线,叫做三角形的角平分线B. 连接三角形一个顶点和它对边中点的直线,叫做三角形的中线C. 从三角形一个顶点向它的对边画垂线,这条垂线叫做三角形的高D. 三角形的三条中线总在三角形的内部8.根据下列条件,不能画出唯一△ABC的是( )A. AB=5,BC=3,AC=6B. AB=4,BC=3,∠A=50°C. ∠A=50°,∠B=60°,AB=4D. AB=10,BC=20,∠B=80°9.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是( )①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.A. ①②③④B. ①②③C. ②④D. ①③10.为了测量池塘两侧A,B两点间的距离,在地面上找一点C,连接AC,BC,使∠ACB=90°,然后在BC的延长线上确定点D,使CD=BC,得到△ABC≌△ADC,通过测量AD的长,得AB 的长.那么△ABC≌△ADC的理由是( )A. SASB. AASC. ASAD. SSS二、填空题11.如图,Rt△ABC和Rt△EDF中,BC//DF,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.12.如图,在△ABC中,已知点D,E,F分别为边AC,BD,CE的中点,且阴影部分图形面积等于3平方厘米,则△ABC的面积为_________平方厘米13.如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是秒.14.如图,在锐角三角形ABC中,AB=4,△ABC的面积为10,BD平分∠ABC,若M、N分别是BD、BC上的动点,则CM+MN的最小值为______.15.如图,已知线段a,b,c,求作△ABC,使BC=a,AC=b,AB=c,下面作法中: ①分别以B,C为圆心,c,b为半径作弧,两弧交于点A; ②作线段BC=a; ③连接AB,AC,△ABC 为所求作的三角形.正确顺序应为(填序号).16.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,EF=6,BG=3,DH=4,计算图中实线所围成的图形的面积S是.三、解答题17.请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:如图,∠α,直线l及l上两点A,B.求作:△ABC,使点C在直线l的上方,且∠ABC=90∘,∠BAC=∠α.18.如图,在△ABC中,D是边BC上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:∠AEB=∠DEB;(2)若∠A=100∘,∠C=50∘,求∠AEB的度数.19.如图,在△ABC中,∠A=60°,角平分线BD,CE交于点O.(1)求∠BOC的度数;(2)点F在BC上,BF=BE,试说明:△COD≌△COF;(3)BE,CD,BC三条线段之间有怎样的数量关系?请直接写出结果.20.如图,在△ABC中,∠BAD=∠CAD.(1)如图,若DE⊥AB,DF⊥AC,垂足分别为E,F,请你说明DE=DF;(2)如图 ②,若G是AD上一点(A、D除外),GE⊥AB,GF⊥AC,垂足分别为E,F,请问:GE=GF成立吗?并说明理由;(3)如图 ③,若(2)中GE,GF不垂直于AB,AC,要使GE=GF,需添加什么条件?并在你添加的条件下说明GE=GF.21.如图,BD、CE分别是△ABC的边AC、AB上的高,P在BD的延长线上,且BP=AC,点Q 在CE上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ.22.在△ABC中,AB=AC,点D是BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,若∠BAC=90°,①试说明:△ABD≌△ACE;②求∠BCE的度数;(2)设∠BAC=α,∠BCE=β.如图2,则α,β之间有怎样的数量关系?请直接写出你的结论.答案D C B B B B D B B A11. AB=ED(答案不唯一)12. 1213. 414. 515. ② ① ③16. 5017.略18.(1)证明:∵BE平分∠ABC,∴∠ABE=∠DBE.在△ABE和△DBE中,{AB=DB,∠ABE=∠DBE, BE=BE,∴△ABE≌△DBE(SAS),∴∠AEB=∠DEB.(2)∵BE平分∠ABC,∴∠ABE=∠DBE,∵∠A=100∘,∠C=50∘,∴∠ABC=30∘,∴∠ABE=15∘,∴∠AEB=180∘−∠A−∠ABE=180∘−100∘−15∘=65∘.19.解:(1)在△ABC中,∠A=60°,BD和CE分别平分∠ABC和∠ACB,所以∠OBC+∠OCB=12(∠ABC+∠ACB)=12×(180∘−60∘)=60∘.所以∠BOC=180°−60°=120°.(2)因为BD平分∠ABC,所以∠EBO=∠FBO.在△OBE和△OBF中,{OB=OB,∠OBE=∠OBF, BE=BF,所以△OBE≌△OBF(SAS).所以∠BOE=∠BOF.因为∠BOC=120°,所以∠BOE=60°.所以∠BOF=∠COF=∠COD=60°.在△COD和△COF中,{∠COD=∠COF, OC=OC,∠OCD=∠OCF,所以△COD≌△COF(ASA).(3)BC=BE+CD.20.(1)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD,在△AED和△AFD中,{∠DAE=∠DAF,∠AED=∠AFD, AD=AD,∴△AED≌△AFD,∴DE=DF.(2)GE=GF成立.理由如下:∵GE⊥AB,GF⊥AC,∴∠AEG=∠AFG,在△AEG和△AFG中,{∠EAG=∠FAG,∠AEG=∠AFG, AG=AG,∴△AEG≌△AFG,∴GE=GF.(3)(答案不唯一)添加AE=AF,理由如下:在△AEG和△AFG中,{AE=AF,∠EAG=∠FAG, AG=AG,∴△AEG≌△AFG,∴GE=GF.21.证明:(1)∵BD、CE分别是△ABC的边AC、AB上的高,∴BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∴∠ABD+∠BAC=90°,∠ACE+∠BAC=90°,∴∠ABD=∠ACE,在△ABP和△QCA中,{BP=AC,∠ABP=∠ACQ, AB=CQ,∴△ABP≌△QCA(SAS),∴AP=AQ.(2)由(1)知△ABP≌△QCA,∴∠P=∠CAQ,∵BD⊥AC,∴∠P+∠CAP=90°,∴∠CAQ+∠CAP=90°,即∠QAP=90°,∴AP⊥AQ.22.解:(1)①因为∠BAC=∠DAE,所以∠BAC−∠DAC=∠DAE−∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,{AB=AC,∠BAD=∠CAE, AD=AE,所以△ABD≌△ACE(SAS).②由①可得△ABD≌△ACE,所以∠B=∠ACE.所以∠B+∠ACB=∠ACE+∠ACB.所以∠BCE=∠B+∠ACB.因为∠B+∠ACB=180°−∠BAC=90°,所以∠BCE=90°.(2)α+β=180°,理由:因为∠BAC=∠DAE,所以∠BAC−∠DAC=∠DAE−∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,{AB=AC,∠BAD=∠CAE, AD=AE,所以△ABD≌△ACE(SAS).所以∠B=∠ACE.所以∠B+∠ACB=∠ACE+∠ACB.所以∠B+∠ACB=β.因为α+∠B+∠ACB=180°,所以α+β=180°.。

人教版初中数学七年级上期末复习专题卷(1-4及答案

人教版初中数学七年级上期末复习专题卷(1-4及答案

第一学期七年级数学期末复习专题有理数姓名:_______________班级:_______________得分:_______________一选择题:1.如果+20%表示增加20%,那么﹣6%表示()A.增加14%B.增加6%C.减少6%D.减少26%2.一种零件的直径尺寸在图纸上是30±(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过()A.0.03mmB.0.02mmC.30.03mmD.29.98mm3.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如:9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()A.3B.-3C.-2.5D.-7.452.010010001…中,有理数有()4.在-,3.1415,0,-0.333…,-,-,A.2个B.3个C.4个D.5个5.10月7日,铁路局“十一”黄金周运输收官,累计发送旅客640万人,640万用科学计数法表示为()A.6.4×102B.640×104C.6.4×106D.6.4×1056.若向北走27米记为-27米,则向南走34米记为()A.34米B.+7米C.61米D.+34米7.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,相反数最大是()A.aB.bC.cD.d8.比较,,的大小,结果正确的是()A. B.C. D.9.如果,则x的取值范围是()A.x>0B.x≥0C.x≤0D.x<010.已知ab≠0,则+的值不可能的是()A.0B.1C.2D.﹣211.如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若+=3,则原点是().A.M或NB.M或RC.N或PD.P或R12.一只蚂蚁从数轴上A点出发爬了4个单位长度到了表示-1的点B,则点A所表示的数是()A.-3或5B.-5或3C.-5D.313.已知=3,=4,且x>y,则2x-y的值为()A.+2B.±2C.+10D.-2或+1014.有理数a,b,c在数轴上的位置如图所示,则()A.-2bB.0C.2cD.2c-2b15.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005B.﹣2010C.0D.﹣116.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a、b的值分别为()A.10、91B.12、91C.10、95D.12、9517.下列是用火柴棒拼成的一组图形,第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第②个图形中有18根火柴棒,…依此类推,则第6个图形中火柴棒根数是()A.60B.61C.62D.6318.a为有理数,定义运算符号“※”:当a>-2时,※a=-a;当a<-2时,※a=a;当a=-2时,※a=0.根据这种运算,则※[4+※(2-5)]的值为()A.1B.-1C.7D.-719.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳各计算结果中的个位数字的规律,猜测32017+1的个位数字是()A.0B.2C.4D.820.计算(﹣2)2016+(﹣2)2015的结果是()A.﹣1B.﹣22015C.22015D.﹣22016二填空题:21.把下面的有理数填在相应的大括号里:15,-,0,-30,0.15,-128,,+20,-2.6.(1)非负数集合:{,…};(2)负数集合:{,…};(3)正整数集合:{,…};(4)负分数集合:{,…}.22.近似数3.06亿精确到___________位.23.按照如图所示的操作步骤,若输入的值为3,则输出的值为________.24.已知(x﹣2)2+|y+4|=0,则2x+y=_______.25.绝对值不大于5的整数有个.26.小韦与同学一起玩“24点”扑克牌游戏,即从一幅扑克牌(去掉大、小王)中任意抽出4张,根据牌面上的数字进行有理数混合运算(每张牌只能用一次)使运算结果等于24或-24,小韦抽得四张牌如图,“哇!我得到24点了!”他的算法是__27.有理数在数轴上的对应点如图所示,化简:.28.观察下列各题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52…根据上面各式的规律,请直接写出1+3+5+7+9+…+99=________.29.观察下列等式:,,,…则=.(直接填结果,用含n的代数式表示,n是正整数,且n≥1)30.观察下列等式:解答下面的问题:21+22+23+24+25+26+…+22015的末位数字是三计算题:31.32.33.34.35.小丽有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(3)从中取出2张卡片,利用这2张卡片上数字进行某种运算,得到一个最大的数,如何抽取?最大的数是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).37.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照下列图象并思考,完成下列各题:(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_______,A,B两点间的距离是________;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是_______,A,B两点间的距离为________;(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么,请你求出终点B表示什么数?A,B两点间的距离为多少?38.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=.(2)若|x﹣2|=5,则x=.(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是.39.阅读材料:求1+2+22+23+24+…+2200的值.解:设S=1+2+22+23+24+…+2199+2200,将等式两边同时乘以2得2S=2+22+23+24+25+…+2200+2201,将下式减去上式得2S-S=2201-1,即S=2201-1,即1+2+22+23+24+…+2200=2201-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n.(其中n为正整数)40.已知数轴上有A、B、C三个点,分别表示有理数﹣24,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=,PC=;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.第一学期七年级数学期末复习专题有理数参考答案1、C2、C3、B4、D5、C6、D7、A8、D9、C10、B11、B12、B13、D14、B15、A16、A17、D18、B19、C20、C21、(1)15,0,0.15,,+20(2)-,-30,-128,-2.6(3)15,+20(4)-,-2.622、百万;23、5524、0.25、1126、23(1+2)__.27、-b+c+a;28、502.29、30、4.31、32、.33、;34、原式=-1×[-32-9+]-2.5=-1×(-32-9+2.5)-2.5=+32+9-2.5-2.5=36.35、(1)抽取;(2)抽取;(3)抽取;(4)答案不唯一;例如抽取-3,-5,3,4;36、37、(1)4_7__(2)1_2__(3)—92__88__(4)m+n-p_38、【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.39、解:(1)211-1(2)设S=1+3+32+33+34+…+3n ,将等式两边同乘以3得3S=3+32+33+34+35+…+3n+1,所以3S-S=3n+1-1,即2S=3n+1-1,所以S=2131-+n ,即1+3+32+33+34+ (3)=2131-+n 40、【解答】解:(1)∵动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒,∴P 到点A 的距离为:PA=t,P 到点C 的距离为:PC=(24+10)﹣t=34﹣t;故答案为:t,34﹣t;(2)当P 点在Q 点右侧,且Q 点还没有追上P 点时,3t+2=14+t 解得:t=6,∴此时点P 表示的数为﹣4,当P 点在Q 点左侧,且Q 点追上P 点后,相距2个单位,3t﹣2=14+t 解得:t=8,∴此时点P 表示的数为﹣2,当Q 点到达C 点后,当P 点在Q 点左侧时,14+t+2+3t﹣34=34解得:t=13,∴此时点P 表示的数为3,当Q 点到达C 点后,当P 点在Q 点右侧时,14+t﹣2+3t﹣34=34解得:t=14,∴此时点P 表示的数为4,综上所述:点P 表示的数为﹣4,﹣2,3,4.第一学期七年级数学期末复习专题整式的加减姓名:_______________班级:_______________得分:_______________一选择题:1.下列说法中错误的是()A.-x2y的系数是-B.0是单项式C.xy的次数是1D.-x是一次单项式2.下列说法:①最大的负整数是;②的倒数是;③若互为相反数,则;④=;⑤单项式的系数是-2;⑥多项式是关于x,y的三次多项式。

人教版中学七年级下册数学期末复习题含答案

人教版中学七年级下册数学期末复习题含答案

人教版中学七年级下册数学期末复习题含答案一、选择题1.如图,直线a ,b 被直线c 所截,∠1的同旁内角是( )A .∠2B .∠3C .∠4D .∠52.下列各组图形可以通过平移互相得到的是( )A .B .C .D .3.在平面直角坐标系中,下列各点在第二象限的是( )A .()1,10B .()6,4-C .()0,1-D .()3,7- 4.下列两个命题:①过一点有且只有一条直线和已知直线平行;②垂直于同一条直线的两条直线互相平行,其中判断正确的是( )A .①②都对B .①对②错C .①②都错D .①错②对 5.如图,直线////AB CD EF ,点O 在直线AB 上,下列结论正确的是( )A .12390∠+∠-∠=︒B .12390∠+∠+∠=︒C .321180∠+∠-∠=︒D .132180∠+∠-∠=︒6.下列说法错误的是( )A .3的平方根是3B .﹣1的立方根是﹣1C .0.1是0.01的一个平方根D .算术平方根是本身的数只有0和1 7.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( )A .90°B .75°C .65°D .60°8.如图,在平面直角坐标系xOy 中,点()1,0P .点P 第1次向上跳动1个单位至点()11,1P ,紧接着第2次向左跳动2个单位至点()21,1P -,第3次向上跳动1个单位至点3P ,第4次向右跳动3个单位至点4P ,第5次又向上跳动1个单位至点5P ,第6次向左跳动4个单位至点6P ,…….照此规律,点P 第200次跳动至点200P 的坐标是( )A .()51,100B .()26,50C .()26,50-D .()51,100-九、填空题9.若a 、b 为实数,且满足|a ﹣2|+3b -=0,则a ﹣b 的立方根为_____.十、填空题10.若点()3,P m 与(),6Q n -关于x 轴对称,则2m n -=____________________________. 十一、填空题11.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.十二、填空题12.如图将一张长方形纸片沿EF 折叠后,点A 、B 分别落在A ′、B ′的位置,如果∠2=70°,则∠1的度数是___________.十三、填空题13.将一条长方形纸带按如图方式折叠,若1108∠=︒,则2∠的度数为________°.十四、填空题14.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.十五、填空题15.点31,25()P m m +-到两坐标轴的距离相等,则m =________.十六、填空题16.如图,在平面直角坐标系中,边长为1的等边△OA 1A 2的一条边OA 2在x 的正半轴上,O 为坐标原点;将△OA 1A 2沿x 轴正方向依次向右移动2个单位,依次得到△A 3A 4A 5,△A 6A 7A 8…,则顶点A 2021的坐标为 __________________.十七、解答题17.计算:(1)|23-|+22;(2)22312127(6)(5)+----十八、解答题18.已知a +b =5,ab =2,求下列各式的值.(1)a 2+b 2;(2)(a ﹣b )2.十九、解答题19.如图,已知∠1+∠AFE =180°,∠A =∠2,求证:∠A=∠C +∠AFC证明:∵ ∠1+∠AFE =180°∴ CD ∥EF ( , ) ∵∠A=∠2 ∴( ) ( , ) ∴ AB ∥CD ∥EF ( , )∴ ∠A = ,∠C = ,( , )∵ ∠AFE =∠EFC +∠AFC ,∴ = .二十、解答题20.将△ABO 向右平移4个单位,再向下平移1个单位,得到三角形A ′B ′O ′(1)请画出平移后的三角形A ′B ′O ′.(2)写出点A ′、O ′的坐标.二十一、解答题21.例如∵479.<<即273<<,∴7的整数部分为2,小数部分为72-,仿照上例回答下列问题;(1)17介于连续的两个整数a 和b 之间,且a <b ,那么a = ,b = ; (2)x 是172+的小数部分,y 是171-的整数部分,求x = ,y = ; (3)求(17)y x -的平方根.二十二、解答题22.如图1,用两个边长相同的小正方形拼成一个大的正方形.(1)如图2,若正方形纸片的面积为12dm ,则此正方形的对角线AC 的长为 dm . (2)如图3,若正方形的面积为162cm ,李明同学想沿这块正方形边的方向裁出一块面积为122cm 的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由.二十三、解答题23.问题情境:如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°.求∠APC 的度数.小明的思路是:过P 作PE ∥AB ,通过平行线性质,可得∠APC =∠APE +∠CPE =50°+60°=110°.问题解决:(1)如图2,AB ∥CD ,直线l 分别与AB 、CD 交于点M 、N ,点P 在直线I 上运动,当点P 在线段MN 上运动时(不与点M 、N 重合),∠PAB =α,∠PCD =β,判断∠APC 、α、β之间的数量关系并说明理由;(2)在(1)的条件下,如果点P 在线段MN 或NM 的延长线上运动时.请直接写出∠APC 、α、B 之间的数量关系;(3)如图3,AB ∥CD ,点P 是AB 、CD 之间的一点(点P 在点A 、C 右侧),连接PA 、PC ,∠BAP 和∠DCP 的平分线交于点Q .若∠APC =116°,请结合(2)中的规律,求∠AQC 的度数.二十四、解答题24.如图1,点O 在MN 上,90,,AOB AOM m OCQ n ∠=︒∠=︒∠=︒,射线OB 交PQ 于点C ,已知m ,n 满足:220(70)0m n -+-=.(1)试说明MN //PQ 的理由;(2)如图2,OD 平分AON ∠,CF 平分OCQ ∠,直线OD 、CF 交于点E ,则OEF ∠=______︒;(3)若将AOB ∠绕点O 逆时针旋转()090αα<<︒,其余条件都不变,在旋转过程中,OEF ∠的度数是否发生变化?请说明你的结论.二十五、解答题25.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM =30°,∠OCD =45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN 与CD相交于点E,求∠CEN的度数;(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果)【参考答案】一、选择题1.A解析:A【分析】根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.【详解】解:直线a,b被直线c所截,∠1的同旁内角是∠2,故选:A.【点睛】本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键,注意数形结合.2.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.3.D【分析】根据在第二象限的点的特征进行判断,即可得到答案.【详解】解:∵第二象限的点特征是横坐标小于零,纵坐标大于零,∴点(-3,7)在第二象限,故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】根据平行公理及其推论判断即可.【详解】解:①过直线外一点有且只有一条直线和已知直线平行,故错误;②在同一平面内,垂直于同一条直线的两条直线互相平行,故错误;故选:C.【点睛】本题主要考查了命题与定理,平行公理及其推论,属于基础知识,要牢牢掌握.5.D【分析】根据两直线平行,同旁内角互补可得∠1+∠AOF=180°,再根据两直线平行,内错角相等可得∠3=∠AOC,而通过∠AOF=∠AOC-∠2,整理可得∠1+∠3-∠2=180°.【详解】解:∵AB∥EF,∴∠1+∠AOF=180°,∵CD∥AB,∴∠3=∠AOC,又∵∠AOF=∠AOC−∠2=∠3-∠2,∴∠1+∠3-∠2=180°.故选:D.【点睛】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.6.A【分析】根据平方根、立方根、算术平方根的概念进行判断即可.【详解】解:A、3的平方根是±3,原说法错误,故此选项符合题意;B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.故选:A.【点睛】本题考查了平方根、立方根、算术平方根的概念,掌握平方根、立方根、算术平方根的概念是解题的关键.7.B【分析】根据平行线的性质可得∠FDC=∠F=30°,然后根据三角形外角的性质可得结果.【详解】解:如图,∵EF∥BC,∴∠FDC=∠F=30°,∴∠1=∠FDC+∠C=30°+45°=75°,故选:B.【点睛】本题主要考查了平行线的性质以及三角形外角的性质,熟知三角板各个角的度数是解本题的关键.8.A【分析】设第n次跳动至点Pn,根据部分点An坐标的变化找出变化规律P4n(n + 1,2n),Pn+1(n + 1,2n + 1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2解析:A【分析】设第n次跳动至点P n,根据部分点A n坐标的变化找出变化规律P4n(n + 1,2n),P n+1(n + 1,2n + 1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2n +2),依此规律结合200 = 50 ×4,即可得出点P200的坐标.【详解】解:设第n次跳动至点P n,观察发现:P(1,0),P1(1,1),P2(-1,1),P3(-1,2),P4(2,2),P5(2,3),P6(-2,3),P7(-2,4),P8(3,4),P9(3,5),...,∴P4n+1(n + 1,2n +1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2n+2),P4n(n + 1,2n),(n为自然数),∵200 = 50 × 4,∴P200(50+1 ,50×2),即(51,100).故选A.【点睛】本题考查了规律型中点的坐标,解题的关键是准确找到点的坐标变化规律.九、填空题9.-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根.【详解】解:∵|a﹣2|+=0,|a﹣2|≥0,≥0∴a﹣2=0,3﹣b=0∴a=2,b=3∴,故答案为:解析:-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根.【详解】解:∵|a﹣0,|a﹣2|≥0∴a﹣2=0,3﹣b=0∴a=2,b=3∴==-,1故答案为:﹣1.【点睛】本题主要考查了非负数的性质,立方根的性质,关键是根据“两个非负数和为0,则这两个数都为0”列出方程求得a、b的值.十、填空题10.0【分析】根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】∵点与关于轴对称∴∴,故答案为:0.【点睛】本题主要考查了平面直角坐标系内点解析:0【分析】根据平面直角坐标系中关于x 轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】∵点(3,)P m 与(,6)Q n -关于x 轴对称∴36n m =-=-,∴262(3)0m n -=--⨯-=,故答案为:0.【点睛】本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键.十一、填空题11.;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE 中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.解析:5︒;【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.十二、填空题12.55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.十三、填空题13.36【分析】根据平行线的性质、折叠的性质即可解决.【详解】∵AB∥CD,如图∴∠GEC=∠1=108゜由折叠的性质可得:∠2=∠FED∵∠2+∠FED+∠GEC=180゜∴∠2=解析:36【分析】根据平行线的性质、折叠的性质即可解决.【详解】∵AB ∥CD ,如图∴∠GEC =∠1=108゜由折叠的性质可得:∠2=∠FED∵∠2+∠FED +∠GEC =180゜∴∠2=11(180)(180108)3622GEC ︒-∠=⨯︒-︒=︒ 故答案为:36【点睛】本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 十四、填空题14.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数.故解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数p .故答案为:p .【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答. 十五、填空题15.或.【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点到两坐标轴的距离相等,∴,或,解得,或,故答案为:或.【点睛】本题考查了点到坐标轴的距解析:6-或45. 【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点31,25()P m m +-到两坐标轴的距离相等, ∴31=25m m +-,31=25m m +-或31=(25)m m +--,解得,=6m -或4=5m , 故答案为:6-或45. 【点睛】本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值. 十六、填空题16.(1346.5,).【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标.【详解】解:是等边三角形,边长为1,,,,…观察图形可知,3个点一个循解析:(1346.5. 【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A 2021的坐标.【详解】解:12OA A 是等边三角形,边长为11A y ∴==112A ⎛ ⎝⎭,2(1,0)A ,3(2,0)A ,45(2A ,5(3,0)A 6(4,0)A … 观察图形可知,3个点一个循环,每个循环向右移动2个单位2021÷3=673…1,673×2=1346,故顶点A 2021的坐标是(1346.5故答案为:(1346.5 【点睛】本题考查了平面直角坐标系点的规律,等边三角形的性质,勾股定理,找到规律是解题的关键. 十七、解答题17.(1)(2)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解.【详解】(1)||+2==(2)==3.【点睛】此题主要考查实数与二次根式的运算解析:(12)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解.【详解】(1)-+(22(=11365+--=3.【点睛】此题主要考查实数与二次根式的运算,解题的关键是熟知其运算法则.十八、解答题18.(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b )2﹣2ab ,即可求解; (1)根据完全平方公式变形,得到(a ﹣b )2=a2+b2-2ab ,即可求解.【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a 2+b 2=(a +b )2﹣2ab ,即可求解;(1)根据完全平方公式变形,得到(a ﹣b )2=a 2+b 2-2ab ,即可求解.【详解】解:(1)∵a +b =5,ab =2,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×2=21;(2))∵a +b =5,ab =2,∴(a ﹣b )2=a 2+b 2-2ab =21-2×2=17.【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a ab b +=±+ 及其变形公式是解题的关键.十九、解答题19.同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C+∠AFC .【分析】根据同旁解析:同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C +∠AFC .【分析】根据同旁内角互补,两直线平行可得 CD ∥EF ,根据∠A=∠2利用同位角相等,两直线平行,AB ∥CD ,根据平行同一直线的两条直线平行可得AB ∥CD ∥EF 根据平行线的性质可得∠A =∠AFE ,∠C =∠EFC ,根据角的和可得 ∠AFE =∠EFC +∠AFC 即可.证明:∵ ∠1+∠AFE =180°∴ CD ∥EF (同旁内角互补,两直线平行), ∵∠A=∠2 ,∴( AB ∥CD ) (同位角相等,两直线平行),∴ AB ∥CD ∥EF (两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A = ∠AFE ,∠C = ∠EFC ,(两直线平行,内错角相等)∵ ∠AFE =∠EFC +∠AFC ,∴ ∠A = ∠C +∠AFC .故答案为同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C +∠AFC .【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键. 二十、解答题20.(1)见解析;(2)A′,O′【分析】(1)分别作出A ,B ,O 的对应点A′,B′,O′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A′B′O′即为所求作.(2)A′(解析:(1)见解析;(2)A ′()2,1,O ′()41-,【分析】(1)分别作出A ,B ,O 的对应点A ′,B ′,O ′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A ′B ′O ′即为所求作.(2)A ′(2,1),O ′(4,−1).本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型. 二十一、解答题21.(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出.【详解】解:(1),,,,故答案是:,;(解析:(1)4a =,5b =;(2)4,3x y =;(3)8±【分析】(1a 、b 的值;(221的范围,即可求出x 、y 的值,代入求出即可;(3)将4,3x y ==代入)y x 中即可求出.【详解】解:(1)1617<45∴<<,4a ∴=,5b =,故答案是:4a =,5b =;(2)4175<,627∴<,314<<,2264-,1的整数部分为:3;故答案是:4,3x y =;(3)174,3x y ==,3)464y x ∴==,)y x ∴的平方根为:8=±.【点睛】本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出45<.二十二、解答题22.(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.【详解】解:解析:(1)2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.【详解】解:(1)∵正方形纸片的面积为21dm ,∴正方形的边长1AB BC dm ==, ∴AC =.(2)不能;根据题意设长方形的长和宽分别为3xcm 和2xcm .∴长方形面积为:2?312x x =,解得:x =∴长方形的长边为.∵4,∴他不能裁出.【点睛】本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键.二十三、解答题23.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)过点P 作PE ∥AB ,根据平行线的判定与性质即可求解;(2)分点P 在线段MN 或NM 的延长线解析:(1)∠APC =α+β,理由见解析;(2)∠APC =α-β或∠APC =β-α;(3)58°【分析】(1)过点P 作PE ∥AB ,根据平行线的判定与性质即可求解;(2)分点P 在线段MN 或NM 的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解.【详解】解:(1)如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC =β-α;(3)如图3,过点P ,Q 分别作PE ∥AB ,QF ∥AB ,∵AB ∥CD ,∴AB ∥QF ∥PE ∥CD ,∴∠BAP =∠APE ,∠PCD =∠EPC ,∵∠APC =116°,∴∠BAP +∠PCD =116°,∵AQ 平分∠BAP ,CQ 平分∠PCD ,∴∠BAQ =12∠BAP ,∠DCQ =12∠PCD ,∴∠BAQ +∠DCQ =12(∠BAP +∠PCD )=58°,∵AB ∥QF ∥CD ,∴∠BAQ =∠AQF ,∠DCQ =∠CQF ,∴∠AQF +∠CQF =∠BAQ +∠DCQ =58°,∴∠AQC =58°.【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键. 二十四、解答题24.(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m 及n ,从而可求得∠MOC=∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也 解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由220(70)0m n -+-=可求得m 及n ,从而可求得∠MOC =∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也易得∠COE 的度数,由三角形外角的性质即可求得∠OEF 的度数;(3)不变,分三种情况讨论即可.【详解】(1)∵200m -≥,2(70)0n -≥,且220(70)0m n -+-= ∴200m -=,2(70)0n -=∴m =20,n =70∴∠MOC =90゜-∠AOM =70゜∴∠MOC =∠OCQ =70゜∴MN ∥PQ(2)∵∠AON =180゜-∠AOM =160゜又∵OD 平分AON ∠,CF 平分OCQ ∠ ∴1802DON AON ∠=∠=︒,1352OCF OCQ ∠=∠=︒∵80MOE DON ∠=∠=︒∴10COE MOE MOC ∠=∠-∠=︒∴∠OEF =∠OCF +∠COE =35゜+10゜=45゜故答案为:45.(3)不变,理由如下:如图,当0゜<α<20゜时,∵CF 平分∠OCQ∴∠OCF =∠QCF设∠OCF =∠QCF =x则∠OCQ =2x∵MN ∥PQ∴∠MOC =∠OCQ =2x∵∠AON =360゜-90゜—(180゜-2x )=90゜+2x ,OD 平分∠AON∴∠DON =45゜+x∵∠MOE =∠DON =45゜+x∴∠COE =∠MOE -∠MOC =45゜+x -2x =45゜-x∴∠OEF =∠COE +∠OCF =45゜-x +x =45゜当α=20゜时,OD 与OB 共线,则∠OCQ =90゜,由CF 平分∠OCQ 知,∠OEF =45゜ 当20゜<α<90゜时,如图∵CF 平分∠OCQ∴∠OCF =∠QCF设∠OCF =∠QCF =x则∠OCQ =2x∵MN ∥PQ∴∠NOC =180゜-∠OCQ =180゜-2x∵∠AON =90゜+(180゜-2x )=270゜-2x ,OD 平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜综上所述,∠EOF的度数不变.【点睛】本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便.二十五、解答题25.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数.(3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果.【详解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直.【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数.。

人教版七年级数学第一学期期末复习压轴训练(含答案)

人教版七年级数学第一学期期末复习压轴训练(含答案)

1.武汉市居民用电电费目前实行梯度价格表(为计算方便,数据进行了处理)(1)若月用电150千瓦时,应交电费_______元;若月用电250千万时,应交电费____元(2)若居民王成家12月应交电费150元,请计算他们家12月的用电量(3)若居民王成家12月份交纳的电费,经过测算,平均每千万时0.55元,请计算他们家12月的用电量2.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣,﹣3观察数轴,与点A的距离为3的点表示的数是__________,B,C两点之间的距离为__________;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是__________;若此数轴上M,N两点之间的距离为2015(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M__________,N__________;(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P__________,Q__________(用含m,n的式子表示这两个数).1.平价商场经销甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1) 甲种商品每件进价为_______元,每件乙种商品利润率为________(2) 若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3) 在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小聪第一天只购买乙种商品,实际付款360元,第二天只购买甲种商品实际付款432元,求小聪这两天在该商场购买甲、乙两种商品一共多少件?2.如图,在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足:|a+2|+(c ﹣7)2=0.(1)a = ,b= ,c= ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合;(3)点A .B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB = ,AC = ,BC = .(用含t 的代数式表示)(4)请问:3BC ﹣2AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.1、七年级学习代数式求值时,遇到这样一类题“代数式6351ax y x y -++--的值与x 的取值无关,求a 的值”,通常的解题方法是:把x 、y 看作字母,a 看作系数合并同类项,因为代数式的值与x 的取值无关,所以含x 项的系数为0,即原式=(3)65a x y +-+,所以30a +=,则 3a =-.(1)若关于x 的多项式2(23)23x m m x -+-的值与x 的取值无关,求m 值;(2)已知A 22321x xy x =+--,B 21x xy =-+-;且3A +6B 的值与x 无关,求y 的值;(3)7张如图1的小长方形,长为a ,宽为b ,按照图2方式不重叠地放在大长方形ABCD 内,大长方形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为1S ,左下角的面积为2S ,当AB 的长变化时,12S S -的值始终保持不变,求a 与b 的等量关系.2、如图,已知数轴上有A .B 、C 三点,分别表示有理数﹣26、﹣10、10,动点P 从点A 出发,以每秒1个单位的速度向终点C 移动,当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,问当点Q 从A 点出发几秒钟时,点P 和点Q 相距2个单位长度?直接写出此时点Q 在数轴上表示的有理数.1、现在有一种既隔热又耐老化的新型窗框材料——“断桥铝”,下图是这种材料做成的两种长方形窗框,已知窗框的长都是y米,宽都是x米.(1)(3分)若一用户需Ⅰ型的窗框2个,Ⅱ型的窗框3个,求共需这种材料多少米(接缝忽略不计)?(2)(4分)已知y>x,求一个Ⅰ型的窗框比一个Ⅱ型的窗框节约这种材料多少米?,4,P、M、N为数轴上的三个动点,点M从B点出发速度2、已知数轴上两点A,B对应的数分别是10为每秒2个单位,点N从A点出发速度为M点的2倍,点P从原点出发速度为每秒1个单位.(1)(1分)线段AB之间的距离为个单位长度.(2)(4分)若点M向左运动,同时点N向右运动,求多长时间点M与点N相遇?(3)(4分)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?七上数学压轴1参考答案1.解答:解:(1)0.5×150=75(元),0.5×180+0.6×(250-180)=90+0.6×70=90+42=132(元).答:若月用电150千瓦时,应交电费75元,若月用电250千瓦时,应交电费132元.(2)设他们家12月的用电量是x千瓦时,依题意有0.5×180+0.6(x-180)=150,解得x=280.答:他们家12月的用电量是280千瓦时.(3)设他们家12月的用电量是y千瓦时,依题意有0.5×180+0.6(y-180)=0.55y,解得y=360.答:他们家12月的用电量是360千瓦时.故答案为:75,132.2.解:(1)点A的距离为3的点表示的数是1+3=4或1﹣3=﹣2;B,C两点之间的距离为﹣2.5﹣(﹣3)=0.5;(2)B点重合的点表示的数是:﹣1+[﹣1﹣(﹣0.5)]= 0.5;M=﹣1﹣=﹣1008.5,n=﹣1+=1006.5;(3)P=n﹣,Q=n+.故答案为:4或﹣2,0.5;0.5,﹣1008.5,1006.5;n﹣,n+.七上数学压轴2参考答案(2)(7+2)÷2=4.5,对称点为7-4.5=2.5,2.5+(2.5-1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变. 3BC-2AB=3(2t+6)-2(3t+3)=12.压轴3答案1、【答案】(1)解:22(23)232323x m m x mx m m x -+-=-+-2(23)32m x m m =--+,关于x 的多项式2(23)23x m m x -+-的值与x 的取值无关,230m ∴-=, 解得32m =. (2)解:2223211A x xy x B x xy =+--=-+-,, 22363(2321)6(1)A B x xy x x xy ∴+=+--+-+-226963666x xy x x xy =+---+-1569xy x =--(156)9y x =--,36A B +的值与x 无关,1560y ∴-=, 解得25y =. (3)解:设AB x =,由图可知,1(3)3S a x b ax ab =-=-,22(2)24S b x a bx ab =-=-,则123(24)S S ax ab bx ab -=---324ax ab bx ab =--+(2)a b x ab =-+,当AB 的长变化时,12S S -的值始终保持不变,12S S ∴-的值与x 的值无关,20a b ∴-=,2a b ∴=.【思路引导】(1)由题可知代数式的值与x 的取值无关,所以含x 项的系数为0, 故将多项式进行整理,令x 的系数为0,即可求出m ;可;(3)设AB =x , 由图可知,1(3)3S a x b ax ab =-=-,22(2)24S b x a bx ab =-=- ,即可得S 1-S 2 的代数式,根据取值与x 无关可得a-2b=0,即a =2b.2、【答案】解:有两种情况:①点Q 追上点P 之前相距2个单位长度.设此时点Q 从A 点出发t 秒钟.依题意,得(16+t )﹣3t =2,解得,t =7.此时点Q 在数轴上表示的有理数为﹣5;②点Q 追上点P 之后相距2个单位长度.设此时点Q 从A 点出发m 秒钟.依题意,得3m ﹣(16+m )=2,解得,m =9.此时点Q 在数轴上表示的有理数为1.综上所述,当点Q 从A 点出发7秒和9秒时,点P 和点Q 相距2个单位长度,此时点Q 在数轴上表示的有理数分别为﹣5和1【思路引导】根据题意分两种情况进行分析:①点Q 追上点P 之前相距2个单位长度可得方程,解方程即可;②点Q 追上点P 之后相距2个单位长度可得方程,解法即可,最后总结可得结论.压轴4答案1、【答案】(1)解:根据图形,1个Ⅰ型窗框用料(32x y +)米;1个Ⅱ型窗框用料(23x y +)米;2个Ⅰ型窗框和3个Ⅱ型窗框共需这种材料(单位:米)2、【答案】(1)14(2)解:设运动时间为t 秒时,点M 与点N 相遇.2t+2 ⨯ 2t =146t =14t = 73; ∴ 当运动时间为73 秒时,点M 与点N 相遇. (3)解:点M 、N 、P 运动的时间为y 秒时,点P 到点M 、N 的距离相等,①(2y +4)-y =4y -10-yy =7②2y +4-y =y -(4y -10)y =1.5∴当点M 、N 、P 运动时间为7S 或1.5S 时,点P 到点M ,N 的距离相等.故答案为:14;【思路引导】(1)根据数轴上两点间的距离公式求解即可;(2)设运动时间为t秒时,根据点M移动的距离+点N移动的距离=AB=14,列出方程并解之即可;(3)分两种情况:①点P在AB之间,②点M、N在点P的右侧时,据此分别列出方程并解之即可.+++x y x y2(32)3(23)=+++x y x y6469=+;x y1213(2)解:1个Ⅱ型窗框和1个Ⅰ型窗框多用这种材料(单位:米)+-+(23)(32)x y x y=+--2332x y x y=-.y x【思路引导】(1)根据题意列出算式,去掉括号合并即可;(2)用1个Ⅱ型窗框用料-1个Ⅰ型窗框用料,列出算式,去掉括号合并即可。

七年级数学下册期末专题复习数据的收集与描述解析版

七年级数学下册期末专题复习数据的收集与描述解析版

期末复习六数据的收集、整理与描述各个击破命题点1 调查方式的选用例1漳州中考下列调查中,适宜采用普查方式的是DA.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件方法归纳全面调查适合的条件:1总体的数目较少,2研究的问题要求情况真实、准确性较高,3调查工作方面,没有破坏性;抽样调查适合的条件:1受客观条件限制,无法对所有个体进行调查,2调查具有破坏性.1.重庆中考下列调查中,最适合采用全面调查普查的是DA.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级1班同学的身高情况的调查2.遂宁中考以下问题,不适合用全面调查的是DA.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱命题点2 总体、个体、样本、样本容量例2为了了解我县七年级6 000名学生的数学成绩,从中抽取了300名学生的数学成绩,以下说法正确的是DA.6 000名学生是总体B.每个学生是个体C.300名学生是抽取的一个样本D.每个学生的数学成绩是个体方法归纳解决本题的关键是准确把握总体、个体、样本、样本容量的概念,弄清具体问题中总体、个体、样本所指的对象,明白它们是数据而不是载体.3.聊城中考电视剧铁血将军在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2 400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是CA.2 400名学生B.100名学生C.所抽取的100名学生对“民族英雄范筑先”的知晓情况D.每一名学生对“民族英雄范筑先”的知晓情况命题点3 统计图表的选择与制作例3某校八2班共有52人,一次英语考试的成绩单位:分如下:93 84 28 78 57 69 97 30 56 90 82 8079 77 67 91 42 89 93 75 85 95 87 8168 70 59 66 79 95 48 67 74 78 81 3986 83 79 62 68 49 66 79 81 57 89 8985 96 80 1001列出频数分布表,画出频数分布直方图;2估计该班65分及以上的频率和85分及以上的频率各是多少思路点拨1计算最大值与最小值的差,决定组距与组数,列频数分布表,画出频数分布直方图;2根据频数分布表或者频数分布直方图回答2中的问题.因为组距选取不同,所以频数分布表与频数分布直方图不唯一.不过考虑到2中65分及以上的频率、85分及以上的频率,所以65、85应作为小组的起点数据.解答答案不唯一,如:1最大值与最小值的差为100-28=72.取组距为10,由于72÷10=,于是可将这组数据分为8组,列频数分布表如下:分组划记频数25≤x<35 235≤x<45 245≤x<55 255≤x<65 正 565≤x<75 正975≤x<85 正正正1685≤x<95 正正1195≤x<正 5105合计52 52画频数分布直方图:265分及以上的频率为错误!×100%≈%.85分及以上的频率为错误!×100%≈%.方法归纳组距与组数的确定没有固定的标准,要凭借经验和所研究的具体问题来决定.但当问题中出现某些条件时,组数、组距的划分要考虑解决问题的方便.4.某中学七年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:成绩划记频数百分比不及格正9 10%及格正正正18 20%良好正正正正正正正36 40%优秀正正正正正27 30%合计90 90 100% 1从上表的“频数”,“百分比”两列数据中选择一列,用适当的统计图表示;2估计该校七年级体育测试成绩不及格的人数.解:1选择扇形统计图表示各种情况的百分比,图形如下:某中学七年级90名学生体育测试成绩扇形统计图2450×10%=45人.答:估计该校七年级体育测试成绩不及格的约有45人.命题点4 统计图表中信息的获取例4义乌中考在义乌中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:1本次共调查了200名学生;2被调查的学生中,最喜爱丁类图书的有15人,最喜爱甲类图书的人数占本次被调查人数的40%;3在最喜爱丙类图书的学生中,女生人数是男生人数的倍,若这所学校共有学生1 500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.思路点拨3先求出最喜爱丙类图书的总人数,然后用x表示男生人数,表示女生人数,根据男生人数与女生人数之和等于最喜爱丙类图书的总人数列出方程,求出最喜爱丙类图书的女生人数和男生人数.解答140÷20%=200人.2200-80-65-40=15人,错误!×100%=40%.3设最喜爱丙类图书的男生人数为x人,则女生人数为人.根据题意,得x+=1 500×20%.解得x=120.当x=120时,=180.答:最喜爱丙类图书的女生人数为180人,男生人数为120人.方法归纳解决此类问题的关键是牢固掌握统计的基础知识,善于从统计图表中获取相关信息,并具备良好的分析数据的能力.5.泰州中考为了了解学生参加社团的活动,从2012年起,某市教育部门每年都从全市所有学生中随机抽取2 000名学生进行调查.图1、图2是部分调查数据的统计图参加社团的学生每人只报一项.根据统计图提供的信息解决下列问题:1求图2中“科技类”所在扇形的圆心角α的度数;2该市2014年抽取的学生中,参加体育类与理财类社团的学生共有多少人3该市2016年共有50 000名学生,请你估计该市2016年参加社团的学生人数.解:1图2中“科技类”所在扇形的圆心角α的度数为:1-10%-15%-25%-30%×360°=72°.2300+200×10%+30%=200人.答:参加体育类与理财类社团的学生共有200人.350 000×错误!=28 750人.答:该市2016年参加社团的学生人数为28 750人.整合集训一、选择题每小题3分,共30分1.重庆中考下列调查中,最适合普查方式的是BA.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况2.下列调查方式合适的是CA.为了了解市民对电影南京的感受,小华在某校随机采访了8名初三学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式3.福州中考下列选项中,显示部分在总体中所占百分比的统计图是A A.扇形图B.条形图C.折线图D.直方图4.德阳中考为了考察一批电视机的使用寿命,从中任意抽取了10台进行试验,在这个问题中样本是DA.抽取10台电视机B.这一批电视机的使用寿命C.10D.抽取10台电视机的使用寿命5.随着全球经济危机的到来,我国纺织品行业的出口受到严重影响,下图是甲、乙纺织厂的出口和内销情况.从图中可看出出口量较多的是DA.甲B.乙C.两厂一样多D.不能确定6.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如下表所示其中每个分数段包括最小值,不包括最大值,结合表中的信息,可得测试分数在80~90分数段的学生共有C名B.200名C.150名D.100名7.某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为AA.万件B.9万件C.9 500件D.5 000件8.某次考试中,某班级的数学成绩统计图如图.下列说法错误的是D A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格≥60分的人数是269.广元中考某校学生来自甲、乙、丙三个地区,其人数比为2∶3∶5,如图所示的扇形统计图表示上述分布情况.已知来自甲地区的为160人,则下列说法不正确的是DA.扇形甲的圆心角是72°B.学生的总人数是800人C.丙地区的人数比乙地区的人数多160人D.甲地区的人数比丙地区的人数少160人10.某市股票在七个月之内增长率的变化状况如图所示,从图中看出,下列结论不正确的是DA.2~6月份股票月增长率逐渐减少B.7月份股票的月增长率开始回升C.这七个月中,每月的股票不断上涨D.这七个月中,股票有涨有跌二、填空题每小题5分,共20分11.将七年级一班分成五个组,各组人数在频数分布直方图中的小长方形高的比依次为1∶2∶5∶3∶1,人数最多的一组有25人,则该班共有60人.12.一个样本含有下面10个数据:52,51,49,50,47,48,50,51,48,53,则最大的值是53,最小的值是47,如果组距为,那么应分成4组.13.某区卫生局在2012年11月对全区初中毕业生进行体质健康测试,随机抽取了200名学生的测试成绩作为样本,数据整理如下表,其中x的值是.14.山西中考四川雅安发生地震后,某校九1班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图,写出一条你从图中所获得的信息:答案不唯一,可以从总体来说:该班有50人参与了献爱心活动;也可以具体分情况来说:捐款10元的有20人等.三、解答题共50分15.6分设计调查问卷时,下列提问是否合适如果不合适应该怎样改进1你上学时使用的交通工具是A.汽车B.摩托车C.步行D.其他2你对老师的教学满意吗A.比较满意B.满意C.非常满意解:1不合适.提供选择的答案不够全面,应增加选项“自行车”,因为自行车也是初中生上学使用的主要交通工具之一.2不合适.提供选择的答案不够全面,应增加选项“不满意”,因为所有选项中都是满意,不便于学生表达真实想法.另外问题改为“你对××科老师教学是否满意”可使调查目的更明确.16.6分初一学生小丽、小杰为了了解本校初二学生每周上网时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中4名学生每周上网的时间;小杰从全体初二学生名单中随机抽取了40名学生,调查他们每周上网的时间.你认为哪位学生抽取的样本具有代表性说说你的理由.解:小杰抽取的样本具有代表性.理由如下:小杰选取的样本具有代表性和随机性而且选取的样本足够大;小丽选取的样本比较特殊,不具有随机性而且选取的样本小.内容符合题意即可17.8分阅读对人成长的影响是很大的.希望中学共有1 500名学生,为了了解学生课外阅读的情况,就“你最喜欢的图书类别”只选一项随机调查了部分学生,并将调查结果统计后绘制成如下的统计表和条形统计图.请你根据统计图表提供的信息解答下列问题:1这次随机调查了300名学生;2把统计表和条形统计图补充完整.解:如图表.18.10分龙东中考学生对小区居民的健身方式进行调查,并将调查结果绘制成如下两幅不完整的统计图.请根据所给信息解答下列问题:1本次共调查50人;2补全图1中的条形统计图,图2中“跑步”所在扇形对应的圆心角度数是36°;3估计2 000人中喜欢打太极的大约有多少人解:2如图所示.32 000×错误!=120人.答:估计2 000人中喜欢打太极的大约有120人.19.10分今年,市政府的一项实事工程就是由政府投入1 000万元资金对城区4万户家庭的老式水龙头和抽水马桶进行免费改造.某社区为配合政府完成该项工作,对社区内1 200户家庭中的120户进行了随机抽样调查,并汇总成下表:1试估计该社区需要对水龙头、马桶进行改造的家庭共有1_000户;2改造后,一个水龙头一年大约可节省5吨水,一个马桶一年大约可节省15吨水.试估计该社区一年共可节约多少吨自来水3在抽样的120户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户 解:2抽样的120户家庭一年共可节约用水:1×31+2×28+3×21+4×12×5+1×69+2×2×15=198×5+73×15=2 085吨,∴该社区一年共可节约用水的吨数为:2 085×1201200=20 850吨. 3设既要改造水龙头又要改造马桶的家庭共有x 户,则x +31+28+21+12-x +69+2-x =100,解得x =63.答:既要改造水龙头又要改造马桶的家庭共有63户.20.10分德州中考某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量单位:吨,并将调查数据进行了如下整理:4.74.53.55.74.5频数分布表分组划记 频数 <x ≤ 正正 11<x≤正正正19<x≤正正13<x≤正 5<x≤ 2合计50频数分布直方图1把上面的频数分布表和频数分布直方图补充完整;2从直方图中你能得到什么信息写出两条即可3为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按倍价格收费.若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少为什么解:1如图表.2答案不唯一:如①从直方图可以看出:居民月均用水量大部分在至之间;②居民月均用水量在<x≤范围内最多,有19户;③居民月均用水量在<x≤范围内的最少,只有2户等.合理即可3要使60%的家庭收费不受影响,家庭月均用水量应该定为5吨,因为月均用水量不超过5吨的有30户,占总户数的60%.。

华师大版数学2023年七年级下册第二学期期末复习检测卷【含答案】

华师大版数学2023年七年级下册第二学期期末复习检测卷【含答案】

华师大版数学2023年七年级下册第二学期期末复习检测卷一、选择题(每题3分,共30分)1.下列图形中,是轴对称图形的有( )(第1题)A .4个B .3个C .2个D .1个2.若x =1是方程ax +2x =1的解,则a 的值是( )A .-1B .1C .2D .-123.下列等式变形不一定正确的是( )A .若x =y ,则x -5=y -5B .若x =y ,则ax =ayC .若x =y ,则3-2x =3-2yD .若x =y ,则=xc yc4.若关于x 的方程x +k =2x -1的解是负数,则k 的取值范围是( )A .k >-1B .k <-1C .k ≥-1D .k ≤-15.已知三角形三边为a 、b 、c ,其中a 、b 两边满足|a -3|+(b -7)2=0,那么这个三角形的最大边c 的取值范围是( )A .c >7 B .7<c <10 C .3<c <7D .4<c <106.如图,已知长方形的长为10 cm ,宽为4 cm ,则图中阴影部分的面积为( )A .20 cm 2B .15 cm 2C .10 cm 2D .25 cm2(第6题) (第7题) (第8题)7.如图,将△ABC 绕点A 逆时针旋转90°能与△ADE 重合,点D 在线段BC 的延长线上,若∠BAC =20°,则∠AED 的大小为( )A .135°B .125°C .120°D .115°8.如图,桐桐从A 点出发,前进3 m 到点B 处后向右转20°,再前进3 m 到点C 处后又向右转20°,…,这样一直走下去,她第一次回到出发点A 时,一共走了( )A .100 mB .90 mC .54 mD .60m9.小虎、大壮和明明三人玩飞镖游戏,各投5支镖,规定在同一环内得分相同,中靶和得分情况如图,则大壮的得分是( )A .20分B .22分C .23分D .25分(第9题) (第10题)10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 的外面时,此时测得∠1=112°,∠A =40°,则∠2的度数为( )A .32°B .33°C .34°D .38°二、填空题(每题3分,共15分)11.若一个正多边形的每个外角都等于45°,则用这种多边形能铺满地面吗?答:________.(填“能”或“不能”)12.如图,在△ABC 中,点D 在BC 的延长线上,点F 是AB 边上一点,延长CA 到E ,连结EF ,则∠1、∠2、∠3的大小关系是________.(第12题) (第15题)13.若代数式3x +2与代数式x -10的值互为相反数,则x =________.14.二元一次方程组的解x ,y 的值相等,则k =________.{3x +2y =10,kx +(k +2)y =6)15.如图,l 1∥l 2,五边形ABCDE 是正五边形,那么∠1-∠2的度数为________.三、解答题(共75分)316.(8分)解方程(组):(1)-+=1; (2)2x -12x -24{34 x +y =12,4x -2y =10.)17.(9分)解不等式组:然后把它的解集在数轴上表示出来,{2x +3≥x +11,3x -105<4,)并求出x 的整数解.18.(8分)在图①,图②的网格纸中,△ABC 与△DEF 的三个顶点都在格点上.(1)在图①中,以点A 为对称中心画一个与△ABC 成中心对称的图形;(2)在图②中,将△DEF 绕点D 顺时针方向旋转90°,画出旋转后的图形.(第18题)19.(9分)如图,一条直线分别交△ABC的边及延长线于点D、E、F,∠A=20°,∠CED=100°,∠D=35°,求∠B的度数.(第19题)20.(9分)如图,∠1、∠2、∠3、∠4是四边形ABCD的四个外角.用两种方法说明∠1+∠2+∠3+∠4=360°.(第20题)21.(10分)如图,将△ABC沿射线AB的方向移动2 cm到△DEF的位置.5(1)找出图中所有平行的直线;(2)找出图中与AD 相等的线段,并写出其长度;(3)若∠ABC =65°,求∠BCF的度数.(第21题)22.(11分)如图,在△ABC 中,∠C =40°.将△ABC 绕点A 按逆时针方向旋转得到△ADE ,连结BD .当DE ∥AC 时,求∠ABD 的度数.(提示:在一个三角形中,若两条边相等,则它们所对的角也相等)(第22题)23.(11分)夕阳红街道办事处为给社区干净整洁的社区环境,加入环境保洁队伍,需要购置一批保洁用具,已知1把扫帚和3把拖把共需26元;3把扫帚和2把拖把共需29元.(1)求一把扫帚和一把拖把的售价各是多少元;(2)办事处准备购进这两种保洁工具共50把,并且扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,哪种方案最省钱?请说明理由.7答案一、1.C 2.A 3.D 4.B 5.B 6.A 7.D 8.C 9.C 10.A 点拨:设A ′D 与AC 交于点O .∵∠A =40°,∴∠A ′=∠A =40°.∵∠1=∠DOA +∠A ,∠1=112°,∴∠DOA =∠1-∠A =112°-40°=72°.∵∠DOA =∠2+∠A ′,∴∠2=∠DOA -∠A ′=72°-40°=32°.二、11.不能 12.∠1>∠2>∠3 13.2 14.1215.72° 点拨:如图,延长AB 交l 2于点M.(第15题)∵五边形ABCDE ∴正五边形ABCDE 的每个外角相等.∴∠MBC ==72°.360°5∵l 1∥l 2,∴∠2=∠BMD .∵∠1=∠BMD +∠MBC ,∴∠1-∠2=∠1-∠BMD =∠MBC =72°.三、16.解:(1)-+=1,2x -12x -24去分母,得-2(2x -1)+(x -2)=4,去括号,得-4x +2+x -2=4,移项,得-4x +x =4+2-2,合并同类项,得-3x =4,系数化为1,得x =-.43(2){34x +y =12,①4x -2y =10.②)①×2+②,得x =11,解得x =2.112把x =2代入②,得8-2y =10,解得y =-1,故方程组的解为{x =2,y =-1.)17.解:解2x +3≥x +11,得x ≥8;解<4,得x <10,3x -105∴不等式组的解集是8≤x <10.在数轴上表示为:(第17题)∴x 的整数解是8、9.18.解:(1)如图①,△AB ′C ′即为所求;(第18题)(2)如图②,△DE ′F ′即为所求.19.解:∵∠CED =100°,∠D =35°,∴∠BCD =180°-∠CED -∠D =180°-100°-35°=45°.∵∠BCD 是△ABC 的外角,∴∠B =∠BCD -∠A =45°-20°=25°.920.解:方法1:∵∠1+∠BAD =180°,∠2+∠ABC =180°,∠3+∠BCD =180°,∠4+∠CDA =180°,∴∠1+∠BAD +∠2+∠ABC +∠3+∠BCD +∠4+∠CDA =180°×4=720°.∵∠BAD +∠ABC +∠BCD +∠CDA =360°,∴∠1+∠2+∠3+∠4=360°.方法2:如图,连结BD,(第20题)∵∠1=∠ABD +∠ADB ,∠3=∠CBD +∠CDB ,∴∠1+∠2+∠3+∠4=∠ABD +∠ADB +∠2+∠CBD +∠CDB +∠4=180°×2=360°.21.解:(1)AE ∥CF ,AC ∥DF ,BC ∥EF .(2)AD =CF =BE =2 cm.(3)∵AE ∥CF ,∠ABC =65°,∴∠BCF =∠ABC =65°.22.解:∵将△ABC 绕点A 按逆时针方向旋转得到△ADE ,∴∠BAD =∠EAC ,△ADE ≌△ABC ,∴∠C =∠E =40°,AB =AD .∵DE ∥AC ,∴∠E =∠EAC .∴∠BAD =∠C =40°.∵AB =AD ,∴∠ABD =∠ADB ,∴∠ABD =(180°-∠BAD )=70°.1223.解:(1)设一把扫帚的售价是x 元,一把拖把的售价是y 元.由题意,可得解得{x +3y =26,3x +2y =29,){x =5,y =7.)答:一把扫帚的售价是5元,一把拖把的售价是7元.(2)设扫帚买了m 把,共花费W 元,则拖把买了(50-m )把.由题意得,W =5m +7(50-m )=-2m +350.∵扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,∴2(50-m )≤m ≤3(50-m ),解得≤m ≤.1003752∵m 为正整数,∴m 可以取34,35,36,37,∴共有四种方案:方案一:扫帚34把,拖把16把,共花费:-2×34+350=282(元).方案二:扫帚35把,拖把15把,共花费:-2×35+350=280(元).方案三:扫帚36把,拖把14把,共花费:-2×36+350=278(元).方案四:扫帚37把,拖把13把,共花费:-2×37+350=276(元).∵282>280>278>276,∴方案四最省钱.11。

苏科版七年级数学第一学期期末复习三 :一元一次方程(有答案)

苏科版七年级数学第一学期期末复习三 :一元一次方程(有答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯苏科版七年级数学第一学期期末复习三一元一次方程一、选择题1. 在①2x+1;②1+7=15-8+1;③1- x=x-1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个2. 下列方程是一元一次方程的是()A.-2=0B.2x=1C.x+2y=5D.-1=2x3.某制衣店现购买蓝色、黑色两种布料共138m,共花费540元.其中蓝色布料每米3元,黑色布料每米5元,两种布料各买多少米?设买蓝色布料x米,则依题意可列方程()A.3x+5(138-x)=540B.5x+3(138-x)=540C.3x+5(138+x)=540D.5x+3(138+x)=5404. 若关于x的一元一次方程m(x+4)-3m-x=5的解为x=3,则m的值是()A.-2B.2C.D.-5. 如果与互为倒数,那么x的值为()A.x=B.x=10C.x=-6D.x=6.若方程3x+6=12的解也是方程6x+3a=24的解,则a的值为()A. B.4 C.12 D.27. 方程|2x+1|=7的解是()A.x=3B.x=3或x=-3C.x=3或x=-4D.x=-48. 下列解方程过程正确的是()A.2x=1系数化为1,得x=2B.x-2=0解得x=2C.3x-2=2x-3移项得3x-2x=-3-2D.x-(3-2x)=2(x+1)去括号得x-3-2x=2x+19.解一元一次方程-2= - ,去分母正确的是()A.5(3x+1)-2=(3x-2)-2(2x+3)B.5(3x+1)-20=(3x-2)-2(2x+3)C.5(3x+1)-20=(3x-2)-(2x+3)D.5(3x+1)-20=3x-2-4x+610.某组织去乡村慰问留守儿童,为他们送去一些图书,每人分8本图书,还少5本,每人分7本图书,还多6本,则该村留守儿童有()A.10名B.11名C.12名D.13名11.一艘轮船在A、B两港口之间匀速行驶,顺水航行需要6h,逆水航行需要8h,水流速度为5km/h,则A、B两地之间的路程是()A.200kmB.240kmC.300kmD.320km12.一项工作,甲单独做要20天完成,乙独做要12天完成.若先由甲做若干天,然后由乙继续做完,从开始到完成共用14天,则这项工作由甲先做()天.A. B.5 C.4 D.613. 某市出租车收费标准是:起步价8元(即行驶距离不超过3km,付8元车费),超过3km,每增加1km收1.6元(不足1km按1km计),小梅从家到图书馆的路程为xkm,出租车车费为24元,那么x的值可能是()A.10B.13C.16D.18二、填空题14. 已知5+3=1是关于x的一元一次方程,则m=_____.15.x的3倍与4的和等于x的5倍与2的差,方程可列为_____.16. 某件商品,以原价的出售,现售价是300元,则原价是_____元.17. 有一列数,按一定的规律排列成,-1,3,-9,27,-81,….若其中某三个相邻数的和是-567,则这三个数中第一个数是_____.18. 由3x=2x-1得3x-2x=-1,在此变形中,方程两边同时_____.19. 当x=_____时,代数式2x+1与5x-6的值互为相反数.20.已知关于x的方程2x+a=x-1的解和方程2x+4=x+1的解相同,则a=_____.21.若x=2是方程3x-4=-a的解,则+的值是_____.22.已知方程|2x-1|=2-x,那么方程的解是_____.23.某项工程,甲单独完成要12天,乙单独完成要18天,甲先做了7天后乙来支援,由甲乙合作完成剩下的工程,则甲共做了_____天.24.小张有三种邮票共18枚,它们的数量之比为1:2:3,则最多的一种邮票有_____枚.三、解答题25. 解方程:(1)2x+3=11-6x;(2)(3x-6)=x-3.26. 已知代数式M=3(a-2b)-(b+2a).(1)化简M;(2)如果(a+1)+4-3=0是关于x的一元一次方程,求M的值.27.列方程解应用题:某商场第一季度销售甲、乙两种冰箱若干台,其中乙种冰箱的数量比甲种冰箱多销售40台,第二季度甲种冰箱的销量比第一季度增加10%,乙种冰箱的销量比第一季度增加20%,且两种冰箱的总销量达到554台.求:(1)该商场第一季度销售甲种冰箱多少台?(2)若每台甲种冰箱的利润为200元,每台乙种冰箱的利润为300元,则该商场第二季度销售冰箱的总利润是多少元?28. 列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服.下面是某服装厂给出的运动服价格表:购买服装数量(套)1~3536~6061及61以上每套服装价格(元)605040已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元.问七年级一班和七年级二班各有学生多少人?29. (2分)已知点A在数轴上对应的数为a,点B对应的数为b,且(a+4+|b-11|=0,G为线段AB上一点,M,N两点分别从G,B点沿BA方向同时运动,设M点的运动速度为1cm/s,N点的运动速度为2cm/s,运动时间为ts.(1)A点对应的数为_____,B点对应的数为_____;(2)若AB=2AG,试求t为多少s时,M,N两点的距离为2.5cm;(3)若AB=mAG,点H为数轴上任意一点,且AH-BH=GH,请直接写出的值.期末复习三答案1、B2、B3、A4、B5、B6、B7、C8、 B9、B10、B11、B12、B13、B14、-115、3x+4=5x-216、37517、设这三个数中的第⼀个数为x,则另外两个数分别为-3x,9x,依题意,得:x-3x+9x=-567,解得:x=-8118、减2X519、720、2x+4=x+1, 2x-x=1-4, x=-3,把x=-3代入解得:a=1021、-222、解:由|2x-1|=2-x,可得:2-x=±(2x-1),当2-x=2x-1,解得:x=1,当2-x=-2x+1,解得:x=-1,所以方程的解为x=±123、1024、解:设数量最少的邮票有x枚,则另两种分别有2x枚和3x枚,依题意,得:x+2x+3x=18,解得:x=3,∴3x=9故答案为:925、(1)2x+3=11-6x,移项,得2x+6x=11-3,合并同类项,得8x=8,系数化1,得x=127、(1)设第⼀季度甲种冰箱销量为x台,根据题意得:(1+10%)x+(1+20%)(x+40)=554解之得:x=220答:第⼀季度甲种冰箱的销量为220台.(2)第⼀季度甲种冰箱的利润为:220×(1+10%)×200=48400(元)第⼀季度⼀种冰箱的利润为:(220+40)×(1+20%)×300=93600(元)所以第⼀季度的总利润为48400+93600=142000(元)28、解:∵67×60=4020(元),4020>3650,∴⼀定有⼀个班的人数大于35人.设大于35人的班有学生x人,则另⼀班有学生(67-x)⼀,依题意,得:50x+60(67-x)=3650,解得:x=37,∴67-x=3029、解:(1)∵(a+4)2+|b-11|=0,∴a+4=0,b-11=0,∴a=-4,b=11,故答案为:-4;11;∴M点对应的数为:3.5-t,N点对应的数为11-2t,∴MN=|(3.5-t)-(11-2t)|=|t-7.5|=2.5,∴t=5或10,答:t为5或10s时,M,N两点的距离为2.5cm(3)①当H在A与B之间时,若H点不在G点左边,如图,∵AH-BH=GH,∴AG+GH-BG+GH=GH,∴AG-BG+GH=0,∴AG-AB+AG+GH=0,∵AB=mAG,∴GH=(m-2)AG若H点在G点左边,如图,∵AH-BH=GH,∴AG-GH-BG-GH=GH,∴AG-BG-3GH=0,∴AG-AB+AG-3GH=0,∵AB=mAG,②当H与B重合时,则BH=0,∵AH-BH=GH,∴AH=GH,即A与G重合,∵AB=mAG=0,与已知AB=15相⼀盾,不合题意,应舍去;③当H在AB的延长线上时,∵AH-BH=GH,∴AB=GH,此时G与B重合一天,毕达哥拉斯应邀到朋友家做客。

最新人教版初中数学七年级下册期末复习(三)《平面直角坐标系》练习题

最新人教版初中数学七年级下册期末复习(三)《平面直角坐标系》练习题

期末复习(三) 平面直角坐标系考点一确定字母的取值范围【例1】若点P(a,a-2)在第四象限,则a的取值范围是( )A.-2<a<0B.0<a<2C.a>2D.a<0【分析】根据每个象限内的点的坐标特征列不等式(组)求解.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【解答】根据第四象限内的点横坐标为正,纵坐标为负,得0,20,aa>-<⎧⎨⎩解得0<a<2.故选B.【方法归纳】解答此类题的关键是根据平面直角坐标系内点的特征,列出一次不等式(组)或者方程(组),解所列出的不等式(组)或者方程(组),得到问题的解.1.如果m是任意实数,那么点P(m-4,m+1)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限2.点P(2a,1-3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P的坐标是__________.考点二用坐标表示地理位置【例2】2008年奥运火炬在我省传递(传递路线:昆明—丽江—香格里拉),某校学生小明在我省地图上设定临沧位置点的坐标为(-1,0),火炬传递起点昆明位置点的坐标为(1,1).如图,请帮助小明确定出火炬传递终点香格里拉位置点的坐标__________.【分析】因为设定临沧位置点的横坐标为-1,昆明位置点的横坐标为1,所以可以得到每个小方格的边长为1,且y轴在这两座城市之间的竖直直线上;同理得到x轴在临沧所在的水平线上,从而得到如右图的平面直角坐标系,利用平面直角坐标系得出香格里拉所在位置点的坐标.【解答】(-1,4)【方法归纳】在平面内如果已知两点的坐标求第三个点的坐标时,通常根据已知两点的横坐标和纵坐标分别确定y轴和x轴的位置,从而建立平面直角坐标系,然后求出第三个点的坐标.3.如图,如果用(0,0)表示梅花的中心O,用(3,1)表示梅花上一点A,请用这种方式表示梅花上点B为( )A.(1,-3)B.(-3,1)C.(3,-1)D.(-1,3)4.如图是小刚画的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成( )A.(1,0)B.(-1,0)C.(-1,1)D.(1,-1)5.中国象棋的走棋规则中有“象飞田字”的说法,如图,象在点P处,走一步可到达的点的坐标记作__________.考点三图形的平移与坐标变换【例3】已知△ABC在平面直角坐标系中的位置如图所示,将△ABC向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是( )A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)【解析】由△ABC在平面直角坐标系中的位置可知点C的坐标为(3,3),将△ABC向下平移5个单位,再向左平移2个单位后,点C的横坐标减2,纵坐标减5,所以平移后C点的坐标是(1,-2).故选B.【方法归纳】在平面直角坐标系中点P(x,y)向右(或左)平移a个单位后的坐标为P(x+a,y)[或P(x-a,y)];点P(x,y)向上(或下)平移b个单位后的坐标为P(x,y+b)[或P(x,y-b)].6.如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度,再向下平移三个单位长度得到△A′B′C′,则点B′的坐标是( )A.(0,-1)B.(1,2)C.(2,-1)D.(1,-1)7.如图,A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,A1,B1的坐标分别为(2,a),(b,3),则a+b=__________.考点四直角坐标系内图形的面积【例4】在平面直角坐标系xOy中,若A点坐标为(-3,3),B点坐标为(2,0),则△ABO的面积为( ) A.15 B.7.5 C.6 D.3【解析】∵点A到x轴的距离为3,而OB=2,∴S△ABO=12×2×3=3.故选D.【方法归纳】求平面直角坐标系中平面图形的面积时,常常利用平行于坐标轴的线段当底,点的横或者纵坐标的绝对值当高.不规则图形的面积常常通过割补法转化为几个规则图形的面积求解.8.已知:点A、点B在平面直角坐标系中的位置如图所示,则:(1)写出这两点坐标:A__________,B__________;(2)求△AOB的面积.考点五规律探索型【例5】如图,已知A1(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、….则点A2 015的坐标为__________.【解析】要求A2 015的坐标,可先从简单的点的坐标开始探究,发现其中的规律.从各点的位置可以发现:A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1);A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2);A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3);….因为A3(-1,1),A7(-2,2),观察坐标系可知:A11(-3,3),A15(-4,4),其横、纵坐标互为相反数.把A3、A7、A11、A15右下角的数字提出来,可整理为:3=3+4×0;A3(-1,1)7=3+4×1;A7(-2,2)11=3+4×2;A11(-3,3)15=3+4×3 A15(-4,4)…………因为2 015=3+4×503,所以A2 015(-504,504).【方法归纳】规律探究题往往是从个例、特殊情况入手,发现其中的规律,从而推广到一般情况,用适当的式子表示出来即可,这是近几年来考试的一个热点.9.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A.(4,0)B.(5,0)C.(0,5)D.(5,5)复习测试一、选择题(每小题3分,共30分)1.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B,点B的坐标是( )A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)2.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位4.在平面直角坐标系中,△ABC的三个顶点坐标分别是A(4,5),B(1,2),C(4,2),将△ABC向左平移5个单位后,A点的对应点A′的坐标是( )A.(0,5)B.(-1,5)C.(9,5)D.(-1,0)5.如图是中国象棋的一盘残局,如果用(4,0)表示“帅”的位置,用(3,9)表示“将”的位置,那么“炮”的位置应表示为( )A.(8,7)B.(7,8)C.(8,9)D.(8,8)6.已知A(-4,3),B(0,0),C(-2,-1),则三角形ABC的面积为( )A.3B.4C.5D.67.如图,与①中的三角形相比,②中的三角形发生的变化是( )A.向左平移3个单位B.向左平移1个单位C.向上平移3个单位D.向下平移1个单位8.若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g[f(2,-3)]=( )A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)9.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n 是自然数)的坐标为( )A.(1,2n)B.(2n,1)C.(n,1)D.(2n-1,1)10.如图,点A1,A2,A3,A4是某市正方形道路网的部分交汇点.某人从点A1出发,规定向右或向下行走,那么到达点A3的走法共有( )A.4种B.6种C.8种D.10种二、填空题(每小题4分,共20分)11.若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请写出一个“和谐点”的坐标为__________.12.若点A(x,y)的坐标满足(y-1)2+|x+2|=0,则点A在第__________象限.13.在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN 平移后得到线段M′N′(点M、N分别平移到点M′、N′的位置),若点M′的坐标为(-2,2),则点N′的坐标为__________.14.如图是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”.目前,已破译出“今天考试”的真实意思是“努力发挥”.若“今”所处的位置为(x,y),你找到的密码钥匙是__________,破译“正做数学”的真实意思是__________.15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2 015次运动后,动点P的坐标是__________.三、解答题(共50分)16.(8分)如图,是某学校的平面示意图.A,B,C,D,E,F分别表示学校的第1,2,3,4,5,6号楼.(1)写出A,B,C,D,E的坐标;(2)位于原点北偏东45°的是哪座楼,它的坐标是多少?17.(8分)如图是某市市区几个旅游景点示意图(图中每个小正方形的边长为1个单位长度),如果以O 为原点建立平面直角坐标系,用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置.根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?18.(8分)某地为了城市发展,在现有的四个城市A,B,C,D附近新建机场E.试建立适当的直角坐标系,写出点A,B,C,D,E的坐标.19.(12分)如图,三角形ABC三个顶点坐标分别为A(3,-2),B(0,2),C(0,-5),将三角形ABC沿y轴正方向平移2个单位,再沿x轴负方向平移1个单位,得到三角形A1B1C1.(1)画出三角形A1B1C1,并分别写出三个顶点的坐标;(2)求三角形的面积A1B1C1.20.(14分)如图,四边形ABCD各个顶点的坐标分别为A(-2,8),B(-11,6),C(-14,0),D(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?参考答案变式练习1.D2.(-65,145) 3.B 4.A 5.(0,2),(4,2) 6.D 7.28.(1)(-1,2) (3,-2)(2)S△AOB=12×1×1+12×1×3=2.9.B复习测试1.B2.B3.D4.B5.A6.C7.A8.B9.B 10.B11.答案不唯一,如:(2,2)或(0,0) 12.二13.(2,4) 14.(x+1,y+2) “祝你成功”15.(2 015,2)16.(1)A(2,3)、B(5,2)、C(3,9)、D(7,5)、E(6,11);(2)在原点北偏东45°的点是点F,其坐标为(12,12).17.(1)湖心岛(2.5,5)、光岳楼(4,4)、山陕会馆(7,3).(2)不是,因为根据题目中点的位置确定可知水平数轴上的点对应的数在前,竖直数轴上的点对应的数在后,是有序数对.18.答案不唯一.如以点A作为坐标原点,经过点A的水平线作为x轴,经过点A的竖直线作为y轴,每个小方格的边长作为1单位长,建立平面直角坐标系,图略,A(0,0)、B(8,2)、C(8,7)、D(5,6)、E(1,8).19.(1)图略,△A1B1C1即为所求,三个顶点的坐标A1(2,0),B1(-1,4),C1(-1,-3).(2)由题意可得出:三角形的面积A1B1C1与△ABC面积相等,则三角形A1B1C1的面积为:12×3×7=21 2.20.(1)将四边形分割成长方形、直角三角形,图略,可求出各自的面积:S长方形①=9×6=54,S直角三角形②=12×2×8=8,S直角三角形③=12×2×9=9,S直角三角形④=12×3×6=9.所以四边形的面积为80.(2)如果把原来四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形就是将原来的四边形向右平移两个单位长度形成的,所以其面积不变,还是80.我爸爸告诉我,你现在翻的一页书都是将来要数的一张张钞票,所以不让你学习的人,就是在抢你的财富,不想要的都是傻子。

人教版七年级上册数学 压轴题 期末复习试卷及答案

人教版七年级上册数学 压轴题 期末复习试卷及答案

人教版七年级上册数学压轴题期末复习试卷及答案一、压轴题1.数轴上A、B两点对应的数分别是-4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点。

1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=16,AC=5,BE=11.2)当线段CE运动到点A在C、E之间时。

①设AF长为x,BE=2x-4;②BE与CF成反比例关系。

3)当点C运动到数轴上表示数-14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),则t=6时,P、Q两点间的距离为1个单位长度。

2.综合与探究问题背景:数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC、∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数。

特例探究:“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线。

其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上。

按图3方式摆放时,∠AOC和∠BOD相等。

1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为60°,图3中∠MON的度数为90°。

发现感悟:解决完图2、图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论。

XXX:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠XXX和∠NOD的和,这样就能求出∠XXX的度数。

XXX:设∠BOD为x°,我们就能用含x的式子分别表示出∠XXX和∠MOC度数,这样也能求出∠XXX的度数。

2)请你根据他们的谈话内容,求出图1中∠MON的度数为45°。

类比拓展:受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠XXX的度数。

人教版七年级数学下册期末综合复习试卷(及答案)

人教版七年级数学下册期末综合复习试卷(及答案)

人教版七年级数学下册期末综合复习试卷(及答案)一、选择题1.1.96的算术平方根是()A .0.14B .1.4C .0.14-D .±1.42.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 3.平面直角坐标系中,点M (1,﹣5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①4±是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个A .1B .2C .3D .45.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55°6.按如图所示的程序计算,若开始输入的x 的值是64,则输出的y 的值是( )A .2B .3C .2D .37.如图,一条“U ”型水管中AB //CD ,若∠B =75°,则∠C 应该等于( )A .75︒B .95︒C .105︒D .125︒8.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033)九、填空题9.169=___.十、填空题10.在平面直角坐标系中,点(,)M a b 与点(3,1)N -关于x 轴对称,则a b +的值是_____. 十一、填空题11.已知点A (3a+5,a ﹣3)在二、四象限的角平分线上,则a=__________.十二、填空题12.如图,已知a //b ,∠1=50°,∠2=115°,则∠3=______.十三、填空题13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.十四、填空题14.一列数a 1,a 2,a 3,…,a n ,其中a 1=﹣1,a 2=111a -,a 3=211a -,…,a n =111n a --,则a 2=_____;a 1+a 2+a 3+…+a 2020=_____;a 1×a 2×a 3×…×a 2020=_____.十五、填空题15.如图,点A(1,0),B(2,0),C 是y 轴上一点,且三角形ABC 的面积为2,则点C 的坐标为_____.十六、填空题16.如图:在平面直角坐标系中,已知P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,依次扩展下去,则点P 2021的坐标为 _____________.十七、解答题17.计算(131252724-(2)221|十八、解答题18.已知m +n =2,mn =-15,求下列各式的值.(1)223m mn n ++;(2)2()m n -.十九、解答题19.如图,∠1=∠2,∠3=∠C ,∠4=∠5.请说明BF //DE 的理由.(请在括号中填上推理依据)解:∵∠1=∠2(已知)∴CF//BD()∴∠3+∠CAB=180°()∵∠3=∠C(已知)∴∠C+∠CAB=180°(等式的性质)∴AB//CD()∴∠4=∠EGA(两直线平行,同位角相等)∵∠4=∠5(已知)∴∠5=∠EGA(等量代换)∴ED//FB()二十、解答题20.如图,已知ABC在平面直角坐标系中的位置如图所示.(1)写出ABC三个顶点的坐标;(2)求出ABC的面积;'''.(3)在图中画出把ABC先向左平移5个单位,再向上平移2个单位后所得的A B C二十一、解答题21.阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小辉用21-来表示2的小数部分,你同意小辉的表示方法吗? 事实上,小辉的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵479<<,即273<<,∴7的整数部分为2,小数部分为72-.请解答:(1)21的整数部分是______ ,小数部分是______ .(2)如果11的小数部分为a ,17的整数部分为b ,求11a b +-的值. 二十二、解答题22.求下图44⨯的方格中阴影部分正方形面积与边长.二十三、解答题23.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系;(3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示). 二十四、解答题24.[感知]如图①,//40130AB CD AEP PFD ∠=︒∠=︒,,,求EPF ∠的度数.小乐想到了以下方法,请帮忙完成推理过程.解:(1)如图①,过点P 作//PM AB .∴140AEP ∠=∠=︒(_____________),∴//AB CD ,∴//PM ________(平行于同一条直线的两直线平行),∴_____________(两直线平行,同旁内角互补),∴130PFD ∠=︒,∴218013050︒︒∠=-=︒,∴12405090︒∠=+︒+∠=︒,即90EPF ∠=︒.[探究]如图②,//,50,120AB CD AEP PFC ∠=︒∠=︒,求EPF ∠的度数;[应用](1)如图③,在[探究]的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_________º.(2)已知直线//a b ,点A ,B 在直线a 上,点C ,D 在直线b 上(点C 在点D 的左侧),连接AD BC ,,若BE 平分ABC DE ∠,平分ADC ∠,且BE DE ,所在的直线交于点E .设(),ABC ADC αβαβ∠=∠=≠,请直接写出BED ∠的度数(用含,αβ的式子表示). 二十五、解答题25.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根即可得出答案.【详解】解:∵21.4 1.96=,∴1.96的算术平方根是1.4,故选:B .【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.D【分析】根据各个象限点坐标的符号特点进行判断即可得到答案.【详解】解:∵1>0,-5<0,∴点M(1,-5)在第四象限.故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.【详解】64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.故选:B.【点睛】本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.5.A【分析】过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C =∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.6.A【分析】根据计算程序图计算即可.【详解】解:∵当x=648=,2是有理数,=2∴当x=2是无理数,∴y故选:A.【点睛】此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键.7.C【分析】直接根据平行线的性质即可得出结论.【详解】解:∵AB∥CD,∠B=75°,∴∠C=180°-∠B=180°-75°=105°.故选:C.【点睛】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键.8.C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=1532+,15=2732+,21=3932+,得到规律:点A2n+1的横坐标为()32136622n n+++=,其中0n≥的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n=,故A2021的横坐标为61010630332⨯+=,A2021的纵坐标为303333030-+=-,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.九、填空题9.13【分析】根据求解即可.【详解】解:,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.解析:13【分析】a=求解即可.【详解】1313==,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.十、填空题10.4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点与点关于轴对称,,,则a+b 的值是:,故答案为.【点睛】本题考查了关于x 轴对称的解析:4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点(,)M a b 与点(3,1)M -关于x 轴对称,3a ∴=,1b =,则a+b 的值是:4,故答案为4.【点睛】本题考查了关于x 轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.十一、填空题11.﹣【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣12【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣12.故答案是:﹣1 2 .十二、填空题12.65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,解析:65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,∴∠3=∠2﹣∠4=115°﹣50°=65°.故答案为:65°.【点睛】此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键.十三、填空题13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵AB//DE,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.十四、填空题14., 1【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a1=﹣1时,a2===,a3===解析:12,201721【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a 1=﹣1时,a 2=111a -=11(1)--=12, a 3=211a -=1112-=2, a 4=﹣1,…,∵2020÷3=673…1,∴a 1+a 2+a 3+…+a 2020=(﹣1+12+2)×673+(﹣1) =32×673+(﹣1) =20192﹣22 =20172, a 1×a 2×a 3×…×a 2020 =[(﹣1)×12×2]673×(﹣1)=(﹣1)673×(﹣1)=(﹣1)×(﹣1)=1, 故答案为:12,20172,1. 【点睛】本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键. 十五、填空题15.(0,4)或(0,-4).【分析】设△ABC 边AB 上的高为h ,利用三角形的面积列式求出h ,再分点C 在y 轴正半轴与负半轴两种情况解答.【详解】解:设△ABC 边AB 上的高为h ,∵A (1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=1×1•h=2,2解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.十六、填空题16.(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P2021在第二象限,∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),∴点P2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.十七、解答题17.(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1),,.(解析:(1)72;(21 【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1 3532=-+, 72=.(2)1|,1=,1.【点睛】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.十八、解答题18.(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)223m mn n ++=222m mn n mn +++=()2m n mn ++=2215-=-11;(2)2()m n -=2()4m n mn +-=()22415-⨯- =464+=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.十九、解答题19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:(已知)(内错角相等,两直线平解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:12∠=∠(已知)//CF BD ∴(内错角相等,两直线平行),3180CAB (两直线平行,同旁内角互补),3C ∠=∠(已知),180C CAB ∴∠+∠=︒(等式的性质),//AB CD ∴(同旁内角互补,两直线平行),4EGA (两直线平行,同位角相等),45∠=∠(已知), 5EGA (等量代换), //ED FB ∴(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键. 二十、解答题20.(1);(2);(3)图见解析.【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:解析:(1)()()()4,3,3,1,1,2A B C ;(2)52;(3)图见解析. 【分析】(1)根据点,,A B C 在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:(1)由点,,A B C 在平面直角坐标系中的位置:()()()4,3,3,1,1,2A B C ;(2)ABC 的面积为1152312213222⨯-⨯⨯⨯-⨯⨯=; (3)如图所示,A B C '''即为所求.【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.二十一、解答题21.(1)4,;(2)1【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可.【详解】解:(1)∵<<,即4<<5∴的整数部分为4,小数部分为−4.(2),解析:(1)4214;(2)1【分析】(121(2)求出a,b然后代入代数式即可.【详解】解:(1)∵16212521∴214214.(2)3114,∴113a.∵4175<,∴4b=,∴341a b+=+.【点睛】此题主要考查了无理数的估算,实数的运算,熟练掌握相关知识是解题的关键.二十二、解答题22.8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4××2×2=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4×12×2×2=8;正方形的边长【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a二十三、解答题23.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E 在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如图1中,过点E作ET∥AB.利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)()12m nn-【分析】(1)如图1中,过点E作ET∥A B.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥A B.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD =∠ABM +∠CDM ,∴m =2x +2y ,∴x +y =12m ,∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n -. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型. 二十四、解答题24.[感知]见解析;[探究]70°;[应用](1)35;(2)或【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;解析:[感知]见解析;[探究]70°;[应用](1)35;(2)2αβ+或2βα-【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD =180°,求出∠2的度数,结合∠1可得结果;[探究]过点P 作PM ∥AB ,根据AB ∥CD ,PM ∥CD ,进而根据平行线的性质即可求∠EPF 的度数;[应用](1)如图③所示,在[探究]的条件下,根据∠PEA 的平分线和∠PFC 的平分线交于点G ,可得∠G 的度数;(2)画出图形,分点A 在点B 左侧和点A 在点B 右侧,两种情况,分别求解.【详解】解:[感知]如图①,过点P 作PM ∥AB ,∴∠1=∠AEP =40°(两直线平行,内错角相等)∵AB ∥CD ,∴PM ∥CD (平行于同一条直线的两直线平行),∴∠2+∠PFD =180°(两直线平行,同旁内角互补),∴∠PFD =130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF =90°;[探究]如图②,过点P 作PM ∥AB ,∴∠MPE =∠AEP =50°,∵AB ∥CD ,∴PM ∥CD ,∴∠PFC =∠MPF =120°,∴∠EPF =∠MPF -∠MPE =120°-50°=70°;[应用](1)如图③所示,∵EG 是∠PEA 的平分线,FG 是∠PFC 的平分线,∴∠AEG =12∠AEP =25°,∠GFC =12∠PFC =60°,过点G 作GM ∥AB ,∴∠MGE =∠AEG =25°(两直线平行,内错角相等)∵AB ∥CD (已知),∴GM ∥CD (平行于同一条直线的两直线平行),∴∠GFC =∠MGF =60°(两直线平行,内错角相等).∴∠G =∠MGF -∠MGE =60°-25°=35°.故答案为:35.(2)当点A 在点B 左侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=, ∴∠ABE =∠BEF =12α,∠CDE =∠DEF =12β, ∴∠BED =∠BEF +∠DEF =2αβ+;当点A 在点B 右侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠DEF =∠CDE ,∠ABG =∠BEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=,∴∠DEF =∠CDE =12β,∠ABG =∠BEF =12α, ∴∠BED =∠DEF -∠BEF =2βα-;综上:∠BED 的度数为2αβ+或2βα-.【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.二十五、解答题25.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。

七年级数学下册期末复习(沪科版)

七年级数学下册期末复习(沪科版)
>x–1

3
解:解不等式①得:x ≤ 1.
解不等式②得:x < 4.
所以不等式组的解集为:x ≤ 1.
用数轴
表示为
01
4
4. 若不等式 3x – m ≤ 0 的正整数解是 1,2, 3,则 m 的取值范围是_____9__≤_m__<__1_2___.
5. 若代数式 (3 2k 5)的值不大于代数式 5k 2
多项式除以单项式,先把这个多项式的每 一项除以这个单项式,再把所得的商相加.
4.零指数幂,负整数幂,科学记数法
任何一个不等于零的数的零次幂都等于1;
任何一个不等于零的数的-p( p是正整数)次幂,
等于这个数的 p次幂的倒数.即a0=1(a≠0),
a p
1 ap
(a≠0,p是正整数).绝对值小于1的数可记成
– 1 的值,则 k 的取值范围是 _k__≥_____.
6. 如果不等式 4x – 3a > – 1 与不等式 2(x
– 1)+ 3 > 5 的解集相同,请确定 a 的值.
解:解 4x – 3a > – 1 ,
得 x > 3a – 14.
解 2(x – 1)+ 3 > 5,
得 x > 2.
由于两个不等式的解集相同,
04 列:根据题中不等关系,列出一元一次不等式; 05 解:求出一元一次不等式的解集; 06 答:检验答案是否符合实际意义,并作答.
随堂练习
1.已知 a > b,用“>”或“<”填空.
a+3 > b+3
2 a < 2 b
3
3
– 2a + 1 < – 2b + 1

初一数学复习计划

初一数学复习计划

初一数学复习计划篇一:七年级数学期末复习计划(1)一、复习目标1、通过复习使学生在回顾基础知识的同时,掌握“双基”,构建自己的知识体系,掌握解决数学问题的方法和能力,从中体会到数学与生活的密切联系。

2、在复习中,让学生进一步探索知识间的关系,明确内在的联系,培养学生分析问题和解决问题能力,以及计算能力。

3、通过专题强化训练,让学生体验成功的快乐,激发其学习数学的兴趣。

4、通过摸拟训练,培养学生考试的技能技巧。

二、复习重点1、第1章:有理数的运算。

2、第2章:整式的运算。

3、第3章:一元一次方程及应用题。

4.第4章:几何图形三、复习方式1、总体思想:分章复习,同时综合测试二次。

2、单元复习方法:教师先做统领全章。

收集各小组反馈的情况进行重点讲解,布置作业查漏补缺。

3、综合测试:教师及时认真阅卷,讲评找出问题及时训练、辅导。

四、时间安排第一阶段:章节复习12月16——20日:第一章、12月23日—27日:第二章;12月30-14年1月3日:第三章;1月6日--10日:第四章第二阶段:综合测试12月227日:综合测试1元月6日:综合测试2元月13.14.15日综合复习。

五、复习措施及注意事项(一)分单元复习阶段的措施:1、复习教材中的定义、概念、规则,进行正误辨析,教师引导学生回归书本知识,重视对书本基本知识的整理与再加工,规范解题书写和作图能力的培养。

2、在复习应用题时增加开放性的习题练习,题目的出现可以是信息化、图形化方法形式,或联系生活实际为背景出现信息。

让学生自主发现问题,解决问题。

题目有层次,难度适中,照顾不同层次学生的学习。

3、重视课本中的“数学活动”,挖掘教材的编写意图,防止命题者以数学活动为载体,编写相关“拓展延伸”的探究性题型以及对例、习题的改编题。

(二)综合测试阶段的注意点1、认真分析前两年的统考试卷,基本把握命题思想,掌握重难点,侧重点,基本点。

2、根据历年考试情况,精心汇编一些模拟试卷,教师给学生讲解一些应试技巧,提高应试能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学期末复习一、考点突破1. 熟练掌握有理数和代数式的相关概念;2. 熟练地进行有理数的相关运算;3. 熟练地进行整式的相关运算。

二、重难点提示重点:相关概念。

难点:运算性质。

2. 单项式,单项式的系数、次数 例如:233x y -的系数是-3,次数是53. 多项式、多项式的次数4. 整式:单项式和多项式统称为整式5. 代数式的值:(1)代数式中的字母用负数来替代时,负数要添上括号; (2)代数式有乘方运算,当底数中的字母用分数来替代时,分数要添上括号。

6. 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

【典例精析】例题1 若a 是任意有理数,则下列结论正确的是( )A. a 的相反数是a -B. a 的倒数是1a,a ”D 1.23 , 1 , , π-) 1,m m同类项:(1)注意两个“相同”:一是所含字母相同;二是相同字母的指数也相同;这两个条件缺一不可;(2)同类项与系数无关;(3)同类项与字母的排列顺序无关; (4)常数项均为同类项。

微课程2:有理数的运算【考点精讲】一、有理数的运算1. 有理数的加法:(1)同号的两数相加,取相同的符号,并把绝对值相加;(2)异号的两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。

2. 有理数的减法:减去一个数,等于加上这个数的相反数。

用数学符号表示为:a -b=a+(-b )。

3. 有理数的乘法:(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)0与任何数相乘都得0;(3)有理数乘法法则推广:几个非零有理数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正;再把绝对值相乘。

4. 有理数的除法:(1)将除法转化为乘法:除以一个数等于乘以这个数的倒数; (2)类似于乘法法则:①两个不等于0的数相除,同号得正,异号得负,并把绝对值相除; ②0除以任何一个不等于0的数,都得0。

5. 有理数的乘方二、运算律:1. 加法运算律:(1)加法交换律:两个数相加,交换加数的位置,和________________。

用数学符号表示为:________________。

(2)加法结合律:三个数相加,先把前两个数相加,再与第三个数相加,或者先把后两个数相加,再与第一个数相加,和______。

用数学符号表示为:________________。

2. 乘法运算律:(1)乘法交换律:在进行乘法运算时,可以交换任意两个因数的位置,所得的积不变;用等式表示为a b b a ⨯=⨯;(2)乘法结合律:在进行乘法运算时,可以将几个因数结合在一起先相乘,再把所得的积与其他的因数相乘,所得的积不变;用等式表示为()a b c a b c ⨯⨯=⨯⨯;(3)乘法分配律:一个数同两个数的和相乘,可以把这个数分别同这两个数相乘,再把所得的积相加;用等式表示为()a b c a b a c ⨯+=⨯+⨯。

三、有理数的混合运算运算顺序:(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右依次进行;(3)如有括号,先做括号内的运算,若含有多重括号,一般按照先小括号、再中括号、最后大括号的顺序进行。

四、在进行有理数的运算时,大家要有意识地根据题目的特点灵活地选用运算律简化运算,对于有理数的混合运算,为了降低错误率,同学们可以采用先分段,再计算的方法。

【典例精析】例题1 计算:()711112 6.67 2.5643 2.56 2.678248⎛⎫----+----- ⎪⎝⎭。

思路导航:首先将减法运算转化为加法运算,再选用适当的运算律简化运算。

答案:解:()()()()()711112 6.67 2.5643 2.56 2.678248711112 6.67 2.5643 2.56 2.678248711113 6.67 2.67 2.56 2.562488241017⎛⎫----+----- ⎪⎝⎭=-+-+---+⎛⎫⎛⎫=--+-++-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫减法转化为加法相反数结合法、凑整法、同分母结合法 ⎛ ⎝12013++⨯之前的课中曾经有这样一道题:1122012++⨯⨯每个加数的分子均为1,而分母是两个连续的自然数,对于这样的数可以进行如下拆分:111122=-⨯,1112323=-⨯,…,1112012201320122013=-⨯,那么借助于这道题的经验,我们尝试拆分今天这道题中的每个加数,11133=⨯,可是12133-=,即111133≠-⨯,由此可知不能按照以前的方法进行拆分。

我们不妨再进行尝试,看能否寻找到规律,113515=⨯,1123515-=;115735=⨯,1125735-=,于是我们可以发现:11111323⎛⎫=⨯- ⎪⨯⎝⎭, 111135235⎛⎫=⨯- ⎪⨯⎝⎭,111157257⎛⎫=⨯- ⎪⨯⎝⎭。

答案:解:111113355720132015111111111111220132013112013++++⨯⨯⨯⨯⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝++ ⎝++-微课程3:代数式的运算【考点精讲】1. 合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

2. 去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉,原括号里各项的符号都不改变; 括号前是“-”号,把括号和它前面的“-”号去掉,原括号里各项的符号都要改变。

3. 整式的加减:综合利用合并同类项和去括号法则进行整式的加减运算,一般步骤是:先去括号,再合并同类项。

整式的加减: 举例:(z y x -+))()(z y x z y x ---+-+→用括号括起来 =z y x z y x z y x ++-+-+-+ →去括号(注意括号前是“-”号时要变号) =z z z y y y x x x ++-+-+-+ →将同类项写到一起 =z y x ++→合并同类项,写出结果4. 代数式的求值()2224222214a a c ab ππ=-⨯⨯-⨯⨯=--- 当12a =,10b =,11c =时,()()222222141121112104121144441211404a c ab ππππ---=-⨯--=--=- 点评:求不规则图形的面积时,因为没有现成的面积公式可以直接使用,我们通常将问题转换为规则图形的面积的和或差来进行计算,这种求图形面积的方法叫作割补法。

例题3 已知9m n +=,235p q -+=,求多项式()()3734m q n q p ------+⎡⎤⎣⎦的值。

思路导航:本题的已知条件给出了两个多项式的值,而不是单个字母的取值,所以应该想到用整体代入求代数式的值的方法。

答案:解:()()()()()()()373437343734336432323223m q n q p m q n q p m q n q p m n q p m n q p m n p q ------+⎡⎤⎣⎦=-+-++=-+---=--+-=-++-=-++-+因为9m n +=,235p q -+=, 所以原式=3925-⨯+⨯ 271017=-+=-点评:本题融合了这样几个知识点:1. 去括号;2. 合并同类项;3. 逆用乘法分配律;4. 整体思想;5. 求代数式的值。

解决本题的关键在于将待求的多项式用含有m n +和23p q -+的代数式表示出来,方便代入求值。

例题 4 阳春三月,某中学美术兴趣小组打算利用周末外出写生,领队张老师去咨询了甲、乙两个旅游社,甲旅行社的优惠方案是:张老师买全票一张,则学生可享受半价优惠;乙旅行社的优惠方案是:包括张老师在内全部按全票价的六折优惠。

若甲、乙旅行社全票价均为300元,且美术兴趣小组共有学生x 人。

(1)分别用代数式表示甲、乙旅行社的收费; (2)若有学生10人,那么选择哪家旅行社更省钱。

思路导航:(1)列代数式,甲旅行社收费由两部分构成:张老师1人买全票一张300元,学生x 人每人150元,为150x 元,两者相加即为甲旅行社的收费;乙旅行社按照()1x +人,每人180元收费,一共()1801x +元;(2)将10x =分别代入两个代数式中进行计算,然后比较即可。

答案:解:(1)甲旅行社收费:150300x +元,乙旅行社收费:()1801x +元; (2)当10x =时,甲旅行社收费:150300150103001800x +=⨯+=元, 乙旅行社收费:()()18011801011980x +=⨯+=元,若有学生10人,选择甲旅行社更省钱。

点评:这是一道与生活实际紧密结合的题,体现了数学的运用价值,实质是列代数式以及将数值代入代数式进行求值,关键在于理解题意,然后将文字“翻译”成数学符号,这类题型在八年级的一次函数章节还将遇到,这里先给大家一个初步的印象。

【总结提升】整式的运算与数的运算具有一致性,而且整式的运算更具有一般性,可以这样说:数的运算是整式运算的一种特殊情形,所以在学习整式加减的过程中要不断与有理数的运算进行类比,利用我们所熟悉的数的运算来学习整式的运算,把新的问题转化为已知的问题、熟悉的问题。

合并同类项的步骤:)(3)(2x y y x ---,令t=y x -,则t x y -=-(答题时间:100分钟,满分:100分)A. 5个B. 4个C. 3个D. 2个 8. 用代数式表示“m 的3倍与n 的差的平方”,正确的是( )A. 2)3(n m -B. 2)(3n m -C. 23n m - D. 2)3(n m -9. 若|m |=3,|n |=2,且mn<0,则m +n 的值是( )A. 1或-1B. 5或-5C. 5或-1D. 1或-510. 一列火车长m 米,以每秒n 米的速度通过一个长为p 米的隧道,用代数式表示这列火车从进入隧道开始到车身完全通过隧道所需的时间为( )A.n m p +秒 B. np秒 C. n mn p +秒 D. n m p -秒 二、填空题(每小题3分,共30分)11. 某次数学测试全班的平均成绩为78分,某同学考了80分,记作+2分,那么75分应记作________。

12. 在数轴上将表示-2的点沿数轴平移3个单位长度,得到的点所表示的数是________。

13. 比较大小:①1- 0,②23-____34-。

1)盆花,每个图案花盆的总数为S ,按此推断,用含有n 的代数式来表示S ,则0、122. (本题12分)计算: (1)⎪⎭⎫⎝⎛+--⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--614131412213;(2)137()(8)248--⨯-; (3)52)45()5(457--⨯-+⨯-;(4)()211110.5233⎡⎤⎛⎫⎡⎤+--⨯⨯-- ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦。

相关文档
最新文档