人教版八年级数学下册18.1平行四边形练习(包含答案)

合集下载

人教版八年级数学下册第十八章 平行四边形练习(含答案)

人教版八年级数学下册第十八章 平行四边形练习(含答案)

八年级下册第十八章平行四边形(附答案)一、单选题1.在ABCD中,∠A:∠B:∠C:∠D的度数比值可能是()A.1:2:3:4B.1:2:2:1C.1:1:2:2D.2:1:2:12.如图,平行四边形ABCD的对角线AC,BD交于点O,已知AD=16,BD=24,AC=12,则∠OBC周长为()A.26B.34C.40D.523.如图,在∠ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于12 AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.下列结论错误的是()A.AD=CD B.∠A=∠DCE C.∠ADE=∠DCB D.∠A=2∠DCB 4.下面各条件中,能判定四边形是平行四边形的是()A.对角线互相垂直B.对角线互相平分C.一组对角相等D.一组对边相等5.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB的中点C'上.若6AB=,9BC=,则BF的长为( )A.4B.C.4.5D.56.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠7.菱形的两条对角线的长分别是6和8,则这个菱形的面积是()A.24B.48C.10D.58.如图,菱形ABCD对角线AC,BD相交于点O,有下列结论:∠OA=OD,∠AC∠BD,∠∠1=∠2,∠S菱形ABCD=AC•BD.其中正确的序号是()A.∠∠B.∠∠C.∠∠D.∠∠9.如图,在正方形ABCD外侧,作等边三角形ADE,AC与BE相交于F,则∠CFE为()A .145°B .120°C .115°D .105°10.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,∠AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:∠15BAE DAF ∠=∠=o ;;∠BE +DF =EF ;∠2CEF ABE S S ∆∆=.其中正确的是( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠∠二、填空题 11.如图,□ABCD 中,E ,F 分别为AD ,BC 边上的一点.若再增加一个条件__________________,就可得BE =DF .12.如图,在矩形 ABCD 中,如果 AB =3,AD =4,EF 是对角线 BD 的垂直平分线,分别交 AD ,BC 于 点 EF ,则 ED 的长为____________________________.13.如图,周长为16的菱形ABCD 的对角线AC ,BD 相交于点O ,∠BAD =60°,分别以点C ,D 为圆心,大于12CD 为半径画弧,两弧交于点M 、N ,直线MN 交CD 于点E ,则∠OCE 的面积_____.14.如图,正方形ABCD 中,AB 9=,点E 在边CD 上,且CD 3DE.=将ADE V 沿AE 对折至AFE V ,延长EF 交边BC 于点G ,连接AG 、CF.则FGC V 的面积是______.三、解答题15.已知:如图,四边形ABCD 是矩形,过点D 作DF ∠AC 交BA 的延长线于点F .(1)求证:四边形ACDF是平行四边形;(2)若AB=3,DF=5,求∠AEC的面积.16.如图,在∠ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作∠ABDE,连接AD,EC.(1)求证:∠ADC∠∠ECD;(2)若BD=CD,求证:四边形ADCE是矩形.17.如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM 并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使∠BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.18.如图1,在四边形ABCD中,AB=BC=CD=AD=4cm,∠BAD=∠B=∠C=∠ADC=90°,点P 以1c m/s的速度自点A向终点B运动,点Q同时以1c m/s的速度自点B向终点C运动,连接AQ、DP,设运动时间为t s.(1)当t=s时,点P到达点B;(2)求证:在运动过程中,∠ABQ∠∠DAP始终成立;(3)如图2,作QM∠PD,且QM=PD,作MN∠射线BC于点N,连接CM,请问在Q的运动过程中,∠MCN的度数是否改变?如果不变,请求出∠MCN;如果改变,请说明理由.答案1.D 2.B 3.D 4.B 5.A 6.A 7.A8.D9.B10.C11.DE=BF(答案不唯一)12.25 81314.81 1015.(1)证明:∠四边形ABCD是矩形,∠DC∠BF,∠DF∠AC,∠四边形ACDF是平行四边形;(2)解:∠四边形ABCD是矩形,∠CD=AB=3,∠B=90°,由(1)得:四边形ACDF是平行四边形,∠AC=DF=5,AE=ED=12 AD,∠BC=AD4==,∠AE=12×4=2,∠S∠AEC=12AE•CD=12×2×3=3.16.(1)∠四边形ABDE是平行四边形,∠AB∠DE,AB=DE;∠∠B=∠EDC;又∠AB=AC,∠AC=DE,∠B=∠ACB,∠∠EDC=∠ACD;∠在∠ADC和∠ECD中,{AC=ED∠ACD=∠EDCDC=CD,∠∠ADC∠∠ECD(SAS);(2)∠四边形ABDE是平行四边形(已知),∠BD∠AE,BD=AE(平行四边形的对边平行且相等),∠AE∠CD;又∠BD=CD,∠AE=CD,∠四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);在∠ABC中,AB=AC,BD=CD,∠AD∠BC,∠∠ADC=90°,∠∠ADCE是矩形.17.(1)∠∠DAC=30°,∠ACD=90°,AD=8,∠CD=4,AC.又∠四边形ABCD为平行四边形,∠四边形ABCD的面积为.(2)如图1,当∠EMC=90°时,四边形DCEF是菱形.∠∠EMC=∠ACD=90°,∠DC∠EF.∠BC∠AD,∠四边形DCEF是平行四边形,∠BCA=∠DAC.由(1)可知:CD=4,AC=.∠点M为AC的中点,∠CM=在Rt∠EMC中,∠CME=90°,∠BCA=30°.∠CE=2ME,可得ME2+()2=(2ME)2,解得:ME=2.∠CE=2ME=4.∠CE=DC.又∠四边形DCEF是平行四边形,∠四边形DCEF 是菱形.(3)点E 在运动过程中能使∠BEM 为等腰三角形.理由:如图2,过点B 作BG∠AD 与点G ,过点E 作EH∠AD 于点H ,连接DM .∠DC∠AB ,∠ACD =90°,∠∠CAB =90°.∠∠BAG =180°−30°−90°=60°.∠∠ABG =30°.∠AG =12AB =2,BG. ∠点E 的运动速度为每秒1个单位,运动时间为t 秒,∠CE =t ,BE =8−t .在∠CEM 和∠AFM 中BCM MAF MC AMCME AMF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠CEM∠∠AFM .∠ME =MF ,CE =AF =t .∠HF =HG−AF−AG =BE−AF−AG =8−t−2−t =6−2t .∠EH =BG =∠在Rt∠EHF 中,ME =12EF =1212 ∠M 为平行四边形ABCD 对角线AC 的中点,∠D ,M ,B 共线,且DM =BM .∠在Rt∠DBG 中,DG =AD +AG =10,BG ==故BM =12=. 要使∠BEM 为等腰三角形,应分以下三种情况:当EB =EM 时,有(8−t)2=14[12+(6−2t)2], 解得:t =5.2.当EB =BM 时,有8−t =,解得:t =.当EM =BM 时,由题意可知点E 与点B 重合,此时点B 、E 、M 不构成三角形.综上所述,当t =5.2或t =时,∠BEM 为等腰三角形.18.(1)∠AB=4cm ,点P 以1cm/s 的速度自点A 向终点B 运动,∠点P 到达点B 所用的时间为:4÷1=4(s ),故答案为:4;(2)在运动过程中,AP=BQ=t ,在∠ABQ 和∠DAP 中,DAP B AP BQ ⎪∠∠⎨⎪⎩==,∠∠ABQ∠∠DAP ;(3)∠MCN 的度不改变,始终为45°, 理由如下:∠∠ABQ∠∠DAP , ∠AQ=DP ,∠QM=PD ,∠QM=AQ ,∠∠ABQ∠∠DAP ,∠∠BAQ=∠ADP ,∠∠BAQ+∠DAQ=90°,∠∠ADP+∠DAQ=90°,即∠AED=90°, ∠QM∠PD ,∠∠AQM=∠AED=90°,∠∠AQB+∠MQN=90°,∠∠AQB=∠QMN ,在∠AQB 和∠QMN 中,ABQ QNM AQB QMN AQ QM ∠∠⎧⎪∠∠⎨⎪⎩===,∠∠AQB∠∠QMN ,∠QN=AB ,MN=BQ ,∠BC-QC=QN-QC,即BQ=CN,∠MN=CN,∠∠MCN=45°。

2020-2021学年八年级数学人教版下册:18.1.1平行四边形的性质同步练习(附答案)

2020-2021学年八年级数学人教版下册:18.1.1平行四边形的性质同步练习(附答案)

18.1.1平行四边形的性质同步练习一、选择题1.如图,若平行四边形ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为()A. 14cmB. 12cmC. 10cmD. 8cm2.如图,在▱ABCD中,∠A+∠C=70∘,则∠B的度数为()A. 125∘B. 135∘C. 145∘D. 155∘3.如图,在▱ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A. 4cmB. 5cmC. 6cmD. 8cm4.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE.若▱ABCD的周长为28,则△ABE的周长为()A. 28B. 24C. 21D. 145.如图,在平行四边形ABCD中,若AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA长的取值范围是()A. 1cm<OA<4cmB. 2cm<OA<8cmC. 2cm<OA<5cmD. 3cm<OA<8cm6.如图,▱ABCD的周长为14,BE=2,AE平分∠BAD交BC边于点E,则CE的长等于()A. 1B. 2C. 3D. 47.如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为()A. 40°B. 50°C. 60°D. 70°8.如图所示,▱ABCD中,AC的垂直平分线交AD于点E,且△CDE的周长为8,则▱ABCD的周长是()A. 10B. 12C. 14D. 169.如图,P是面积为S的▱ABCD内任意一点,△PAD的面积为S1,△PBC的面积为S2,则()A. S1+S2>S2B. S1+S2<S2C. S1+S2=S2D. S1+S2的大小与P点位置有关10.如图,a//b,AB//CD,CE⊥b,FG⊥b,点E,G为垂足,则下列说法不正确的是()A. AB=CDB. EC=GFC. A,B两点的距离就是线段AB的长度D. a与b的距离就是线段CD的长度11.如图,在□ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB,EF的AD于点E,F;再分别以点E,F为圆心,大于12长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A. AG平分∠DABB. AD=DHC. DH=BCD. CH=DH12.如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,DE交BC于点F,连接CE,则下列结论:①BE=CD;②BF=DF;③S△BEF=S△DCF;④BD//CE,其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题13.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若∠EAF=58∘,则∠BAD=——.14.如图,在▱ABCD中,对角线AC,BD相交于点O.若DO=1.5cm,AB=5cm,BC=4cm,则▱ABCD的面积为cm2.15.以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(−2,1),则C点坐标为.16.如图,在Rt△ABC中,∠B=90°,BC=3,AB=4,点D,E分别是AB,AC的中点,CF平分Rt△ABC的一个外角∠ACM,交DE的延长线于点F,则DF的长为.17.如图,AB//CD,AB⊥BC.若AB=4cm,S △ABC=12cm 2,则△ABD中AB边上的高等于cm.18.如图,在▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内.若点B的落点记为B′,则DB′的长为.三、解答题19.如图,点E是▱ABCD的边CD的中点,AE,BC的延长线交于点F,CF=3,CE=2,求▱ABCD的周长.20.如图,已知在▱ABCD中,AB=5,BC=3,AC=2√13.(1)求▱ABCD的面积.(2)求证:BD⊥BC.21.如图,在▱ABCD中,CM平分∠BCD交AD于点M.(1)若CD=2,求DM的长.(2)若M是AD的中点,连接BM,求证:BM平分∠ABC.22.如图所示,在▱ABCD中,对角线AC与BD相交于点O,点M,N在对角线AC上,且AM=CN,求证:BM//DN.23.下面是一个有关特殊平行四边形和等边三角形的小实验,请根据实验解答问题:已知在▱ABCD中,∠ABC=120∘,点D又是等边三角形DEF的一个顶点,DE与AB相交于点M(不与点A,B重合),DF与BC相交于点N(不与点B,C重合).(1)初步尝试如图 ①,若AB=BC,求证:BD=BM+BN;(2)探究发现如图 ②,若BC=2AB,过点D作DH⊥BC于点H,求证:∠BDC=90∘.答案和解析1.D2.C3.A4.D5.A6.C7.D8.D9.C10.D11.D12.D13.122∘14.1215.(2,−1)16.417.618.√219.解:∵四边形ABCD 是平行四边形, ∴AD//BC ,∴∠DAE =∠F ,∠D =∠ECF . 又∵E 是CD 的中点,∴ED =EC ,∴△ADE≌△FCE(AAS).∴AD =CF =3,DE =CE =2, ∴DC =4,∴▱ABCD 的周长为2(AD +DC)=14.20.解:(1)作CE ⊥AB 交AB 的延长线于点E . 设BE =x ,CE =ℎ,在Rt △CEB 中,x 2+ℎ2=9①, 在Rt △CEA 中,(5+x)2+ℎ2=52②, 联立①②,解得x =95,ℎ=125.∴□ABCD 的面积为AB ·ℎ=12.(2)证明:作DF ⊥AB ,垂足为F , ∴∠DFA =∠CEB =90°.∵四边形ABCD 是平行四边形, ∴AD =BC ,AD // BC .∴∠DAF =∠CBE .又∵∠DFA =∠CEB =90°,AD =BC , ∴△ADF≌△BCE(AAS).∴AF =BE =95,BF =5−95=165,DF =CE =125. 在Rt △DFB 中,BD 2=DF 2+BF 2=(125)2+(165)2=16,∴BD =4.∵BC =3,DC =5,∴CD2=DB2+BC2.∴BD⊥BC.21.解:(1)∵四边形ABCD是平行四边形,∴AD//BC,∴∠BCM=∠DMC,∵CM平分∠BCD,∴∠BCM=∠DCM,∴∠DMC=∠DCM,∴DM=DC=2.(2)证明:延长BA,CM交于点E,如图,∵BE//CD,∴∠D=∠EAM,∠E=∠DCM,∵M是AD的中点,∴DM=AM,∴△CDM≌△EAM(AAS).∴EM=CM.∵CM平分∠BCD,∴∠BCM=∠DCM,∴∠E=∠BCM,∴BE=BC,∴BM平分∠ABC.22.证明:∵四边形ABCD是平行四边形,∴OA=OC.OB=OD.∵AM=CN,在△BOM和△DON中,∴△BOM≌△DON(SAS).∴∠OBM=∠ODN.∴BM//DN.23.证明:(1)∵四边形ABCD是平行四边形,∠ABC=120°,∴∠A=∠C=60°.∵AB=BC,∴AB=BC=CD=DA,∴△ABD,△BDC都是等边三角形,∴∠A=∠DBC=60°,∠ADB=60°,AD=BD.∵∠EDF=60°,∴∠ADM+∠MDB=∠BDN+∠MDB=60°,∴∠ADM=∠BDN.在△ADM与△BDN中,{∠A=∠DBNAD=BD∠ADM=∠BDN,∴△ADM≌△BDN,∴AM=BN,∴BD=AB=AM+MB=BN+MB,即BD=BM+BN;(2)∵四边形ABCD是平行四边形,∠ABC=120°,∴∠A=∠C=60°.∵DH⊥BC,∠C=60°,∴∠DHC=90°,∠HDC=30°.设CH=x,则DC=2x,DH=√3x,∴BC=2AB=2DC=4x,∴BH=BC−HC=3x.∴BD=√BH2+DH2=2√3x,∴BD2+DC2=BC2,∴∠BDC=90°.。

人教版数学八年级下册18.1.1 平行四边形的性质同步练习(解析版)

人教版数学八年级下册18.1.1  平行四边形的性质同步练习(解析版)

第十八章平行四边形 18.1 平行四边形 18.1.1 平行四边形的性质基础闯关全练1.如图18-1-1-1,如果AD ∥EF ∥BC ,AB ∥GH ∥CD ,EF 与GH 相交于点O ,那么图中的平行四边形一共有( )A .4个B .5个C .8个D .9个2.在平行四边形ABCD 中,如果∠A=55º,那么∠C 的度数是 ( )A .45ºB .55ºC .125ºD .145º3.如图18-1-1-2,在□ABCD 中,已知AC=4 cm ,若△ACD 的周长为13 cm ,则☐ABCD 的周长为( )A .26 cmB .24 cmC .20 cmD .18 cm4.如图18-1-1-3,在平行四边形ABCD 中,∠ADC 的平分线交BC 于点E .若∠CED=35º,则∠B 的度数为( )A .40ºB .50ºC .60ºD .70。

5.在平行四边形ABCD 中,已知∠A-∠B=60º,则∠C=________.6.如图18-1-1-4,平行四边形ABCD 中,E 、F 分别是边BC 、AD 的中点,求证:∠ABF=∠CDE.7.如图18-1-1-5,l ₁∥l ₂,AB ⊥l ₂,DC ⊥l ₁,则下列结论:①AB ⊥l ₁;②AB ∥CD ;③AB=CD ;④AC=BD ,其中正确的个数是( )A .4B .3C .2D .18.如图18-1-1-6,在☐ABCD 中,D 是对角线AC ,BD 的交点,若△AOD 的面积是4,则☐ABCD 的面积是( )A .8B .12C .16D .20 能力提升全练1.如图18-1-1-7,在平行四边形ABCD 中,∠ABC 、∠BCD 的平分线分别交AD 于点E 、F ,且AD=8.EF=2,则AB 的长是( )A .3B .4C .5D .62.如图18-1-1-8,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,过点O 的直线分别交AD ,BC 于点M ,N ,若△CON 的面积为2,△DOM 的面积为4,则△AOB 的面积为_______.3.如图18-1-1-9①,☐ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AD 、BC 分别相交于点E 、F ,则OE=OF.若将EF 向两边延长与平行四边形的两对边的延长线分别相交(如图②和图③),OE 与OF 还相等吗?若相等,请你说明理由.三年模拟全练 一、选择题1.(2018黑龙江大庆肇源期末,3,★☆☆)如图18-1-1-10,在平行四边形ABCD 中,不一定成立的是 ( )①AO=CO ;②AC ⊥BD ;③AD ∥BC ;④∠CAB=∠CAD.A .①和④B .②和③C .③和④D .②和④2.如图18-1-1-11,☐ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E .AB=3.AC=2.BD=4,则AE 的长为( )A .23 B .23C .721D .7212 二、填空题3.如图18-1-1-12,在☐ABCD 中,∠A=130º,在边AD 上取一点E .使DE=DC ,则∠ECB=_______.三、解答题4.如图18-1-1-13,在平行四边形ABCD 中,∠BAD 的平分线AE 交CD 于点F ,交BC 的延长线于点E . (1)求证:BE=CD ;(2)连接BF,若BF⊥AE,∠BEA=60º,AB=4,求平行四边形ABCD的面积.五年中考全练一、选择题1.在☐ABCD中,若∠BAD与∠CDA的平分线交于点E,则△AED的形状是 ( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定2.如图18-1-1-14,将☐ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F.若∠ABD=48º,∠CFD=40º,则∠E为( )A.102º B.112º C.122º D.92º3.在☐ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,则AB的长为 ( )A.3 B.5 C.2或3 D.3或5二、填空题4.如图18-1-1-15,☐ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图18-1-1-16,在☐ABCD中,AB=10,AD=6,AC⊥BC,则BD=_______.三、解答题6.如图18-1-1-17,在☐ABCD中,点E,F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H,求证:AG=CH.核心素养全练1.如图18-1-1-18,已知□ABCD.(1)试用三种不同的方法用一条直线MN将它分成面积相等的两部分;(保留作图痕迹,不写作法)(2)由上述方法,你能得到什么样的结论?(3)解决问题:兄弟俩分家,原来他们共同承包了一块平行四边形田地ABCD,现要拉一条直线将田地平均划分,在这块地里有一口井P,如图18-1-1-19所示,为了兄弟俩都能方便使用这口井,聪明的你能帮他们解决这个问题吗?(保留作图痕迹,不写作法)2.我们知道:平行四边形的面积=底边×底边上的高.如图18-1-1-20,四边形ABCD 是平行四边形,AD∥BC,AB∥CD,设它的面积为S:(1)如图①,点肼为AD上任意一点,则△BCM的面积S₁=_______S,△BCD的面积S₂与△BCM的面积S₁的数量关系是_______;(2)如图②,设AC、BD交于点D,则O为AC、BD的中点,试探究△AOB的面积与△COD 的面积之和S₃与平行四边形ABCD的面积S的数量关系,并说明理由:(3)如图③,点P为平行四边形ABCD内任意一点,记△PAB的面积为S′,△PCD的面积为S″,猜想S′、S″的和与S的数量关系:(4)如图④,点P为平行四边形ABCD内任意一点,△PAB的面积为3,△PBC的面积为7,求△PBD的面积.第十八章 平行四边形 18.1 平行四边形 18.1.1 平行四边形的性质 1.D根据平行四边形的定义,可知图中的平行四边形有☐AEOG,☐GOFD ,☐EBHO,☐OHCF,☐AEFD ,☐EBCF,☐ABHG,☐GHCD ,☐ABCD 共9个. 2.B ∵四边形ABCD 是平行四边形,∴∠A =∠C ,∵∠A=55º,∴∠C=55º. 3.D 根据平行四边形的两组对边分别相等,得在☐ABCD 中AB=CD,BC=AD.由C △ACD=AD+AC+CD=13 cm,AC=4 cm ,得AD+CD=9 cm,∴C ☐ABCD =2(AD+CD)=2×9=18 cm ,故选D.4.D 在□ABCD 中,AD ∥BC ,∠B=∠ADC,∴∠A DE =∠C ED=35º.又∵DE 平分∠A DC ,∴∠A DC=2∠A DE=70º,∴∠B =∠A DC=70º. 5.答案 120º解析如图所示,由平行四边形的邻角互补可知∠A +∠B =180º,又∠A -∠B =60º,所以∠A=120º,又因为平行四边形对角相等,所以∠C=∠A =120º.6.证明 ∵四边形ABCD 为平行四边形, ∴AB=CD,AD=BC,∠C=∠A ,∵E 、F 分别是边BC 、AD 的中点,∴CE=21BC,AF=21AD , ∴AF=CE,∴△ABF ≌△CDE(SAS),∴∠A BF=∠C DE. 7.A ①②③④全部正确,故选A .8.C 因为平行四边形对角线互相平分,所以BO=DO ,AO=CO ,则△ABO 与△ADO 是等底同高的三角形,所以面积相等,同理,△ABO 与△CBO 面积相等.因此△ABO ,△ADO ,△CDO ,△CBO 面积都相等,所以S ☐ABCD =4S △ADO =16.1.C ∵BE 是∠A BC 的平分线,∴∠A BE =∠EBC,∵四边形ABCD 是平行四边形,∴AD ∥BC,∴ ∠A EB=∠EBC ,∴∠A EB =∠A BE,∴AB=AE ,同理DF=DC .又平行四边形的对边相等, ∴AB=CD,故AE=DF.∴AE-EF=DF-EF,即AF=DE,∵AF+EF+DE=AD=8,∴ 2AF+EF=8, 又∵EF=2.∴AF=3,AB=AE=AF+EF=5. 2.答案6解析 ∵四边形ABCD 是平行四边形,∴AD ∥BC, OA=OC,OB=OD .∴∠CAD =∠A CB, ∵∠A OM =∠NOC,∴△AOM ≌△CON(ASA),∴S △AOM =S △CON =2,∴S △AOD =S △DOM +S △AOM =4+2=6.又∵△AOB 与△AOD 等底同高,∴S △AOB =S =6. 3.解析题图②中OE=OF.理由:在☐ABCD 中,AB ∥CD,OA=OC, ∴∠E=∠F,叉∵∠A OE=∠COF, ∴△AOF ≌△COF(AAS), ∴OE=OF. 题图③中OE=OF.理由:在☐ABCD 中,AD ∥BC,OA=OC, ∴∠E =∠F, 又∵∠A OE =∠C OF ,∴△AOE ≌△COF(AAS), ∴OE=OF. 一、选择题1.D ∵四边形ABCD 是平行四边形,∴AO=CO ,故①成立;AD ∥BC ,故③成立,利用排除法可得②与④不一定成立.故选D .2.D .∵四边形ABCD 是平行四边形,AC=2,BD=4, ∴AO=21AC=1.BO=21BD=2, ∵AB=3.∴AB ²+AO ²=(3)²+1²=2²=BO ², ∴∠B AC=90º,在Rt △BAC 中,BC=()7232222=+=+AC AB ,∴S △BAC =21•AB •AC=21•BC •AE, ∴3×2=7AE . ∴AE=7212.故选D . 二、填空题 3.答案 65º解析 因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠A +∠D=180º.因为∠A=130º,所以∠D =50º,因为DE=DC ,所以∠D EC =∠D CE 、由AD ∥BC 得∠D EC =∠B CE ,所以∠ECB =∠D EC =∠D CE=21(180º-∠D )=21×(180º-50º)=65º. 三、解答题4.解析(1)证明: ∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠D AE =∠E,∵∠B AD 的平分线AE 交CD 于点F ,交BC 的延长线于点E ,∴∠BAE=∠DAE ,∴∠E =∠B AE , ∴AB=BE,又在平行四边形ABCD 中,AB=CD,∴BE=CD.(2)由BE=CD=AB ,∠B EA=60º得△ABE 为等边三角形,∴AE=AB=4,又∵BF ⊥AE,∴AF=EF=2,根据勾股定理得BF=23,易证△ADF ≌△ECF ,∴S △AFD =S △ECF ,又S ☐ABCD =S 四边形ABCF+S △AFD ,S △ABE =S 四边形ABCF +S △CFE ,∴平行四边形ABCD 的面积等于△ABE 的面积,故S ☐ABCD =S△ABE=21AE •BF=21×4×23=43.一、选择题1.B ∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠B AD+∠A DC=180º,∵∠B AD 与∠C DA 的平分线交于点E ,∴∠EAD=21∠B AD, ∠EDA=21∠C DA ,∴∠EAD+∠EDA=21(∠B AD+∠C DA)=21×180º=90º, ∴∠A ED=90º,故△AED 是直角三角形.2.B 设∠A=∠E=x ,∵∠DBE =∠A BD=48º,∠B FE =∠D FC=40º,∴∠FBD=180º-x-48º=132º-x ,∴∠EBF =∠D BE-∠FBD=48º-(132º-x)=x-84º,又∠E+∠BFE+∠EBF=180º.即∠EBF=180º-∠E-∠BFE=180º-x-40º=140º-x, ∴x-84º=140º-x,∴x=112º.3.D 分两种情况讨论:(1)如图①,在□ABCD 中,BC ∥AD,∴∠D AE =∠A EB,∠A DF =∠D FC .∴AE 平分∠BAD 交BC 于点E,DF 平分∠A DC 交BC 于点F,∴∠BAE=∠D AE,∠A DF=∠C DF, ∴∠BAE=∠A EB, ∠C FD=∠C DF, ∴AB=BE,CF=CD.在□ABCD中 ,AB=CD,∴BC=BE+CF -EF=2AB-EF,即2AB-2=8,∴AB=5.(2)如图②,在☐ABCD中,BC∥AD,∴∠D AE=∠A EB,∠A DF=∠D FC,∵AE平分∠BAD交BC于点E,DF平分∠A DC交BC于点F, ∴∠BAE=∠DAE, ∠A DF=∠CDF,∴∠B AE=∠A EB,∠C FD=∠C DF,∴AB=BE,CF=CD.在☐ABCD中,AB=CD,∴BC=BE+CF+EF=2AB+EF,即2AB+2=8,∴AB=3.综上所述,AB的长为3或5.二、填空题4.答案14解析在☐ABCD中,BC=AD=6,OB=OD=21BD,OA=OC=21AC,且AC+BD=16,∴OB+OC=21(AC+BD)=8,∴△BOC的周长为OB+OC+BC=14.5.答案413解析过点D作DE⊥B C交BC的延长线于点E,∵四边形ABCD为平行四边形,∴AD=BC=6,∴AC⊥BC,∴DE=AC=226-10=8.∵BE=BC+CE=6+6=12,∴BD=22812+=413.三、解答题6.证明∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠A=∠C,∴∠F=∠E,∵BE=DF.∴AD+DF=CB+BE.即AF=CE,在△AGF和△CHE中,⎪⎩⎪⎨⎧E,∠=F∠,CE=AFC,∠=A∠∴△AGF≌△CHE(ASA),∴AG=CH.1.解析(1)作图如下.(2)过对角线交点的任意一条直线都能将平行四边形分成面积相等的两部分. (3)作图如下.2.解析(1)21;S ₁=S ₂,设在☐ABCD 中,BC 边上的高为h ₁, ∵S ☐ABCD =BC •h ₁=S,∴S △BCM =21BC •h ₁=21S,S △BCD =21BC •h ₁=21S, ∴S ₁=21S,S ₂=21S,∴S ₁=S ₂. (2)S ₃=21S .理由:∵O 为AC 、BD 的中点,∴S ₃=S △AOB +S △COD =21S △ABD +21S △BCD =21(S △ABD +S △BCD =21S. (3)S ′+S ″=21S .设在☐ABCD 中,CD 边上的高为h ₂,△ABP 中AB 边上的高为h ₃,△PCD 中CD 边上的高为h ₄,∵AB ∥CD,∴ h ₃+h ₄=h ₂,又AB=CD ,∴S △PAB +S △PCD )=21AB •h ₃+21CD •h ₄=21AB •(h ₃+h ₄)=21AB •h ₂=21S ,即S ′+S ″=21S . (4)易知S △PAB +S △PCD =21S=S △BCD , ∵S △PAB =3,S △PBC =7,∴S △PBD =S 四边形PBCD -S △BCD =S △PBC +S △PCD -S △BCD =7+(21S-3)-21S=7-3=4.。

人教版 八年级数学下册 18.1 平行四边形 培优训练(含答案)

人教版 八年级数学下册 18.1 平行四边形 培优训练(含答案)

人教版 八年级数学 18.1 平行四边形 培优训练一、选择题(本大题共8道小题)1. 以三角形的三个顶点作平行四边形,最多可以作( ) A .2个 B .3个 C .4个 D .5个2. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°3. 如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( ) A . 3 cm B . 4 cm C . 5 cm D . 8 cm4. 如图,ABCD 中,AB=2,AD=4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是A .EH=HGB .四边形EFGH 是平行四边形C .AC ⊥BDD .△ABO 的面积是△EFO 的面积的2倍5. 在平行四边形ABCD 中,点1A 、2A 、3A 、4A 和1C 、2C 、3C 、4C 分别为AB 和CD 的五等分点,点1B 、2B 和1D 、2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 面积为( )A .2B .35C .53D .156. (2019▪广西池河)如图,在△ABC中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是A .∠B=∠FB .∠B=∠BCFC .AC=CFD .AD=CF7.已知四边形的四条边长分别是a b c d ,,,,其中a b ,为对边,并且满足222222a b c d ab cd +++=+则这个四边形是( )A .任意四边形B .平行四边形C .对角线相等的四边形D .对角线垂直的四边形8.(2020·临沂)如图,P 是面积为S 的ABCD 内任意一点,PAD ∆的面积为1S ,PBC ∆的面积为2S ,则( )A.122SS S +>B.122SS S +<C.212SS S += D.21S S +的大小与P 点位置有关二、填空题(本大题共8道小题)9. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形.10.(2020·牡丹江)如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件__________________,使四边形ABCD 是平行四边形(填一个即可).11. 已知平行四边形ABCD 的周长为60cm ,对角线AC 、BD 相交于O 点,AOB ∆的周长比BOC ∆的周长多8cm ,则AB的长度为cm .OD CBA12. 如图所示,在▱ABCD中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________.13. (2020·凉山州)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,OE ∥AB 交AD 于点E .若OA =1,△AOE 的周长等于5,则平行四边形ABCD 的周长等于 .O EDCB A14. 如图,在ABCD 中,E.F 是对角线AC 上两点,AE=EF=CD ,∠ADF=90°,∠BCD=63°,则∠ADE 的大小为__________.15. 如图,在▱ABCD中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,AD ′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.ABC16. 如图,一个平行四边形被分成面积为1S 、2S 、3S 、4S 四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时.① 14S S 与23S S 的大小关系为.② 已知点C 与点A 、B 不重合时,图中共有 个平行四边形,S 4S 3S 2S 1(3)DCBA三、解答题(本大题共4道小题) 17. (2020·重庆B 卷)如图,在平行四边形ABCD 中,AE ,CF 分别平分∠BAD 和∠DCB ,交对角线BD 于点E ,F . (1)若∠BCF =60°,求∠ABC 的度数; (2)求证:BE =DF .18. 如图所示,P 为平行四边形ABCD 内一点,求证:以AP 、BP 、CP 、DP 为边可以构成一个四边形,并且所构成的四边形的对角线的长度恰好分别等于AB 和BC .DPCBA19. (2020·泰安)(12分)若△ABC 和△AED 均为等腰三角形,且∠BAC ﹦∠EAD﹦90°.(1)如图(1),点B 是DE 的中点,判断四边形BEAC 的形状,并说明理由;(2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF ﹦CD . 求证:①EB ﹦DC ,②∠EBG ﹦∠BFC .GFABCDEABCDE20. 如图,AC 是平行四边形ABCD 较长的一条对角线,点O 是ABCD 内部一点,OE AB ⊥于点E ,OF AD ⊥于点F ,OG AC ⊥于点G ,求证:AE AB AF AD AG AC ⋅+⋅=⋅.人教版 八年级数学 18.1 平行四边形 培优训练-答案一、选择题(本大题共8道小题) 1. 【答案】B2. 【答案】C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎨⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.3. 【答案】B【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.4. 【答案】B【解析】∵E,F,G,H分别是AO,BO,CO,DO的中点,在ABCD中,A B=2,AD=4,∴EH=12AD=2,HG=1122CD=AB=1,∴EH≠HG,故选项A 错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=1122AD BC FG==,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=12AB,EF∥AB,∴△OEF∽△OAB,∴214AEFOABS EFS AB⎛⎫==⎪⎝⎭,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选B.5. 【答案】C6. 【答案】B【解析】∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE=12 AC.A.根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B.根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C.根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D.根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.故选B.7. 【答案】B8. 【答案】C【解析】可以利用割补法对平行四边形进行分割,然后使分割后的图形与PAD ∆的面积1S ,PBC ∆的面积2S 发生关联,然后求出其数量关系,如下图,过点P 作AD 的平行线,分别交ABCD 的边于点M 、N :2111(21222)AMND MbCN AMND MbCN SS S S S S S =+++==.二、填空题(本大题共8道小题) 9. 【答案】AD ∥BC (答案不唯一) 【解析】根据平行四边形的判定,在已有AB ∥DC 的条件下,可再加另一组对边平行即可证得它是平行四边形,即加“AD ∥BC”.10. 【答案】AD=BC【解析】当添加条件AD=BC 时,根据一组对边平行且相等的四边形是平行四边形,可得四边形ABCD 是平行四边形.11. 【答案】19【解析】如图,AOB ∆的周长为AB AO BO ++,BOC ∆的周长为BC BO CO ++ 由平行四边形的对角线互相平分可得()()8AB AO BO BC BO CO AB BC ++-++=-= ∴6082194AB +⨯==.12. 【答案】50°【解析】在平行四边形ABCD 中,AB ∥CD ,AD ∥BC ,∴∠FBA=∠C =40°,∵FD ⊥AD ,∴∠ADF =90°,∵AD ∥BC ,∴∠F =∠ADF =90°,∴∠BEF =180°-90°-40°=50°.13. 【答案】16【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,AB =CD ,AD =BC .∵OE ∥AB ,∴OE 是△ACD 的中位线.∴AE =12AD ,OE =12CD .∵OA =1,△AOE 的周长等于5,∴AE +OE =4.∴AD +CD =8.∴平行四边形ABCD 的周长=16.故答案为16.14. 【答案】21° 【解析】设∠ADE=x ,∵AE=EF ,∠ADF=90°,∴∠DAE=∠ADE=x ,DE=12AF=AE=EF ,∵AE=EF=CD ,∴DE=CD , ∴∠DCE=∠DEC=2x ,∵四边形ABCD 是平行四边形,∴AD ∥BC , ∴∠DAE=∠BCA=x ,∴∠DCE=∠BCD ﹣∠BCA=63°﹣x ,∴2x=63°﹣x ,解得x=21°,即∠ADE=21°; 故答案为:21°.15. 【答案】36°【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED =180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.16. 【答案】①1423S S S S =;②9三、解答题(本大题共4道小题)17. 【答案】(1)解: ∵CF 平分∠BCD ,∴∠BCD =2∠BCF .∵∠BCF =60°,∴∠BCD =2×60°=120°.∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABC +∠BCD =180°. ∴∠ABC =180°-120°=60°.(2)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∠BAD =∠DCB .∴∠ABE =∠CDF .∵AE ,CF 分别平分∠BAD 和∠DCB ,∴∠BAE =12∠BAD =12∠DCB =∠DCF .在△ABE 和△CDF 中,∵∠ABE =∠CDF ,AB =CD ,∠BAE =∠DCF , ∴△ABE ≌△CDF . ∴BE =DF .18. 【答案】如图所示,将PAB ∆平移至QDC ∆的位置,易证DQ AP =,CQ BP =,则四边形DPCQ 恰好是一个以AP 、BP 、CP 、DP 为边的四边形,并且它的对角线恰好等于平行四边形ABCD 的两条邻边.QDPCBA19. 【答案】(1)证明:四边形BEAC 是平行四边形. 理由如下:∵△EAD 为等腰三角形且∠EAD ﹦90°, ∴∠E ﹦45°.∵B 是DE 的中点, ∴AB ⊥DE . ∴∠BAE ﹦45°.∵△ABC 为等腰三角形且∠BAC ﹦90°, ∴∠CBA ﹦45°. ∴∠BAE ﹦∠CBA . ∴BC ∥EA . 又∵AB ⊥DE ,∴∠EBA ﹦∠BAC ﹦90°. ∴BE ∥AC .∴四边形BEAC 是平行四边形.(2)证明:①∵△AED 和△ABC 为等腰三角形, ∴AE ﹦AD ,AB ﹦AC . ∵∠EAD ﹦∠BAC ﹦90°,∴∠EAD +∠DAB ﹦∠BAC +∠DAB .即∠EAB ﹦∠DAC . ∴△AEB ≌△ADC . ∴EB ﹦DC .②延长FG 至点H ,使GH ﹦FG . ∵G 是EC 中点,∴EG ﹦CG .又∠EGH ﹦∠FGC , ∴△EHG ≌△CFG ,∴∠BFC ﹦∠H ,CF ﹦EH . 又∵CF ﹦CD , ∴BE ﹦CF . ∴BE ﹦EH .∴∠EBG ﹦∠H . ∴∠EBG ﹦∠BFC .AB CDEEDCBA FGH20. 【答案】如图所示,,分别过点B 、C 、D 作直线AO 的垂线,EG CP DL ∥∥、Q 、N 为垂足;分别过B 、D 作AC 的垂线,L 、K 为垂足. 显然,A 、E 、O 、G 、F 五点共圆,AO 是直径.由DN AO ⊥,CQ AO ⊥,BM AO ⊥,DC AB ∥且DC AB =可知NQ AM =. 已知AF AD AN AO ⋅=⋅,AE AB AM AO ⋅=⋅, 则AF AD AE AB ⋅+⋅ AN AO AM AO =⋅+⋅ ()AO AN AM =+ ()AO AN NQ =+ AO AQ =⋅ AG AC =⋅故AE AB AF AD AG AC ⋅+⋅=⋅.点评:ab cd ef +=类型的问题一般要转化为ab mn =型的问题(当然,如果能够使用勾股定理、余弦定理等,大家也可以踊跃尝试),把握了这一点,就能及时调整思路,确保解题不会误入歧途.图(1)图(2)。

初中数学人教版八年级下册第十八章 平行四边形18.1 平行四边形-章节测试习题(5)

初中数学人教版八年级下册第十八章 平行四边形18.1 平行四边形-章节测试习题(5)

章节测试题1.【答题】如图所示,平行四边形ABCD的周长是18cm,对角线AC、BD相交于点O,若△AOD与△AOB的周长差是5cm,则边AB的长是______cm.【答案】2【分析】利用平行四边形的对角线互相平分这一性质,确定已知条件中两三角形周长的差也是平行四边形两邻边边长的差,进而确定平行四边形的边长.【解答】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵△AOD的周长=OA+OD+AD,△AOB的周长=OA+OB+AB,又∵△AOD与△AOB的周长差是5cm,∴AD=AB+5,设AB=x,AD=5+x,则2(x+5+x)=18,解得x=2,即AB=2cm.故答案为2.【点评】本题是应用平行四边形性质的典型题目,解决此题运用了平行四边形的对边相等和角平分线互相平分这两条性质,题目难度不大.2.【答题】如图,在▱ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是______.【答案】3<x<11【分析】根据平行四边形的性质易知OA=7,OB=4,根据三角形三边关系确定范围.【解答】解:∵ABCD是平行四边形,AC=14,BD=8,∴OA= AC=7,OB= BD=4,∴7-4<x<7+4,即3<x<11.故答案为3<x<11.【点评】此题考查了平行四边形的性质及三角形三边关系定理,有关“对角线范围”的题,应联系“三角形两边之和、差与第三边关系”知识点来解决.3.【答题】如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是______度.【答案】65【分析】利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.【解答】解:在平行四边形ABCD中,∠A=130°,∴∠BCD=∠A=130°,∠D=180°-130°=50°,∵DE=DC,∴∠ECD= (180°-50°)=65°,∴∠ECB=130°-65°=65°.故答案为65°.【点评】本题主要考查平行四边形对角相等和邻角互补的性质,熟练掌握性质是解题的关键.4.【答题】如图,在平行四边形ABCD中,E是AD边上的中点.若∠ABE=∠EBC,AB=2,则平行四边形ABCD的周长是______.【答案】12【分析】根据AD∥BC和已知条件,推得AB=AE,由E是AD边上的中点,推得AD=2AB,再求平行四边形ABCD的周长.【解答】∵AD∥BC,∴∠AEB=∠EBC,∵∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∵E是AD边上的中点,∴AD=2AB,∵AB=2,∴AD=4,∴平行四边形ABCD的周长=2(4+2)=12.故答案为12.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现等角时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.5.【答题】如图所示,在▱ABCD中,AB=5,AD=8,DE平分∠ADC,则BE=______.【答案】3【分析】先根据角平分线和平行四边形的性质求出CD=CE,再由BE=BC-CE求解.【解答】在ABCD中,AB=5,AD=8,∴BC=8,CD=5,∵DE平分∠ADC,∴∠ADE=∠CDE,又▱ABCD中,AD∥BC,∴∠ADE=∠DEC,∴∠DEC=∠CDE,∴CD=CE=5,∴BE=BC-CE=8-5=3.故答案为3.【点评】本题主要考查平行四边形的性质,角平分线性质的利用是解题的关键,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.6.【答题】如图,在▱ABCD中,AB=6cm,∠BCD的平分线交AD于点E,则DE=______cm.【答案】6【分析】由平行四边形的性质及叫平分线可得∠DCE=∠DEC,即DE=DC,即可求解.【解答】在平行四边形ABCD中,则AD∥BC,DC=AB,∴∠DEC=∠BCE,又CE平分∠BCD,∴∠BCE=∠DCE,∴∠DCE=∠DEC,即DE=DC=AB=6cm,故此题应填6.【点评】本题主要考查平行四边形的性质及叫平分线的性质,能够判定一个三角形是等腰三角形.7.【答题】如图,在▱ABCD中,∠A=120°,则∠D=______度.【答案】60【分析】利用平行四边形的性质得两边平行,两邻角互补,从而求出∠D的度数.【解答】平行四边形中两组对边分别平行则AB∥CD,根据两直线平行同旁内角互补∠A+∠D=180°,当∠A=120°时,∠D=60°故答案为60.【点评】此题主要考查了平行四边形的性质,平行四边形的对角相等,邻角互补.8.【答题】如图,在▱ABCD中,已知AB=9cm,AD=6cm,BE平分∠ABC交DC边于点E,则DE等于______cm.【答案】3【分析】要求DE的长,只要求出CE即可,根据平行四边形的性质和角平分线,证得CE=BC,从而求得DE.【解答】在▱ABCD中,∵AB∥CD,∴∠ABE=∠BEC,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠BEC,∴CB=CE,∵AB=9cm,AD=6cm,∴DE=CD-CE=AB-AD=9-6=3cm故答案为3.【点评】本题考查的是利用平行四边形的性质结合等角对等边来解决有关线段长度的问题.9.【答题】如图,▱ABCD中,点A关于点O的对称点是点______.【答案】C【分析】根据平行四边形的对角线互相平分,点A、C关于点O对称.【解答】∵四边形ABCD为平行四边形,∴OA=OC,且A、O、C三点共线,∴点A关于点O的对称点是点C.【点评】平行四边形是中心对称图形,其对称中心为对角线的交点.10.【答题】如图,已知▱ABCD的对角线AC、BD相交于点O,AC=12,BD=18,且△AOB 的周长l=23,则AB=______.【答案】8【分析】根据平行四边形中两条对角线相互平分的性质可求解.【解答】解:∵▱ABCD的对角线AC、BD相交于点O,AC=12,BD=18,∴AO= AC=6,BO= BD=9.又∵△AOB的周长l=23,∴AB=l-(AO+BO)=23-(6+9)=8.【点评】本题主要考查了平行四边形的性质及三角形的周长的计算.11.【答题】如图,方格纸中每个最小正方形的边长为1,则两平行直线AB、CD之间的距离是______.【答案】3【分析】本题主要利用平行线之间的距离的定义作答.【解答】解:由图可知,∵AB、CD为小正方形的边所在直线,∴AB∥CD,∴AC⊥AB,AC⊥CD,∵AC的长为3个小正方形的边长,∴AC=3,即两平行直线AB、CD之间的距离是3.故答案为:3.【点评】此题很简单,考查的是两平行线之间的距离的定义,即两直线平行,则夹在两条平行线间的垂线段的长叫两平行线间的距离.12.【答题】若点O为▱ABCD的对角线AC与BD交点,且AO+BO=11cm,则AC+BD=______cm.【答案】22【分析】根据平行四边形的对角线互相平分即可求解.【解答】解:∵四边形ABCD是平行四边形∴AO=CO,BO=DO∴AC=2AO,BD=2BO∴AC+BD=2(AO+BO)=22cm.故答案为22.【点评】本题考查的是平行四边形的对角线互相平分这一性质,题型简单.13.【答题】如图,在▱ABCD中,AC、BD相交于点O,OE⊥BD交AD于点E,若△ABE的周长为5cm,则▱ABCD的周长为______cm.【答案】10【分析】根据平行四边形性质得出AD=BC,AB=CD,BO=DO,根据线段垂直平分线得出BE=DE,根据△ABE的周长求出AB+AD=5cm,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,BO=DO,∵OE⊥BD,∴BE=DE,∵△ABE的周长为5cm,∴AB+AE+BE=AB+AE+DE=AB+AD=5cm,∴▱ABCD的周长为2(AB+AD)=2×5cm=10cm,故答案为:10.【点评】本题考查了平行四边形的性质和线段的垂直平分线的性质的应用,关键是求出AB+AD的值,此题比较典型,是一道比较好的题目.14.【答题】如图,在▱ABCD中,EF经过对角线的交点O,交AB于点E,交CD于点F.若AB=5,AD=4,OF=1.8,那么四边形BCFE的周长为______.【答案】12.6【分析】由四边形ABCD是平行四边形,易求得BC=AD=4,易证得△AOE≌△COF,则可求得CF=AE,EF=3.6,然后由四边形BCFE的周长为:AB+BC+EF,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=4,OA=OC,AB∥CD,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴CF=AE,OE=OE=1.8,∴EF=OE+OF=3.6,∴四边形BCFE的周长为:EF+BE+BC+CF=EF+BC+BE+AE=EF+BC+AB=3.6+4+5=12.6.故答案为:12.6.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.15.【答题】如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF 的长是______.【答案】3【分析】根据平行四边形的对边相等,可得CD=AB=4,又因为S ▱ABCD=BC•AE=CD•AF,所以求得DC边上的高AF的长是3.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=4,∴S ▱ABCD=BC•AE=CD•AF=6×2=12,∴AF=3.∴DC边上的高AF的长是3.故答案为3.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.还要注意平行四边形的面积的求解方法:底乘以高.16.【答题】如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O 过A、C两点,则图中阴影部分的面积之和为______.【答案】4【分析】先根据∠AOB=∠COD可知S 阴影 =S △AOB,再由平行四边形的性质得出OA= AC,由三角形的面积公式即可得出结论.【解答】解:∵∠AOB=∠COD,∴S 阴影 =S △AOB.∵四边形ABCD是平行四边形,∴OA= AC= ×4=2.∵AB⊥AC,∴S 阴影 =S △AOB = OA•AB=×2×4=4.故答案为:4.【点评】本题考查的是扇形面积的计算,熟知平行四边形的对角线互相平分是解答此题的关键.17.【答题】▱ABCD中,已知点A(-1,0),B(2,0),D(0,1).则点C的坐标为(______,______).【答案】3 1【分析】画出图形,根据平行四边形性质求出DC∥AB,DC=AB=3,根据D的纵坐标和CD=3即可求出答案.【解答】解:∵平行四边形ABCD中,已知点A(-1,0),B(2,0),D(0,1),∴AB=CD=2-(-1)=3,DC∥AB,∴C的横坐标是3,纵坐标和D的纵坐标相等,是1,∴C的坐标是(3,1),故答案为:(3,1).【点评】本题考查了平行四边形的性质和坐标与图形性质的应用,能根据图形进行推理和求值是解此题的关键,本题主要考查学生的观察能力,用了数形结合思想.18.【答题】如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD、BC于点M、N,若△CON的面积为2,△DOM的面积为4,则△AOB的面积为______.【答案】6【分析】由于四边形ABCD是平行四边形,所以∠CAD=∠ACB,OA=OC,由此可以证明△CON≌△AOM,现在可以求出S △AOD,再根据O是DB中点就可以求出S △AOB.【解答】解:∵四边形ABCD是平行四边形,∴∠CAD=∠ACB,OA=OC,而∠AOM=∠NOC,∴△CON≌△AOM,∴S △AOD =4+2=6,又∵OB=OD,∴S △AOB =S △AOD =6.故答案为6.【点评】平行四边形的两条对角线交于一点,这个点是平行四边形的中心,也是两条对角线的中点,平行四边形被对角线分成的四部分的面积相等,并且经过中心的任意一条直线可将平行四边形分成完全重合的两个图形.19.【题文】在▱ABCD中,AB<BC,已知∠B=30°,AB=,将△ABC沿AC翻折至△AB′C,使点B′落在▱ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为______.【答案】4或6【分析】在▱ABCD中,AB<BC,要使△AB′D是直角三角形,有两种情况:∠B′AD=90°或∠AB′D=90°,画出图形,分类讨论即可.【解答】解:当∠B′AD=90°AB<BC时,如图1,∵AD=BC,BC=B′C,∴AD=B′C,∵AD∥BC,∠B′AD=90°,∴∠B′GC=90°,∵∠B=30°,AB=,∴∠AB′C=30°,∴GC= B′C=BC,∴G是BC的中点,在Rt△ABG中,BG= AB= ×=3,∴BC=6;当∠AB′D=90°时,如图2,∵AD=BC,BC=B′C,∴AD=B′C,∵由折叠的性质:∠BAC=90°,∴AC∥B′D,∴四边形ACDB′是等腰梯形,∵∠AB′D=90°,∴四边形ACDB′是矩形,∴∠BAC=90°,∵∠B=30°,AB=,∴BC=AB÷=4,∴当BC的长为4或6时,△AB′D是直角三角形.故答案为:4或6.【点评】本题主要考查了翻折变换的性质,解题的关键是画出图形,发现存在两种情况,进行分类讨论.20.【题文】在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,A B′和CD相交于点O.求证:OA=OC.【答案】见解答.【分析】由在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,即可求得∠DCA=∠B′AC,则可证得OA=OC.【解答】证明:∵△AB′C是由△ABC沿AC对折得到的图形,∴∠BAC=∠B′AC,∵在平行四边形ABCD中,AB∥CD,∴∠BAC=∠DCA,∴∠DCA=∠B′AC,∴OA=OC.【点评】此题考查了平行四边形的性质、等腰三角形的判定与性质以及折叠的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.。

2021年人教版数学八年级下册18.1.1 《平行四边形的性质》同步练习(含答案)

2021年人教版数学八年级下册18.1.1 《平行四边形的性质》同步练习(含答案)

人教版数学八年级下册18.1.1 《平行四边形的性质》同步练习一、选择题1.在四边形ABCD中,AD∥BC,若ABCD是平行四边形,则还应满足( )A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠B=180°D.∠A+∠D=180°2.如图,□ABCD的周长是22㎝,△ABC的周长是17㎝,则AC的长为( )A.5cm;B.6cm;C.7cm;D.8cm;3.如图,▱OABC的顶点O、A、C的坐标分别是(0,0),(2,0),(0.5,1),则点B的坐标是( )A.(1,2)B.(0.5,2)C.(2.5,1)D.(2,0.5)4.如图,平行四边形ABCD中,DE⊥AB于E,DF⊥BC于F,若□ABCD的周长为48,DE=5,DF=10,则□ABCD的面积等于( )A.87.5 B.80 C.75 D.72.55.如图,E为▱ABCD外一点,且EB⊥BC,ED⊥CD,若∠E=65°,则∠A的度数为()A.65°B.100°C.115°D.135°6.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13B.14C.15D.167.如图,▱ABCD中,BC=BD,∠C=72°,则∠ADB的度数是()A.18°B.26°C.36°D.72°8.如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO周长是( )A.10B.14C.20D.229.如图,EF过□ABCD对角线的交点O,交AD于点E,交BC于点F,若▱ABCD的周长为36,OE=3,则四边形EFCD的周长为( )A.28B.26C.24D.2010.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为( )A.8B.10C.12D.14二、填空题11.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若∠EAF=56°,则∠B= .12.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.13.如图,在平行四边形ABCD中,BE平分∠ABC,交AD于点E,AB=3cm,ED=1.5cm,则平行四边形ABCD 的周长是.14.如图,在□ABCD中,对角线BD=8cm,AE⊥BD,垂足为E,且AE=3cm,BC=4cm,则AB与CD 之间的距离为.15.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,图中全等三角形共有________对三、解答题16.如图,已知在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.17.如图,已知在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.参考答案1.D2.B;3.C.4.B5.C6.D7.C8.B.9.C.10.B.11.答案为:56°12.答案为:3;13.答案为:15cm.14.答案为:6cm.15.答案为:4;16.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E、F分别是▱ABCD边AD、BC的中点,∴DE=AD,BF=BC,∴DE=BF,∴四边形BFDE是平行四边形,∴BE=DF.17.证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∴∠ADE=∠CBF.∵AE⊥BD,CF⊥BD,∴∠AED=∠BFC=90°.在△ADE与△CBF中,∠ADE=∠CBF,∠AED=∠CFB,AD=CB.∴△ADE≌△CBF(AAS).。

人教版 八年级下册数学18.1 平行四边形 课时训练(含答案)

人教版 八年级下册数学18.1 平行四边形 课时训练(含答案)

人教版八年级下册数学18.1 平行四边形课时训练一、选择题1. 如图,在平行四边形ABCD中,5AD=,3AB=,AE平分BAD∠交BC边于点E,则线段BE,EC的长度分别为()A.2和3B.3和2C.4和1D.1和4如图2. (2020·温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作□BCDE,则∠E的度数为EDCBAA.40°B.50°C.60°D.70°3. 如图,平行四边形ABCD的周长是26 cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3 cm,则AE的长度为() A. 3 cm B. 4 cm C. 5 cm D. 8 cm4. 如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A. 10B. 145. (2019▪广西池河)如图,在△ABC中,D,E分别是AB,BC的中点,点F在D E延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是A .∠B=∠FB .∠B=∠BCFC .AC=CFD .AD=CF6. 在平行四边形ABCD 中,点1A 、2A 、3A 、4A 和1C 、2C 、3C 、4C 分别为AB 和CD 的五等分点,点1B 、2B 和1D 、2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 面积为( ) A .2 B .35 C .53D .157. 如图,在△ABC 中,AB =4,BC =6,DE 、DF 是△ABC 的中位线,则四边形BEDF 的周长是( ) A . 5 B . 7 C . 8 D . 108.(2020·临沂)如图,P 是面积为S 的ABCD 内任意一点,PAD ∆的面积为1S ,PBC ∆的面积为2S ,则( )A.122SS S +>B.122S S S +<C.212S S S += D.21S S +的大小与P 点位置有关二、填空题9. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB的延长线于点F,则∠BEF的度数为__________.10.(2020·牡丹江)如图,在四边形ABCD中,AD//BC,在不添加任何辅助线的情况下,请你添加一个条件__________________,使四边形ABCD是平行四边形(填一个即可).11. (2020·凉山州)如图,平行四边形ABCD的对角线AC、BD相交于点O,OE∥AB交AD于点E.若OA=1,△AOE的周长等于5,则平行四边形ABCD 的周长等于.OE DCBA12. 如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的大小为________.13. 如图,ABCD的对角线AC、BD相交于点O,点E是AB的中点,△BEO 的周长是8,则△BCD的周长为__________.14. 如图,在平行四边形□ABCD中,2,AB ABC=∠的平分线与BCD∠的平分线交于点E,若点E恰好在边AD上,则22BE CE+的值为.ACEDCB A三、解答题15. 如图,四边形ABCD 为平行四边形,即AB CD ∥,AD BC ∥.通过证明三角形全等来说明:⑴AB CD =,AD BC =.(对边相等) ⑵AO CO =,BO DO =.ODCBA16. 四边形ABCD 的对角线AC、BD 交于点P ,过点P 作直线交AD 于点E ,交BC 于点F .若PE PF =,且AP AE CP CF +=+.求证:四边形ABCD 是平行四PFE DCBANMAEDPC FB17. 鄂州)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点分别为OA 、OC 的中点,延长BM 至点E ,使EM BM =,连接DE .(1)求证:AMB CND △≌△;(2人教版 八年级下册数学18.1 平行四边形 课时训练-答案一、选择题 1. 【答案】B2. 【答案】D【解析】本题考查了等腰三角形的性质以及平行四边形的性质,由∠A =40°,AB =AC ,求得∠C =70°,又因为四边形BCDE 是平行四边形,所以∠E =∠C =70°,因此本题选D .3. 【答案】B 【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.4. 【答案】B 【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .由AC +BD =16可得OA +OB =8,又∵AB =CD =6,∴△ABO 的周长为OA +OB +AB =8+6=14.5. 【答案】B【解析】∵在△ABC 中,D ,E 分别是AB ,BC 的中点, ∴DE 是△ABC 的中位线,∴.A .根据∠B=∠F 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.B .根据∠B=∠BCF 可以判定CF ∥AB ,即CF ∥AD ,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC 为平行四边形,故本选项正确. C .根据AC=CF 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.D .根据AD=CF ,FD ∥AC 不能判定四边形ADFC 为平行四边形,故本选项错误. 故选B .6. 【答案】C7. 【答案】D【解析】∵DE 、DF 是△ABC 的中位线,∴DE ∥AB ,DF ∥BC ,DE =12AB ,DF =12BC ,∴四边形BEDF 是平行四边形,∵AB =4,BC =6,∴DE =BF =2,DF =BE =3,∴四边形BEDF 的周长为:2(DE +DF )=10.8. 【答案】C 然后使分割后的图形与PAD ∆的面积1S ,PBC ∆的面积2S 发生关联,然后求出其数量关系,如下图,过点P 作AD 的平行线,分别交ABCD 的边于点M 、N :2111(21222)AMND MbCN AMND MbCN SS S S S S S =+++==.二、填空题 9. 【答案】50° 【解析】在平行四边形ABCD 中,AB ∥CD ,AD ∥BC ,∴∠FBA =∠C =40°,∵FD ⊥AD ,∴∠ADF =90°,∵AD ∥BC ,∴∠F =∠ADF =90°,∴∠BEF =180°-90°-40°=50°.10. 【答案】AD=BC【解析】当添加条件AD=BC 时,根据一组对边平行且相等的四边形是平行四边形,可得四边形ABCD 是平行四边形.11. 【答案】16【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,AB =CD ,AD =BC .∵OE ∥AB ,∴OE 是△ACD 的中位线.∴AE,OE.∵OA =1,△AOE 的周长等于5,∴AE +OE =4.∴AD +8ABCD 的周长=16.故答案为16.12. 【答案】36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED =180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.13. 【答案】16的对角线AC 、BD 相交于点O ,∴,BD=2OB ,∴O 为BD 中点, ∵点E 是AB 的中点,∴AB=2BE ,BC=2OE ,∵四边形ABCD 是平行四边形,∴AB=CD ,∴CD=2BE . ∵△BEO 的周长为8,∴OB+OE+BE=8,∴BD+BC+CD=2OB+2OE+2BE=2(OB+OE+BE)=16, ∴△BCD 的周长是16,故答案为16.14. 【答案】16【解析】∵四边形ABCD 是平行四边形,∴AB=CD=2,AD=BC,AD ∥BC ,AB ∥CD,∴∠ABC+∠BCD=180°, ∠AEB=∠EBC ,∠DEC=∠ECB.又∵BE 、CE 分别是∠ABC 与∠DCB 的平分线,∴∠ABE=∠EBC ,∠DCE=∠ECB ,∴∠EBC+∠BCE=90°,∠三、解答题15.⑴16.17. 【答案】解:(1)ABCD 是平行四边形, ∴AB =CD ,,OA =OC , BAC2AB ,∴BO =AB ,∴△ABO 为等腰三角形; 又M 为AO 的中点,∴由等腰三角形的“三线合一”性质可知:BM ⊥AO ,∴∠BMO =∠EMO =90°,同理可证△DOC 也为等腰三角形, 又N 是OC 的中点,∴由等腰三角形的“三线合一”性质可知:DN ⊥CO , ∠DNO =90°,∵∠EMO +∠DNO =90°+90°=180°,∴,=BM,由(1)中知BM=DN,∴EM=DN,∴四边形又∠EMO=在Rt△ABM∴AM=CN=3,3=6,。

2020年春季人教版八年级数学下册18.1专题训练 平行四边形的证明 (含答案)

2020年春季人教版八年级数学下册18.1专题训练 平行四边形的证明 (含答案)

18.1 专题训练平行四边形的证明1.如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD 是平行四边形.2.如图,在▱ABCD中,点E在AB的延长线上,且EC∥BD.求证:四边形BECD是平行四边形.3.已知:如图,在四边形ABCD中,AB=CD,BC=AD,点E,F在AC 上,且AF=CE.求证:四边形BEDF是平行四边形.4.如图,DE是△ABC的中位线,延长DE到F,使EF=DE,连接BF.求证:(1)BF=DC;(2)四边形ABFD是平行四边形.5.如图,▱ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.6.如图,在△ABC中,D,E,F分别为边AB,BC,CA的中点.求证:四边形DECF是平行四边形.7.如图,▱ABCD 中,点O 是对角线AC 的中点,EF 过点O,与AD,BC 分别相交于点E,F,GH 过点O,与AB,CD 分别相交于点G,H,连接EG,FG,FH,EH.求证:四边形EGFH 是平行四边形.8.已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE =DF.连接EF,与对角线AC交于点O.求证:OE=OF.9.如图1,在▱ABCD中,∠ABC,∠ADC的平分线分别交AD,BC于点E,F.(1)求证:四边形EBFD是平行四边形;(2)小明在完成(1)的证明后继续进行了探索.连接AF,CE,分别交BE,FD 于点G,H,得到四边形EGFH.此时,他猜想四边形EGFH是平行四边形,请在框图(图2)中补全他的证明思路.图1小明的证明思路由(1)可知BE∥DF,要证明四边形EGFH是平行四边形,只需证GF∥EH.由(1)可证ED=BF,则AE=FC,又由AE∥CF,故四边形AFCE是平行四边形,从而可证得四边形EGFH是平行四边形.10.如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.11.如图,四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA 的中点,顺次连接E,F,G,H,得到的四边形EFGH叫中点四边形.求证:四边形EFGH是平行四边形.12.如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF.13.如图,在▱ABCD中,AE=CF,M,N分别是BE,DF的中点,求证:四边形MFNE是平行四边形.14.如图,在▱ABCD中,E,F分别是边AD,BC的中点,对角线AC分别交BE,DF于点G,H.求证:AG=CH.15.如图,在▱ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F,试判断四边形AECF是不是平行四边形,并说明理由.16.如图,已知□ABCD的对角线AC ,BD相交于点O ,直线EF经过点O ,且分别交AB ,CD于点E , F.求证:四边形BFDE是平行四边形.17.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:四边形BCEF是平行四边形.18.如图所示,在四边形ABCD中,AD∥BC,AD=24 cm,BC=30 cm,点P从点A向点D以1 cm/s的速度运动,到点D即停止.点Q从点C向点B 以2 cm/s的速度运动,到点B即停止.直线PQ将四边形ABCD截成两个四边形,分别为四边形ABQP和四边形PQCD,则当P,Q两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?参考答案18.1 专题训练平行四边形的证明1.如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD 是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.2.如图,在▱ABCD中,点E在AB的延长线上,且EC∥BD.求证:四边形BECD是平行四边形.证明:∵四边形ABCD是平行四边形,∴AB∥CD,即BE∥DC.又∵EC∥BD,∴四边形BECD是平行四边形.3.已知:如图,在四边形ABCD中,AB=CD,BC=AD,点E,F在AC 上,且AF=CE.求证:四边形BEDF是平行四边形.证明:连接BD交AC于O,∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AO=CO,BO=DO.∵AF=CE,∴AF-AO=CE-CO,即OF=OE.又∵OB=OD,∴四边形BEDF是平行四边形.4.如图,DE是△ABC的中位线,延长DE到F,使EF=DE,连接BF.求证:(1)BF=DC;(2)四边形ABFD是平行四边形.证明:(1)∵DE是△ABC的中位线,∴CE=BE.在△DEC和△FEB中,⎩⎨⎧CE =BE ,∠CED =∠BEF ,DE =FE ,∴△DEC ≌△FEB(SAS ). ∴BF =DC.(2)∵DE 是△ABC 的中位线, ∴DE ∥AB ,且DE =12AB. 又∵EF =DE , ∴DE =12DF. ∴DF =AB. 又∵DF ∥AB ,∴四边形ABFD 是平行四边形.5.如图,▱ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F.求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE .又∵OA=OC,∴四边形AECF是平行四边形.6.如图,在△ABC中,D,E,F分别为边AB,BC,CA的中点.求证:四边形DECF是平行四边形.证明:∵D,E,F分别为AB,BC,CA的中点,∴DF,DE为△ABC的中位线.∴DF∥BC,DE∥AC.∴四边形DECF是平行四边形.7.如图,▱ABCD 中,点O 是对角线AC 的中点,EF 过点O,与AD,BC 分别相交于点E,F,GH 过点O,与AB,CD 分别相交于点G,H,连接EG,FG,FH,EH.求证:四边形EGFH 是平行四边形.证明:∵四边形ABCD 为平行四边形,∴AD∥BC.∴∠EAO=∠FCO.∵O为AC的中点,∴OA=OC.在△OAE和△OCF中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ).∴OE =OF.同理可证得OG =OH.∴四边形EGFH 是平行四边形.8.已知:如图,在▱ABCD 中,延长AB 至点E ,延长CD 至点F ,使得BE =DF.连接EF ,与对角线AC 交于点O.求证:OE =OF.证明:证法一:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD.∵BE =DF ,∴AB +BE =CD +DF ,即AE =CF.∵AB ∥CD ,∴AE ∥CF.∴∠E =∠F.又∵∠AOE =∠COF ,∴△AOE ≌△COF(AAS ).∴OE =OF.证法二:连接AF ,CE.∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD.∵BE =DF ,∴AB +BE =CD +DF ,即AE =CF.∵AB ∥CD ,∴AE ∥CF.∴四边形AECF是平行四边形.∴OE=OF.9.如图1,在▱ABCD中,∠ABC,∠ADC的平分线分别交AD,BC于点E,F.(1)求证:四边形EBFD是平行四边形;(2)小明在完成(1)的证明后继续进行了探索.连接AF,CE,分别交BE,FD 于点G,H,得到四边形EGFH.此时,他猜想四边形EGFH是平行四边形,请在框图(图2)中补全他的证明思路.图1小明的证明思路由(1)可知BE∥DF,要证明四边形EGFH是平行四边形,只需证GF∥EH.由(1)可证ED=BF,则AE=FC,又由AE∥CF,故四边形AFCE是平行四边形,从而可证得四边形EGFH是平行四边形.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC,AD=BC.∵BE平分∠ABC,∴∠ABE=∠EBC=12∠ABC.∵DF平分∠ADC,∴∠ADF=∠CDF=12∠ADC.∴∠EBC=∠ADF.∵AD∥BC,∴∠AEB=∠EBC.∴∠AEB=∠ADF.∴EB∥DF.又∵ED∥BF,∴四边形EBFD是平行四边形.10.如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.证明:∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线.∴OE∥BC,且OE=12BC.又∵CF=12BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF.∴四边形OCFE是平行四边形.11.如图,四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA 的中点,顺次连接E,F,G,H,得到的四边形EFGH叫中点四边形.求证:四边形EFGH是平行四边形.证明:连接BD.∵E,H分别是AB,AD的中点,∴EH是△ABD的中位线.∴EH=12BD,EH∥BD.同理FG=12BD,FG∥BD.∴EH=FG,EH∥FG.∴四边形EFGH是平行四边形.12.如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF.证明:连接BE,DF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴DE=BF.又∵DE∥BF,∴四边形BEDF是平行四边形.∴OE=OF.13.如图,在▱ABCD中,AE=CF,M,N分别是BE,DF的中点,求证:四边形MFNE是平行四边形.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.又∵AE=CF,∴AD-AE=BC-CF,即DE=BF.∴四边形BEDF是平行四边形.∴BE∥DF,BE=DF.∵M,N分别是BE,DF的中点,∴EM=12BE=12DF=NF.∴四边形MFNE是平行四边形.14.如图,在▱ABCD中,E,F分别是边AD,BC的中点,对角线AC分别交BE,DF于点G,H.求证:AG=CH.证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC.∴∠HCF =∠GAE.又∵E ,F 分别是边AD ,BC 的中点,∴AE =FC ,DE =BF.又∵DE ∥BF ,∴四边形BFDE 是平行四边形.∴∠BED =∠BFD.∴∠AEG =∠CFH.在△AGE 和△CHF 中,⎩⎨⎧∠GAE =∠HCF ,AE =CF ,∠AEG =∠CFH ,∴△AGE ≌△CHF(ASA ).∴AG =CH.15.如图,在▱ABCD 中,BD 是对角线,AE ⊥BD 于点E ,CF ⊥BD 于点F ,试判断四边形AECF 是不是平行四边形,并说明理由.解:四边形AECF 是平行四边形. 理由如下:∵AE ⊥BD 于点E ,CF ⊥BD 于点F ,∴∠AEF=∠CFE=90°,∴AE∥CF(内错角相等,两直线平行),在平行四边形ABCD中,AB=CD,AB∥CD,∴∠ABE=∠CDF,在△ABE与△DCF中,,∴△ABE≌△CDF(AAS),∴AE=CF,∴四边形AECF是平行四边形(有一组对边平行且相等的四边形是平行四边形)16.如图,已知□ABCD的对角线AC ,BD相交于点O ,直线EF经过点O ,且分别交AB ,CD于点E , F.求证:四边形BFDE是平行四边形.证明:∵□ABCD的对角线AC ,BD相交于点O ,∴OA=OC ,OB=OD ,∠DCO=∠BAO又∵∠AOE=∠COD,∴△AOE≌△COF ,得OE=OF ,∴四边形BFDE是平行四边形.17.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:四边形BCEF是平行四边形.证明:在△AFB和△DCE中,{AB=DE∠A=∠DAF=DC∴△AFB≌△DCE(SAS),∴FB=CE,∴∠AFB=∠DCE,∴FB∥CE,∴四边形BCEF是平行四边形.18.如图所示,在四边形ABCD中,AD∥BC,AD=24 cm,BC=30 cm,点P从点A向点D以1 cm/s的速度运动,到点D即停止.点Q从点C向点B 以2 cm/s的速度运动,到点B即停止.直线PQ将四边形ABCD截成两个四边形,分别为四边形ABQP和四边形PQCD,则当P,Q两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?解:设当P,Q两点同时出发t s后,四边形ABQP或四边形PQCD是平行四边形.根据题意,得AP=t cm,PD=(24-t)cm,CQ=2t cm,BQ=(30-2t)cm(0≤t≤15).①若四边形ABQP是平行四边形,∵AD∥BC,∴还需满足AP=BQ.∴t=30-2t.解得t=10.∴10 s后四边形ABQP是平行四边形;②若四边形PQCD是平行四边形,∵AD∥BC,∴还需满足PD=CQ.∴24-t=2t.解得t=8.∴8 s后四边形PQCD是平行四边形.综上所述:当P,Q两点同时出发8秒或10秒后,所截得两个四边形中其中一个四边形为平行四边形.。

【人教版】八年级数学下第十八章《平行四边形》课时作业(含答案)

【人教版】八年级数学下第十八章《平行四边形》课时作业(含答案)

第十八章平行四边形18.1平行四边形18.1.1平行四边形的性质第1课时平行四边形的边、角特征01基础题知识点1平行四边形的概念1.如图,在▱ABCD中,EF∥BC,则图中平行四边形有3个.第1题图第2题图2.如图,AB∥EG,EF∥BC,AC∥FG,图中有3个平行四边形,它们分别是▱ABCE,▱ABGC,▱AFBC.知识点2平行四边形的边、角特征3.(教材P43T1的变式)在▱ABCD中,AD=3 cm,AB=2 cm,则▱ABCD的周长等于(A) A.10 cm B.6 cmC.5 cm D.4 cm4.(·衢州)如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是(A)A.45°B.55°C.65°D.75°5.在▱ABCD中,两邻边的差为4 cm,周长为32 cm,则两邻边长分别为10__cm,6__cm.6.(1)在▱ABCD 中,若∠A∶∠B=5∶4,则∠C=100°;(2)已知▱ABCD 的周长为28 cm,若AB∶BC=3∶4,则AB=6__cm,BC=8__cm.7.如图,在▱ABCD中,CM⊥AD于点M,CN⊥AB于点N,若∠B=45°,求∠MCN的大小.解:∵四边形ABCD是平行四边形,∴AB∥CD,∠B=∠D.∵∠B=45°,∴∠BCD=135°,∠D=45°.∵CM⊥AD,CN⊥AB,∴∠BNC=∠DMC=90°.∴∠BCN=∠DCM=45°.∴∠MCN=∠BCD-∠BCN-∠DCM=45°.8.如图,已知四边形ABCD是平行四边形,点E,B,D,F在同一直线上,且BE=DF.求证:AE=CF.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD. ∴∠ABD =∠CDB. ∴∠ABE =∠CDF.在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF(SAS ). ∴AE =CF.知识点3 平行线间的距离9.如图,a ∥b ,AB ∥CD ,CE ⊥b ,FG ⊥b ,点E ,G 为垂足,则下列说法不正确的是(D )A .AB =CD B .EC =GFC .A ,B 两点的距离就是线段AB 的长度D .a 与b 的距离就是线段CD 的长度第9题图 第10题图10.(·柳州)如图,若▱ABCD 的面积为20,BC =5,则边AD 与BC 间的距离为4.02 中档题11.在▱ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可能是(A)A .2∶5∶2∶5B .3∶4∶4∶5C .4∶4∶3∶2D .2∶3∶5∶612.如图,在▱ABCD 中,AB =4,BC =6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是(B )A .7B .10C .11D .12第12题图 第13题图13.如图所示,直线a ∥b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中△ABC 的面积(C )A .变大B .变小C .不变D .无法确定14.(·鹤岗)在▱ABCD 中,∠A 的平分线把BC 边分成长度是3和4的两部分,则▱ABCD 的周长是(C)A .22B .20C .22或20D .1815.(·武汉)如图,在▱ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为30°.第15题图 第16题图16.如图,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为25°.17.如图,在▱ABCD 中,点P 是对角线BD 上的一个动点(点P 与点B 、点D 不重合),过点P 作EF ∥BC ,GH ∥AB ,则图中面积始终相等的平行四边形有3 对.18.(·温州)如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F.(1)求证:△ADE ≌△FCE ;(2)若∠BAF =90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC.∴∠DAE =∠F ,∠D =∠ECF. ∵E 是CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAE =∠F ,∠D =∠ECF ,DE =CE ,∴△ADE ≌△FCE(AAS ). (2)∵△ADE ≌△FCE , ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF =90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.03 综合题19.如图,四边形ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分∠DAB 和∠CBA.(1)求∠APB 的度数;(2)如果AD =5 cm ,AP =8 cm ,求△APB 的周长. 解:(1)∵四边形ABCD 是平行四边形, ∴AD ∥CB ,AB ∥CD ,AD =BC ,AB =DC. ∴∠DAB +∠CBA =180°.又∵AP 和BP 分别平分∠DAB 和∠CBA , ∴∠PAB +∠PBA =12(∠DAB +∠CBA)=90°.∴∠APB =180°-(∠PAB +∠PBA)=90°. (2)∵AP 平分∠DAB ,AB ∥CD , ∴∠DAP =∠PAB =∠DPA. ∴AD =DP =5 cm .同理:PC =BC =AD =5 cm . ∴AB =DC =DP +PC =10 cm .在Rt △APB 中,AB =10 cm ,AP =8 cm , ∴BP =102-82=6(cm ).∴△APB 的周长为6+8+10=24(cm ).第2课时 平行四边形的对角线性质01 基础题知识点1 平行四边形的对角线互相平分1.如图,在▱ABCD 中,O 是对角线AC ,BD 的交点,下列结论错误的是(C )A .AB ∥CD B .AB =CDC .AC =BD D .OA =OC第1题图 第2题图2.(教材P 44T 1的变式)如图,▱ABCD 的对角线AC ,BD 交于点O ,已知AD =8,BD =12,AC =6,则△OBC 的周长为(B)A .13B .17C .20D .263.如图,在▱ABCD 中,已知∠ODA =90°,AC =10 cm ,BD =6 cm ,则AD 的长为(A )A .4 cmB .5 cmC .6 cmD .8 cm第3题图 第4题图4.如图,▱ABCD 的周长为16 cm ,AC ,BD 相交于点O ,EO ⊥BD 交AD 于点E ,则△ABE 的周长为(C)A .4 cmB .6 cmC .8 cmD .10 cm5.如图,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC ,BD 相交于点O.若AC =6,则线段AO 的长度等于3.6.在▱ABCD 中,AB =3,BC =5,对角线AC ,BD 相交于点O ,则OA 的取值范围是1<OA <4. 7.如图所示,在▱ABCD 中,对角线AC 与BD 相交于点O ,点M ,N 在对角线AC 上,且AM =CN ,求证:BM ∥DN.证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD. ∵AM =CN ,∴OM =ON.在△BOM 和△DON 中,⎩⎨⎧OB =OD ,∠BOM =∠DON ,OM =ON ,∴△BOM ≌△DON(SAS ). ∴∠OBM =∠ODN. ∴BM ∥DN.知识点2平行四边形的面积8.如图,在▱ABCD中,O是对角线AC,BD的交点,若△AOD的面积是5,则▱ABCD的面积是(C) A.10 B.15C.20 D.25第8题图第9题图9.如图,在▱ABCD中,对角线AC,BD交于点O,若DO=1.5 cm,AB=5 cm,BC=4 cm,则▱ABCD的面积为12cm2.02中档题10.如图,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线的和是(C) A.18 B.28C.36 D.46第10题图第11题图11.如图,▱ABCD的对角线AC的长为10 cm,∠CAB=30°,AB的长为6 cm,则▱ABCD的面积为(B) A.60 cm2B.30 cm2C.20 cm2D.16 cm212.(2017·眉山)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为(C)A.14 B.13 C.12 D.10第12题图第13题图13.如图,若▱ABCD的周长为22 cm,AC,BD相交于点O,△AOD的周长比△AOB的周长小3 cm,则AD=4__cm,AB=7__cm.14.如图,在▱ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′的长为2.15.如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=25,且AO∶BO=2∶3.(1)求AC 的长;(2)求▱ABCD 的面积.解:(1)∵AO ∶BO =2∶3, ∴设AO =2x ,BO =3x (x >0).∵AC ⊥AB ,AB =25, ∴(2x)2+(25)2=(3x)2. 解得x =2. ∴AO =4.∵四边形ABCD 是平行四边形, ∴AC =2AO =8. (2)∵S △ABC =12AB·AC=12×25×8 =85,∴S ▱ABCD =2S △ABC =2×85=16 5.16.(2016·本溪)如图,▱ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB ,CD 分别相交于点E ,F ,连接EC.(1)求证:OE =OF ;(2)若EF ⊥AC ,△BEC 的周长是10,求▱ABCD 的周长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,DC ∥AB. ∴∠FDO =∠EBO.在△DFO 和△BEO 中,⎩⎨⎧∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DFO ≌△BEO(ASA ). ∴OE =OF.(2)∵四边形ABCD 是平行四边形, ∴AB =CD ,AD =BC ,OA =OC. ∵EF ⊥AC ,∴AE =CE. ∵△BEC 的周长是10,∴BC +BE +CE =BC +BE +AE =BC +AB =10. ∴C ▱ABCD =2(BC +AB)=20.03综合题17.如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以P A,PC为边作▱P AQC,则对角线PQ长度的最小值为(D)A.6B.8C.22D.4218.1.2平行四边形的判定第1课时平行四边形的判定01基础题知识点1两组对边分别相等的四边形是平行四边形1.如图,AB=CD=EF,且△ACE≌△BDF,则图中平行四边形的个数为(C)A.1B.2C.3D.42.若四边形ABCD的边AB=CD,BC=DA,则这个四边形是平行四边形,理由是两组对边分别相等的四边形是平行四边形.知识点2两组对角分别相等的四边形是平行四边形3.下面给出四边形ABCD中,∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD为平行四边形的是(B) A.1∶2∶3∶4 B.2∶3∶2∶3C.2∶2∶3∶3 D.1∶2∶2∶34.一个四边形的三个相邻内角的度数依次如下,那么其中是平行四边形的是(D)A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.108°,72°,108°知识点3对角线互相平分的四边形是平行四边形5.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件BO=DO(答案不唯一)(只添一个即可),使四边形ABCD是平行四边形.6.已知:如图,在四边形ABCD中,AB∥CD,对角线AC,BD相交于点O,且AO=CO.求证:四边形ABCD是平行四边形.证明:∵AB∥CD,∴∠ABO=∠CDO,∠BAO=∠DCO.又∵AO=CO,∴△ABO≌△CDO(AAS).∴BO=DO.∴四边形ABCD是平行四边形.7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点,求证:四边形AECF是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD.∵点E ,F 分别是OB ,OD 的中点, ∴OE =12OB ,OF =12OD.∴OE =OF.又∵OA =OC ,∴四边形AECF 是平行四边形.知识点4 一组对边平行且相等的四边形是平行四边形8.如图所示,四边形ABCD 和AEFD 都是平行四边形,则四边形BCFE 是平行四边形,理由:一组对边平行且相等的四边形是平行四边形.9.(2016·新疆)如图,在四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF.求证:四边形ABCD 是平行四边形.证明:∵AE ⊥AD ,CF ⊥BC , ∴∠EAD =∠FCB =90°. ∵AD ∥BC ,∴∠ADE =∠CBF.在△AED 和△CFB 中,⎩⎨⎧∠ADE =∠CBF ,∠EAD =∠FCB ,AE =CF ,∴△AED ≌△CFB(AAS ). ∴AD =BC. 又∵AD ∥BC ,∴四边形ABCD 是平行四边形.02 中档题10.小玲的爸爸在制作平行四边形框架时,采用了一种方法:如图所示,将两根木条AC ,BD 的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是(A )A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形11.(2016·衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=4或-2.12.已知:如图,在四边形ABCD中,AB=CD,BC=AD,点E,F在AC上,且AF=CE.求证:四边形BEDF是平行四边形.证明:连接BD交AC于O,∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AO=CO,BO=DO.∵AF=CE,∴AF-AO=CE-CO,即OF=OE.又∵OB=OD,∴四边形BEDF是平行四边形.13.(2017·南京)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF.证明:连接BE,DF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴DE=BF.又∵DE∥BF,∴四边形BEDF是平行四边形.∴OE=OF.14.(2016·张家界)已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.解:四边形ABFC 是平行四边形. 证明:∵AB ∥CD ,∴∠BAE =∠CFE.∵E 是BC 的中点,∴BE =CE. 在△ABE 和△FCE 中,⎩⎨⎧∠BAE =∠CFE ,∠AEB =∠FEC ,BE =CE ,∴△ABE ≌△FCE(AAS).∴AB =CF .又∵AB ∥CF ,∴四边形ABFC 是平行四边形.03 综合题15.如图所示,在四边形ABCD 中,AD ∥BC ,AD =24 cm ,BC =30 cm ,点P 从点A 向点D 以1 cm /s 的速度运动,到点D 即停止.点Q 从点C 向点B 以2 cm /s 的速度运动,到点B 即停止.直线PQ 将四边形ABCD 截成两个四边形,分别为四边形ABQP 和四边形PQCD ,则当P ,Q 两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?解:设当P ,Q 两点同时出发t s 后,四边形ABQP 或四边形PQCD 是平行四边形. 根据题意,得AP =t cm ,PD =(24-t)cm ,CQ =2t cm ,BQ =(30-2t)cm (0≤t ≤15). ①若四边形ABQP 是平行四边形, ∵AD ∥BC ,∴还需满足AP =BQ. ∴t =30-2t.解得t =10.∴10 s 后四边形ABQP 是平行四边形; ②若四边形PQCD 是平行四边形, ∵AD ∥BC ,∴还需满足PD =CQ.∴24-t =2t.解得t =8.∴8 s 后四边形PQCD 是平行四边形.综上所述:当P ,Q 两点同时出发8秒或10秒后,所截得两个四边形中其中一个四边形为平行四边形.第2课时三角形的中位线01基础题知识点三角形的中位线1.如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4C.6 D.82.如图,在△ABC中,点D,E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是(C) A.8 B.10C.12 D.14第2题图第3题图3.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为(C) A.50°B.60°C.70°D.80°4.(2016·梧州)如图,在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是(B)A.5 B.7C.9 D.11第4题图第5题图5.如图,为测量位于一水塘旁的两点A,B间的距离,在地面上确定点O,分别取OA,OB的中点C,D,量得CD =20 m,则A,B之间的距离是40m.6.(2017·怀化)如图,在▱ABCD中,对角线AC,BD 相交于点O,点E是AB的中点,OE=5 cm,则AD的长为10cm.第6题图第7题图7.如图,CD是△ABC的中线,点E,F分别是AC,DC的中点,EF=1,则BD=2.8.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8 cm,E,F分别为边AC,AB的中点.(1)求∠A的度数;(2)求EF的长.解:(1)∵∠C=90°,∴∠A+∠B=90°.∴∠A=90°-∠B=90°-60°=30°.(2)在Rt △ABC 中,∠A =30°,AB =8 cm , ∴BC =12AB =4 cm .∵E ,F 分别是AC ,AB 的中点, ∴EF 是△ABC 的中位线. ∴EF =12BC =2 cm .9.如图,在△ABC 中,D ,E ,F 分别为边AB ,BC ,CA 的中点.求证:四边形DECF 是平行四边形.证明:∵D ,E ,F 分别为AB ,BC ,CA 的中点, ∴DF ,DE 为△ABC 的中位线. ∴DF ∥BC ,DE ∥AC.∴四边形DECF 是平行四边形.02 中档题10.如图,点D ,E ,F 分别为△ABC 各边中点,下列说法正确的是(C )A .DE =DFB .EF =12ABC .S △ABD =S △ACD D .AD 平分∠BAC11.如图,吴伯伯家有一块等边三角形的空地ABC ,已知点E ,F 分别是边AB ,AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是(C )A .15米B .20米C .25米D .30米第11题图 第12题图12.(2016·陕西)如图,在△ABC 中,∠B =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为(B)A .7B .8C .9D .1013.如图,▱ABCD 的对角线AC ,BD 交于点O ,点E 是AD 的中点,△BCD 的周长为18,则△DEO 的周长是9.第13题图 第14题图14.如图,在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =18°,则∠PFE 的度数是18°.15.如图,四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,顺次连接E ,F ,G ,H ,得到的四边形EFGH 叫中点四边形.求证:四边形EFGH 是平行四边形.证明:连接BD.∵E ,H 分别是AB ,AD 的中点, ∴EH 是△ABD 的中位线. ∴EH =12BD ,EH ∥BD.同理FG =12BD ,FG ∥BD.∴EH =FG ,EH ∥FG.∴四边形EFGH 是平行四边形.16.如图,在▱ABCD 中,点O 是对角线AC ,BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF =12BC ,求证:四边形OCFE 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上,∴OE ∥CF.∴四边形OCFE 是平行四边形.03 综合题17.如图,在△ABC 中,AB =5,AC =3,AD ,AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连接DH ,求线段DH 的长.解:∵AE 为△ABC 的角平分线, ∴∠FAH =∠CAH. ∵CH ⊥AE ,∴∠AHF =∠AHC =90°. 在△AHF 和△AHC 中,⎩⎨⎧∠FAH =∠CAH ,AH =AH ,∠AHF =∠AHC ,∴△AHF ≌△AHC(ASA ). ∴AF =AC ,HF =HC. ∵AC =3,AB =5,∴AF =AC =3,BF =AB -AF =5-3=2. ∵AD 为△ABC 的中线, ∴DH 是△BCF 的中位线. ∴DH =12BF =1.小专题(三) 平行四边形的证明思路类型1 若已知条件出现在四边形的边上,则考虑:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形1.如图,在▱ABCD 中,点E 在AB 的延长线上,且EC ∥BD.求证:四边形BECD 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,即BE ∥DC. 又∵EC ∥BD ,∴四边形BECD 是平行四边形.2.如图,已知:AB ∥CD ,BE ⊥AD ,垂足为点E ,CF ⊥AD ,垂足为点F ,并且AE =DF.求证:(1)BE =CF ;(2)四边形BECF 是平行四边形. 证明:(1)∵BE ⊥AD ,CF ⊥AD , ∴∠AEB =∠DFC =90°. ∵AB ∥CD ,∴∠A =∠D . 在△AEB 和△DFC 中,⎩⎨⎧∠AEB =∠DFC ,AE =DF ,∠A =∠D ,∴△AEB ≌△DFC (ASA). ∴BE =CF .(2)∵BE ⊥AD ,CF ⊥AD , ∴BE ∥CF . 又∵BE =CF ,∴四边形BECF 是平行四边形.3.如图,在▱ABCD 中,分别以AD ,BC 为边向内作等边△ADE 和等边△BCF ,连接BE ,DF.求证:四边形BEDF是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°.∴BF =DE ,CF =AE ,∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE ,即∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形.4.(2016·钦州)如图,DE 是△ABC 的中位线,延长DE 到F ,使EF =DE ,连接BF.求证:(1)BF =DC ;(2)四边形ABFD 是平行四边形.证明:(1)∵DE 是△ABC 的中位线, ∴CE =BE.在△DEC 和△FEB 中,⎩⎨⎧CE =BE ,∠CED =∠BEF ,DE =FE ,∴△DEC ≌△FEB(SAS ). ∴BF =DC.(2)∵DE 是△ABC 的中位线, ∴DE ∥AB ,且DE =12AB.又∵EF =DE , ∴DE =12DF.∴DF =AB. 又∵DF ∥AB ,∴四边形ABFD 是平行四边形.5.如图,已知D ,E ,F 分别在△ABC 的边BC ,AB ,AC 上,且DE ∥AF ,DE =AF ,将FD 延长到点G ,使FG=2DF,连接AG,则ED与AG互相平分吗?请说明理由.解:ED与AG互相平分.理由:连接EG,AD.∵DE∥AF,DE=AF,∴四边形AEDF是平行四边形.∴AE∥DF,AE=DF.又∵FG=2DF,∴DG=DF.∴AE=DG.又∵AE∥DG,∴四边形AEGD是平行四边形.∴ED与AG互相平分.类型2若已知条件出现在四边形的角上,则考虑利用“两组对角分别相等的四边形是平行四边形”6.如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.类型3若已知条件出现在对角线上,则考虑利用“对角线互相平分的四边形是平行四边形”7.如图,▱ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F.求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE . 又∵OA =OC ,∴四边形AECF 是平行四边形.8.如图,▱ABCD 中,点O 是对角线AC 的中点,EF 过点O ,与AD ,BC 分别相交于点E ,F ,GH 过点O ,与AB ,CD 分别相交于点G ,H ,连接EG ,FG ,FH ,EH.求证:四边形EGFH 是平行四边形.证明:∵四边形ABCD 为平行四边形, ∴AD ∥BC.∴∠EAO =∠FCO. ∵O 为AC 的中点, ∴OA =OC.在△OAE 和△OCF 中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ). ∴OE =OF.同理可证得OG =OH.∴四边形EGFH 是平行四边形.周周练(18.1)(时间:45分钟 满分:100分)一、选择题(每小题 4分,共32分)1.下面的性质中,平行四边形不一定具有的是(A )A .对角互补B .邻角互补C .对角相等D .对边相等2.平行四边形的周长为24 cm ,相邻两边的差为2 cm ,则平行四边形的各边长为(B )A .4 cm ,8 cm ,4 cm ,8 cmB .5 cm ,7 cm ,5 cm ,7 cmC .5.5 cm ,6.5 cm ,5.5 cm ,6.5 cmD .3 cm ,9 cm ,3 cm ,9 cm3.下列说法错误的是(D)A .对角线互相平分的四边形是平行四边形B .两组对边分别相等的四边形是平行四边形C .一组对边平行且相等的四边形是平行四边形D .一组对边相等,另一组对边平行的四边形是平行四边形4.(2017·丽水)如图,在▱ABCD 中,连接AC ,∠B =∠CAD =45°,AB =2,则BC 的长是(C)A. 2 B .2 C .2 2D .4第4题图 第5题图5.(2016·株洲)如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 交于点O ,E 是BC 的中点,以下说法错误的是(D)A .OE =12DCB .OA =OCC .∠BOE =∠OBAD .∠OBE =∠OCE6.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10,则四边形ABCD 的面积为(D )A .6B .12C .20D .247.在▱ABCD 中,AD =8,AE 平分∠BAD 交BC 于点E ,DF 平分∠ADC 交BC 于点F ,且EF =2,则AB 的长为(D)A .3B .5C .2或3D .3或58.如图,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离;⑤∠APB 的大小.其中会随点P 的移动而变化的是(B )A.②③B.②⑤C.①③④D.④⑤二、填空题(每小题4分,共24分)9.如图所示,在▱ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有4个平行四边形.第9题图第10题图10.(2016·江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为50°.11.(2016·河南)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是110°.12.在▱ABCD中,AB,BC,CD的长度分别为2x+1,3x,x+4,则▱ABCD的周长是32.13.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件答案不唯一,如:AB=CD(写一个即可),使四边形ABCD是平行四边形.第13题图第14题图14.(2017·河池)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是8.三、解答题(共44分)15.(10分)(2017·山西)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.证明:证法一:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵BE=DF,∴AB+BE=CD+DF,即AE=CF.∵AB∥CD,∴AE∥CF.∴∠E=∠F.又∵∠AOE=∠COF,∴△AOE≌△COF(AAS).∴OE=OF.证法二:连接AF,CE.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵BE =DF ,∴AB +BE =CD +DF ,即AE =CF. ∵AB ∥CD ,∴AE ∥CF.∴四边形AECF 是平行四边形.∴OE =OF.16.(10分)(2016·黄冈)如图,在▱ABCD 中,E ,F 分别是边AD ,BC 的中点,对角线AC 分别交BE ,DF 于点G ,H.求证:AG =CH.证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC.∴∠HCF =∠GAE.又∵E ,F 分别是边AD ,BC 的中点, ∴AE =FC ,DE =BF.又∵DE ∥BF ,∴四边形BFDE 是平行四边形. ∴∠BED =∠BFD.∴∠AEG =∠CFH. 在△AGE 和△CHF 中,⎩⎨⎧∠GAE =∠HCF ,AE =CF ,∠AEG =∠CFH ,∴△AGE ≌△CHF(ASA ).∴AG =CH.17.(12分)已知:如图,在四边形ABCD 中,AB =CD ,E ,F ,G 分别是AD ,BC ,BD 的中点,GH 平分∠EGF 交EF 于点H.(1)猜想:GH 与EF 间的关系是GH 垂直平分EF ; (2)证明你的猜想.证明:∵E ,G 分别是AD ,BD 的中点, ∴EG =12AB.∵F ,G 分别是BC ,BD 的中点, ∴GF =12CD.∵AB =CD , ∴EG =GF.又∵GH 平分∠EGF , ∴GH 垂直平分EF.18.(12分)如图1,在▱ABCD 中,∠ABC ,∠ADC 的平分线分别交AD ,BC 于点E ,F.(1)求证:四边形EBFD 是平行四边形;(2)小明在完成(1)的证明后继续进行了探索.连接AF ,CE ,分别交BE ,FD 于点G ,H ,得到四边形EGFH.此时,他猜想四边形EGFH 是平行四边形,请在框图(图2)中补全他的证明思路.图1小明的证明思路由(1)可知BE ∥DF ,要证明四边形EGFH 是平行四边形,只需证GF ∥EH .由(1)可证ED =BF ,则AE =FC ,又由AE ∥CF , 故四边形AFCE 是平行四边形,从而可证得四边 形EGFH 是平行四边形.图2证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠ABC =∠ADC ,AD =BC. ∵BE 平分∠ABC ,∴∠ABE =∠EBC =12∠ABC.∵DF 平分∠ADC ,∴∠ADF =∠CDF =12∠ADC.∴∠EBC =∠ADF.∵AD ∥BC ,∴∠AEB =∠EBC. ∴∠AEB =∠ADF. ∴EB ∥DF. 又∵ED ∥BF ,∴四边形EBFD 是平行四边形.18.2特殊的平行四边形18.2.1矩形第1课时矩形的性质01基础题知识点1矩形的性质1.下列性质中,矩形具有但平行四边形不一定具有的是(C)A.对边相等B.对角相等C.对角线相等D.对边平行2.如图,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是(D)A.∠ABC=90°B.AC=BDC.OA=OB D.OA=AD第2题图第3题图3.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是(C) A.8 B.6 C.4 D.24.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为(B) A.30°B.60°C.90°D.120°第4题图第5题图5.(2017·怀化)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6 cm,则AB的长是(A) A.3 cm B.6 cmC.10 cm D.12 cm6.如果矩形的一边长为6,一条对角线的长为10,那么这个矩形的另一边长是8.7.如图,已知矩形的对角线AC与BD相交于点O,若AO=1,则BD=2.第7题图第8题图8.(2016·昆明)如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是24.9.(2016·岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF.求证:BF =CD.证明:∵四边形ABCD为矩形,∴∠B=∠C=90°.∴∠BFE+∠BEF=90°.∵EF⊥DF,∴∠DFE=90°.∴∠BFE+∠CFD=90°.∴∠BEF=∠CFD.在△BEF 和△CFD 中,⎩⎨⎧∠BEF =∠CFD ,BE =CF ,∠B =∠C ,∴△BEF ≌△CFD (ASA).∴BF =CD .知识点2 直角三角形斜边上的中线等于斜边的一半10.如图,在Rt △ABC 中,∠C =90°,AB =10 cm ,D 为AB 的中点,则CD =5cm .第10题图 第11题图11.如图,在Rt △ABC 中,∠ACB =90°,D ,E ,F 分别是AB ,BC ,CA 的中点,若CD =5 cm ,则EF =5cm . 12.如图,D ,E ,F 分别是△ABC 各边的中点,AH 是高,如果ED =5 cm ,求HF 的长.解:由题意得:DE 是△ABC 的中位线, ∴DE =12AC .∵HF 是Rt △AHC 的斜边AC 的中线, ∴HF =12AC .∴HF =DE =5 cm.02 中档题13.(2016·荆门)如图,在矩形ABCD 中(AD>AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是(B)A .△AFD ≌△DCEB .AF =12ADC .AB =AFD .BE =AD -DF第13题图 第14题图14.(2016·绵阳)如图,▱ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为(B)A .3 cmB .4 cmC .5 cmD .8 cm15.如图,已知在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,若∠DAE ∶∠BAE =3∶1,则∠EAC 的度数是(C )A .18°B .36°C .45°D .72°第15题图 第16题图16.(2016·宜宾)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB ,BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是(A )A .4.8B .5C .6D .7.217.(2017·广西四市同城)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在BD 上,BE =DF.(1)求证:AE =CF ;(2)若AB =6,∠COD =60°,求矩形ABCD 的面积.解:(1)证明:∵四边形ABCD 是矩形,∴OA =OC ,OB =OD ,AC =BD ,∠ABC =90°. ∵BE =DF ,∴OE =OF . 在△AOE 和△COF 中,⎩⎨⎧OA =OC ,∠AOE =∠COF ,OE =OF ,∴△AOE ≌△COF (SAS). ∴AE =CF .(2)∵OA =OC ,OB =OD ,AC =BD ,∴OA =OB . ∵∠AOB =∠COD =60°, ∴△AOB 是等边三角形.∴OA =AB =6.∴AC =2OA =12.在Rt △ABC 中,BC =AC 2-AB 2=63,∴S 矩形ABCD =AB ·BC =6×63=36 3.18.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,延长CB 到点E ,使BE =BC ,连接AE.求证:(1)四边形ADBE 是平行四边形;(2)若AB =4,OB =52,求四边形ADBE 的周长.证明:(1)∵四边形ABCD为矩形,∴AD∥BC,AD=BC.又∵BE=BC,且点C,B,E在一条直线上,∴AD∥BE,AD=BE.∴四边形ADBE是平行四边形.(2)∵四边形ABCD为矩形,∴∠BAD=90°,OB=OD.∴BD=2OB=5.在Rt△BAD中,AD=52-42=3.又∵四边形ADBE为平行四边形,∴BE=AD=3,AE=BD=5.03综合题19.如图,将长8 cm,宽4 cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为25cm.习题解析第2课时矩形的判定01基础题知识点1有一个角是直角的平行四边形是矩形1.下列说法正确的是(D)A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形D.对角互补的平行四边形是矩形2.如图,在△ABC中,AB=AC,AD是BC边上的中线,四边形ADBE是平行四边形,求证:四边形ADBE是矩形.解:∵AB=AC,AD是BC边上的中线,∴AD⊥BC.∴∠ADB=90°.又∵四边形ADBE是平行四边形,∴四边形ADBE是矩形.3.(2016·内江)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.解:(1)证明:∵AF∥BC,∴∠AFC=∠FCB.又∵∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS).∴AF=DC.又∵AF=BD,∴BD=DC,即D是BC的中点.(2)四边形AFBD是矩形.证明:∵AF∥BC,AF=BD,∴四边形AFBD是平行四边形.∵AB=AC,D是BC的中点,∴AD⊥BC,即∠ADB=90°.∴四边形AFBD是矩形.知识点2对角线相等的平行四边形是矩形4.能判断四边形是矩形的条件是(C)A.两条对角线互相平分B.两条对角线相等C.两条对角线互相平分且相等D.两条对角线互相垂直5.如图,四边形ABCD的对角线AC,BD相交于点O,AD∥BC,AC=BD.试添加一个条件答案不唯一,如:AB ∥CD ,使四边形ABCD 为矩形.6.如图,矩形ABCD 的对角线相交于点O ,点E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,请问四边形EFGH 是矩形吗?请说明理由.解:四边形EFGH 是矩形. 理由:∵四边形ABCD 是矩形,∴AC =BD ,AO =CO ,BO =DO.∴AO =CO =BO =DO.∵点E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点, ∴EO =FO =GO =HO.∴OE =OG ,OF =OH. ∴四边形EFGH 是平行四边形.又∵EO +GO =FO +HO ,即EG =FH ,∴四边形EFGH 是矩形.知识点3 有三个角是直角的四边形是矩形7.已知O 为四边形ABCD 对角线的交点,下列条件能使四边形ABCD 成为矩形的是(D )A .OA =OC ,OB =OD B .AC =BD C .AC ⊥BDD .∠ABC =∠BCD =∠CDA =90°8.已知:如图,在▱ABCD 中,AF ,BH ,CH ,DF 分别是∠BAD ,∠ABC ,∠BCD ,∠ADC 的平分线.求证:四边形EFGH 为矩形.证明:∵四边形ABCD 是平行四边形, ∴∠DAB +∠ADC =180°.∵AF ,DF 分别平分∠DAB ,∠ADC , ∴∠FAD =∠BAF =12∠DAB ,∠ADF =∠CDF =12∠ADC.∴∠FAD +∠ADF =90°.∴∠AFD =90°. 同理可得:∠BHC =∠HEF =90°. ∴四边形EFGH 是矩形. 02 中档题9.以下条件不能判定四边形ABCD 是矩形的是(D )A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BDD.AB=CD,AB∥CD,OA=OC,OB=OD10.(2016·菏泽)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD,正确的有(B)A.①②③B.①②④C.②③④D.①③④11.如图,△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是(A)A.2 3 B.33C.4 D.43第11题图第12题图12.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为12.13.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.证明:(1)∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.又∵∠B=90°,∴四边形ABCF是矩形.(2)∵四边形ABCF是矩形,∴∠AFC=∠AFD=90°.∴∠DAF=90°-∠D,∠CGF=90°-∠ECD.∵ED=EC,∴∠D=∠ECD.∴∠DAF=∠CGF.又∵∠EGA=∠CGF,∴∠DAF=∠EGA.∴EA=EG.14.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接BD,DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)若∠BOD=2∠A,求证:四边形BECD是矩形.证明:(1)∵在▱ABCD 中,AD =BC ,AB =CD ,AD ∥CB , ∴∠A =∠EBC.在△ABD 和△BEC 中,⎩⎨⎧AB =BE ,∠A =∠EBC ,AD =BC ,∴△ABD ≌△BEC(SAS ).(2)∵在▱ABCD 中,AB ∥ CD ,且AB =BE , BE ∥CD.∴四边形BECD 为平行四边形. ∴OB =12BC ,OE =12ED.∵∠BOD =2∠A =2∠EBC ,且∠BOD =∠EBC +∠BEO ,∴∠EBC =∠BEO.∴OB =OE.∴BC =ED. ∴四边形BECD 是矩形.03 综合题15.如图,在△ABC 中,点O 是边AC 上一个动点,过O 作直线MN ∥BC.设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F.(1)求证:OE =OF ;(2)若CE =12,CF =5,求OC 的长;(3)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.视频讲解解:(1)证明:∵CF 平分∠ACD ,且MN ∥BD , ∴∠ACF =∠FCD =∠CFO. ∴OF =OC.同理可证:OC =OE. ∴OE =OF.(2)由(1),知∠OCF =∠OFC ,∠OCE =∠OEC , ∴∠OCF +∠OCE =∠OFC +∠OEC.∵(∠OCF +∠OCE)+(∠OFC +∠OEC)=180°, ∴∠ECF =∠OCF +∠OCE =90°. ∴EF =CE 2+CF 2=122+52=13. 又∵OE =OF , ∴OC =12EF =132.(3)当点O 移动到AC 中点时,四边形AECF 为矩形.理由:连接AE ,AF.当点O 移动到AC 中点时,OA =OC ,。

1人教版八下数学18.1《平行四边形》试卷(含答案)

1人教版八下数学18.1《平行四边形》试卷(含答案)

…○………………○……………………订…学校:___________级:___________考号:…○………………○……………………订…绝密★启用前试卷试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.如图,在ABCD Y 中,对角线AC 与BD 相交于点O ,已知90ODA =∠°,20AC =,12BD =,点E 、F 分别是线段OD 、OA 的中点,则EF 的长为( )A .4B .6C .8D .102.我们知道,勾股定理反映了直角三角形三条边的关系: a 2+b 2=c 2, 而a 2, b 2, c 2又可以看成是以a ,b , c 为边长的正方形的面积.如图,在Rt △ABC 中,∠ACB=90°,BC=a , AC=b ,O 为AB 的中点.分别以AC ,BC 为边向△ABC 外作正方形ACFG ,BCED ,连结OF , EF , OE ,则△OEF 的面积为( )A .222a b +B .224a b +C .2()2a b +D .2()4a b +3.根据如图所示的三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )A .3nB .3n (n+1)C .6nD .6n (n+1)试卷第2页,总11页…外……………装………………订…○………※※不※※要※※在订※※线※※内※※※…内……………装………………订…○………4.顺次连接平面上,,,A B C D 四点得到一个四边形,从①//AD BC ,②AB CD =,③A C ∠=∠,④B D ∠=∠四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”,这一结论的情况共有( ) A .2种B .3种C .4种D .5种5.如图,平行四边形ABCD 的对角线交于点O ,且AB=6,△OCD 的周长为16,则AC 与BD 的和是( )A .22B .20C .16D .106.如图,在▱ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E .则线段CE 的长度为( )A .2B .3C .1D .47.如图,在矩形ABCD 中,P 、R 分别是BC 和DC 上的点,E 、F 分别是AP 和RP 的中点,当点P 在BC 上从点B 向点C 移动,而点R 不动时,下列结论正确的是( )A .线段EF 的长逐渐增长B .线段EF 的长逐渐减小C .线段EF 的长始终不变D .线段EF 的长与点P 的位置有关8.如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,若AB =6,EF =2,则BC 的长为( )A .8B .10C .12D .149.在△ABC 中,AB=3,BC=4,AC=2,D ,E ,F 分别为AB ,BC ,AC 中点,连接DF ,FE ,则四边形DBEF 的周长是( )…○………………○…………○………………………○……学校:_____________班级:_______…○………………○…………○………………………○……A .5B .7C .9D .1110.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A .①,②B .①,④C .③,④D .②,③11.若四边形的两条对角线相等且互相垂直,则顺次连接该四边形各边中点所得的四边形是( ) A .平行四边形B .矩形C .菱形D .正方形12.如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是( )A .AB ∥CD ,AD ∥BC B .OA =OC ,OB =OD C .AD =BC ,AB ∥CDD .AB =CD ,AD =BC13.如图,在△ABC 中,∠ABC=90°,AB=8,BC=6.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .1014.如图,将一张平行四边形纸片撕开并向两边水平拉伸,若拉开的距离为l cm ,AB =2cm ,∠B =60°,则拉开部分的面积(即阴影面积)是( )试卷第4页,总11页…装…………○…订………………线……不※※要※※在※※装※※※内※※答※※题…装…………○…订………………线……A.1cm2B2C2D.2 15.如图,EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F,已知AB=4,BC=6,OE=3,那么四边形EFCD的周长是()A.16 B.13 C.11 D.1016.如图,O是矩形ABCD的对称中心,M是AD的中点.若BC=8,OB=5,则OM的长为()A.4 B.3 C.2 D.117.如图,平行四边形ABCD的周长是26,对角线AC与BD 交于O,AC⊥AB,E是BC的中点,△AOD的周长比△AOB的周长多3,则AE 的长度为()A.3 B.4 C.5 D.818.下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等19.在四边形ABCD中,对角线AC、BD交于点O,下列条件中,不能判定四边形ABCD 是平行四边形的是()A.AB=DC,AD=BC B.AD∥BC,AD=BCC.AB∥DC,AD=BC D.OA=OC,OD=OB20.如图,在ΔABC中,AB=30,BC=24,CA=27,AE=EF=FB,EG∥FD∥BC,…………○……装……○…………订……线…………○…学_______姓名:____班级:___________考号…………○……装……○…………订……线…………○…FM ∥EN ∥AC ,则图中阴影部分的三个三角形的周长之和为( )A .70B .75C .81D .80第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题21.如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D ,E ,测得DE =50m ,则AB 的长是_______m .22.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是_____.23.如图,在▱ABCD 中,DB =AB ,AE ⊥BD ,垂足为点E ,若∠EAB =40°,则∠C =_____°.24.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .试卷第6页,总11页…○…………外……………装………○…………订…………○…………○……※※请※※不※※要※※装※※订※※线※※内※※答※※题※※…○…………内……………装………○…………订…………○…………○……25.我们知道,四边形不具有稳定性,容易变形.一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1cosα的值叫做这个平行四边形的变形度.如图,矩形ABCD 的面积为5,如果变形后的平行四边形A 1B 1C 1D 1的面积为3,那么这个平行四边形的变形度为___.26.如图,▱ABCD 中,E 、F 分别为BC 、AD 边上的点,要使BF =DE ,需添加一个条件: .27.如图,△ABC 中,AB =6,AC =4,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB 于G ,连接EF ,则线段EF 的长为_____.28.在平行四边形ABCD 中,点P 是BC 边上任意一点,连结P A ,PD ,若平行四边形ABCD 的面积为12.8,则△P AD 的面积为_____.29.如图,在四边形ABCD 中, ∠ADC +∠BCD =220°, E 、F 分别是AC 、BD 的中点,P 是AB 边上的中点,则∠EPF=________ .30.在平行四边形ABCD 中,∠A =132°,在AD 上取一点E ,使DE =DC ,则∠ECB…………○……装……………………○…………………○…学校:____姓名:__________号:___________…………○……装……………………○…………………○…的度数是_____.31.如图,在四边形ABDC 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,并且E 、F 、G 、H 四点不共线.当AC =6,BD =8时,四边形EFGH 的周长是_____.32.如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1,称为第1次操作,折痕DE 到BC 的距离记为h 1;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2:按上述方法不断操作下去…,经过第2019次操作后得到的折痕D 2018E 2018,到BC 的距离记为h 2019:若h 1=1,则h 2019的值为(____)33.如图,在△ABC 中,D 、E 分别是BC 、AD 的中点,△ABC 的面积为6cm 2,则△BDE 的面积为_____.34.三角形的各边分别为8cm 、10cm 和12cm ,连结各边中点所成三角形的周长=_____ 35.已知ABCD Y 中一条对角线分A ∠为35°和45°,则B ∠=________度.36.如图,在△ABC 中,AB =6,AC =10,点D ,E ,F 分别是AB ,BC ,AC 的中点,则四边形ADEF 的周长为_____.试卷第8页,总11页…○…………外……………装…………○…………○……………○……※※不※※要※※在※※装※※订※题※※…○…………内……………装…………○…………○……………○……37.在△ABC 中,∠C =90∘,AC =3,BC =4,点D,E,F 分别是边AB,AC,BC 的中点,则△DEF 的周长是__________.38.如图,在平行四边形ABCD 中,BC=8cm ,AB=6cm ,BE 平分∠ABC 交AD 边于点E ,则线段DE 的长度为_____.39.已知平行四边形ABCD 中,∠B =5∠A ,则∠D =__________.40.如图,四边形ABCD 中,AD ∥BC ,AD=8cm ,BC=12cm ,M 是BC 上一点,且BM=9cm ,点E 从点A 出发以1cm/s 的速度向点D 运动,点F 从点C 出发,以3cm /s 的速度向点B 运动,当其中一点到达终点,另一点也随之停止,设运动时间为t ,则当以A 、M 、E 、F 为顶点的四边形是平行四边形时,t=__________.三、解答题41.如图,平行四边形ABCD 中,AB BE =,F 是AB 上一点,FB CE =,连接DF ,点G 是FD 的中点,且满足AFG ∆是等腰直角三角形,连接,,GC GE BG .(1)若3AF =,求AD 的长;…外…………○…………订…………○……线……学校:___________考号:___________…内…………○…………订…………○……线……(2)求证:GD =.42.已知E 、F 分别是平行四边形ABCD 中BD 上的点,且BE =DF ,试说明,四边形AECF 是平行四边形。

(完整版)人教版八年级数学下册第十八章平行四边形单元测试题(含答案).docx

(完整版)人教版八年级数学下册第十八章平行四边形单元测试题(含答案).docx

人教版八年级数学下册第十八章平行四边形单元测试题一、选择题1. 如图,在平行四边形ABCD中,CE⊥ CD,C为垂足,如果∠ A=1250,则∠ BCE的度数为( B)A.550B.350C.250D.300第 6 题图2. 如图,矩形 ABCD对角线相交于点O,∠ AOB=60°,AB=4,则矩形的对角线AC为(B)A.4B. 8C. 4 √3D. 103.在□ABCD中,对角线 AC、BD交于点 O,下列式子中一定成立的是(B)A. AC⊥ BD B . OA=OC C . AC=BD D . AO=OD4.如图,在菱形 ABCD中, AB=13,对角线 BD=24,若过点 C 作 CE⊥ AB,垂足为 E,则 CE的长为( A )120B. 10C. 12240A. D.1313AB, BC, CD, DA的长度之比,其中能满足四边形ABCD是平5. 下面给出的是四边形ABCD中行四边形的是(C)A. 1∶ 2∶ 3∶ 4B. 2∶ 2∶ 3∶ 3C. 2∶ 3∶ 2∶ 3D. 2∶ 3∶ 3∶ 26.顺次连接:①矩形;②菱形;③对角线相等的四边形;④对角线垂直的四边形,各边中点所构成的四边形中,为菱形的有(C)A.①B.①②C.①③D.①③④7. 四边形中,有两条边相等,另两条边也相等,则这个四边形(C)A.一定是平行四边形B.一定不是平行四边形C.可以是平行四边形,也可以不是平行四边形D.上述答案都不对8.已知四边形 ABCD中,∠ A=∠ B=∠ C=900,如果添加一个条件,可推出四边形是正方形,那么这个条件可以是(D)A.∠ D=900B. AB=CD C.AD=BC D.BC=CD9.如图,在四边形 ABCD中,对角线 AC,BD相交于点 E,∠ CBD= 90°, BC= 4,BE= ED= 3,AC= 10,则四边形 ABCD的面积为 (D)A. 6 B . 12C. 20D. 2410.如图,在正方形 ABCD中, E 为 AB 上一点,且 AE=1,DE=2,那么正方形的面积为( C )A.3B.5C.3D.23二、填空题2 BC ,则AD= 9,CD= 6.11. □ABCD的周长是30cm,AB312.如图,在△ ABC中, AD⊥ BC,垂足为 D,E、 F 分别是 AB、AC的中点,连接 DE、DF,当△ABC满足条件AB=AC 或∠ B=∠C 等时,四边形AEDF是菱形(填写一个即可).13. 如图,在四边形ABCD中, AB= CD, BC= AD.若∠ A= 110°,则∠ C= 110__°.14.如图,将正方形纸片按如图折叠, AM为折痕,点 B 落在对角线 AC上的点 E 处,则∠ CME=___45° ___ .15.如图,四边形 ABCD是矩形,点 E 在线段 CB的延长线上,连接 DE交 AB于点 F,∠ AED=2∠CED,点 G是 DF 的中点,若BE=2, DF=8,则 AB的长为 ___2√3___ .16.在 ?ABCD中, AE⊥ BC于点 E,若 AB= 10 cm, BC= 15 cm, BE=6 cm,则 ?ABCD的面积为120__cm2.三、解答题17.如图,矩形 ABCD中, AB=4,点 E, F 分别在 AD,BC边上,且 EF⊥ BC,若矩形 ABFE∽矩形 DEFC,且相似比为 1: 2,求 AD的长.解:∵矩形ABFE∽矩形 DEFC,且相似比为1: 2,∴AB =AE =1,DE DC 2∵四边形ABCD为矩形,∴C D=AB=4∴4 =AE =1,DE 42∴D E=8, AE=2,∴A D=AE+DE=2+8=10.18.如图,在 ?ABCD中, E, F 是对角线 AC上的两点,且 AE= CF,求证:∠ AED=∠ CFB.证明:∵四边形ABCD是平行四边形,∴AD=BC, AD∥BC.∴∠ DAE=∠ BCF.在△ ADE和△ CBF中,AD= CB,∠DAE=∠ BCF,AE= CF,∴△ ADE≌△ CBF(SAS).∴∠ AED=∠ CFB.19.如图,点 E、 F 在正方形 ABCD的边 BC、 CD上, BE=CF.(1) AE与 BF 相等吗?为什么?(2) AE与 BF 是否垂直?说明你的理由.( 1)相等;证明:∵四边形ABCD是正方形,∴∠ABC=∠ C, AB=BC,又∵ BE=CF,∴△ ABE≌△ BCF,∴ AE=CF.(2)垂直,证明:∵△ ABE≌△ BCF,∴∠ AEB=∠ BFC.∵∠ FBC+∠ BFC=900,∴∠ FBC+∠ AEB=900.∴∠ BGE=900,故 AE⊥ BF.20. 如图,□ ABCD与□ABEF中, BC=BE,∠ ABC=∠ ABE,求证:四边形EFDC是矩形。

人教版初中八年级数学下册第十八章《平行四边形》习题(含答案解析)(1)

人教版初中八年级数学下册第十八章《平行四边形》习题(含答案解析)(1)

一、选择题1.如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE CD ⊥,GF BC ⊥,1500m AD =,小敏行走的路线为B A G E →→→,小聪行走的路线为B A D E F →→→→.若小敏行走的路程为3100m ,则小聪行走的路程为( )A .3100mB .4600mC .5500mD .6100m 2.如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .243.如图,在ABC 中,90ACB ∠=︒,点D 在AC 边上且AD BD =,M 是BD 的中点.若16AC =,8BC =,则CM 等于( )A .5B .6C .8D .104.如图,E 是直线CD 上的一点,且12CE CD =.已知ABCD 的面积为252cm ,则ACE △的面积为( )A .52B .26C .13D .395.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠ 6.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A .3B .2C .23D .47.如图,ABCD 的对角线AC 、BD 交于点O ,顺次连接ABCD 各边中点得到一个新的四边形,如果添加下列四个条件中的一个条件:①AC BD ⊥;②ΔΔABO CBO C C =;③DAO CBO ∠=∠;④DAO BAO ∠=∠,可以使这个新的四边形成为矩形,那么这样的条件个数是( )A .1个B .2个C .3个D .4个8.如图,己知四边形ABCD 是平行四边形,下列说法正确..的是( )A .若AB AD =,则平行四边形ABCD 是矩形B .若AB AD =,则平行四边形ABCD 是正方形C .若AB BC ⊥,则平行四边形ABCD 是矩形D .若AC BD ⊥,则平行四边形ABCD 是正方形9.在菱形ABCD 中,∠ABC=60゜,AC=4,则BD=( )A.3B.23C.33D.4310.下列命题中,正确的命题是()A.菱形的对角线互相平分且相等B.顺次联结菱形各边的中点所得的四边形是矩形C.矩形的对角线互相垂直平分D.顺次连结矩形各边的中点所得的四边形是正方形11.如图,以AB为斜边的Rt ABC和Rt ABD△位于直线AB的同侧,连接CD.若135,6BAC ABD AB∠+∠=︒=,则CD的长为()A.3 B.4 C.32D.3312.如图,直线L上有三个正方形,,a b c,若,a c的边长分别为1和3,则b的面积为()A.8 B.9 C.10 D.1113.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4 B.8 C13D.614.如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边的中线,点D,E分别在边AC 和BC上,DB=DE,EF⊥AC于点F,则以下结论;①∠DBM=∠CDE;②BN=DN;③AC=2DF;④S BDE∆﹤S BMFE四边形其中正确的结论是()A .①②③B .②③④C .①②④D .①③ 15.如图,在矩形ABCD 中,3AB =,4=AD ,ABC ∠的平分线BE 交AD 于点E .点F ,G 分别是BC ,BE 的中点,则FG 的长为( )A .2B .52C .102D .322二、填空题16.菱形的周长为20cm ,一条对角线长为8cm ,则菱形的面积为______cm 2. 17.如图,Rt ABC △中,90,5∠=︒=B AB ,D 为AC 的中点, 6.5=BD ,则BC 的长为__________.18.如图,点O 是菱形ABCD 对角线的交点,DE //AC ,CE //BD ,连接OE ,设AC =12,BD =16,则OE 的长为_____.19.如图,在菱形ABCD 中,6AC =,5AB =,点E 是直线AB ,CD 之间任意一点,连接AE ,BE ,DE ,CE ,则EAB 和ECD 的面积之和是______.20.如图,先将正方形纸片对折,折痕为MN ,再把点B 折叠到折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,则ABH ∠=______°.21.如图,直角三角形ABC 中,90ACB ∠=︒,CD AB ⊥于点D ,AF 平分CAB ∠交CD 于点E ,交BC 于点F ,//EG AB 交CB 于点G ,FH AB ⊥于H ,以下4个结论:①ACD B ∠=∠;②CEF △是等边三角形;③CD FH DE =+;④BG CE =中正确的是______(将正确结论的序号填空)22.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).23.在△ABC中,AD是BC边上的高线,CE是AB边上的中线,CD=AE,且CE<AC.若AD=6,AB=10,则CE=___________24.如图,在正方形ABCD中,有面积为4的正方形EFGH和面积为2的正方形PQMN、点E F P Q、、、分别在边AB BC CD AD、、、上,点M N、在边HG上,且组成的图形为轴对称图形,则正方形ABCD的面积为__________.25.在长方形ABCD中,52AB=,4BC=,CE CF=,CF平分ECD∠,则BE=_________.26.如图,将Rt△ABC沿着点B到A的方向平移到△DEF的位置,BC=8,FO=2,平移距离为4,则四边形AOFD的面积为__.三、解答题27.已知:如图,在梯形ABCD中,AD∥BC,点E、F在边BC上,DE∥AB,AF∥CD,且四边形AEFD是平行四边形.(1)试判断线段AD与BC的长度之间有怎样的数量关系?并证明你的结论;(2)现有三个论断:①AD AB=;②=B C +∠∠90°;③=2B C ∠∠.请从上述三个论断中选择一个论断作为条件,证明四边形AEFD 是菱形.28.已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得到GFC .(1)求证:BE DG =(2)若四边形ABFG 是菱形,且60B ︒∠=,求:AB BC 的值.29.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:∠HEA =∠CGF ;(2)当AH =DG 时,求证:菱形EFGH 为正方形.30.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由; (3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.。

人教版八年级数学下册第十八章《平行四边形》单元练习题(含答案)

人教版八年级数学下册第十八章《平行四边形》单元练习题(含答案)

人教版八年级数学下册第十八章《平行四边形》单元练习题(含答案)一、单选题1.如图,正方形ABCD 的边长为4,点E 对角线BD 上,且∠BAE=22.5°,EF ⊥AB ,垂足为点F ,则EF 的长为( )A .1B .4-22C .22D .32-42.如图等腰梯形ABCD ,AE 是BC 边上的高.已知AE=4,CE=8,则梯形ABCD 的面积是( )A .16B .32C .24D .483.如图,已知矩形ABCD,将△BCD 沿对角线BD 折叠,记点C 的对应点为C ',若20ADC ,∠'=︒则∠BDC 的度数为( )A .55°B .45°C .60°D .65°4.下列四边形中,对角线相等且互相垂直平分的是( )A .平行四边形B .正方形C .等腰梯形D .矩形5.如图,在等边ABC △中,已知6AB =,N 为AB 上一点,且2AN =,BAC ∠的平分线交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM MN +的最小值是( )A .8B .10C .25D .276.如图,在矩形ABCD 中,以点B 为圆心,AB 长为半径画弧,交BC 于点P ,以点D 为圆心,AD 长为半径画弧,交BC 于点Q ,若AB =15,AD =17,则PQ 的长为( )A .2B .6C .8D .107.如图,已知正方形ABCD 中,E 为CD 边上的一点,F 为BC 延长线上一点,且BE=DF ,若∠BEC=65 °,∠EFD 的度数( )A .15°B .20°C .30°D .10°8.下列说法中,错误的是( )A .一组邻边相等的平行四边形是菱形B .对角线互相垂直的平行四边形是菱形C .四条边相等的四边形是菱形D .对角线相等且互相平分的四边形是菱形9.下列命题中,真命题是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形不一定是平行四边形D .对角线互相垂直平分且相等的四边形一定是正方形10.如图,点D 是ABC ∆的边AC 上一动点,过点D 分别作DE AB ⊥,DF BC ⊥垂足为E ,F ,连接EF ,已知12AB =,16BC =,20AC =,当点D 运动到AC 中点时,EF 等于( )A.6 B.8 C.10 D.1411.如图,在 ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′ 与CE 交于点F,若∠B=55°,∠DAE=20°,则∠FED′ 的大小为( )A.20°B.30°C.35°D.45°12.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°③BE+DF=EF;④CE=3,其中正确的结论的个数为()A.1个B.2个C.3个D.4个二、填空题13.如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2M,对角线A1M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3M2,对角线A1M2和A3B3交于点M3;..依此类推,这样作的第6个正方形对角线交点的坐标为____.14.如图,四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此进行下去……记正方形ABCD 的边长为a 1=1,按上述方法所作的正方形的边长依次为a 2,a 3,a 4,……a 2019, 则a 2019=___________15.如图,菱形ABCD 中,∠B=60°,AB=2,E ,F 分别是BC 、CD 的中点,连接AE 、EF ,则△AEF 的周长为_____.16.四边形ABCD 中,90A B ∠=∠=,3AB =,6AD =,5CD =,则BC =______.17.如图,在平面直角坐标系xOy 中,有一边长为1的正方形OABC ,点B 在x 轴的正半轴上,如果以对角线OB 为边作第二个正方形OBB 1C 1,再以对角线OB 1为边作第三个正方形OB 1B 2C 2,…,照此规律作下去,则B 2的坐标是 ;B 2014的坐标是 .18.如图,矩形ABOC 的顶点B 、C 分别在x 轴、y 轴上,顶点A 在第一象限,点B 的坐标为30),将线段OC 绕点O 顺时针旋转60°至线段OD ,若反比例函数k y x=(k ≠0)的图象进过A 、D 两点,则k 值为_____.19.如图所示,将矩形ABCD 沿直线AE 折叠(点E 在边CD 上) ,折叠后顶点D 恰好落在边BC 上的点F 处,若10,8AD AB ==,则EC 的长是_____________三、解答题20.已知在△ABC 中,AB=AC=5,BC=6,AD 是BC 边上的中线,四边形ADBE 是平行四边形.(1)求证:四边形ADBE 是矩形;(2)求矩形ADBE 的面积.21.有下列命题①一组对边平行,一组对角相等的四边形是平行四边形.②两组对角分别相等的四边形是平行四边形.③一组对边相等,一组对角相等的四边形是平行四边形.④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.(1)上述四个命题中,是真命题的是(填写序号);(2)请选择一个真命题进行证明.(写出已知、求证,并完成证明)已知:.求证:.证明:22.如图,在□ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AB=10,BF=16,AD=15,则□ABCD 的面积是.23.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC =180°(1)求证:四边形ABCD是矩形;(2)若DE⊥AC交BC于E,∠ADB:∠CDB=2:3,则∠BDE的度数是多少.24.如图①,在△ABC 中,点D ,E 分别是AB ,AC 的中点,可以得到:DE ∥BC ,且DE =BC .(不需要证明)(探究)如图②,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,判断四边形EFGH 的形状,并加以证明.(应用)在(探究)的条件下,四边形ABCD 中,满足什么条件时,四边形EFGH 是菱形?你添加的条件是: .(只添加一个条件)25.如图,在ABCD 中,AE BC 于点E 点,延长BC 至F 点使=CF BE ,连接AF ,DE ,DF .(1)求证:四边形AEFD 是矩形;(2)若6AB =,8DE =,10BF =,求AE 的长.26.如图在平面直角坐标系中,O 是坐标原点,矩形OACB 的顶点A ,B 分别在x 轴、y 轴上,已知3OA =,点D 为y 轴上一点,其坐标为(0,1),若连接CD ,则5CD =,点P 从点A 出发以每秒1个单位的速度沿线段A C B --的方向运动,当点P 与点B 重合时停止运动,运动时间为t 秒(1)求B ,C 两点坐标;(2)求OPD ∆的面积S 关于t 的函数关系式;(3)当点D 关于OP 的对称点E 落在x 轴上时,请直接写出点E 的坐标,并求出此时的t 值.27.如图,折叠长方形纸片ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知4AB =,5BC =.(1)求线段BF 的长;(2)求AEF ∆的面积.28.如图,在梯形ABCD AD //BC 中,,AB CD =,过点D DE BC 作⊥,垂足为E ,并延长DE F 至,使EF DE =,联结BF CD AC 、、.(1)求证:四边形ABFC 是平行四边形。

八年级数学下册《第十八章-平行四边形》练习题附答案-人教版

八年级数学下册《第十八章-平行四边形》练习题附答案-人教版

八年级数学下册《第十八章平行四边形》练习题附答案-人教版一、选择题1.如图,平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=155°,则∠A的度数为( )A.155°B.130°C.125°D.110°2.如图,已知点E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE度数为( )A.20°B.25°C.30°D.35°3.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为( )A.它们周长都等于10cm,但面积不一定相等B.它们全等,且周长都为10cmC.它们全等,且周长都为5cmD.它们全等,但周长和面积都不能确定4.如图,有一▱ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为( )A.50°B.55°C.70°D.75°5.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是( )A. B. C. D.6.任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH,HF,FG,GE,则下列结论中,不一定正确的是( )A.△EGH为等腰三角形B.△EHF为等腰三角形C.四边形EGFH为菱形D.△EGF为等边三角形7.已知四边形ABCD,有以下四个条件:①AB//CD;②AB=CD;③BC//AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有( ).A.6种B.5种C.4种D.3种8.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒 2 cm 的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1 cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间为t s,若四边形QPCP′为菱形,则t的值为( )A. 2B.2C.2 2D.39.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为( )A.15B.12.5C.14.5D.1710.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于( )A.1: 2B.1:2C.2:3D.4:9二、填空题11.如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O处,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB为m.12.如图,在Rt△ABC中,∠ACB=90°,点D、E、F分别是AB、AC、BC的中点,若CD=5,则EF的长为.13.如图,加一个条件与∠A+∠B=180°能使四边形ABCD成为平行四边形.14.如图,在扇形中,∠AOB=900,C是弧AB上一点,且CD⊥OB,CE⊥OA,垂足分别为点D、E,软弱BD=1,OD=3,则DE=.15.如图,两个正方形的边长分别为a和b,如果a﹣b=6﹣2,ab=23,那么阴影部分的面积是.16.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D ﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2025米停下,则这个微型机器人停在点.三、解答题17.如图所示,在▱ABCD中,点E,F在对角线BD上,且BE=DF,求证:(1)AE=CF;(2)四边形AECF是平行四边形.18.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.(1)求证:四边形AECF是平行四边形.(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接写出图中所有的等腰三角形.19.已知正方形ABCD,E、F分别为边BC、CD上的点,DE=AF.求证:AF⊥DE.20.如图,在正方形ABCD中,F为DC的中点,E为BC上一点,BC=4CE.求证:AF⊥FE.21.如图在四边形ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点(1)如果AD∥BC,AD=BC.观察猜想DF与BE之间的关系,并证明你的猜想;(2)如果AB=7,BE=4.求线段BO的取值范围.22.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.23.(1)如图①,已知△ABC,以AB,AC为边向△ABC外作等边△ABD和等边△ACE,连结BE,CD.请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹)(2)如图②,已知△ABC,以AB,AC为边向外作正方形ABFD和正方形ACGE,连结BE,CD.BE 与CD有什么数量关系?简单说明理由;(3)运用(1)(2)解答中积累的经验和知识,完成下题:如图③,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100 m,AC=AE,求BE的长.参考答案1.【答案】B.2.【答案】C.3.【答案】B.4.【答案】C.5.【答案】D.6.【答案】D.7.【答案】C8.【答案】B9.【答案】B10.【答案】D.11.【答案】40.12.【答案】513.【答案】AD=BC或AB∥CD.14.【答案】4.15.【答案】4﹣ 3.16.【答案】B.17.【答案】证明:(1)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD∴∠ABE=∠CDF.在△ABE和△CDF中∴△ABE≌△CDF(SAS)∴AE=CF.(2)如图,连接AC,与BD相交于点O.∵四边形ABCD是平行四边形∴OA=OC,OB=OD.又∵BE=DF∴OB﹣BE=OD﹣DF∴OE=OF.∴四边形AECF是平行四边形.18.【答案】证明:(1)如图,连接AC交BD于点O,在▱ABCD中,OA=OC,OB=OD∵BE=DF∴OB﹣BE=OD﹣DF,即OE=OF∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);(2)解:∵AB∥CD∴∠ABF=∠CDF=36°∴∠AFB=180°﹣108°﹣36°=36°∴AB=AF∵AF=EF∴△ABF和△AFE是等腰三角形同理△EFC与△CDE是等腰三角形.19.【答案】证明:∵四边形ABCD为正方形∴AD=DC,∠ADC=∠C=90°在Rt△ADF与Rt△DCE中AF=DE,AD=CD∴Rt△ADF≌Rt△DCE(HL)∴∠DAF=∠EDC设AF与ED交于点G∴∠DGF=∠DAF+∠ADE=∠EDC+∠ADE=∠ADC=90°∴AF⊥DE.20.【答案】证明:连接AE,设正方形的边长为 4a.在Rt△ADF中,AD=4a,DF=2a据勾股定理得,AF2=AD2+DF2,解得AF2=20a2. 在Rt△ABE中,AB=4a,BE=3a据勾股定理得,AE2=AB2+BE2,解得AE2=25a2. 在Rt△ECF中,FC=2a,CE=a据勾股定理得,EF2=CF2+CE2,解得EF2=5a2. ∴AE2=AF2+EF2,∴AF⊥FE.21.【答案】解:(1)猜想:平行且相等∵AD∥BC,AD=BC∴四边形ABCD是平行四边形∴BO=DO,AO=CO∵点E、点F分别是OA、OC的中点∴OE=OF∵在△DOF和△BOE中DO=BO,∠BOE=∠DOF,OF=OE∴△DOF≌△BOE(SAS)∴DF=BE,∠FDO=∠EBO∴DF∥BE即DF与BE之间的关系为平行且相等;(2)在△ABE中,∵AB=7,BE=4∴3<AE<11∵AO<AB∴6<2AE=AO<7∴6<AO<7在△ABO中1<OB <13在△BEO 中,OB <4,即1<OB <4.22.【答案】证明:(1)连接AC ,如下图所示,∵四边形ABCD 为菱形,∠BAD =120°∠1+∠EAC =60°,∠3+∠EAC =60°∴∠1=∠3∵∠BAD =120°∴∠ABC =60°∴△ABC 和△ACD 为等边三角形∴∠4=60°,AC =AB ,∴在△ABE 和△ACF 中∴△ABE ≌△ACF(ASA).∴BE =CF ;(2)解:四边形AECF 的面积不变,△CEF 的面积发生变化.理由:由(1)得△ABE ≌△ACF ,则S △ABE =S △ACF故S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC ,是定值作AH ⊥BC 于H 点,则BH =2S 四边形AECF =S △ABC =12BC •AH =4 3由“垂线段最短”可知:当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小又S△CEF =S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大.∴S△CEF =S四边形AECF﹣S△AEF=43﹣12×23×3=3.答:最大值是3.23.【答案】解:(1)如答图①,证明:∵△ABD和△ACE都是等边三角形∴AD=AB,AC=AE,∠BAD=∠CAE=60°∴∠BAD+∠BAC=∠CAE+∠BAC即∠CAD=∠EAB∴△CAD≌△EAB∴BE=CD;(2)BE=CD.理由如下:∵四边形ABFD和四边形ACGE均为正方形∴AD=AB,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠EAB∴△CAD≌△EAB∴BE=CD;(3)由(1),(2)的解题经验可知,过A在△ABC的外侧作等腰直角三角形ABD 如图②,∠BAD=90°,则AD=AB=100,∠ABD=45°∴BD=100 2.连结CD,则由(2)可知BE=CD.∵∠ABC=45°∴∠DBC=∠ABD+∠ABC=90°.在Rt△DBC中,BC=100,BD=100 2∴CD=1002+(1002)2=100 3∴BE的长为1003m.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.1 平行四边形
一、单选题
1.如图,在平行四边形ABCD 中,∠BDA=90°,AC=10cm ,BD=6cm ,则AD 的长为( )
A .4cm
B .5cm
C .6cm
D .8cm
2.下面的性质中,平行四边形不一定具有的是( ).
A .对角互补
B .邻角互补
C .对角相等
D .对边相等. 3.平行四边形一边长为12cm ,那么它的两条对角线的长度可以是( )
A .8cm 和14cm
B .10cm 和14cm
C .18cm 和20cm
D .10cm 和34cm 4.下列给出的条件中,不能判定四边形ABCD 是平行四边形的是( )
A .AB=CD,AD=BC
B .AD∠B
C ,∠A=∠B C .AD∠BC ,∠A=∠C
D .AD∠BC ,AB∠CD
5.如图,在四边形ABCD 中,BC ∠AD ,添加下列条件,不能判定四边形ABCD 是平行四边形的是( )
A .A
B =CD B .AB ∠CD
C .∠A =∠C
D .BC =AD 6.如图,已知AB CD =,AD BC =,OA OC =,BO DO =,直线EF 过O 点,则图中全等三角形最多有( )
A .2对
B .3对
C .5对
D .6对
7.如图,在平行四边形ABCD 中,BC =2AB ,CE ∠AB 于E ,F 为AD 的中点,若∠AEF =54°,则∠B =( )
A .54°
B .60°
C .66°
D .72°
8.在平行四边形ABCD 中,AE BC ⊥于点E ,AF CD ⊥于点F ,若4AE =,6AF =,平行四边形ABCD 的周长为40,则ABCD S =平行四边形( )
A .24
B .36
C .40
D .48
9.如图,D 是∠ABC 内一点,BD∠CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( )
A .7
B .9
C .10
D .11
10.如图,ABCD □的对角线AC 与BD 相交于点O ,AE BC ⊥,垂足为E ,AB =2AC =,4BD =,则AE 的长为( )
A B .32 C D
二、填空题
11.如图,在ABCD Y 中,AE∠BC 于点E ,AF∠CD 于点F.若∠EAF=56°.则∠B=_________.
12.如图,在四边形ABCD 中,AB∠CD ,要使得四边形ABCD 是平行四边形,应添加的条件是_________(只填写一个条件,不使用图形以外的字母和线段).
13.如图,在ABC △中,90ACB ∠=︒,如果D 、E 、F 分别是AC 、AB 、BC 的中点,3CE =,那么DF =_____________.
14.如图,在□ABCD中,E,F是对角线AC上的两点且AE=CF,在∠BE=DF;∠AB=DE;∠BE∠DF;∠四边形EBFD为菱形;∠S∠ADE=S∠ABE;∠AF=CE,这些结论中正确的是_____.
三、解答题
15.如图,∠ABCD中,E为BC边的中点,连AE并与DC的延长线交于点F,求证:DC =CF.
16.如图,在四边形ABCD中,AB=CD,DE∠AC,BF∠AC,垂足分别为E,F,且DE=BF.求证:
(1)AE=CF;
(2)四边形ABCD是平行四边形.
17.如图,等边∠ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=
BC ,连接CD 和EF .
(1)求证:DE=CF ;
(2)求EF 的长.
18.如图,四边形ABCD 中,AD BC ∥,点E 、F 分别在,AD BC 上,AE CF =,过点A 、C 分别作EF 的垂线,垂足为G 、H .
(1)求证:AGE CHF ∆≅∆;(2)连接AC ,线段GH 与AC 是否互相平分?请说明理由
答案
1.A
2.A
3.C
4.B
5.A
6.D
7.D
8.D
9.D
10.D
11.56°
12.AB=CD或AD∠BC或∠A=∠C或∠B=∠D或∠A+∠B=180°或∠C+∠D=180°等.13.3
14.∠∠∠∠
15.∠四边形ABCD是平行四边形,
∠AB∠CD,AB=CD,
∠∠BAE=∠CFE,
∠E为BC中点,
∠EB=EC,
在∠ABE与∠FCE中,

BAE CFE
AEB FEC EB EC
∠∠


∠=∠

⎪=



∠∠ABE∠∠FCE(AAS),
∠AB=CF,
∠DC=CF.
16.证明:(1)∠DE∠AC,BF∠AC,∠∠DEC=∠BFA=90°,
在Rt∠DEC和Rt∠BFA中,
AB DC BF DE
=


=


∠Rt∠DEC∠Rt∠BFA(HL),
∠EC=AF,
∠EC-EF=AF-EF,即AE=FC;
(2)∠Rt∠DEC∠Rt∠BFA,
∠∠DCE=∠BAF,
∠AB∠DC,
又∠AB=DC,
∠四边形ABCD是平行四边形.
17.(1)证明:∠D、E分别为AB、AC的中点,∠DE BC,
∠延长BC 至点F ,使CF=BC , ∠DE
FC , 即DE=CF ; (2)解:∠DE FC , ∠四边形DEFC 是平行四边形, ∠DC=EF ,
∠D 为AB 的中点,等边∠ABC 的边长是2,
∠AD=BD=1,CD∠AB ,BC=2, ∠DC=EF=.
18.(1)证明:AG EF ⊥Q ,CH EF ⊥,
90G H ∴∠=∠=︒,AG CH ∥,
AD BC ∵∥,
DEF BFE ∴∠=∠,
AEG DEF ∠=∠Q ,CFH BFE ∠=∠,
AEG CFH ∴∠=∠,
在AGE ∆和CHF ∆中,G H AEG CFH AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩

()AGE CHF AAS ∴∆≅∆;
(2)线段GH 与AC 互相平分,理由如下:
连接AH 、CG ,如图所示:
∆≅∆,由(1)得:AGE CHF
∴=,
AG CH
Q∥,
AG CH
∠四边形AHCG是平行四边形,∠线段GH与AC互相平分。

相关文档
最新文档