运算放大电路实验报告

合集下载

运算放大电路实验报告

运算放大电路实验报告

运算放大电路实验报告运算放大电路实验报告引言运算放大电路是电子工程领域中一种常见的电路,它广泛应用于信号放大、滤波、积分、微分等功能。

本实验旨在通过搭建运算放大电路并进行实际测试,探究其工作原理和特性。

实验目的1. 了解运算放大电路的基本原理和组成结构;2. 熟悉运算放大电路的实际搭建和调试方法;3. 掌握运算放大电路的特性参数测量方法。

实验器材1. 运算放大器(OP-AMP);2. 电阻、电容等元件;3. 示波器、函数发生器等测试仪器。

实验步骤1. 搭建基本的非反馈运算放大电路。

将运算放大器的正、负输入端分别连接到电压源和接地,输出端接入负载电阻。

根据实验要求选择适当的电阻值,并使用示波器检测输出信号。

2. 测试运算放大器的放大倍数。

将输入信号接入运算放大器的正输入端,通过函数发生器输入不同频率和幅度的信号,并测量输出信号的幅度。

根据测量结果计算得到运算放大器的放大倍数。

3. 探究运算放大器的输入阻抗和输出阻抗。

使用电压源作为输入信号,通过改变输入电阻的值,测量输入电压和输出电压之间的关系。

同样地,通过改变负载电阻的值,测量输出电压和负载电阻之间的关系。

分析测量结果,得出运算放大器的输入阻抗和输出阻抗。

4. 实现运算放大器的反相放大功能。

在基本的非反馈运算放大电路的基础上,引入反馈电阻,并调整电阻的值,使得输出信号与输入信号呈反相关系。

通过示波器观察和测量输入信号和输出信号的波形,验证反相放大的功能。

实验结果与分析1. 在搭建基本的非反馈运算放大电路后,通过示波器观察到输出信号与输入信号具有相同的波形,且幅度有所放大。

这表明运算放大器实现了信号的放大功能。

2. 在测试运算放大器的放大倍数时,发现输出信号的幅度与输入信号的幅度成正比。

根据测量数据计算得到的放大倍数与理论值相符合,说明运算放大器具有较好的放大性能。

3. 通过测量输入电压和输出电压之间的关系,得到运算放大器的输入阻抗约为几十兆欧姆,说明输入电阻较高,不会对输入信号产生较大的负载效应。

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告

一、实验目的1. 了解集成运算放大器的基本特性和工作原理。

2. 掌握集成运算放大器的基本应用电路的设计与调试方法。

3. 熟悉集成运算放大器在实际电路中的应用,提高电子电路设计能力。

二、实验原理集成运算放大器(Op-Amp)是一种高增益、低输入阻抗、高输入电阻、低输出阻抗的直接耦合放大器。

它广泛应用于各种模拟信号处理和产生电路中。

本实验主要研究集成运算放大器的基本应用电路,包括反相比例放大电路、同相比例放大电路、加法运算电路、减法运算电路等。

三、实验仪器与设备1. 集成运算放大器:TL0822. 直流稳压电源:±15V3. 数字万用表4. 示波器5. 面包板6. 连接线7. 电阻、电容等元件四、实验内容1. 反相比例放大电路(1)电路连接:将集成运算放大器TL082的输入端分别连接到输入电阻R1和地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到反相输入端。

(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成反相关系。

(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成反相关系,放大倍数为-10。

2. 同相比例放大电路(1)电路连接:将集成运算放大器TL082的同相输入端连接到输入电阻R1,反相输入端连接到地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到同相输入端。

(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成正比关系。

(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成正比关系,放大倍数为10。

3. 加法运算电路(1)电路连接:将集成运算放大器TL082的反相输入端连接到地,同相输入端连接到两个输入电阻R1和R2,输出端连接到负载电阻R3,反馈电阻Rf与R1、R2并联后连接到同相输入端。

运算放大器实验报告

运算放大器实验报告

运算放大器实验报告运算放大器实验报告引言运算放大器(Operational Amplifier,简称OP-AMP)是一种广泛应用于电子电路中的集成电路元件。

它具有高增益、高输入阻抗和低输出阻抗的特点,被广泛用于信号放大、滤波、积分、微分等各种电路中。

本实验旨在通过实际操作,深入了解运算放大器的基本原理和应用。

实验目的1. 了解运算放大器的基本原理和特性;2. 熟悉运算放大器的实际应用;3. 掌握运算放大器的参数测量方法。

实验装置和材料1. 运算放大器实验箱;2. 直流电源;3. 电阻、电容等基本元件;4. 示波器、信号发生器等测试仪器。

实验步骤1. 搭建基本的运算放大器电路,并接通电源;2. 测量运算放大器的输入和输出电压,并计算增益;3. 将运算放大器用于反相放大电路,并测量增益;4. 将运算放大器用于非反相放大电路,并测量增益;5. 将运算放大器用于比例积分放大器电路,并测量增益和相位延迟;6. 将运算放大器用于差分放大器电路,并测量增益和共模抑制比。

实验结果与分析1. 在基本的运算放大器电路中,输入电压为1V,输出电压为10V,计算得到增益为10。

这符合运算放大器的基本特性,即输出电压等于输入电压乘以增益。

2. 在反相放大电路中,输入电压为1V,输出电压为-10V,计算得到增益为-10。

反相放大电路可以将输入信号进行180度的相位翻转,并放大到一定倍数。

3. 在非反相放大电路中,输入电压为1V,输出电压为10V,计算得到增益为10。

非反相放大电路可以将输入信号放大到一定倍数,但不改变其相位。

4. 在比例积分放大器电路中,输入为正弦波信号,通过测量输出电压和输入电压的相位差,计算得到增益和相位延迟。

增益和相位延迟与输入信号频率呈正相关关系。

5. 在差分放大器电路中,输入为两个不同的信号,通过测量输出电压和输入电压的差值,计算得到增益和共模抑制比。

差分放大器电路可以将两个输入信号的差值放大到一定倍数,并抑制它们的共同模式信号。

模电实验报告-运算放大电路

模电实验报告-运算放大电路
(2)
实验仪器: 稳压电源 示波器 信号发生器 运算放大器 电阻、电容
实验步骤: 1)首先检查所领用实验仪器、器件是否工作正常、引脚是否完好。 2)按实验图一接好电路,检查无误后接入电源,用万用表测量运放的输入、输出端的 静态电压,并记录。 3)利用信号发生器,在 Vi 端输入一正弦信号:频率为 1KHz,幅度为 100mV。 4)在 Vo 端观察信号输出,并记录输出幅度,同时比对 Vi 和 Vo 之间的相位,并记录。 5)再调整信号发生器的幅度值至 200mV,重复 3)的步骤。 6)按实验图二接好电路,检查无误后接入电源,用万用表测量运放的输入、输出端的 静态电压,并记录。 7)利用信号发生器,在 Vi 端输入一正弦信号:频率为 1KHz,幅度为 100mV。 8)重复 3) 、4)步骤,记录数据。
数据记录: 记录条目 静态工作电压 1 反相比例放大器 正向输入端: 反向输入端: 输出端: 正向输入端: 反向输入端: 输出端: 输出信号 (V0) 波形: 万用表测试 记录内容 备注
2
同相比例放大器
输入信号(Vi) 4 5 100mV
------------------------------
4
200mV
5
波形:Leabharlann ------------------------------
------------------------------
深圳大学学生实验报告用纸
实验结论:
指导教师批阅意见:
成绩评定:
指导教师签字: 年 月 日 备注:
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。 2、教师批改学生实验报告时间应在学生提交实验报告时间后 10 日内。
运算放大电路运算放大电路计算集成运算放大电路差分运算放大电路两级运算放大电路模拟运算放大电路基本运算放大电路模拟运算放大电路三差动放大电路实验负反馈放大电路实验

运算放大电路实验报告

运算放大电路实验报告

北京邮电大学实验报告课程名称:电子电路基础实验名称:集成运算放大器的运用通信工程系23班姓名:郭奥教师:魏学军成绩:2011年11月28日一:实验目的1.研究有集成运算放大器组成的比例,加法,减法,和积分等基本运算电路功能2.了解运算放大器在实际应用时应考虑的一些问题3.提高独立设计和独立完成实验的能力二:实验器材三:预习思考题1. 本实验哪些电路需要调零?若需要如何操作?所有需要放大含有直流分量的应用场合,都必须进行调零,即对运放本身(主要是差动输入级)的失调进行补偿,以保证运放闭环工作时,输入为零时输出也为零。

操作时分两种情况:① 有的运放已有引出的补偿端,只需按照器件手册的规定接入调零电路即可。

② 对于没有设调零端的运放,可将电路的输入端接地,用万用表直流电压档或示波器的DC 耦合档接在电路的输出端,调节电位器,使输出为零。

2. 在反相加法器中,如ui1和ui2均采用直流信号,并选定ui2=-1V ,当考虑到运算放大器的最大输出幅度(V 12±)时,|ui1|的大小不应超过多少伏?答:2/)2(1uo ui ui --=故|ui1|max=6.5V3. 在积分电路中,如F C k R μ7.4,1001=Ω=,求时间常数。

假设ui=0.5V,问要使输出电压uo 达到5V ,需要多长时间?答:47.0*1==C R τ)0(1)(0uc uidt RC t uo t+-=⎰t=4.7s 4. 为了不损坏集成芯片,试验中要注意什么问题?答:切记正、负电源极性接反和输出端短路。

四:实验电路图:反相比例运算电路反相加法运算电路积分运算电路五:实验步骤:1.反相比例运算电路(1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

(2)输入f=1kHz、ui=100mV的正弦交流信号,测量相应的uo,并用示波器观察uo和ui的波形和相位关系,记录输入输出波形。

运算放大器的应用实验报告

运算放大器的应用实验报告

运算放大器的应用实验报告运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子元件,在电子电路中有着广泛的应用。

本实验旨在通过实验操作,加深对运算放大器的工作原理和应用特性的理解,同时掌握运算放大器在电路中的具体应用。

一、实验目的。

1. 了解运算放大器的基本工作原理;2. 掌握运算放大器的基本参数测量方法;3. 学习运算放大器在电路中的应用,包括比较器、放大器、积分器和微分器等。

二、实验仪器与设备。

1. 示波器。

2. 直流稳压电源。

3. 示波器探头。

4. 运算放大器集成电路。

5. 电阻、电容等元件。

6. 实验电路板。

7. 万用表。

三、实验原理。

运算放大器是一种差动放大器,具有高输入阻抗、低输出阻抗、大增益和宽带宽等特点。

在实验中,我们将通过测量运算放大器的输入输出特性、电压增益、输入偏置电流等参数,来了解其基本特性。

运算放大器在电路中的应用非常广泛,比如在比较器电路中,当输入电压超过一定阈值时,输出电压会发生跳变;在放大器电路中,运算放大器可以放大微弱的信号;在积分器和微分器电路中,可以实现信号的积分和微分运算。

四、实验内容与步骤。

1. 搭建运算放大器的输入输出特性测量电路,通过改变输入电压,测量输出电压与输入电压的关系曲线;2. 测量运算放大器的电压增益,并分析其影响因素;3. 搭建运算放大器的比较器电路,观察输入电压与输出电压的关系;4. 搭建运算放大器的放大器电路,测量放大电路的电压增益;5. 搭建运算放大器的积分器和微分器电路,观察输入输出波形,并分析其特性。

五、实验数据与分析。

1. 输入输出特性曲线如图所示(图表略),通过测量得到的数据绘制曲线,可以看出运算放大器的输入输出特性呈线性关系;2. 测量得到的电压增益为100,经分析发现电阻值的选择对电压增益有一定影响,需要合理选择电阻值以满足设计要求;3. 比较器电路的实验结果表明,运算放大器在一定输入电压范围内输出电压保持稳定,一旦超过阈值,输出电压会发生跳变;4. 放大器电路的实验结果显示,运算放大器可以有效放大输入信号,且放大倍数与电阻值的选择有关;5. 积分器和微分器电路的实验结果表明,运算放大器可以实现信号的积分和微分运算,输出波形与输入波形呈现出相应的积分和微分关系。

电工电子实验报告实验46运算放大器的线性应用

电工电子实验报告实验46运算放大器的线性应用

电工电子实验报告实验46运算放大器的线性应用
实验目的:
1.了解运算放大器的基本原理和特性;
2.了解运算放大器在线性应用中的应用;
3.掌握运算放大器的性能参数的测试方法。

实验仪器和材料:
1.运算放大器集成电路;
2.函数发生器;
3.直流电源供电电路;
4.信号发生器;
5.锁相放大器;
6.示波器。

实验原理:
运算放大器是一种特殊的放大器,它的主要特点是输入电阻极大,输
出电阻极小,倍数稳定。

运算放大器一般由差动放大器、输入级、中间级、输出级和负反馈电路组成。

实验步骤:
1.将运算放大器集成电路插入插座中,接入电源电压;
2.使用函数发生器产生一个频率为1kHz的正弦信号,调整振幅为1V;
3.将信号源连接到运算放大器集成电路的非反相输入端,将运算放大器集成电路的输出端连接到示波器的通道1;
4.调整示波器的刻度,使正弦信号波形在示波器屏幕上显示完整;
5.调整函数发生器的频率,并观察示波器屏幕上信号波形的变化;
6.测量运算放大器的输入电阻、输出电阻。

实验结果:
通过实验可以观察到随着函数发生器频率的变化,示波器屏幕上信号波形的变化情况。

当频率较低时,波形显示完整;当频率逐渐增加时,波形开始变形,幅度逐渐减小。

实验总结:
通过本次实验,我们深入了解了运算放大器的基本原理和特性,学会了运算放大器在线性应用中的应用。

同时,我们还掌握了运算放大器的性能参数的测试方法,如输入电阻、输出电阻的测量方法。

运算放大器在电子电路中具有广泛的应用,对于电子工程专业的学生来说,掌握运算放大器的使用非常重要。

运算放大器实验报告

运算放大器实验报告

竭诚为您提供优质文档/双击可除运算放大器实验报告篇一:5集成运放电路实验报告实验报告姓名:学号:日期:成绩:一、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2、了解运算放大器在实际应用时应考虑的一些问题。

二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。

开环电压增益Aud=∞输入阻抗ri=∞输出阻抗ro=0带宽fbw=∞失调与漂移均为零等。

理想运放在线性应用时的两个重要特性:(1)输出电压uo与输入电压之间满足关系式uo=Aud(u+-u-)由于Aud=∞,而uo为有限值,因此,u+-u-≈0。

即u+≈u-,称为“虚短”。

(2)由于ri=∞,故流进运放两个输入端的电流可视为零,即IIb=0,称为“虚断”。

这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。

基本运算电路1)反相比例运算电路电路如图6-1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为uo??RFuiR1为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1//RF。

图6-1反相比例运算电路图6-2反相加法运算电路2)反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为uo??(RFRui1?Fui2)R3=R1//R2//RFR1R23)同相比例运算电路图6-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为uo?(1?RF)uiR2=R1//RFR1当R1→∞时,uo=ui,即得到如图6-3(b)所示的电压跟随器。

运算放大器和受控源实验报告

运算放大器和受控源实验报告

运算放大器和受控源实验报告实验报告:运算放大器和受控源摘要:本实验通过搭建运算放大器和受控源电路,研究了其基本原理和特性。

实验结果表明,运算放大器具有高放大增益、输入阻抗高、输出阻抗低等优点;受控源能够根据输入信号调整输出电流或电压。

通过实验,我们深入了解了运算放大器和受控源的工作原理,为今后的电子电路设计和应用提供了重要参考。

一、引言运算放大器是电子电路设计中经常使用的一种重要器件。

它具有高放大增益、低输入阻抗和高输入阻抗等特性,常用于电压放大、滤波、比较器等电路中。

受控源是一种能够根据输入信号调整输出电流或电压的电路,常用于电压调整、电流控制等应用中。

本实验通过搭建运算放大器和受控源电路,探究其基本原理和特性。

二、实验目的1. 了解运算放大器的基本原理和特性;2. 研究运算放大器的放大倍数、输入和输出阻抗;3. 探究受控源的工作原理和特性;4. 实验验证运算放大器和受控源的特性。

三、实验原理1. 运算放大器运算放大器是一种具有很高放大增益的差分放大器,由一个差动放大器和一个精密的负反馈电路组成。

常见的运算放大器有理想运算放大器和非理想运算放大器,其中理想运算放大器具有放大增益无限大、输入电阻无穷大、输出电阻为零等特性。

2. 受控源受控源通常包括电压控制电流源和电流控制电压源两种类型。

电压控制电流源可以根据输入电压信号调整输出电流,电流控制电压源则可以根据输入电流信号调整输出电压。

受控源常用于各种电路的输入电流调整、电流传输和电压调整等应用。

四、实验设备和器件1. 信号发生器2. 电压表3. 万用表4. 运算放大器集成电路5. 电阻、电容和二极管等被测器件五、实验步骤1. 搭建运算放大器电路,将信号发生器的输出接入运算放大器的输入端,通过电压表测量输出电压大小;2. 测量运算放大器的输入和输出阻抗,将万用表连接到输入和输出端口进行测量;3. 搭建受控源电路,输入电压信号并测量输出电流大小;4. 根据实验结果,分析运算放大器和受控源的特性。

运算放大器的应用实验报告

运算放大器的应用实验报告

运算放大器的应用实验报告运算放大器的应用实验报告引言:运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子元器件,具有高增益、高输入阻抗和低输出阻抗等特点。

它在现代电子电路中有着广泛的应用。

本实验旨在通过实际操作和测量,探索运算放大器在不同电路中的应用,并验证其性能。

一、直流放大电路实验:1. 实验目的:通过搭建直流放大电路,观察运算放大器的放大效果,并测量其放大倍数。

2. 实验步骤:(1)搭建直流放大电路,将运算放大器的正、负输入端分别连接到输入信号源和地线。

(2)调节输入信号源的幅度,记录输出信号的幅度。

(3)改变输入信号的频率,观察输出信号的变化。

3. 实验结果和分析:通过实验数据的测量,我们得到了输入信号和输出信号的幅度数据,并计算了放大倍数。

结果显示,运算放大器能够将输入信号放大数倍,并且在一定频率范围内保持较好的线性放大特性。

二、反相放大电路实验:1. 实验目的:通过搭建反相放大电路,探索运算放大器的反相放大功能,并测量其放大倍数和频率响应。

2. 实验步骤:(1)搭建反相放大电路,将运算放大器的正输入端接地,负输入端连接到输入信号源。

(2)调节输入信号源的幅度,记录输出信号的幅度。

(3)改变输入信号的频率,观察输出信号的变化。

3. 实验结果和分析:实验数据显示,反相放大电路能够将输入信号进行反向放大,并且放大倍数与输入信号的幅度成反比。

此外,随着输入信号频率的增加,输出信号的幅度逐渐下降,表明运算放大器的频率响应存在一定的限制。

三、非反相放大电路实验:1. 实验目的:通过搭建非反相放大电路,研究运算放大器的非反相放大功能,并测量其放大倍数和频率响应。

2. 实验步骤:(1)搭建非反相放大电路,将运算放大器的正输入端连接到输入信号源,负输入端接地。

(2)调节输入信号源的幅度,记录输出信号的幅度。

(3)改变输入信号的频率,观察输出信号的变化。

3. 实验结果和分析:实验数据显示,非反相放大电路能够将输入信号进行非反向放大,并且放大倍数与输入信号的幅度成正比。

运放的实验报告

运放的实验报告

运放的实验报告运放的实验报告引言:运放(Operational Amplifier,简称Op-Amp)是一种非常重要的电子元件,广泛应用于各种电路中。

本次实验旨在通过实际操作,深入了解运放的基本原理、特性以及应用。

实验一:运放的基本原理在本实验中,我们使用了一款常见的运放芯片LM741。

该芯片具有8个引脚,分别是正电源(Vcc+)、负电源(Vcc-)、非反馈输入端(-IN)、反馈输入端(+IN)、输出端(OUT)、空载补偿电容(NC1)、空载补偿电容(NC2)和空载补偿电阻(NC3)。

我们首先将运放芯片与其他电路元件连接,然后将信号输入到运放的非反馈输入端,观察输出端的电压变化。

实验二:运放的特性在这个实验中,我们研究了运放的特性,包括增益、输入电阻和输出电阻。

我们通过改变输入信号的幅度和频率,观察输出信号的变化,并记录下相应的数据。

实验结果表明,运放具有很高的增益,能够放大输入信号,同时具有很高的输入电阻和很低的输出电阻,能够有效地与其他电路元件进行连接。

实验三:运放的应用在这个实验中,我们探索了运放在不同电路中的应用。

首先,我们使用运放实现了一个简单的反相放大电路,将输入信号进行反相放大。

然后,我们使用运放实现了一个非反相放大电路,将输入信号进行非反相放大。

此外,我们还使用运放实现了一个比较器电路,通过比较输入信号与参考电压的大小,输出高电平或低电平。

这些实验结果表明,运放在电子电路中具有非常广泛的应用,能够满足不同的设计需求。

实验四:运放的限制在这个实验中,我们研究了运放的一些限制。

首先,我们发现运放具有一定的输入偏置电流和输入偏置电压,这会对输出信号产生一定的影响。

其次,我们发现运放在输出端具有一定的饱和电压,当输出信号超过这个饱和电压时,运放无法继续放大信号。

此外,运放还具有一定的带宽限制,当输入信号的频率超过运放的带宽时,输出信号将出现失真。

这些限制需要在实际设计中予以考虑,以确保电路的正常工作。

protel99se 集成运算放大电路实验报告

protel99se 集成运算放大电路实验报告

实验目的1. 研究集成运算放大器的组成及其工作原理。

2. 学习并掌握运用Protel 99se 软件绘制集成运算放大器原理图及PCB 文件。

二、 实验原理 1集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时, 可以灵活地实现各种特定的函数关系。

在线性应用方面, 可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

2 反相比例运算放大器反相比例运算放大器电路是集成运放的一种最基本的接法, 如图2.6.1所示。

电路的输出电压 与输入电压 的关系式为: 。

oU i图1 反相比例运放电路3 反相加法器如果在运算放大器的反相端同时加入几个信号, 接成图2.6.2的形式, 就构成了能对同时加入的几个信号电压进行代数相加的运算反相加法器电路。

电路的输出电压 与输入电压 的关系式为: 。

oU U图2 反相加法器电路4 差动运算放大电路差动输入运算放大器电路如图2.6.3所示。

根据电路分析, 该电路的输出电压 与输入电压 的关系式为: 。

该关系式说明了两个输入端的信号具有相减的关系, 所以这种电路又称为减法器。

同时, 电路中同相输入电路参数与反相输入电路参数应保持对称, 即同相输入端的分压电路也应该由电阻 和 来构成, 其中 , 。

oU U图3 差动运算放大电路5 积分器电路由运算放大器构成的基本积分电路如图2.6.4所示, 它的基本运算关系是:o i 11u u dt R C =-⎰当 为恒定直流电压时, 即 , , 这时输出电压是随时间作直线变化的电压, 其上升(或下降)的斜率是 , 改变 、 或 三个量中的任一个量都可以改变输出电压上升(或下降)的斜率。

积分器的反馈元件是电容器。

无信号输入时, 电路处于开环状态。

所以运算放大器微小的失调参数就会使得运算放大器的输出逐渐偏向正(或负)饱和状态, 使得电路无法正常工作。

为了减小这种积分漂移现象, 实际使用时应尽量选择失调参数小的运算放大器, 并在积分电容两端并联一只高阻值电阻 以稳定直流工作点, 构成电压反馈, 限制整个积分器电路放大倍数。

运算集成放大电路实验报告

运算集成放大电路实验报告

运算集成放大电路实验报告运算集成放大电路实验报告引言:运算集成放大电路(Operational Amplifier, 简称Op-Amp)是一种广泛应用于电子电路中的集成电路元件。

它具有高增益、高输入阻抗、低输出阻抗等特点,被广泛应用于信号放大、滤波、比较、积分等电路中。

本实验旨在通过搭建运算放大器电路,验证其基本特性,并探究其在不同应用中的工作原理和性能。

实验一:运算放大器的基本特性验证1. 实验目的本实验旨在验证运算放大器的基本特性,包括增益、输入阻抗和输出阻抗。

2. 实验步骤(1)搭建一个基本的运算放大器电路,包括一个运算放大器芯片、两个电阻和一个电源。

(2)通过输入一个信号,观察输出信号的变化,并记录输入输出电压。

(3)更改输入信号的幅度和频率,观察输出信号的变化。

3. 实验结果与分析在实验中,我们发现输出信号与输入信号之间存在一个固定的放大倍数,即运算放大器的增益。

通过调节输入信号的幅度,我们可以观察到输出信号的变化,并根据实际测量结果计算出增益值。

此外,我们还发现运算放大器具有很高的输入阻抗和低的输出阻抗,使其能够有效地接收和驱动外部电路。

实验二:运算放大器的应用1. 实验目的本实验旨在通过实际应用电路,进一步探究运算放大器的工作原理和性能。

2. 实验步骤(1)搭建一个非反相放大电路,观察输入输出信号之间的关系。

(2)搭建一个反相放大电路,观察输入输出信号之间的关系。

(3)搭建一个积分电路,观察输入方波信号在电容上的积分效果。

3. 实验结果与分析在实验中,我们观察到非反相放大电路能够将输入信号放大,并保持与输入信号相同的相位。

而反相放大电路则将输入信号进行反相放大,输出信号与输入信号之间存在180度的相位差。

积分电路则将输入方波信号在电容上进行积分,输出信号为三角波信号。

结论:通过本次实验,我们验证了运算放大器的基本特性,并进一步了解了其在不同应用电路中的工作原理和性能。

运算放大器作为一种重要的电子元件,广泛应用于各种电子电路中,为信号处理提供了便利和灵活性。

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告实验目的,通过本次实验,我们将学习集成运算放大器的基本原理和应用,掌握运算放大器的基本参数测量方法,了解运算放大器在电路中的应用。

实验仪器,集成运算放大器、示波器、信号发生器、直流稳压电源、电阻、电容、万用表等。

实验原理,运算放大器是一种高增益、差分输入、单端输出的电子放大器。

在实验中,我们将通过测量运算放大器的输入偏置电压、输入失调电压、输入失调电流、增益带宽积等参数,来了解运算放大器的基本性能。

实验步骤:1. 连接电路,按照实验指导书上的电路图,连接好运算放大器的电路。

2. 测量输入偏置电压,将输入端接地,测量输出端的电压,计算出输入偏置电压。

3. 测量输入失调电压和输入失调电流,将输入端接地,测量输出端的电压,再将输出端接地,测量输入端的电压和电流,计算出输入失调电压和输入失调电流。

4. 测量增益带宽积,通过改变输入信号的频率,测量输出信号的幅度,计算出增益带宽积。

5. 测量共模抑制比,通过改变输入信号的幅度,测量输出信号的幅度,计算出共模抑制比。

实验结果与分析:通过实验测量,我们得到了运算放大器的各项参数,分析结果如下:1. 输入偏置电压为0.5mV,说明运算放大器的输入端存在微小的偏置电压。

2. 输入失调电压为1mV,输入失调电流为10nA,说明运算放大器的输入端存在微小的失调电压和失调电流。

3. 增益带宽积为1MHz,说明运算放大器在1MHz以下的频率范围内具有较高的增益。

4. 共模抑制比为80dB,说明运算放大器具有较好的共模抑制能力。

结论:通过本次实验,我们对集成运算放大器的基本原理和应用有了更深入的了解,掌握了运算放大器的基本参数测量方法,并了解了运算放大器在电路中的应用。

同时,我们也了解到了运算放大器的一些性能指标,为今后的实际应用提供了参考依据。

总结:集成运算放大器是电子电路中常用的重要器件,具有高增益、差分输入、单端输出等特点,广泛应用于放大、滤波、积分、微分等电路中。

模拟运算放大电路实验报告

模拟运算放大电路实验报告

模拟运算放大电路实验报告模拟运算放大电路实验报告引言模拟运算放大电路是电子工程领域中常见的重要电路之一。

它能够将微小的输入信号放大到较大的幅度,广泛应用于信号处理、传感器接口等领域。

本实验旨在通过搭建模拟运算放大电路并进行实际测量,探索其工作原理和性能。

一、实验装置和方法1. 实验装置本实验使用了一台函数发生器、一台示波器、一块模拟运算放大电路实验板以及一些连接线等设备。

2. 实验方法(1)首先,将函数发生器的正负极分别与实验板上的电源端子连接,以提供所需的电源电压。

(2)然后,将函数发生器的输出端与实验板上的输入端相连,作为输入信号。

(3)接下来,将示波器的探头一个端口连接到实验板的输出端,用于测量输出信号。

(4)最后,调节函数发生器的频率和幅度,观察并记录输出信号的变化。

二、实验结果与分析在进行实验过程中,我们分别改变了输入信号的频率和幅度,观察并记录了输出信号的变化。

下面是我们的实验结果与分析。

1. 频率对输出信号的影响我们首先将输入信号的频率从低到高逐渐增加,并观察输出信号的变化。

实验结果显示,当输入信号的频率较低时,输出信号的幅度较大,且与输入信号具有相同的波形。

然而,当频率超过一定阈值后,输出信号的幅度开始减小,且波形发生了明显的畸变。

这是因为模拟运算放大电路存在带宽限制,无法有效放大高频信号。

因此,合理选择输入信号的频率范围是非常重要的。

2. 幅度对输出信号的影响接着,我们固定输入信号的频率,逐渐增加其幅度,并记录输出信号的变化。

实验结果显示,当输入信号的幅度较小时,输出信号的幅度与输入信号基本一致。

然而,当幅度超过一定阈值后,输出信号的幅度开始饱和,无法继续放大。

这是因为模拟运算放大电路存在供电电压限制,无法提供足够的电压来放大过大的输入信号。

因此,合理选择输入信号的幅度范围也是非常重要的。

三、实验总结与思考通过本次实验,我们对模拟运算放大电路的工作原理和性能有了更深入的了解。

在实际应用中,我们应该根据具体需求合理选择输入信号的频率和幅度,以确保输出信号能够得到有效放大。

运算放大器的实验报告

运算放大器的实验报告

运算放大器的实验报告运算放大器的实验报告引言:运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子器件,广泛应用于电路设计和信号处理中。

本实验旨在通过实际搭建电路和测量数据,深入了解运算放大器的原理和特性,并验证其在电路设计中的应用。

一、实验目的本实验的主要目的有以下几个方面:1. 理解运算放大器的基本工作原理;2. 掌握运算放大器的输入输出特性;3. 熟悉常见的运算放大器电路应用。

二、实验仪器和材料1. 运算放大器芯片;2. 电阻、电容等基本电子元件;3. 示波器、函数信号发生器等实验设备。

三、实验步骤1. 搭建基本的运算放大器电路,包括反馈电阻、输入电阻等;2. 连接示波器和函数信号发生器,调节函数信号发生器的频率和振幅;3. 测量运算放大器的输入电压和输出电压,并记录数据;4. 分析实验数据,绘制输入输出特性曲线和增益曲线。

四、实验结果与分析通过实验测量得到的数据,我们可以得出以下结论:1. 运算放大器具有很高的输入阻抗和很低的输出阻抗,能够有效放大输入信号;2. 在线性范围内,运算放大器输出电压与输入电压成正比,增益稳定;3. 当输入信号超出运算放大器的工作范围时,输出电压将出现失真。

五、实验应用运算放大器在电路设计中有广泛的应用,以下是几个常见的例子:1. 比较器:利用运算放大器的输入特性,可以将其作为比较器使用,用于判断两个电压的大小关系;2. 滤波器:通过调整运算放大器的反馈电阻和电容,可以搭建低通、高通、带通等滤波器电路;3. 信号放大器:将运算放大器作为信号放大器使用,可以放大微弱信号,提高信号质量。

六、实验总结通过本次实验,我们深入了解了运算放大器的原理和特性,掌握了运算放大器的基本应用。

实验结果表明,在电路设计中,运算放大器是一种非常重要且常用的器件,能够实现信号放大、滤波、比较等功能。

然而,我们也要注意运算放大器的工作范围和输入输出特性,避免出现失真和不稳定的情况。

运放器的放大原理及叠加定理的验证 电路分析实验报告

运放器的放大原理及叠加定理的验证 电路分析实验报告

实验一运放器的放大原理及叠加定理的验证一、实验目的1.初次试验, 基本掌握workbench的基本操作;通过实验测定一运放器的放大倍数, 并与用节点法算出来的理论值进行对比, 验证节点法的正确性;用几个简单的电路, 验证线性电阻叠加原理。

二、实验原理运放器原理: 运放器的输入端, 分别加载电压U+和U-, U+与U-的电势差十分小, 约等于零, 经过运放器后, 输出电压为电势差的若干倍(可达到105~107倍)。

运放器模型图三、2.叠加定理: 对于一个具有唯一解的线性电路, 由几个独立电源共同作用所形成的各支路电流或电压, 等于各个独立电源单独作用时在相应支路中形成的电流或电压的代数和。

四、实验过程1.运放器:(1)画电路图, 测得结果如下图:(2)图中: R1=R3=R4=1Ω,R2=5Ω电压表读数为13.20v。

用节点法计算放大的倍数:该图4个节点如图所示, 节点2、4的节点方程分别为:)(0)(334433211223=-+=--+U G U G G U G U G U G G 根据运放器特点(即虚短虚断), 补充方程Us U U U ==142故解得==30U U Us R R R R R R R R 31424232-+v 20.13= 所以节点法可以用于计算运放器放大倍数的理论值。

2.叠加定理的验证(1)如下所示画出4个电路图图中Us1=6v, Us2=12v, Is=3A, 电阻全为2Ω四、电压表均测同一电阻的电压。

左上角图为Us1, Us2, Is 同时作用时的电压U0=-4v, 右上角, 左下角, 右下角电路分别是Is, Us1, Us2作用下, 同一电阻的电压分别为U1=2v, U2=2v, U3=-8v, 所以五、 , 即线性电路的叠加定理得到验证。

六、实验体会由于首次使用workbench, 画电路图时, 不太熟练, 用了很长一段时间, 才画出了这么几个简单的图。

通过这次实验, 巩固了我对运放器和叠加定理的认识。

验证实验--运算放大电路同相、反相与加减法电路实验

验证实验--运算放大电路同相、反相与加减法电路实验

验证实验四 运算放大电路同相、反相及加减法电路实验一、实验目的(1)掌握由集成运算放大器组成的比例、加法、减法和积分等模拟运算电路功能。

(2)熟悉运算放大器在模拟运算中的应用。

二、主要设备及器件函数信号发生器、双踪示波器、交流毫伏表、数字万用表、直流稳压电源、实验电路板。

三、实验原理1、反相比例运算电路反相比例运算电路如图1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为:i 1foUR R U -=为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ´=R1||Rf 。

实验中采用10 k Ω和100 k Ω两个电阻并联。

图1 反相比例运算电路2、同相比例运算电路图2是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1fo )1(UR R U +=当R1→∞时,Uo=Ui ,即为电压跟随器。

图2 同相比例运算电路3、反相加法电路反相加法电路电路如图3所示,输出电压与输入电压之间的关系为)+(=B 2f A 1f o U R RU R R U - R ´ = R1 || R2 || Rf图3 反相加法电路4、同相加法电路同相加法电路电路如图4所示,输出电压与输入电压之间的关系为:)+++(+=B 211A 2123f 3o U R R R U R R R R R R U图4 同相加法电路5、减法运算电路(差动放大器)减法运算电路如图5所示,输出电压与输入电压之间的关系为:f f o A B 1121 ()()R R R U U U R R R R '=+'+-+当R1 = R2,R ´ = Rf 时,图5电路为差动放大器,输出电压为:)(=A B1fo U U R R U -图5 减法运算电路四、实验内容注意正、负电源的接法,并切忌将输出端短路,否则将会损坏集成块。

信号输入时先按实验所给的值调好信号源再加入运放输入端。

运放的应用实验报告

运放的应用实验报告

运放的应用实验报告实验名称:运放的应用实验目的:通过实验学习运放的基本性质和应用。

实验原理:运放是一种高增益、直流放大器,以差分放大电路为核心,具有电压放大、电流放大、积分、微分、滤波等功能。

在电子技术中,运放被广泛应用于模拟电路、信号处理电路、控制电路等方面。

实验设备:数字万用表、示波器、函数发生器、运放、电阻等。

实验步骤:1.搭建反相放大电路。

将运放的正极与负极分别接到电源正极和负极,将运放的输出端接到数字万用表,再将输入端和反馈电阻连接起来,调节函数发生器的频率、幅度和波形,观察数字万用表的数值变化,绘制输出电压与输入电压的波形图。

2.搭建非反相放大电路。

将运放的正极与负极分别接到电源正极和负极,将输入端接到函数发生器,将反馈电阻接到运放输出端和反向输入端,将负载电阻连接到运放的输出端和地面上,调节函数发生器的频率、幅度、波形和正负极性,观察输出电压波形,绘制输出电压与输入电压的波形图。

3.搭建比例放大电路。

将运放的正极与负极分别接到电源正极和负极,将输入端接到函数发生器,将反馈电阻连接到输出端和反向输入端,将输入电阻和输出电阻连接起来,调节函数发生器的频率、幅度、波形和正负极性,观察输出电压波形,测量输入电压与输出电压,计算增益比例,验证运放比例放大的性质。

实验结果:1.反相放大电路。

在函数发生器输出正弦波信号时,数字万用表的测量结果如下所示:| 输入电压(mV) | 输出电压(mV) || -------------- | -------------- || 50 | -1280 || 100 | -2560 || 150 | -3840 || 200 | -5120 |输出电压波形与输入电压波形相反。

2.非反相放大电路。

在函数发生器输出矩形波信号时,示波器显示的输出波形图如下所示:输出电压波形为矩形波,可根据反馈电阻和负载电阻的比例计算得到放大倍数为3倍。

3.比例放大电路。

在函数发生器输出三角波信号时,示波器显示的输出波形图如下所示:可根据输入电压与输出电压的测量结果计算得到,放大倍数为3倍。

运算电路实验报告

运算电路实验报告

运算电路实验报告运算电路实验报告引言:运算电路是现代电子技术领域中的一项重要研究内容,它在各种电子设备中起着至关重要的作用。

本实验旨在通过实际操作,深入了解运算电路的原理和应用,并通过实验结果验证理论知识的正确性。

一、实验目的本实验的主要目的是熟悉运算电路的基本原理和性能特点,掌握运算放大器的基本参数测量方法,并通过实验验证运算电路的理论知识。

二、实验仪器和材料1. 运算放大器实验箱2. 电压源3. 电阻箱4. 示波器5. 多用电表6. 连接线等三、实验步骤1. 搭建基本的运算放大器电路,包括输入电阻、反馈电阻和输入信号源。

2. 调节电压源,使其输出为期望的输入电压。

3. 使用示波器观察输出信号,并记录相关数据。

4. 更换不同数值的电阻,观察输出信号的变化,并记录相关数据。

5. 根据实验数据,计算并分析运算放大器的放大倍数、输入电阻和输出电阻等参数。

四、实验结果与分析在实验中,我们搭建了基本的运算放大器电路,并通过调节电压源和改变电阻的数值,观察了输出信号的变化。

根据实验数据,我们计算出了运算放大器的放大倍数、输入电阻和输出电阻等参数。

通过实验数据的分析,我们发现运算放大器具有很高的放大倍数,能够将微弱的输入信号放大到较大的幅值。

同时,运算放大器的输入电阻很大,输出电阻很小,能够有效地隔离输入和输出电路,提高整个电路的稳定性和可靠性。

此外,我们还观察到当改变电阻的数值时,输出信号的幅值也会发生相应的变化。

这说明电阻在运算放大器电路中起到了重要的作用,可以通过调节电阻的数值来改变输出信号的幅值。

五、实验总结通过本次实验,我们对运算电路的原理和应用有了更深入的了解。

我们通过实际操作,深入体验了运算放大器的性能特点,并通过实验结果验证了理论知识的正确性。

在实验过程中,我们遇到了一些困难和问题,但通过不断的思考和探索,最终成功地完成了实验任务。

通过实验,我们不仅巩固了理论知识,还提高了实际操作的能力和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
课程名称:电子电路设计与仿真
实验名称:集成运算放大器的运用
班级:计算机18-4班
姓名:***
学号:**********
实验目的
1.通过实验,进一步理解集成运算放大器线性应用电路的特点。

2.掌握集成运算放大器基本线性应用电路的设计方法。

3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。

集成运算放大器放大电路概述
集成电路是一种将“管”和“路”紧密结合的器件,它以半导
体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、
二极管、电阻和电容等元件及它们之间的连线所组成的完整电路
制作在一起,使之具有特定的功能。

集成放大电路最初多用于各
种模拟信号的运算(如比例、求和、求差、积分、微分……)上,
故被称为运算放大电路,简称集成运放。

集成运放广泛用于模拟
信号的处理和产生电路之中,因其高性价能地价位,在大多数情
况下,已经取代了分立元件放大电路。

反相比例放大电路
输入输出关系: i o V R R V 12-=i R o V R R V R R V 1
212)1(-+=
输入电阻:Ri=R1
反相比例运算电路
反相加法运算电路
反相比例放大电路仿真电路图
压输入输出波形图
同相比例放大电路
输入输出关系: i o V R R V )1(12+=R o V R R V R R V 1
2i 12)1(-+=
输入电阻:Ri=∞
输出电阻:Ro=0
同相比例放大电路仿真电路图电压输入输出波形图
差动放大电路电路图
差动放大电路仿真电路图
五:实验步骤:
1.反相比例运算电路
(1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

(2)输入f=1kHz、ui=100mV的正弦交流信号,测量相应的uo,并用示波器观察uo和ui的波形和相位关系,记录输入输出波形。

测量放大器实际放大倍数。

(3)保持ui=30mV不变,测量放大的上截止频率,并在上截止频率,并在上截止频率点时在同一坐标系中记录输入输出信号的波形。

七:实验数据分析:
1.在反相比例运算电路中当输入f=1kHz、ui=100mV的正弦交
流信号时测得输入与输出反相,且放大倍数Au=-4.87,而
理论值为-5,产生了误差应该主要是因为电路板上的电阻
的标称值并不准确。

2.当ui等于30mV时测出上截止频率为219kHz,然而此时输
入和输出的相位差已经不是180,原因应该是芯片中的电
容元件在高频的情况下使得输出电压的相位产生了异于原
来的改变。

3.在反相加法器电路的实验中,产生的输出波形基本上符合
理论的预测,但是uo的直流分量稍小于ui1的两倍,这应
该也是因为电阻的标称值不准,而且主要还是因为分压电
路分出的电压并没有1V因为在分压电路上与1k 并联的
实验电路实际上让ui1小于1V
4.在积分电路试验中,一开始输出波形有着很大的直流分量,
到后来将Rf改为由1MΩ改到20kΩ解决了这个问题。

分析
后发现应该是由于Rf的支路上存在一个很小的电压,但是
一旦Rf很大其两端就会产生一个很大的电位差,这就是
uc(0),也就是波形中的直流分量,因此减小Rf即可解决
问题
心得体会
在做实验的时候发现一个小现象,就是发现直流电源不通时会得到完全不同的输出波形,只有接通是得到正确波形。

后来我仔细想了一下,应该是电路已经变了,这个时候就要换思路想了。

实际应用积分电路时,由于运算放大器的输入失调电压、输入偏置电流和失调电流的影响,会出现积分误差;此外,积分电容的漏电流也是产生积分误差的原因之一。

积分器输入方波信号,输出三角波信号的幅度大小受积分时间常数和输入信号的频率制约。

通过这个实验,验证了已经学过的简单模电知识,而且锻炼了动手能力真正实验的时候也有很多问题,比如说线接错了,示波器用的不到位,示波器输出波形不理想等等,简单的理论放到实际操作中就会出现这样那样的问题。

看来学习这东西,不仅需要理论,更需要实践,特别是对于我们这种工科。

相关文档
最新文档