高考理科数学第一轮复习辅导讲义
高考理科数学一轮复习课件抛物线
高考理科数学一轮复 习课件抛物线
汇报人:XX
20XX-01-24
REPORTING
• 抛物线基本概念与性质 • 抛物线图像及其变换 • 抛物线方程求解方法 • 抛物线与其他曲线关系 • 抛物线在几何中的应用 • 抛物线在生活中的实际应用
目录
XX
PART 01
抛物线基本概念与性质
REPORTING
已知抛物线 $y^2 = 2px$($p > 0$ )的焦点为 $F$,过点 $F$ 的直线与 抛物线交于 $A, B$ 两点,若 $|AF| + |BF| = 8$,求该抛物线的方程。
XX
PART 04
抛物线与其他曲线关系
REPORTING
与直线交点问题
求解交点坐标
联立抛物线与直线的方程,解出 交点坐标。
待定系数法求方程
设定含有待定系数的抛物线方程。根 据题目给出的条件,设定一个含有待 定系数的抛物线方程。
代入已知条件求解待定系数。将已知 条件代入设定的方程中,通过解方程 或方程组求出待定系数的值。
利用性质求方程
利用抛物线的焦点和准线性质求方程。根据抛物线的焦点和准线的性质,可以列 出关于焦点和准线的方程,进而求出抛物线的方程。
利用抛物线的对称性质求方程。根据抛物线的对称性质,可以列出关于对称轴的 方程,进而求出抛物线的方程。
典型例题分析
例题1
已知抛物线的顶点在原点,焦点在 $x$ 轴上,且过点 $(2,1)$,求该抛物 线的方程。
例题2
例题3
已知抛物线 $C: y^2 = 2px$($p > 0$)的焦点为 $F$,直线 $l$ 与抛物 线 $C$ 交于 $A, B$ 两点,若 $|AB| = 8$ 且 $AB$ 的中点到 $y$ 轴的距 离为 $3$,求该抛物线的方程。
高考数学一轮复习讲义
高考数学一轮复习讲义导言本讲义旨在为高考考生提供一轮全面复数学的指导。
根据往年考试情况以及高考数学的考点分布,此讲义涵盖了高考数学的各个重要知识点,帮助考生对数学知识进行系统复和巩固。
第一章:代数与函数1.1 一元一次方程- 方程的定义和基本性质- 一元一次方程的解法- 应用题:利用一元一次方程解决实际问题1.2 一元二次方程- 方程的定义和基本性质- 一元二次方程的解法- 应用题:利用一元二次方程解决实际问题1.3 指数与对数- 指数与对数的基本知识- 指数与对数的运算- 应用题:利用指数与对数解决实际问题第二章:几何与图形2.1 直线与曲线- 直线与曲线的基本概念- 直线与曲线的性质与判定方法- 应用题:利用直线与曲线解决实际问题2.2 三角形- 三角形的基本概念和性质- 三角形的判定方法- 三角形的相似与全等- 应用题:利用三角形解决实际问题2.3 圆与圆周角- 圆的基本概念和性质- 圆周角的性质和计算- 应用题:利用圆和圆周角解决实际问题第三章:概率与统计3.1 概率- 概率的基本概念和性质- 概率计算方法- 应用题:利用概率解决实际问题3.2 统计- 统计的基本概念和方法- 统计图表的制作和分析- 水果调查统计案例总结通过全面复习以上各个单元的知识,考生可以更好地应对高考数学题目,提高解题能力和应变能力。
在复习过程中,建议考生多做习题并及时查找解答,加强对知识点的理解和掌握。
祝愿所有考生在高考中取得优异成绩!。
高中数学一轮专题讲义
高中数学一轮专题讲义
一、集合与函数
1. 集合的基本概念和性质
2. 集合的运算
3. 函数的定义和性质
4. 函数的图像和变换
5. 函数的导数和极值
二、三角函数与解三角形
1. 三角函数的定义和性质
2. 三角函数的图像和变换
3. 三角函数的解法和应用
4. 三角形的解法和平行四边形的性质
三、数列与不等式
1. 数列的定义和性质
2. 等差数列和等比数列的通项公式和求和公式
3. 数列的极限和数学归纳法
4. 不等式的性质和证明方法
5. 不等式的求解和应用
四、平面几何与立体几何
1. 点、直线、平面的性质和关系
2. 平面图形的性质和证明方法
3. 立体几何的基本概念和性质
4. 空间几何体的表面积和体积计算
5. 空间几何体的位置关系和证明方法
五、解析几何与向量
1. 直线的方程和性质
2. 圆的方程和性质
3. 圆锥曲线的方程和性质
4. 向量的基本概念和运算规则
5. 向量的应用和证明方法。
高三数学第一轮总深刻复习培优版讲义(理)
高三数学第一轮总复习讲义(培优版)供理科生使用第一讲等差数列及其性质与前n项和第二讲等比数列及其性质与前n项和第三讲数列的通项公式与前n项和的求法第四讲数列的综合问题第一讲 等差数列及其性质与前n 项和【教学目标】1、 掌握等差数列的概念及通项公式;2、 理解并能应用等差数列的性质;3、 熟练掌握各种方法求等差数列的通项公式及前n 项和以及应用等差数列解决实际问题。
【重点难点】1、应用等差数列的性质解题;2、等差数列前n 项和公式理解、推导及应用;3、理解等差数列前n 项和公式与二次函数的联系,会利用等差数列求和公式来研究n S 最值;【命题趋势】1、题型以选择题和解答题为主;2、选择题重点考察等差、等比数列的性质的应用;3、解答题重点考察等差、等比数列的证明及通项公式的求解,以及数列的前n 项和与函数、不等式的综合问题。
【教学过程】 一、知识要点1. 等差数列的判定方法:(1)d a a n n =-+1(常数){}n a ⇔是等差数列; (2))(221*++∈+=N n a a a n n n {}n a ⇔是等差数列; (3)b k b kn a n ,(+=是常数){}n a ⇔是等差数列;(4)B A Bn An s n ,(2+=是常数,)1≥n {}n a ⇔是等差数列. 2. 等差数列的性质.由等差数列{}n a 的通项公式d n a a n )1(1-+=可以推出许多性质,如: ①{}n a d ,0时>递增; {}n a d ,0时<递减; {}n a d ,0时=为常数列.②),()(*∈-+=N n m d m n a a m n .③),(*∈=--N n m d nm a a nm ;④若,s r q p +=+则,s r q p a a a a +=+特别地,k n k n n a a a +-+=2,若{}n a 是有穷数列,则与首末两项等距离的两项的和相等,且等于首末两项的和; ⑤若n n t t t r r r +++=+++ 2121,则n n t t t r r r a a a a a a +++=+++ 2121;{}n ka ,{}r ka n +也都是等差数列,公差是.kd⑦等差数列中依次k 项的和成等差数列,即 k k k k k S S S S S 232,,--成等差数列,其公差为d k 2⑧若{}n a ,{}n b 都是等差数列,公差分别为21,d d ,则{}n n pb ka +也是等差数列,其公差为21pd kd +.二、典例精析题型一、等差数列的证明例1. 已知数列{}n a 满足),2(44,411≥-==-n a a a n n 若,21-=n n a b (1)求证: {}n b 是等差数列 (2)求数列{}n a 的通项公式题型二、等差数列的性质例2. 在等差数列{}n a 中,若,36121132=+++a a a a 求876a a a ++的值.例3. (2010广东惠州调研,改)已知{}n a 为等差数列,,87,105864531=++=++a a a a a a n S 是数列{}n a 的前n 项和,则使得n S 达到最大值的n 是( )A.21B.20C.19D.18变式:设公差为-2的等差数列{}n a 中,,5097741=++++a a a a 求99963a a a a ++++ 及99S 的值.例4. (07年辽宁,改)设等差数列{}n a 的前n 项和为n S ,若36,963==S S ,求151413a a a ++的值。
2025年新人教版高考数学一轮复习讲义 第一章 §1.1 集 合
(2)已知集合A={0,m,m2-3m+2},且2∈A,则实数m的值为
A.2
√B.3
C.0
D.-2
因为集合A={0,m,m2-3m+2},且2∈A, 则m=2或m2-3m+2=2,解得m∈{0,2,3}. 当m=0时,集合A中的元素不满足互异性; 当m=2时,m2-3m+2=0,集合A中的元素不满足互异性; 当m=3时,A={0,3,2},符合题意.综上所述,m=3.
知识梳理
3.集合的基本运算
表示 运算
集合语言
并集 _{_x_|x_∈__A_,__或__x_∈__B_}_
交集 _{_x_|x_∈__A_,__且__x_∈__B_}_
补集 _{_x_|x_∈__U__,__且__x∉_A__}_
图形语言
记法 _A__∪__B_ _A__∩__B_
_∁_U_A_
常用结论
例5 (多选)群论是代数学的分支学科,在抽象代数中具有重要地位,且 群论的研究方法也对抽象代数的其他分支有重要影响,例如一元五次及 以上的方程没有根式解就可以用群论知识证明.群的概念则是群论中最基 本的概念之一,其定义如下:设G是一个非空集合,“·”是G上的一个代 数运算,即对所有的a,b∈G,有a·b∈G,如果G的运算还满足:①∀a, b,c∈G,有(a·b)·c=a·(b·c);②∃e∈G,使得∀a∈G,有e·a=a·e=a; ③∀a∈G,∃b∈G,使a·b=b·a=e,则称G关于“·”构成一个群.
1.若集合A有n(n≥1)个元素,则集合A有2n个子集,2n-1个真子集. 2.空集是任何集合的子集,是任何非空集合的真子集. 3.A∩B=A⇔A⊆B,A∪B=A⇔B⊆A. 4.∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB).
高三数学理一轮复习课件教案教案课程知识
考 情
证明含综合法与分析法;间接证明的一种基本方法是反证法
课 时 知 能 训 练
菜单
一轮复习 ·新课标 ·数学(理)(广东专用)
典
例
若 x,y 都是正实数,且 x+y>2,求证:1+y x<2 或1+x y<2 中至少有
探 究 ·
提
一个成立.
知
能
自 主
【证明】 假设1+y x<2 和1+x y<2 都不成立,
·
明
明理由
考
情
思路点拨 根据理想函数的定义;证明gx满足理想函数的三个
Hale Waihona Puke 条件即可课时
知
能
训
练
菜单
一轮复习 ·新课标 ·数学(理)(广东专用)
典
例
探
究
尝试解答 gx=2x1x∈0;1是理想函数
· 提
证明如下:∵x∈0;1;
知 能
自
∴2x≥1;∴2x1≥0;即对任意x∈0;1;总有fx≥0;满足条件①
主
落 实
即证明|a-c|< c2-ab,
高 考 体
· 固 基
即要证(a-c)2<c2-ab, 即要证 a2-2ac<-ab,注意到 a>0,
础
即要证 a+b<2c,
验 · 明 考 情
因此原不等式成立.,
课 时 知 能 训 练
菜单
一轮复习 ·新课标 ·数学(理)(广东专用)
典
反证法
例
探
已知 f(x)=ax+xx+-12(a>1),
时 知 能
训
练
菜单
一轮复习 ·新课标 ·数学(理)(广东专用)
高三数学第一轮复习讲义
高三数学第一轮复习讲义一、函数与方程1. 函数的定义与性质函数是数学中非常重要的概念之一。
在高中数学中,我们常常遇到各种各样的函数问题,理解函数的定义与性质对于解决这些问题至关重要。
1.1 函数的定义函数是一个集合与集合之间的映射关系,它可以将一个自变量的值映射到一个唯一的因变量的值上。
通常表示为:f(x),其中f表示函数名,x表示自变量,f(x)表示函数的值。
1.2 函数的性质•定义域:函数的自变量所能取到的值的集合。
•值域:函数的因变量所能取到的值的集合。
•单调性:函数在整个定义域内的增减关系。
•奇偶性:函数的对称性质。
2. 一元二次方程一元二次方程是高中数学中常见的一种方程类型,它的一般形式为ax2+bx+c=0。
解一元二次方程的方法有因式分解、配方法、求根公式等。
2.1 因式分解法当一元二次方程可以因式分解为两个一次因式的乘积时,我们可以通过解两个一次方程来求解原方程。
例如:x2−5x+6=0可以分解为(x−2)(x−3)=0,解方程得x=2或x=3。
2.2 配方法当一元二次方程的一次项系数为 2 或 -2 时,可以采用配方法来求解方程。
例如:2x2−7x−3=0。
我们可以通过将2x2−7x−3=0看作(ax+b)x+ c=0的形式,其中a、b、c分别表示方程的系数。
然后,我们将x的系数−7分解为两个数,使得这两个数相乘等于ac,即2∗(−3)=−6,并且这两个数的和等于b,即−7。
在这个例子中,可以写成−3和2。
然后将方程改写为(2x−3)(x+ 1)=0,解得 $x=\\frac{3}{2}$ 或x=−1。
2.3 求根公式当一元二次方程无法通过因式分解或配方法来求解时,我们可以使用求根公式来求解方程。
一元二次方程的求根公式为:$x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$。
通过代入方程的系数a、b、c到公式中,就可以得到方程的解。
3. 三角函数三角函数是解决与角相关问题的数学工具,广泛应用于物理、工程、计算机图形学等领域。
北师版高考总复习一轮理科数精品课件 第6章 数列 第1节 数列的概念
增素能 精准突破
考点一
由an与Sn的关系求通项公式
典例突破
例1.(1)已知数列{an}的前n项和为Sn,且满足Sn=2n+2-3,则an=
(2)已知数列{an}的前n项和为Sn,且Sn+an=-2,则数列{an}的通项公式
an=
.
(3)设 Sn 是数列{an}的前 n 项和,且 a1=-1, + =Sn + (Sn≠0),则
∴an=3×2n-1-2(n≥2).又a1=1也满足上式,∴an=3×2n-1-2.
(3)因为
则
1
an+1=an+
,即
(+1)
1
an-an-1=
-1
1
a3-a2=
2
−
−
1
an+1-an=
1
1
,an-1-an-2=
-2
−
−
1
,
+1
1
1
,an-2-an-3=
-1
-3
1
1
,a2-a1=1- ,
有关项的值或者前n项的和.
对点训练3(2021广西柳州模拟)在数列{an}中,a1=1,a2=3,a3=5,anan+3=1,则
log5a1+log5a2+…+log5a2 021=(
1
-1
3
1
+1
3
1
,a3=
3
1
2
1
- +1
2
1
=-2,a4=
∴数列{an}的周期为 4,且
- -1
2025年新人教版高考数学一轮复习讲义 第三章 §3.1 导数的概念及其意义、导数的运算
2025年新人教版高考数学一轮复习讲义第三章§3.1 导数的概念及其意义、导数的运算1.了解导数的概念、掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数的导数.第一部分 落实主干知识第二部分 探究核心题型课时精练第一部分落实主干知识1.导数的概念(1)函数y =f (x )在x=x 0处的导数记作或 .f ′(x 0)0|x x y =(2)函数y =f (x )的导函数(简称导数)2.导数的几何意义函数y=f(x)在x=x0处的导数的几何意义就是曲线y=f(x)在点P(x0,f(x0))斜率y-f(x0)=f′(x0)(x-x0)处的切线的 ,相应的切线方程为 .3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=___f (x )=x α(α∈R ,且α≠0)f ′(x )=______f (x )=sin xf ′(x )=_____f (x )=cos xf ′(x )=_______f (x )=a x (a >0,且a ≠1)f ′(x )=______0αx α-1cos x -sin x a x ln a基本初等函数导函数e xf(x)=e x f′(x)=____ f (x)=log a x(a>0,且a≠1)f′(x)=______f(x)=ln x f′(x)=___4.导数的运算法则若f ′(x ),g ′(x )存在,则有[f (x )±g (x )]′= ;[f (x )g (x )]′=;f ′(x )±g ′(x )[cf (x )]′=.f ′(x )g (x )+f (x )g ′(x )cf ′(x )5.复合函数的定义及其导数复合函数y=f(g(x))的导数与函数y=f(u),u=g(x)的导数间的关系为y′x y′u·u′x=,即y对x的导数等于y对u的导数与u对x的导数的乘积.常用结论1.在点处的切线与过点的切线的区别(1)在点处的切线,该点一定是切点,切线有且仅有一条.(2)过点的切线,该点不一定是切点,切线至少有一条.1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)与曲线只有一个公共点的直线一定是曲线的切线.( )(3)f ′(x 0)=[f (x 0)]′.( )(4)(e -x )′=-e -x .( )√×××2.若函数f(x)=3x+sin 2x,则√4.(选择性必修第二册P82T11改编)设曲线y=e2ax在点(0,1)处的切线与直线2x-y+1=0垂直,则a的值为 .∵y=e2ax,∴y′=e2ax·(2ax)′=2a·e2ax,∴在点(0,1)处的切线斜率k=y′|x=0=2a e0=2a,又∵切线与直线2x-y+1=0垂直,返回第二部分探究核心题型题型一 导数的运算例1 (1)(多选)下列求导正确的是√√对于A,[(3x+5)3]′=3(3x+5)2(3x+5)′=9(3x+5)2,故A正确;对于B,(x3ln x)′=(x3)′ln x+x3(ln x)′=3x2ln x+x2,故B正确;√思维升华(1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解.(3)复合函数求导,应由外到内逐层求导,必要时要进行换元.跟踪训练1 (多选)下列命题正确的是A.若f(x)=x sin x-cos x,则f′(x)=sin x-x cos x+sin x √B.设函数f(x)=x ln x,若f′(x0)=2,则x0=eC.已知函数f(x)=3x2e x,则f′(1)=12e√对于选项A,f′(x)=sin x+x cos x+sin x,故选项A不正确;对于选项B,f′(x)=ln x+1,则f′(x0)=ln x0+1=2,解得x0=e,故选项B正确;对于选项C,f′(x)=6x e x+3x2e x,则f′(1)=6e+3e=9e,故选项C不正确;题型二 导数的几何意义命题点1 求切线方程√(2)(2022·新高考全国Ⅱ)曲线y=ln|x|过坐标原点的两条切线的方程为, .先求当x>0时,曲线y=ln x过原点的切线方程,设切点为(x0,y0),解得y0=1,代入y=ln x,得x0=e,命题点2 求参数的值(范围)例3 (1)(2024·泸州模拟)若直线y=kx+1为曲线y=ln x的一条切线,则实数k的值是√设直线y =kx +1在曲线y =ln x 上的切点为P (x 0,y 0),|x x y =又y 0=ln x 0,又切线方程为y=kx+1,(2)(2022·新高考全国Ⅰ)若曲线y=(x+a)e x有两条过坐标原点的切线,则a(-∞,-4)∪(0,+∞)的取值范围是.因为y =(x +a )e x ,所以y ′=(x +a +1)e x .设切点为,O 为坐标原点,依题意得,切线斜率k OA = ,化简,得 +ax 0-a =0.因为曲线y =(x +a )e x 有两条过坐标原点的切线,00000()e (1)e |x x x x x a y x a x +'=++==000(,()e )x A x x a +所以Δ=a 2+4a >0,解得a <-4或a >0,所以a 的取值范围是(-∞,-4)∪(0,+∞).思维升华(1)处理与切线有关的问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.(2)注意区分“在点P处的切线”与“过点P的切线”.跟踪训练2 (1)(2023·深圳质检)已知f(x)为偶函数,当x<0时,f(x)=x3-x,则曲线y=f(x)在点(1,0)处的切线方程是A.2x-y-2=0B.4x-y-4=0√C.2x+y-2=0D.4x+y-4=0当x<0时,f(x)=x3-x,则f′(x)=3x2-1,所以f′(-1)=2,由f(x)为偶函数,得f′(1)=-f′(-1)=-2,则曲线y=f(x)在点(1,0)处的切线方程是y=-2(x-1),即2x+y-2=0.(-∞,-2]∴-a≥2,即a≤-2.题型三 两曲线的公切线例4 (1)(2024·青岛模拟)已知定义在区间(0,+∞)上的函数f(x)=-2x2+m,g(x)=-3ln x-x,若以上两函数的图象有公共点,且在公共点处切线相同,则m的值为√A.2B.5C.1D.0根据题意,设两曲线y=f(x)与y=g(x)的公共点为(a,b),其中a>0,由f(x)=-2x2+m,可得f′(x)=-4x,则切线的斜率k=f′(a)=-4a,又由g(1)=-1,即公共点的坐标为(1,-1),将点(1,-1)代入f(x)=-2x2+m,可得m=1.(2)若两曲线y=ln x-1与y=ax2存在公切线,则正实数a的取值范围是√对于y=ax2有y′=2ax,令g(x)=2x2-x2ln x,x>0,则g ′(x )=3x -2x ln x =x (3-2ln x ),令g ′(x )=0,得x = ,32e 当x ∈ 时,g ′(x )>0,g (x )单调递增;32(0,e )当x ∈ 时,g ′(x )<0,g (x )单调递减,32(e ,) 32(e )g思维升华公切线问题应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3 (1)(2023·青岛模拟)若曲线C1:f(x)=x2+a和曲线C2:g(x)=-34ln x-2x存在有公共切点的公切线,则a= .f(x)=x2+a,g(x)=4ln x-2x,设公共切点的坐标为(x0,y0),(2)已知f(x)=e x-1,g(x)=ln x+1,则f(x)与g(x)的公切线有√A.0条B.1条C.2条D.3条根据题意,设直线l与f(x)=e x-1相切于点(m,e m-1),与g(x)相切于点(n,ln n+1),对于f(x)=e x-1,有f′(x)=e x,则直线l的斜率k=e m,则直线l的方程为y+1-e m=e m(x-m),即y=e m x+(1-m)e m-1,。
高三数学第一轮总复习讲义数列
高中数学总复习讲义(培优版)供理科生使用数列四讲第一讲 数列的概念及简单表示教学目标了解数列的概念和几种简单的表示方法(列表、图象、通项公式). 教学重难点1.本部分主要考查数列的基本概念及表示方法、通项公式的求法以及数列的性质.2.题型多以选择、填空题为主,有时也作为解答题的一问,难度不大. 教材知识再现一.基础知识1.数列的概念:按一定 排列的一列数叫做数列。
数列中的每一个数都叫做数列的 。
从函数的角度看:数列可以看作是一个定义域为 或它的有限子集,当自变量从小到大依次取值时对应的一列 。
2.数列的表示方法:(1)列表法;(2)图示法:数列的图像是离散的点,而不是曲线; (3)通项公式法:用含)(n f a a n n n =,即的式子表示(4)递推公式法: 3.数列的分类:(1)按项数的多少可分为 和 ;(2)按数列中相邻两项的大小关系可分为 、 、 和 。
4.(1)数列{}n a 的前n 项和:n n a a a a S ++++= 321(2)的关系与n n S a : ⎩⎨⎧≥-==-.2111n S S n S a n nn ,,,基本方法 用函数的思想方法处理数列问题(数列的本质是函数) (1)如何理解数列是函数? (2)如何求数列的通项公式?(3)如何判断数列的单调性及求数列中的最大(小)项? (4)如何求数列的前n 项和公式?经典习题奠基1.数列⋅⋅⋅,95,74,53,32,1的一个通项公式是2.已知数列{a n }的通项公式为a n =n +1,则这个数列是( ) A .递增数列 B .递减数列 C .常数列 D .摆动数列 3.在数列{a n }中,a n +1=a n +2+an ,a 1=2,a 2=5,则a 6的值是( ) A .-3 B .-11 C .-5 D .19 4,已知数列{}n a 的通项公式⎩⎨⎧-⋅=-52321n a n n122+==k n kn )(N k ∈,则=⋅34a a 5. 已知数列{}n a 的通项公式为n q pn a n +=,且23,2342==a a ,则=8a 关键要点点拨1.求通项公式的技巧根据数列的前几项写出数列的通项公式时,常用到“观察、归纳、猜想、验证”的数学思想方法,即先找出各项相同的部分(不变量),再找出不同的部分(可变量)与序号之间的关系,并用n 表示出来.不是所有的数列都有通项公式,一个数列的通项公式在形式上可以不唯一 2.数列中最大项与最小项的求法考点一 由数列的前几项求数列的通项公式[例1] 下列可作为数列{}⋅⋅⋅,2,1,2,1,2,1:n a 的通项公式的是( )A.1=n aB.21)1(+-=n n aC. 2sin 2πn - D. 23)1(1+-=-n n a1.已知数列⋅⋅⋅,13,10,7,2则72是该数列的( ) A.第7项 B.第8项 C.第9项 D.第10项2.写出下列各数列的一个通项公式 (1)3,5,7,9,…(2)⋅⋅⋅,3231,1615,87,43,21 (3)⋅⋅⋅---,63,51,43,31,23,11.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,可使用添项、还原、分割等办法,转化为一些常见数列的通项公式来求.2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n +1来调整.3.观察、分析问题的特点是最重要的,观察要有目的,观察出项与n 之间的关系、规律,利用我们熟知的一些基本数列(如自然数列、奇偶数列等)建立合理的联想、转换而使问题得到解决.考点二 由n a 和n S 的关系求通项[例2]数列{}n a 的前n 项和为n S ,若)1(3,111≥==+n S a a n n ,则=6a 3. 数列{}n a 的前n 项和为n S ,且1+=n n S n ,则=51a 4. 数列{}n a 的前n 项和为n S ,求{}n a 的通项公式 (1)Sn =2n 2-3n ; (2)Sn =4n +b .n a 和n S 的关系通常用)2(1≥-=-n S S a n n n ,注意验证1=n考点三 由数列的递推关系求通项公式[例3] 数列{}n a 满足2,3311=-=+n a a a n n ,求nan 的最小值为( ) A.9.5 B.10.6 C.10.5 D.9.6变式:若本例条件变为:数列{a n }满足下列条件:a 1=1,且对于任意的正整数n (n ≥2,n ∈N*),有2a n =2n a n -1,则a 100的值为________.5. 已知数列{}n a 中,)2()1(1,111≥--==-n n n a a a n n ,则=16a6.分别求满足下列条件的数列的通项公式(1))12(,011-+==+n a a a n n (2))2(1,111≥-==-n a n na a n n 由a 1和递推关系求通项公式,可观察其特点,一般常利用“化归法”、“累加法”、“累乘法”等.1.对于形如“a n +1=a n +f (n )”型的递推关系式求通项公式,只要f (n )可求和,便可利用累加的方法. 2.对于形如)"("1n g a a nn =+型的递推关系式来求通项公式,只要)(n g 可求积,便可以利用累积或迭代的方法。
高三数学第一轮复习讲义
高三数学第一轮复习讲义第一章:函数与方程1.1 函数的概念与性质1.1.1 函数的定义函数是一种将一个集合的元素映射到另一个集合的元素的规则。
在数学中,我们通常用自变量和因变量来描述一个函数。
自变量是输入值,而因变量是输出值。
1.1.2 函数的性质1.定义域和值域:函数的定义域是自变量的取值范围,而值域是因变量的取值范围。
2.单调性:函数的单调性指的是函数在定义域内是否单调递增或单调递减。
3.奇偶性:函数的奇偶性指的是函数在定义域内是否关于原点对称。
4.最值与极值:函数的最值是函数取得的最大值或最小值,而极值则是函数在某一特定区间内取得的最大值或最小值。
1.2 一次函数与二次函数1.2.1 一次函数的性质与图像一次函数是指函数的最高次幂为一的函数,其一般形式为 y = kx + b,其中 k 和 b 是常数。
一次函数的性质与图像包括: - 斜率:斜率表示了函数图像在平面上的倾斜程度,可以通过斜率的正负来判断函数的单调性。
- 截距:截距表示了函数图像与 y 轴的交点位置。
1.2.2 二次函数的性质与图像二次函数是指函数的最高次幂为二的函数,其一般形式为 y = ax^2 + bx + c,其中 a,b 和 c 是常数,且a ≠ 0 。
二次函数的性质与图像包括: - 开口方向:二次函数的开口方向由二次项的系数 a 决定。
- 判别式:判别式可以用来判断二次函数的图像与 x 轴的交点情况。
-顶点坐标:二次函数图像的顶点坐标可以通过解方程组求得。
第二章:不等式与数列2.1 不等式2.1.1 不等式的基本性质不等式是一种表示两个数之间大小关系的数学式子。
在解不等式时,需要注意以下基本性质: - 加减变换:对不等式两边同时加减某个数不改变不等关系的方向。
- 乘除变换:对不等式两边同时乘除某个非零数不改变不等关系的方向。
需要注意,当乘除以负数时,不等关系的方向会发生变化。
2.1.2 一元一次不等式一元一次不等式是指只含有一个未知数的一次不等式,其一般形式为 ax + b >0(或 < 0)。
集合-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版
2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第01练集合(精练)1.了解集合的含义,体会元素与集合的属于关系,能用自然语言、图形语言、集合语言列举法或描述法描述不同的具体问题.2.理解集合间包含与相等的含义,能识别给定集合的子集.在具体情境中,了解全集与空集的含义.3.理解两个集合的并集、交集与补集的含义,会求两个简单集合的并集、交集与补集.能使用Venn 图表示集合间的基本关系及集合的基本运算.一、单选题1.(2023·全国·高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð()A .{}0,2,4,6,8B .{}0,1,4,6,8C .{}1,2,4,6,8D .U2.(2023·全国·高考真题)已知集合{}2,1,0,1,2M =--,260N x x x =--≥,则M N ⋂=()A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出.方法二:将集合M 中的元素逐个代入不等式验证,即可解出.-3.(2023·全国·高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ().A .2B .1C .23D .1-4.(2023·全国·高考真题)设全集Z U =,集合{31,},{32,}M xx k k Z N x x k k Z ==+∈==+∈∣∣,()U M N ⋃=ð()A .{|3,}x x k k =∈Z B .{31,}xx k k Z =-∈∣C .{32,}xx k k Z =-∈∣D .∅【答案】A【分析】根据整数集的分类,以及补集的运算即可解出.【详解】因为整数集{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z Z Z ,U Z =,所以,(){}|3,U M N x x k k ==∈Z ð.故选:A .5.(2023·全国·高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .126.(2022·全国·高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M ∈C .4M ∉D .5M∉【答案】A【分析】先写出集合M ,然后逐项验证即可【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A7.(2022·全国·高考真题)若集合{4},{31}M x N x x ==≥∣,则M N ⋂=()8.(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【A 级基础巩固练】一、单选题1.(2024·北京丰台·一模)已知集合{}220A x x x =-≤,{}10B x x =->,则A B ⋃=()A .{}0x x ≥B .{}01x x ≤<C .{}1x x >D .{}12x x <≤2.(2024·北京顺义·二模)设集合24U x x =∈≤Z ,{}1,2A =,则U A =ð()A .[]2,0-B .{}0C .{}2,1--D .{}2,1,0--【答案】DA .(]0,2B .31,2⎛⎤ ⎥C .()0,2D .30,2⎛⎤4.(23-24高三下·四川成都·阶段练习)已知集合{}{}1,2,2,3A B ==,则集合{},,C z z x y x A y B ==+∈∈的子集个数为()A .5B .6C .7D .85.(2024·陕西安康·模拟预测)已知集合{}{}3N 0log 2,21,Z A x x B x x k k =∈<<==+∈∣∣,则A B = ()A .{}1,3,5,7B .{}5,6,7C .{}3,5D .{}3,5,7【答案】D【分析】先求出集合A ,再根据交集的定义即可得解.【详解】{}{}{}3N0log 2N192,3,4,5,6,7,8A x x x x =∈<<=∈<<=∣∣,所以{}3,5,7A B = .故选:D.6.(23-24高三下·四川雅安·阶段练习)若集合{}2,1,4,8A =-,{}2,B x y x A y A =-∈∈∣,则B 中元素的最大值为()A .4B .5C .7D .10【答案】C【分析】根据B 中元素的特征,只需满足()2max minx y-即可得解.【详解】由题意,()()222max maxmin817x y x y -=-=-=.故选:C7.(2024·四川成都·三模)设全集{}1,2,3,4,5U =,若集合M 满足{}1,4U M ⊆ð,则()A .4M ÎB .1M ∉C .2M ∈D .3M∉8.(2024·河北沧州·模拟预测)已知集合{}4A x x =∈<N ,{}21,B x x n n A ==-∈,P A B =⋂,则集合P 的子集共有()A .2个B .3个C .4个D .8个9.(2024·全国·模拟预测)若集合{}()(){}28,158A x x B x x x =∈<=+->-Z ,则()A B ⋂=R ð()A .{}0,1,2B .{0x x ≤<C .{1x x ≤≤D .{}1,210.(2024·四川泸州·三模)已知集合2230A x x x =--<,{}0,B a =,若A B ⋂中有且仅有一个元素,则实数a 的取值范围为()A .()1,3-B .(][),13,-∞-+∞C .()3,1-D .(][),31,-∞-⋃+∞11.(2024·北京东城·一模)如图所示,U 是全集,,A B 是U 的子集,则阴影部分所表示的集合是()A .AB ⋂B .A B⋃C .()U A B ⋂ðD .()U A B ⋃ð【答案】D【分析】由给定的韦恩图分析出阴影部分所表示的集合中元素满足的条件,再根据集合运算的定义即可得解.【详解】由韦恩图可知阴影部分所表示的集合是()U A B ð.二、多选题12.(2024·甘肃定西·一模)设集合{}{}26,,A x x x B xy x A y A =-≤=∈∈∣∣,则()A .AB B= B .Z B ⋂的元素个数为16C .A B B⋃=D .A Z I 的子集个数为64取值可能是()A .3-B .1C .1-D .014.(2024·广西·二模)若集合M 和N 关系的Venn 图如图所示,则,M N 可能是()A .{}{}0,2,4,6,4M N ==B .{}21,{1}M xx N x x =<=>-∣∣C .{}{}lg ,e 5x M xy x N y y ====+∣∣D .(){}(){}22,,,M x y x y N x y y x ====∣∣三、填空题15.(2024高一上·全国·专题练习)已知集合{}22,4,10A a a a =-+,且3A -∈,则=a .【答案】3-【分析】根据题意,列出方程,求得a 的值,结合集合元素的互异性,即可求解.【详解】因为3A -∈,所以23a -=-或243a a +=-,解得1a =-或3a =-,当1a =-时,23a -=,243a a +=-,集合A 不满足元素的互异性,所以1a =-舍去;当3a =-时,经检验,符合题意,所以3a =-.故答案为:3-.16.(2024高三下·全国·专题练习)集合(){}22,2,,x y x y x y +<∈∈Z Z 的真子集的个数是.17.(23-24高一上·辽宁大连·期中)设{}50A x x =-=,{}10B x ax =-=,若A B B = ,则实数a 的值为.18.(2024·安徽合肥·一模)已知集合{}{}24,11A x x B x a x a =≤=-≤≤+∣∣,若A B ⋂=∅,则a 的取值范围是.【答案】()(),33,-∞-+∞ 【分析】利用一元二次不等式的解法及交集的定义即可求解.【详解】由24x ≤,得()()220x x -+≤,解得22x -≤≤,所以{}22A xx =-≤≤∣.因为A B ⋂=∅,所以12a +<-或12a ->,解得3a <-或3a >,所以a 的取值范围是()(),33,-∞-+∞ .故答案为:()(),33,-∞-+∞ .19.(2024高三·全国·专题练习)设集合(){}2|1A x x a =-<,且2A ∈,3A ∉,则实数a 的取值范围为.【答案】(]1,2【分析】首先解一元二次不等式求出集合A ,再根据2A ∈且3A ∉得到不等式组,解得即可.【详解】由()21x a -<,即11x a -<-<,解得11a x a -<<+,即(){}{}2|11|1A x x a x a x a =-<=-<<+,因为2A ∈且3A ∉,所以121213a a a -<⎧⎪+>⎨⎪+≤⎩,解得12a <≤,即实数a 的取值范围为(]1,2.故答案为:(]1,2四、解答题20.(23-24高一上·广东湛江·期末)已知集合()(){}230A x x x =-+≤,{}11B x a x a =-<<+,定义两个集合P ,Q 的差运算:{},P Q x x P x Q -=∈∉且.(1)当1a =时,求A B -与B A -;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.21.(2024高三·全国·专题练习)设M 是由直线0Ax By C ++=上所有点构成的集合,即{}(,)0M x y Ax By C =++=,在点集M 上定义运算“⊗”:对任意()11,,x y M ∈()22,,x y M ∈则()()11221212,,x y x y x x y y ⊗=+.(1)若M 是直线230x y -+=上所有点的集合,计算()()1,52,1⊗--的值.(2)对(1)中的点集M ,能否确定(3,)(,5)a b ⊗(其中,a b ∈R )的值?(3)对(1)中的点集M ,若(3,)(,)0a b c ⊗<,请你写出实数a ,b ,c 可能的值.【B 级能力提升练】一、单选题1.(2024·全国·模拟预测)已知集合{}{}2210,2log 10M x x P x x =->=-<,则M P ⋂=()A .12x x ⎧<<⎨⎩B .142x x ⎧⎫<<⎨⎬⎩⎭C .{}4x <<D .{}24x x <<2.(2024·宁夏银川·一模)设全集{0,1,2,3,4,5,6},{1,2,3,4,5},{Z 2}U A B x ===∈<,则集合{4,5}=()A .()U AB ⋂ðB .()U A B ⋂ðC .()U A B ∩ðD .()()U U A B ⋂痧所以{}{}Z |041,2,3B x x =∈<<=,所以{}0,4,5,6U B =ð,所以(){}4,5U A B Ç=ð,故ABD 错误,故C 正确;故选:C3.(23-24高三上·内蒙古赤峰·阶段练习)已知集合{}24xA x =>,集合{}B x x a =<∣,若A B ⋃=R ,则实数a 的取值范围为()A .(],2-∞B .[)2,+∞C .(),2-∞D .()2,+∞【答案】D【分析】先求出集合A ,然后根据A B ⋃=R ,即可求解.【详解】由24x >,得2x >,所以()2,A =+∞,因为(),B a =-∞,A B ⋃=R ,所以2a >,故D 正确.故选:D.4.(23-24高一上·全国·期末)已知m ∈R ,n ∈R ,若集合{}2,,1,,0n m m m n m ⎧⎫=+⎨⎬⎩⎭,则20232023m n +的值为()A .2-B .1-C .1D .25.(23-24高三下·湖南长沙·阶段练习)已知全集{}N |010U A B x x =⋃=∈≤≤,(){}1,3,5,7U A B ⋂=ð,则集合B 的元素个数为()A .6B .7C .8D .不确定【答案】B【分析】由已知求出全集,再由(){}U 1,3,5,7A B ⋂=ð可知A 中肯定有1,3,5,7,B 中肯定没有1,3,5,7,从而可求出B 中的元素.【详解】因为全集{}{}N |0100,1,2,3,4,5,6,7,8,9,10U A B x x =⋃=∈≤≤=,(){}1,3,5,7U A B ⋂=ð,所以A 中肯定有1,3,5,7,B 中肯定没有1,3,5,7,A 和B 中都有可能有0,2,4,6,8,9,10,且除了1,3,5,7,A 中有的其他数字,B 中也一定会有,A 中没有的数字,B 中也一定会有,所以{}0,2,4,6,8,9,10B =,故选:B6.(23-24高三下·甘肃·阶段练习)如果集合U 存在一组两两不交(两个集合交集为空集时,称为不交)的非空子集()*122,,,,k A A A k k ≥∈N ,且满足12k A A A U =U U L U ,那么称子集组12,,,k A A A 构成集合U 的一个k 划分.若集合I 中含有4个元素,则集合I 的所有划分的个数为()A .7个B .9个C .10个D .14个二、多选题7.(2024·江苏泰州·模拟预测)对任意,A B ⊆R ,记{},A B x x A B x A B ⊕=∈⋃∉⋂,并称A B ⊕为集合,A B的对称差.例如:若{}{}1,2,3,2,3,4A B ==,则{}1,4A B ⊕=.下列命题中,为真命题的是()A .若,AB ⊆R 且A B B ⊕=,则A =∅B .若,A B ⊆R 且A B ⊕=∅,则A B =C .若,A B ⊆R 且A B A ⊕⊆,则A B ⊆D .存在,A B ⊆R ,使得A B A B⊕≠⊕R R痧三、填空题8.(2024·浙江绍兴·二模)已知集合{}20A x x mx =+≤,1,13B m ⎧⎫=--⎨⎬⎩⎭,且A B ⋂有4个子集,则实数m 的最小值是.9.(2024·湖南·二模)对于非空集合P ,定义函数()1,,P f x x P ⎧=⎨∈⎩已知集合{01},{2}A x x B x t x t=<<=<<∣∣,若存在x ∈R ,使得()()0A B f x f x +>,则实数t 的取值范围为.【C 级拓广探索练】一、单选题1.(2023·上海普陀·一模)设1A 、2A 、3A 、L 、7A 是均含有2个元素的集合,且17A A ⋂=∅,()11,2,3,,6i i A A i +⋂=∅= ,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .5B .6C .7D .8【答案】A【分析】设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,分析可知4n ≥,然后对n 的取值由小到大进行分析,验证题中的条件是否满足,即可得解.【详解】解:设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,若3n =,则12A A ⋂≠∅,不合乎题意.①假设集合B 中含有4个元素,可设{}112,A x x =,则{}24634,A A A x x ===,{}35712,A A A x x ===,这与17A A ⋂=∅矛盾;②假设集合B 中含有5个元素,可设{}1612,A A x x ==,{}2734,A A x x ==,{}351,A x x =,{}423,A x x =,{}545,A x x =,满足题意.综上所述,集合B 中元素个数最少为5.故选:A.【点睛】关键点点睛:本题考查集合元素个数的最值的求解,解题的关键在于对集合元素的个数由小到大进行分类,对集合中的元素进行分析,验证题中条件是否成立即可.二、多选题2.(2024·浙江宁波·二模)指示函数是一个重要的数学函数,通常用来表示某个条件的成立情况.已知U 为全集且元素个数有限,对于U 的任意一个子集S ,定义集合S 的指示函数()()U 1,1,10,S S x Sx x x S∈⎧=⎨∈⎩ð若,,A B C U ⊆,则()注:()x Mf x ∈∑表示M 中所有元素x 所对应的函数值()f x 之和(其中M 是()f x 定义域的子集).A .1()1()A A x Ax Ux x ∈∈<∑∑B .1()1()1()A B A A B x x x ⋂⋃≤≤C .()1()1()1()1()1()A B A B A B x Ux Ux x x x x ⋃∈∈=+-∑∑D .()()()11()11()11()1()1()A B C U A B C x Ux Ux Ux x x x x ⋃⋃∈∈∈---=-∑∑∑【答案】BCD【分析】根据()1S x 的定义()U 1,10,S x Sx x S ∈⎧=⎨∈⎩ð,即可结合选项逐一求解.【详解】对于A ,由于A U ⊆,所以1()1()1()1(),uA A A A x U x A x A x Ax x x x ∈∈∈∈=+=∑∑∑∑ð故1()1()A A x Ax Ux x ∈∈=∑∑,故A 错误,对于B ,若x A B ∈ ,则1()1,1()1,1()1A B A A B x x x ⋂⋃===,此时满足1()1()1()A B A A B x x x ⋂⋃≤≤,若x A ∈且x B ∉时,1()0,1()1,1()1A B A A B x x x ⋂⋃===,若x B ∈且x A ∉时,1()0,1()0,1()1A B A A B x x x ⋂⋃===,若x A ∉且x B ∉时,1()0,1()0,1()0A B A A B x x x ⋂⋃===,综上可得1()1()1()A B A A B x x x ⋂⋃≤≤,故B 正确,对于C ,()()()()()1()1()1()1()1()1()1()1()1()1()1()1()U UAB A B AB A B AB A B x Ux A B x B A x x x x x x x x x x x x ∈∈⋂∈⋂+-=+-++-∑∑∑痧()()()()1()1()1()1()1()1()1()1()U ABABABABx A B x A Bx x x x x x x x ∈⋂∈⋃++-++-∑∑ð()()()()()()()1()1()1()1()1()1()1()1()1()1()1()1()0U U U ABABABABABABx A B x A B x A B x B A x x x x x x x x x x x x ∈⋂∈⋃∈⋂∈⋂=+-++-++-+∑∑∑∑ð痧()()1()1()1()1()ABABx A B x x x x ∈⋃=+-∑而()1()1()1()1()U A B A BA B A Bx Ux A Bx A Bx A Bx x x x ⋃⋃⋃⋃∈∈⋃∈⋃∈⋃=+=∑∑∑∑ð,由于()()()U 1,10,A B x A Bx x A B ⋃∈⋃⎧=⎨∈⋃⎩ð,所以1()1()1()1()1()A B A B A B x x x x x ⋃+-=故()1()1()1()1()1()A B AB A B x U x Ux x x x x ⋃∈∈=+-∑∑,C 正确,()1()1()1()U UA B C U x Ux Ux A B C x x x ⋃⋃∈∈∈⋃⋃-=∑∑∑ð,当x A B C ∈⋃⋃时,此时()()()1,1,1A B C x x x 中至少一个为1,所以()()()11()11()11()0A B C x x x ---=,当()x A B C ∉⋃⋃时,此时()()()1,1,1A B C x x x 均为0,所以()()()11()11()11()1A B C x x x ---=,故()()()()()()()()11()11()11()11()11()11()1()UU A B C A B C A B C U x U x x A B C x x x x x x x ⋃⋃∈∈∈⋃⋃---=---=∑∑∑痧,故D 正确,故选:BCD【点睛】关键点点睛:充分利用()1S x 的定义()U 1,10,S x Sx x S ∈⎧=⎨∈⎩ð以及()x M f x ∈∑的定义,由此可得()x A B C ∉⋃⋃时,此时1(),1(),I ()A B C x x x 均为0,x A B C ∈⋃⋃时,此时1(),1(),I ()A B C x x x 中至少一个为1,结合()1S x 的定义化简求解.三、填空题3.(23-24高三上·江西·期末)定义:有限集合{}++,,N ,N i A x x a i n i n ==≤∈∈,12n S a a a =+++ 则称S 为集合A 的“元素和”,记为A .若集合(){}+12,,N ,N i P x x i i n i n +==+≤∈∈,集合P 的所有非空子集分别为1P ,2P ,…,k P ,则12k P P P +++=.四、解答题4.(2024·浙江台州·二模)设A ,B 是两个非空集合,如果对于集合A 中的任意一个元素x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的元素y 和它对应,并且不同的x 对应不同的y ;同时B 中的每一个元素y ,都有一个A 中的元素x 与它对应,则称f :A B →为从集合A 到集合B 的一一对应,并称集合A 与B 等势,记作A B =.若集合A 与B 之间不存在一一对应关系,则称A 与B 不等势,记作A B ≠.例如:对于集合*N A =,{}*2N B n n =∈,存在一一对应关系()2,y x x A y B =∈∈,因此A B =.(1)已知集合(){}22,1C x y x y =+=,()22,|143x y D x y ⎧⎫=+=⎨⎬⎩⎭,试判断C D =是否成立?请说明理由;(2)证明:①()()0,1,=-∞+∞;②{}**N N x x ≠⊆.【答案】(1)成立,理由见解析(2)①证明见解析;②证明见解析5.(2024·北京延庆·一模)已知数列{}n a ,记集合()(){}*1,,...,1,,N i i j T S i j S i j a a a i j i j +==+++≤<∈.(1)若数列{}n a 为1,2,3,写出集合T ;(2)若2n a n =,是否存在*,N i j ∈,使得(),512S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若n a n =,把集合T 中的元素从小到大排列,得到的新数列为12,,...,,...m b b b ,若2024m b ≤,求m 的最大值.若正整数()221t h k =+,其中*N,N t k ∈∈,则当1221t k +>+时,由等差数列的性质可得:()()()()()()()22122...2221...21221...212t t t t t t t t t t t h k k k k k =+=+++=-+-+++-++++++-++,此时结论成立,当1221t k +<+时,由等差数列的性质可得:()()()()()()()()2121...2121...112...2t t h k k k k k k k k k =++++++=-+++-++++++++,此时结论成立,对于数列n a n =,此问题等价于数列1,2,3,...n 其相应集合T 中满足2024m b ≤有多少项,由前面证明可知正整数1,2,4,8,16,32,64,128,256,512,1024不是T 中的项,所以m 的最大值为2013.。
高考数学一轮复习基础精品讲义
③ 会根据命题中的常用逻辑用语,对集合进行运算和转化.
S 归纳总结
T(Textbook-Based)——同步课堂
体系搭建 一、知识框架
二、知识概念
(一)集合定义
1、集合:我们把要研究的对象称为集合(A); 集合中的对象称为元素(a);
2、元素的关系:属于(a∈A);不属于( a A );
3、集合的分类:有限集;无限集;空集(Φ); 4、集合的表示方法:列举法;描述法;Venn 法; 5、集合的性质:互异性;确定性;无序性;
1
(二)集合之间的关系
类型
符号语言表述
子集
A B(或 B A)
Venn 图表示
B
A
A(B)ห้องสมุดไป่ตู้
真子集
A B(或 B A)
集合相等
A=B
(三)集合之间的基本运算 1、交集、并集、补集
运算类型
交集
B
A
A=B
并集
补集
符号表示 A B={x|xA,且 xB} A B={x|xA,或 xB})
12345 ③{ , , , , } ______________________________________________________.
34567
考点四:子集的定义
例 1、设集合 A={x|1<x<2},B={x|x<a}满足 A B,则实数 a 的取值范围是( )
A.{a|a ≥2} B.{a|a≤1}
()
①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2} {1,0,2}
④ ∈{0,1,2} ⑤ ∈{0}
A.5
B.2
C.3
D.4
高三数学第一轮的复习讲义
高三数学第一轮的复习讲义一.复习目标:1.了解相互独立事件的意义,会求相互独立事件同时发生的概率;2.会计算事件在次独立重复试验中恰好发生次的概率.二.知识要点:1.相互独立事件的概念: .2.是相互独立事件,则 .3.次试验中某事件发生的概率是,则次独立重复试验中恰好发生次的概率是 .三.课前预习:1.下列各对事件 (1)运动员甲射击一次,“射中环”与“射中环”, (2)甲、乙二运动员各射击一次,“甲射中环”与“乙射中环”, (3)甲、乙二运动员各射击一次,“甲、乙都射中目标”与,“甲、乙都没有射中目标”, (4)甲、乙二运动员各射击一次,“至少有一人射中目标”与,“甲射中目标但乙没有射中目标”,是互斥事件的有 (1),(3) .相互独立事件的有 (2) .2.某射手射击一次,击中目标的概率是,他连续射击次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第次击中目标的概率是;②他恰好击中目标次的概率是; ③他至少击中目标次的概率是,其中正确结论的序号①③ .3.件产品中有件次品,从中连续取两次,(1)取后不放回,(2)取后放回,则两次都取合格品的概率分别是、.4.三个互相认识的人乘同一列火车,火车有节车厢,则至少两人上了同一车厢的概率是 ( )5.口袋里装有大小相同的黑、白两色的手套,黑色手套只,白色手套只,现从中随机地取出两只手套,如果两只是同色手套则甲获胜,两只手套颜色不同则乙获胜,则甲、乙获胜的机会是 ( )甲多乙多一样多不确定四.例题分析:例1.某地区有个工厂,由于电力紧缺,规定每个工厂在一周内必须选择某一天停电(选哪一天是等可能的),假定工厂之间的选择互不影响.(1)求个工厂均选择星期日停电的概率;(2)求至少有两个工厂选择同一天停电的概率. 解:设个工厂均选择星期日停电的事件为.则.(2)设个工厂选择停电的时间各不相同的事件为.则,至少有两个工厂选择同一天停电的事件为,. 小结:个工厂均选择星期日停电可看作个相互独立事件.例2.某厂生产的产品按每盒件进行包装,每盒产品均需检验合格后方可出厂.质检办法规定:从每盒件产品中任抽件进行检验,若次品数不超过件,就认为该盒产品合格;否则,就认为该盒产品不合格.已知某盒产品中有件次品.(1)求该盒产品被检验合格的概率;(2)若对该盒产品分别进行两次检验,求两次检验得出的结果不一致的概率.解: (1)从该盒件产品中任抽件,有等可能的结果数为种,其中次品数不超过件有种,被检验认为是合格的概率为.(2)两次检验是相互独立的,可视为独立重复试验,因两次检验得出该盒产品合格的概率均为,故“两次检验得出的结果不一致”即两次检验中恰有一次是合格的概率为答:该盒产品被检验认为是合格的概率为;两次检验得出的结果不一致的概率为.例3.假定在张票中有张奖票(),个人依次从中各抽一张,且后抽人不知道先抽人抽出的结果,(1)分别求第一,第二个抽票者抽到奖票的概率,(2)求第一,第二个抽票者都抽到奖票的概率.解:记事件:第一个抽票者抽到奖票,记事件:第一个抽票者抽到奖票,则(1),,(2)小结:因为≠,故A与B是不独立的.例 4. 将一枚骰子任意的抛掷次,问点出现(即点的面向上)多少次的概率最大?解:设为次抛掷中点出现次的概率,则,∴,∵由,得,即当时,,单调递增,当时,,单调递减,从而最大.五.课后作业:1.将一颗质地均匀的骰子(它是一种各面上分别标有点数的正方体玩具)先后抛掷次,至少出现一次点向上的概率是 ( )2.已知盒中装有只螺口与只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第次才取得卡口灯炮的`概率为: ( )3.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是,这位司机遇到红灯前,已经通过了两个交通岗的概率是 ;4.甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92.求该题被乙独立解出的概率。
2025年新人教版高考数学一轮复习讲义 第一章 §1.3 等式性质与不等式性质
2025年新人教版高考数学一轮复习讲义第一章§1.3 等式性质与不等式性质1.掌握等式性质.2.会比较两个数的大小.3.理解不等式的性质,并能简单应用.第一部分 落实主干知识第二部分 探究核心题型课时精练第一部分落实主干知识1.两个实数比较大小的方法作差法(a ,b ∈R ).a -b >0⇔a b ,a -b =0⇔a b ,a -b <0⇔a b ><=2.等式的性质性质1 对称性:如果a =b ,那么;性质2 传递性:如果a =b ,b =c ,那么;性质3 可加(减)性:如果a =b ,那么a ±c =b ±c ;性质4 可乘性:如果a =b ,那么ac =bc ;性质5 可除性:如果a =b ,c ≠0,那么 .b =a a =c3.不等式的性质性质1 对称性:a >b ⇔;性质2 传递性:a >b ,b >c ⇒;性质3 可加性:a >b ⇔a +c >b +c ;性质4 可乘性:a >b ,c >0⇒;a >b ,c <0⇒ ;性质5 同向可加性:a >b ,c >d ⇒;性质6 同向同正可乘性:a >b >0,c >d >0⇒;性质7 同正可乘方性:a >b >0⇒a n >b n (n ∈N ,n ≥2).b <a a >c ac >bc ac <bc a +c >b +d ac >bd不等式的两类常用性质(1)倒数性质(2)有关分数的性质若a>b>0,m>0,则①真分数的性质②假分数的性质自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( )(2)若 >1,则b >a .( )(3)同向不等式具有可加性和可乘性.( )(4)若 ,则b <a .( )×√××2.(必修第一册P43T8改编)已知非零实数a,b满足a<b,则下列不等式中一定成立的是√对于A,当a<b<0时,不等式无意义,故A错误;对于B,当a<0<b时,,故B错误;对于C,当a<b<0时,a2>b2,故C错误;对于D,当a<b时,a3<b3成立,故D正确.3.(必修第一册P43T10改编)已知b克糖水中含有a克糖(b>a>0),再添加m克糖(m>0)(假设全部溶解),糖水变甜了.请将这一事实表示成一个不等式为_________.∵b>a>0,m>0,∴a-b<0,4.(必修第一册P42T5改编)已知2<a<3,-2<b<-1,则a+2b的取值范围(-2,1)为________.因为-2<b<-1,所以-4<2b<-2,又2<a<3,所以-2<a+2b<1.返回第二部分探究核心题型题型一 数(式)的大小比较例1 (1)(多选)下列不等式中正确的是√A.x2-2x>-3(x∈R)B.a3+b3≥a2b+ab2(a,b∈R)C.a2+b2>2(a-b-1)√∵x2-2x+3=(x-1)2+2≥2>0,∴x2-2x>-3,故A正确;a3+b3-a2b-ab2=a2(a-b)+b2(b-a)=(a-b)(a2-b2)=(a-b)2(a+b).∵(a-b)2≥0,a+b的符号不确定,∴a3+b3与a2b+ab2的大小不确定,故B错误;∵a2+b2-2a+2b+2=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1),故C错误;(2)若正实数a,b,c满足c<c b<c a<1,则A.a a<a b<b aB.a a<b a<a b √C.a b<a a<b aD.a b<b a<a a∵c是正实数,且c<1,∴0<c<1,由c<c b<c a<1,得0<a<b<1,∴a b<a a,思维升华比较大小的常用方法(1)作差法:①作差;②变形;③定号;④得出结论.(2)作商法:①作商;②变形;③判断商与1的大小关系;④得出结论.(3)构造函数,利用函数的单调性比较大小.跟踪训练1 (1)若ln a>ln b,则√因为ln a>ln b,所以a>b>0,因为a-b>0,函数y=x a-b在(0,+∞)上单调递增,所以πa-b>3a-b,故C错误;其中a-b>0,ab+1>0,ab>0,M>N∴M>N.显然f (x )是R 上的减函数,∴f (2 023)>f (2 024),即M >N .题型二 不等式的基本性质例2 (1)若实数a,b满足a<b<0,则√由a<b<0,可得a+b<0,故A错误;由a<b<0,可得a-b<0,故B正确;由a<b<0,可得-a>-b>0,所以|a|>|b|,故C错误;由a<b<0,可得|a|>|b|>0,(2)(多选)已知a,b,c为实数,则下列说法正确的是A.若a>b,则ac2>bc2√B.若a>b,则a+c>b+c√√当c=0时,ac2=bc2,故A错误;由不等式的可加性可知,B正确;若a>b>c>0,则a-b>0,b+c>0,若a>b>c>0,则a-b>0,a-c>0,b-c>0,且a-c>a-b,又b>c>0,思维升华判断不等式的常用方法(1)利用不等式的性质逐个验证.(2)利用特殊值法排除错误选项.(3)作差法.(4)构造函数,利用函数的单调性.跟踪训练2 (1)设a,b,c,d为实数,且c<d,则“a<b”是“a-c<b-d”的A.充分不必要条件√B.必要不充分条件C.充要条件D.既不充分也不必要条件由a<b不能推出a-c<b-d,如a=2,b=3,c=0,d=1,满足a<b,但是a-c=b-d,故充分性不成立;当a-c<b-d时,又c<d,可得a-c+c<b-d+d,即a<b,故必要性成立,所以“a<b”是“a-c<b-d”的必要不充分条件.(2)(多选)若a >b >0,则下列不等式中正确的是A.B.-a 2<-abC.ln|a -1|>ln|b -1|D.2a -b >1√√√因为a-b>0,所以2a-b>20=1,故D正确.例3 (1)已知0<x <5,-1<y <1,则x -2y 的取值范围是A.2<x -2y <3B.-2<x -2y <3C.2<x -2y <7D.-2<x -2y <7√题型三 不等式性质的综合应用因为-1<y <1,所以-2<-2y <2,又0<x <5,所以-2<x -2y <7.延伸探究若将条件改为“-1≤x+y≤2,-2≤x-y≤1”,求x-2y的范围.设x-2y=m(x+y)+n(x-y),∴x-2y=(m+n)x+(m-n)y,∵-1≤x+y≤2,-2≤x-y≤1,即-4≤x-2y≤2.(2)为了加强家校联系,王老师组建了一个由学生、家长和教师组成的微信群.已知该群中男学生人数多于女学生人数,女学生人数多于家长人数,家长人数多于教师人数,教师人数的两倍多于男学生人数.则该微信群人数的最小值为√A.20B.22C.26D.28设教师人数为x,家长人数为y,女学生人数为z,男学生人数为t,x,y,z,t∈N*,则y≥x+1,z≥y+1≥x+2,t≥z+1≥y+2≥x+3,则x+y+z+t≥4x+6,又教师人数的两倍多于男学生人数,∴2x>x+3,解得x>3,当x=4时,x+y+z+t≥22,此时微信群人数的最小值为22.思维升华利用不等式的性质求代数式的取值范围的注意点(1)必须严格运用不等式的性质.(2)在多次运用不等式的性质时有可能扩大变量的取值范围,解决途径是先建立所求范围的整体与已知范围的整体的等量关系,然后通过“一次性”不等关系的运算求解范围.跟踪训练3 (1)(多选)已知1≤a ≤2,3≤b ≤5,则A.a +b 的取值范围为[4,7]B.b -a 的取值范围为[2,3]C.ab 的取值范围为[3,10]√√因为1≤a≤2,3≤b≤5,所以4≤a+b≤7,-2≤-a≤-1,1≤b-a≤4,所以a+b的取值范围为[4,7],b-a的取值范围为[1,4],故A正确,B错误;因为1≤a≤2,3≤b≤5,√原式分子和分母同时除以x,返回。
高三数学第一轮复习讲义
高三数学第一轮复习讲义(1) 2008.6不等式的解法一.复习目标:在掌握一元一次不等式、一元二次不等式、简单的高次不等式、分式不等式的解法的基础上,掌握某些简单的不等式的解法.二.知识要点:1.同解变形是解不等式应遵循的主要原则,高中阶段所解的不等式最后都要转化为一元一次或一元二次不等式,因此,等价转化是解不等式的主要思路;2.不等式组的解是本组各不等式解集的交集,取交集时,一定要将各不等式的解集在同一数轴上标出来,不同不等式解集的示意线最好在高度上有所区别.三.课前预习:1.不等式212x x <++的解集是( )()A (3,2)(0,)--+∞()B (,3)(2,0)-∞--()C (3,0)-()D (,3)(0,)-∞-+∞2.关于x 的不等式(2)50a b x a b -+->的解集是10(,)7-∞,则关于x 的不等式ax b >的解集是( )()A 3(,)5+∞()B 3(,)5-∞()C 3(,)5-+∞()D 3(,)5-∞-3.设函数1221, 0(), 0xx f x x x -⎧-≤⎪=⎨⎪>⎩,若0()1f x >,则0x 的取值范围是( )()A (1,1)- ()B (1,)-+∞ ()C (,2)(0,-∞-+∞()D (,1)(1,-∞-+∞4.不等式2821()33x x-->的解集是 .5.已知不等式20ax bx c -+>的解集是1(,2)2-,对于,,a b c 有以下结论:①0a >;②0b >;③0c >;④0a b c ++>;⑤0a b c -+>.其中正确的有 .6.已知不等式①2430x x -+<;②2680x x -+<;③2290x x m -+<,要使同时满足①②的x 也满足③,则m 的取值范围是 .四.例题分析:例1.设全集I R =,集合22{|(21)0}A x x a x a a =-+++<,2{|540}B x x x =-+≥,且A B ≠⊂,求a 的取值范围.例2.已知关于x 的不等式250a x x a-≤-的解集为M , (1)当4a =时,求集合M ;(2)若3,5M M ∈∉,求实数a 的取值范围.例3.解不等式21log [2(2)1]0xx x x a aa +-++>,其中1a >,例4.已知函数()f x 在R 上是增函数,,a b R ∈,(1)求证:若0a b +≥,则()()()()f a f b f a f b +≥-+-; (2)判断(1)中命题的逆命题是否成立?并证明你的结论; (3)解不等式11(lg )(2)(lg)(2)11x x f f f f xx-++≥+-+-.五.课后作业: 班级 学号 姓名1.不等式2(3)(10)0(1)x x x x--≥-的解集是 ( )()A (,0)(1,3][10,)-∞+∞ ()B (,0)(0,1)[3,10]-∞()C (0,1)(3,10)()D [0,1)(3,10)2.已知不等式2230x x --<的解集为A ,不等式260x x +-<的解集为B ,不等式20x a x b ++<的解集为A B ,则a b +等于( )()A 3-()B 1()C 1-()D 33.设函数(),()f x g x 都上定义在R 上的奇函数,不等式()0f x >的解集为(,)m n ,不等式()0g x >的解集为(,)22m n ,其中02m n <<,则不等式()()0f x g x ⋅>的解集是 ( )()A (,)22m n()B (,)(,)2222m n n m -- ()C (,)n m --()D (,)(,)22n n m m --4.若不等式22113()3x a xx -+>对一切实数x 恒成立,则实数a 的取值范围是 . 5.已知20a x b x c ++>的解集为{|0}x x αβ<<<,则不等式20cx bx a -+>的解集是 . 6.已知关于x 的不等式()()0x a x b x c--≥-的解为12x -≤<或3x ≥,则不等式0()()x c x a x b -≤--的解集为 . 7.解不等式1318329x x+-+⋅>.8.解不等式:(1)2(2)(1)(1)(2)0x x x x ++--≤;(2)22032x x x-<+-.9.已知0a >且1a ≠,关于x 的不等式1xa >的解集是(,0)-∞,求关于x 的不等式1lo g ()0a x x->的解集.10.若不等式221(1)x m x ->-对满足||2m ≤的所有m 都成立,求x 的取值范围.11.设集合2{|2(1)10}M x ax a x =-+->,已知M φ≠,M R +⊆,求a 的取值范围.。
高考理科数学一轮复习讲义: (13)
1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f (x )―――――→关于x 轴对称y =-f (x ); ②y =f (x )―――――→关于y 轴对称y =f (-x ); ③y =f (x )―――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)―――――→关于y =x 对称y =log a x (a >0且a ≠1). (3)伸缩变换()11101a a a ay f x ><<→,横坐标缩短为原来的倍,纵坐标不变,横坐标伸长为原来的倍,纵坐标不变①=y =f (ax ).②y =f (x )―――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x ). (4)翻折变换①y =f (x )―――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ②y =f (x )――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |).【知识拓展】1.函数对称的重要结论(1)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称. (2)函数y =f (x )与y =2b -f (2a -x )的图象关于点(a ,b )中心对称.(3)若函数y =f (x )对定义域内任意自变量x 满足:f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称.2.函数图象平移变换八字方针(1)“左加右减”,要注意加减指的是自变量. (2)“上加下减”,要注意加减指的是函数值. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.( × ) (2)函数y =af (x )与y =f (ax )(a >0且a ≠1)的图象相同.( × ) (3)函数y =f (x )与y =-f (x )的图象关于原点对称.( × )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( √ ) (5)将函数y =f (-x )的图象向右平移1个单位得到函数y =f (-x -1)的图象.( × )1.(教材改编)函数f (x )=x +1x 的图象关于( )A .y 轴对称B .x 轴对称C .原点对称D .直线y =x 对称答案 C解析 函数f (x )的定义域为(-∞,0)∪(0,+∞)且f (-x )=-f (x ),即函数f (x )为奇函数,故选C.2.(2016·全国乙卷)函数y =2x 2-e |x |在[-2,2]上的图象大致为( )答案 D解析 f (2)=8-e 2>8-2.82>0,排除A ;f (2)=8-e 2<8-2.72<1,排除B ;在x >0时,f (x )=2x 2-e x ,f ′(x )=4x -e x ,当x ∈⎝⎛⎭⎫0,14时,f ′(x )<14×4-e 0=0,因此f (x )在⎝⎛⎭⎫0,14上单调递减,排除C ,故选D.3.(2016·岳阳模拟)已知函数133,1,()log ,1,x x f x x x ⎧⎪=⎨⎪⎩≤>则y =f (2-x )的大致图象是()答案 A解析 ∵函数133,1,()log ,1,x x f x x x ⎧⎪=⎨⎪⎩≤>则2133,1(2)log (2),1,x x y f x x x -⎧⎪=-=⎨-⎪⎩≥,< 故函数f (2-x )是以x =1为界的分段函数,只有A 符合,故选A.4.函数y =f (x )在x ∈[-2,2]上的图象如图所示,则当x ∈[-2,2]时,f (x )+f (-x )=________.答案 0解析 由图象的对称性知f (x )在[-2,2]上为奇函数,所以f (x )+f (-x )=0.5.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0),2x (x ≤0),且关于x 的方程f (x )-a =0有两个实根,则实数a 的取值范围是________. 答案 (0,1]解析 当x ≤0时,0<2x ≤1,要使方程f (x )-a =0有两个实根,即函数y =f (x )与y =a 的图象有两个交点,所以由图象可知0<a ≤1.题型一 作函数的图象 例1 作出下列函数的图象. (1)y =(12)|x |;(2)y =|log 2(x +1)|; (3)y =2x -1x -1;(4)y =x 2-2|x |-1.解 (1)作出y =(12)x 的图象,保留y =(12)x 的图象中x ≥0的部分,加上y =(12)x 的图象中x >0部分关于y 轴的对称部分,即得y =(12)|x |的图象,如图①实线部分.(2)将函数y =log 2x 的图象向左平移1个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图②.(3)∵y =2x -1x -1=2+1x -1,故函数图象可由y =1x 的图象向右平移1个单位,再向上平移2个单位而得,如图③.(4)∵y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,如图④. 思维升华 图象变换法作函数的图象(1)熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +1x的函数.(2)若函数图象可由某个基本函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序.作出下列函数的图象.(1)y =|x -2|·(x +1); (2)y =x +2x +3.解 (1)当x ≥2,即x -2≥0时, y =(x -2)(x +1)=x 2-x -2=(x -12)2-94;当x <2,即x -2<0时,y =-(x -2)(x +1)=-x 2+x +2=-(x -12)2+94.∴y =⎩⎨⎧(x -12)2-94,x ≥2,-(x -12)2+94,x <2.这是分段函数,每段函数的图象可根据二次函数图象作出(如图).(2)y =x +2x +3=1-1x +3,该函数图象可由函数y =-1x 向左平移3个单位,再向上平移1个单位得到,如图所示.题型二 识图与辨图例2 (1)(2016·邯郸模拟)函数f (x )=2x -tan x 在(-π2,π2)上的图象大致为( )(2)已知定义在区间[0,2]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )答案 (1)D (2)B解析 (1)f (x )=2x -tan x 是奇函数,其图象关于原点成中心对称,又f (π4)=π2-tan π4=π2-1>0,故选D.(2)方法一 由y =f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x (0≤x ≤1),1(1<x ≤2).当x ∈[0,2]时,2-x ∈[0,2],所以f (2-x )=⎩⎪⎨⎪⎧1(0≤x <1),2-x (1≤x ≤2),故y =-f (2-x )=⎩⎪⎨⎪⎧-1(0≤x <1),x -2(1≤x ≤2).图象应为B.方法二 当x =0时,-f (2-x )=-f (2)=-1; 当x =1时,-f (2-x )=-f (1)=-1. 观察各选项,可知应选B.思维升华 函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.(1)(2016·武汉模拟)函数y =e x +e -xe x -e-x 的图象大致为( )(2)(2015·课标全国Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )答案 (1)A (2)B解析 (1)y =e x +e -x e x -e -x =1+2e 2x -1为奇函数且x =0时函数无意义,可排除C 、D ,又在(-∞,0),(0,+∞)上为减函数,故选A. (2)当点P 沿着边BC 运动,即0≤x ≤π4时,在Rt △POB 中,PB =OB tan ∠POB =tan x , 在Rt △P AB 中,P A =AB 2+PB 2=4+tan 2x ,则f (x )=P A +PB =4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ;当点P 与点C 重合,即x =π4时,由上得f ⎝⎛⎭⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△P AO与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝⎛⎭⎫π2=P A +PB =2+2=22,知f ⎝⎛⎭⎫π2<f ⎝⎛⎭⎫π4,所以排除D.故选B. 题型三 函数图象的应用 命题点1 研究函数的性质例3 (1)已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)(2)若函数y =f (2x +1)是偶函数,则函数y =f (x )图象的对称轴方程是( ) A .x =1 B .x =-1 C .x =2 D .x =-2答案 (1)C (2)A解析 (1)将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减. (2)因为f (2x +1)是偶函数,所以f (2x +1)=f (-2x +1)⇒f (x )=f (2-x ), 所以f (x )图象的对称轴为直线x =1. 命题点2 解不等式例4 函数f (x )是定义域为(-∞,0)∪(0,+∞)的奇函数,在(0,+∞)上单调递增,图象如图所示,若x ·[f (x )-f (-x )]<0,则x 的取值范围为________.答案 (-3,0)∪(0,3) 解析 ∵f (x )为奇函数, ∴x ·[f (x )-f (-x )]=2x ·f (x )<0, 结合图象知x 的范围为(-3,0)∪(0,3). 命题点3 求解函数零点问题例5 (2016·山东)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________. 答案 (3,+∞) 解析 如图,当x ≤m 时,f (x )=|x |;当x >m 时,f (x )=x 2-2mx +4m ,在(m ,+∞)上为增函数,若存在实数b ,使方程f (x )=b 有三个不同的根,则m 2-2m ·m +4m <|m |.∵m >0,∴m 2-3m >0,解得m >3. 思维升华 (1)利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系.(2)利用函数的图象可解决某些方程和不等式的求解问题,方程f (x )=g (x )的根就是函数f (x )与g (x )图象交点的横坐标;不等式f (x )<g (x )的解集是函数f (x )的图象位于g (x )图象下方的点的横坐标的集合,体现了数形结合思想.(1)(2015·课标全国Ⅰ)设函数y =f (x )的图象与y =2x+a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a 等于( ) A .-1 B .1 C .2D .4(2)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)答案 (1)C (2)B解析 (1)设f (x )上任意一点为(x ,y ),关于y =-x 的对称点为(-y ,-x ),将(-y ,-x )代入y =2x +a ,所以y =a -log 2(-x ),由f (-2)+f (-4)=1,得a -1+a -2=1,解得a =2.(2)先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围为(12,1).4.高考中的函数图象及应用问题考点分析高考中考查函数图象问题主要有函数图象的识别,函数图象的变换及函数图象的应用等,多以小题形式考查,难度不大,常利用特殊点法、排除法、数形结合法等解决.熟练掌握高中涉及的几种基本初等函数是解决前提. 一、已知函数解析式确定函数图象典例1 (2015·浙江)函数f (x )=⎝⎛⎭⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )解析 ∵f (x )=(x -1x )cos x (-π≤x ≤π且x ≠0),∴f (-x )=-f (x ),∴f (x )为奇函数,排除A ,B ;当x =π时,f (x )<0,排除C.故选D. 答案 D二、函数图象的变换问题典例2 若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为( )解析 由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位得到y =-f (x +1)的图象,根据上述步骤可知C 正确. 答案 C三、函数图象的应用典例3 (1)已知f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2[f (x )]2-3f (x )+1的零点个数是________.(2)(2015·北京)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}(3)(2016·吉林三校联考)若函数f (x )=(2-m )xx 2+m的图象如图所示,则m 的取值范围为( )A .(-∞,-1)B .(-1,2)C .(0,2)D .(1,2)解析 (1)由y =2[f (x )]2-3f (x )+1=0, 得f (x )=1或f (x )=12,①若f (x )=1,则⎩⎪⎨⎪⎧ x >0,|lg x |=1或⎩⎪⎨⎪⎧x ≤0,2|x |=1,解得x =10或x =110或x =0.②若f (x )=12,则⎩⎪⎨⎪⎧x >0,|lg x |=12或⎩⎪⎨⎪⎧x ≤0,2|x |=12,解得x =10或x =110, 综上,共有5个零点.(2)令g (x )=y =log 2(x +1),作出函数g (x )的图象如图所示.由⎩⎪⎨⎪⎧ x +y =2,y =log 2(x +1),得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}. (3)根据图象可知,函数图象过原点, 即f (0)=0,∴m ≠0.当x >0时,f (x )>0,∴2-m >0,即m <2,函数f (x )在[-1,1]上是单调递增的, ∴f ′(x )>0在[-1,1]上恒成立,f ′(x )=(2-m )(x 2+m )-2x (2-m )x (x 2+m )2=(m -2)(x 2-m )(x 2+m )2>0,∵m -2<0,∴只需要x 2-m <0在[-1,1]上恒成立, ∴(x 2-m )max <0,∴m >1, 综上所述,1<m <2,故选D. 答案 (1)5 (2)C (3)D1.(2016·北京海淀区模拟)函数f (x )=2x +sin x 的部分图象可能是( )答案 A解析 方法一 ∵f (-x )=-2x -sin x =-f (x ), ∴f (x )为奇函数,排除B 、C ; 又0<x <π2时,f (x )>0,排除D ,故选A.方法二 ∵f ′(x )=2+cos x >0, ∴f (x )为增函数,故选A.2.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )的解析式为( ) A .f (x )=e x +1B .f (x )=e x -1C .f (x )=e -x +1D .f (x )=e-x -1答案 D解析 与y =e x 的图象关于y 轴对称的函数为y =e -x .依题意,f (x )的图象向右平移一个单位,得y =e -x 的图象.∴f (x )的图象由y =e -x 的图象向左平移一个单位得到.∴f (x )=e-(x +1)=e-x-1.3.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x -1,x ≥0,x 2-2x -1,x <0,对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,则下列不等式成立的是( ) A .f (x 1)+f (x 2)<0 B .f (x 1)+f (x 2)>0 C .f (x 1)-f (x 2)>0 D .f (x 1)-f (x 2)<0答案 D解析 函数f (x )的图象如图所示,且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数.又0<|x 1|<|x 2|, ∴f (x 2)>f (x 1), 即f (x 1)-f (x 2)<0.4.函数y =11-x 的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .2B .4C .6D .8 答案 D解析 如图,两个函数图象都关于点(1,0)成中心对称,两个图象在[-2,4]上共8个公共点,每两个对应交点横坐标之和为2,故所有交点的横坐标之和为8.5.已知函数f (x )=e |ln x |,则函数y =f (x +1)的大致图象为( )答案 D解析 当x ≥1时,f (x )=e ln x =x ,其图象为一条直线;当0<x <1时,f (x )=e-ln x=1x.函数y =f (x +1)的图象为函数y =f (x )的图象向左平移1个单位长度后得到的.故选D. 6.对于函数f (x )=lg(|x -2|+1),给出如下三个命题:①f (x +2)是偶函数;②f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;③f (x )没有最小值.其中正确的个数为( ) A .1 B .2 C .3 D .0 答案 B解析 因为函数f (x )=lg(|x -2|+1), 所以函数f (x +2)=lg(|x |+1)是偶函数; 因为y =lg x ――――――――――→图象向左平移1个单位长度y =lg(x +1)―――――――――――――――――――――――――→去掉y 轴左侧的图象,以y 轴为对称轴,作y 轴右侧的对称图象y =lg(|x |+1)――――――――――→图象向右平移2个单位长度y =lg(|x -2|+1),如图,可知f (x )在(-∞,2)上是减函数,在(2,+∞)上是增函数;由图象可知函数存在最小值0.所以①②正确.7.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为__________________________. 答案 {x |x ≤0或1<x ≤2}解析 y =f (x +1)向右平移1个单位得到y =f (x )的图象,由已知可得f (x )的图象的对称轴为x =1,过定点(2,0),且函数在(-∞,1)上递减,在(1,+∞)上递增,则f (x )的大致图象如图所示.不等式(x -1)f (x )≤0可化为⎩⎪⎨⎪⎧ x >1,f (x )≤0或⎩⎪⎨⎪⎧x <1,f (x )≥0.由图可知符合条件的解集为{x |x ≤0或1<x ≤2}.8.设f (x )=|lg(x -1)|,若0<a <b 且f (a )=f (b ),则ab 的取值范围是________. 答案 (4,+∞)解析 画出函数f (x )=|lg(x -1)|的图象如图所示.由f (a )=f (b )可得-lg(a -1)=lg(b -1),解得ab =a +b >2ab (由于a <b ),所以ab >4. 9.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________________.答案 f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0 解析 当-1≤x ≤0时,设函数f (x )的解析式为y =kx +b ,则⎩⎪⎨⎪⎧ -k +b =0,b =1,得⎩⎪⎨⎪⎧k =1,b =1.∴y =x +1.当x >0时,设函数f (x )的解析式为y =a (x -2)2-1, ∵图象过点(4,0),∴0=a (4-2)2-1,解得a =14.∴y =14(x -2)2-1.综上,f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0. *10.已知函数213,1()log ,1,x x x f x x x ⎧-+⎪=⎨⎪⎩≤,> g (x )=|x -k |+|x -1|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,则实数k 的取值范围为________________. 答案 (-∞,34]∪[54,+∞)解析 对任意的x 1,x 2∈R , 都有f (x 1)≤g (x 2)成立, 即f (x )max ≤g (x )min ,观察213,1()log ,1x x x f x x x ⎧-+⎪=⎨⎪⎩≤,>的图象可知,当x =12时,函数f (x )max =14;因为g (x )=|x -k |+|x -1|≥|x -k -(x -1)|=|k -1|, 所以g (x )min =|k -1|,所以|k -1|≥14,解得k ≤34或k ≥54.故实数k 的取值范围是(-∞,34]∪[54,+∞).11.已知函数f (x )=2x ,x ∈R .(1)当m 取何值时,方程|f (x )-2|=m 有一个解?两个解? (2)若不等式[f (x )]2+f (x )-m >0在R 上恒成立,求m 的取值范围. 解 (1)令F (x )=|f (x )-2|=|2x -2|,G (x )=m , 画出F (x )的图象如图所示,由图象看出,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个解; 当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个解. (2)令f (x )=t (t >0),H (t )=t 2+t ,因为H (t )=(t +12)2-14在区间(0,+∞)上是增函数,所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立, 应有m ≤0,即所求m 的取值范围为(-∞,0].。
精--高三数学第一轮复习讲义.doc
高三数学第一轮复习讲义高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式;2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 . 例 4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式;2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 .例4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式;2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 . 例 4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式;2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比.例3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 .例4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式; 2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 .例4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式; 2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 . 例 4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式; 2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 .例4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式; 2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 . 例 4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式; 2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 .例4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式; 2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 . 例 4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修4经典回顾
主讲教师:丁益祥 北京陈经纶中学数学特级教师
开篇语
选修系列4在高考中主要考查4—1中的几何证明选讲、4—4中的坐标系与参数方程、4—5中的不等式选讲三个专题内容.围绕着三部分内容的试题,既有选择题和填空题,又有解答题.因此在第一轮复习中必须围绕上述核心考点,选择相关的问题进行求解训练,提高解决不等式问题能力
开心自测
题一:不等式|21|35x x -++≤的解集是_______________.
题二:如图,,AB CD 是半径为a 的圆O 的两条弦,他们相交于AB 的中点P ,23a PD =
,30OAP ∠=︒,则CP =_________.
考点梳理
选修4—1几何证明选讲部分:
1.垂径定理:
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
D
2.圆周角定理:
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
3.圆内接四边形的性质定理:
圆内接四边形的对角互补;外角等于它的内角的对角.
4.圆内接四边形的判定定理:
如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.推论:如果一个四边形的外角等于它的内角的对角,那么这个四边形的四个顶点共圆.
5.切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等.
6.弦切角定理:弦切角等于它所夹的弧所对的圆周角.
7.相交弦定理:
圆内的两条相交弦,被交点分成的两条线段长的积相等.
8.切割线定理:
从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.
选修4—4中的坐标系与参数方程部分:
1. 极坐标与直角坐标的关系
设点M的直角坐标为(x,)y,极坐标为(ρ,)θ,
则
cos,
sin.
x
y
ρθ
ρθ
=
⎧
⎨
=
⎩
或
222,
tan(0).
x y
y
x
x
ρ
θ
⎧=+
⎪
⎨
=≠
⎪⎩
2.过极点的直线的极坐标方程:
0θθ=(0θ为直线与极轴所成的角,允许ρ取负值);
或0θθπ=+(0θ为直线与极轴所成的角).
3. 圆的极坐标方程
(1)圆心在极点的圆的方程:r ρ=(r 为圆的半径).
(2)圆心在极轴上,半径为a 且过极点的圆的方程:2cos a ρθ=.
(3)圆心在(a ,)2π
,且过极点的圆的方程:2sin a ρθ=. 4.直线的参数方程
直线过定点000(,)M x y ,倾斜角为α,直线的参数方程为00cos ,sin .x x t y y t αα=+⎧⎨=+⎩
(t 为参数,其几何意义是:设直线上点(M x ,)y ,满足0M M t =u u u u u u r ).
5.圆的参数方程
(1)圆心在原点,半径为r 的圆的参数方程:cos sin x r y r θθ=⎧⎨=⎩
(θ为参数);
(2) 圆心在(a ,)b ,半径为r 的圆的参数方程:cos sin x a r y b r θθ=+⎧⎨
=+⎩
(θ为参数).
6.圆锥曲线的参数方程 椭圆22221x y a b +=的参数方程cos sin x a y b θθ=⎧⎨=⎩(θ为参数). 选修4—5中的不等式选讲部分:
1.绝对值不等式的解法:
|| (0)x a a a x a <>⇔-<<,|| (0)x a a x a >>⇔>或x a <-;
2.证明不等式的常用方法:
比较法、综合法、分析法、反证法、放缩法.
新题赏析
题一:如图已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且2,::4:2:1.DF CF AF FB BE ===若CE 与圆相切,则CE 的长为_________.
题二:在极坐标系中,曲线2sin ρθ=(02θπ≤<)与cos 1ρθ=-(02θπ≤<)的交点的极坐标为______________.
题三:已知函数()||f x x a =-.
(Ⅰ)若不等式()3f x ≤的解集为{}|15x x -≤≤,求实数a 的值; (Ⅱ)在(Ⅰ)的条件下,若()(5)f x f x m ++≥对一切实数x 恒成立,求实数m 的取值范围.
名师寄语
要点小结与建议:以上我们对选修系列4—1中的几何证明选讲、4—4中的坐标系与参数方程、4—5中的不等式选讲三个专题的主要内容作了相应的梳理,在此基础上,列举了几个典型的问题,进
行了分析和求解.高考中涉及这三个专题内容的试题大多是中等题,个别的有一定的难度.因此,建议同学们深刻理解相关概念,精选较为典型的问题进行求解训练,在解题过程中,落实这三个专题的核心知识,训练解决问题的基本技能,逐步培养和提高推理论证能力和运算求解能力.
开心自测
题一:{11}x x -≤≤ 题二:98
a 金题精讲 题一:7
2CE = 题二:3(2,)4
π 题三:(Ⅰ)2a
=.(Ⅱ)m 的取值范围是(,5]-∞。