2014年山东省泰安市中考数学试题及答案(扫描版)
泰安市中考数学试题含答案解析
山东省泰安市中考数学试卷(含解析)一、(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个,均记零分)1.计算(﹣2)0+9÷(﹣3)的结果是()A.﹣1 B.﹣2 C.﹣3 D.﹣4【分析】根据零指数幂和有理数的除法法则计算即可.【解答】解:原式=1+(﹣3)=﹣2,故选:B.【点评】本题考查的是零指数幂和有理数的除法运算,掌握任何不为0的数的零次幂为1、灵活运用有理数的除法法则是解题的关键.2.下列计算正确的是()A.2=﹣4a2C.m3m2=m6D.a6÷a2=a4【分析】直接利用同底数幂的乘除法运算法则以及结合积的乘方运算法则和幂的乘方运算法则分别化简求出答案.【解答】解:A、(a2)3=a6,故此选项错误;B、(﹣2a)2=4a2,故此选项错误;C、m3m2=m5,故此选项错误;D、a6÷a2=a4,正确.故选:D.【点评】此题主要考查了同底数幂的乘除法运算法则以及积的乘方运算法则和幂的乘方运算等知识,正确掌握相关法则是解题关键.3.下列图形:任取一个是中心对称图形的概率是()A.B.C.D.1【分析】由共有4种等可能的结果,任取一个是中心对称图形的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵共有4种等可能的结果,任取一个是中心对称图形的有3种情况,∴任取一个是中心对称图形的概率是:.故选C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.化简:÷﹣的结果为()A.B.C.D.a【分析】先将分式的分子分母因式分解,同时将除法转化为乘法,再计算分式的乘法,最后计算分式的加法即可.【解答】解:原式=×﹣=﹣=,故选:C.【点评】本题主要考查分式的混合运算,熟练掌握分式的混合运算顺序和运算法则是解题的关键.5.如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为()A.90°B.120°C.135°D.150°【分析】根据圆锥的底面半径得到圆锥的底面周长,也就是圆锥的侧面展开图的弧长,根据勾股定理得到圆锥的母线长,利用弧长公式可求得圆锥的侧面展开图中扇形的圆心角.【解答】解:∵圆锥的底面半径为3,∴圆锥的底面周长为6π,∵圆锥的高是6,∴圆锥的母线长为=9,设扇形的圆心角为n°,∴=6π,解得n=120.答:圆锥的侧面展开图中扇形的圆心角为120°.故选B.【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.6.国家统计局的相关数据显示,我国国民生产总值(GDP)约为67.67万亿元,将这个数据用科学记数法表示为()A.6.767×1013元B.6.767×1012元C.6.767×1012元D.6.767×1014元【分析】首先把5.3万亿化为53000亿,再用科学记数法表示53000,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67.67万亿元=6.767×1013元,故选:A.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2 B.3 C.4 D.6【分析】由平行四边形的性质和角平分线得出∠F=∠FCB,证出BF=BC=8,同理:DE=CD=6,求出AF=BF﹣AB=2,AE=AD﹣DE=2,即可得出结果.【解答】解:∵四边形AB CD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=4;故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证明三角形是等腰三角形是解决问题的关键.8.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【解答】解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选A.【点评】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.9.一元二次方程(x+1)2﹣2(x﹣1)2=7的根的情况是()A.无实数根B.有一正根一负根C.有两个正根D.有两个负根【分析】直接去括号,进而合并同类项,求出方程的根即可.【解答】解:∵(x+1)2﹣2(x﹣1)2=7,∴x2+2x+1﹣2(x2﹣2x+1)=7,整理得:﹣x2+6x﹣8=0,则x2﹣6x+8=0,(x﹣4)(x﹣2)=0,解得:x1=4,x2=2,故方程有两个正根.故选:C.【点评】此题主要考查了一元二次方程的解法,正确利用完全平方公式计算是解题关键.10.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【解答】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°,故选:B.【点评】本题考查的是圆周角定理、平行四边形的性质定理、等边三角形的性质的综合运用,掌握同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、等腰三角形的三线合一是解题的关键.11.某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)选修课 A B C D E F人数 40 60 100根据图表提供的信息,下列结论错误的是()A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少【分析】通过计算得出选项A、B、C正确,选项D错误,即可得出结论.【解答】解:被调查的学生人数为60÷15%=400(人),∴选项A正确;扇形统计图中D的圆心角为×360°=90°,∵×360°=36°,360°(17.5%+15%+12.5%)=162°,∴扇形统计图中E的圆心角=360°﹣162°﹣90°﹣36°=72°,∴选项B正确;∵400×=80(人),400×17.5%=70(人),∴选项C正确;∵12.5%>10%,∴喜欢选修课A的人数最少,∴选项D错误;故选:D.【点评】本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.12.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B. C.D.【分析】由y=ax2+bx+c的图象判断出a>0,b<0,于是得到一次函数y=ax+b的图象经过一,二,四象限,即可得到结论.【解答】解:∵y=ax2+bx+c的图象的开口向上,∴a>0,∵对称轴在y轴的左侧,∴b>0,∴一次函数y=ax+b的图象经过一,二,三象限.故选A.【点评】本题考查了二次函数和一次函数的图象,解题的关键是明确二次函数的性质,由函数图象可以判断a、b的取值范围.13.某机加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x人加工A零件,由题意列方程得()A. =B. =C. =D.×30=×20【分析】直接利用现要加工2100个A零件,1200个B零件,同时完成两种零件的加工任务,进而得出等式即可.【解答】解:设安排x人加工A零件,由题意列方程得:=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出加工两种零件所用的时间是解题关键.14.当x满足时,方程x2﹣2x﹣5=0的根是()A.1±B.﹣1 C.1﹣D.1+【分析】先求出不等式组的解,再求出方程的解,根据范围即可确定x的值.【解答】解:,解得:2<x<6,∵方程x2﹣2x﹣5=0,∴x=1±,∵2<x<6,∴x=1+.故选D.【点评】本题考查解一元一次不等式、一元二次方程的解等知识,熟练掌握不等式组以及一元二次方程的解法是解题的关键,属于中考常考题型.15.在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵﹣2,﹣1,0,1,2这五个数中任取两数m,n,一共有20种可能,其中取到0的有8种可能,∴顶点在坐标轴上的概率为=.故选A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比,属于中考常考题型.16.如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)()A.22.48 B.41.68 C.43.16 D.55.63【分析】过点P作PA⊥MN于点A,则若该船继续向南航行至离灯塔距离最近的位置为PA的长度,利用锐角三角函数关系进行求解即可【解答】解:如图,过点P作PA⊥MN于点A,MN=30×2=60(海里),∵∠MNC=90°,∠CPN=46°,∴∠MNP=∠MNC+∠CPN=136°,∵∠BMP=68°,∴∠PMN=90°﹣∠BMP=22°,∴∠MPN=180°﹣∠PMN﹣∠PNM=22°,∴∠PMN=∠MPN,∴MN=PN=60(海里),∵∠CNP=46°,∴∠PNA=44°,∴PA=PNsin∠PNA=60×0.6947≈41.68(海里)故选:B.【点评】此题主要考查了方向角问题,熟练应用锐角三角函数关系是解题关键.17.如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于()A.1:B.1:C.1:2 D.2:3【分析】由AB是⊙O的直径,得到∠ACB=90°,根据已知条件得到,根据三角形的角平分线定理得到=,求出AD=AB,BD=AB,过C作CE⊥AB于E,连接OE,由CE平分∠ACB交⊙O于E,得到OE⊥AB,求出OE=AB,CE=AB,根据三角形的面积公式即可得到结论.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=30°,∴,∵CE平分∠ACB交⊙O于E,∴=,∴AD=AB,BD=AB,过C作CE⊥AB于E,连接OE,∵CE平分∠ACB交⊙O于E,∴=,∴OE⊥AB,∴OE=AB,CE=AB,∴S△ADE:S△CDB=(ADOE):(BDCE)=():()=2:3.故选D.【点评】本题考查了圆周角定理,三角形的角平分线定理,三角形的面积的计算,直角三角形的性质,正确作出辅助线是解题的关键.18.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可.【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.【点评】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.19.当1≤x≤4时,mx﹣4<0,则m的取值范围是()A.m>1 B.m<1 C.m>4 D.m<4【分析】设y=mx﹣4,根据题意列出一元一次不等式,解不等式即可.【解答】解:设y=mx﹣4,由题意得,当x=1时,y<0,即m﹣4<0,解得m<4,当x=4时,y<0,即4m﹣4<0,解得,m<1,则m的取值范围是m<1,故选:B.【点评】本题考查的是含字母系数的一元一次不等式的解法,正确利用函数思想、数形结合思想是解题的关键.20.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD 交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.B.C.D.【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案.【解答】解:∵△ABC是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,∴∠BPD=∠CAP,∴△BPD∽△CAP,∴BP:AC=BD:PC,∵正△ABC的边长为4,BP=x,BD=y,∴x:4=y:(4﹣x),∴y=﹣x2+x.故选C.【点评】此题考查了动点问题、二次函数的图象以及相似三角形的判定与性质.注意证得△BPD∽△CAP 是关键.二、填空题(本大题共4小题,满分12分.只要求填写最后结果,每小题填对得3分,)21.将抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为y=2(x+2)2﹣2.【分析】按照“左加右减,上加下减”的规律求得即可.【解答】解:抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位得到y=2(x﹣1+3)2+2﹣4=2(x+2)2﹣2.故得到抛物线的解析式为y=2(x+2)2﹣2.故答案为:y=2(x+2)2﹣2.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.22.如图,半径为3的⊙O与Rt△AOB的斜边AB切于点D,交OB于点C,连接CD交直线OA于点E,若∠B=30°,则线段AE的长为.【分析】要求AE的长,只要求出OA和OE的长即可,要求OA的长可以根据∠B=30°和OB的长求得,OE可以根据∠OCE和OC的长求得.【解答】解:连接OD,如右图所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=,∵∠COE=90°,OC=3,∴OE=OCtan60°=,∴AE=OE﹣OA=,故答案为:.【点评】本题考查切线的性质,解题的关键是明确题意,找出所求问题需要的条件.23.如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF 的面积为.【分析】根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出BF,根据勾股定理求出OF,根据三角形的面积公式计算即可.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD==10,∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,∴=,即=,解得,BF=,则OF==,则△BOF的面积=×OF×OB=,故答案为:.【点评】本题考查的是矩形的性质、线段垂直平分线的性质以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.24.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l 上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n﹣1B n顶点B n的横坐标为2n+1﹣2.【分析】先求出B1、B2、B3…的坐标,探究规律后,即可根据规律解决问题.【解答】解:由题意得OA=OA1=2,∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,∴B1(2,0),B2(6,0),B3(14,0)…,2=22﹣2,6=23﹣2,14=24﹣2,…∴B n的横坐标为2n+1﹣2.故答案为 2n+1﹣2.【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.三、解答题(共5小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.(1)求反比例函数和一次函数的表达式;(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.【分析】(1)由正方形OABC的顶点C坐标,确定出边长,及四个角为直角,根据AD=2DB,求出AD 的长,确定出D坐标,代入反比例解析式求出m的值,再由AM=2MO,确定出MO的长,即M坐标,将M与D坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)把y=3代入反比例解析式求出x的值,确定出N坐标,得到NC的长,设P(x,y),根据△OPM 的面积与四边形OMNC的面积相等,求出y的值,进而得到x的值,确定出P坐标即可.【解答】解:(1)∵正方形OABC的顶点C(0,3),∴OA=AB=BC=OC=3,∠OAB=∠B=∠BCO=90°,∵AD=2DB,∴AD=AB=2,∴D(﹣3,2),把D坐标代入y=得:m=﹣6,∴反比例解析式为y=﹣,∵AM=2MO,∴MO=OA=1,即M(﹣1,0),把M与D坐标代入y=kx+b中得:,解得:k=b=﹣1,则直线DM解析式为y=﹣x﹣1;(2)把y=3代入y=﹣得:x=﹣2,∴N(﹣2,3),即NC=2,设P(x,y),∵△OPM的面积与四边形OMNC的面积相等,∴(OM+NC)OC=OM|y|,即|y|=9,解得:y=±9,当y=9时,x=﹣10,当y=﹣9时,x=8,则P坐标为(﹣10,9)或(8,﹣9).【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定一次函数、反比例函数解析式,坐标与图形性质,正方形的性质,以及三角形面积计算,熟练掌握待定系数法是解本题的关键.26.某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设直拍球拍每副x元,横拍球每副y元,根据题意列出二元一次方程组,解方程组即可;(2)设购买直拍球拍m副,根据题意列出不等式,解不等式求出m的范围,根据题意列出费用关于m的一次函数,根据一次函数的性质解答即可.【解答】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最大值,最大值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.【点评】本题考查的是列二元一次方程组、一元一次不等式解实际问题,正确列出二元一次方程组和一元一次不等式并正确解出方程组和不等式是解题的关键.27.如图,在四边形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中点,AD⊥AE.(1)求证:AC2=CDBC;(2)过E作EG⊥AB,并延长EG至点K,使EK=EB.①若点H是点D关于AC的对称点,点F为AC的中点,求证:FH⊥GH;②若∠B=30°,求证:四边形AKEC是菱形.【分析】(1)欲证明AC2=CDBC,只需推知△ACD∽△BCA即可;(2)①连接AH.构建直角△AHC,利用直角三角形斜边上的中线等于斜边的一半、等腰对等角以及等量代换得到:∠FHG=∠CAB=90°,即FH⊥GH;②利用“在直角三角形中,30度角所对的直角边等于斜边的一半”、“直角三角形斜边上的中线等于斜边的一半”推知四边形AKEC的四条边都相等,则四边形AKEC是菱形.【解答】证明:(1)∵AC平分∠BCD,∴∠DCA=∠ACB.又∵AC⊥AB,AD⊥AE,∴∠DAC+∠CAE=90°,∠CAE+∠EAB=90°,∴∠DAC=∠EAB.又∵E是BC的中点,∴AE=BE,∴∠EAB=∠ABC,∴∠DAC=∠ABC,∴△ACD∽△BCA,∴=,∴AC2=CDBC;(2)①证明:连接AH.∵∠ADC=∠BAC=90°,点H、D关于AC对称,∴AH⊥BC.∵EG⊥AB,AE=BE,∴点G是AB的中点,∴HG=AG,∴∠GAH=GHA.∵点F为AC的中点,∴AF=FH,∴∠HAF=∠FHA,∴∠FHG=∠AHF+∠AHG=∠FAH+∠HAG=∠CAB=90°,∴FH⊥GH;②∵EK⊥AB,AC⊥AB,∴EK∥AC,又∵∠B=30°,∴AC=BC=EB=EC.又EK=EB,∴EK=AC,即AK=KE=EC=CA,∴四边形AKEC是菱形.【点评】本题考查了四边形综合题,需要熟练掌握相似三角形的判定与性质,“直角三角形斜边上的中线等于斜边的一半”、“在直角三角形中,30度角所对的直角边等于斜边的一半”以及菱形的判定才能解答该题,难度较大.28.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.【分析】(1)设出抛物线解析式,用待定系数法求解即可;(2)先求出直线AB解析式,设出点P坐标(x,﹣x2+4x+5),建立函数关系式S四边形APCD=﹣2x2+10x,根据二次函数求出极值;(3)先判断出△HMN≌△AOE,求出M点的横坐标,从而求出点M,N的坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=﹣1,y=﹣(x﹣2)2+9=﹣x2+4x+5,(2)当y=0时,﹣x2+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直线AB的解析式为y=﹣x+5;设P(x,﹣x2+4x+5),∴D(x,﹣x+5),∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,∵AC=4,∴S四边形APCD=×AC×PD=2(﹣x2+5x)=﹣2x2+10x,∴当x=﹣=时,∴S四边形APCD最大=,(3)如图,过M作MH垂直于对称轴,垂足为H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,∴MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+0E2=26∵MN=AE∴MN2=AE2,∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴1+(b+2)2=26,∴b=3,或b=﹣7,∴10+b=13或10+b=3∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3),【点评】此题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值额确定方法,平行四边形的性质和判定,解本题的关键是建立函数关系式求极值.29.(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则的值是多少?(直接写出结论,不要求写解答过程)【分析】(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论;(3)作DF∥BC交AC于F,同(1)得:△DBE≌△CFD,得出EB=DF,证出△ADF是等腰直角三角形,得出DF=AD,即可得出结果.【解答】(1)证明:作DF∥BC交AC于F,如图1所示:则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,∵△ABC是等腰三角形,∠A=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,∴△ADF是等边三角形,∠DFC=120°,∴AD=DF,∵∠DEC=∠DCE,∴∠FDC=∠DEC,ED=CD,在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD;(2)解:EB=AD成立;理由如下:作DF∥BC交AC的延长线于F,如图2所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD;(3)解: =;理由如下:作DF∥BC交AC于F,如图3所示:同(1)得:△DBE≌△CFD(AAS),∴EB=DF,∵△ABC是等腰直角三角形,DF∥BC,∴△ADF是等腰直角三角形,∴DF=AD,∴=,∴=.【点评】本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、等腰直角三角形的判定与性质、平行线的性质等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。
2014年泰安中考数学模拟试题
2014年泰安中考数学模拟试题一、选择题(共20小题,每小题3分,满分60分)1、-5的倒数是()A、 B、 C、-5 D、52、a2•a3等于()A、3a2B、a5C、a6D、a83、下列事件为必然事件的是()A、打开电视机,它正在播广告B、抛掷一枚硬币,一定正面朝上C、投掷一枚普通的正方体骰子,掷得的点数小于7D、某彩票的中奖机会是1%,买1张一定不会中奖4、下面如图是一个圆柱体,则它的正视图是()A B C D5、若⊙O1的半径为3,⊙O2的半径为1,且O1O2=4,则⊙O1与⊙O2的位置关系是()A、内含B、内切C、相交D、外切6、下列正多边形中,不能铺满地面的是()A、正三角形B、正方形C、正六边形D、正七边形7、若a、b 是正数,a-b=l,ab=2,则a+b=()A、-3B、3C、±3D、98、现给出四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于600。
其中不正确的命题的个数是()A、1个B、2个C、3个D、4个9、下面四个图形都是由六个相同的正方形组成,将其折叠后能围成正方体的是( )10、将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是( ) A 、矩形 B 、三角形 C 、梯形 D 、菱形11甲x =82分,乙x =82分,甲2S =245,乙2S =190,那么成绩较为整齐的是( ) A 、甲班 B 、乙班 C 、两班一样整齐 D 、无法确定12、某商场的营业额1999年比1998年上升10%,2000年比1999年上升10%,而2001年和2002年连续两年平均每年比上一年降低10%,那么2002年的营业额比1998年的营业额( )A 、降低了2%B 、没有变化C 、上升了2%D 、降低了1.99% 13、下列各图中,每个正方形网格都是由四个边长为1的小正方形组成,其中阴影部分面积为25的是( )14、某村办工厂今年前5个月生产某种产品的总量c (件)关于时间t (月)的函数图象如图所示,则该厂对这种产品来说( )A 、1月至3月每月生产总量逐月增加,4、5两月每 月生产总量逐月减少B 、1月至3月每月生产总量逐月增加,4、5两月每 月生产总量与3月份持平C 、1月至3月每月生产总量逐月增加,4、5两月均停止生产(A )(B )(C )t(月)D 、1月至3月每月生产总量不变, 4、5两均停止生产15、某游泳池分为深水区和浅水区,每次消毒后要重新将水注满泳池,假定进水管的水速是均匀的,那么泳池内水的高度h 随时间t 变化的图象是( )16、长沙地区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:34,35,36,34,36,37,37,36,37,37(单位℃).则这组数据的中位数和众数分别是( )A .36,37B .37,36C .36.5,37D .37,36.517.如图3,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD=105°, 则∠DCE 的大小是( )A .115°B .l05°C .100°D .95°18.某住宅小区六月份1日至5日母天用水量变化情况如图4所示.那么这5天平均母天的用水量是( )A .30吨B .31吨C .32吨D .33吨19) A .6 B .12 C.D.20.二次函教225y x x =+-有( )A .最大值5-B .最小值5-C .最大值6-D .最小值6-A .B .C .D .二、填空题(共10小题,每小题4分,满分40分)21、根据泉州市委、市政府实施“五大战役”的工作部署,全市社会事业民生战役计划投资 3 653 000 000元,将3 653 000 000用科学记数法表示为________________22、已知函数y=-3(x-2)2+4,当x=_______时,函数取得最大值为_________23、如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB=_____ ,sinA=____24、如图,如果边长为1的正六边形ABCDEF绕着顶点A顺时针旋转60°后与正六边形AGHMNP 重合,那么点B的对应点是点_____,点E在整个旋转过程中,所经过的路径长为_____________(结果保留π).第23题图第24题图三、解答题(共9小题,满分89分)25、计算:26、先化简,再求值:(x+1)2+x(1-x),其中x=-2.27、如图,已知点E ,C 在线段BF 上,BE=CF ,AB ∥DE ,∠ACB=∠F .求证:△ABC ≌△DEF .28、四张小卡片上分别写有数字1、2、3、4.它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字2的概率;(2)随机地从盒子里抽取一张.不放回再抽取第二张.请你用画树状图或列表的方法表示所有等可能的结果,并求抽到的数字之和为5的概率.29、如图,在方格纸中建立直角坐标系,已知一次函数y 1=-x+b 的图象与反比例函数的图象相交于点A (5,1)和A 1. (1)求这两个函数的关系式;(2)由反比例函数的图象特征可知:点A 和A 1关于直线y=x 对称.请你根据图象,填写点A 1的坐标及y 1<y 2时x 的取值范围.30、如图1,在第一象限内,直线y=mx与过点B(0,1)且平行于x轴的直线l相交于点A,半径为r的⊙Q与直线y=mx、x轴分别相切于点T、E,且与直线l分别交于不同的M、N两点.(1)当点A的坐标为(,p)时,①填空:p=___ ,m= ___,∠AOE= ___.②如图2,连接QT、QE,QE交MN于点F,当r=2时,试说明:以T、M、E、N为顶点的四边形是等腰梯形;(2)在图1中,连接EQ并延长交⊙Q于点D,试探索:对m、r的不同取值,经过M、D、N三点的抛物线y=ax2+bx+c,a的值会变化吗?若不变,求出a的值;若变化.请说明理由.参考答案1A 2B 3C 4A 5D 6D 7B 8、A;提示:正确的是④9、C;提示:根据展开图10、B;提示:三角形11、B;提示:根据方差比较12、D;提示:没有变化13、D;提示:根据图形的割补关系,注意到小正方形的面积为1 14、B;提示:1月至3月每月生产总量逐月增加,4、5两月每月生产总量与3月份持平答案:15、B;提示:在每小部分水上涨成直线,当它们的比例系数k是不同的16、A;提示:根据中位数的概念,又37出现4次,次数最多 17、 B 18、 C 19、 B 20、D21、3.653×10922、 2 , 4 23、 5, 24、 G,25、解:原式=3+1- +6×=4-4+3=3 =3.26、解:原式=x2+2x+1+x-x2=3x+1,当x=-2时,原式=3×(-2)+1=-6+1=-5.27、证明:∵AB∥DE ∴∠B=∠DEF∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴△ABC≌△DEF.28、解:(1)P(抽到数字2)= ;(2)画树状图:共有12种等可能的结果,其中抽到的数字之和为5占4种,∴P(抽到的数字之和为5)= = .29、解:(1)∵点A(5,1)是一次函数y1=-x+b图象与反比例函数y2= 图象的交点,∴-5+b=1,=1,解得b=6,k=5,∴y1=-x+6,y2= ;(2)由函数图象可知A1(1,5),当0<x<1或x>5时,y1<y2.30 解:(1)四边形DEFB 是平行四边形.证明:∵D 、E 分别是OB 、OA 的中点,∴DE ∥AB ,同理,EF ∥OB ,∴四边形DEFB 是平行四边形; (2)如图,连接BE ,S △AOB = ×8×b=4b ,∵E 、F 分别为OA 、AB 的中点, ∴S △AEF = S △AEB = S △AOB =b , 同理S △EOD =b ,∴S=S △AOB -S △AEF -S △ODE =4b-b-b=2b , 即S=2b (b >0);(3)以E 为圆心,OA 长为直径的圆记为⊙E ,①当直线x=b 与⊙E 相切或相交时,若点B 是切点或交点,则∠ABO=90°,由(1)知,四边形DEFB 是矩形,此时0<b ≤4,可得△AOB ∽△OBC ,∴=,即OB 2=OA •BC=8t ,在Rt △OBC 中,OB 2=BC 2+OC 2=t 2+b 2,∴t 2+b 2=8t , ∴t 2-8t+b 2=0,解得t=4±,②当直线x=b 与⊙E 相离时,∠ABO ≠90°, ∴四边形DEFB 不是矩形,综上所述:当0<b ≤4时,四边形DEFB 是矩形,这时,t=4±,当b >4时,四边形DEFB 不是矩形;解:(1)∵点A 的坐标为( ,p ),点A 在直线l 上,∴p=1,即点A 坐标为(,1);而点A在直线y=mx上,∴1= m,解得m= ;在Rt△OBA中,OB=1,AB= ,∴OA= ,∴∠AOB=30°,∴∠AOE=60°.故答案为1,,60°;(2)连接TM,ME,EN,ON,如图,∵OE和OP是⊙Q的切线,∴QE⊥x轴,QT⊥OT,即∠QTA=90°,而l∥x轴,∴QE⊥MN,∴MF=NF,又∵当r=2,EF=1,∴QF=2-1=1,∴四边形QNEM为平行四边形,即QN∥ME,∴NQ=NE,即△QEN为等边三角形,∴∠NQE=60°,∠QNF=30°,在四边形OEQT中,∠QTO=∠QEO=90°,∠TOE=60°,∴∠TQE=360°-90°-90°-60°=120°,∴∠TQE+∠NQE=120°+60°=180°,∴T、Q、N三点共线,即TN为直径,∴∠TMN=90°,∴TN∥ME,∴∠MTN=60°=∠TNE,∴以T、M、E、N为顶点的四边形是等腰梯形;(3)对m、r的不同取值,经过M、D、N三点的抛物线y=ax2+bx+c,a的值不会变化.理由如下:连DM,ME,如图,∵DM为直径,∴∠DME=90°,而DM垂直平分MN,∴Rt△MFD∽Rt△EFM,∴MF2=EF•FD,设D(h,k),(h>0,k=2r),则过M、D、N三点的抛物线的解析式为:y=a(x-h)2+k,又∵M、N的纵坐标都为1,当y=1,a(x-h)2+k=1,解得x1=h- , x2=h+ ,∴MN=2 ,∴MF= MN= ,∴()2=1•(k-1),∵k>1,∴=k-1,∴a=-1.数学试卷第11 页(共11 页)。
2014年泰安初中数学学业水平测试题
2014年泰安初中学业水平考试数学模拟试题(全卷满分120分,考试时间120分钟)一、选择题:(每小题3分,共60分)1.在—5,—2,0,3这四个数中,最大的数是( ) A .—5B .—2C .0D .32.计算(—x 3y )2的结果是( C ) A .—x 6y2B .x 5y2C .x 6y2D .—x 5y 23.如图,AB ∥CD ,AC =AB ,∠A =100°,则∠BCD 的度数等于( ) A .40° B .50°C .45°D .30°4.下列图形中既是轴对称图形,又是中心对称图形的是( )A . B. C . D .5.若等腰三角形的两边长分别为2和4,则这个等腰三角形的周长为( ) A .10B .8C .10或8D .无法确定6.若x =1是一元二次方程x 2—3x +m =3的一个根,则m 的值为( ) A .5B .—1C .1D .—57.如图,△ABC 内接于⊙O ,若∠ACB =60°,则∠OAB 的度数等于( ) A .20°B .25°C .30°D .35°8. 一个不透明的布袋装有4个只有颜色不同的球,其中2个红球,1个白球,1个黑球,搅匀后从布袋里摸出1个球,摸到红球的概率是( ) A .12B .13 C .14 D .16A BCD3题图7题图9.如图,在平面直角坐标系xOy 中,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴相交于点A (—2,0)和点B ,与y 轴相交于点C (0,4),且S △ABC =12线( )A .x =21B .x=1C .x =23D .x10.为了美化环境,某市加大对绿化的投资.2008年用于绿化投资200万元,2010年用于绿化投资250万元,求这两年绿化投资的年平均增长率.设这两年绿 化投资的年平均增长率为x ,根据题意所列方程为( ) A .2200250x = B .200(1)250x +=C .2200(1)250x += D .2200(1)200(1)250x x +++=11.如图,在Rt ABC △中,908cm 6cm ABC AB BC ∠===°,,,分别以A C 、为圆心,以2AC的长为半径作圆,将Rt ABC △截去两个扇形,则剩余(阴影)部分的面积为( )cm 2. A .2524π4-B .25π4 C .524π4- D .2524π6-12.如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c <0的解集是( )A .﹣1<x <5B .x >5C .x <﹣1且x >5D .x <﹣1或x >513.小明同学为响应我市“阳光体育运动”的号召,与同学一起登山.他们在早上8:00出发,在9:00到达半山腰,休息30分钟后加快速度继续登山,在10:00到达山顶.下面能反映他们距山顶的距离y (米)与时间x (分钟)的函数关系的大致图象是( )14.9题图A .B .C .D .该队队员年龄的众数与中位数分别是( )A .19岁,19岁B .19岁,20岁C .20岁,20岁D .20岁,22岁 16.在菱形ABCD 中,E 是BC 边上的点,连接AE 交BD 于点F, 若EC =2BE ,则FDBF的值是( ) (A)21 (B) 31 (C) 41 (D) 51 17.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( ) (A )29人 (B )30人 (C )31人 (D )32人18.如图,OA ⊥OB ,等腰直角三角形CDE 的腰CD 在OB 上,∠ECD=45°,将三角形CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OCCD的值为( )(A)12(B)1319.如图,在平面直角坐标中,等腰梯形ABCD 的下底在x 轴上,且B 点坐标为(4,0),D 点坐标为(0,3),则AC 长为( )A .4B .5C .6D .不能确定20.观察139713……,268426……等数字,它们都是由如下方式得到的:将第1位数字乘以3,若积为一位数,则将其写在第2位上;若积为两位数,则将其个位数字写在第2位上,对第2位数字再进行如上操作得到第3位数字……后面的每一位数字都是由前一位数字进行如上操作得到的.若第1位数字是3,仍按上述操作得到一个多位数,则这-5-4-3-2-15x个多位数第2012位数字是( ) A .3B .9C .7D .1二、填空题(本大题共4个小题,满分12分,只要求填写最后结果,每小题3分) 21. 不等式组的解集为22.关于x 的一元二次方程kx 2﹣x+1=0有两个不相等的实数根,则k 的取值范围是23.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是 .24. 观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x 的方程(n 为正整数)的根,你的答案是: .三、解答题(本大题共5小题,满分48分,解答写出必要的文字说明、证明过程或演算步骤)25.解不等式组2 1 84 1 x x x x ≥+⎧⎨+≥-⎩①②,并在所给的数轴上表示出其解集.26.如图,在△ABC 中,∠ABC=45°,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,F 为BC 中点,BE 与DF ,DC 分别交于点G ,H ,∠ABE=∠CBE .(1)线段BH 与AC 相等吗?若相等给予证明,若不相等请说明理由;(2)求证:BG 2﹣GE 2=EA 2.27.一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天. (1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元,试问:租甲乙两车、单独租甲车、单独租乙车这三种租车方案中,哪一种租金最少?请说明理由.28. 如图,在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图象与反比例函数()0my m x=≠的图象交于二、四象限内的A B 、两点,与x 轴交于C 点,点B 的坐标为()6n ,,线段5OA =,E 为x 轴负半轴上一点,且4sin 5AOE ∠=. (1)求该反比例函数和一次函数的解析式; (2)求AOC △的面积.29. 抛物线的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB=,求点M的坐标.参考答案:一、DCABA ACACC ADCCB BBCBD二、21.2<x <3 22. k <且k ≠0 23. 10或8 24. x=n+3或x=n+4 三、25.解:2x x ≥+1,解得x ≥1.8x x +≥4-1,解得x ≤3.∴原不等式组的解集为1x ≤≤3. 不等式组的解集在数轴上表示如下:26. 证明:(1)∵∠BDC=∠BEC=∠CDA=90°,∠ABC=45°, ∴∠BCD=45°=∠ABC ,∠A+∠DCA=90°,∠A+∠ABE=90°,∴DB=DC ,∠ABE=∠DCA , ∵在△DBH 和△DCA 中 ∵,∴△DBH ≌△DCA , ∴BH=AC . (2)连接CG ,∵F 为BC 的中点,DB=DC , ∴DF 垂直平分BC , ∴BG=CG ,∵∠ABE=∠CBE ,BE ⊥AC , ∴∠AEB=∠CEB , 在△ABE 和△CBE 中 ∵,∴△ABE ≌△CBE ,∴EC=EA ,在Rt △CGE 中,由勾股定理得:BG 2﹣GE 2=EA 2.27. 设甲车单独完成任务需要x 天,乙单独完成需要y 天,由题意可得:⎪⎩⎪⎨⎧=-=⎪⎪⎭⎫⎝⎛+1511110x y y x ;解得:x =15;y =30。
2014泰安市中考数学模拟题
2014中考数学模拟题一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分) 1.在3-、0、2-、2四个数中,最小的数是( ) A.3- B.0 C.2- D.2 2.函数12y x =+的自变量x 的取值范围是( ) A.2x >- B.2x <-C.2x ≠-D.2x ≥-3.通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( )A.53.110-⨯ B.63.110-⨯ C.73.110-⨯D.83.110-⨯4.如图,在□ABCD 中,已知AD =8㎝,AB =6㎝,DE 平分∠ADC 交BC 边于点E ,则BE 等于( ) A.2cmB.4cmC.6cmD.8cm5.一个长方体的左视图.俯视图及相关数据如图所示,则其主视图的面积是( )A.6B.8C.12D.246.某商场试销一种新款衬衫,一周内销售情况如下表所示:型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )A.平均数B.众数C.中位数D.方差AB CD(第4题图)E7.如图,给出下列四组条件: ①AB=DE,BC=EF,AC=DF ; ②AB=DE,BC=EF,∠B=∠E ; ③∠B=∠E, ∠C=∠F,BC=EF ; ④AB=DE,AC=DF, ∠B=∠E 。
其中,能使ABC DEF △≌△的条件共有( )A.1组B.2组C.3组D.4组8.若不等式组⎩⎨⎧>≤<k x x 21有解,则k 的取值范围是( )A.k <2B.k ≥2C.k <1D.1≤k <29.有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( ) A.9001500300x x =+ B.9001500300x x =-C.9001500300x x =+ D.9001500300x x=- 10.如图,“回”字形的道路宽为1米,整个“回”字形的长为8米, 宽为7米,—个人从入口点A 沿着道路中央走到终点B , 他共走了( )A.55米B.55.5米C.56米D.56.5米 11.抛物线1(2)(6)2y x x =+-的对称轴是 (A)2x =- (B)6x = (C)2x =(D)4x =12.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为(A )(0,0) (B )(22,22-) (C )(-21,-21) (D )(-22,-22)13.在平面直角坐标系中,⊙A 、⊙B 的圆心坐标分别是A(3,0), B(0,4),若这两圆的半径分别是3,4,则这两圆的位置关系是 A .内含 B .相交 C .外切 D .外离A C BDFE (第7题)A BCO14.若y =ax 2+bx+C ,则由以下表格中信息可知y 与x 之间的函数表达式是A y=x 2-4x+3B y=x 2-3x+4C y=x 2-3x+3D y=x 2-4x+815.在一个不透明的袋子中装有1个白球,l 个黄球,2个红球,这4个球大小形状质地等完全相同,从袋中摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是A .1/2B .1/3C .1/6D .1/816.如图,等边 △ABC 的内切圆O 切BC 边于点D ,己知等边三角形 的边长为l 2cm ,则图中阴影部分的面积为A .πcm 2B .33πcm 2 C .2πm 2 D .3cm 2 17.如图,动点O 从边长为6的等边△ABC 的顶点A 出发,沿着A→C→B→A 的路线匀速运动一周,速度为1个单位长度每秒.以O 为圆心、3为半径的圆在运动过程中与△ABC 的边第三次相切时是点O 出发后第 秒.A .2B .4C .8D .1018.若点A 的坐标为(6,3)O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到 O A ′,则点A ′的坐标是 (A )(3,-6) (B )(-3,6) (C )(-3,-6)(D )(3,6)19.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表: x —7 —6 —5 —4 —3 —2 y —27 —13 —3 3 5 3 则当1=x 时,y 的值为(A )5 (B )—3 (C )—13 (D )—27 20.将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( )A . 233cmB .433cm C .5cm D .2cm二、填空题(本大题共4个小题,满分12分,只要求填写最后结果,每小题填对的3分)21.计算()5082-÷的结果是________。
2014年山东省泰安市中考数学试题及参考答案(word解析版)
2014年山东省泰安市中考数学试题及参考答案与解析一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.在12,0,﹣1,12-这四个数中,最小的数是( ) A .12 B .0 C .12- D .﹣12.下列运算,正确的是( )A .4a ﹣2a=2B .a 6÷a 3=a 2C .(﹣a 3b )2=a 6b 2D .(a ﹣b )2=a 2﹣b 2 3.下列几何体,主视图和俯视图都为矩形的是( )A .B .C .D .4.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为( ) A .2.5×10﹣7B . 2.5×10﹣6C . 25×10﹣7D . 0.25×10﹣55.如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是( )A .∠1+∠6>180°B .∠2+∠5<180°C .∠3+∠4<180°D .∠3+∠7>180° 6.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是( ) A .1B . 2C . 3D . 47.方程5x+2y=﹣9与下列方程构成的方程组的解为212x y =-⎧⎪⎨=⎪⎩的是( )A .x+2y=1B . 3x+2y=﹣8C . 5x+4y=﹣3D . 3x ﹣4y=﹣88.如图,∠ACB=90°,D 为AB 的中点,连接DC 并延长到E ,使CE=13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F .若AB=6,则BF 的长为( )A .6B . 7C . 8D . 109.以下是某校九年级10名同学参加学校演讲比赛的统计表:则这组数据的中位数和平均数分别为( ) A .90,90B . 90,89C . 85,89D . 85,9010.在△ABC 和△A 1B 1C 1中,下列四个命题:(1)若AB=A 1B 1,AC=A 1C 1,∠A=∠A 1,则△ABC ≌△A 1B 1C 1; (2)若AB=A 1B 1,AC=A 1C 1,∠B=∠B 1,则△ABC ≌△A 1B 1C 1; (3)若∠A=∠A 1,∠C=∠C 1,则△ABC ∽△A 1B 1C 1;(4)若AC :A 1C 1=CB :C 1B 1,∠C=∠C 1,则△ABC ∽△A 1B 1C 1. 其中真命题的个数为( ) A .4个B . 3个C . 2个D . 1个11.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( ) A .38B .12C .58D .3412.如图①是一个直角三角形纸片,∠A=30°,BC=4cm ,将其折叠,使点C 落在斜边上的点C′处,折痕为BD ,如图②,再将②沿DE 折叠,使点A 落在DC′的延长线上的点A′处,如图③,则折痕DE 的长为( )A .83cm B . C . D .3cm13.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( ) A .(3+x )(4﹣0.5x )=15 B .(x+3)(4+0.5x )=15 C . (x+4)(3﹣0.5x )=15D .(x+1)(4﹣0.5x )=1514.如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A B C.D15.若不等式组1911123x ax x+⎧⎪++⎨+-⎪⎩<≥有解,则实数a的取值范围是()A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣3616.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10°B.20°C.7.5°D.15°17.已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数m nyx+=的图象可能是()A.B.C.D.18.如图,P 为⊙O 的直径BA 延长线上的一点,PC 与⊙O 相切,切点为C ,点D 是⊙上一点,连接PD .已知PC=PD=BC .下列结论:(1)PD 与⊙O 相切;(2)四边形PCBD 是菱形;(3)PO=AB ;(4)∠PDB=120°. 其中正确的个数为( )A .4个B . 3个C . 2个D . 1个19.如图,半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( )A .212cm π⎛⎫-⎪⎝⎭ B .212cm π⎛⎫+ ⎪⎝⎭C .1cm 2D .22cm π20.二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a≠0)中的x 与y 的部分对应值如下表:下列结论: (1)ac <0;(2)当x >1时,y 的值随x 值的增大而减小. (3)3是方程ax 2+(b ﹣1)x+c=0的一个根; (4)当﹣1<x <3时,ax 2+(b ﹣1)x+c >0. 其中正确的个数为( ) A .4个B . 3个C . 2个D . 1个二、填空题(本大题共4小题,满分12分。
山东省泰安市2014年中考数学复习真题演练:四边形试题精选
山东省泰安市2014年中考数学复习(真题演练)四边形试题精选1、(2011•泰安)已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.(1)点F是DC上一点,连接EF,交AC于点O(如图1),求证:△AOE∽△COF;(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形.2、(2012•泰安)如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为C,BG交AE于点H.(1)求证:△ABE∽△ECF;(2)找出与△ABH相似的三角形,并证明;(3)若E是BC中点,BC=2AB,AB=2,求EM的长.3、(2013•泰安)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,∠EFD=∠BCD,并说明理由.4、(2013济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP ⊥NQ.MP与NQ是否相等?并说明理由.5、(2013潍坊)(本题满分11分)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE’F’D’,旋转角为α.(1)当点D’恰好落在EF边上时,求旋转角α的值;(2)如图2,G为BC的中点,且0°<α<90°,求证:GD’=E’D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD’与△CBD’能否全等?若能,直接写出旋转角α的值;若不能,说明理由.6、(2013潍坊)如图,四边形ABCD是平行四边形,以对角线BD为直径作⊙O,分别于BC、AD相交于点E、F.(1)求证四边形BEDF为矩形.(2)若BD2=B C·BC试判断直线CD与⊙O的位置关系,并说明理由.7、(2013莱芜)在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB 的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.8、(2013青岛)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F 分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明)9、(2013临沂)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论10、(2013•聊城)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.11、(2012•青岛)已知:如图,四边形ABCD的对角线AC、BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点.(1)求证:△BOE≌△DOF;(2)若OA=BD,则四边形ABCD是什么特殊四边形?说明理由.12、(2011•青岛)在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.13、(2012•枣庄)已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.14、(2012•潍坊)如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.15、(2012•淄博)在矩形ABCD中,BC=4,BG与对角线AC垂直且分别交AC,AD及射线CD于点E,F,G,AB=x.(1)当点G与点D重合时,求x的值;(2)当点F为AD中点时,求x的值及∠ECF的正弦值.16、(2012•临沂)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.17、(2011•临沂)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.18、(2012•威海)(1)如图①,▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.(2)如图②,将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.19、(2011•滨州)如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O 作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.20、(2012•日照)如图,在正方形ABCD中,E是BC上的一点,连接AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证:(1)CG=BH;(2)FC2=BF•GF;(3)=.参考答案1、证明:(1)∵点E是BC的中点,BC=2AD,∴EC=BE=BC=AD,又∵AD∥BC,∴四边形AECD为平行四边形,∴AE∥DC,∴△AOE∽△COF;(2)连接DE,∵AD∥BE,AD=BE,∴四边形ABED是平行四边形,又∠ABE=90°,∴四边形ABED是矩形,∴GE=GA=GB=GD=BD=AE,∴E、F分别是BC、CD的中点,∴EF、GE是△CBD的两条中位线,∴EF=BD=GD,GE=CD=DF,又GE=GD,∴EF=GD=GE=DF,∴四边形EFDG是菱形.2、(1)证明:∵四边形ABCD是矩形,∴∠ABE=∠ECF=90°.∵AE⊥EF,∠AEB+∠FEC=90°.∴∠AEB+∠BEA=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF;(2)△ABH∽△ECM.证明:∵BG⊥AC,∴∠ABG+∠BAG=90°,∴∠ABH=∠ECM,由(1)知,∠BAH=∠CEM,∴△ABH∽△ECM;(3)解:作MR⊥BC,垂足为R,∵AB=BE=EC=2,∴AB:BC=MR:RC=,∠AEB=45°,∴∠MER=45°,CR=2MR,∴MR=ER=RC=,∴EM==.3、(1)证明:∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵在△ABF和△ADF中,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵∠AFB=∠AFE,∴∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD,又∵∠BAC=∠DAC,∴∠CAD=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)当EB⊥CD时,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,在△BCF和△DCF中,∴△BCF≌△DCF(SAS),∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.4、略答(1)全等(2)转化为(1)5、(1) ∵DC//EF,∴∠DCD′=∠CD′E=∠CD′E=α.∴sinα=1'2CE CECD CD==,∴α=30°(2) ∵G为BC中点,∴GC=CE′=CE=1,∵∠D′CG=∠DCG+∠DCD′=90°+α, ∠DCE′=∠D′CE′+∠DCD′=90°+α, ∴∠D′CG=∠DCE′又∵CD′=CD, ∴△GCD′≌△E′CD, ∴GD′=E′D(3) 能.α=135°或α=315°6、略7、(1)证明:连结CE.证DE∥CB.(2)当AC=12AB或AB=2AC时,四边形DCBE是平行四边形.8、(1)(2)略(3)2:19、略10、证明:如图,过点B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D,在△BCF和△CDE中,,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.11、(1)证明:∵BE⊥AC.DF⊥AC,∴∠BEO=∠DFO=90°,∵点O是EF的中点,∴OE=OF,又∵∠DOF=∠BOE,∴△BOE≌△DOF(ASA);(2)解:四边形ABCD是矩形.理由如下:∵△BOE≌△DOF,∴OB=OD,又∵OA=OC,∴四边形ABCD是平行四边形,∵OA=BD,OA=AC,∴BD=AC,∴▱ABCD是矩形.12、(1)证明:∵四边形ABCD是平行四边形,∴BC=AD,∠B=∠D,AB=CD,∵E、F分别是AB、CD的中点,∴BE=DF=AE=CF,在△BEC和△DFA中,BE=DF,∠B=∠D,BC=AD,∴△BEC≌△DFA.(2)答:四边形AECF是矩形.证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵AE=CF,∴四边形AECF是平行四边形,∵AC=BC,E是AB的中点,∴CE⊥AB,∴∠AEC=90°,∴平行四边形AECF是矩形.13、证明:(1)连接AC.∵∠ABC=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2,∴BC2=AB2,∵AB>0,BC>0,∴AB=BC.(2)过C作CF⊥BE于F.∵BE⊥AD,CF⊥BE,CD⊥AD,∴∠FED=∠CFE=∠D=90°,∴四边形CDEF是矩形.∴CD=EF.∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴在△BAE与△CBF中∴,∴△BAE≌△CBF.(AAS)∴AE=BF.∴BE=BF+EF=AE+CD.14、(1)证明∵四边形ABCD是平行四边形(已知),∴BC∥AD(平行四边形的对边相互平行);又∵AM丄BC(已知),∴AM⊥AD;∵CN丄AD(已知),∴AM∥CN,∴AE∥CF;∴∠ADE=∠CBD,∵AD=BC(平行四边形的对边相等),在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF(全等三角形的对应边相等),∴四边形AECF为平行四边形(对边平行且相等的四边形是平行四边形);(2)如图,连接AC交BF于点0,当四边形AECF为菱形时,则AC与EF互相垂直平分,∵BO=OD(平行四边形的对角线相互平分),∴AC与BD互相垂直平分,∴▱ABCD是菱形(对角线相互垂直平分的平行四边形是菱形),∴AB=BC(菱形的邻边相等);∵M是BC的中点,AM丄BC(已知),∴AB=AC(等腰三角形的性质),∴△ABC为等边三角形,∴∠ABC=60°,∠CBD=30°;在Rt△BCF中,CF:BC=tan∠CBF=,又∵AE=CF,AB=BC,∴AB:AE=.15、解:(1)当点G与点D重合时,点F也与点D重合,∵矩形ABCD中,AC⊥BG,∴四边形ABCD是正方形,∵BC=4,∴x=AB=BC=4;(2)∵点F为AD中点,且AD=BC=4,∴AF=AD=2,∵矩形ABCD中,AD∥BC,∴∠EAF=∠ECB,∠AFE=∠CBE,∴△AEF∽△CEB,∴====,∴CE=2AE,BE=2FE,∴AC=3AE,BF=3FE,∵矩形ABCD中,∠ABC=∠BAF=90°,∴在Rt△ABC和Rt△BAF中,AB=x,分别由勾股定理得:AC2=AB2+BC2,BF2=AF2+AB2,即(3AE)2=x2+42,(3FE)2=22+x2,两式相加,得9(AE2+FE2)=2x2+20,又∵AC⊥BG,∴在Rt△AEF中,根据勾股定理得:AE2+FE2=AF2=4,∴36=2x2+20,解得:x=2或x=﹣2(舍去),故x=2;∵F为AD的中点,由对称性得到BF=CF,∵AF∥BC,∴△AEF∽△CEB,∴==,∴sin∠ECF===.16、(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形.(2)解:连接BE,交CF于点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形,∵∠ABC=90°,AB=4,BC=3,∴AC==5,∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC,∴=,即=,∴CG=,∵FG=CG,∴FC=2CG=,∴AF=AC﹣FC=5﹣=,∴当AF=时,四边形BCEF是菱形.17、(1)证明:∵∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,∴∠DEF=∠GEB,在△FED和△GEB中,,∴Rt△FED≌Rt△GEB,∴EF=EG;(2)解:成立.证明:如图,过点E作EH⊥BC于H,过点E作EP⊥CD于P,∵四边形ABCD为正方形,∴CE平分∠BCD,又∵EH⊥BC,EP⊥CD,∴EH=EP,∴四边形EHCP是正方形,∴∠HEP=90°,∵∠GEH+∠HEF=90°,∠PEF+∠HEF=90°,∴∠PEF=∠GEH,∴Rt△FEP≌Rt△GEH,∴EF=EG;(3)解:如图,过点E作EM⊥BC于M,过点E作EN⊥CD于N,垂足分别为M、N,则∠MEN=90°,∴EM∥AB,EN∥AD.∴△CEN∽△CAD,△CEM∽△CAB,∴,,∴,即==,∵∠NEF+∠FEM=∠GEM+∠FEM=90°,∴∠GEM=∠FEN,∵∠GME=∠FNE=90°,∴△GME∽△FNE,∴,∴.18、证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠1=∠2,∵在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,由(1)得AE=CF,由折叠的性质可得:AE=A1E,∠A1=∠A,∠B1=∠B,∴A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,又∵∠1=∠2,∴∠3=∠4,∵∠5=∠3,∠4=∠6,∴∠5=∠6,∵在△A1IE与△CGF中,,∴△A1IE≌△CGF(AAS),∴EI=FG.19、解:当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO,又∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.(19)(20)20、证明:(1)∵BF⊥AE,CG∥AE,∴CG⊥BF,∵在正方形ABCD中,∠ABH+∠CBG=90°,∠CBG+∠BCG=90°,∠BAH+∠ABH=90°,∴∠BAH=∠CBG,∠ABH=∠BCG,AB=BC,∴△ABH≌△BCG,∴CG=BH;(2)∵∠BFC=∠CFG,∠BCF=∠CGF=90°,∴△CFG∽△BFC,∴=,即FC2=BF•GF;(3)同(2)可知,BC2=BG•BF,∵AB=BC,∴AB2=BG•BF,∴==,即=.。
2014泰安市中考模拟试题
山东省泰安市初中学生学业考试数学模拟试题一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选择出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列各组数中,互为相反数的是( )[来源:学科网]A .2和-2B .-2和12C .-2和-12D .12和22、已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)( ) A .3.84×104千米B .3.84×105千米 C .3.84×106千米D .38.4×104千米3、下列运算不正确的是( )A .5552a a a += B .()32622a a -=-C .2122a a a -⋅=D .()322221a a a a -÷=-4、下列交通标志是轴对称图形的是( )A. B. C. D.5、如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .22(25)cm a a +B .2(315)cm a +C .2(69)cm a +D .2(615)cm a +6.如图,是由8个相同的小立方块搭成的几何体,它的三个视图都是2×2的正方形,若拿掉若干个小立方块后(几何体不倒掉...),其三个视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为( )A .1 B .2 C .3 D .47、下列计算正确的是( )A =B.+=C.=4=8、如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( )A .30° B.40° C .60° D.70°9.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A.中位数B.众数C.平均数D. 极差 10、一条排水管的截面如图所示.已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( ) A.16 B.10 C.8 D.6 11、下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x -=⎧⎪⎨+=⎪⎩C .20135x y x y +=⎧⎪⎨-=⎪⎩D .5723z x y =⎧⎪⎨+=⎪⎩ 12、将正方体骰子(相对面上的点数分别为 I 和 6 、 2 和 5 、 3和 4 )放置于水平桌面上 ,如图 ① .在图 ② 中,将骰子向右翻滚90︒,然后在桌面上按逆时针方向旋转90︒,则完成一次变换.若骰子的初始位置为图①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是( )A . 6B . 5C . 3D . 213、如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y>时,x 的取值范围是( )第11题图A CD EA .x <-1 B.—1<x <2 C .x >2 D . x<-1或x >214、正方形ABCD 边长为1,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 上的点,且AE =BF =CG =DH .设小正方形EFGH 的面积为y ,AE =x . 则y 关于x 的函数图象大致是( )A .B .C .D .15、如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是( )A .(3,2) B .(-2,-3) C .(2,3)或(-2,-3) D .(3,2)或(-3,-2)16、两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )(A ) 41(B )163 (C )43 (D )83 17、顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是A .菱形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形18、如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB(第18题图)EDCBA的长为( )A .3B .4C .5D .6 19、不等式组320,10x x ->⎧⎨+⎩≥的解集在数轴上表示正确是的是20、2y ax bxc =++中,y x 之间的部分对应值如下表所示: x …… 0 1 2 3 4 …… y …… 4 1 0 1 4 ……点A (1x ,1y )、B (2x ,2y )在函数的图象上,则当112,x <<234x <<时,1y 与2y 的大小关系正确的是A .12y y >B . 12y y <C . 12y y ≥D . 12y y ≤第Ⅱ卷(非选择题60)二、填空题(本大题共4小题,满分12分。
山东省泰安市新泰市2014届九年级(上)期末数学试卷
山东省泰安市新泰市2014届九年级(上)期末数学试卷一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、多选或不选均记零分)1.下面的几何体中,既是轴时称图形又是中心对称图形的个数是()甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF 是菱形.根据两人的作法可判断()的值是()6.下面关于x的方程中①ax﹣x+2=0;②3(x﹣1)(x+1)=1;③x+3=0;④(a+a+1)x ﹣a=0;⑤3x2+m=x﹣1;⑥3x2+﹣=0.一元二次方程的个数是()8.如图,正比例函数y1与反比例函数y2相交于点E(﹣1,2),若y1>y2>0,则x的取值范围在数轴上表示正确的是()9.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD 等于()10.已知a是方程x2+x﹣1=0的一个根,则的值为()B12.已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()到△ACD′的位置,则∠ADD′的度数是()①直径是圆的对称轴;②垂直于弦的直线必经过圆心;③平分弦的直径必平分弦所对的两条弧;④相等的圆周角所对的弧相等,17.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()218.(3分)(2013•广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=()220.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行.点P(3a,a)是反比例幽数y=(k>0)的图象上与正方形的一个交点,若图中阴影部分的面积等于9,则k的值为()二、填空题(共4个小题,12分.只要求填写最后结果,每小题填对得3分)21.如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=60°,BC=4,则图中阴影部分的面积为_________.(结果保留π)22.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为_________.23.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为_________.24.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD=_________°.三、解答题(本大题共6小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.(6分)用适当的方法解下列方程:(1)4x2﹣3x﹣1=0(用配方法);(2)5x2﹣2x+3=0.26.(8分)(2012•临沂)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.27.(9分)(2013•福州)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是_________个单位长度;△AOC 与△BOD关于直线对称,则对称轴是_________;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是_________度;(2)连结AD,交OC于点E,求∠AEO的度数.28.(8分)(2013•孝感)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD 延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.29.(7分)如图,一次函数y1=kx+b的图象与反比例函数y2=(x>0)的图象交于A(1,6),B(a,2)两点.(1)求一次函数与反比例函数的解析式;(2)直接写出y1≤y2时x的取值范围.30.(10分)(2013•绵阳)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?。
山东省泰安市2014年中考化学真题试题(含扫描答案)
试卷类型:A山东省泰安市二○一四年初中学生学业考试化学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至4页,第Ⅱ卷5至10页。
满分100分,考试时间90分钟。
注意事项:1.答卷前,考生仔细阅读答题卡上的注意事项,并务必按照相关要求作答。
2.考试结束后,监考人员将本试卷和答题卡一并收回。
相对原子质量:H1 C 12 O 16 Na 23 S 32Ca40Fe 56 Cu64第Ⅰ卷(选择题共40分)一、选择题(本题包括20小题,每小题2分,共40分。
每小题只有一个....选项符合题意。
)1.元素在自然界里分布不均匀,如智利富藏铜矿、澳大利亚多铁矿、我国山东富含黄金,但从整个地壳中元素的含量来看,最丰富的金属元素是()A.OB.Si C.Al D.Fe2.“节能减排、低碳生活”的主题旨在倡导节约能源和利用清洁能源,减少温室气体二氧化碳的排放。
下列措施中不符合该主题的是A.广泛使用太阳能和风能等清洁能源 B.回收利用废旧金属C.多少用一次性筷子 D.减少使用私家车次数,多乘公交车或骑自行车3.下列变化属于化学变化的是A.石油分离出汽油、煤油和柴油等 B.煤焦化产生焦炭、煤焦油、焦炉气等C.工业上分离空气制取氧气、氮气 D.膜法和热法淡化海水4.分类是化学学习、研究的重要方法。
下列有关物质的分类错误的是A.水属于氧化物 B.干冰属于单质 C.硝酸铵属于盐 D.乙醇属于有机物5.下列实验操作错误的是6.下列有关实验现象的描述,正确的是A.铁丝在氧气中剧烈燃烧,火星四射,生成白色固体B.分别点燃一小块棉纤维和羊毛纤维,都产生烧焦羽毛的气味C.测定空气中氧气含量的实验里,铜丝加热变黑D.一氧化碳高温还原氧化铁时,红色粉末逐渐变为银白色7.过多的植物营养物质如尿素CO(NH2)2等进入水体恶化水质,导致“水华”现象。
尿素属于A.氮肥 B.磷肥 C.钾肥 D.复合肥8.今年5月,南京某公司丢失一枚探伤用放射源铱—192,经多方寻找终于放回安全箱。
2014年山东省泰安市中考试题数学试卷
2014年山东省泰安市中考试题数学(满分120分,考试时间120分钟)第一部分(选择题 共60分)一、选择题(本大题共20小题,每小题3分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.(2014山东省泰安市,1,3分)在12,0,-1,-12这四个数中,最小的数是( ) (A )12 (B )0 (C )-12(D)-1 【答案】D 。
2. (2014山东省泰安市,2,3分)下列运算,正确的是( )(A )4a-2a=2 (B )a 6÷a 3=a 2 (C )(-a 3b )2=a 6b 2 (D)(a-b )2=a 2-b 2【答案】C 。
3. (2014山东省泰安市,3,3分)下列几何体,主视图和左视图都为矩形的是( )(A )(C )(D )【答案】D.4. (2014山东省泰安市,4,3分)PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学计数法表示为( )(A )2.5×10-7 (B )2.5×10-6 (C )25×10-7 (D)0.25×10-5【答案】B 。
5. (2014山东省泰安市,5,3分)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是( ) (A )∠1+∠6>180°(B )∠2+∠5<180°(C )∠3+∠4<180° (D )∠3+∠7>180° 【答案】D 。
6. (2014山东省泰安市,6,3分)下列四个图形:7654321(第5题图)其中是轴对称图形,且对称轴的条数为2的图形的个数是()【答案】C。
7. (2014山东省泰安市,7,3分)方程5x+2y=-9与下列方程构成的方程组的解为2,12xy=-⎧⎪⎨=⎪⎩的解是()(A)x+2y=1 (B)3x+2y=-8(C)5x+4y=-3 (D)3x-4y=-8【答案】D。
(建议下载)泰安市中考数学试题(带答案)
2014年泰安市中考数学试题(带答案)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.在,0,﹣1,﹣这四个数中,最小的数是()A.B.0 C.﹣D.﹣12.下列运算,正确的是()A.4a﹣2a=2 B.a6÷a3=a2C.(﹣a3b)2=a6b2 D.(a﹣b)2=a2﹣b23.下列几何体,主视图和俯视图都为矩形的是()A. B. C. D.4.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A. 2.5×10﹣7 B. 2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣55.如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180° D.∠3+∠7>180°(5题图) (8题图)6.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1 B.2 C.3 D.47.方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣88.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7 C.8 D.109.以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80 85 90 95人数/人 1 2 5 2则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,9010.在△ABC和△A1B1C1中,下列四个命题:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,则△ABC≌△A1B1C1;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;(3)若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数为()A.4个B.3个C.2个D.1个11.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()2mA.B.C.D.12.如图①是一个直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()21·cn·jy·comA.cm B.2cm C.2cm D.3cm13.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=1514.如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A. B. C. D.15.若不等式组有解,则实数a的取值范围是()A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣3616.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10° B.20° C.7.5°D.15°(16题图)(17题图)17.已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B.C. D.18.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个B.3个C.2个D.1个(18题图)(19题图)19.如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.(﹣1)cm2 B.(+1)cm2 C.1cm2 D.cm220.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:21教育名师原创作品X ﹣1 0 1 3y ﹣1 3 5 3下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个二、填空题(本大题共4小题,满分12分。
2014年山东省泰安市泰山区中考数学全真模拟试卷及答案
泰安市泰山区2014年中考数学全真模拟试卷( 时间:120分钟,满分:120)一、选择题(每小题只有一个正确的选项,每小题3分,共60分) 1.下列等式一定成立的是【 】 A .(a+b )2=a 2+b2B .a 2•a 3=a 6C .213=9--D.2.如果2)2(2-=-x x ,那么x 的取值范围是【 】A .x ≤2B .x <2C .x ≥2D .x >23.下列分解因式正确的是【 】A .3x 2-6x =x(3x -6)B .-a 2+b 2=(b +a)(b -a) C .4x 2-y 2=(4x +y)(4x -y) D .4x 2-2xy +y 2=(2x -y)4.在下面的四个几何体中,它们各自的左视图与主视图不一样的是【 】A. B. C. D.5.H 7N9是禽流感的一种亚型。
流感病毒颗粒外膜由两型表面糖蛋白覆盖,一型为血细胞凝集素(即H ),一型为神经氨酸酶(即N ),H 又分15个亚型,N 分9个亚型。
所有人类的流感病毒都可以引起禽类流感,但不是所有的禽流感病毒都可以引起人类流感,禽流感病毒中,H5、H7、H9可以传染给人,其中H5为高致病性。
依据流感病毒特征可分为HxNx 共 种亚型,H7N9亚型禽流感病毒是其中的一种,产生H7N9亚型禽流感病毒的概率为 【 】 A .24 ,124 B .135 ,124 C .24 ,16 D .135,11356.在同一平面直角坐标系中,一次函数y ax b =+和二次函数2y ax bx =+的图象可能为【 】4位同学A. B. C. D.MO 拟定的方案,其中正确的是【 】A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量对角线是否相等D .测量其中三个角是否都为直角8.某校为了了解七年级学生的身高情况(单位:cm ,精确到1cm ),抽查了部分学生,将所得数据处理根据以上信息可知,样本的中位数落在【 】 A .第二组 B .第三组 C .第四组 D .第五组9.如果关于x 的一元二次方程2kx 10+=有两个不相等的实数根,那么k 的取值范围是【 】 A .k <12 B .k <12且k≠0 C.﹣12≤k<12 D .﹣12≤k<12且k≠010.对于一次函数y=﹣2x+4,下列结论错误的是【 】 A . 函数值随自变量的增大而减小 B . 函数的图象不经过第三象限C . 函数的图象向下平移4个单位长度得y=﹣2x 的图象D . 函数的图象与x 轴的交点坐标是(0,4)11.如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有【 】A . 2个B . 3个C .4个D .5个12.如图,⊙O 的弦AB 垂直于直径MN ,C 为垂足.若OA =5 cm ,下面四个结论中可能成立的是【 】A .AB =12 cm B .OC =6 cm C .MN =8 cmD .AC =2.5 cm13.抛物线c bx x y ++-=2的部分图象如图所示,若0>y ,则x的取值范围是【 】A. 14<<-x B. 13<<-x C. 4-<x 或1>x D. 3-<x 或1>x14.如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC的余弦值为【 】 A .12B .34C D .4515.不等式组⎪⎩⎪⎨⎧+-<≥+23201x x x 的解集在数轴上表示正确的是【 】 A16.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为 【 】A .26n +B .86n +C .44n +D .8n17.化简211a a a ---的结果是【 】(第13题图)第14题图0 2 2 0 2 0 2 ①②③DA .11a -B .-11a -C .211a a +-D .211a a a ---18.已知:如图,四边形AOBC 是矩形,以O 为坐标原点,OB 、OA 分别在x 轴、y 轴上,点A 的坐标为(0,3),∠OAB =60°,以AB 为轴对折后,C 点落在D 点处,则D 点的坐标为 【 】(A.3)2-B.3()2- C.3(,2D.(3,-19.如图,在ABC △中,10AB =,8AC =,6BC =,经过点C 且与边AB 相切的动圆与CA ,CB 分别相交于点P ,Q ,则线段PQ 长度的最小值 是【 】 A .4.75B .4.8C .5D.20.己知直角梯形ABCD 中,AD∥BC.∠BCD =90°,BC=CD=2AD ,E 、F 分别是BC 、CD 边的中点.连接BF 、DE 交于点P .连接CP 并延长交AB 于点Q ,连揍AF ,下列四个结论:①CP 平分∠BCD ;②四边形ABED 为平行四边形;③CQ 将直角梯形ABCD 分为面积相等的两部分;④△ABF 为等腰三角形.其中正确的结论个数有【 】 A .1个 B .2个 C .3个D .4个二、填空题(每小题3分,共12分)21.已知1纳米=0.000000001米,则2013纳米用科学记数法表示为 米(第19题)AC第20题图 BECFPQAD22.关于x ,y 的二元一次方程组x y 1mx 3y 53m +=-⎧⎨-=+⎩中,m 与方程组的解中的x 或y 相等,则m 的值为 .23.如图,为了测量河宽AB (假设河的两岸平行),测得∠ACB =30°, ∠ADB =60°,CD =60m ,则河宽AB 为________m(结果保留根号).24.如图,(1)是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图(2)所示,ABCD 是正方形,⊙O 是该正方形的内切圆,E 为切点,以B 为圆心,分别以BA 、BE 为半径画扇形,得到如图所示的扇环形,图(1)中的圆与扇环的面积比为 。