(最新整理)人教版初中数学八年级上册《第十八章平行四边形》复习教案

合集下载

八年级数学下册 18 平行四边形复习(一)教案 (新版)新人教版

八年级数学下册 18 平行四边形复习(一)教案 (新版)新人教版

第18章平行四边形复习一、复习目标1、经历平行四边形基本性质,常见判定方法的复习交流过程,使学生学会“合乎逻辑地思考”,建立知识体系,获得一定的技能基础.2、让学生理解平面几何观念的基本途径是多种多样的,感知和体验几何图形的现实意义,体验二维空间相互转换关系.3、通过对正方形的探索学习,体会它的内在美和应用美.二、课时安排1课时三、复习重难点重点:平行四边形的性质以及判定.难点:定理的综合应用.四、教学过程(一)知识梳理1、平行四边形定义:2、平行四边形的性质:3、平行四边形的判定:4、三角形的中位线概念:5、三角形的中位线三角形的第三边,且等于第三边的 .6、一个三角形有中位线。

(二)题型、技巧归纳考点一平行四边形的定义例1、如图, ABCD中,∠A=120°,则∠1= 。

考点二平行四边形的性质例2.平行四边形ABCD中,AB=6cm,AC+BD=14cm ,则△AOB的周长为多少?考点三平行四边形的判定例3、点A、B、C、D在同一平面内,从①AB//CD;②AB=CD;③BC//AD;④BC=AD四个条件中任意选两个,不能使四边形ABCD是平行四边形的选法有()A.①②B.②③C.①③D.③④考点四三角形中位线例4.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为。

(三)典例精讲1.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为( )A.4cmB.5cmC.6cmD.8cm2.如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为( )A.4 cmB.6 cmC.8 cmD.10 cm3.如图,在平行四边形ABCD中,AD=5cm,AB⊥BD,点O是两条对角线的交点,OD=2 cm,则AB=______cm.4.如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点M,N,若△CON的面积为2,△DOM的面积为4,则△AOB的面积为______.5.如图,在▱ABCD中,对角线AC,BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是______.6.已知,如图,O为▱ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F 在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.(四)归纳小结1.本节课学习了哪些主要内容?2.在平行四边形的综合应用时要注意哪些问题?(五)随堂检测1.在平行四边形ABCD中,∠A=70°,∠D= , ∠BCD=______.2.平行四边形的两邻边分别为6和8,那么其对角线应()A.大于2, B.小于14C.大于2且小于14 D.大于2或小于123、如图,平行四边形ABCD中,AB=5,AD=8,∠ BAD 、∠ADC的平分线分别交BC于点E、F上,则EF= 。

人教版八年级数学下册第十八章《平行四边形》同步教学设计

人教版八年级数学下册第十八章《平行四边形》同步教学设计
2.设计意图:通过实际操作,让学生直观地感受到平行四边形与长方形的关系,激发学生的好奇心和求知欲,为学习平行四边形打下基础。
(二)讲授新知
1.教学活动:教师引导学生通过观察、实践,总结平行四边形的性质。接着,教师以讲解、举例等形式,向学生介绍平行四边形的判定方法、面积计算等知识。
2.设计意图:通过学生自主探究和教师讲解相结合的方式,让学生掌握平行四边形的性质、判定方法和面积计算,提高学生的几何图形分析能力。
4.培养学生遵守数学规范,养成良好的学习习惯,提高他们的思维品质和道德素养。
在教学过程中,教师要关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重启发式教学,引导学生主动思考、积极探究,使他们在掌握知识的同时,提高解决问题的能力。通过本章节的学习,使学生全面了解平行四边形的性质和判定方法,为后续学习特殊平行四边形打下坚实基础。
在整个教学过程中,教师要以学生为中心,关注学生的参与度和学习效果,适时调整教学策略。同时,注重启发式教学,引导学生主动探究、积极思考,使他们在掌握平行四边形知识的同时,提高解决问题的能力。
五、作业布置
为了巩固学生对平行四边形知识的掌握,提高他们的应用能力和创新能力,特布置以下作业:
1.基础知识巩固:
(1)研究特殊平行四边形(矩形、菱形、正方形)的性质和判定方法,尝试总结它们之间的关系。
(2)探索平行四边形与三角形、圆等其他几何图形的结合,发现新的性质或规律。
4.小组合作:
(1)以小组为单位,共同完成一道综合性的平行四边形问题,要求分工合作,共同探讨,提交一份详细的解题报告。
(2)小组内开展“平行四边形知识竞赛”,互相提问、解答,提高团队合作能力。
二、学情分析
八年级学生在经过前两年的数学学习后,已具备一定的几何图形识别和性质分析能力。在本章节学习平行四边形之前,他们已经掌握了三角形、四边形的基本性质和判定方法,为学习平行四边形奠定了基础。然而,学生在面对复杂的几何问题时,可能会出现分析能力不足、解题思路不清晰等问题。因此,在本章节教学中,教师需关注以下几点:

【人教版】数学八下:第18章《平行四边形》全章名师教学设计

【人教版】数学八下:第18章《平行四边形》全章名师教学设计

【人教版】数学八下:第18章《平行四边形》全章名师教学设计一. 教材分析人教版数学八下第18章《平行四边形》是学生在学习了四边形的性质和分类之后的内容,本章主要引导学生探究平行四边形的性质,并学会运用这些性质解决实际问题。

本章内容包括平行四边形的定义、性质、判定以及平行四边形的应用。

通过本章的学习,学生能进一步理解和掌握四边形的分类,提高解决几何问题的能力。

二. 学情分析学生在学习本章之前,已经掌握了四边形的性质和分类,具备一定的几何思维能力。

但部分学生对几何图形的理解和操作能力仍需提高,因此,在教学过程中,需要关注学生的学习差异,针对性地进行引导和辅导。

三. 教学目标1.理解平行四边形的定义和性质,掌握平行四边形的判定方法。

2.能够运用平行四边形的性质解决实际问题,提高解决问题的能力。

3.培养学生的空间想象能力、逻辑思维能力和团队合作能力。

四. 教学重难点1.平行四边形的定义和性质的理解与运用。

2.平行四边形的判定方法的掌握。

3.实际问题中平行四边形性质的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究、讨论、总结等方式主动学习。

2.利用多媒体课件和实物模型,直观展示平行四边形的性质和判定,增强学生的空间想象能力。

3.注重个体差异,实施分层教学,针对不同水平的学生给予适当的辅导和指导。

4.小组合作学习,培养学生的团队合作能力和沟通能力。

六. 教学准备1.多媒体课件和教学软件,用于展示平行四边形的性质和判定。

2.实物模型和教具,用于直观展示平行四边形的性质。

3.练习题和实际问题,用于巩固和拓展学生的知识。

4.教学计划和教学反思表,用于指导教学过程和评价教学效果。

七. 教学过程1.导入(5分钟)利用多媒体课件展示平行四边形的图片,引导学生回顾四边形的分类,激发学生对平行四边形的学习兴趣。

2.呈现(10分钟)介绍平行四边形的定义和性质,通过实物模型和教具直观展示平行四边形的性质,引导学生理解和掌握。

【人教版】初中数学八下数学第18章《平行四边形》全章教学案(含解析)

【人教版】初中数学八下数学第18章《平行四边形》全章教学案(含解析)

第十八章平行四边形1.理解平行四边形、矩形、菱形、正方形的概念,了解它们之间的关系.2.探索并证明平行四边形、矩形、菱形、正方形的性质定理和判定定理,并能运用它们进行证明和计算.3.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.4.探索并证明中位线定理.1.通过经历平行四边形与各特殊平行四边形之间的联系与区别,使学生进一步认识一般与特殊的关系.2.通过经历平行四边形和特殊的平行四边形的性质和判定的探索、证明及相关计算的过程,以及相关问题证明和计算的过程,进一步培养和发展学生合情推理、演绎推理的能力.1.通过几何问题的证明和计算,体验证法和解法的多样性,渗透转化思想.2.通过动手实践,积极参与数学活动,对数学有好奇心和求知欲.平行四边形是特殊的四边形,它与三角形一样,既是几何中的基本图形,也是“空间与图形”领域主要的研究对象.本章内容也是在已经学过的多边形、平行线、三角形的基础上学习的,也可以说是在已有知识的基础上做出的进一步较系统的整理和研究,它是以后我们继续学习其他几何知识的基础.本章内容主要包括:平行四边形、特殊的平行四边形.其中平行四边形主要探索平行四边形的性质和判定,特殊的平行四边形主要介绍了矩形、菱形、正方形,并根据定义探索它们的性质和判定.【重点】理解和掌握平行四边形、特殊的平行四边形的定义、性质和判定,掌握三角形的中位线定理,会应用平行四边形和特殊的平行四边形的相关知识以及三角形中位线定理解决一些简单的实际问题.【难点】分清平行四边形与矩形、菱形、正方形之间的联系和区别,能够灵活运用平行四边形、特殊平行四边形的定义、性质和判定方法进行推理论证.1.关于平行四边形及特殊的平行四边形概念之间从属、种差、内涵与外延之间的关系.本章概念比较多,概念之间联系非常密切,关系复杂.由于平行四边形和各种特殊平行四边形的概念之间重叠交错,容易混淆,因此弄清它们的共性、特性及其从属关系非常重要.实际上,有时学生掌握了它们的特殊性质,而忽略了共同性质.如有的学生不知道正方形既是矩形,又是菱形,也是平行四边形,应用时常犯多用或少用条件的错误.教学时,不仅要讲清矩形、菱形、正方形的特殊性质,还要强调它们与平行四边形的从属关系和共同性质.也就是在讲清每个概念特征的同时,强调它们的属概念,弄清这些概念之间的关系.在原有属概念基础上附加一些条件(种差),通过扩大概念的内涵、减少概念的外延的方式引出新的种概念;同时在原有属概念的性质和判定方法的基础上,来研究种概念的性质和判定方法.弄清这些关系,最好是用图示的办法.在弄清这些图形之间关系的基础上,还要进一步向学生说明概念的内涵与外延之间的反变关系,即内涵越小,外延越大;反之外延越小,内涵越大.例如,正方形的性质中,包含四边形、平行四边形、矩形、菱形所有的特征,它的外延很小,而平行四边形的外延很大.弄清了各种特殊平行四边形的概念,各种平行四边形之间的从属关系也就清楚了,它们的性质定理、判定定理也就不会用错了.2.进一步培养学生的合情推理能力和演绎推理能力.从培养学生的推理论证能力的角度来说,本章处于学生初步掌握了推理论证方法的基础上,进一步巩固和提高的阶段.本章内容比较简单,证明方法相对比较单一,学生前面已经进行了一些推理证明的训练.但这种训练只是初步,要进一步巩固和提高.教学中同样要重视推理论证的教学,进一步提高学生的合情推理能力和演绎推理能力.在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,还要求学生直接由已有的结论对有些图形的性质通过推理论证得出.另外,为了巩固并提高学生的推理论证能力,本章定理证明中,除了采用严格规范的证明方法外,还有一些采用了探索式的证明方法.这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论.另外也有一些文字叙述的证明题,要求学生自己写出已知、求证,再进行证明.这些对学生的推理能力要求较高,难度也有增加,但能激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处.教学中要注意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展.18.1 平行四边形18.1.1平行四边形的性质(2课时)5课时18.1.2平行四边形的判定(3课时)18.2 特殊的平行四边形18.2.1矩形(2课时)5课时18.2.2菱形(2课时)18.2.3正方形(1课时)单元概括整合1课时18.1平行四边形1.理解平行四边形的概念,探究并掌握平行四边形的边、角、对角线的性质.2.理解并掌握平行四边形的判定条件,能利用平行四边形的判定条件证明四边形是平行四边形.3.掌握三角形的中位线的概念和定理.1.在运用平行四边形的性质和平行四边形的判定方法及三角形的中位线定理的过程中,进一步培养和发展学生自主学习能力及应用数学的意识,通过对平行四边形判定方法的探究,提高学生解决问题的能力.2.通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生动手能力及合情推理能力,使学生会将平行四边形的问题转化成三角形的问题,渗透转化与化归意识.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的性质与判定方法的探究和运用,以及三角形中位线定理的理解和应用.【难点】平行四边形的判定与性质定理的综合运用.18.1.1平行四边形的性质1.理解平行四边形的概念.2.探究并掌握平行四边形的边、角、对角线的性质.3.利用平行四边形的性质来解决简单的实际问题.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的概念和性质的探索.【难点】平行四边形性质的运用.第课时1.理解平行四边形的定义及有关概念.2.探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.3.了解平行线间距离的概念.1.经历利用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.2.在进行性质探索的活动过程中,发展学生的探究能力.3.在性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和逻辑思维能力.在性质应用过程中培养独立思考的习惯,让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形边、角的性质探索和证明.【难点】如何添加辅助线将平行四边形问题转化成三角形问题解决的思想方法.【教师准备】教学中出示的教学插图和例题的投影图片.【学生准备】方格纸,量角器,刻度尺.导入一:[过渡语]前面我们已经学习了许多图形与几何知识,掌握了一些探索和证明几何图形性质的方法,本节开始,我们继续研究生活中的常见图形.我们一起来观察下图中的小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏,它们是什么几何图形的形象?学生观察,积极踊跃发言,教师从实物中抽象出平行四边形.本节课我们主要研究平行四边形的定义及有关概念,探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.[设计意图]通过图片展示,让学生真切感受生活中存在大量平行四边形的原型,进而从实际背景中抽象出平行四边形,让学生经历将实物抽象为图形的过程.导入二:(出示本章农田鸟瞰图)观察章前图,你能从图中找出我们熟悉的几何图形吗?学生自由说出图中的几何图形,教师结合学生说到的图中包含长方形、正方形等,明确本章主要研究对象——平行四边形.[过渡语]下面我们来认识特殊的四边形——平行四边形.[设计意图]以农田鸟瞰图作为本章的章前图,学生可以见识各种四边形的形状,通过查找长方形、正方形、平行四边形等,为进一步比较系统地学习这些图形做准备,并明确本章的学习任务.1.平行四边形的定义思路一提问:你知道什么样的图形叫做平行四边形吗?教师引导学生回顾小学学习过的平行四边形的概念:两组对边分别平行的四边形叫做平行四边形.说明定义的两方面作用:既可以作为性质,又可以作为判定平行四边形的依据.追问:平行四边形如何好记好读呢?画出图形,教师示范后,学生结合图练习,并提醒学生注意字母的顺序要按照顶点的顺序记.平行四边形用“▱”表示,平行四边形ABCD,记作“▱ABCD”.如右图所示,引导学生找出图中的对边,对角.对边:AD与BC,AB与DC;对角:∠A与∠C,∠B与∠D.进一步引导学生总结:四边形中不相邻的边,也就是没有公共顶点的边叫做对边;没有公共边的角,叫做对角.[设计意图]给出定义,强调定义的作用,让学生结合图形认识“对角”“对边”,为学习性质做好准备.思路二请举出你身边存在的平行四边形的例子.学生举出生活中常见的例子.如小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏……教师点评,画出图形,如右图所示.提问:(1)你能说出平行四边形的定义吗?(2)你能表示平行四边形吗?(3)你能用符号语言来描述平行四边形的定义吗?学生阅读教材第41页,点名学生回答以上问题,教师进一步讲解:(1)两组对边分别平行的四边形叫做平行四边形.概念中有两个条件:①是一个四边形;②两组对边分别平行.(2)指出表示平行四边形错误的情况,如▱ACDB.(3)作为性质:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD.作为判定:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.[设计意图]学生结合实例和教材中的图片,师引导学生归纳这些四边形的共同特征,即:两组对边分别平行.2.平行四边形边、角的性质思路一[过渡语]同学们回忆我们的学习经历,研究几何图形的一般思路是什么?一起回顾全等三角形的学习过程,得出研究的一般过程:先给出定义,再研究性质和判定.教师进一步指出:性质的研究,其实就是对边、角等基本要素的研究.提问:平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?教师画出图形,如右图所示,引导学生通过观察、度量,提出猜想.猜想1:四边形ABCD是平行四边形,那么AB=CD,AD=BC.猜想2:四边形ABCD是平行四边形,那么∠A=∠C,∠B=∠D.追问:你能证明这些结论吗?学生讨论,发现不添加辅助线可以证明猜想2.∵AB∥CD,∴∠A+∠D=180°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=∠D.同理可得∠A=∠C.在学生遇到困难时,教师引导学生构造全等三角形进行证明.[过渡语]我们知道,利用全等三角形的对应边、对应角都相等是证明线段相等、角相等的一种重要方法.学生尝试,连接平行四边形的对角线,并证明猜想,如右图所示.证明:连接AC.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.引导学生归纳平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.追问:通过证明,发现上述两个猜想正确.这样得到平行四边形的两个重要性质.你能说出这两个命题的题设与结论,并运用这两个性质进行推理吗?教师引导学生辨析定理的题设和结论,明确应用性质进行推理的基本模式:∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).[设计意图]让学生领悟证明线段相等或角相等通常采用证明三角形全等的方法,而图形中没有三角形,只有四边形,我们需要添加辅助线,构造全等三角形,将四边形问题转化为三角形问题来解决,突破难点.进而总结、提炼出将四边形问题化为三角形问题的基本思路.[知识拓展](1)运用平行四边形的这两条性质可以直接证明线段相等和角相等.(2)四边形的问题,常常通过连接对角线转化成三角形的问题解决.(教材例1)如图所示,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证AE=CF.引导学生分析:要证明线段AE=CF,它不是平行四边形的对边,无法直接用平行四边形的性质证明,考虑证明△ADE≌△CBF.由题意容易得到∠AED=∠CFB=90°,再根据平行四边形的性质可以得出∠A=∠C,AD=CB.在此基础上,引导学生写出证明过程,并组织学生进行点评.证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB.又∠AED=∠CFB=90°,∴△ADE≌△CBF.∴AE=CF.[设计意图]应用性质进行推理,体会得到证明思路的方法.思路二1.提问:根据定义画一个平行四边形ABCD,并观察这个四边形除了“两组对边分别平行”外,它的边、角之间还有哪些关系?度量一下,是不是和你的猜想一致?AB=BC=CD=AD=猜想:∠A=∠B=∠C=∠D=猜想:小组合作完成,交流自己的猜想.教师强调平行四边形的对边、邻边、对角、邻角等概念,再引导学生归纳:平行四边形的对边相等;平行四边形的对角相等.2.你能证明你发现的上述结论吗?已知:如图(1)所示,四边形ABCD中,AB∥CD,AD∥BC.求证:(1)AD=BC,AB=CD;(2)∠B=∠D,∠BAD=∠DCB.小组讨论,发现:需要连接对角线,将平行四边形的问题转化成两个三角形全等的问题来解决.证明:(1)连接AC,如图(2)所示.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.(2)∵△ABC≌△CDA(已证),∴∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.一组代表发言后,另一小组补充,我们发现不作辅助线也可以证明平行四边形的对角相等.∵AB∥CD,∴∠BAD+∠D=180°,∵AD∥BC,∴∠BAD+∠B=180°,∴∠B=∠D.同理可得∠BAD=∠DCB.教师根据学生的证明情况进行评价、总结.证明线段相等或角相等时,通常证明三角形全等,图中没有三角形怎么办?一般是连接对角线将四边形的问题转化为三角形的问题.引导学生将文字语言转化为符号语言表述,并进行笔记.∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).(补充)如图,在▱ABCD中,AC是平行四边形ABCD的对角线.(1)请你说出图中的相等的角、相等的线段;(2)对角线AC需添加一个什么条件,能使平行四边形ABCD的四条边相等?学生认真读题、思考、分析、讨论,得出有关结论.因为平行四边形的对边相等,对角相等.所以AB=CD,AD=BC,∠DAB=∠BCD,∠B=∠D,又因为平行四边形的两组对边分别平行,所以∠DAC=∠BCA,∠DCA=∠BAC.教师根据学生回答,板书有关正确的结论.解决第(2)个问题时,学生思考、交流、讨论得出:只要添加AC平分∠DAB即可.说明理由:因为平行四边形的两组对边分别平行,所以∠DCA=∠BAC,而∠DAC=∠BAC,所以∠DCA=∠DAC,所以AD=DC,又因为平行四边形的对边相等,所以AB=DC=AD=BC.[设计意图]学生通过亲自动手,提出猜想,验证猜想,得出结论,并初步应用.3.平行线间的距离[过渡语]距离是几何中的重要度量之一.前面我们已经学习了点与点之间的距离、点到直线的距离,那么平行线间的距离又是怎样的呢?思路一提问:在教材的例1中,DE=BF吗?学生思考,都容易发现:由△ADE≌△CBF,容易得到DE=BF.追问:如图所示,直线a∥b,A,D为直线a上任意两点,点A到直线b的距离AB和点D到直线b的距离DC 相等吗?为什么?学生讨论,发现容易证明AB∥CD,由已知得AD∥BC,所以四边形ABCD是平行四边形,所以AB=CD.教师引导归纳:如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.学生结合图指出:a∥b,点A是a上的任意一点,AB⊥b,B是垂足,线段AB的长就是a,b之间的距离.教师点评,并强调:任意两条平行线之间的距离都是存在的、唯一的,都是夹在两条平行线之间的最短的线段的长度.[设计意图]结合例1的进一步追问,自然引出平行线间距离的概念.思路二请同学们拿出方格纸,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线.老师边看边指导学生画图.追问:请同学们用刻度尺量一下方格纸上两平行线间的所有垂线段的长度,你发现了什么现象?学生发现:平行线间的所有垂线段的长度相等.教师引导归纳:如果两条直线平行,那么一条直线上所有点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.如右图所示,用符号语言表述为:∵l1∥l2,AB⊥l2,CD⊥l2,∴AB=CD.教师进一步强调:两平行线l1,l2之间的距离是指什么?指在一条直线l1上任取一点A,过A作AB⊥l2于点B,线段AB的长度叫做两平行线l1,l2间的距离.引导学生归纳:两平行线之间的距离、点与直线的距离、点与点之间的距离的区别与联系.两平行线间的距离⇒点到直线的距离⇒点与点之间的距离.l1,l2间的距离转化为点A到l2间的距离,再转化为点A到点B的距离.追问:如果AB,CD是夹在两平行线l1,l2之间的两条平行线段,那么AB和CD仍相等吗?教师引导学生思考:(出示教材第43页图18.1-5)如图所示,a∥b,c∥d,c,d与a,b分别相交于A,B,C,D四点.由平行四边形的概念和性质可知,四边形ABDC是平行四边形,AB=CD.说明:两条平行线之间的任何两条平行线段都相等.[设计意图]借助学生熟悉的方格纸引出平行线间距离的概念,浅显易懂,并注重两平行线间的距离、点到直线的距离、点与点间的距离之间的知识整合.[知识拓展](1)当两条平行线确定后,两条平行线之间的距离是一定值,不随垂线段位置的变化而改变.(2)平行线之间的距离处处相等,因此在作平行四边形的高时,可以灵活选择位置.4.例题讲解(补充)在▱ABCD中,BC边上的高为4,AB=5,AC=2,试求▱ABCD的周长.引导学生根据题意作图分析,教师根据学生考虑不周全的问题进行引导,明确思路后学生写解答过程.〔解析〕本题考查了平行四边形的性质及勾股定理的应用,解题的关键是分别画出符合题意的图形.设BC边上的高为AE,分AE在▱ABCD的内部和AE在▱ABCD的外部两种情况计算.解:在▱ABCD中,AB=CD=5,AD=BC.设BC边上的高为AE.(1)若AE在▱ABCD的内部,如图①所示,在Rt△ABE中,AB=5,AE=4,根据勾股定理,得:BE====3;在Rt△ACE中,AC=2,AE=4,根据勾股定理,得:CE== ==2.∴BC=BE+CE=3+2=5.∴▱ABCD的周长为2×(5+5)=20.(2)若AE在▱ABCD的外部,如图②所示,同理可得BE=3,CE=2,∴BC=BE-CE=3-2=1,∴▱ABCD的周长为2×(5+1)=12.综上,▱ABCD的周长为20或12.[解题策略]本题相当于已知一个三角形的两条边以及第三条边上的高,求第三条边的长度,因为三角形的高可能在三角形的内部、也可能在三角形的外部,所以作图时应分两种情况讨论,如下图所示.本节课我们主要学习了平行四边形的定义,探索了平行四边形的两个特征,同时还学习了平行线间的距离,平行线的一些特征.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线间的距离相等,两条平行线之间的任何两条平行线段都相等.1.已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80°D.60°解析:∵∠A+∠C=200°,∠A=∠C,∴∠A=100°,又AD∥BC,∴∠A+∠B=180°,∴∠B=180°-∠A=80°.故选C.2.如图所示,在平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中共有平行四边形的个数为()A.6B.7C.8D.9解析:图中的平行四边形有:平行四边形AEOG、平行四边形BHOE、平行四边形CHOF、平行四边形OFDG、平行四边形ABHG、平行四边形CHGD、平行四边形AEFD、平行四边形BEFC、平行四边形ABCD.故选D.3.如图所示,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4B.3C.D.2解析:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3.故选B.4.如图所示,在▱ABCD中,△ABC和△DBC的面积的大小关系是.解析:∵两平行线AD,BC间的距离相等,∴△ABC与△DBC是同底等高的两个三角形,∴它们的面积相等.故填相等.5.如图所示,已知在平行四边形ABCD中,∠C=60°,DE⊥AB于E,DF⊥BC于F.(1)求∠EDF的度数;(2)若AE=4,CF=7,求平行四边形ABCD的周长.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C=60°,∴∠C+∠B=180°.∵∠C=60°,∴∠B=180°-∠C=120°.∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∴∠EDF=360°-∠DEB-∠DFB-∠B=60°.(2)在Rt△ADE和Rt△CDF中,∠A=∠C=60°,∴∠ADE=∠CDF=30°,∴AD=2AE=8,CD=2CF=14,∴平行四边形ABCD 的周长为2×(8+14)=44.第1课时1.平行四边形的定义2.平行四边形边、角的性质例1例23.平行线间的距离4.例题讲解例3一、教材作业【必做题】教材第43页练习第1,2题;教材第49页习题18.1第1,2题.【选做题】教材第50页习题18.1第8题.二、课后作业【基础巩固】1.如图所示,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F等于()A.110°B.30°C.50°D.70°2.如图所示,l 1 ∥l 2,BE ∥CF ,BA ⊥l 1 于点A ,DC ⊥l 2于点C ,有下面的四个结论;(1)AB =DC ;(2)BE =CF ;(3)S △ABE =S △DCF ;(4)S 四边形ABCD =S 四边形BCFE .其中正确的有 ( ) A.4个 B.3个 C.2个 D.1个3.如图所示,点E 是▱ABCD 的边CD 的中点,AD ,BE 的延长线相交于点F ,DF =3,DE =2,则▱ABCD 的周长为 ( )A.5B.7C.10D.144.如图所示,在平行四边形ABCD 中,AB =4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG =1,则AE 的长为 ( ) A.2 B.4 C.4 D.85.如图所示,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 .【能力提升】6.如图所示,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,C 的坐标分别是(0,0),(3,0),(4,2),则顶点D 的坐标为 .7.如图所示,在▱ABCD 中,DE 平分∠ADC ,AD =6,BE =2,则▱ABCD 的周长是 .。

初中数学_平行四边形复习教学设计学情分析教材分析课后反思

初中数学_平行四边形复习教学设计学情分析教材分析课后反思

第十八讲平行四边形中考复习教案教学目标:1、熟练掌握平行四边形的定义,平行四边形的性质及判定定理,并运用它们进行有关的证明和计算。

2、引导学生通过练习回忆已学过的知识,提高逻辑思维能力、合情推理能力和归纳概括能力,训练思维的灵活性,领悟数学思想。

教学重点:使学生能熟练运用平行四边形的性质、判定定理。

教学难点: 构造平行四边形解决问题【考点梳理】一、平行四边形1、定义:两组对边分别的四边形是平行四边形,平行四边形ABCD可表示为2、平行四边形的性质:(1)定义,平行四边形的两组对边分别(2)平行四边形的两组对边分别(3)平行四边形的两组对角分别(4)平行四边形的对角线3、平行四边形的判定:⑴用定义判定⑵两组对边分别的四边形是平行四边形⑶一组对边的四边形是平行四边形⑷两组对角分别的四边形是平行四边形⑸对角线的四边形是平行四边形【名师提醒:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形都不能保证是平行四边形】4、平行四边形是图形,它的对称中心是,但它不是图形。

【名师提醒:1、过对角线交点的任一直线被一组对边截得的线段该直线将原平行四边形分成全等的两个部分】5、平行四边形的面积:计算公式×同底(等底)同高(等高)的平行四边形面积【名师提醒:夹在两平行线间的平行线段两平行线之间的距离处处】题组训练:1.(2011广州)已知□ABCD的周长为32,AB=4,则BC=()A.4 B.12 C.24 D.282.(2015•黔西南州)已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80° D.60°3.(2015•荆门)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种4.(2015•泸州)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC5.(2015 菏泽)如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.6.(2015•长春)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.【典型例讲】平行四边形性质的运用例1、(2012•陕西)如图,在□ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=3,BC=5时,求AEAC的值.对应练习:1、(2009桂林)如图,□ABCD中,AC、BD为对角线,BC=6,BC边上的高为4,则阴影部分的面积为()EDCBA FDCBAA .3B .6C .12D .24平行四边形判定的运用例2、(2012泰州)如图,四边形ABCD 中,AD∥BC,AE⊥AD 交BD 于点E ,CF⊥BC 交BD 于点F ,且AE=CF .求证:四边形ABCD 是平行四边形.对应练习:1.(2010宿迁)如图,在□ABCD 中,点E 、F是对角线AC 上两点,且AE=CF .求证:∠EBF=∠FDE.【拓展延伸】1、(2015•日照)如图,已知四边形ABDE 是平行四边形,C 为边BD 延长线上一点,连结AC 、CE ,使AB=AC .(1)求证:△BAD ≌△AEC ;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE 的面积.对应练习:1、(2015•安徽)如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,△PEF 、△PDC 、△PAB 的面积分别为S 、S 1、S 2,若S=2,则S 1+S 2= .C A B DE F【达标测评】(每题2分,共10分)1.(2015•襄阳)如图,平行四边形ABCD 的对角线交于点O ,且AB=5,△OCD 的周长为23,则平行四边形ABCD 的两条对角线的和是( ) A .18 B .28 C .36 D .462.(2015•湘西州)如图,在▱ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 延长线于点F ,则△EDF 与△BCF 的周长之比是( )A .1:2B .1:3C .1:4D .1:53.(2015•云南)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,下列结论正确的是( )A .S ▱ABCD =4S △AOB B .AC=BDC .AC ⊥BD D .▱ABCD 是轴对称图形4.如图,BD 为□ABCD 的对角线,E 、F 分别是AD 、BD 的中点.若EF=3,则CD= .3题图 5.(2015•鞍山)如图,E ,F 是四边形ABCD 的对角线AC 上两点,AF=CE ,DF=BE ,DF ∥BE .求证:(1)△AFD ≌△CEB ;(2)四边形ABCD 是平行四边形.学情分析经过新课的学习,多数学生已经了解和掌握了平行四边形的性质和判定的基础知识,已具备对简单图形的识别判断和说理论证。

(完整版)新课标人教版八年级数学十八章平行四边形教案(最新整理)

(完整版)新课标人教版八年级数学十八章平行四边形教案(最新整理)
1、知道平行四边形、两条平行线间的距离的概念;会说出并熟记平行四边 形对角相等,对边相等的性质。
2、会度量两条平行线间的距离;会利用平行四边形对边相等,对角相等的 性质进行有关的论证和计算。
3、在由点到直线的距离来定义两条平行线间的距离的过程中,让学生感受 知识之间的联系和发展,培养灵活应用所学知识解决问题的能力
角:对角相等(定理 1);邻角互补。
平行四边形的判定:
边:两组 对边平行(定义);两组对边相等(定理 2);对角线互相平分
(定理 3);一组对边平行且相等(定理 4);两组对角分别相等(定理 1)
二、授新
1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:
2、自学质疑:自学课本 P79-82 页,并提出疑难问题。
量一量:在图 4.3-4 中,AB∥CD,量出 AB 与 CD 之间的距离。 建议:要求学生先画出表示 AN、CD 间距离的线段,再量出它的长度。
例题解析 例:(即课本例 1)说明:(1)因为图中的平行线段多,因此可引导学生用“化
繁为简”的方法,从图 4.3-5(l)中分解出图(2)、(3)、(4)。(2)在 例中的第 2 小题,还可以用平行四边形性质定理 2 的推论来证明,证明如下:
(A)1∶5
(B)1∶4
(C)1∶3
(D)1∶2
平行四边形的性质及判定(复习) 教学目的:
1、深入了解平行四边形的不稳定性; 2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)
3、熟练掌握平行四边形的定义,平行四边形性质定理 1、定理 2 及其推论、
定理 3 和四个平行四边形判定定理,并运用它们进行有关的论证和计算;
(A)2
(B)3
(C)4

八年级数学上册《平行四边形》教案

八年级数学上册《平行四边形》教案

平行四边形【典型例题】(一)平行四边形:1. 平行四边形的性质:边:对边相等对边平行角:对角相等邻角互补对角线:对角线互相平分⎧⎨⎩⎧⎨⎩⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪平行四边形是中心对称图形,对角线的交点是对称中心。

2. 平行四边形的识别:(1)两组对边分别平行的四边形是平行四边形。

(2)一组对边平行且相等的四边形是平行四边形。

(3)对角线互相平分的四边形是平行四边形。

(4)两组对边分别相等的四边形是平行四边形。

(5)两组对角分别相等的四边形是平行四边形。

3. 相关链接:(1)两条平行线之间的距离:两条平行线中,一条直线上的任一点到另一条直线上的距离,叫做这两条平行直线间的距离。

性质:两条平行线间的距离处处相等。

(2)平行四边形的面积:①如图1所示:S 平行四边形ABCD =BC ·AF=CD ·AEADBCEF图1注意:这里底是相对于高而言,也就是说平行四边形任一边均可作底。

②同底(等底)同高(等高)的平行四边形面积相等。

4. 平行四边形知识的应用:(1)直接运用其特征去解决问题,求角的度数,线段长度,证明角相等,互补等,证明线段长度相等成倍分。

(2)先识别一个四边形是平行四边形,然后用其性质解决问题。

例1. 如图2,四边形ABCD 是平行四边形,且∠EAD=∠BAF ,(1)试说明△CEF 是等腰三角形,(2)△CEF 的哪两边之和恰好等于平行四边形ABCD 的周长,请说明为什么?AB CDE F图2解:(1)在平行四边形ABCD 中,AD ∥BC ,AB ∥CD 。

所以∠EAD=∠F ,∠BAF=∠E ,又已知∠EAD=∠BAF ,所以∠E=∠F 。

所以△CEF 是等腰三角形。

(2)△CEF 中,(CE+CF )与平行四边形ABCD 的周长相等。

由(1)得∠EAD=∠BAF=∠E=∠F ,所以DE=AD ,FB=AB , 所以CE+CF=CD+AD+CB+AB即有 CE+CF 与平行四边形ABCD 的周长相等。

人教版初中数学《平行四边形的判定》教案

人教版初中数学《平行四边形的判定》教案

《平行四边形的判定》教案课题《平行四边形的判定》,它是人教版八年级数学第二学期18.2内容。

一、教学目标(1、通过学生的合作探究,得出平行四边形的两个判定方法。

(2、通过类比、观察、实验、猜想、验证、推理、交流等活动,进一步培养学生的动手能力、推理能力。

(3、通过探究学习,使学生感受数学思考的合理性、数学证明的严谨性,学会用辨证的观点分析事物。

二、教学的重点、难点重点:平行四边形判定方法的探究和运用。

难点:对平行四边形判定方法的证明及性质和判定的综合运用。

三、教法分析根据本节课特点,我采用以下教法:1、借助多媒体,利用直观形象的图片、引导学生在观察、操作、猜测、验证与交流等数学活动中,学习平行四边形的判定。

2、坚持以学生为主体,教师为指导,让学生在教师的指导下主动探究。

四、学法指导在合理选择教法的同时,也注重了对学生学法的指导:1、观察猜想。

以学生的观察、猜想为主,主动探索平行四边形的判定。

2、合作交流。

采取积极引导、主动参与、互相交流来组织教学,使学生真正成为教学的主体,体会成功的喜悦。

3、总结归纳。

通过探索学习、练习反馈,引导学生总结归纳本节课学习的主要内容和解决问题的方法,发挥学生的积极性和主动性,培养学生良好的学习习惯。

五、教学过程研究教法和学法是搞好教学的前提和基础,而合理地安排教学程序,则是教学成功的关键,根据教材特点及学生的实际水平,我设计如下教学环节:(一复习旧知,导入新课。

(出示课件1、平行四边形的定义是什么?2、平行四边形有哪些性质?3、你能说出上述三条性质的逆命题吗?问题1、2,由学生独立思考,并口答。

并在此基础上由学生通过小组合作整理出上述各性质的逆命题的文字表达。

逆命题A:两组对边分别相等的四边形是平行四边形。

√逆命题B:两组对角分别相等的四边形是平行四边形。

?逆命题C:对角线相互平分的四边形是平行四边形。

√设计意图:本节课采用复习引入的方式,以问题唤醒学生的回忆,引起学生的思考。

初中数学第十八章平行四边形教案人教版

初中数学第十八章平行四边形教案人教版

目录第十八章平行四边形18.1 平行四边形18.1.1 平行四边形的性质第1课时平行四边形的性质(1)第2课时平行四边形的性质(2)18.1.2 平行四边形的判定第1课时平行四边形的判定(1)第2课时平行四边形的判定(2)18.2 特殊的平行四边形18.2.1 矩形第1课时矩形的性质第2课时矩形的判定18.2.2 菱形第1课时菱形的性质第2课时菱形的判定18.2.3 正方形第十八章平行四边形标定理,并能运用这些知识进行有关的证明和计算.(3)了解两条平行线之间距离的意义,能度量两条平行线之间的距离.探索并证明三角形中位线定理.2.过程及方法通过经历平行四边形、矩形、菱形、正方形的性质定理和判定定理的探索和证明过程,丰富学生从事数学活动的经验和体验,进一步培养学生的合情推理能力和演绎推理能力.3.情感、态度及价值观通过分析平行四边形及各种特殊平行四边形概念之间的联系及区别,使学生认识到特殊及一般的关系,体会事物间是互相联系又是互相区别的,进一步培养学生的辩证唯物主义观.教学重难点重点:1.平行四边形、特殊平行四边形的特征.2.平行四边形、特殊平行四边形的识别方法以及彼此之间的关系.难点:发展学生进一步推理和解决问题的能力.知识结构课题平行四边形的性质课时第1课时上课时间教学目标1.知识及技能(1)理解平行四边形的定义及有关概念.(2)能根据定义探索并掌握平行四边形的对边相等、对角相等的性质.(3)了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明.2.过程及方法(1)经历用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.(2)在进行性质探索的活动过程中,发展学生的探究能力.(3)在对性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和演绎能力.3.情感、态度及价值观在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.难点:运用平行四边形的性质进行有关的论证和计算.教学活动设计二次设计课堂导入平行四边形是我们常见的一种图形,它具有十分和谐的对称美.它是什么样的对称图形呢?它又具有哪些基本性质呢?探索新知合作探究自学指导自学课本,尝试完成课本练习.合作探究平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行以外,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(2)猜想:平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图▱ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.续表探索新知合作探究分析:作▱ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)探究小结平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.【例】如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.教师指导1.归纳小结:(1)平行四边形:有两组对边分别平行的四边形叫做平行四边形.平行四边形用“▱”表示.(2)平行四边形的性质:①平行四边形的对边相等.②平行四边形的对角相等.2.方法规律:(1)只有一组对边平行的四边形不一定是平行四边形.(2)相关概念给出了平行四边形的一个重要性质:两组对边分别平行.(3)平行四边形具有四边形的一切性质.当堂训练1.在下列图形的性质中,平行四边形不一定具有的是( )(A)对角相等(B)对角互补(C)邻角互补(D)内角和是360°2.在▱ABCD中,如果EF∥AD,GH∥CD,EF及GH相交于点O,那么图中的平行四边形一共有( )(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证:AB=CE.板书设计平行四边形的性质(1)1.平行四边形的定义2.平行四边形的性质3.应用平行四边形的性质解决线段或角的问题教学反思课题平行四边形的性质课时第2课时上课时间教学目标1.知识及技能(1)理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.(2)能综合运用平行四边形的性质解决平行四边形的有关计算问题和简单的证明题.2.过程及方法(1)经历用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.(2)在进行性质探索的活动过程中,发展学生的探究能力.(3)在对性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和演绎能力.3.情感、态度及价值观在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:平行四边形对角线互相平分的性质,以及性质的应用.难点:综合运用平行四边形的性质进行有关的论证和计算.教学活动设计二次设计课堂导入复习提问:1.什么样的四边形是平行四边形?四边形及平行四边形的关系是:2.平行四边形的性质:(1)具有一般四边形的性质(内角和是360°).(2)角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.探索新知合作探究自学指导自学课本,尝试完成课本练习.合作探究请学生在纸上画两个全等的▱ABCD和▱EFGH,并连接对角线AC,BD和EG,HF,设它们分别交于点O.把这两个平行四边形摞在一起,在点O处钉一个图钉,将▱ABCD绕点O旋转180°,观察它还和▱EFGH重合吗?你能从中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.【例1】已知:如图,▱ABCD的对角线AC,BD相交于点O,EF过点O及AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.续表探索新知合作探究【例2】已知四边形ABCD是平行四边形,AB=10 cm,AD=8 cm,AC⊥BC,求BC,CD,AC,OA的长以及▱ABCD的面积.分析:由平行四边形的对边相等,可得BC,CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积公式计算.教师指导1.易错点:平行四边形的对角线互相平分,但不一定相等.2.归纳小结:平行四边形的对角线互相平分.3.方法规律:(1)利用平行四边形的对角线互相平分可以解决对角线或边的取值范围问题;(2)平行四边形被对角线分成的四个小三角形,相邻的两个小三角形周长之差等于邻边之差.当堂训练1.在四边形ABCD中,AC=6,BD=4,则AB的范围是.2.在平行四边形ABCD中,已知AB,BC,CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.3.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15 cm,AD=12 cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.板书设计平行四边形的性质(2)1.平行四边形对角线互相平分探究小结:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形.平行四边形判定方法2 两组对角分别相等的四边形是平行四边形.平行四边形判定方法3 对角线互相平分的四边形是平行四边形.2.取两根等长的木条AB,CD,将它们平行放置,再用两根木条BC,AD加固,得到的四边形ABCD是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形.续表探索新知合作探究【例1】已知:如图,A'B'∥BA,B'C'∥CB,C'A'∥AC.求证:(1)∠ABC=∠B',∠CAB=∠A',∠BCA=∠C';(2)△ABC的顶点分别是△B'C'A'各边的中点.【例2】已知:如图,▱ABCD中,E,F分别是AD,BC的中点,求证:BE=DF.分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.教师指导1.归纳小结:平行四边形的判定(1)两组对边分别平行的四边形是平行四边形.(2)一组对边平行且相等的四边形是平行四边形.(3)对角线互相平分的四边形是平行四边形.(4)两组对边分别相等的四边形是平行四边形.(5)两组对角分别相等的四边形是平行四边形.2.方法规律:平行四边形对边相等,对角相等,对角线互相平分及它的判定,是我们证明直线平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.当堂训练1.下列条件中能判断四边形是平行四边形的是( )(A)对角线互相垂直(B)对角线相等(C)对角线互相垂直且相等 (D)对角线互相平分2.在下列给出的条件中,能判定四边形ABCD为平行四边形的是( )(A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠D(C)AB=CD,AD=BC (D)AB=AD,CB=CD3.已知:如图,△ABC中,BD平分∠ABC,DE∥BC,EF∥AC,求证:BE=CF.板书设计平行四边形的判定(1)1.平行四边形的判定方法2.平行四边形性质和判定的应用教学反思课题平行四边形的判定课时第2课时上课时间教学目标1.知识及技能理解三角形中位线的概念,掌握它的性质定理;会证明三角形中位线定理,并能熟练地应用它进行有关的证明和计算.2.过程及方法经过探索三角形中位线定理的过程,理解它及平行四边形的内在联系,感悟几何学的推理方法.3.情感、态度及价值观培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值.教学重难点重点:三角形的中位线定理.难点:(1)作出简单平面图形关于直线的轴对称图形. (2)三角形的中位线定理的证明中添加辅助线的思想方法.教学活动设计二次设计课堂导入如图所示,吴伯伯家一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,你能求出需要篱笆的长度吗?探索新知合作探究自学指导实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?图中有几个平行四边形?你是如何判断的?合作探究【例1】如图,点D,E分别为△ABC的边AB,AC的中点,求证:DE∥BC且DE=BC.分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.定义:连接三角形两边中点的线段叫做三角形的中位线.探究讨论:(1)一个三角形的中位线共有几条?(2)三角形的中位线及中线有什么区别?(3)三角形的中位线及第三边有怎样的关系?【拓展】利用这一定理,你能证明在自学指导所设情境中分割出来的四个小三角形全等吗?续表探索【例2】新知合作探究已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.教师指导1.归纳小结:三角形的中位线(1)三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线.(2)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.2.方法规律:(1)中位线不是中线.(2)三角形中位线定理的特点:在同一题设下,有两个结论,一个结论表示位置关系,另一个结论表示数量关系.(3)三角形中位线定理的作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍数关系.当堂训练1.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出AC和BC的中点M,N,如果测得MN=20 m,那么A,B两点的距离是 m,理由是.2.已知:三角形的各边分别为8 cm,10 cm和12 cm,求连接各边中点所成三角形的周长.3.如图,△ABC中,D,E,F分别是AB,AC,BC的中点,(1)若EF=5 cm,则AB= cm;若BC=9 cm,则DE= cm;(2)中线AF及DE中位线有什么特殊的关系?证明你的猜想.板书设计平行四边形的判定(2)1.平行四边形的判定方法2.平行四边形判定方法的选择3.中位线以及中位线定理教学反思课题矩形课时第1课时上课时间教学目标1.知识及技能(1)掌握矩形的概念和性质,理解矩形及平行四边形的区别及联系.(2)会初步运用矩形的概念和性质来解决有关问题.2.过程及方法经历探索矩形的概念和性质的过程,发展学生合情推理意识,掌握几何思维方法.3.情感、态度及价值在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:矩形的性质.难点:矩形的性质的灵活应用.教学活动设计二次设计课堂导入如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?可以发现,角的大小改变了,但不管如何动,它仍然保持平行四边形的形状.我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形.探索新知合作探究自学指导1.请用四根木棒拼成一个平行四边形,拼成的平行四边形形状唯一吗?2.试着改变平行四边形的形状,你能拼出面积最大的平行四边形吗?这时这个平行四边形的内角是多少度?3.观察图形特征,得出概念.叫做矩形.矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角;矩形的对角线;矩形是轴对称图形,它的对称轴是.合作探究问题一如图,矩形ABCD,对角线相交于O,观察对角线所分成的三角形,你有什么发现?问题二将目光锁定在Rt△ABC中,你能发现它有什么特殊的性质吗?【例1】已知:如图,矩形ABCD的两条对角线相交于点O,且AC=2AB.求证:△AOB是等边三角形.(注意表达格式完整性及逻辑性)续表探索新知合作探究拓展及延伸:本题若将“AC=2AB”改为“∠BOC=120°”,你能获得有关这个矩形的哪些结论?【例2】在矩形ABCD中,两条对角线AC,BD相交于O,∠ACD=30°,AB=4.(1)判断△AOD的形状;(2)求对角线AC,BD的长.教师指导1.归纳小结:(1)矩形的概念有一个角是直角的平行四边形叫做矩形,也就是长方形.(2)矩形的性质①矩形的四个角都是直角.②矩形的对角线相等.③直角三角形斜边上的中线等于斜边的一半.(推论)2.方法规律:(1)矩形的概念是研究矩形的基础,既可以看做是矩形的性质,又可以视为矩形的判别方法.(2)矩形具有平行四边形的一切性质.(3)矩形既是中心对称图形,又是轴对称图形.对称中心为对角线的交点,对称轴为对边中点所在的直线.当堂1.下列说法错误的是( )(A)矩形的对角线互相平分训练(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形2.已知矩形的一条对角线长为10 cm,两条对角线的一个交角为120°,则矩形的边长分别为 cm, cm,cm, cm.3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.板书设计矩形的性质1.矩形的定义2.矩形的性质及推理教学反思课题矩形课时第2课时上课时间教学目标1.知识及技能理解并掌握矩形的判定方法.2.过程及方法使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.3.情感、态度及价值观在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:矩形的判定.难点:矩形的判定及性质的综合应用.教学活动设计二次设计课堂导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分;2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?探索新知合作探究1.矩形是轴对称图形,它有条对称轴.2.在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10 cm,边BC=8 cm,则△ABO的周长为.3.想一想:矩形有哪些性质?在这些性质中哪些是平行四边形所没有的?列表进行比较.平行四边形矩形边角对角线思考:小华想要做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框吗?看看谁的方法可行?(得到矩形的一个判定)做一做:按照画“边―直角、边-直角、边-直角、边”这样四步画出一个四边形.判断它是一个矩形吗?说明理由.(探索得到矩形的另一个判定)合作探究下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形.( )(2)四个角是直角的四边形是矩形.( )(3)四个角都相等的四边形是矩形.( )续表探索新知合作探究(4)对角线相等的四边形是矩形.( )(5)对角线相等且互相垂直的四边形是矩形.( )(6)对角线互相平分且相等的四边形是矩形.( )(7)对角线相等,且有一个角是直角的四边形是矩形.( )(8)一组邻边垂直,一组对边平行且相等的四边形是矩形.( )(9)两组对边分别平行,且对角线相等的四边形是矩形.( )【例1】已知▱ABCD的对角线AC,BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.【例2】已知:如图,▱ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.学重难点难点:菱形的性质及菱形知识的综合应用.教学活动设计二次设计课堂导入将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形呢?这就是另一类特殊的平行四边形,即菱形.探索新知合作探究自学指导我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.让学生举一些日常生活中所见到过的菱形的例子.合作探究已知,如图:四边形ABCD是菱形.(1)AB及CD,AD及BC有怎样的关系?(2)∠ABC及∠ADC相等吗?∠BAD及∠BCD呢?菱形ABCD相邻的两个角又有怎样的关系呢?(3)OA及OC相等吗?OB及OD呢?对角线AC及BD有怎样的位置关系?(4)有人说∠1=∠2=∠3=∠4,∠5=∠6=∠7=∠8,你认为正确吗?(5)菱形是轴对称图形吗?它有几条对称轴?分别是什么?通过解决以上5个问题引导学生总结出菱形的性质(学生自主推导及老师点拨相结合,先做出来的教教还没做出来的同学,增加同学之间的交流及沟通,最后由老师点评一下)续表探索新知合作探究教师指导1.归纳小结:(1)菱形:有一组邻边相等的平行四边形叫做菱形.(2)菱形的性质①菱形的四条边都相等.②菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角.2.方法规律:①菱形是轴对称图形,它的对角线所在的直线就是它的对称轴.②菱形是特殊的平行四边形,其面积求法及平行四边形求法相同,其面积等于底乘以相应底上的高.而且菱形的两条对角线互相垂直平分,将菱形分成4个全等的直角三角形,因此菱形面积为4×××两条对角线长之积=×两条对角线长之积.当堂训练1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.2.已知菱形ABCD的周长为20 cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.3.已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.求证:∠AEF=∠AFE.板书设计菱形的性质1.菱形定义2.菱形的性质3.菱形的面积计算教学反思课题菱形课时1课时上课时间教学目标1.知识及技能(1)理解菱形的定义,掌握菱形的判定方法;会用这些判定方法进行有关的论证和计算.(2)在菱形的判定方法的探索及综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.2.过程及方法(1)尝试从不同角度寻求菱形的判定方法,并能有效地解决问题.(2)尝试比较不同判定方法之间的差异,并获得判定四边形是菱形的经验.3.情感、态度及价值观启发引导学生理解探索结论和证明结论的过程,掌握合情推理及演绎推理的相互依赖和相互补充的辩证关系,培养学生合作交流的能力,以及独立思考的良好习惯.教学重难点重点:探索证明菱形的两个判定方法,掌握证明的基本要求和方法.难点:明确推理证明的条件和结论,能用数学语言正确表达.教学活动设计二次设计课堂导入什么样的四边形是平行四边形?它有哪些判定方法?边:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形.角:两组对角分别相等的四边形是平行四边形.对角线:对角线互相平分的四边形是平行四边形.那么,菱形的判定有什么方法呢?探索新知合作探究自学指导自学课本,回答以下问题1.有一组的平行四边形是菱形.2.对角线的平行四边形是菱形.3. 的四边形是菱形.合作探究1.由菱形的定义判定明确菱形的定义既是菱形的性质,又可作为菱形的第一种判定方法,即有一组邻边相等的平行四边形是菱形.2.除了运用菱形的定义,类比平行四边形的性质定理和判定定理,小组讨论能否找出判定菱形的其他方法?【做一做】用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可动的十字,四周围上一根橡皮筋,做成一个四边形.(1)转动木条,这个四边形总有什么特征?你能证明你发现的结论吗?猜想:四边形的对角线互相平分.续表探索新知(2)继续转动木条,观察什么时候橡皮筋围成的四边形变成菱形?猜想1:当木条互相垂直时,平行四边形的一组邻边相等,此时四边。

人教版八年级下册第十八章:平行四边形复习课优秀教学案例

人教版八年级下册第十八章:平行四边形复习课优秀教学案例
3.教师根据学生的作业完成情况,进行教学反思。教师应关注学生的学习需求,调整教学策略,提高教学效果。同时,鼓励学生进行自我反思,总结自己在学习过程中的优点和不足,不断提高自己的学习能力。
五、案例亮点
1.生活情境的创设:本案例通过设计富有生活气息的数学问题情境,让学生在解决问题的过程中自然地回顾和巩固平行四边形的知识。这种教学方式使学生能够更好地将抽象的数学知识与实际生活相结合,提高学生的学习兴趣和积极性。
三、教学策略
(一)情景创设
1.生活情境:结合学生的生活实际,创设富有生活气息的数学问题情境,让学生在解决问题的过程中,自然地回顾和巩固平行四边形的知识。例如,可以设计一个关于房屋装修的问题,让学生计算不同形状的平行四边形房间的面积,从而引导学生运用平行四边形的性质和面积计算方法。
2.图形情境:利用多媒体技术,展示各种动态变化的平行四边形图形,激发学生的学习兴趣,引导学生直观感知平行四边形的性质。例如,可以设计一个关于平行四边形形状、大小变化的动画,让学生观察其性质的变化规律。
(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,总结自己在复习平行四边形知识过程中的收获和不足。教师可以设计一些反思性问题,引导学生进行自我评价,激发学生的自我完善意识。
2.同伴评价:组织学生进行同伴评价,让同伴之间互相评价学习过程中的优点和不足。教师应引导学生进行客观、公正的评价,帮助同伴改进学习方法,提高学习效果。
本节课的教学内容主要包括平行四边形的性质、判定、面积计算以及应用。在教学过程中,教师以教材为载体,以学生为中心,运用多样化的教学手段,如多媒体演示、实物模型、自主探究等,引导学生回顾和巩固平行四边形的相关知识,提高学生的知识整合能力和思维品质。同时,注重培养学生的团队协作精神,使学生在互动交流中取长补短,提升自主学习能力。

18章平行四边形(教案)

18章平行四边形(教案)
另外,实践活动中的分组讨论环节,部分小组的讨论并不充分,有些学生参与度不高。我考虑是否应该在这一环节中加入更多的引导,鼓励每个学生都发表自己的看法,以提高讨论的实效性。
在讲解特殊平行四边形的部分,我感觉学生们对矩形、菱形、正方形的性质还是有些混淆。可能我需要设计一些更具对比性的练习题,帮助他们更清晰地认识到这些特殊平行四边形的区别和联系。
-举例:强调平行四边形与一般四边形的区别,通过动态图示或实物模型展示性质。
-掌握特殊平行四边形(矩形、菱形、正方形)的性质及判定方法。
-举例:通过具体图形分析,让学生掌握矩形对角线相等、菱形对角线垂直平分、正方形四条边相等且垂直的特点。
-学会平行四边形的面积计算方法,特别是特殊平行四边形的面积计算。
五、教学反思
在今天的平行四边形教学中,我发现学生们对基本概念和性质的掌握程度还不错,但判定方法和实际应用方面似乎还存在一些困难。我尝试了通过案例分析和实验操作来帮助学生理解,但感觉效果并不是特别理想。
首先,我发现有些学生在判定平行四边形时,对于使用哪一种方法感到困惑。在今后的教学中,我需要更加明确地指出各种判定方法的适用场景,通过更多具体的例子来加强他们的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行四边形的基本概念。平行四边形是四边形的一种,其对边平行且相等。它在几何图形中具有重要地位,广泛应用于日常生活和工程建筑中。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了平行四边形在建筑蓝图中的应用,以及它如何帮助我们解决实际问题。
18章平行四边形(教案)
一、教学内容
本节选自八年级数学上册第18章“平行四边形”。教学内容主要包括以下部分:
1.平行四边形的定义及性质:理解平行四边形的定义,掌握平行四边形的对边平行且相等、对角相等、对角线互相平分等性质。

人教版八年级数学下册第十八章平行四边形《特殊平行四边形复习》优秀教学案例

人教版八年级数学下册第十八章平行四边形《特殊平行四边形复习》优秀教学案例
五、案例亮点
1.生活实例导入,激发学生兴趣:通过利用生活实例或图片,如房间的矩形布局、运动员的跑道等,引发学生对特殊平行四边形的兴趣和好奇心。这种以生活实例导入的方法,能够激发学生的学习兴趣,使他们更愿意参与到课堂学习中。
2.问题导向,培养学生的思考和探索能力:设计具有挑战性和启发性的问题,引导学生深入思考和探究。通过问题解决的过程,学生能够发现和总结特殊平行四边形的性质。这种问题导向的教学策略,培养了学生的思考和探索能力,提高了他们的数学思维能力。
在课堂氛围上,我努力营造轻松愉快的学习氛围,鼓励学生积极参与讨论和提问,培养他们的自主学习能力和批判性思维。通过对学生的鼓励和表扬,激发他们的自信心,使他们在学习过程中保持积极的心态。
二、教学目标
(一)知识与技能
1.复习和掌握特殊平行四边形的性质和判定方法,包括矩形、菱形和正方形的性质。
2.能够运用特殊平行四边形的性质解决实际问题,提高学生的应用能力。
三、教学策略
(一)情景创设
1.利用生活实际情境,引发学生对特殊平行四边形性质的兴趣和好奇心。
2.通过设计有趣的数学游戏和操作活动,激发学生的学习动力。
3.创设问题情境,引导学生主动探究和发现特殊平行四边形的性质。
在情景创设方面,我将利用生活实际情境来引发学生对特殊平行四边形性质的兴趣和好奇心。例如,可以展示一些实际生活中的图形,如房间的布局、运动员的跑道等,引导学生注意到这些图形的特殊性质。此外,我还会设计一些有趣的数学游戏和操作活动,如拼图游戏、折叠纸游戏等,激发学生的学习动力。通过这些情境创设,学生能够更加主动地参与到学习过程中,提高他们的学习兴趣。
在教学设计上,我遵循了由浅入深、循序渐进的原则,先从简单的特殊平行四边形开始复习,再逐步引导students深入探讨更复杂的特殊平行四边形的性质和判定方法。在教学过程中,我注重引导学生发现规律、总结方法,从而提高他们的数学思维能力。

八年级数学上册《平行四边形(复习)》教案

八年级数学上册《平行四边形(复习)》教案

平行四边形【学习内容】一. 知识结构:四边形平行两组对边分别平行四边形有一直角矩形邻边相等邻边相等菱形有一直角正方形对边平行只有一组梯形两腰相等等腰梯形一腰垂直于底直角梯形⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪四边形平行四边形菱形正方形矩形梯形等腰梯形直角梯形二. 具体知识点的梳理:1. 平行四边形:(1)定义:两组对边分别平行的四边形是平行四边形。

(2)性质:<1>平行四边形的对边相等,平行四边形的对角相等。

<2>平行四边形的对角线互相平分。

(3)识别方法:<1>用定义识别。

(从边看)<2>两组对边分别相等的四边形是平行四边形。

(从边看)<3>一组对边平行且相等的四边形是平行四边形。

(从边看)<4>两组对角分别相等的四边形是平行四边形。

(从角看)<5>对角线互相平分的四边形是平行四边形。

(从对角线看)(4)平行四边形的知识运用包括三个方面:<1>直接用平行四边形的性质去解决问题,求角、线段、证明角相等、互补、证明线段相等或倍分。

<2>判定一个四边形是平行四边形,从而判定两直线平行。

<3>先判定一个四边形是平行四边形,再用平行四边形的性质去解决某问题。

2. 矩形:(1)定义:有一个角是直角的平行四边形是矩形。

(2)性质:<1>矩形的四个内角都是直角。

<2>矩形的对角线相等且互相平分。

<3>除上面两条以外,它还有平行四边形的一切性质。

(3)矩形的识别方法:<1>有一个角是直角的平行四边形;<2>对角线相等的平行四边形;<3>有三个角是直角的四边形。

3. 菱形:(1)定义:有一组邻边相等的平行四边形是菱形。

(2)性质:<1>菱形的四条边都相等。

<2>菱形的对角线互相垂直平分且每一条对角线平分一组对角。

新人教版第18章平行四边形章末复习教案

新人教版第18章平行四边形章末复习教案

学段:八年级学科:数学八年级下册(2)四边形与各种特殊四边形之间的关系:【教学说明】教师同学生一同复习回顾,整理成上述知识结构图,加深对知识的领悟.三、释疑解惑,加深理解1.平行四边形,矩形,菱形,正方形的边、角、对角线分别有哪些性质?与同伴交流.2.如何判定一个四边形是平行四边形、矩形、菱形、正方形?3.平行四边形、矩形、菱形、正方形等四边形的面积与平行线间距离有着密切联系.比较上面几种四边形,它们之间的面积有什么联系和区别?它们的面积与三角形的面积又有怎样的联系?四、典例精析,复习新知例1 (1)如图,在ABCD,BE⊥AD于E,若∠ABE=50°,则∠C=______.第(1)题图第(2)题图(2)如图,ABCD中,AB⊥AC,∠ABD=35°,对角线AC,BD相交于点O.将直线AC绕点O顺时针旋转,分别交BC、AD于E,F,当四边形BEDF 是菱形时,直线AC绕点O顺时针至少旋转_______.【分析】在(1)中由BE⊥AD于E,∠ABE=50°,得∠A=40°,由平行四边形的对角相等知∠C=∠A=40°;在(2)中,当四边形BEDF是菱形时,应有EF⊥BD 于O,即∠BOF=90°,又∠ABD=35°,AB⊥AC,有∠AOB=55°,这样∠AOF=35°,即直线AC绕点O顺时针至少应旋转35°,才能使四边形BEDF为菱形.例2 (1)如图,矩形ABCD中,AD=2AB=4,将纸片折叠,使点C落在AD上的点E处,折痕为BF,则DE=_______.第(1)题图第(2)题图(2)如图,菱形ABCD中,对角线AC、BD相交于点O,AB=13,AC=10.过点D作DE∥AC交BC 的延长线于点E,则△BDE的周长为.【分析】(1)中,应有BE=BC=AD=2AB=4,从而易得224223AE=-=,故DE=AD-AE=4-23;(2)中,由菱形性质有AO=12AC=5,AC⊥BD,又AB=13,故2212OB AB OA=-=.因此BD=2BO=24,又DE∥AC,CE∥AD,知四边形ACED为平行四边形,有CE=AD,又AD=CD=BC,从而在Rt△BDE 中,有BE=2CD=26,又DE=AC=10,故△BDE的周长为:24+26+10=60.例3 如图,在Rt△ABC中,∠B=90°,∠A=30°,沿Rt△ABC的中位线DE剪切一刀后,用得到的△ADE和直角梯形DBCE拼图,下列图形①平行四边形,②菱形,③矩形,④正方形,一定能拼出的是()A.只有①②B.只有③④C.只有①③D.①②③④【分析】令DE=a,则BC=2DE=2a,∵∠ADE=∠B=90°,∠A=30°,∴AE=2DE=2a,223AD AE DE a DB=-==,∴DB≠BC.显然,将Rt△ADE的AE边与CE边重合,向外可拼成一个矩形,不能拼成正方形;将AD与DB重合,点E在ED 延长线上时,可拼成一个平行四边形,因而一定能拼出的图形只有①③.例4如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)①当AM为何值时,四边形AMDN是矩形;②当AM为何值时,四边形AMDN是菱形.【分析】(1)∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME.又∵点E是AD 边的中点,∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(2)①当AM的值为1时,四边形AMDN是矩形.理由如下:∵AM=1=12AD=AE=ED,又∵∠EAM=60°,∴△AEM为等边三角形.∴∠AEM=60°,∴∠EDM=30°,∴∠AMD=90°,∴四边形AMDN是矩形;②当AM的值为2时,四边形AMDN是菱形.理由如下:∵AM=2,∴AM=AD=2,∴△AMD是等边三角形,∴AM=DM,∴四边形AMDN是菱形.例5 如图,矩形纸片ABCD,连接AC,且AC =45,若AD:AB=1:2,将纸片折叠使B与D 重合,折痕为EF,求折叠后纸片重合部分的面积.解:令AD=x (x >0),AB =2x ,在矩形ABCD 中,CD =AB.在Rt △ADC 中,AC =45,∴AD 2+CD 2=AC 2,∴222245x x +=()(),∴x=4,∴AD=4.在矩形ABCD 中,OD=OB ,ED ∥BF ,∴∠EDO=∠FBO ,∠DEO=∠BFO ,∴△DOE ≌△BOF ,∴DE=BF.而由折叠知DF=BF ,∴DF=DE.令DF =y ,则DE=BF=y ,AF =8-y.在Rt △ADF 中,22248y y +-()=,∴y=5.∴S △DEF =12·DE·AD =12×5×4=10. 【教学说明】第1、2、3、4题学生可轻松完成,因而让学生自主探究,独立完成,教师巡视,对有困难学生给予帮助,锻炼学生分析问题、解决问题的能力,增强逻辑推理能力.第5题需教师予以分析、点拨,开拓学生思维,最后予以评讲.五、师生互动,课堂小结通过复习,你有哪些收获?还有哪些疑问?与同伴交流.【教学说明】对于学生的质疑,老师或当堂解释,或课后个别辅导,使不同的学生都能有所收获.六、作业1.布置作业:从教材“复习题18”中选取.2.完成练习册中本课时练习.。

人教版八年级数学平行四边形全章教案

人教版八年级数学平行四边形全章教案
行四边形的对角线______;平行四边形的面积=底边长×______. 3.在□ABCD 中,若∠A-∠B=40°,则∠A=______,∠B=______. 4.若平行四边形周长为 54cm,两邻边之差为 5cm,则这两边的长度分别为______. 5.若□ABCD 的对角线 AC 平分∠DAB,则对角线 AC 与 BD 的位置关系是______. 6.如图,□ABCD 中,CE⊥AB,垂足为 E,如果∠A=115°,则∠BCE=______.
6 题图 7.如图,在□ABCD 中,DB=DC、∠A=65°,CE⊥BD 于 E,则∠BCE=______.
7 题图 8.若在□ABCD 中,∠A=30°,AB=7cm,AD=6cm,则 S□ABCD=______. 二、选择题 9.如图,将□ABCD 沿 AE 翻折,使点 B 恰好落在 AD 上的点 F 处,则下列结论不一定成立的是( ).
如图,在□ABCD 中,AE⊥BC 于 E,AF⊥CD 于 F,若∠EAF=60°,BE=2cm,DF=3cm,求□ABCD 的周
长和面积.
B
A
E
若问题改为 CF=2cm,CE=3cm,求□ABCD 的周长和面积.
F C
D
5.□ABCD 中,E 在边 AD 上,以 BE 为折痕,将△ABE 向上翻折,点 A 正好落在 CD 上的点 F,若△ FDE 的周长为 8,△FCB 的周长为 22,求 CF 的长.
19.1.1 平行四边形及其性质(一)
学习目标:
理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.
会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.
学习重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.

人教版八年级数学下册第十八章《平行四边形单元复习》说课稿

人教版八年级数学下册第十八章《平行四边形单元复习》说课稿
(五)作业布置
课后作业布置如下:
1.完成课后练习题,巩固平行四边形的性质、判定方法等知识点。
2.结合生活实例,设计一道与平行四边形相关的实际问题,并运用所学知识解决。
3.预习下一节课内容,为新课的学习做好准备。
作业的目的是帮助学生巩固所学知识,提高应用能力,培养自主学习能力,为后续学习打下基础。同时,通过设计实际问题,让学生感受数学与生活的紧密联系,激发学习兴趣。
2.生生互动:小组讨论,学生在小组内分享自己的思考和观点,共同探讨平行四边形的性质和判定方法;小组竞赛,鼓励学生在竞赛中展示自己的能力,提高学习积极性。
3.课堂展示:学生代表上台展示自己的解题过程和思考方法,其他学生给予评价和反馈,促进课堂氛围的活跃。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.课堂练习:设计具有代表性的练习题,让学生独立完成,巩固平行四边形的性质和判定方法。
2.小组竞赛:组织小组间的几何图形竞赛,鼓励学生运用所学知识解决问题,提高学生的应用能力。
3.实践活动:布置学生课后收集生活中的平行四边形实例,并与同学分享,增强学生对几何知识的实际运用能力。
1.创设情境:通过展示生活中常见的平行四边形实物图片,如篮球场、停车场等,让学生直观地感受平行四边形在实际中的应用。
2.提出问题:在此基础上,提出一系列引导性问题,如“你们在生活中还见过哪些平行四边形?”“平行四边形具有哪些特征?”等,激发学生的好奇心和求知欲。
3.游戏互动:组织学生进行“找出平行四边形”的游戏,让学生在轻松愉快的氛围中回顾平行四边形的基本概念,为新课的学习做好铺垫。

人教版初中数学八年级上册《第十八章平行四边形》复习教案

人教版初中数学八年级上册《第十八章平行四边形》复习教案

18章平行四边形总复习教案——数学大餐“大餐一二”“吃喝”和“加菜”二.“大餐一”三、“细琢回味”1、定义是在什么基础上的?2、从定义看包含关系(双黄蛋)?四、“大餐二”1、教师细讲定义学生完成题目并体会“双黄蛋”的包含关系教师出示例教师要求学生先尝试独立思考,再小组讨论、交流.2、教师巡视学生情况3、3、学生独立完成并完善此图4、展示学生所写所填并规范答案!5、学生根据老师讲解的完善并熟记性质图。

五、“体育锻炼”1.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过点O作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.2. 已知:AC为正方形ABCD的对角线,E为AC上一点,且AB=AE,EF⊥AC交BC于F,求证:EC=EF=FBA DEEB F C3、如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF.A D FEB C六、“加菜”在“3”题的后面加上第二问(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?1、体育锻炼环节:学生自练自讲。

2、找三个人去讲台讲解,我是小老师。

3、老师说说每一小题考查了哪些知识E4、老师讲解拓展提高题“加菜”“总结回味”本节课我们复习了哪些知识点?师引导学生归纳总结.梳理知识,并建立知识体系.教师黑板板书题目及知识结构布置下节作业下次大餐。

新人教版八年级下第十八章《平行四边形》复习教案

新人教版八年级下第十八章《平行四边形》复习教案

第18章平行四边形【教学目标】1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法,三角形的中位线定理等;2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。

【教学重点】1、平行四边形与各种特殊平行四边形的区别。

2、梳理平行四边形、矩形、菱形、正方形、三角形的中位线定理的知识体系及应用方法。

【教学难点】平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。

【教学模式】以题代纲,梳理知识-----变式训练,查漏补缺-----综合训练,总结规律-----测试练习,提高效率。

【教具准备】三角板、实物投影仪、电脑、自制课件。

【教学过程】一、以题代纲,梳理知识(一)开门见山,直奔主题同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕。

(二)诊断练习1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:(1)AB=CD,AD=BC (平行四边形)(2)∠A=∠B=∠C=90°(矩形)(3)AB=BC,四边形ABCD是平行四边形(菱形)(4)OA=OC=OB=OD ,AC⊥BD (正方形)(5)AB=CD, ∠A=∠C ( ?)2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5厘米。

3、顺次连结矩形ABCD各边中点所成的四边形是菱形。

4、若正方形ABCD的对角线长10厘米,那么它的面积是50平方厘米。

5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形。

(三)归纳整理,形成体系1、性质判定,列表归纳2、基础练习:(1)矩形、菱形、正方形都具有的性质是(C)A.对角线相等(距、正)B. 对角线平分一组对角(菱、正)C.对角线互相平分D. 对角线互相垂直(菱、正)(2)正方形具有,矩形也具有的性质是(A)A.对角线相等且互相平分B. 对角线相等且互相垂直C. 对角线互相垂直且互相平分D.对角线互相垂直平分且相等(3)如果一个四边形是中心对称图形,那么这个四边形一定(D)A.正方形B.菱形C.矩形D.平行四边形都是中心对称图形,A、B、C都是平行四边形(4)矩形具有,而菱形不一定具有的性质是(B)A. 对角线互相平分B. 对角线相等C. 对边平行且相等D. 内角和为3600问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。

八年级数学第18章平行四边形教案

八年级数学第18章平行四边形教案

第十八章平行四边形18.1.1 平行四边形及其性质(一)一、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会实行相关的论证.3.培养学生发现问题、解决问题的水平及逻辑推理水平.二、重点、难点4.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.5.难点:使用平行四边形的性质实行相关的论证和计算三、课堂引入1.我们一起来观察以下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC,AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜测的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(2)猜测平行四边形的对边相等、对角相等.下面证明这个结论的准确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA (ASA).∴AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.四、例习题分析例1(教材P93例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.五.板书设计六.课后反思18.1.1 平行四边形的性质(二)一、教学目标:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合使用平行四边形的性质解决平行四边形的相关计算问题,和简单的证明题.3.培养学生的推理论证水平和逻辑思维水平.二、重点、难点4.重点:平行四边形对角线互相平分的性质,以及性质的应用.5.难点:综合使用平行四边形的性质实行相关的论证和计算.三、、课堂引入1.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:360).①具有一般四边形的性质(内角和是︒②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交180,观察它还于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转︒和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.四、例习题分析例1(补充)已知:如图4-21,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD 分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在ABCD中,AB∥CD,∴∠1=∠2.∠3=∠4.又OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF(ASA).∴OE=OF,AE=CF(全等三角形对应边相等).∵ABCD,∴ AB=CD(平行四边形对边相等).∴AB—AE=CD—CF.即BE=FD.※【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.例2(教材P94的例2)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.五.板书设计六.课后反思18.1.2(一)平行四边形的判定一、教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合使用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二、重点、难点6.重点:平行四边形的判定方法及应用.7.难点:平行四边形的判定定理与性质定理的灵活应用.三、、课堂引入1.欣赏图片、提出问题.展示图片,提出问题,在刚刚演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条通过观察、测量、猜测、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档