初中数学模块二测试答案

合集下载

(北师大版)初中数学八年级下册第二章综合测试02含答案解析

(北师大版)初中数学八年级下册第二章综合测试02含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第二章综合测试一、单选题(每小题3分,共30分) 1.下列式子中,是不等式的有( )①27x =;②34x y +;③32−<;④230a −≥;⑤1x >;⑥1a b −>. A .5个B .4个C .3个D .1个2.已知a b <,下列式子不成立的是( ) A .55a b −−<B .33a b <C .1122a b −−>D .11a b −+−+<3.下列说法中,错误的是( ) A .不等式5x <的整数解有无数多个 B .不等式5x −>的负整数解集有有限个 C .不等式28x −<的解集是4x −<D .40−是不等式28x −<的一个解4.不等式组31220x x −⎧⎨−⎩>≥的解集在数轴上表示为( )A .B .C .D .5.不等式111246x x +−−>的解是( ) A .5x −<B .10x −>C .10x −<D .8x −<6.如下图,直线y k x b =+交坐标轴于A B 、两点,则不等式0k x b +<的解集是( )A .2x −<B .2x <C .3x −>D .3x −<7.已知函数()1y a x =−的图象过一、三象限,那么a 的取值范围是( ) A .1a >B .1a <C .0a >D .0a <8.若不等式13x a x −⎧⎨⎩><恰有3个整数解,那么a 取值范围是( )A .1a ≤B .01a <≤C .01a ≤<D .0a >9.不等式组211420x x −⎧⎨−⎩≥≤的解集在数轴上表示为( )A .AB .BC .CD .D10.若x y >,且()()33a x a y −−<,则a 的值可能是( ) A .0B .3C .4D .5二、填空题(每小题4分,共28分)11.用不等号“>、<、≥、≤”填空:21a +________0. 12.若26m n−−<,则3m ________n .(填“<、>或=”号) 13.不等式组8x x m ⎧⎨⎩<>有解,m 的取值范围是________.14.不等式:2603x −−>的解集________.15.如下图,一次函数2y x =−−与2y x m =+的图象相交于点()4P n −,,则关于x 的不等式220x m x +−−<<的解集为________.16.不等式组1274xx ⎧−⎪⎨⎪−+⎩≤≥的解集是________.17.不等式组()3225123x x x x ⎧++⎪⎨−⎪⎩>≤的最小整数解是________.三、解答题一(每小题6分,共18分)18.解不等式()21132x x +−+≥,并把它的解集在数轴上表示出来.19.解不等式组:()152437x x x +⎧⎨++⎩<>.20.解不等式组:()23423x xxx⎧−−⎪⎨−⎪⎩≤<,并求非负整数解.四、解答题二(每小题8分,共24分)21.小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?22.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?23.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.五、解答题三(每小题10分,共20分)24.某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.(1)按该公司要求可以有几种购买方案?(2)如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?25.某茶叶销售商计划将m罐茶叶按甲、乙两种礼品盒包装出售,其中甲种礼品盒每盒装4罐,每盒售价240元;乙种礼品盒每盒装6罐,每盒售价300元,恰好全部装完.已知每罐茶叶的成本价为30元,设甲种礼品盒的数量为x盒,乙种礼品盒的数量为y盒.(1)当120m=时.①求y关于x的函数关系式.②若120罐茶叶全部售出后的总利润不低于3 000元,则甲种礼品盒的数量至少要多少盒?(2)若m罐茶叶全部售出后平均每罐的利润恰好为24元,且甲、乙两种礼品盒的数量和不超过69盒,求m的最大值.第二章综合测试答案解析一、 1.【答案】B【解析】解:不等式有:③32−<;④230a −≥;⑤1x >;⑥1a b −>,共4个.故选B . 2.【答案】D【解析】利用不等式的性质知:不等式两边同时乘以一个正数不等号方向不变,同乘以或除以一个负数不等号方向改变.A .不等式两边同时减5,不等号方向不变,故本选项正确,不符合题意;B .不等式两边同时乘以3,不等号方向不变,故本选项正确,不符合题意;C .不等式两边同时乘以12−,不等号方向改变,故本选项正确,不符合题意; D .不等式两边同时乘以1−加1,不等号方向改变,故本选项错误,符合题意。

2024年中考数学二轮复习模块专练—化归思想(含答案)

2024年中考数学二轮复习模块专练—化归思想(含答案)

2024年中考数学二轮复习模块专练—化归思想(含答案)在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题.三角函数,几何变换,因式分解,乃至古代数学的尺规作图等数学理论无不渗透着转化的思想.常见的转化方式有:一般特殊转化,等价转化,复杂简单转化,数形转化,构造转化,联想转化,类比转化等.转化思想亦可在狭义上称为化归思想.化归思想就是将待解决的或者难以解决的问题A 经过某种转化手段,转化为有固定解决模式的或者容易解决的问题B ,通过解决问题B 来解决问题A 的方法.考点解读:有理数减法转化为有理数的加减,有理数的除法转化为有理数的乘法;多项式乘以多项式转化为单项式乘以单项式,异分母的分式相加减转化为同分母的分式相加减;数式的化归,递进式变化,构建起数式知识与方法的脉络.【例1】(2023·广东江门·统考一模)1.在《九章算术》“割圆术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种由有限到无限的转化思想.比如在求234111112222+++++⋅⋅⋅的和中,“…”代表按此规律无限个数相加不断求和.我们可设234111112222x =+++++⋅⋅⋅.则有234111*********x ⎛⎫=++++++⋅⋅⋅ ⎪⎝⎭,即112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地,请你计算:2468111113333+++++⋅⋅⋅=.(直接填计算结果即可)【变1】考点解读:从一般的三角形到等腰三角形、等边三角形,从平行四边形到矩形、菱形,试卷第2页,共14页A .BEA ∠B .DEB ∠C .ECA ∠D .ADO∠【变1】(2023·浙江·统考中考真题)4.小贺在复习浙教版教材九上第81页第5题后,进行变式、探究与思考:如图1,O 的直径CD 垂直弦AB 于点E ,且8CE =,2DE =.(1)复习回顾:求AB 的长.(2)探究拓展:如图2,连接AC ,点G 是 BC上一动点,连接AG ,延长CG 交AB 的延长线于点F .①当点G 是 BC的中点时,求证:GAF F ∠=∠;②设CG x =,CF y =,请写出y 关于x 的函数关系式,并说明理由;③如图3,连接DF BG ,,当CDF 为等腰三角形时,请计算BG 的长.考点解读:三元一次方程转化为二元一次方程,分式方程转化为整式方程,一元二次方程转化为一元一次方程.方程化归,构成了方程知识和方法体系.【例1】(2019·浙江台州·统考中考真题)考点解读:由正比例函数图像的平移来研究一次函数图像及性质,试卷第4页,共14页(1)求点C,D的坐标;(2)当13a=时,如图1,该抛物线与x轴交于A,B直线AD上方抛物线上一点,将直线PD沿直线AD 2试卷第6页,共14页三、解答题(2023·山西忻州·校联考模拟预测)16.下面是小彬同学解二元一次方程组的过程,请认真阅读并完成相应的任务.用上面方法所作出的正方形,有一个顶点恰好是直角三角形的直角顶点.△的内接正方形的一边恰好在斜边AB上,我就可用如下方法,如图2,如果Rt ABC⊥,垂足为D;第一步:过直角顶点C作CD AB第二步,延长AB到M,使得BM AD=,连接CM;试卷第8页,共14页试卷第10页,共14页试卷第12页,共14页(1)求EPF ∠的度数;(2)设PE x =,PF y =,随着点P 的运动,32x y +的值是否会发生变化?若变化,请求出它的变化范围;若不变,请求出它的值;(3)求EF 的取值范围(可直接写出最后结果).试卷第14页,共14页参考答案:答案第2页,共31页∵O 的直径CD 垂直弦∴10CD CE DE =+=,∴152OA OD CD ===在Rt OAE △中,AE =∵点G 是 BC的中点,∴»»CGBG =,∴GAF D ∠=∠,答案第4页,共31页∵O 的直径CD 垂直弦AB 于点∴ AC BC=,∴CAF CGA ∠=∠,在Rt CEF △中,2EF CF CE =-在Rt DEF △中,2EF DF DE =-在Rt CEF △中,2CF CE EF =+∴464BF EF BE =-=-,同理FGB FAC ∽△△,答案第6页,共31页次方程转化为二元一次方程组是解题关键.7.D【分析】利用“倍值点”的定义得到方程()210t x tx s +++=,则方程的0∆>,可得2440t ts s -->,利用对于任意的实数s 总成立,可得不等式的判别式小于0,解不等式可得出s 的取值范围.【详解】解:由“倍值点”的定义可得:()()2212x t x t x s =++++,整理得,()210t x tx s +++=∵关于x 的二次函数()()212y t x t x s =++++(,s t 为常数,1t ≠-)总有两个不同的倍值点,∴()22=41440,t t s t ts s ∆-+=-->∵对于任意实数s 总成立,∴()()24440,s s --⨯-<整理得,216160,s s +<∴20,s s +<∴()10s s +<,∴010s s <⎧⎨+>⎩,或010s s >⎧⎨+<⎩,当010s s <⎧⎨+>⎩时,解得10s -<<,当010s s >⎧⎨+<⎩时,此不等式组无解,∴10s -<<,故选:D .【点睛】本题主要考查了二次函数图象上点的坐标特征,一元二次方程根的判别式以及二次函数与不等式的关系,理解新定义并能熟练运用是解答本题的关键.答案第8页,共31页答案第10页,共31页(3)解:①当1a =时,抛物线解析式为∴4EH EF FG ===,∴()16H ,,()56G ,,②如图3-1所示,当抛物线与∵当正方形EFGH 的边与该抛物线有且仅有两个交点,∴点T 的纵坐标为2+151 4.5a -++=如图3-2所示,当抛物线与∵当正方形EFGH的边与该抛物线有且仅有两个交点,∴15 2.5a-=,解得0.4a=(舍去,因为此时点如图3-3所示,当抛物线与∵当正方形EFGH的边与该抛物线有且仅有两个交点,∴21152 a aa a⎛⎫-⋅+⋅+⎪⎝⎭17 3.5aa=.综上所述,0.5【点睛】本题主要考查了二次函数综合,勾股定理,轴对称的性质,正方形的性质等等,利用分类讨论和数形结合的思想求解是解题的关键.9.C答案第12页,共31页答案第14页,共31页抛物线223y x x =+-交于C 、D 两点,∵0m n >>,关于x 的方程2230x x m +--=的解为()1212,x x x x <,关于x 的方程2230x x n +--=的解为3434,()x x x x <,∴1234,,,x x x x 分别是A 、B 、C 、D 的横坐标,∴1342x x x x <<<,故选B .【点睛】本题主要考查了抛物线与一元二次方程的关系,正确把一元二次方程的解转换成直线与抛物线交点的横坐标是解题的关键.13.12x y =⎧⎨=⎩【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【详解】解:∵一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),∴联立y =3x -1与y =kx 的方程组31y x y kx =-⎧⎨=⎩的解为:12x y =⎧⎨=⎩,即310x y kx y -=⎧⎨-=⎩的解为:12x y =⎧⎨=⎩,答案第16页,共31页答案第18页,共31页证明:FD AB ⊥ ,FE AC ⊥,90AEG GDF ∴∠=∠=︒,AGE FGD ∠=∠ ,180BAC ∠=BAC DFE ∴∠=∠;(2)解:BC CD ⊥ ,90BCD ∴∠=︒,在Rt BCD 中,tan BC CD BDC =∠在Rt BCE 中,BC CE =答案第20页,共31页解得:9m BC =,9 1.610.6m AB BC AC ∴=+=+=,答:大树的高度AB 为10.6m .【点睛】本题考查了三角形的内角和定理,解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.19.(1)当Δ0=时,方程有两个相等的实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像有一个交点;当Δ0<时,方程没有实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像没有交点;(2)16t =;(3)y x =-,答案不唯一,合理即可.【分析】(1)根据一元二次方程根的判别式说明根的情况和函数图像交点的情况即可;(2)联立方程组,化简成一元二次方程的一般形式,用根的判别式Δ0=,代入求解;(3)函数图像有两个交点,保证根的判别式0∆>即可.【详解】(1)解:根据一元二次方程根的判别式可得:当Δ0=时,方程有两个相等的实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像有一个交点;当Δ0<时,方程没有实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像没有交点;(2)联立函数表达式:253y x x y x t ⎧=-+⎨=-+⎩,可得:253x x x t -+=-+,答案第22页,共31页由旋转的性质,可证明△BPP ′是等边三角形,再证明C 、P 、A ′、P ′四点共线,最后由勾股定理解答.【详解】(1)解:∵ACP ABP ' ≌,∴AP ′=AP =3、CP ′=BP =4,∠AP ′C =∠APB ,由题意知旋转角∠PAP ′=60°,∴△APP ′为等边三角形,PP ′=AP =3,∠AP ′P =60°,由旋转的性质可得:AP ′=AP =PP ′=3,CP ′=4,PC=5,∵32+42=52∴△PP ′C 为直角三角形,且∠PP ′C =90°,∴∠APB =∠AP ′C =∠AP ′P +∠PP ′C =60°+90°=150°;故答案为:150°;(2)证明:∵点P 为△ABC 的费马点,∴120APB ∠=︒,∴60APD ∠=︒,又∵AD AP =,∴APD 为等边三角形∴AP PD AD ==,60PAD ADP ∠=∠=︒,∴120ADE ∠=︒,∴ADE APC ∠=∠,在△APC 和△ADE 中,PAC DAE AP AD APC ADE ∠=∠⎧⎪=⎨⎪∠=∠⎩【点睛】本题考查全等三角形的判定与性质、等边三角形的判定与性质、勾股定理、旋转的性质、费马点等知识,是重要考点,有难度,掌握相关知识,正确做出辅助线是解题关键.21.(1)120︒(2)不会;9(3)9219 7EF≤<【分析】(1)延长EP交BC于点G,根据平行线的性质得出答案第24页,共31页,∵PE CD∠=∠,∴PGB DCB∥,∵PF AB∠=∠,∴PFC ABC答案第26页,共31页则90EHP ∠=︒,∵120EPF ∠=︒,∴18012060EPH ∠=︒-︒=︒,∴906030PEH ∠=︒-︒=︒,22.(1)60︒;(2)①丙;②10【分析】(1)连接BC ',则A BC ''△为等边三角形,即可求得既不相交也不平行的两条直线BA '与AC 所成角的大小;(2)①根据正方体侧面展开图判断即可;②根据对称关系作辅助线即可求得PM PN +的最小值.【详解】解:(1)连接BC ',∵//AC A C '',BA '与A C ''相交与点A ',即既不相交也不平行的两条直线BA '与AC 所成角为BA C ''∠,根据正方体性质可得:A B BC A C ''''==,∴A BC ''△为等边三角形,∴=60BA C ''∠︒,即既不相交也不平行的两条直线BA '与AC 所成角为60︒;(2)①根据正方体展开图可以判断,甲中与原图形中对应点位置不符,乙图形不能拼成正方体,故答案为丙;②如图:作M 关于直线AB 的对称点M ',答案第28页,共31页∵90ABC ∠=︒,DQ ∴四边形DBNQ 是矩形,∴90DQN ∠=︒,QN答案第30页,共31页∵A ABN BNQ AQN ∠+∠+∠+∠∴180ABN AQN ∠+∠=︒,∴AQN PBN ∠=∠.。

数学浙教版八年级下第二单元检测卷(附答案)

数学浙教版八年级下第二单元检测卷(附答案)

八年级(下)数学单元检测(二)第二章一元二次方程班级 学号 姓名 得分一、选择题(每小题3分,共30分)1.下列方程中,关于x 的一元二次方程是( )(A )10x x+= (B )3123x x +=- (C )3250x x -+= (D )223x x -= 2.方程2x 2 +3x -1 =0的二次项系数,一次项系数,常数项分别为( )(A )2,3,-1 (B )2,-1,3 (C )2,-3,-1 (D )2,3,03.一元二次方程x 2=4的根是( )(A )x =-2 (B )x =2 (C ) x 1=2,x 2=-2 (D ) x 1=2,x 2=04. 方程x 2 =x 的根是( )(A )1=x (B )0=x (C )0,121==x x (D )0,121==x x5.已知一元二次方程 x 2 + x -1 = 0,下列判断正确的是( )(A )该方程有两个相等的实数根 (B )该方程有两个不相等的实数根(C )该方程无实数根 (D )该方程根的情况不确定6.如果3是一元二次方程x 2=c 的一个根,那么常数c 是( )(A )3 (B )-3 (C )9 (D )-97.用配方法解方程2420x x -+=,下列配方正确的是( ) (A )2(2)2x -= (B )2(2)2x += (C )2(2)2x -=- (D )2(2)6x -=8. 上海世博会的某纪念品原价200元,连续两次降价%a 后售价为148元. 下列所列方程中正确的是( )(A )200(1+a %)2=148 (B )200(1-a %)2=148(C )200(1-2a %)=148 (D )200(1-a 2%)=1489. 若三角形ABC 两边的长分别是8和6, 第三边的长是一元二次方程060162=+-x x 的一个实数根,则该三角形的面积是( )(A )24 (B )85 (C )48 (D )24或8510.观察下列方程及其解的特征:(1)12x x +=的解为121x x == ; (2)152x x +=的解为1212,2x x == ; (3)1103x x +=的解为1213,3x x ==; …… …… 请猜想:方程1376x x +=的解为( ) (A )1214,4x x == (B )1215,5x x == (C )1216,6x x == (D )1217,7x x ==二、填空题(每小题3分,共30分)11.将方程3 x 2 =5x+2化为一元二次方程的一般形式是________________ _.12.用配方法解方程245x x -=时,方程两边同时加上 ,使得方程左边配成一个 完全平方式。

2020年安徽省合肥市包河区中考数学二模试题(解析版)

2020年安徽省合肥市包河区中考数学二模试题(解析版)

2020年安徽省合肥市包河区中考数学二模试卷一.选择题(共10小题)1.下列四个数中,最小的是()A. -2B. ∣-4∣C. -(-1)D. 0【答案】A【解析】【分析】有理数大小比较的法则:①正数都大于0,②负数都小于0,③正数大于一切负数;④两个负数,绝对值大的反而小,据此即可求解.【详解】解:根据有理数大小比较的法法,可得:-2<0<-(-1)<∣-4∣∴最小的是-2.故选:A.【点睛】本题考查有理数的大小比较,解题的关键是熟练掌握有理数大小比较的法则.2.下列运算正确的是()A. a3•a4=a12B. (a-b)2=a2-b2C. a10÷a5=a2D. (-2ab2)3=-8a3b6【答案】D【解析】【分析】分别按照同底数幂的乘法、完全平方公式、同底数幂的除法、和积的乘方的运算进行计算分析即可.【详解】解:A、a3•a4=a7,故A不正确;B、(a-b)2=a2-2ab+b2,故B不正确;C、a10÷a5=a5,故C不正确;D、(-2ab2)3=(-2)3a3(b2)3=-8a3b6,故D正确.故选:D.【点睛】本题考查了同底数幂的乘除法、完全平方公式和积的乘方等运算,熟练掌握相关运算法则是解题的关键.3.今年以来,“新型冠状肺炎”流行,这种病毒的直径大约为150纳米,1纳米=0.000000001米=10-9米,把150纳米用科学记数法表示正确的是()A. 1.5×10-2米B. 1.5×10-7米C. 1.5×10-9米D. 1.5×10-11米【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:150纳米=150×0.000000001米=1.5×10-7米.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图,由6个棱长为1的相同小立方体组成的几何体,关于其视图以下说法正确的是()A. 主视图和左视图面积相等B. 主视图和俯视图面积相等C. 俯视图和左视图面积相等D. 俯视图面积最大【答案】B【解析】【分析】画出三视图,通过比较三个视图的面积即可得出答案.【详解】解:这个几何体的三视图如图所示:因此,主视图与俯视图的面积相等,故选:B.【点睛】本题考查了几何体的三视图,属于常考题型,熟练掌握三视图的定义和画法是解题的关键.5.如图,AB∥CD,DF是∠BDC的平分线,若∠ABD=118°,则∠1的度数为()A. 40°B. 35°C. 31°D. 29°【答案】C【解析】【分析】由AB∥CD,其性质得∠ABD+∠BDC=180°,∠1=∠FDC;DF是∠BDC的平分线得∠FDC=12∠BDC,计算得∠1=31°.【详解】解:∵AB∥CD,∴∠ABD+∠BDC=180°,又∵∠ABD=118°,∴∠BDC=62°,又∵DF是∠BDC的平分线,∴∠FDC=12∠BDC=31°,又∵AB∥CD,∴∠1=∠FDC=31°,故选:C.【点睛】本题综合考查平行线的性质,角平线的性质,角的和差等相关知识点,重点掌握平行线的性质6.不等式组2632154x xx x-<⎧⎪+-⎨-≥⎪⎩的解集在数轴上表示正确的是()A. B. C.D.【答案】B【解析】 【分析】解得将不等式组的解集为-613x <≤,再根据用数轴表示解集即可解得本题. 【详解】∵263x x -<,解得:6x >-; ∵21054x x +-⎧-≥⎨⎩,解得:13x ≤;∴不等式组的解集是:-613x <≤ 故选B.【点睛】本题考查了解不等式组以及在数轴上表示解集,解本题的关键是不等式解集中是否可取等于在数轴上的不同表示.7.下列各选项中因式分解正确的是( ) A. ()2211x x -=- B. ()32222a a a aa -+=-C. ()22422y y y y -+=-+D. ()2221m n mn n n m -+=-【答案】D 【解析】 【分析】直接利用公式法以及提取公因式法分解因式进而判断即可. 【详解】解:A.()()2111x x x -=+-,故此选项错误;B.()23221a a a a a -+=-,故此选项错误; C.()22422y y y y -+=--,故此选项错误;D.()2221m n mn n n m -+=-,正确. 故选D .【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.8.方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”大意是:5只麻雀和6只燕子一共重16两,每只麻雀比每只燕子重,如果将麻雀和燕子互换1只.则它们的重量相等,求每只麻雀和每只燕子各多少两?如果设每只麻雀重x 两,每只燕子重y 两,以下方程组正确的是( )A.561665x yx y+=⎧⎨=⎩B.561645x yx y y x+=⎧⎨+=+⎩C.561665x yy x+=⎧⎨=⎩D.561656x yx y y x+=⎧⎨+=+⎩【答案】B【解析】【分析】设每只麻雀重x两,每只燕子重y两,根据5只麻雀和6只燕子一共重16两,每只麻雀比每只燕子重,如果将麻雀和燕子互换1只,则它们的重量相等,列方程组即可.【详解】解:设每只麻雀重x两,每只燕子重y两,由题意得:5616 45x yx y y x+=⎧⎨+=+⎩故选:B【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是正确解读题意,设出未知数,找到合适的等量关系.9.甲、乙、丙进入了“中国主持人大赛”的东南区预选赛的决赛,他们三人擅长主持的节目分别是A、B、C.现将标有A、B、C的三个标签的球放入不透明的盒子中,让三位选手随机摸取一球,以确定比赛时的节目.则三人抽到的恰好都是自己擅长主持的节目的概率是()A. 13B.12C.16D.19【答案】C【解析】【分析】据题意列出图表得出所有等情况数,找出三人抽到的恰好都是自己擅长主持的节目的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画树状图如下:共有12种等情况数,其中三人抽到的恰好都是自己擅长主持的节目的有2种,则三人抽到的恰好都是自己擅长主持的节目的概率是21 126=;故选:C.【点睛】此题考查的是树状图法求概率.树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,在矩形ABCD中,点H为边BC的中点,点G为线段DH上一点,且∠BGC=90°,延长BG交CD于点E,延长CG交AD于点F,当CD=4,DE=1时,则DF的长为()A. 2B. 325 D.95【答案】A【解析】【分析】延长AD,BE相交于点M,可得△DFG∽△HCG,△DMG∽△HBG,根据相似三角形的性质可得DF=DM,由△MDE∽△CDF可得DE DMDF CD=,进而得出DE DFDF CD=,再根据比例的性质解答即可.【详解】解:如图,延长AD,BE相交于点M,∵DF∥CH,∴△DFG∽△HCG,∴DF DG CH GH=,∵DM∥BH,∴△DMG∽△HBG,∴DM DG BH GH=,∵CH=BH,∴DF=DM,又∵矩形,ABCD90, CDF EDM∴∠=∠=︒90,BGC ∠=︒ 90,CGE ∴∠=︒ ,CEG MED ∠=∠ ,FCD M ∴∠=∠ ∴ △MDE ∽△CDF ,∴,DE DMDF CD = ∴,DE DFDF CD= ∴2144,DF DE CD =•=⨯= ∴DF =42=. 故选:A .【点睛】本题主要考查矩形的性质,相似三角形的判定与性质,正确作出辅助线并熟练掌握矩形的性质、相似三角形的判定与性质是解题的关键.二.填空题(共4小题)11.35________ 【答案】6 【解析】 【分析】根据被开方数的取值范围求出二次根式的取值范围即可判断. 【详解】解:∵25<35<36 253536∴535 6 ∵36比25更接近35, 356.故答案为:6.【点睛】此题考查的估算无理数的大小,利用夹逼法求出二次根式的取值范围是解决此题的关键. 12.一次函数y 1=mx +n (m ≠0)的图象与双曲线2(0)ky k x=≠相交于A (-1,2)和B (2,b )两点,则不等式kmx n x≥+的解集是________ 【答案】10x -≤<或2x ≥ 【解析】 【分析】把点A 、B 的坐标分别代入反比例函数解析式求得k 、b 的值,然后分别画出一次函数与反比例函数的图象,找出直线没有落在双曲线上方的部分对应的自变量的取值范围即可. 【详解】解:∵A (-1,2)和B (2,b )在双曲线2(0)ky k x=≠上, ∴122k b =-⨯=, 解得b =-1. ∴B (2,-1).由图可知,当10x -≤<或2x ≥时,直线没有落在双曲线上方,即不等式kmx n x≥+的解集是10x -≤<或2x ≥. 故答案为:10x -≤<或2x ≥.【点睛】本题考查了反比例函数与一次函数的交点问题,函数图象上点的坐标特征,利用了数形结合思想. 13.如图,AB 是⊙O 切线,切点为A ,OB 与⊙O 交于E ,C 、D 是圆上的两点,且CA 平分∠DCE ,若AB =3B =30°,则DE 的长是_____.【答案】23【解析】【分析】连接OA,交DE于点F,如图,根据切线的性质和解直角三角形的知识可求出圆的半径,根据角平分线的定义和垂径定理的推论可得OA⊥DE,进而可得DE∥AB,DE=2EF,然后解直角△OEF即可求出EF的长,从而可得答案.【详解】解:连接OA,交DE于点F,如图,∵AB是⊙O切线,∴∠BAO=90°,∵∠B=30°,AB=23,∴AO=OE=33AB=33×23=2,∵CA平分∠DCE,∴∠DCA=∠ECA,∴AD AE=,∴OA⊥DE,∴DE∥AB,DE=2EF,∴∠OEF=∠B=30°,∴EF=33 2=∴DE=23,故答案为:23.【点睛】本题考查了圆的切线的性质、垂径定理和解直角三角形等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.14.已知,Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,点P是AB上一点,连接CP,将∠B沿CP折叠,使点B落在B'处.以下结论正确的有________①当AB'⊥AC时,AB'的长为2;②当点P位于AB中点时,四边形ACPB'为菱形;③当∠B'PA=30°时,12 APPB=;④当CP⊥AB时,AP:AB':BP=1:2:3.【答案】①②④【解析】【分析】由折叠性质及直角三角形的性质对结论一一判断即可.【详解】解:①AC=1,∠B=30°可知3,由翻折可知:3因为AB'⊥AC,由勾股定理可知:22'CB AC-2,正确.②当点P位于AB中点时,CP=PB=PA=AC=PB′,∠B'PA=PAC=60°,PB'∥AC,所以四边形ACPB'是平行四边形,又PC=AC,所以四边形ACPB'是菱形,正确.③当∠B'PA=30°时,可知四边形BCB′P 是菱形,;,12AP PB =成立,故不正确. ④当CP ⊥AB 时,∠B'=∠B'CA=30°,AC=AB',∠ACP=∠B=30°,设AP=a ,则AB'=AC=2a ;AB=4a ,PB=3a ;所以:AP :AB':BP=a :2a :3a=1:2:3,正确.故答案为:①②④.【点睛】本题考查了翻折变换、直角三角形、锐角三角函数,解决本题的关键是综合运用以上知识.三.解答题(共9小题)15.先化简:221(1)x x x x x-+--,再请从1、0、2、-1四个数中选择一个你认为合适的数代入来求值. 【答案】原式21x x =-,1x =-时,原式12=;2x =时,原式12= 【解析】【分析】根据分式的减法可以化简题目中的式子,然后从1、0、2、-1四个数中选择一个使得原分式有意义的值,代入化简后的式子即可解答本题. 【详解】解:原式2(1)1(1)x x x x x-+=-- 11x x x x+=-- ()221(1)x x x x --=-21x x =- 因为1x ≠和0所以当选1x =-时,原式211(1)(1)2==---; 选2x =时,原式211222==- 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.16.某旅游景区今年5月份游客人数比4月份增加了44%,6月份游客人数比5月份增加了21%,求5月、6月游客人数的平均增长率.【答案】5月、6月这两个月游客人数的平均增长率是32%.【解析】【分析】根据增长后的游客人数=增长前的游客人数×(1+增长率),设5月、6月游客人数的平均增长率是x ,根据今年5月份游客人数比4月份增加了44%,6月份游客人数比5月份增加了21%,据此即可列方程解出即可.【详解】解:设5月、6月这两个月游客人数的平均增长率是x ,根据题意得2(144%)(121%)(1)x ++=+,解得10.3232%x ==,1 2.32x =-(舍去).答:5月、6月这两个月游客人数的平均增长率是32%.【点睛】考查了一元二次方程的应用.若原来的数量为a ,平均每次增长或降低的百分率为x ,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a×(1±x )(1±x )=a (1±x )2.增长用“+”,下降用“-”.17.观察以下等式:第1个等式:23-22=13+2×1+1; 第2个等式:33-32=23+3×2+22; 第3个等式:43-42=33+4×3+32; ……按照以上规律,解决下列问题:(1)写出第4个等式:__________________;(2)写出你猜想的第n 个等式(用含n 的等式表示),并证明.【答案】(1)3232554544-=+⨯+;(2)猜想出第n 个等式为3232(1)(1)(1)n n n n n n +-+=+++,证明见解析.【解析】【分析】(1)根据前三个等式归纳总结出规律即可得;(2)先归纳总结出一般规律,得出第n 个等式,再利用因式分解的方法分别计算等式的两边即可得证.【详解】(1)由前三个等式可得:第4个等式为3232554544-=+⨯+故答案为:3232554544-=+⨯+;(2)猜想出第n 个等式为3232(1)(1)(1)n n n n n n +-+=+++,证明如下:等式的左边[]3222(1)(1)(1)(1)1(1)n n n n n n =+-+=++-=+ 等式的右边()32222(1)(1)21(1)n n n n n n n n n n n n n ⎡⎤=+++=+++=++=+⎣⎦则等式的左边=等式的右边所以等式成立.【点睛】本题考查了因式分解的实际应用,理解题意,正确归纳类推出一般规律是解题关键.18.如图,在边长为1的小正方形组成的网格中,给出了格点四边形ABCD (顶点为网格线的交点).(1)画出四边形ABCD 关于x 轴成轴对称的四边形A 1B 1C 1D 1;(2)以O 为位似中心,在第三象限画出四边形ABCD 的位似四边形A 2B 2C 2D 2,且位似比为1;(3)在第一象限内找出格点P ,使∠DCP=∠CDP ,并写出点P 的坐标(写出一个即可).【答案】(1)画图见解析;(2)画图见解析;(3)点P (5,3)或(2,2)【解析】【分析】(1)分别作出点A 、B 、C 、D 关于x 轴对称点,顺次连接即可;(2)利用位似图形的性质,延长AO 到A2,使AO=OA2,同理分别作出B 、C 、D 的对应点,顺次连接即可;(3)由∠DCP=∠CDP 得PC=PD ,即点P 在线段CD 的垂直平分线上,即可找到符合条件的点P .【详解】(1)如图所示,四边形A 1B 1C 1D 1就是所求作的图形;(2)如图所示,四边形A 2B 2C 2D 2就是所求作的图形;(3)由图可知,点(5,3)P或(2,2).【点睛】本题考查了作图-轴对称变换、作图-位似变换、网格中符合条件点的坐标,熟练掌握符合要求的作图方法是解答的关键.19.如图,某水产养殖户开发一个三角形状的养殖区域,A、B、C三点的位置如图所示.已知∠CAB=105°,∠B=45°,AB=1002米.(参考数据:2≈1.41,3≈1.73,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,结果保留整数)(1)求养殖区域△ABC面积;(2)养殖户计划在边BC上选一点D,修建垂钓栈道AD,测得∠CAD=40°,求垂钓栈道AD的长.【答案】(1)养殖区域ABC∆的面积约为13650平方米;(2)垂钓栈道AD的长约为106米.【解析】【分析】(1)过点A作AH⊥BC于点H,根据含30度角、45度角的直角三角形的性质即可求出答案.(2)由(1)可知:AH=100,因为∠CAD=40°,所以∠DAH=20°,根据锐角三角函数的定义即可求出答案.【详解】解:过A作AH BC⊥于H.(1)在Rt ABH ∆中,∵45B ∠=︒,∴45BAH ∠=︒.∵105BAC ∠=︒,∴60CAH ∠=︒.∴100AH =(米),∴100BH =(米).在Rt ACH ∆中,1801054530C ∠=︒-︒-︒=︒, ∵tan AH C CH ∠=.∴10033CH ==. ∴1100100(31)136502⨯⨯+≈(平方米). (2)∵40CAD ∠=︒,∴604020DAH ∠=︒-︒=︒, 在Rt ADH ∆中,∵cos AH DAH AD ∠=, ∴100106cos 200.94AH AD ==≈︒(米). 答:养殖区域ABC ∆的面积约为13650平方米,垂钓栈道AD 的长约为106米.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型. 20.已知,如图,点P 是平行四边形ABCD 外一点,PE ∥AB 交BC 于点E .PA 、PD 分别交BC 于点M 、N ,点M 是BE 的中点.(1)求证:CN=EN ;(2)若平行四边形ABCD 的面积为12,求△PMN 的面积.【答案】(1)证明见解析;(2)3PMN S ∆=【解析】【分析】(1)根据平行线的性质得到∠BAM=∠EPM ,根据线段中点的定义得到BM=EM ,根据全等三角形的性质得到AB=PE ,根据平行四边形的判定和性质定理即可得到结论;(2)过P 作PH ⊥AD 于H ,交BC 于G ,根据全等三角形的性质得到AM=PM ,根据平行线等分线段定理得到AG=HG=12PH ,根据平行四边形和三角形的面积公式即可得到结论. 【详解】解:(1)连接DE,PC.∵PE ∥AB ,∴∠BAM=∠EPM ,∵∠AMB=∠PME ,∵点M 是BE 的中点,∴BM=EM ,∴△ABM ≌△PEM (AAS ),∴AB=PE ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,∴PE ∥CD ,PE=CD ,∴四边形PEDC 是平行四边形,∴EN=CN ;(2)过P 作PH ⊥AD 于H ,交BC 于G ,由(1)知,△ABM ≌△PEM ,∴AM=PM ,∵AD ∥BC ,∴AG=HG=12PH , ∵BM=EM ,EN=CN ,∴MN=12BC=12AD , ∵平行四边形ABCD 的面积为12,∴AD•PH=24,∴△PMN的面积=12MN•PG=12×12AD×12PH=18AD•PH=18×24=3.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,平行线等分线段定理,三角形的面积的计算,熟练掌握平行四边形的判定和性质是解题的关键.21.王老师从本校九年级质量检测的成绩中随机地抽取一些同学的数学成绩做质量分析,他先按照等级绘制这些人数学成绩的扇形统计图,如图所示,数学成绩等级标准见表1,又按分数段绘制成绩分布表,如表2.表1表2分数段为90≤x≤100n个人中,其成绩的中位数是95分.根据以上信息回答下面问题:(1)王老师抽查了多少人?m、n的值分别是多少;(2)小明在此考试中得了95分,他说自己在这些考试中数学成绩是A等级,他说对吗?为什么?(3)若此次测试数学学科普高的预测线是70分,该校九年级有900名学生,求数学学科达到普高预测线的学生约有多少人?【答案】(1)50人,12,11m n ==;(2)正确,理由见解析;(3)630人【解析】【分析】(1)根据小于60的人数和所占的百分比求出总人数,再用总人数乘以小于80的人数所占的百分比求出小于80的人数,再减去小于70的人数,求出m ,再用总人数减去小于90 的人数,求出n 即可;(2)先求出A 等级的人数,再根据在分数段为90≤x ≤100的人数和中位数的定义即可推断出小明说的对不对;(3)用总人数乘以数学学科普高的预测线的人数所占的百分比即可.【详解】解:(1)王老师抽查的人数是:5÷10%=50(人),小于80的人数有:50×(44%+10%)=27(人),m =27﹣5﹣10=12(人),n =50﹣5﹣10﹣12﹣12=11(人),(2)A 等级的人数有:50×12%=6(人),∵在11人中,成绩的中位数是95分,A 等级有6人,∴小明的数学成绩是A 等级,他说的正确;(3)根据题意得: 900×12121150++=630(人), 答:数学学科达到普高预测线的学生约有630人.【点睛】本题考查频数分布表、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,找出所求问题需要的条件.22.已知OA 是⊙O 的半径,OA=1,点P 是OA 上一动点,过P 作弦BC ⊥OA ,连接AB 、AC .(1)如图1,若P 为OA 中点,则AC=______,∠ACB=_______°;(2)如图2,若移动点P ,使AB 、CO 的延长线交于点D .记△AOC 的面积为S 1,△BOD 的面积为S 2.△AOD的面积为S 3,且满足1223S S S S =,求OP AP 的值.【答案】(1)1,30;(2)55OP AP =. 【解析】【分析】(1)证得△AOC 为等边三角形,得出AC =1,∠ACO =60°,可求出答案;(2)若DC 与圆O 相交于点E ,连接BE ,证明△ABO ≌△ACO (SSS ),得出S △ABO =S △ACO =S 1,由题意得出(12S S )2+12S S −1=0,解得:12S S =-15±,求出AD BD ,证明△AOD ∽△BED ,得出AO AD BE BD ==1+5,得出OP =12BE ,则可求出答案. 【详解】解:(1)∵BC ⊥OA ,OB=OC ,∴BP=CP ,∵P 是OA 的中点,∴OP=AP ,∴OA 垂直平分BC ,且BC 垂直平分OA ,∴四边形ABOC 是菱形,∴AC=OC=OA=1,BC 平分∠ACO ,∴△AOC 是等边三角形,∴∠ACO=60°,∴∠ACB=12∠ACO=30°, 故答案为:1,30;(2)连接BE ,∵BC OA ⊥∴PB PC =,∴AB AC =,∵OB OC =,AO=AO ,∴ABO ACO ∆∆≌,∴1ABO ACO S S S ∆∆==,∴123S S S +=, ∵1223S S S S =, ∴12212S S S S S =+, ∴2211220S S S S +-=, ∴2112210S S S S ⎛⎫+-= ⎪⎝⎭,解得12S S =,12S S =,∴AB BD =,即AD BD =, ∵CE 为直径,∴90CBE ∠=︒,∴//AO BE ,∴AOD BED ∆∆∽∴12AO AD BE BD ==, ∵OE OC = ∴12OP BE =,∴122AO OP =,∴11AO OP =,∴AP OP =∴55OP AP =. 【点睛】本题考查了圆周角定理,垂径定理,等边三角形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质等知识,熟练掌握方程思想是解题的关键.23.已知:二次函数y=x 2-2mx-m 2+4m-2的对称轴为l ,抛物线与y 轴交于点C ,顶点为D .(1)判断抛物线与x 轴的交点情况;(2)如图1,当m=1时,点P 为第一象限内抛物线上一点,且△PCD 是以PD 为腰的等腰三角形,求点P 的坐标;(3)如图2,直线14y mx =和抛物线交于点A 、B 两点,与l 交于点M ,且MO=MB ,点Q (x 0,y 0)在抛物线上,当m >1时,200126h my my +≤--时,求h 的最大值.【答案】(1)证明见解析;(2)点P 的坐标为(21),或3535++⎝⎭,或353522⎛-- ⎝⎭,;(3)h 最大值为4.【解析】【分析】(1)令y=0,转化为一元二次方程,求出△=8(m-1)2,即可得出结论;(2)先求出点C ,D 坐标,再分两种情况,判断出点P 是CD 的中垂线或CP 的中垂线,即可得出结论; (3)利用点M 在抛物线对称轴上,和MO=BM 表示出点B 坐标,代入抛物线解析式中,求出m ,进而得出抛物线解析式,再得出()2220000061221212236my my y y y ---=---=-++,即可得出结论. 【详解】解:(1)针对于二次函数y=x 2-2mx-m 2+4m-2,令y=0,则x 2-2mx-m 2+4m-2=0,∴()222(2)4428(1)m m m m ∆=---+-=-不论m 取何值,28(1)0m -≥∴抛物线与x 轴至少有一个交点(或一定有交点).(2)当1m =时,2221(1)y x x x =-+=-∴点(0,1)C 、点(1,0)D当DP DC =时,可知点P 与点C 关于l 对称,∴点P 坐标为(2,1)当PD PC =时,点P 在CD 的垂直平分线上∵1OC OD ==∴点P 在直线y x =上∴2(1)x x =-解得32x ±=∴点P 坐标为3322⎛ ⎝⎭和33,22⎛⎫- ⎪ ⎪⎝⎭.综上,点P 的坐标为(2,1)或⎝⎭或⎝⎭. (3)当1m 时,∵OM MB = ∴点B 的横坐标为2m ,则纵坐标2242m m y m =⋅= 点22,2m B m ⎛⎫ ⎪⎝⎭, 把点22,2m B m ⎛⎫ ⎪⎝⎭代入抛物线得:222244422m m m m m --+-= 解得12m =,223m =(舍去)当2m =时,2(2)2y x =-- 因为点()00,Q x y 在抛物线上,∴02y ≥-由题意知()2220000061221212236h my my y y y ≤---=---=-++ ∵20-<∴当03y >-时,h 随0y 的增大而减小,∴当02y =-时,代数式()20236y -++有最大值4,∴h 最大值为4.【点睛】此题是二次函数综合题,主要考查了抛物线与x轴的交点个数的判断,等腰三角形的性质,中垂线,用分类讨论的思想解决问题是解本题的关键.。

浙教版八年级数学下册第二章【一元二次方程】单元测试卷(二)含答案与解析

浙教版八年级数学下册第二章【一元二次方程】单元测试卷(二)含答案与解析

浙教版八年级数学下册第二章单元测试卷(二)一元二次方程学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.若关于x的一元二次方程2310x x m-+-=有两个相等的实数根,则m的值为()A.54-B.1-C.43-D.62.用配方法解方程x2-6x-1=0,方程应变形为()A.(x+3)2=10B.(x-6)2=1C.(x-3)2=10D.(x-3)2=93.若等腰三角形的三边长均满足方程x2﹣7x+10=0,则此三角形的周长为()A.9B.12C.9或12D.不能确定4.已知关于x的一元二次方程ax2+bx+c=0(a≠0).有下列命题:①若a+b+c=0,则b2-4ac≥0;②若一元二次方程ax2+bx+c=0的两根为-1和2,则2a+c=0;③若一元二次方程ax2+c=0有两个不相等的实数根,则一元二次方程ax2+bx+c=0必有两个不相等的实数根.其中真命题的个数是()A.0B.1C.2D.35.探究课上,老师给出一个问题“利用二次函数y=2x2与一次函数y=x+2的图象,求一元二次方程2x2=x+2的近似根”小华利用计算机绘制出如图所示的图象,通过观察可知该方程的两近似根x1和x2满足﹣1<x1<0,1<x2<2.小华的上述方法体现的数学思想是()A.公理化B.分类讨论C.数形结合D.由特殊到一般6.为改善办学条件,某县加大了专项资金投入,2016年投入房屋改造专项资金3000万元,预计2018年投入房屋改造专项资金5000万元.设投入房屋改造专项资金的年平均增长率为x ,根据题意,下面所列方程正确的是( )A .3000(1+x )2=5000B .3000x 2=5000C .3000(1+x%)2=5000D .3000(1+x )+3000(1+x )2=50007.关于x 的一元二次方程2x 2x m 0-+=无实数根,则实数m 的取值范围是( ) A .1m < B .m 1≥ C .1m D .1m8.已知一元二次方程x 2﹣6x+c=0有一个根为1,则c 的值为( )A .2B .3C .4D .59.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价( )元.A .3B .2.5C .2D .510.方程23210x x --=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个实数根D .没有实数根11.已知关于x 的一元二次方程3x 2+4x ﹣5=0,下列说法正确的是( )A .方程有两个相等的实数根B .方程有两个不相等的实数根C .没有实数根D .无法确定12.以下结论正确的是( )A .2541a a -+是一元二次方程B .230a =的一个根是0a =C .2022a -=不是一元二次方程 D .当0m ≠,n 为一切实数时,20mx nx +=是一元二次方程二、填空题(本大题共6小题,每小题3分,共18分)13.已知关于x 的一元二次方程22(1)210m x mx m -++-=有一个根是0,则m=_____. 14.今年猪肉受非洲猪瘟疫情的影响,一个月内猪肉价格两次大幅上涨.由原来每斤9元上涨到每斤16元,求平均每次上涨的百分率是多少?设平均每次上涨的百分率为x ,则根据题意可列方程为_____.15.已知关于x 的方程212mx x -=有两个不相等的实数根,则m 的取值范围是_______. 16.已知x 1=﹣1是方程x 2+mx ﹣5=0的一个根,则m 的值是_____.17.用换元法解方程-=1时,如果设=y ,那么原方程化成以“y ”为元的方程是______18.某种花卉每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株.设每盆多植x 株,则可以列出的方程是____________.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.证明不论m 取何值,关于x 的方程()()212x x m --=总有两个不等的实数根. 20.已知:x 1、x 2是一元二次方程222130x x m -+-=的两个实数根,且x 1、x 2满足不等式12122()0x x x x ⋅++>,求实数m 的取值范围.21.已知:如图在Rt △ABC 中,斜边AB =5厘米,BC =a 厘米,AC =b 厘米,a >b ,且a 、b 是方程2(1)40x m x m --++=的两根.⑴ 求a 和b 的值;⑵ A B C '''∆与ABC ∆开始时完全重合,然后让ABC ∆固定不动,将A B C '''∆以1厘米/秒的速度沿BC 所在的直线向左移动.① 设x 秒后A B C '''∆与ABC ∆的重叠部分的面积为y 平方厘米,求y 与x 之间的函数关系式,并写出x 的取值范围;② 几秒后重叠部分的面积等于38平方厘米?22.已知关于x 的方程x 2+(2k -1)x +k 2-1=0.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =-2,求该矩形的对角线L 的长. 23.如果多项式()236131mx m x m +-++在实数范围内可分解为关于x 的两个一次式的乘积,求实数m 的取值范围.24.已知关于x 的一元二次方程2221()0x m x m +-+=有两个实数根1x ,2x . (1)分别用含m 的代数式表示12x x +,12x x 的值.(2)若22121x x +=,求m 的值.参考答案与解析二、选择题(本大题共12小题,每小题3分,共36分。

2020年山东省济南市天桥区中考数学二模试卷及答案解析

2020年山东省济南市天桥区中考数学二模试卷及答案解析

2020年山东省济南市天桥区中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(4分)有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.3.(4分)将4760用科学记数法表示应为()A.47.6×102B.4.76×103C.4.76×104D.0.476×104 4.(4分)在如图所示的低碳、节水、节能和绿色食品这四个标志中,是轴对称图形的是()A.B.C.D.5.(4分)如图,AB∥CD,直线EF分别交AB,CD于E,F两点,∠1=40°,则∠2等于()A.40°B.60°C.120°D.140°6.(4分)下列运算正确的是()A.a2•a3=a6B.(a+b)2=a2+b2C.(a2)3=a6D.a2+a3=a57.(4分)化简:﹣的结果是()A.m+n B.m﹣n C.n﹣m D.﹣m﹣n8.(4分)如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃9.(4分)在同一平面直角坐标系中,函数y=x﹣k与y=(k为常数,且k≠0)的图象大致是()A.B.C.D.10.(4分)某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为()A.20米B.10米C.10米D.20米11.(4分)如图,从一块直径为2m的圆形铁皮⊙O上剪出一个圆心角为90°的扇形ABC,且点A、B、C都在⊙O上,则此扇形的面积是()A.m2B.πm2C.πm2D.2πm212.(4分)二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为()A.1B.﹣1C.2D.﹣2二、填空题(本大题共6个小题,每小题4分,共24分).13.(4分)分解因式:a2+ab=.14.(4分)一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有2个黄球和若干个白球,将口袋中的球摇匀,从中任意摸出一个球,摸到黄球的概率是,则白球的个数是.15.(4分)一个正多边形的每个外角都是36°,这个正多边形的边数是.16.(4分)若代数式的值是1,则a=.17.(4分)如图,已知A地在B地正南方3千米处,甲乙两人同时分别从A、B两地向正北方向匀速直行,他们的距离s(千米)与所用的时间t(小时)之间的函数关系分别如图中的射线OC和ED,当他们行走4小时后,他们之间的距离为千米.18.(4分)如图,将小正方形AEFG绕大正方形ABCD的顶点A顺时针旋转一定的角度α(0°≤a≤90°),连接BG,DE相交于点O,再连接AO、BE、DG.以下四个结论:①BG=DE;②BG⊥DE;③∠DOA=∠GOA;④S△ADG=S△ABE.其中结论正确的是.三、解答题(本大题共9个小题,共78分)19.(6分)计算:()﹣1﹣(π﹣3.14)0﹣2tan45°+(﹣1)2020.20.(6分)解不等式组,并写出它的所有整数解.21.(6分)如图,在菱形ABCD中,E、F分别是AD和AB的中点,连接BE、DF.求证:BE=DF.22.(8分)为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解、B.比较了解、C.基本了解、D.不了解.根据调查统计结果,绘制了如图所示的不完整的两种统计图:请结合统计图,回答下列问题:(1)此次参与调查的学生共有人;(2)扇形统计图(如图1)中D部分扇形所对应的圆心角是度;(3)请补全条形统计图(如图2);(4)根据调查结果,学校开展关于雾霾的知识竞赛,要从“非常了解”程度的4人中随机选两人参加,已知这四人中有两名男生、两名女生,请用树状图或列表法求一名男生和一名女生参加本次知识竞赛的概率.23.(8分)如图,△ABC的外接圆⊙O的直径为AC,P是⊙O上一点,BP平分∠ABC,连接PO、PC.(1)求证:∠PBC=∠OPC;(2)过点P作⊙O的切线,与BC的延长线交于点Q,若BC=2,QC=3,求PQ的长.24.(10分)某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店,A种商品每件的售价为48元,B种商品每件的售价为31元,且商店将购进A、B共50件的商品全部售出后,要获得的利润超过348元,求A种商品至少购进多少件?25.(10分)已知平面直角坐标系中,直线AB与反比例函数y=(x>0)的图象交于点A (1,3)和点B(3,n),与x轴交于点C,与y轴交于点D.(1)求反比例函数的表达式及n的值;(2)将△OCD沿直线AB翻折,点O落在第一象限内的点E处,EC与反比例函数的图象交于点F.①请求出点F的坐标;②在x轴上是否存在点P,使得△DPF是以DF为斜边的直角三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.26.(12分)已知△ABC中,∠ACB=90°,点D是AB上的一点,过点A作AE⊥AB,过点C作CE⊥CD,且AE与CE相交于点E.(1)如图1,当∠ABC=45°,试猜想CE与CD的数量关系:;(2)如图2,当∠ABC=30°,点D在BA的延长线上,连接DE,请探究以下问题:①CD与CE的数量关系是否发生变化?如无变化,请给予证明;如有变化,先猜想CD与CE的数量关系,再给予证明;②若AC=2,四边形ACED的面积为3,试求BD的值.27.(12分)如图,抛物线y=ax2+bx+c(a≠0),与x轴交于A(4,0)、O两点,点D(2,﹣2)为抛物线的顶点.(1)求该抛物线的解析式;(2)点E为AO的中点,以点E为圆心、以1为半径作⊙E交x轴于B、C两点,点M 为⊙E上一点.①射线BM交抛物线于点P,设点P的横坐标为m,当tan∠MBC=2时,求m的值;②如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由.2020年山东省济南市天桥区中考数学二模试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.(4分)有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.【解答】解:主视图是从正面看,茶叶盒可以看作是一个圆柱体,圆柱从正面看是长方形.故选:D.3.(4分)将4760用科学记数法表示应为()A.47.6×102B.4.76×103C.4.76×104D.0.476×104【解答】解:4760=4.76×103.故选:B.4.(4分)在如图所示的低碳、节水、节能和绿色食品这四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.5.(4分)如图,AB∥CD,直线EF分别交AB,CD于E,F两点,∠1=40°,则∠2等于()A.40°B.60°C.120°D.140°【解答】解:∵AB∥CD,∴∠EFD=∠1=40°,∴∠2=180°﹣∠EFD=180°﹣40°=140°,故选:D.6.(4分)下列运算正确的是()A.a2•a3=a6B.(a+b)2=a2+b2C.(a2)3=a6D.a2+a3=a5【解答】解:A.a2•a3=a5,故本选项不合题意;B.(a+b)2=a2+2ab+b2,故本选项不合题意;C.(a2)3=a6,故本选项符合题意;D.a2和a3不是同类项不能合并,故本选项不合题意.故选:C.7.(4分)化简:﹣的结果是()A.m+n B.m﹣n C.n﹣m D.﹣m﹣n【解答】解:﹣===m+n.故选:A.8.(4分)如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃【解答】解:由图可得,极差是:30﹣20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C错误,平均数是:=℃,故选项D错误,故选:B.9.(4分)在同一平面直角坐标系中,函数y=x﹣k与y=(k为常数,且k≠0)的图象大致是()A.B.C.D.【解答】解:∵函数y=x﹣k与y=(k为常数,且k≠0)∴当k>0时,y=x﹣k经过第一、三、四象限,y=经过第一、三象限,故选项A符合题意,选项B不符合题意,当k<0时,y=x﹣k经过第一、二、三象限,y=经过第二、四象限,故选项C、D不符合题意,故选:A.10.(4分)某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为()A.20米B.10米C.10米D.20米【解答】解:∵∠BDC=∠A+∠ABD,∠A=30°,∠BDC=60°,∴∠ABD=60°﹣30°=30°,∴∠A=∠ABD,∴BD=AD=20米,∴BC=BD•sin60°=10(米),故选:C.11.(4分)如图,从一块直径为2m的圆形铁皮⊙O上剪出一个圆心角为90°的扇形ABC,且点A、B、C都在⊙O上,则此扇形的面积是()A.m2B.πm2C.πm2D.2πm2【解答】解:连接AC,∵AB=CB,∠ABC=90°,AC=2,∴AB=BC=,∴此扇形的面积是:=m2,故选:A.12.(4分)二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为()A.1B.﹣1C.2D.﹣2【解答】解:∵抛物线y=a(x﹣4)2﹣4(a≠0)的对称轴为直线x=4,而抛物线在6<x<7这一段位于x轴的上方,∴抛物线在1<x<2这一段位于x轴的上方,∵抛物线在2<x<3这一段位于x轴的下方,∴抛物线过点(2,0),把(2,0)代入y=a(x﹣4)2﹣4(a≠0)得4a﹣4=0,解得a=1.故选:A.二、填空题(本大题共6个小题,每小题4分,共24分).13.(4分)分解因式:a2+ab=a(a+b).【解答】解:a2+ab=a(a+b).14.(4分)一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有2个黄球和若干个白球,将口袋中的球摇匀,从中任意摸出一个球,摸到黄球的概率是,则白球的个数是8.【解答】解:设白球有x个,则=,解得:x=8,经检验:x=8是原分式方程的解;所以白球有8个.故答案为8.15.(4分)一个正多边形的每个外角都是36°,这个正多边形的边数是10.【解答】解:设所求正n边形边数为n,则36°n=360°,解得n=10.故正多边形的边数是10.16.(4分)若代数式的值是1,则a=2.【解答】解:根据题意得:=1,去分母得:a+1=2a﹣1,解得:a=2,经检验a=2是分式方程的解,则a=2.故答案为:2.17.(4分)如图,已知A地在B地正南方3千米处,甲乙两人同时分别从A、B两地向正北方向匀速直行,他们的距离s(千米)与所用的时间t(小时)之间的函数关系分别如图中的射线OC和ED,当他们行走4小时后,他们之间的距离为3千米.【解答】解:根据题意,知OC表示甲行驶距离s与时间t间函数关系,ED表示表示乙行驶距离s与时间t间函数关系,设s甲=kt,由图象可知OC过点(2,4),代入解析式得:2k=4,即k=2,故s甲=2t,设s乙=mt+n,由图象可知,ED过(0,3)、(2,4)两点,代入解析式得;,解得:,故s乙=t+3,当t=4时,s甲﹣s乙=8﹣5=3(km),故答案为:3.18.(4分)如图,将小正方形AEFG绕大正方形ABCD的顶点A顺时针旋转一定的角度α(0°≤a≤90°),连接BG,DE相交于点O,再连接AO、BE、DG.以下四个结论:①BG=DE;②BG⊥DE;③∠DOA=∠GOA;④S△ADG=S△ABE.其中结论正确的是①②③.【解答】解:∵∠DAB=∠EAG=90°,∴∠DAE=∠BAG,且AD=AB,AG=AE,∴△DAE≌△BAG(SAS)∴BG=DE,∠ADE=∠ABG,故①符合题意,如图,设点DE与AB交于点P,过点A作AM⊥DE,AN⊥BG,∵∠ADE=∠ABG,∠DP A=∠BPO,∴∠DAP=∠BOP=90°,∴BG⊥DE,故②符合题意,∵△DAE≌△BAG,∴S△DAE=S△BAG,∴DE×AM=×BG×AN,且DE=BG,∴AM=AN,且AM⊥DE,AN⊥BG,∴AO平分∠DOG,∴∠AOD=∠AOG,故③符合题意,如图2,过点G作GH⊥AD,过点E作EQ⊥EQ,∴∠EAQ+∠AEQ=90°,且∠EAQ+∠GAQ=90°,∴∠AEQ=∠GAQ,且AE=AG,∠EQA=∠AHG=90°,∴△AEQ≌△GAH(AAS)∴AQ=GH,∴AD×GH=×AB×AQ,∴S△ADG=S△ABE,故④不符合题意,故答案为:①②③.三、解答题(本大题共9个小题,共78分)19.(6分)计算:()﹣1﹣(π﹣3.14)0﹣2tan45°+(﹣1)2020.【解答】解:原式=3﹣1﹣2×1+1=3﹣1﹣2+1=1.20.(6分)解不等式组,并写出它的所有整数解.【解答】解:,由不等式①,得x>﹣2,由不等式②,得x≤3,故原不等式组的解集是﹣2<x≤3,故不等式组的所有整数解是﹣1,0,1,2,3.21.(6分)如图,在菱形ABCD中,E、F分别是AD和AB的中点,连接BE、DF.求证:BE=DF.【解答】证明:∵四边形ABCD是菱形,∴AB=AD,∵E、F分别是AD和AB的中点,∴AF=AB,AE=AD,∴AF=AE,又∵∠F AD=∠EAB,∴△AFD≌△AEB(SAS),∴BE=DF.22.(8分)为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解、B.比较了解、C.基本了解、D.不了解.根据调查统计结果,绘制了如图所示的不完整的两种统计图:请结合统计图,回答下列问题:(1)此次参与调查的学生共有80人;(2)扇形统计图(如图1)中D部分扇形所对应的圆心角是126度;(3)请补全条形统计图(如图2);(4)根据调查结果,学校开展关于雾霾的知识竞赛,要从“非常了解”程度的4人中随机选两人参加,已知这四人中有两名男生、两名女生,请用树状图或列表法求一名男生和一名女生参加本次知识竞赛的概率.【解答】解:(1)此次参与调查的学生共有:4÷5%=80(人);故答案为:80;(2)D部分扇形所对应的圆心角是360°×(1﹣5%﹣15%﹣45%)=126°;故答案为:126;(3)D等级的人数是:80﹣4﹣12﹣36=28(人),补全统计图如下:(4)根据题意画图如下:共有12种等可能的结果数,其中所选的两人恰好是一名男生和一名女生的结果数为8,所以所选的两人恰好是一名男生和一名女生的概率是=.23.(8分)如图,△ABC的外接圆⊙O的直径为AC,P是⊙O上一点,BP平分∠ABC,连接PO、PC.(1)求证:∠PBC=∠OPC;(2)过点P作⊙O的切线,与BC的延长线交于点Q,若BC=2,QC=3,求PQ的长.【解答】解:(1)∵BP平分∠ABC,∴∠ABP=∠PBC,∵OP=OC,∴∠OPC=∠OCP,∵∠OCP=∠ABP,∴∠OPC=∠ABP,∴∠PBC=∠OPC;(2)∵△ABC的外接圆⊙O的直径为AC,∴∠ABC=90°.∵BP平分∠ABC,∴∠ABP=∠PBC=∠ABC=45°,∴∠OPC=∠PBC=45°,∵OP=OC,∴∠OPC=∠OCP=45°,∴∠POC=90°.又∵PQ是⊙O的切线,∴∠OPQ=90°,∴∠OPQ+∠POC=180°,∴OC∥PQ,∴∠CPQ=∠OCP,又∵∠ABP=∠OCP,∴∠CPQ=∠PBC,∵∠Q=∠Q,∴△PCQ∽△BPQ,∴=,∴PQ2=CQ•BQ,∵BC=2,QC=3,∴BQ=5,∴PQ==.∴PQ的长为.24.(10分)某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店,A种商品每件的售价为48元,B种商品每件的售价为31元,且商店将购进A、B共50件的商品全部售出后,要获得的利润超过348元,求A种商品至少购进多少件?【解答】解:(1)设A种进价为x元,B种进价为y元.由题意,得,解得:,答:A种进价为40元,B种进价为25元.(2)设购进A种商品a件,则购进B种商品(50﹣a)件.由题意,得8a+6(50﹣a)>348,解得:a>24,答:至少购进A种商品24件.25.(10分)已知平面直角坐标系中,直线AB与反比例函数y=(x>0)的图象交于点A (1,3)和点B(3,n),与x轴交于点C,与y轴交于点D.(1)求反比例函数的表达式及n的值;(2)将△OCD沿直线AB翻折,点O落在第一象限内的点E处,EC与反比例函数的图象交于点F.①请求出点F的坐标;②在x轴上是否存在点P,使得△DPF是以DF为斜边的直角三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)∵直线AB与反比例函数y=(x>0)的图象交于点A(1,3)和点B(3,n),∴把A(1,3)代入y=得,3=,∴k=3,∴反比例函数的表达式为y=,把B(3,n)代入y=得,n==1;(2)①设直线AB的解析式为:y=kx+b,∴,解得:,∴直线AB的解析式为:y=﹣x+4,当y=0时,x=4,当x=0时,y=4,∴点C(4,0),点D(0,4),∴OC=OD=4,∴△COD是等腰直角三角形,∴∠ODC=∠OCD=45°,∵将△OCD沿直线AB翻折,∴四边形OCED是正方形,∴DE=CE=4,∴E(4,4),把x=4代入y=中得,y=,∴F(4,);②存在,理由:设点P(m,0),∴DP2=m2+16,PF2=(4﹣m)2+()2,FD2=16+(4﹣)2,∵△DPF是以DF为斜边的直角三角形,∴DP2+PF2=FD2,即m2+16+(4﹣m)2+()2=16+(4﹣)2,解得:m=1或m=3,故在x轴上存在点P,使得△DPF是以DF为斜边的直角三角形.26.(12分)已知△ABC中,∠ACB=90°,点D是AB上的一点,过点A作AE⊥AB,过点C作CE⊥CD,且AE与CE相交于点E.(1)如图1,当∠ABC=45°,试猜想CE与CD的数量关系:CE=CD;(2)如图2,当∠ABC=30°,点D在BA的延长线上,连接DE,请探究以下问题:①CD与CE的数量关系是否发生变化?如无变化,请给予证明;如有变化,先猜想CD与CE的数量关系,再给予证明;②若AC=2,四边形ACED的面积为3,试求BD的值.【解答】解:(1)结论:CE=CD.理由:如图1中,∵∠ACB=90°,∠B=45°,∴∠B=∠CAB=45°,∴CA=CB,∵AE⊥BA,CE⊥CD,∴∠ACB=∠ECD=∠BAE=90°,∴∠BCD=∠ACE,∠CAE=∠B=45°,∴△BCD≌△ACE(ASA),∴CD=CE.故答案为CE=CD.(2)①结论有变化.CD=CE.理由:如图2中,∵∠ACB=90°,∠B=30°,∴∠BAC=60°,BC=AC,∵AE⊥BA,CE⊥CD,∴∠ACB=∠ECD=∠BAE=90°,∴∠BCD=∠ACE,∠CAE=∠B=30°,∴△BCD∽△ACE,∴==,∴CD=CE.②如图2中,过点C作CH⊥AB于H.设EC=a,则CD=a,∵AC=2,∠ACH=30°,∠CHA=90°,∴AH=AC=1,CH=AH=,∴DH==,∴AD=﹣1,∵S四边形ACED=3,∴S△ACD+S△BCD=3,∴×(﹣1)•+•a•a=3,整理得:a4﹣17a2+52=0,∴a2=4或13(舍弃),∵a>0,∴a=2,∴DH=3,∵BH=CH=3,∴BD=BH+DH=6.27.(12分)如图,抛物线y=ax2+bx+c(a≠0),与x轴交于A(4,0)、O两点,点D(2,﹣2)为抛物线的顶点.(1)求该抛物线的解析式;(2)点E为AO的中点,以点E为圆心、以1为半径作⊙E交x轴于B、C两点,点M 为⊙E上一点.①射线BM交抛物线于点P,设点P的横坐标为m,当tan∠MBC=2时,求m的值;②如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由.【解答】解:(1)用抛物线顶点式表达式得:y=a(x﹣2)2﹣2,将点A的坐标代入上式并解得:a=,故抛物线的表达式为:y=(x﹣2)2﹣2=x2﹣2x①;(2)点E是OA的中点,则点E(2,0),圆的半径为1,则点B(1,0),当点P在x轴下方时,如图1,∵tan∠MBC=2,故设直线BP的表达式为:y=﹣2x+s,将点B(1,0)的坐标代入上式并解得:s=2,故直线BP的表达式为:y=﹣2x+2②,联立①②并解得:x=±2(舍去﹣2),故m=2;当点P在x轴上方时,同理可得:m=4±2(舍去4﹣2);故m=2或4+2;(3)存在,理由:连接BN、BD、EM,则BN是△OEM的中位线,故BN=EM=,而BD==,在△BND中,BD﹣BN≤ND≤BD+BN,即﹣0.5≤ND≤+0.5,故线段DN的长度最小值和最大值分别为﹣0.5和+0.5.。

2020年安徽省合肥市中考数学二模试卷 (含答案解析)

2020年安徽省合肥市中考数学二模试卷 (含答案解析)

2020年安徽省合肥市中考数学二模试卷一、选择题(本大题共10小题,共40.0分)1.√8116的平方根是()A. 94B. 32C. ±94D. ±322.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.3.下列各选项中因式分解正确的是()A. x2−1=(x−1)2B. a3−2a2+a=a2(a−2)C. −2y2+4y=−2y(y+2)D. m2n−2mn+n=n(m−1)24.某种病毒的直径约为0.000000029米,将0.000000029用科学记数法表示为()A. 2.9×10−8B. 29×10−8C. 2.9×10−9D. 29×10−95.如果不等式组{x>ax<2恰有3个整数解,则a的取值范围是A. a≤−1B. a<−1C. −2≤a<−1D. −2<a<−16.下面的几何体中,主视图为三角形的是()A. B.C. D.7.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A. 50(1+x)2=60B. 50(1+x)2=120C. 50+50(1+x)+50(1+x)2=120D. 50(1+x)+50(1+x)2=1208.函数y=ax2−a与y=ax−a(a≠0)在同一坐标系中的图象可能是()A. B.C. D.9.用一个圆心角为90°,半径为4的扇形作一个圆锥的侧面,则圆锥的高为()A. √17B. √15C. 2√3D. √710.如图,在矩形ABCD中(AD>AB),E是BC上的一点,且DE=DA,AF⊥DE于点F.下列结论不一定正确的是()A. △AFD≌△DCEB. AF=ADC. AB=AFD. BE=AD−DF二、填空题(本大题共4小题,共20.0分)11.一组数据:2,5,3,1,6,则这组数据的中位数是.12.分解因式:4x3−x=______ .13.如图,点A,B分别在反比例函数y=1x ,y=kx的图象上,OA⊥OB,若tan∠ABO=12,则k的值为______.14.在平面直角坐标系中,矩形OABC的顶点坐标分别是O(0,0),A(8,0),B(8,6),D(0,6),已知矩形OA1B1C1与矩形OABC位似,位似中心为坐标原点O,位似比为12,则点B1的坐标是____.三、解答题(本大题共9小题,共72.0分)15.√16+(2−√2)0−(−12)−2+|−1|16.先化简,再求值:a2−4a−3÷(1+1a−3),其中a=3√5−2.17.如图,5×5的正方形网格中隐去了一些网格线,AB,CD间的距离是2个单位,CD,EF间的距离是3个单位,格点O在CD上(网格线的交点叫格点).请分别在图①、②中作格点三角形OPQ,使得∠POQ=90°,其中点P在AB上,点Q在EF上,且它们不全等.x+1的18.如图,一次函数y=kx+b的图像为直线l1,经过A(0,4)和D(4,0)两点;一次函数y=12图像为直线l2,与x轴交于点C;两直线l1,l2相交于点B.(1)求k、b的值;(2)求点B的坐标;S▵ABC,求点P的坐标.(3)若直线l2上有一点P,满足S▵PAC=13(4)如图2,点E为线段CD上一点,∠DBE=∠BCD,点Q为射线CD上一点,且点Q到直线BC、BE的距离相等,求点Q的坐标.19.如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l 的距离为多少千米?(参考数据:√3≈1.732,结果保留小数点后一位)20.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC、AB相交于点D、E,连接AD,已知∠CAD=∠B(1)求证:AD是⊙O的切线;(2)若∠B=30°,AC=√3,求劣弧BD与弦BD所围图形的面积.(3)若AC=4,BD=6,求AE的长.21.为培养学生良好的学习习惯,某校九年级年级组举行“整理错题集“的征集展示活动,并随机对部分学生三年“整理题集”中收集的错题数x进行了抽样调查,根据收集的数据绘制了下面不完整的统计图表.分组频数频率第一组(0≤x<120)30.15第二组(120≤x<160)8a第三组(160≤x<200)70.35第四组(200≤x<240)b0.1请你根据图表中的信息完成下列问题:(1)频数分布表中a=______,b=______,并将统计图补充完整;(2)如果该校九年级共有学生360人,估计整理的错题数在160或160题以上的学生有多少人?(3)已知第一组中有两个是甲班学生,第四组中有一个是甲班学生,老师随机从这两个组中各选一名学生谈整理错题的体会,则所选两人正好都是甲班学生的概率是多少?22.某商场经营某种品牌的玩具,购进时的单价是3元,经市场预测,销售单价为40元时,可售出600个;面销售单价每涨1元,销售量将减少10个设每个销售单价为x元.(1)写出销售量y(件)和获得利润w(元)与销售单价x(元)之间的函数关系;(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?23.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.【答案与解析】1.答案:D解析:此题主要考查了平方根以及算术平方根,正确把握相关定义是解题关键.首先化简算术平方根,进而利用平方根的定义得出答案.解:√8116=94,它的平方根是:±32.故选:D.2.答案:A解析:本题主要考查了中心对称图形与轴对称图形的定义.根据轴对称图形与中心对称图形的概念求解即可.解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,也不是中心对称图形,不符合题意;C.不是轴对称图形,也不是中心对称图形,不符合题意;D.是轴对称图形,也是中心对称图形,不符合题意.故选A.3.答案:D解析:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.直接利用公式法以及提取公因式法分解因式,进而判断即可.解:A.x2−1=(x+1)(x−1),故此选项错误;B.a3−2a2+a=a(a2−2a+1)=a(a−1)2,故此选项错误;C.−2y2+4y=−2y(y−2),故此选项错误;D.m2n−2mn+n=n(m2−2m+1)=n(m−1)2,故此选项正确.故选D.4.答案:A解析:解:0.000000029=2.9×10−8.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.答案:C解析:此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.首先根据不等式恰好有3个整数解求出不等式组的解集为−1≤x<2,继而可得a的取值范围.解:∵不等式恰好有3个整数解,∴−1≤x<2,∴−2≤a<−1.故选C.6.答案:C解析:解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.7.答案:D解析:本题主要考查由实际问题抽象问题出一元二次方程,涉及增长率问题,可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.根据相等关系:增长后的量=增长前的量×(1+增长率)2,如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产120台”,即可列出方程.解:设二、三月份每月的平均增长率为x,则二月份生产机器为:50(1+x),三月份生产机器为:50(1+x)2;又知二、三月份共生产120台;所以,可列方程:50(1+x)+50(1+x)2=120.故选:D.8.答案:D解析:本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键.分a>0与a<0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论.解:①当a>0时,二次函数y=ax2−a的图象开口向上、对称轴为y轴、顶点在y轴负半轴,一次函数y=ax−a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y轴同一点;②当a<0时,二次函数y=ax2−a的图象开口向下、对称轴为y轴、顶点在y轴正半轴,一次函数y=ax−a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y轴同一点.对照四个选项可知D正确.故选:D.9.答案:B解析:解:设圆锥的底面圆的半径为r,根据题意得2πr=90⋅π⋅4,解得r=1,180所以圆锥的高=√42−12=√15.故选B.设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,然后求出r后利用勾股定理计算圆锥的高.和弧长公式得到2πr=90⋅π⋅4180本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10.答案:B解析:本题主要考查了矩形的性质和全等三角形的判定与性质,直角三角形的性质,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.先根据已知条件判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.解:A.∵四边形ABCD是矩形,AF⊥DE,∴∠C=∠AFD=90°,AD//BC,∴∠ADF=∠DEC,又∵DE=AD,∴△AFD≌△DCE(AAS),故A正确;B.∵AF⊥DE,∴∠AFD=90°,∴直角三角形ADF中,直角边AF一定不等于斜边AD,故B错误;C.∵△AFD≌△DCE,∴AF=CD,∵四边形ABCD是矩形,∴AB=CD,∴AB=AF,故C正确;D.∵△AFD≌△DCE,∴CE=DF,∵四边形ABCD是矩形,∴BC=AD,又∵BE=BC−EC,∴BE=AD−DF,故D正确;故选B.11.答案:3解析:本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.根据中位数的定义求解可得.解:将这5个数据按从小到大的顺序排列为1,2,3,5,6,故这组数据的中位数是3.12.答案:x(2x+1)(2x−1)解析:此题主要考查了提取公因式法、公式法分解因式,正确找出公因式是解题关键.首先直接提取公因式x,进而利用平方差公式分解因式得出答案.解:4x3−x=x(4x2−1)=x(2x+1)(2x−1).故答案为:x(2x+1)(2x−1).13.答案:−4解析:本题考查了反比例函数系数k的几何意义、相似三角形的判定与性质以及解直角三角形,根据反比例函数系数k的几何意义结合相似三角形的性质找出关于k的分式方程是解题的关键.过点A作AC⊥y轴于点C,过点B作BD⊥y轴于点D,根据角与角之间的关系即可得出△AOC∽△OBD,由此即可得出,再根据反比例函数系数k的几何意义以及tan∠ABO=12,即可得出关于k的分式方程,解之即可得出结论.解:过点A作AC⊥y轴于点C,过点B作BD⊥y轴于点D,如图所示.∵AC⊥y轴,BD⊥y轴,OA⊥OB,∴∠ACD=∠ODB=90°,∠AOB=90°.∵∠OAC+∠AOC=90°,∠BOD+∠OBD=90°,∠AOC+∠BOD=180°−90°=90°,∴∠AOC=∠OBD,∴△AOC∽△OBD,∴S△AOCS△OBD =(AOBO)2,∵反比例函数y=kx在第四象限有图象,∴k<0.∵tan∠ABO=12,S△AOC=12×1=12,S△OBD=12|k|=−12k,∴12−12k=14,解得:k=−4,经检验:k=−4是该方程的解.故答案为:−4.14.答案:(4,3)或(−4,−3)解析:解:∵矩形OA1B1C1与矩形OABC位似,位似中心为坐标原点O,位似比为12,∴点B1的坐标是:(4,3)或(−4,−3).故答案为:(4,3)或(−4,−3).由矩形OA1B1C1与矩形OABC位似,位似中心为坐标原点O,位似比为12,又由点B的坐标为(8,6),即可求得答案.此题考查了位似图形的性质,注意位似图形是特殊的相似图形,注意数形结合思想的应用. 15.答案:解:√16+(2−√2)0−(−12)−2+|−1|=4+1−4+1=2.解析:本题考查了绝对值以及算术平方根、负整数指数幂的运算,属于基础题.根据绝对值、算术平方根和负整数指数幂计算即可. 16.答案:解:原式=(a+2)(a−2)a−3⋅a−3a−2=a +2,当a =3√5−2时, 原式=3√5−2+2=3√5.解析:把分式化简后,再把分式中a 的值代入求出分式的值.本题考查了分式的混合运算,熟练分解因式是解题的关键.17.答案:解:△POQ 如图所示;解析:利用数形结合的思想,构造直角三角形即可解决问题;本题考查作图−应用与设计、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.答案:解:(1)(1)把A(0,4)和D(4,0)分别代入y =kx +b 得{b =44k +b =0, 解得{k =−1b =4; (2)解方程组{y =−x +4y =12x +1得{x =2y =2,所以点B 的坐标为(2,2);(3)S ΔABC =12×3×2+12×3×2=6, ∴S ΔPAC =13S ΔABC =2,∴S ΔPAE =3−2=1或S △PAE =3+2=5,∴32|x P |=1或32|x P |=5,∵x P <0,∴x P =−23或x P =−103, ∴y p =23或y p =−23,∴P(−23,23)或P(−103,−23); (4)由题意得Q(4−2√2,0)或Q(4+2√2,0).解析:本题考查的是一次函数的图象,一次函数解析式的求法,三角形的面积,点的坐标的确定等有关知识.(1)把点A 和点D 的坐标分别代入y =kx +b 得到关于k 、b 的方程组,然后解方程求出k 、b 的值;(2)根据两直线相交的问题,通过解方程组{y =−x +4y =12x +1得到点B 的坐标; (3)直接用三角形的面积公式即可得出结论;(4)根据题意直接求解即可.19.答案:解:过点C 作CD ⊥AB 于点D ,根据题意得:∠CAD =90°−60°=30°,∠CBD =90°−30°=60°,∴∠ACB =∠CBD −∠CAD =30°,∴∠CAB =∠ACB ,∴BC =AB =2km ,在Rt △CBD 中,CD =BC ⋅sin60°=2×√32=√3≈1.7(km),答:船C到海岸线l的距离约为1.7km.解析:过点C作CD⊥AB于点D,然后根据含30度角的直角三角形的性质即可求出答案.本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.20.答案:(1)证明:连接OD,如图1所示:∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°−(∠2+∠3)=90°,∴OD⊥AD,则AD为⊙O的切线;(2)解:连接OD,作OF⊥BD于F,如图2所示:∵OB=OD,∠B=30°,∴∠ODB=∠B=30°,∴∠DOB=120°,∵∠C=90°,∠CAD=∠B=30°,∴CD=√3AC=1,BC=√3AC=3,3∴BD=BC−CD=2,∵OF⊥BD,∴DF=BF=12BD=1,OF=√33BF=√33,∴OB=2OF=2√33,∴劣弧BD与弦BD所围图形的面积=扇形ODB的面积−△ODB的面积=120π×(2√33)2360−12×2×√33=4 9π−√33;(3)解:∵∠CAD=∠B,∠C=∠C,∴△ACD∽△BCA,∴ACBC =CDAC=ADAB,∴AC2=CD×BC=CD(CD+BD),即42=CD(CD+6),解得:CD=2,或CD=−8(舍去),∴CD=2,∴AD=√AC2+CD2=2√5,∵CDAC =ADAB,∴24=2√5AB,∴AB=4√5,∵AD是⊙O的切线,连接DE,OD,∵∠ADE+∠ODE=∠B+∠ODE=90°,∴∠B=∠ADE,∠A=∠A,∴△ADE∽△ABD,∴AD2=AE×AB,∴AE=AD2AB =√5)24√5=√5.解析:本题是圆的综合题目,考查了切线的判定与性质、等腰三角形的性质、直角三角形的性质、相似三角形的判定与性质、勾股定理、扇形面积公式、切割线定理、三角形面积公式等知识;本题综合性强,证明三角形相似是解决问题(3)的关键.(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可证AD是⊙O的切线;(2)连接OD,作OF⊥BD于F,由直角三角形的性质得出CD,BC,得出BD,由直角三角形的性质得出DF,OF,OB,由扇形面积公式和三角形面积公式即可得出结果;(3)证明△ACD∽△BCA,得出ACBC =CDAC=ADAB,求出CD,由勾股定理得出AD,求出AB,再由切割线定理即可得出AE的长.21.答案:(1)0.4,2,统计图补充为:(2)360×(0.35+0.1)=162,所以估计整理的错题数在160或160题以上的学生有162人;(3)画树状图为:共有6种等可能的结果数,其中所选两人正好都是甲班学生的结果数为2,所以所选两人正好都是甲班学生的概率=26=13.解析:解:(1)3÷0.15=20,=0.4;a=820b=20×0.1=2;故答案为0.4,2;统计图见答案;(2)见答案;(3)见答案.(1)先利用第一组的频数和频率计算出调查的总人数,然后计算a、b的值,最后补全统计图;(2)用360乘以样本中第三、四的频率和,则可估计出整理的错题数在160或160题以上的学生数;(3)画树状图展示所有6种等可能的结果数,找出所选两人正好都是甲班学生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.22.答案:解:(1)依题意,易得销售量y(件)与销售单价x(元)之间的函数关系:y=600−10(x−40)=−10x+1000,获得利润w(元)与销售单价x(元)之间的函数关系为:w=y⋅(x−30)=(1000−10x)(x−30)=−10x2+1300x−30000;(2)根据题意得,x≥44时且1000−10x≥540,解得:44≤x≤46,w=−10x2+1300x−30000=−10(x−65)2+12250,∵a=−10<0,对称轴x=65,∴当44≤x≤46时,y随x的增大而增大,∴当x=46时,w最大值=8640元,即商场销售该品牌玩具获得的最大利润是8640元.解析:此题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=−b时取得.2a(1)根据销售利润=销售量×(售价−进价),建立函数关系式即可;(2)根据题意得,x≥14时且1000−10x≥540,解得:44≤x≤46,则此时w=−10(x−65)2+ 12250,而a<0,则得当44≤x≤46时,y随x的增大而增大,即在x=46j时,可取得最大值.23.答案:解:(1)在Rt△ABC中,∠A=30°,AB=8,∴AC=4√3,∵PD⊥AC,∴∠ADP=∠CDP=90°,在Rt△ADP中,AP=2t,∴DP=t,AD=APcosA=2t×√32=√3t,∴CD=AC−AD=4√3−√3t(0<t<2);(2)在Rt△PDQ中,∵∠DPC=∠DPQ=60°,∴∠PQD=30°=∠A,∴PA=PQ,∵PD⊥AC,∴AD=DQ,∵点Q和点C重合,∴AD+DQ=AC,∴2×√3t=4√3,∴t=2(3)∵∠APD=∠DPQ=60°,∠PDA=∠PDQ,DP=DP∴△APD≌△QPD(ASA)∴DQ=AD=√3t,∠A=∠DQP=30°当点Q在线段AC上时,即0<t≤2S=12×DQ×DP=√32t2.当点Q在线段AC延长线上,即2<t<4∵CQ=DQ−DC∴CQ=√3t−(4√3−√3t)=2√3t−4√3∵∠DQP=30°∴CE=2t−4∵S=S△DPQ−S△CEQ.∴S=√32t2−12CE×CQ=−3√32t2+8√3t−8√3(4)如图:当PQ的垂直平分线过AB的中点F时,∴∠PGF=90°,PG=12PQ=12AP=t,AF=12AB=4,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=4,∴t=1如图:当PQ的垂直平分线过AC的中点M时,∴∠QMN=90°,AN=12AC=2√3,QM=12PQ=12AP=t,在Rt△NMQ中,NQ=MQcos30∘=2√33t,∵AN+NQ=AQ,∴2√3+2√33t=2√3t∴t=3 2如图:当PQ的垂直平分线过BC的中点时,∴BF=12BC=2,PE=12PQ=t,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=2,在Rt△PEH中,PH=2PE=2t,∴AH=AP+PH=AB+BH,∴2t+2t=10,∴t=5 2综上所述:t=1,32,5 2.解析:(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论.此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.。

2020年安徽省合肥市c20教育联盟中考数学二模试卷 (解析版)

2020年安徽省合肥市c20教育联盟中考数学二模试卷 (解析版)

2020年中考数学二模试卷一、选择题1.﹣4的绝对值是()A.4B.C.﹣4D.±42.计算(﹣3a2)3结果是()A.﹣9a6B.﹣27a6C.27a6D.﹣27a53.如图,由4个大小相同的正方体组成的几何体的主视图是()A.B.C.D.4.病毒的平均直径约是0.00000009米.数据0.00000009学记数法表示为()A.0.9×10﹣8B.9×10﹣8C.9×10﹣7D.0.9×10﹣75.下列因式分解正确的是()A.2ab2﹣4ab=2a(b2﹣2b)B.a2+b2=(a+b)(a﹣b)C.x2+2xy﹣4y2=(x﹣2y)2D.﹣my2+4my﹣4m=﹣m(y﹣2)26.为了解我市某中学“书香校园”的建设情况,在该校随机抽取了50名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校1500名学生中,一周课外阅读时间不少于4小时的人数约为()A.300B.600C.900D.12007.某件羊毛衫的售价为1000元,因换季促销,商家决定降价销售,在连续两次降价x%后,售价降低了190元,则x为()A.5B.10C.19D.818.如图,AB是⊙O的直径,AB=4,AC是的弦,过点O作OD∥AC交⊙O于点D,连接BC,若∠ABC=24°,则劣弧CD的长为()A.B.C.D.9.当a﹣b=3时,关于x的一元二次方程ax2﹣bx﹣2=0(a≠0)的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,矩形CDEF的顶点E在边AB上,D,F两点分别在边AC,BC上,且,将矩形CDEF以每秒1个单位长度的速度沿射线CB方向匀速运动,当点C与点B重合时停止运动,设运动时间为t秒,矩形CDEF与△ABC重叠部分的面积为S,则反映S与t的函数关系的图象为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.估算:≈(结果精确到1).12.命题:“如果m是自然数,那么它是有理数”,则它的逆命题为.13.如图,正方形ABCD的顶点A,B在x轴的负半轴上,反比例函数(k1≠0)在第二象限内的图象经过正方形ABCD的顶点D(m,2)和BC边上的点G(n,),直线y=k2x+b(k2≠0)经过点D,点G,则不等式的解集为.14.如图,在矩形ABCD中,AB=2,AD=,点M为AB的中点,点N为AD边上的一动点,将△AMN沿MN折叠,点A落在点P处,当点P在矩形ABCD的对角线上时,AN的长度为.三、(本大题共2小题,每小题8分,满分16分)15.解不等式:.16.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?四、(本大题共2小题,每小题8分,满分16分)17.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣2),B(2,﹣1),C (4,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后点P在△A2B2C2内的对应点P2的坐标是.18.观察以下等式:第1个等式:2+=22×;第2个等式:3+=32×;第3个等式:4+=42×;第4个等式:5+=52×;……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19.广州塔又称广州新电视塔,昵称小蛮腰,位于广州市海珠区赤岗塔附近,是中国第一高塔,世界第四高塔.如图,广州塔BD附近有一大厦AC高150米,张强在楼底A处测得塔顶D的仰角为45°,上到大厦顶C处测得塔顶D的仰角为37°,求广州塔BD 的高.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.如图,四边形ABDC是⊙O的内接四边形,∠BDC=120°,AB=AC,连接对角线AD,BC,点F在线段BD的延长线上,且CF=DF,⊙O的切线CE交BF于点E.(1)求证:CE∥AB;(2)求证:AD=BD+CD.六、(本题满分12分)21.某校举行了主题为“防控新冠,从我做起”的线上知识竞赛活动,测试内容为20道判断题,每道题5分,满分100分,为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩已知抽查得到的八年级的数据如下:80,95,75,75,90,75,80,65,80,85,75,65,70,65,85,70,95,80,75,80.为了便于分析数据,统计员对八年级数据进行了整理,得到了表一:成绩等级分数(单位:分)学生数D等60<x≤705C等70<x≤80aB等80<x≤90bA等90<x≤1002九年级成绩的平均数、中位数、优秀率如下:(分数80分以上、不含80分为优秀)年级平均数中位数优秀率八年级77.5c m%九年级7682.550%(1)根据题目信息填空:a=,c=,m=;(2)八年级王宇和九年级程义的分数都为80分,请判断王宇、程义在各自年级的排名哪位更靠前?请简述你的理由;(3)八年级被抽取的20名学生中,获得A等和B等的学生将被随机选出2名,协助学校普及防控知识,求这两人都为B等的概率.七、(本题满分12分)22.如图,在平面直角坐标系中,抛物线与x轴交于A,B(4,0)两点,与y轴交于点C(0,4).(1)求此抛物线的函数表达式及点A的坐标;(2)已知点D(1,﹣1),在直线AD上方的抛物线上有一动点P(x,y)(1<x<4),求△ADP面积的最大值.八、(本题满分14分)23.如图,在△ABC中,AG⊥BC,垂足为点G,点E为边AC上一点,BE=CE,点D为边BC上一点,GD=GB,连接AD交BE于点F.(1)求证:∠ABE=∠EAF;(2)求证:AE2=EF•EC;(3)若CG=2AG,AD=2AF,BC=5,求AE的长.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣4的绝对值是()A.4B.C.﹣4D.±4解:﹣4的绝对值是4,故选:A.2.计算(﹣3a2)3结果是()A.﹣9a6B.﹣27a6C.27a6D.﹣27a5解:(﹣3a2)3=﹣27a6,故选:B.3.如图,由4个大小相同的正方体组成的几何体的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从正面看易得有两层,底层两个正方形,上层右边一个正方形,右齐.故选:C.4.病毒的平均直径约是0.00000009米.数据0.00000009学记数法表示为()A.0.9×10﹣8B.9×10﹣8C.9×10﹣7D.0.9×10﹣7解:数据0.00000009学记数法表示为9×10﹣8.故选:B.5.下列因式分解正确的是()A.2ab2﹣4ab=2a(b2﹣2b)B.a2+b2=(a+b)(a﹣b)C.x2+2xy﹣4y2=(x﹣2y)2D.﹣my2+4my﹣4m=﹣m(y﹣2)2解:A、原式=2ab(b﹣2),不符合题意;B、原式不能分解,不符合题意;C、原式不能分解,不符合题意;D、原式=﹣m(y﹣2)2,符合题意.故选:D.6.为了解我市某中学“书香校园”的建设情况,在该校随机抽取了50名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校1500名学生中,一周课外阅读时间不少于4小时的人数约为()A.300B.600C.900D.1200解:根据图中信息估计该校1500名学生中,一周课外阅读时间不少于4小时的人数约为1500×=900(人),故选:C.7.某件羊毛衫的售价为1000元,因换季促销,商家决定降价销售,在连续两次降价x%后,售价降低了190元,则x为()A.5B.10C.19D.81解:依题意,得:1000(1﹣x%)2=1000﹣190,解得:x1=10,x2=190(不合题意,舍去).故选:B.8.如图,AB是⊙O的直径,AB=4,AC是的弦,过点O作OD∥AC交⊙O于点D,连接BC,若∠ABC=24°,则劣弧CD的长为()A.B.C.D.解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=24°,∴∠A=90°﹣24°=66°,∴∠BOC=2×66°=132°,∵AC∥OD,∴∠BOD=∠A=66°,∴∠COD=132°﹣66°=66°,∵AB=4,∴劣弧CD的长==;故选:B.9.当a﹣b=3时,关于x的一元二次方程ax2﹣bx﹣2=0(a≠0)的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【分析】计算根的判别式得到△=b2+8a,利用a﹣b=3变形为△=b2+8b+24=(b+4)2+8>0,即可求得答案.解:∵ax2﹣bx﹣2=0(a≠0),∴△=b2+8a,∵a﹣b=3,∴a=b+3,∴△=b2+8b+24=(b+4)2+8>0,∴该方程有两个不相等的实数根,故选:A.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,矩形CDEF的顶点E在边AB上,D,F两点分别在边AC,BC上,且,将矩形CDEF以每秒1个单位长度的速度沿射线CB方向匀速运动,当点C与点B重合时停止运动,设运动时间为t秒,矩形CDEF与△ABC重叠部分的面积为S,则反映S与t的函数关系的图象为()A.B.C.D.【分析】证明△DEF≌△BFE(AAS),则DE=FB=CF=BC=4;分0≤t≤4、4<t ≤8两种情况,分别求出函数表达式,即可求解.解:如图1,连接DF,∵,即tan B=tan∠EDF,∴∠B=∠EDF,而∠DEF=∠EFB=90°,EF=EF,∴△DEF≌△BFE(AAS),∴DE=FB=CF=BC=4,即点F是BC的中点,EF=FB tan B=4×=3,故矩形DCFE的面积为3×4=12;当0≤t≤4时,如图2,设直线AB交D′C′F′E′于点H,则EE′=t,HE′=EE′tan∠E′EH=EE′tan B=t,S=S矩形D′C′F′E′﹣S△E′EH=12﹣t×t=12﹣t2,该函数为开口向下的抛物线,当t=4时,S=6;当4<t≤8时,同理可得:S=(8﹣t)2,该函数为开口向上的抛物线;故选:D.二、填空题(本大题共4小题,每小题5分,满分20分)11.估算:≈7(结果精确到1).【分析】由于36<46<49,所以得到的整数部分是6,然后即可判断出所求的无理数的大约值.解:∵36<46<49,∴的整数部分是6,∵6.72=44.89,6.82=46.25,∴≈7,故答案为7.12.命题:“如果m是自然数,那么它是有理数”,则它的逆命题为如果m是有理数,那么它是自然数.【分析】把一个命题的条件和结论互换就得到它的逆命题.解:命题:“如果m是自然数,那么它是有理数”,则它的逆命题为如果m是有理数,那么它是自然数;故答案为:如果m是有理数,那么它是自然数.13.如图,正方形ABCD的顶点A,B在x轴的负半轴上,反比例函数(k1≠0)在第二象限内的图象经过正方形ABCD的顶点D(m,2)和BC边上的点G(n,),直线y=k2x+b(k2≠0)经过点D,点G,则不等式的解集为﹣3≤x≤﹣1或x>0.【分析】利用正方形ABCD的顶点D的坐标得到正方形的边长为2,则G点坐标表示为(n﹣2,),则根据反比例函数图象上点的坐标特征得到2m=(m﹣2),求出m 得到G(﹣3,),D(﹣1,2),然后结合函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围(含两图象交点的横坐标).解:∵正方形ABCD的顶点D的坐标为(m,2),∴正方形的边长为2,∴G(n﹣2,),∵D(m,2),G(m﹣2,)在反比例函数(k1≠0)图象上,∴2m=(m﹣2),解得m=﹣1,∴G(﹣3,),D(﹣1,2),∵当﹣3≤x≤﹣1或x>0时,,∴不等式的解集为﹣3≤x≤﹣1或x>0.故答案为﹣3≤x≤﹣1或x>0.14.如图,在矩形ABCD中,AB=2,AD=,点M为AB的中点,点N为AD边上的一动点,将△AMN沿MN折叠,点A落在点P处,当点P在矩形ABCD的对角线上时,AN的长度为或.【分析】分两种情况讨论,当点P落在BD上时,由折叠的性质可得AM=MP=BM,AN=NP,可证∠APB=90°,由余角的性质可得∠NPD=∠ADP,可得AN=NP=DN =AD=;当点P在AC上时,通过证明△MAN∽△CBA,可得,即可求解.解:如图,当点P落在BD上时,∵点M为AB的中点,∴AM=BM=AB=1,∵将△AMN沿MN折叠,点A落在点P处,∴AM=MP,AN=NP,∴AM=MP=BM,∠NAP=∠NPA,∴∠APB=90°,∴∠NAP+∠ADP=90°,∠APN+∠NPD=90°,∴∠NPD=∠ADP,∴AN=ND,∴AN=NP=DN=AD=;若点P落在AC上时,连接AC交MN于点H,∵将△AMN沿MN折叠,∴AC⊥MN,∵∠ABC+∠BCH+∠CHM+∠BMH=360°,∴∠BMH+∠BCH=180°,又∵∠AMN+∠BCH=180°,∴∠AMN=∠BCH,又∵∠BAD=∠ABC=90°,∴△MAN∽△CBA,∴,∴AN==,故答案为:或.三、(本大题共2小题,每小题8分,满分16分)15.解不等式:.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.解:去分母,得:2x﹣1<12x+14,移项,得:2x﹣12x<14+1,合并同类项,得:﹣10x<15,系数化为1,得:x>﹣.16.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?【分析】设大和尚有x人,小和尚有y人,根据100个和尚吃100个馒头且1个大和尚分3个、3个小和尚分1个,即可得出关于x,y的二元一次方程组,解之即可得出结论.解:设大和尚有x人,小和尚有y人,依题意,得:,解得:.答:大和尚有25人,小和尚有75人.四、(本大题共2小题,每小题8分,满分16分)17.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣2),B(2,﹣1),C (4,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后点P在△A2B2C2内的对应点P2的坐标是(2a,2b).【分析】(1)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用关于原点为位似中心的对应点的坐标之间的关系,把点A1、B1、C1的横纵坐标都乘以2得到A2、B2、C2的坐标,然后描点即可;(3)利用(2)中的坐标变换规律求解.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)点P的对应点P2的坐标是(2a,2b).故答案为(2a,2b).18.观察以下等式:第1个等式:2+=22×;第2个等式:3+=32×;第3个等式:4+=42×;第4个等式:5+=52×;……按照以上规律,解决下列问题:(1)写出第5个等式:6+;(2)写出你猜想的第n个等式:n+=n•(用含n的等式表示),并证明.【分析】(1)观察出规律:一个数加上一个分数(分子为这个数、分母比这个数的平方少1等于这个数的平方与这个分数的积.再根据规律写出第5个等式;(2)用字母n表示这个规律,并根据分式的运算验证.解:(1)第1个等式:2+=22×,即2+=22×;第2个等式:3+=32×,即3+=32×;第3个等式:4+=42×,即4+=42×;第4个等式:5+=52×,即5+=52×;……按照以上规律可得,第5个等式:6+,即6+,故答案为:6+;(2)根据题意得,第n个等式:n+=n•.证明:左边=,右边=,左边=右边,即n+=n•.故答案为:n+=n•.五、(本大题共2小题,每小题10分,满分20分)19.广州塔又称广州新电视塔,昵称小蛮腰,位于广州市海珠区赤岗塔附近,是中国第一高塔,世界第四高塔.如图,广州塔BD附近有一大厦AC高150米,张强在楼底A处测得塔顶D的仰角为45°,上到大厦顶C处测得塔顶D的仰角为37°,求广州塔BD 的高.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】过点C作CE⊥BD于点E,即四边形ACEB是矩形,根据题意利用锐角三角函数即可求出广州塔BD的高.解:如图,过点C作CE⊥BD于点E,即四边形ACEB是矩形,∴BE=AC=150,CE=AB,根据题意可知:∠DAB=45°,∴DB=AB=CE,∴DE=DB﹣BE=DB﹣150,在Rt△CDE中,∠DCE=37°,∴DE=CE•tan37°,即DB﹣150≈0.75DB,解得DB≈600(米).答:广州塔BD的高约为600米.20.如图,四边形ABDC是⊙O的内接四边形,∠BDC=120°,AB=AC,连接对角线AD,BC,点F在线段BD的延长线上,且CF=DF,⊙O的切线CE交BF于点E.(1)求证:CE∥AB;(2)求证:AD=BD+CD.【分析】(1)连接CO,根据圆内接四边形的性质求出∠BAC=60°,得到△ABC为等边三角形,得到CH⊥AB,根据切线的性质得到CH⊥CE,根据平行线的判定定理证明结论;(2)证明△ACD≌△BCF,根据全等三角形的性质得到AD=BF,等量代换证明即可.【解答】(1)证明:连接CO并延长,交AB于H,∵四边形ABDC是⊙O的内接四边形,∠BDC=120°,∴∠BAC=60°,∵AB=AC,∴△ABC为等边三角形,∴CH⊥AB,∵CE是⊙O的切线,∴CH⊥CE,∴CE∥AB;(2)证明:∵∠BDC=120°,∴∠CDF=60°,∵CF=DF,∴△CDF为等边三角形,∴CD=CF,∠DCF=60°,∵∠ACB=60°,∴∠DCF=∠ACB,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,在△ACD和△BCF中,,∴△ACD≌△BCF(SAS)∴AD=BF=BD+DF=BD+CD.六、(本题满分12分)21.某校举行了主题为“防控新冠,从我做起”的线上知识竞赛活动,测试内容为20道判断题,每道题5分,满分100分,为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩已知抽查得到的八年级的数据如下:80,95,75,75,90,75,80,65,80,85,75,65,70,65,85,70,95,80,75,80.为了便于分析数据,统计员对八年级数据进行了整理,得到了表一:成绩等级分数(单位:分)学生数D等60<x≤705C等70<x≤80aB等80<x≤90bA等90<x≤1002九年级成绩的平均数、中位数、优秀率如下:(分数80分以上、不含80分为优秀)年级平均数中位数优秀率八年级77.5c m%九年级7682.550%(1)根据题目信息填空:a=10,c=77.5,m=25;(2)八年级王宇和九年级程义的分数都为80分,请判断王宇、程义在各自年级的排名哪位更靠前?请简述你的理由;(3)八年级被抽取的20名学生中,获得A等和B等的学生将被随机选出2名,协助学校普及防控知识,求这两人都为B等的概率.【分析】(1)利用唱票的方法得到a、b的值,再利用中位数的定义求c,然后用5除以20得到m的值;(2)利用中位数的意义进行判断;(3)画树状图展示所有20种等可能的结果数,找出这两人都为B等的结果数,然后根据概率公式求解.解:(1)a=10,b=3,c=77.5m%==25%,即m=25;故答案为10,77.5,25;(2)王宇在八年级的排名更靠前.理由如下:八年级的中位数为77.5分,而王宇的分数为80分,所以王宇的成绩为中上游;而九年级的中位数为82.5分,程义的分数都为80分,所以他在九年级为中下游;(3)画树状图为:共有20种等可能的结果数,其中这两人都为B等的结果数为6,所以这两人都为B等的概率==.七、(本题满分12分)22.如图,在平面直角坐标系中,抛物线与x轴交于A,B(4,0)两点,与y轴交于点C(0,4).(1)求此抛物线的函数表达式及点A的坐标;(2)已知点D(1,﹣1),在直线AD上方的抛物线上有一动点P(x,y)(1<x<4),求△ADP面积的最大值.【分析】(1)用待定系数法求得解析式,再把y=0代入求得的解析式,便可求得A点坐标;(2)用待定系数法求出直线AD的解析式,再过P作PE⊥x轴于F,与AD交于点E,由三角形的面积公式求出解析式,进而根据二次函数的性质求得得符合条件的最大值便可.解:(1)把B(4,0)和C(0,4)代入中得,,∴,∴抛物线的解析式为:y=﹣+x+4,令y=0,得y=﹣+x+4=0,解得,x=4(舍),或x=﹣2,∴A(﹣2,0);(2)设直线AD的解析式为:y=kx+m(k≠0),则,解得,∴AD的解析式为:y=﹣x﹣,过点P作PE⊥x轴于F,与AD交于点E,如图,∵P(x,y),即P(x,﹣+x+4),∴E(x,﹣x﹣),∴PE=﹣+x+4,△ADP面积==(﹣+x+4)×(1+2)=﹣+2x+6=﹣,∵1<<4,∴△ADP面积的最大值为.八、(本题满分14分)23.如图,在△ABC中,AG⊥BC,垂足为点G,点E为边AC上一点,BE=CE,点D为边BC上一点,GD=GB,连接AD交BE于点F.(1)求证:∠ABE=∠EAF;(2)求证:AE2=EF•EC;(3)若CG=2AG,AD=2AF,BC=5,求AE的长.【分析】(1)首先证明∠EBC=∠C,∠ABD=∠ADB,再根据∠ABD=∠ABE+∠EBC,∠ADB=∠DAC+∠C,可得结论.(2)证明△AEF∽△BEA可得结论.(3)设BE交AG于J,连接DJ,DE.证明四边形AJDE是平行四边形,推出DE⊥BC,AE=DJ,想办法求出DJ即可解决问题.【解答】(1)证明:∵EB=EC,∴∠EBC=∠C,∵AG⊥BD,BG=GD,∴AB=AD,∴∠ABD=∠ADB,∵∠ABD=∠ABE+∠EBC,∠ADB=∠DAC+∠C,∴∠ABE=∠DAC,即∠ABE=∠EAF.(2)证明:∵∠AEF=∠BEA,∠EAF=∠ABE,∴△AEF∽△BEA,∴=,∴AE2=EF•EB,∵EB=EC,∴AE2=EF•EC.(3)解:设BE交AG于J,连接DJ,DE.∵AG垂直平分线段BD,∴JB=JD,∴∠JBD=∠JDG,∵∠JBD=∠C,∴∠JDB=∠C,∴DJ∥AC,∴∠AEF=∠DJF,∵AF=DF,∠AFE=∠DFJ,∴△AFE≌△DFJ(AAS),∴EF=FJ,AE=DJ,∵AF=DF,∴四边形AJDE是平行四边形,∴DE∥AG,∵AG⊥BC,∴ED⊥BC,∵EB=EC,∴BD=DC=,∴BG=DG=,∵tan∠JDG=tan∠C===,∴JG=,∵∠JGD=90°,∴DJ===,∴AE=DJ=。

2020年中考二模测试《数学试题》含答案解析

2020年中考二模测试《数学试题》含答案解析

中 考 模 拟 测 试 数 学 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列实数中,无理数为( ). A. 0B.23C.3 D. 2-2.下列立体图形中,侧面展开图是扇形的是()A. B.C.D.3.如图所示,AB ∥CD,BC 平分∠ABD,若∠C=40°,则∠D 的度数为 ( )A. 90°B. 100°C. 110°D. 120°4.下列运算正确的是( ) A. 2333a a a += B. ()3252?2a aa-=C. 623422a a a ÷=D. ()22238a a a --=5.直线y kx =过点(,)A m n ,(34)B m n -+,,则k 的值是( ) A.43B. 43-C.34D. 34-6.如图,在Rt ABC V 中,90ACB ∠=︒,点D 是AC 上一点,连接BD ,P 点是BD 的中点,若D A BA ∠=∠,8AD =,则CP 的长为( ).A. 8B. 4C. 16D. 67.一次函数y kx b =+满足0kb <,且y 随x 的增大而减小,则此函数的图像一定不经过( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.如图,在菱形ABCD 中,对角线AC 与BD 相交于点,8,6,O AC BD OE BC ==⊥,垂足为点E ,则OE =( )A.245B. 5C.125D. 49.如图,O e 是ABC V 的外接圆,AD 是O e 的直径,若O e 的半径是4,1sin 4B =,则线段AC 的长是( ).A. 2B. 4C.32D. 610.若二次函数y =(k+1)x 2﹣2x+k 的最高点在x 轴上,则k 的值为( ) A. 1B. 2C. ﹣1D. ﹣2二、填空题(共4小题,每小题3分,计12分)11.14-的绝对值是__________.12.如图,平面上两个正方形与正五边形都有一条公共边,则∠α等于 °.13.已知点()1,A x a -,()2,B x a 在反比例函数()0ky k x=≠图象上,则12x x +=______. 14.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.三、解答题(共11小题,计78分.解答应写出过程)15.计算:1112(6)|22|4-⎛⎫⨯---+- ⎪⎝⎭.16.解方程:24142xx x-=-- 17.如图,AC 是矩形ABCD 的一条对角线.利用尺规在AD 上作一点E ,使得AE 与点E 到点C 的距离相等.(保留作图痕迹,不要求写作法)18.如图,点E 、F 在AB 上,且AF BE =,AC BD =,AC BD P .求证:C D ∠=∠.19.中国飞人苏炳添以6秒47获得2019年国际田联伯明翰室内赛男子60米冠军,苏炳添夺冠掀起跑步热潮某校为了解该校八年级男生短跑水平,全校八年级男生中随机抽取了部分男生,对他们的短跑水平进行测试,并将测试成绩(满分10分)绘制成如下不完整的统计图表: 组别成绩/分人数/人A 5 36B 6 32C 7 15D 8 8E 9 5F 10 m请你根据统计图表中的信息,解答下列问题:(1)填空:m=_____,n=_____;(2)所抽取的八年级男生短跑成绩的众数是_____分,扇形统计图中E组的扇形圆心角的度数为____°;(3)求所抽取的八年级男生短跑的平均成绩.20.汉江是长江最长的支流,在历史上占居重要地位,陕西省境内的汉江为汉江上游段.李琳利用热气球探测器测量汉江某段河宽,如图,探测器在A处观测到正前方汉江两岸岸边的B、C两点,并测得B、C两点的俯角分别为45°,30°已知A处离地面的高度为80m,河平面BC与地面在同一水平面上,请你求出汉江该段河宽BC.(结果保留根号)21.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,两种型号的机器人的工作效率和价格如表:型号甲乙每台每小时分拣快递件数(件)1000800每台价格(万元) 53该公司计划购买这两种型号的机器人共10台,并且使这10台机器人每小时分拣快递件数总和不少于8500件(1)设购买甲种型号的机器人x 台,购买这10台机器人所花的费用为y 万元,求y 与x 之间的关系式; (2)购买几台甲种型号的机器人,能使购买这10台机器人所花总费用最少?最少费用是多少?22.赵黎将中国的清华大学、北京大学及英国的剑桥大学、牛津大学的图片分别贴在4张完全相同的不透明的硬纸板上,制成名校卡片,如图,赵黎将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,洗匀,再随机抽取一张卡片.(1)赵黎第一次抽取的卡片上的图片是国内大学的概率是多少?(2)请你用列表法或画树状图法,帮助赵黎求出两次抽取的卡片上的图片一个是国内大学,一个是国外大学的概率.A .B .C .D .23.如图,已知MN 是O e 的直径,直线PQ 与O e 相切于P 点,NP 平分MNQ ∠. (1)求证:NQ PQ ⊥;(2)若O e 的半径3R =,33NP =,求NQ 的长.24.如图,已知拋物线21:4C y x =-+,将抛物线1C 沿x 轴翻折,得到拋物线2C .(1)求出抛物线2C 的函数表达式;(2)现将抛物线1C 向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线2C 向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.25.(1)如图1,A 、B 是O e 上的两个点,点P 在O e 上,且APB △是直角三角形,O e 的半径为1. ①请在图1中画出点P 的位置; ②当1AB =时,APB ∠= ︒;(2)如图2,O e 的半径为5,A 、B 为O e 外固定两点(O 、A 、B 三点不在同一直线上),且9OA =,P 为O e 上的一个动点(点P 不在直线AB 上),以PA 和AB 为邻边作平行四边形PABC ,求BC 最小值并确定此时点P 的位置; (3)如图3,A 、B 是O e 上的两个点,过A 点作射线AM AB ⊥,AM 交O e 于点C ,若3AB =,4AC =,点D 是平面内的一个动点,且2CD =,E 为BD 的中点,在点D 的运动过程中,求线段AE 长度的最大值与最小值.答案与解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列实数中,无理数为().A. 0B. 23C. 3D. 2-【答案】C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可作出判断.【详解】A、0是有理数,此选项错误;B、23是有理数,此选项错误;C、3是无理数,此选项正确;D、2-是有理数,此选项错误;故选:C.【点睛】此题考查了无理数的定义,关键要掌握无理数的三种形式,要求我们熟练记忆.2.下列立体图形中,侧面展开图是扇形的是()A. B. C.D.【答案】B【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B .3.如图所示,AB ∥CD,BC 平分∠ABD,若∠C=40°,则∠D 的度数为 ( )A. 90°B. 100°C. 110°D. 120°【答案】B 【解析】∵AB//CD ,∠C=40°, ∴∠ABC=∠C=40°, ∵BC 平分∠ABD , ∴∠DBC=∠ABC=40°,∴∠D=180°-∠C-∠DBC=180°-40°-40°=100°. 故选B.4.下列运算正确的是( ) A. 2333a a a += B. ()3252?2a aa-=C. 623422a a a ÷=D. ()22238a a a --=【答案】D 【解析】【详解】解:A 、不是同类项,无法进行加法计算,计算错误; B 、原式=52a -,计算错误;C 、不是同类项,无法进行加法计算,计算错误;D 、原式=22298a a a -=,计算正确. 故选D .5.直线y kx =过点(,)A m n ,(34)B m n -+,,则k值是( )A.43B. 43-C.34D. 34-【答案】B 【解析】 【分析】分别将点()A m n ,,(34)B m n -+,代入即可计算解答. 【详解】解:分别将点()A m n ,,(34)B m n -+,代入y kx =,得:(3)4mk n m k n =⎧⎨-=+⎩,解得43k =-,故答案为:B .【点睛】本题考查了待定系数法求正比例函数解析式,将点的坐标代入解析式解方程是解题的关键. 6.如图,在Rt ABC V 中,90ACB ∠=︒,点D 是AC 上一点,连接BD ,P 点是BD 的中点,若D A BA ∠=∠,8AD =,则CP 的长为( ).A. 8B. 4C. 16D. 6【答案】B 【解析】 【分析】由题意推出BD =AD ,然后在Rt △BCD 中,CP =12BD ,即可推出CP 的长度. 【详解】∵D A BA ∠=∠, ∴BD =AD=8,∵P 点是BD 的中点,90ACB ∠=︒ ∴CP =12BD =4, 故选:B .【点睛】本题主要考查等腰三角形的判定和性质、直角三角形斜边上的中线的性质,关键在于根据已知推出BD =AD ,求出BD 的长度.7.一次函数y kx b =+满足0kb <,且y 随x 的增大而减小,则此函数的图像一定不经过( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】C 【解析】 【分析】y 随x 的增大而减小,可得一次函数y=kx+b 单调递减,k <0,又满足kb<0,可得b>0,由此即可得出答案. 【详解】∵y 随x 的增大而减小,∴一次函数y=kx+b 单调递减, ∴k <0, ∵kb<0, ∴b>0,∴直线经过第二、一、四象限,不经过第三象限, 故选C .【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k 、b 是常数)的图象和性质是解题的关键.8.如图,在菱形ABCD 中,对角线AC 与BD 相交于点,8,6,O AC BD OE BC ==⊥,垂足为点E ,则OE =( )A.245B. 5C.125D. 4【答案】C 【解析】 【分析】直接利用菱形的性质得出BO =3,CO =4,AC ⊥BD ,进而利用勾股定理以及直角三角形面积求法得出答案. 【详解】解:∵在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,BD =6,∴BO =3,CO =4,AC ⊥BD , ∴BC =22345+=, ∵OE ⊥BC ,∴12EO×BC =12BO×CO , ∴EO =125BO CO BC =g . 故选:C .【点睛】此题主要考查了菱形的性质以及勾股定理,正确掌握菱形的性质是解题关键. 9.如图,O e 是ABC V 的外接圆,AD 是O e 的直径,若O e 的半径是4,1sin 4B =,则线段AC 的长是( ).A. 2B. 4C.32D. 6【答案】A 【解析】 【分析】连结CD 如图,根据圆周角定理得到∠ACD =90︒,∠D =∠B ,则sinD =sinB =14,然后在Rt △ACD 中利用∠D 的正弦可计算出AC 的长. 【详解】连结CD ,如图, ∵AD 是⊙O 的直径, ∴∠ACD =90︒, ∵∠D =∠B , ∴sinD =sinB =14, 在Rt △ACD 中,∵sinD =AC AD =14, ∴AC =14AD =14×8=2. 故选A .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.10.若二次函数y =(k+1)x 2﹣2x+k 的最高点在x 轴上,则k 的值为( ) A. 1 B. 2C. ﹣1D. ﹣2【答案】D 【解析】 【分析】直接利用二次函数的性质得出△=b 2﹣4ac =0,进而得出答案.【详解】∵二次函数y =(k+1)x 2﹣2x+k 的最高点在x 轴上, ∴△=b 2﹣4ac =0,即8﹣4k (k+1)=0, 解得:k 1=1,k 2=﹣2,当k =1时,k+1>0,此时图象有最低点,不合题意舍去, 则k 的值为:﹣2. 故选D .【点睛】此题主要考查了二次函数的最值,正确掌握二次函数的性质是解题关键.对于二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0),当a >0时,抛物线开口向上,此时函数有最小值;当a <0时,抛物线开口向下,此时函数有最大值.二、填空题(共4小题,每小题3分,计12分)11.14-的绝对值是__________. 【答案】14【解析】 【分析】根据绝对值的定义计算即可.【详解】解:1144-= 故答案为:14. 【点睛】此题考查的是求一个数的绝对值,掌握绝对值的定义是解决此题的关键. 12.如图,平面上两个正方形与正五边形都有一条公共边,则∠α等于 °.【答案】72 【解析】 【分析】先分别求出正五边形的一个内角为108°,正方形的每个内角是90°,再根据圆周角是360度求解即可. 【详解】正五边形的一个内角为108°,正方形的每个内角是90°, 所以∠α=360°-108°-90°-90°=72°, 故答案为72.【点睛】本题考查了多边形的内角和,熟练掌握多边形内角和公式:(n-2)•180°是解题的关键. 13.已知点()1,A x a -,()2,B x a 在反比例函数()0ky k x=≠图象上,则12x x +=______. 【答案】0 【解析】 【分析】将点A ,点B 坐标代入解析式可得﹣a ×x 1=a ×x 2=k ,可得x 1=﹣x 2,即可求得到结论. 【详解】∵点A (x 1,﹣a ),B (x 2,a )在反比例函数y kx=(k ≠0)图象上,∴﹣a ×x 1=a ×x 2=k ,∴x 1=﹣x 2,∴x 1+x 2=0. 故答案为0.【点睛】本题考查了反比例函数图象上点的坐标特征,掌握图象上点的坐标满足图象解析式是本题的关键. 14.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.【答案】4:9 【解析】 【分析】设DP =DN =m ,则PN 2m ,PC =2m ,AD =CD =3m ,再求出FG=CF=12BC=32m ,分别求出两个阴影部分的面积即可解决问题.【详解】根据图形的特点设DP =DN =m ,则PN 22m m +2m , ∴2m=MC ,22PM MC +, ∴BC =CD =PC+DP=3m , ∵四边形HMPN 是正方形, ∴GF ⊥BC ∵∠ACB =45︒,∴△FGC 是等腰直角三角形, ∴FG=CF=12BC=32m , ∴S 1=12DN×DP=12m 2,S 2=12FG×CF=98m 2, ∴12:S S =12m 2: 98m 2=4:9, 故答案为4:9.【点睛】本题考查正方形的性质,勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.三、解答题(共11小题,计78分.解答应写出过程)15.1112(6)|22|4-⎛⎫--+- ⎪⎝⎭.【答案】526-. 【解析】 【分析】根据二次根式与实数的性质即可化简求解.【详解】解:11 12(6)|22|4-⎛⎫⨯---+-⎪⎝⎭62(22)(4)=---+-62224=--+-526=--.【点睛】此题主要考查二次根式与实数的混合运算,解题的关键是熟知其运算法则.16.解方程:24142xx x-=--【答案】x=-4【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】24142xx x-=--4+x(x+2)=x2-44+x2+2x=x2-4x=-4当x=-4时,24x-≠0,所以x=-4是方程的解.【点睛】考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17.如图,AC是矩形ABCD的一条对角线.利用尺规在AD上作一点E,使得AE与点E到点C的距离相等.(保留作图痕迹,不要求写作法)【答案】见解析.【解析】【分析】根据题意作AC的垂直平分线,与AD的角度即为E点.【详解】解:点E如图所示:【点睛】此题主要考查垂直平分线的应用,解题的关键是熟知垂直平分线上的点到线段两个端点距离相等. 18.如图,点E 、F 在AB 上,且AF BE =,AC BD =,AC BD P .求证:C D ∠=∠.【答案】见解析. 【解析】 【分析】根据题意证明ACF BDE △≌△即可求解. 【详解】证明:∵AC BD P , ∴A B ∠=∠. 在ACF V 和BDE V 中,AC BD A B AF BE =⎧⎪∠=∠⎨⎪=⎩, ∴()ACF BDE SAS △≌△, ∴C D ∠=∠.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.19.中国飞人苏炳添以6秒47获得2019年国际田联伯明翰室内赛男子60米冠军,苏炳添夺冠掀起跑步热潮某校为了解该校八年级男生的短跑水平,全校八年级男生中随机抽取了部分男生,对他们的短跑水平进行测试,并将测试成绩(满分10分)绘制成如下不完整的统计图表: 组别 成绩/分 人数/人 A536B 6 32C 7 15D 8 8E 9 5F 10 m请你根据统计图表中的信息,解答下列问题:(1)填空:m=_____,n=_____;(2)所抽取的八年级男生短跑成绩的众数是_____分,扇形统计图中E组的扇形圆心角的度数为____°;(3)求所抽取的八年级男生短跑的平均成绩.【答案】(1)4,15(2)5,18(3)6.26【解析】【分析】(1)根据B组32人占总人数的32%求得总人数即可求得m,然后求得C组所占的百分比即可求得n的值;(2)利用众数的定义求得众数即可;求得E组所占的百分比即可求得所在扇形的圆心角的度数;(3)利用加权平均数的求法直接计算即可.【详解】解:(1)∵B组的有32人,占32%,∴被调查人数为32÷32%=100人,∴m=100﹣36﹣32﹣15﹣8﹣5=4,15÷100=15%,∴n=15,故答案为4,15;(2)成绩为5分的有36人,最多,所以众数为5分;5÷100×360°=18°,∴扇形统计图中E组的扇形圆心角的度数为18°,故答案为5,18;(3)所抽取的八年级男生短跑的平均成绩为:5366327158895104363215854⨯+⨯+⨯+⨯+⨯+⨯+++++=6.26(分).【点睛】本题考查扇形统计图、统计表、加权平均数的计算,解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用统计表中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.20.汉江是长江最长的支流,在历史上占居重要地位,陕西省境内的汉江为汉江上游段.李琳利用热气球探测器测量汉江某段河宽,如图,探测器在A处观测到正前方汉江两岸岸边的B、C两点,并测得B、C两点的俯角分别为45°,30°已知A处离地面的高度为80m,河平面BC与地面在同一水平面上,请你求出汉江该段河宽BC.(结果保留根号)【答案】(803﹣80)米【解析】【分析】过A作AD⊥BD于点D,在Rt△ACD中,根据正切的概念求出CD的值,进而可求出BC的值.【详解】解:过A作AD⊥BD于点D,在Rt△ADB中,∠ABD=45°∴BD=AD=80,在Rt△ACD中,∠ACD=30°∴tan ∠ACD =ADCD, ∴CD =80tan 30tan 30AD ︒︒=803=÷=∴BC =CD ﹣BD =80∴汉江该段河宽BC 为(80)米.【点睛】本题考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的定义是解题的关键,解答时注意正确作出辅助线构造直角三角形. 21.快递公司为提高快递分拣速度,决定购买机器人来代替人工分拣,两种型号的机器人的工作效率和价格如表:该公司计划购买这两种型号的机器人共10台,并且使这10台机器人每小时分拣快递件数总和不少于8500件(1)设购买甲种型号的机器人x 台,购买这10台机器人所花的费用为y 万元,求y 与x 之间的关系式; (2)购买几台甲种型号的机器人,能使购买这10台机器人所花总费用最少?最少费用是多少?【答案】(1)y =2x+30(2)购买3台甲种型号的机器人,能使购买这10台机器人所花总费用最少,最少费用为36万元 【解析】 【分析】(1)根据总费用=甲种型号机器人的费用+乙种机器人的费用,求出y 与x 的关系式即可;(2)根据这10台机器人每小时分拣快递件数总和不少于8500件,列出不等式,求得x 的取值范围,再利用(1)中函数,求出y 的最小值即可. 【详解】解:(1)y 与x 之间的函数关系式为: y =5x+3(10﹣x )=2x+30;(2)由题可得:1000x+800(10﹣x )≥8500,解得52x≥,∵2>0,∴y随x的增大而增大,∴当x=3时,y取得最小值,∴y最小=2×3+30=36,∴购买3台甲种型号的机器人,能使购买这10台机器人所花总费用最少,最少费用为36万元.【点睛】本题主要考查了一次函数的应用,解决此题的关键是熟练掌握函数的性质.对于一次函数y=kx+b (k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.22.赵黎将中国的清华大学、北京大学及英国的剑桥大学、牛津大学的图片分别贴在4张完全相同的不透明的硬纸板上,制成名校卡片,如图,赵黎将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,洗匀,再随机抽取一张卡片.(1)赵黎第一次抽取的卡片上的图片是国内大学的概率是多少?(2)请你用列表法或画树状图法,帮助赵黎求出两次抽取的卡片上的图片一个是国内大学,一个是国外大学的概率.A.B.C.D.【答案】(1)12; (2)23.【解析】【分析】(1)直接根据概率公式求解;(2)先画树状图展示所有12种等可能的结果数,两次抽取的卡片上的图片一个是国内大学,一个是国外大学的情况有8种,,然后根据概率公式求解.【详解】解:(1)P(卡片上的图片是国内大学)21 42 ==.(2)画树状图如图所示:由图可得共有12种等可能的结果,两次抽取的卡片上的图片一个是国内大学,一个是国外大学的情况有8种,∴P (两次抽取的卡片上的图片一个是国内大学,一个是国外大学)82123==. 【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.23.如图,已知MN 是O e 的直径,直线PQ 与O e 相切于P 点,NP 平分MNQ ∠.(1)求证:NQ PQ ⊥;(2)若O e 的半径3R =,33NP =,求NQ 的长.【答案】(1)见解析;(2)92. 【解析】【分析】 (1)连接OP ,根据NP 平分MNQ ∠证明OP NQ ∥,即可证明NQ PQ ⊥;(2)连接MP ,根据三角函数知识求出30MNP ∠=︒,从而求出NQ 长.【详解】解:(1)证明:连接OP ,∵直线PQ 与O e 相切于P 点,∴OP PQ ⊥,∵OP ON =,∴OPN ONP ∠=∠,又NP 平分MNQ ∠,ONP PNQ ∴∠=∠ONP PNQ ∴∠=∠∴OPN PNQ ∠=∠,∴OP NQ ∥,∴NQ PQ ⊥;(2)连接MP ,∵MN 是直径,∴90MPN ∠=︒, ∴333cos NP MNP MN ∠===, ∴30MNP ∠=︒,∴30PNQ ∠=︒,∴在Rt PNQ △中,39cos303322NQ NP =⋅︒=⨯=.【点睛】本题是对圆知识的综合考查,熟练掌握切线及三角函数知识是解决本题的关键.24.如图,已知拋物线21:4C y x =-+,将抛物线1C 沿x 轴翻折,得到拋物线2C .(1)求出抛物线2C 的函数表达式;(2)现将抛物线1C 向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线2C 向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.【答案】(1)24y x =-;(2)存在.当3m =时,以点A ,N ,E ,M 为顶点的四边形是矩形.【解析】【分析】(1)抛物线翻折前后顶点关于x 轴对称,a 互为相反数;(2)连接AN ,NE ,EM ,MA ,M ,N 关于原点O 对称OM =ON ,A ,E 关于原点O 对称OA =OE ,判断四边形ANEM 为平行四边形;若AM 2+ME 2=AE 2,解得m =3,即可求解.【详解】解:(1)∵拋物线1C 的顶点为(0,4),∴沿x 轴翻折后顶点的坐标为(0,4)-.∴抛物线2C 的函数表达式为24y x =-.(2)存在.理由:连接AN ,NE ,EM ,MA .依题意可得:(,4)M m -,(,4)N m -.∴M ,N 关于原点O 对称,∴OM ON =.原1C 、2C 抛物线与x 轴的两个交点分别为(2,0)-,(2,0).∴(2,0)A m --,(2,0)E m +,∴A ,E 关于原点O 对称,∴OA OE =.∴四边形ANEM 为平行四边形.2222420AM =+=,2222(2)44820ME m m m m =+++=++,222(22)41616AE m m m m =+++=++,若222AM ME AE +=,则2220482041616m m m m +++=++,解得3m =.此时AME △是直角三角形,且90AME ∠=︒.∴当3m =时,以点A ,N ,E ,M 为顶点的四边形是矩形.【点睛】本题考查二次函数关于x 轴对称,平行四边形的判定,矩形的性质.找准二次函数图象变化后对应的点是解决翻折后函数图象的关键;能够在平面直角坐标系中,通过坐标点的特点判定平行四边形,利用勾股定理判定矩形是解决本题的关键.25.(1)如图1,A 、B 是O e 上的两个点,点P 在O e 上,且APB △是直角三角形,O e 的半径为1. ①请在图1中画出点P 的位置;②当1AB =时,APB ∠= ︒;(2)如图2,O e 的半径为5,A 、B 为O e 外固定两点(O 、A 、B 三点不在同一直线上),且9OA =,P 为O e 上的一个动点(点P 不在直线AB 上),以PA 和AB 为邻边作平行四边形PABC ,求BC 最小值并确定此时点P 的位置;(3)如图3,A 、B 是O e 上的两个点,过A 点作射线AM AB ⊥,AM 交O e 于点C ,若3AB =,4AC =,点D 是平面内的一个动点,且2CD =,E 为BD 的中点,在点D 的运动过程中,求线段AE 长度的最大值与最小值.【答案】(1)见解析;(2)4.(3)AE 的最小值是32AO OE +=,最大值是72AO OE -=. 【解析】【分析】(1)①根据圆周角定理作图;②根据直角三角形的性质解答; (2)根据平行四边形的性质得到BC =AP ,根据线段的性质计算;(3)连接BC ,根据勾股定理求出BC ,根据直角三角形的性质求出OA ,根据三角形中位线定理求出OE ,根据三角形的三边关系解答即可.【详解】解:(1)①如图:P 点为所求;(2)∵四边形PABC 是平行四边形,∴BC AP =.∴BC 的最小值即AP 的最小值.∵当P 为OA 与O e 的交点时AP 最小. ∴AP 的最小值为954-=,即BC 的最小值为4.(3)连接BC ,∵AM AB ⊥,∴90CAB ∠=︒,∴BC 是O e 的直径.∵点D 是平面内的一个动点,且2CD =, ∴点D 的运动路径为以C 为圆心,以2为半径的圆, ∵BC 是O e 的直径,∴O 是BC 的中点.在直角ABC V 中,2222435BC AC AB =+=+=. ∵O 是直角ABC V 斜边BC 上的中点, ∴1522AO BC ==. ∵E 是BD 的中点,O 是BC 的中点, ∴112OE CD ==. ∴AE 的最小值是32AO OE +=,最大值是72AO OE -=. 【点睛】本题考查的是圆的知识,掌握平行四边形的性质、圆周角定理、三角形的三边关系是解题的关键。

初中数学 方程与不等式模块2-5 一元二次方程讲义(含答案解析)

初中数学 方程与不等式模块2-5 一元二次方程讲义(含答案解析)

一元二次方程题型练题型一:一元二次方程相关定义一元二次方程是只含有一个未知数,且未知数的最高次数是二次的多项式方程.一元二次方程经过整理都可化成一般形式ax ²+bx +c =0(a ≠0),其中ax ²叫作二次项,a 是二次项系数;bx 叫作一次项,b 是一次项系数;c 叫作常数项.是方程左右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根.①一元二次方程的定义例1.1下列方程中,是一元二次方程的是()A .2x ﹣3=0B .x 2﹣2y =0C .21x x+=﹣3D .x 2=0【详解】解:A 、是一元一次方程,故A 不合题意;B 、是二元二次方程,故B 不合题意;C 、是分式方程,故C 不合题意;D 、是一元二次方程,故D 符合题意.故选:D .变式1.11.要使方程()()2310a x b x c -+++=是关于x 的一元二次方程,则()A.a ≠0B.a ≠3C.a ≠3且b ≠-1D.a ≠3且b ≠-1且c ≠0【答案】B【解析】【分析】根据一元二次方程的定义即可得答案.【详解】∵()()2310a x b x c -+++=是关于x 的一元二次方程,∴30a -≠,解得:3a ≠,故选:B.【点睛】本题考查的是一元二次方程的定义,掌握一元二次方程的定义是解题的关键.②一元二次方程的一般式例1.2一元二次方程(1﹣3x)(x+3)=2x2+1的一般形式是_____;它的二次项系数是_____,一次项系数是_____,常数项是_____.【详解】解:一元二次方程(1﹣3x)(x+3)=2x2+1的一般形式是5x2+8x﹣2=0;它的二次项系数是5,一次项系数是8,常数项是﹣2故答案为:5x2+8x﹣2=0,5,8,﹣2变式1.22.方程(m﹣1)x|m|+1﹣4x+3=0是一元二次方程,则m满足的条件是:_____,此方程的二次项系数为:_____,一次项系数为:_____,常数项为:_____.【答案】①.m=﹣1②.﹣2③.﹣4④.3【解析】【分析】根据一元二次方程的定义解答即可.【详解】解:根据题意得,|m|+1=2且m﹣1≠0,解得m=1或﹣1且m≠1,所以,m=﹣1,m﹣1=﹣1﹣1=﹣2,所以,此方程为2--+=,x x2430所以,此方程的二次项系数为﹣2,一次项系数为﹣4,常数项为3.故答案为:m=﹣1;﹣2,﹣4,3.【点睛】本题考查了一元二次方程的一般形式是:20++=(a,b,c是常数ax bx c且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中2ax叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.③一元二次方程的解例1.3关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为()A .1B .1-C .1或1-D .12【详解】解:把x =0代入一元二次方程(a -1)x 2+x -1+a 2=0得-1+a 2=0,解得a 1=1,a 2=-1,而a -1≠0,所以a 的值为-1故选B .变式1.33.已知m 是方程x 2-x -1=0的一个根,则代数式m 2-m 的值等于()A.2B.1C.0D.-1【答案】B【解析】【分析】一元二次方程的根就是能够使方程左右两边相等的未知数的值,把x=m 代入所得的式子仍然成立,m 2-m-1=0,即可求出m 2-m .【详解】∵m 是方程x 2-x -1=0的一个根,∴把x=m 代入方程x 2-x -1=0可得m 2-m-1=0,即m 2-m=1,故选择:B .【点睛】本题考查一元二次方程的解的意义,和代数式求值问题,关键是掌握一元二次方程的解的性质,运用整体代入的方法解题.题型二:解一元二次方程直接开方法:①第一步,先化为ax 2=c 的形式.②第二步,方程两边直接开平方,分别把解写出来就完成了.①直接开平方法例2.1解方程:2(21)9x -=(直接开平方法)2(21)9x -=,开方得:213x -=或213x -=-,解得:12x =,21x =-变式2.14.用直接开方法解方程:()()22142x x -=-【答案】153x =,23x =【解析】【分析】两边直接开平方即可.【详解】两边直接开平方得:142x x -=-或124x x -=-解得:12533x x ==.【点睛】本题考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.②配方法配方法:①第一步,先化为ax 2+bx =c 的形式.②第二步,两边同时加上一次项系数b 一半的平方,③变形整理,配成完全平方形式,④然后直接开平方,分别把解写出来就完成了.(若二次项系数不为1,需要先进行化简在计算)例2.2一元二次方程24430x x --=配方后可化为()A .2112x ⎛⎫+ ⎪⎭=⎝B .2112x ⎛⎫-= ⎪⎝⎭C .21324x ⎛⎫+= ⎪⎝⎭D .21324x ⎛⎫-= ⎪⎝⎭解:∵24430x x --=,∴2443x x -=,则234x x -=,∴2131444x x -+=+,即21(12x -=,故选:B .变式2.25.用配方法解下列关于x 的方程(1)212250x x ++=(2)22419980x x +-=【答案】(1)16x =-+,26x =--(2)11x =-+21x =--【解析】【分析】(1)根据配方法,先把常数项移到等式右边,再两边同时加上36,等式左边凑成完全平方形式,再直接开平方得出结果;(2)根据配方法,先把二次项系数化为1,然后把常数项移到等式右边,再两边同时加上1,等式左边凑成完全平方形式,再直接开平方得出结果.【详解】(1)212250x x ++=()22123625366116x x x x ++=-++=+=16x =-,26x =--(2)22419980x x +-=()2222999219991110001x x x x x x +=++=++=+=±11x =-+21x =--【点睛】本题考查一元二次方程的解法——配方法,解题的关键是熟练掌握配方法的方法.③根与判别式的关系Δ=b 2-4ac >0有两个不相等的实数根,Δ=b 2-4ac =0有两个相等的实数根,Δ=b 2-4ac <0无实根例2.3下列一元二次方程中,有两个不相等实数根的是()A .21x x 04-+=B .x 2+2x +4=0C .x 2-x +2=0D .x 2-2x =0【详解】A .此方程判别式()21Δ14104=--⨯⨯=,方程有两个相等的实数根,不符合题意;B .此方程判别式2Δ2414120,=-⨯⨯=-<方程没有实数根,不符合题意;C .此方程判别式()2Δ141270=--⨯⨯=-<,方程没有实数根,不符合题意;D .此方程判别式()2Δ241040=--⨯⨯=>,方程有两个不相等的实数根,符合题意;故答案为:D .变式2.36.关于x 的一元二次方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 满足()A.a ≥1B.a >1且a ≠5C.a ≥1且a ≠5D.a ≠5【答案】C【解析】【分析】由方程有实数根可知根的判别式b 2﹣4ac ≥0,结合二次项的系数非零,可得出关于a 的一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩,解得:a ≥1且a ≠5,故选:C .【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组,由根的判别式结合二次项系数非零得出不等式组是关键.④公式法例2.4用公式法解方程:4x 2-3=12x .【详解】方程整理得:4x 2﹣12x ﹣3=0,这里a =4,b =﹣12,b =﹣3,∵△=144+48=192,∴x =128±=32±,∴x 1=32+,x 2=32-.变式2.47.解方程:()()124x x --=.【答案】132x +=,232x =【解析】【分析】先去括号、整理,将方程变形为一般形式,再求出24b ac ∆=-,代入求根公式即可解答.【详解】解:整理得:2320x x --=,()()224341217b ac ∆=-=--⨯⨯-=,32x ±∴=,132x =∴+,232x -=.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.⑤因式分解法因式分解法:先将方程整理成一般式,让方程的右边等于零,将方程的左边进行因式分解,利用0乘以任何数都得0的性质例2.5用因式分解的方法解方程x 2-2x -24=0解:(x +4)(x -6)=0,x =-4,x =6变式2.58.解方程:(1)x (x -3)-5(3-x )=0(2)()()222230x x +-+-=【答案】(1)123,5x x ==-;(2)121,3x x ==-.【解析】【分析】根据因式分解法解一元二次方程的方法求解即可.【详解】解:(1)x (x -3)-5(3-x )=0()()3530x x x -+-=()()350x x -+=解得:123,5x x ==-.(2)()()222230x x +-+-=()()23210x x +-++=()()130x x -+=解得:121,3x x ==-.【点睛】此题考查了因式分解法解一元二次方程的方法,解题的关键是熟练掌握因式分解法解一元二次方程的方法.⑥换元法例2.6若()()22222340a b a b +-+-=,则代数式22a b +的值为_____【详解】解:设22t a b +=,则原方程为2340t t --=,解得1241t t -=,=,∵220a b +≥,∴4t =,∴224a b +=,故答案为:4变式2.6.9.用换元法解方程221x x -﹣21x x -=1,设y =21x x-,那么原方程可以化为关于y 的整式方程为_____.【答案】y 2+y ﹣2=0【解析】【分析】可根据方程特点设y =21x x-,则原方程可化为2y ﹣y =1,化成整式方程即可.【详解】解:方程221x x -﹣21x x-=1,若设y =21x x-,把设y =21x x-代入方程得:2y ﹣y =1,方程两边同乘y ,整理得y 2+y ﹣2=0.故答案为:y 2+y ﹣2=0.【点睛】本题主要考查用换元法解分式方程,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.题型三:韦达定理(根与系数关系)若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根,则x 1+x 2=﹣b a,x 1x 2=c a .例3.已知关于x 的一元二次方程x 2﹣6x ﹣k 2=0(k 为常数).(1)求证:方程有两个不相等的实数根;(2)设x 1,x 2为方程的两个实数根,且x 1+2x 2=14,试求出方程的两个实数根和k 的值.【详解】(1)证明:22224(6)41()3640b ac k k -=--⨯⨯-=+> 因此方程有两个不相等的实数根.(2)解:12661b x x a -+=-=-= ,又12214x x += ,解方程组12126214x x x x +=⎧⎨+=⎩解得:12x =-,28x =.将12x =-代入原方程得:22(2)6(2)0k --⨯--=,解得4k =±.变式310.已知关于x 的方程x 2﹣2(k ﹣1)x+k 2=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2)若|x 1+x 2|=x 1•x 2﹣1,求k 的值.【答案】(1)k ≤12;(2)k 的值是﹣3【解析】【分析】(1)根据题意可得方程的根判别式△≥0,然后解不等式即可求出k 的范围;(2)利用根与系数的关系得到x 1+x 2=2(k ﹣1),x 1x 2=k 2,由(1)中k 的范围可判断x 1+x 2<0,然后所给式子化简绝对值后整体代入即可得到关于k 的方程,解方程并检验即得结果.【详解】解:(1)由方程有两个实数根,可得△=4(k ﹣1)2﹣4k 2≥0,解得:k≤12;(2)依据题意可得,x1+x2=2(k﹣1),x1x2=k2,∵k≤12,∴2(k﹣1)<0,即x1+x2<0,∵|x1+x2|=x1•x2﹣1,∴﹣x1﹣x2=x1•x2﹣1,∴﹣2(k﹣1)=k2﹣1,解得:k1=1,k2=﹣3,∵k≤12,∴k的值是﹣3.【点睛】本题考查了一元二次方程的根的判别式、一元二次方程的解法以及根与系数的关系等知识,熟练掌握上述知识是解题的关键.题型四:一元二次方程的实际应用1、一元二次方程应用题有:传播问题;增长率问题;行程问题;销售问题;图形问题:工程问题等.2、列方程解应用题的基本步骤:审(审题);找(找出题中的量,分清有哪些已知量、未知量,哪些是要求的未知量和所涉及的基本数量关系、相等关系);设(设元,包括设直接未知数或间接未知数);表(用所设的未知数字母的代数式表示其他的相关量);列(列方程);解(解方程);检验(注意根的准确性及是否符合实际意义).①传播问题例4.1某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【详解】设每轮感染中平均1台电脑会感染x 台电脑.根据题意可列:()1181x x x +++=,解得:18x =,210x =-(舍去).∴3轮感染后,被感染得电脑为:81818729700+⨯=>.答:每轮感染中平均1台电脑会感染8台电脑,3轮感染后被感染的电脑会超过700台.变式4.111.2020年1月份以来,新型冠状病毒肺炎在我国蔓延,假如有一人感染新型冠状病毒肺炎,经过两轮传染后共有64人患病.(1)求每轮传染中平均每个人传染了几个健康的人;(2)如果不及时控制,第三轮传染将又有多少个健康的人患病?【答案】(1)每轮传染中平均每个人传染了7个健康的人;(2)第三轮传染将又有448个健康的人患病.【解析】【分析】(1)设每轮传染中平均每个人传染了x 个人,根据一人患病后经过两轮传染后共有64人患病,即可得出关于x 的一元二次方程,解之即可得出结论;(2)利用经过两轮传染后的人数乘以每轮平均传染人数,即可求出结论.【详解】(1)设每轮传染中平均每个人传染了x 个健康的人.依题意,得1(1)64x x x +++=,解得127,9x x ==-(不合题意,舍去).答:每轮传染中平均每个人传染了7个健康的人.(2)647448⨯=(个).答:第三轮传染将又有448个健康的人患病.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.②平均增长率例4.2某种农产品今年第一季度价格大幅度下降,下降后每千克的价格是原价格的23,下降后,用60元买这种农产品比原来多买了2千克.(1)求该种农产品下降后的价格;(2)从第二季度开始,该种农产品的价格开始回升,经过两个季度,该种农产品的价格上升到每千克14.4元.求第二和第三季度该种农产品价格的平均增长率.【详解】解:(1)设该种农产品的原价格是x 元/千克,则下降后的价格是23x 元/千克,根据题意,得6060223x x =+,解得15x =,经检验:15x =是原方程的解,故2103x =,答:该种农产品下降后的价格是每千克10元.(2)设第二和第三季度该种农产品价格的平均增长率是a ,根据题意,得()210114.4a +=,解得0.2a =或 2.2a =-(不合题意,舍去)答:第二和第三季度该种农产品价格的平均增长率是20%.变式4.212.电动自行车已成为市民日常出行的首选工具.据某市品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月销售216辆.(1)求该品牌电动车销售量的月平均增长率;(2)若该品牌电动自行车的进价为2300元,售价2800元,则该经销商1月至3月共盈利多少元.【答案】(1)20%;(2)273000.【解析】【分析】(1)设该品牌电动车销售量的月平均增长率为x ,2月份该品牌电动车销售量为150(1+x),则3月份该品牌电动车销售量为150(1+x)(1+x)=150(1+x)2.据此列出方程求解.(2)根据(1)求出增长率后,再计算出二月份的销量,即可得到答案.【详解】解:(1)设该品牌电动车销售量的月平均增长率为x ,根据题意得150(1+x )2=216,解得x 1=0.2,x 2=-2.2(舍去)答:该品牌电动车销售量的月平均增长率为20%.(2)由(1)得该品牌电动车销售量的月平均增长率为20%,∴2月份的销售量为150×(1+20%)=180∴则1-3月份的销售总量为150+180+216=546(辆)∴()28002300546273000-⨯=(元)答:该经销商1月至3月共盈利273000元.【点睛】本题考查一元二次方程的应用(增长率问题).③图形相关问题例4.3如图是宽为20m ,长为32m 的矩形耕地,要修筑同样宽的三条道路(互相垂直),把耕地分成六块大小相等的试验地,要使试验地的面积为570m 2,问:道路宽为多少米?【详解】解:设道路宽为x 米,依题意得:(322)(20)570x x --=解得12=1,=35x x (不合题意,舍去)答:道路宽为1米.变式4.313.如图所示,某农户准备利用现有的34米长的篱笆靠墙AB (墙长18米)围成一个面积是120平方米的长方形养鸡场,要在与墙垂直的一边和与墙平行的一边各开一扇2米宽的门,且篱笆没有剩余这个养鸡场的两条邻边长各是多少米?晓华的解题过程如下:【解】设垂直于墙的一边长为x 米,则平行于墙的一边长为(382)x -米.依题意得(382)120x x -=,整理得219600x x -+=,解得1215,4x x ==.当15x =时,3828x -=;当4x =时,38230x -=.答:这个养鸡场的两条邻边长各是15米、8米或4米、30米.请问晓华的解题过程正确吗?如果不正确,给出正确的解题过程.【答案】不正确,这个养鸡场的两条邻边长各是15米、8米,见解析【解析】【分析】设垂直于墙的一边长为x 米,则平行于墙的一边长为(382)x -米,根据题意,列出方程,即可求出x 的值,然后根据实际意义取舍即可.【详解】解:晓华的解题过程不正确,正确解题过程如下:设垂直于墙的一边长为x 米,则平行于墙的一边长为(382)x -米.依题意得(382)120x x -=,整理得219600x x -+=,解得1215,4x x ==.当15x =时,3828x -=;当4x =时,3823018x -=>,不合题意,舍去.答:这个养鸡场的两条邻边长各是15米、8米.【点睛】此题考查的是一元二次方程的应用,解题关键是解方程的实际应用题时,要注意根是否符合实际意义,如本题中,需分析两个取值是否符合实际情况.④销售问题(每每型)例4.4江都大润发超市销售一种利润为每千克10元的水产品,一个月能销售出500千克.经市场分析,销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,若设单价每千克涨价x 元,请解答以下问题:(1)填空:每千克水产品获利元,月销售量减少千克;(2)要使得月销售利润达到8000元,又要“薄利多销”,销售单价应涨价为多少元?【详解】解:(1)(10+x),10x;(2)由题意,得:(10+x)(500﹣10x)=8000;化简为:x2﹣40x+300=0;解得:x1=10,x2=30.∵“薄利多销”,∴x=30不符合题意,舍去.答:销售单价应涨价10元.变式4.414.某环保公司研发了甲、乙两种智能设备,可将垃圾处理变为新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费360万元,购买乙型智能设备花费480万元,购买的两种设备数量相同,且两种智能设备的单价和为140万元.(1)求甲、乙两种智能设备单价;(2)垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知每吨燃料棒的成本为100元.调查发现,若燃料棒售价为每吨200元,平均每天可售出350吨,而当销售价每降低1元,平均每天可多售出5吨.垃圾处理厂想使这种燃料棒的销售利润平均每天达到36080元,且保证售价在每吨200元基础上降价幅度不超过8%,求每吨燃料棒售价应为多少元?【答案】(1)甲设备60万元/台,乙设备80万元/台;(2)188元【解析】【分析】(1)设甲智能设备单价x万元,则乙单价为(14﹣x)万元,利用购买的两种设备数量相同,列出分式方程求解即可;(2)设每吨燃料棒在200元基础上降价y元,根据题意列出方程,求解后根据降价幅度不超过8%,即可得出售价.【详解】解:(1)设甲智能设备单价x万元,则乙单价为(14﹣x)万元,由题意得:360x=480140x,解得:x=60,经检验x=60是方程的解,∴x=60,140﹣x=80,答:甲设备60万元/台,乙设备80万元/台;(2)设每吨燃料棒在200元基础上降价y 元,由题意得:(200100)(3505)36080y y --+=,解得:112y =,218y =,∵2008%y ≤⨯,即16y ≤,∴y =12,200﹣y =188,答:每吨燃料棒售价应为188元.【点睛】本题考查了分式方程、一元二次方程的实际应用;根据题意列出方程是本题的关键.⑤行程问题例4.5“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m %,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加110m 小时,求m 的值.【详解】(1)设原时速为x km /h ,通车后里程为y km ,则有:()()8120+=8+16=320+x y x y ⎧⎪⎨⎪⎩,解得:=80=1600x y ⎧⎨⎩,答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:()()180+1201%8+=160010m m ⎛⎫- ⎪⎝⎭,解得:10=2m ,20=m (不合题意舍去),答:m 的值为20变式4.515.小明锻炼健身,从A 地匀速步行到B 地用时25分钟.若返回时,发现走一小路可使A 、B 两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.(1)求返回时A 、B 两地间的路程;(2)若小明从A 地步行到B 地后,以跑步形式继续前进到C 地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A 地到C 地共锻炼多少分钟.【答案】(1)1800米;(2)52分钟.【解析】【分析】(1)可设AB 两地之间的距离为x 米,根据两种步行方案的速度相等,列出方程即可求解;(2)可设从A 地到C 地一共锻炼时间为y 分钟,根据在整个锻炼过程中小明共消耗900卡路里热量,列出方程即可求解.【详解】解:(1)设返回时A ,B 两地间的路程为x 米,由题意得:2002525 2.5x x +=-,解得x=1800.答:A 、B 两地间的路程为1800米;(2)设小明从A 地到B 地共锻炼了y 分钟,由题意得:25×6+5×10+[10+(y ﹣30)×1](y ﹣30)=904,整理得y 2﹣50y ﹣104=0,解得y 1=52,y 2=﹣2(舍去).答:小明从A 地到C 地共锻炼52分钟.【点睛】本题考查一元一次方程,一元二次方程.⑥动态几何问题例4.6如图,在△ABC 中,∠B =90°,AB =5cm ,BC =7cm ,点Q 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点P 从点B 开始沿BC 边向点C 以2cm /s 的速度移动.(1)如果P 、Q 两点同时出发,那么几秒后,△PBQ 的面积等于4cm 2?(2)△PBQ 的面积能否等于7cm 2?试说明理由.【详解】解:(1)设t 秒后,△PBQ 的面积等于42cm .则()15242t t -⨯=,整理,得t 2﹣5t +4=0,解得1t =1,2t =4答:如果P 、Q 两点同时出发,那么1秒或4秒后,△PBQ 的面积等于42cm ;(2)△PBQ 的面积能不能等于72cm 理由如下:设x 秒后,△PBQ 的面积等于42cm 则()15272t t -⨯=,整理,得t 2﹣5t +7=0,则△=25﹣28=﹣3<0,所以该方程无解.∴△PBQ 的面积不能等于72cm .变式4.616.已知:如图A ,B ,C ,D 为矩形的四个顶点,AB=16cm ,AD=6cm ,动点P ,Q 分别从A ,C 同时出发,点P 以3cm/S 的速度向点B 移动,一直到达点B 为止,点Q 以2cm/S 的速度向点D 移动(1)P ,Q 两点从出发点出发几秒时,四边形PBCQ 面积为33cm ²(2)P ,Q 两点从出发点出发几秒时,P ,Q 间的距离是为10cm .【答案】(1)5秒;(2)P,Q两点出发85秒或245秒时,点P和点Q的距离是10cm.【解析】【分析】当运动时间为t秒时,PB=(16-3t)cm,CQ=2tcm.(1)利用梯形的面积公式结合四边形PBCQ的面积为33cm2,即可得出关于t的一元一次方程,解之即可得出结论;(2)过点Q作QM⊥AB于点M,则PM=|16-5t|cm,QM=6cm,利用勾股定理结合PQ=10cm,即可得出关于t的一元二次方程,解之取其较小值即可得出结论.【详解】解:当运动时间为t秒时,PB=(16-3t)cm,CQ=2tcm.(1)依题意,得:12×(16-3t+2t)×6=33,解得:t=5.答:P,Q两点从出发开始到5秒时,四边形PBCQ的面积为33cm2.(2)过点Q作QM⊥AB于点M,如图所示.∵PM=PB-CQ=|16-5t|cm,QM=6cm,∴PQ2=PM2+QM2,即102=(16-5t)2+62,解得:t1=85,t2=245.答:P,Q两点出发85秒或245秒时,点P和点Q的距离是10cm.【点睛】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)根据梯形的面积公式,找出关于t的一元一次方程;(2)利用勾股定理,找出关于t 的一元二次方程.视频⑦图表信息问题例4.7某电厂规定,该厂家属区的每户居民如果一个月的用电量不超过a kw ·h ,那么这个月此户只交10元钱的电费,如果超过a kw ·h ,则这个月除了交10元用电费,超出部分还要按每度100a元交费.(1)该厂某户居民8月份用电90kw ·h ,超过了规定a kw ·h ,则超过部分应交电费多少元?(2)下表是9、10月份的用电和交费情况:月份用电量(kw ·h )交电量总额(元)98025104510根据上表信息,求电厂规定a kw ·h 为多少?(3)求8月份该户居民应交电费多少元?【详解】解:(1)超过部分应交()90100aa -(元);(2)由9月份交电费25元,该户9月份用电量已超过规定的kw h a ,所以9月份超过部分应交电费()802510100aa -=-,即28015000a a -+=,解得130a =,250a =,由10月份的交电费10元看,该户10月份的用电量45kw h 没有超过kw h a ,所以45a >.所以50kw h a = .(3)当50kw h a = 时,超过部分应交()50905020100-= 元,所以8月份该户居民交电费30元.变式4.717.近年来,随着城市居民入住率的增加,污水处理问题成为城市的难题.某城市环境保护局协同自来水公司为鼓励居民节约用水,减少污水排放,规定:居民用水量每月不超过a吨时,只需交纳10元水费,如果超过a吨,除按10元收费外,超过部分,另按每吨5a元收取水费(水费+污水处理费).(1)某市区居民2018年3月份用水量为8吨,超过规定水量,用a的代数式表示该用户应交水费多少元;(2)下表是这户居民4月份和5月份的用水量和缴费情况;月份用水量(吨)交水费总金额(元)47705540根据上表数据,求规定用水量a的值.【答案】(1)用户应交水费10+40a﹣5a2元;(2)a的值为3.【解析】【分析】(1)根据总费用=10+超出费用列出代数式即可;(2)根据题意分别列出5a(7﹣a)+10=70,5a(5﹣a)+10=40,取满足两个方程的a的值即为本题答案.【详解】解:(1)3月份应交水费10+5a(8﹣a)=(10+40a﹣5a2)元;(2)由题意得:5a(7﹣a)+10=70,解得:a=3或a=45a(5﹣a)+10=40解得:a=3或a=2,综上,规定用水量为3吨.则规定用水量a的值为3.【点睛】本题考查了一元二次方程的应用,解题的关键是了解本题的水费收取标准.实战练18.二次方程4x(x+2)=25化成一般形式得()A.4x2+8x﹣25=0B.4x2﹣23=0C.4x2+8x=25D.4x2+2=25【答案】A【解析】【分析】方程的一般形式为ax2+bx+c=0,将方程整理为一般形式,即可得到结果.【详解】方程整理得:4x 2+8x −25=0,故选A.【点睛】本题考查一元二次方程的一般形式,解题的关键是掌握一元二次方程的一般形式.19.下列方程,是一元二次方程的是()①2320x x +=,②22340x xy -+=,③214x x-=,④20x =,⑤2340x x --=.A.①② B.①②④⑤ C.①③④D.①④⑤【答案】D 【解析】【分析】根据一元二次方程的定义进行判断即可.【详解】解:①2320x x +=符合一元二次方程的定义;②22340x xy -+=属于二元二次方程;③214x x-=属于分式方程;④20x =符合一元二次方程的定义;⑤2340x x --=符合一元二次方程的定义;故选:D .【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a ≠0).20.用配方法解一元二次方程2870x x -+=,方程可变形为()A.2(4)9x +=B.2(4)9x -= C.2(8)16x -= D.2(8)57x +=【答案】B 【解析】【分析】先将常数项移到等号的右边,在方程两边加上一次项系数一半平方,将方程左边配成一个完全平方式即可.【详解】解:x 2-8x +7=0,x 2-8x =-7,x 2-8x +16=-7+16,(x -4)2=9.故选:B .【点睛】本题考查了运用配方法解一元二次方程,解答时熟练掌握配方法的步骤是关键.21.已知一元二次方程x 2﹣4x+3=0的两根x 1、x 2,则x 12﹣4x 1+x 1x 2=()A.0B.1C.2D.﹣1【答案】A 【解析】【分析】由一元二次方程x 2﹣4x+3=0的两根x 1、x 2可得x 12﹣4x 1=﹣3,x 1x 2=3,代入可得结果.【详解】解:∵方程x 2﹣4x+3=0的两根x 1、x 2,∴x 1x 2=3、x 12﹣4x 1+3=0即x 12﹣4x 1=﹣3,则原式=﹣3+3=0,故选:A .【点睛】本题主要考查了一元二次方程根与系数的关系,关键是熟练掌握x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=﹣ba,x 1x 2=c a .22.已知(2)310mm x x --+=是关于x 的一元二次方程,则m =_______.【答案】-2【解析】【分析】根据一元二次方程的定义,一元二次方程必须满足两个条件:未知数的最高次数是2;二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【详解】解:由题意,得|m |=2,且m -2≠0,解得m =-2,故答案为:-2.【点睛】本题考查一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(a ≠0).特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.23.若12x x 、是一元二次方程2310x x -+=的两个根,则1211+x x =___________.【答案】3【解析】【分析】根据韦达定理可得123x x +=,121=x x ,将1211+x x 整理得到1212x x x x +,代入即可.【详解】解:∵12x x 、是一元二次方程2310x x -+=的两个根,∴123x x +=,121=x x ,∴121212113x x x x x x ++==,故答案为:3.【点睛】本题考查韦达定理,掌握12b x x a +=-,12cx x a=是解题的关键.24.若x 1、x 2是一元二次方程x 2﹣2x ﹣52=0的两根,则x 12+x 22的值是__.【答案】9【解析】【分析】利用一元二次方程根与系数的关系表示出x 1+x 2=2,x 1x 2=﹣52,再根据完全平方公式的变形求x 12+x 22的值即可.【详解】解:∵x 1、x 2是一元二次方程x 2﹣2x ﹣52=0的两根,∴x 1+x 2=2,x 1x 2=﹣52,则x 12+x 22=(x 1+x 2)2﹣2x 1x 2=4﹣2×(﹣52)=4+5=9.故答案为:9.【点睛】本题考查一元二次方程根与系数的关系和完全平方公式的变形.熟练掌握一元二次方程根与系数的关系和完全平方公式是解题的关键.25.某辆汽车在公路上行驶,它行驶的路程()s m 和时间()t s 之间的关系为:。

初中数学 方程与不等式模块2-4 分式方程讲义(含答案解析)

初中数学 方程与不等式模块2-4 分式方程讲义(含答案解析)

分式方程题型练题型一:分式方程的概念分式方程的概念:分母中含有未知数的有理方程叫做分式方程,分式方程是方程的一种例1下列关于x 的方程中,是分式方程的是()A.35435x x -+-=B .x a x ba b b a-=+C .2(1)11x x -=-D .x n x n m n-=【详解】解:A .35435x x -+-=中分母不含未知数,不是分式方程,故选项A 错误;B .x a x ba b b a-=+中分母不含未知数,不是分式方程,故选项B 错误;C .2(1)11x x -=-是分式方程,故选项C 正确;D .x n xn m n-=中分母不含未知数,不是分式方程,故选项D 错误.故选:C .变式1.在方程:①715832x x --=+,②1626x x -=,③28811x x x +=--,④1102x x --=,是分式方程的有()A.①和② B.②和③C.③和④D.①和④【答案】C 【解析】【分析】分母中含有未知数的方程称为分式方程,据此解题即可.【详解】解:①分母不含未知数,故①不是分式方程;②分母不含未知数,故②不是分式方程;③分母含有未知数,故③是分式方程;④分母含有未知数,故④是分式方程.故选C .【点睛】本题考查分式方程的概念,难度容易,是基础考点,掌握相关知识是解题关键.题型二解分式方程的一般步骤求解分式方程的一般步骤:①方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);②解整式方程,求出整式方程的解;③检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.注意:解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.例2解分式方程:1133x xx x =+++.解:1133x x x x =+++去分母,得33(1)x x x =++,解此方程,得3x =-,经检验,3x =-是原分式方程的根.变式2.解方程:2713113x x x-+=--【答案】1x =-【解析】【分析】方程两边同时乘以(3x -1),把分式方程化为整式方程,求出整式方程的解后再检验即得结果.【详解】解:方程两边同时乘以(3x -1),约去分母得:2731x x --=-,解这个方程,得1x =-,经检验:1x =-是原方程的解,∴原方程的解为1x =-.【点睛】本题考查了分式方程的解法,属于基础题型,熟练掌握解分式方程的方法是关键.题型三分式无解(增根)的条件例3已知关于x 的方程361(1)x mx x x x ++=--有增根,求m 的值.【详解】解:方程两边都乘x (x -1),得3(x -1)+6x =x +m ,∵原方程有增根,∴最简公分母x (x -1)=0,解得x =0或1,当x =0时,m =-3;当x =1时,m =5故当m =-3或5时,原方程有增根.变式3.若关于x 的方程2221511k k x x x x x --+=-+-有增根1x =,求k 的值.【答案】3【解析】【分析】先将分式方程化为整式方程,再将增根代入整式方程求出k 的值即可.【详解】方程两边同乘以(1)(1)x x x +-得()()()1511x k x k x ++--=-,把1x =代入上式得21k =-,解得3k =,故k 的值为3.【点睛】本题考查了分式方程的增根问题,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.题型四无解的分式方程例4当a 为何值时,关于x 的方程311x a x x--=-无解?【详解】把分式方程化成整式方程得出(2)3a x +=,根据等式性质得出2a =-,原方程无解.再根据当1x =或0x =时,分式方程的分母等于0,即整式方程的解是分式方程的增根,代入求得1a =.变式4.己知关于x 的分式方程()()211122mx x x x x +=--++无解,求m 的值.【答案】m 的值为6-或32或1-【解析】【分析】分式方程去分母转化为整式方程,整理后根据一元一次方程无解条件求出m 的值,由分式方程无解求出x 的值,代入整式方程求出m 的值即可.【详解】()()211122mx x x x x +=--++去分母得:()221x mx x ++=-2+41x mx x +=-()15m x +=-由分式方程无解,得到()()120x x -+=即11x =,22x =-当1x =时,15m +=-,解得6m =-当2x =-时,225m --=-,解得32m =当10m +=,整式方程无解,解得1m =-故m 的值为6-或32或1-.【点睛】本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.题型五:分式的实际应用分式在实际应用过程中要重点把握等量关系的建立,列分式方程解应用题一般步骤如下:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.例5.甲、乙两个工程队合作完成一项工程,两队合做2天后由乙队单独做1天就完成了全部工程,已知乙队单独做所需的天数是甲队单独做所需天数的1.5倍,求甲、乙两队单独做各需多少天完成该项工程?【详解】解:设甲队单独做需x 天完成该项工程,则乙队单独做需1.5x 天完成该项工程,由题意得22111.5x x++=解得:4x =经检验4x =是原分式方程的解答:甲队单独欧需4天完成该项工程,乙队单独做需6天完成该项工程变式5.小明骑助动车,从家到学校去参加计算机能力考试,两地之间相距50千米,当他行驶了10千米后将车速加速为原先的2倍,结果比原计划提前1小时到达学校,请问他原计划的车速是多少千米/小时?【答案】20【解析】【分析】设原计划车速为x 千米/小时,根据两地之间相距50千米,当他行驶了10千米后将车速加速为原先的2倍,结果比原计划提前1小时到达学校,列出方程即可解答.【详解】设原计划车速为x 千米/小时1055010120x x x -=++102050x x x--=120x =1x=20.经检验x=20是原方程的解.答:他原计划的车速是20千米/小时.【点睛】此题考查分式方程的应用,解题关键在于列出方程.实战练6.解分式方程3511y y y =---时,去分母正确的是()A.35y =-- B.3(1)(1)5y y y -=-- C.35(1)y y =--D.35(1)y y =---【答案】D 【解析】【分析】方程两边同时乘以()1y -,利用等式的性质即可求解.【详解】解:方程两边同时乘以()1y -可得:35(1)y y =---,故选:D .【点睛】本题考查去分母,掌握等式的性质是解题的关键.7.分式方程12211xx x -+=--的解是()A.1 B.0C.1- D.无解【答案】D 【解析】【分析】首先去掉分母,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解.【详解】解:去分母得:()1212x x +-=-,去括号得:1222x x +-=-,移项合并得:33x =,系数化为1得:1x =,∵1x =时,10x =﹣,∴x =1是分式方程的增根,∴分式方程无解.故选:D .【点睛】本题主要考查了解分式方程,解题的关键是掌握解分式方程的步骤.利用了转化的思想,解分式方程注意要检验.8.若关于x 的分式方程322x mx x -=--有增根,则m 的值是()A.1B.﹣1C.2D.﹣2【答案】C 【解析】【分析】先把分式方程化为整式方程,再把增根x =2代入整式方程,即可求解.【详解】解:322x m x x -=--,去分母得:()32x x m --=,∵关于x 的分式方程322x mx x -=--有增根,增根为:x =2,∴()2322m --=,即:m =2,故选C .【点睛】本题主要考查解分式方程以及分式方程的增根,把分式方程化为整式方程是解题的关键.9.根据市场需求,某药厂要加速生产一批药品,现在平均每天生产药品比原计划平均每天多生产500箱,现在生产6000箱药品所需时间与原计划生产4500箱药品所需时间相同,那么原计划平均每天生产多少箱药品?设原计划平均每天可生产x 箱药品,则下面所列方程正确的是()A.60004500500x x =+ B.60004500500x x =- C.60004500500x x =- D.60004500500x x =+【答案】D 【解析】【分析】设原计划平均每天可生产x 箱药品,则实际每天生产(500)x +箱药品,再根据“生产6000箱药品所需时间与原计划生产4500箱药品所需时间相同”建立方程求解即可.【详解】解:设原计划平均每天可生产x 箱药品,则实际每天生产(500)x +箱药品,原计划生产4500箱所需要的时间为:4500x ,现在生产6000箱所需要的时间为:6000500x +,由题意得:60004500500x x=+;故选:D .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.对于实数a ,b ,定义一种新运算“⊗”为:22a b a b =-⊗,这里等式右边是通常的实数运算.例如:22113134==--⊗,则方程()6111x x ⊗-=--的解是()A.4x =B.5x = C.6x = D.7x =【答案】B 【解析】【分析】已知方程利用题中的新定义化简,计算即可求出解.【详解】根据题中的新定义化简得:26111x x =---,去分母得:261x =-+,解得:5x =,经检验5x =是分式方程的解.故选:B .【点睛】此题考查了解分式方程,以及实数的运算,弄清题中的新定义是解本题的关键.11.定义运算ab =a 2﹣2ab +1,下面给出了关于这种运算的几个结论:①25=﹣15;②不等式组()310250x x ⎧-⊗-<⎨⊗-<⎩的解集为x <﹣32;③方程2x 1=0是一元一次方程;④方程1xx =21x +x 的解是x =﹣1.其中正确的是_____.(填上你认为所在正确结论的序号)【答案】①④【解析】【分析】利用题中的新定义计算即可得到结果.【详解】根据题意得:①2⊗5=4﹣20+1=﹣15,正确;②不等式组()310250x x ⎧-⊗-<⎨⊗-<⎩变形得9604440x x +<⎧⎨--<⎩,此不等式无解,错误;③方程2x ⊗1=0,变形得:4x 2﹣4x+1=0,不是一元一次方程,错误;④方程1x ⊗x =21x+x ,变形得:221121x x x -+=+,解得:x =﹣1,正确,则正确的是①④.故答案为①④【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.代数式13x +与代数式3x的值相等,则x =__.【答案】92-【解析】【分析】根据题意列出分式方程,求出解即可.【详解】解:根据题意得:133x x=+,去分母得:x =3(x +3),解得:x =92-,经检验x =92-是分式方程的根.故答案为:92-.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.定义一种新运算:1an n n bn x dx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若2585mmx dx --=⎰,则m =______.【答案】25-【解析】【分析】根据新运算列等式为m −1−(5m )−1=−2,解出即可.【详解】解:由题意得:m −1−(5m )−1=−2,即:1125m m-=-,解得:m =25-,经检验:m =25-是方程1125m m-=-的解,故答案是:25-【点睛】本题考查了负整数指数幂和解分式方程,理解新定义,并根据新定义进行计算是本题的关键.14.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.【答案】x =3或-3是原方程的增根;m =6或12.【解析】【详解】试题分析:先根据方程有增根,可让最简公分母为0,且把分式方程化为整式方程,分别代入求解即可.试题解析:因为原方程有增根,且增根必定使最简公分母(x+3)(x-3)=0,所以x=3或x=-3是原方程的增根.原方程两边同乘(x+3)(x-3),得m+2(x-3)=x+3.当x=3时,m+2×(3-3)=3+3,解得m=6;当x=-3时,m+2×(-3-3)=-3+3,解得m=12.综上所述,原方程的增根是x=3或x=-3.当x=3时,m=6;当x=-3时,m=12.点睛:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m 的值.15.解答下列各题:解方程:2111x x x+=-+.【答案】3x =-【解析】【分析】解方程首先去分母,把分式方程化为整式方程,再解整式方程,最后还要把整式方程的根带入最简公分母检验,即可得出答案.【详解】2111xx x+=-+方程两边同时乘以(1)(1)x x -+,约去分母得()()()()21111x x x x x ++-+=-解得3x =-检验:当3x =-时,(1)(1)1(3)1(3)80x x ⎡⎤⎡⎤-+=--+-=-≠⎣⎦⎣⎦,∴3x =-是原方程的解.【点睛】本题考查了分式方程的解法,解题的关键熟练掌握分式方程的解答步骤.16.解分式方程:(1)22311x x x +=--;(2)222273711x x x x x x --=++--.【答案】(1)无解;(2)无解【解析】【分析】(1)方程两边乘(1)(1)x x +-去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)方程两边乘(1)(1)x x x +-去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)方程两边乘(1)(1)x x +-,得223x x +=+,解得1x =,检验:当1x =时,(1)(1)0x x +-=,因此1x =不是原分式方程的解,所以,原分式方程无解;(2)方程两边乘(1)(1)x x x +-,得3377337x x x x x x -++=-+-,解得1x =,检验:当1x =时,(1)(1)0x x x +-=,因此1x =不是原分式方程的解,所以,原分式方程无解.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17.已知关于x 的分式方程()()211122mx x x x x +=--++,(1)若方程的增根为x=1,求m 的值(2)若方程有增根,求m 的值(3)若方程无解,求m 的值.【答案】(1)m=-6;(2)当x =﹣2时,m =1.5;当x =1时,m =﹣6;(3)m 的值为﹣1或﹣6或1.5【解析】【详解】试题分析:方程两边同时乘以最简公分母(x-1)(x+2),化为整式方程;(1)把方程的增根x=1代入整式方程,解方程即可得;(2)若方程有增根,则最简公分母为0,从而求得x 的值,然后代入整式方程即可得;(3)方程无解,有两种情况,一种是原方程有增根,一种是所得整式方程无解,分别求解即可得.试题解析:方程两边同时乘以(x +2)(x ﹣1),得2(x+2)+mx=x-1,整理得(m +1)x =﹣5,(1)∵x =1是分式方程的增根,∴1+m =﹣5,解得:m =﹣6;(2)∵原分式方程有增根,∴(x +2)(x ﹣1)=0,解得:x =﹣2或x =1,当x =﹣2时,m =1.5;当x =1时,m =﹣6;(3)当m +1=0时,该方程无解,此时m =﹣1;当m +1≠0时,要使原方程无解,由(2)得:m =﹣6或m =1.5,综上,m 的值为﹣1或﹣6或1.5.【点睛】本题考查了分式方程无解的问题,正确的将分式方程转化为整式方程,明确方程产生无解的原因,能正确地根据产生的原因进行解答是关键.18.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m 天,乙队共做了n 天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?【答案】(1)甲、乙两队单独完成这取工程各需60,90天;(2)甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.【解析】【分析】(1)根据题意列方程求解;(2)用总工作量减去甲队的工作量,然后除以乙队的工作效率得到乙队的施工天数,令施工总费用为w 万元,求出w 与m 的函数解析式,根据m 的取值范围以及一次函数的性质求解即可.【详解】(1)设甲、乙两队单独完成这取工程各需2x ,3x 天,由题意得:11130151233x x x ⎛⎫+⨯+⨯= ⎪⎝⎭,解得:30x =,经检验:30x =是原方程的根,∴260x =,390x =,答:甲、乙两队单独完成这取工程各需60,90天;(2)由题意得:1319060902m n m ⎛⎫=-÷=- ⎪⎝⎭,令施工总费用为w 万元,则31589037202w m m m ⎛⎫=+⨯-=+ ⎪⎝⎭.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴3720840m +…,390802m m ⎛⎫+- ⎪⎝⎭…,∴2040m 剟,∴当20m =时,完成此项工程总费用最少,此时390602n m =-=,780w =元,答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.【点睛】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.19.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?【答案】(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【解析】【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+…,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.20.观察下列各式:111121212==-⨯,111162323==-⨯,1111123434==-⨯,1111204545==-⨯,1111305656==-⨯,…()1请你根据上面各式的规律,写出符合该规律的一道等式:________()2请利用上述规律计算:()1111...1223341n n ++++=⨯⨯⨯+________(用含有n 的式子表示)()3请利用上述规律解方程:()()()()111121111x x x x x x x ++=---++.【答案】(1)1111426767==-⨯;(2)1n n +;(3)5x =【解析】【分析】根据阅读材料,总结出规律,然后利用规律变形计算即可求解.【详解】解:()11111(426767==-⨯答案不唯一);故答案为1111426767==-⨯;()2原式11111111112233411n n n n -+-+-++-+--+ 111=1111n n n n +-=-+++1n n =+;故答案为1n n +()3分式方程整理得:111111121111x x x x x x x -+-+-=---++,即1221x x =-+,方程两边同时乘()()21x x --,得()122x x +=-,解得:5x =,经检验,5x =是原分式方程的解.所以原方程的解为: 5.x =【点睛】此题主要考查了阅读理解型的规律探索题,利用分数和分式的性质,把分式进行变形是解题关键.21.某中学开学初在商场购进A 、B 两种品牌的足球,购买A 品牌足球花费了2500元,购买B 品牌足球花费了2000元,且购买A 品牌的足球数量是购买B 品牌足球数量的2倍,已知购买一个B 品牌足球比购买一个A 品牌足球多花30元(1)求购买一个A 品牌、一个B 品牌的足球各需多少元?(2)该中学响应习总书记足球进校园号召,决定两次购进A 、B 两种品牌足球共50个,恰逢商场对两种品牌足球的售价进行调整,A 品牌足球售价比第一次购买时提高了8%,B 品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A 、B 两种品牌足球的总费用不超过3240元,那么该中学此次最多可购买多少个B 品牌足球?【答案】(1)一个A 品牌的足球需50元,一个B 品牌的足球需80元;(2)该中学此次最多可购买30个B 品牌足球【解析】【分析】(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需(x +30)元,根据购买A 品牌足球数量是购买B 品牌足球数量的2倍列出方程解答即可;(2)设此次可购买a 个B 品牌足球,则购买A 品牌足球(50﹣a )个,根据购买A 、B 两种品牌足球的总费用不超过3240元,可列出关于a 的不等式,解不等式即可解决问题.【详解】解:(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需(x +30)元,由题意得:25002000230x x =⨯+,解得:x =50,经检验:x =50是原方程的解,x +30=80.答:一个A 品牌的足球需50元,一个B 品牌的足球需80元.(2)设此次可购买a 个B 品牌足球,则购买A 品牌足球(50﹣a )个,由题意得:50×(1+8%)(50﹣a )+80×0.9a ≤3240,解得a ≤30.∵a 是整数,∴a 最大等于30,答:该中学此次最多可购买30个B 品牌足球.【点睛】本题考查的是分式方程的应用和一元一次不等式的应用,属于常考题型,正确理解题意、列出相应的方程和不等式是解答的关键.培优练22.阅读下列材料:在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x 的分式方程3111a x x+=--的解为正数,求a 的取值范围?经过小组交流讨论后,同学们逐渐形成了两种意见:小明说:解这个关于x 的分式方程,得到方程的解为x=a ﹣2.由题意可得a ﹣2>0,所以a >2,问题解决.小强说:你考虑的不全面.还必须保证a ≠3才行.老师说:小强所说完全正确.请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明:.完成下列问题:(1)已知关于x 的方程212mx x -+=1的解为负数,求m 的取值范围;(2)若关于x 的分式方程32233x nx x x--+--=﹣1无解.直接写出n 的取值范围.【答案】(1):m <12且m ≠﹣14;(2)n=1或n=53.【解析】【分析】考虑分式的分母不为0,即分式必须有意义;(1)表示出分式方程的解,由解为负数确定出m 的范围即可;(2)分式方程去分母转化为整式方程,根据分式方程无解,得到有增根或整式方程无解,确定出n 的范围即可.【详解】请回答:小明没有考虑分式的分母不为0(或分式必须有意义)这个条件;(1)解关于x 的分式方程得,x=321m -,∵方程有解,且解为负数,∴2103221m m -⎧⎪⎨≠-⎪-⎩<,解得:m <12且m ≠-14;(2)分式方程去分母得:3-2x+nx-2=-x+3,即(n-1)x=2,由分式方程无解,得到x-3=0,即x=3,代入整式方程得:n=53;当n-1=0时,整式方程无解,此时n=1,综上,n=1或n=53.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.【建构模型】对于两个不等的非零实数a ,b ,若分式()()x a x b x--的值为零,则x a =或x b =.因为()()()()2x a x b x a b x ab ab x a b x x x ---++==+-+,所以,关于x 的方程ab x a b x+=+的两个解分别为:1x a =,2x b =.【应用模型】利用上面建构的模型,解决下列问题:(1)若方程p x q x+=的两个解分别为11x =-,24x =.则p =___,q =___;(直接写结论)(2)已知关于x 的方程222221n n x n x +-+=+的两个解分别为1x ,()212x x x <.求12223x x -的值.【答案】(1)4-,3;(2)1【解析】【分析】(1)根据材料可得:p=-1×4=-4,q=-1+4=3,计算出结果;(2)将原方程变形后变为:22212121n n x n x +-++=++,未知数变为整体2x+1,根据材料中的结论可得:122n x -=,212n x +=,代入所求式子可得结论;【详解】解:(1)∵方程p x q x+=的两个解分别为:121=4x x =-,,∴p=-1×4=-4,q=-1+4=3,故答案为:-4,3.(2)由222221n n x n x +-+=+,可得22212121n n x n x +-++=++.∴()()()()21212121n n x n n x +-++=++-+.故212x n +=+,解得12n x +=.或211x n +=-,解得22n x -=.∵12x x <,∴122n x -=,212n x +=.∴122222221123132232n x n n n x n n -⋅--====+-+--⋅-.【点睛】本题考查了分式方程的解,弄清题中的规律是解题的关键;。

2020-2021学年安徽省合肥市中考数学二模试卷含答案解析

2020-2021学年安徽省合肥市中考数学二模试卷含答案解析

安徽省中考数学二模试卷一、选择题(每小题4分,共40分)1.(4分)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.22.(4分)3月5日,十二届全国人大五次会议顺利召开,李克强总理在政府工作报告中指出,2016年国内生产总值达到74.4亿元,比上年增长6.7%,将74.4万亿用科学记数法表示是()A.7.44×104 B.7.44×108 C.74.4×1012D.7.44×10133.(4分)下列几何体中,左视图为三角形的是()A.B.C.D.4.(4分)下列计算结果等于a5的是()A.a3+a2B.a3•a2 C.(a3)2D.a10÷a25.(4分)如图,PA切⊙O于点A,PB切⊙O于点B,如果∠APB=60°,⊙O半径是3,则劣弧AB的长为()A.B.πC.2πD.4π6.(4分)已知某公司10月份的销售额为500万元,如果该公司后期每月的销售额月平均增长率为x,那么第四季销售总额用代数式可表示为(单位:万元)()A.500(1+x)2 B.500+500x+500x2C.500+500(1+x)+500(1+2x)D.500+500(1+x)+500(1+x)27.(4分)已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6 B.8 C.10 D.8或108.(4分)如图,在△OAB中,OA=OB,∠AOB=15°,在△OCD中,OC=OD,∠COD=45°,且点C在边OA上,连接CB,将线段OB绕点O逆时针旋转一定角度得到线段OE,使得DE=CB,则∠BOE的度数为()A.15°B.15°或45°C.45°D.45°或60°9.(4分)如图,在△ABC中,BC=10,D、E分别为AB、AC的中点,连接BE、CD 交于点O,OD=3,OE=4,则△ABC的面积为()A.36 B.48 C.60 D.7210.(4分)函数y=,当y=a时,对应的x有唯一确定的值,则a的取值范围为()A.a≤0B.a<0C.0<a<2 D.a≤0或a=2二、填空题(每小题5分,满分20分)11.(5分)计算:+= .12.(5分)当a=2017时,代数式的值为.13.(5分)合肥市初中毕业学业体育考试项目分必考项1项和选考项2项,在8个选考项目中,张明同学可在立定跳远、跳绳和坐位体前屈三个项目模考中基本拿满分,现计划从这三个项目中任选两项作为中考选考项,则跳绳能被选上的概率为.14.(5分)如图,点P是矩形ABCD内一点,连接PA、PB、PC、PD,已知AB=3,BC=4,设△PAB、△PBC、△PCD、△PDA的面积分别为S1、S2、S3、S4,以下判断:①PA+PB+PC+PD的最小值为10;②若△PAB≌△PDC,则△PAD≌△PBC;③若S1=S2,则S3=S4;④若△PAB∽△PDA,则PA=2.4其中正确的是.三、解答题(每小题8分,满分16分)15.(8分)解不等式:≥.16.(8分)观察下列关于自然数的等式:(1)1﹣=12×①(2)2﹣=22×②(3)3﹣=32×③…根据上述规律解决下列问题:(1)写出第4个等式:= ;(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.四、解答题(每小题8分,满分16分)17.(8分)如图,在9×8的正方形的网格中,△ABC的三个顶点和点O都在格点上.(1)画出△ABC关于直线l成轴对称△A1B1C;(2)将△ABC以点A为旋转中心逆时针旋转90°,画出旋转后的△AB2C2.18.(8分)某品牌羽绒服按成本提高50%作为标价,由于换季,商家决定降价销售,促销措施为:买一件以八折(标价的80%)出售,买两件或两件以上七折(标价的70%)出售.已知顾客买一件商家能获利28元,若顾客同时买两件,商家每件还能获利多少元?五、(每小题10分,满分20分)19.(10分)初,合肥市积极推进共享单车服务(如图1),努力创造绿色环保出行,图2是某品牌单车的车架示意图,其中ED=40cm,∠DEF=60°,∠F=45°,求传动轮轴心E到后轮轴心F的距离EF的长.(结果精确到1cm,参考数据:≈1.41,≈1.73)20.(10分)如图,矩形ABCD中,AD=5,AB=10,分别以AD、BC为斜边向矩形外作Rt△ADF≌Rt△CBE,延长FA、EB交于点G.(1)求证:△ADF∽△BAG;(2)若DF=4,请连接EF并求出EF的长.六、(本题满分12分)21.(12分)2016年合肥市初中生学业质量绿色指标综合评价在合肥12个县(市)、区312所学校进行,某校八年级根据比例被随机抽取了40名学生参与了语文、数学、英语、科学等四个科目的测试,根据这40位同学的数学成绩,绘制了如下条形统计图.(1)结合以上信息完成下表:平均成绩(分)中位数(分)众数(分)86.85(2)根据评价标准,96分以上(含96分)可评为优秀,该校八年级共有学生500名若全部参加测试,估计有多少学生的成绩能达到优秀?(3)张明同学的数学成绩为88分,他认为自己成绩超过平均分,排名应该处于中上等水平,这种说法对吗?为什么?七、(本题满分12分)22.(12分)如图,在△ABC中,AB=10,∠BAC=60°,∠B=45°,点D是BC边上一动点,连接AD,以AD为直径作⊙O交边AB、AC于点E、F,连接OE、OF、DE、DF、EF.(1)求的值;(2)当AD运动到什么位置时,四边形O EDF正好是菱形,请说明理由.(3)点D运动过程中,线段EF的最小值为(直接写出结果).八、(本题满分14分)23.(14分)【阅读理解】我们知道,在正比例函数y=ax(a>0)中y随x的增大而增大,当x取最小值时y有最小值;在反比例函数y=(k>0)中,当x>0时y随x的增大而减小,当x取最大值时y有最小值,那么当x>0时函数y=ax+(a>0,k >0)是否存在最值呢?下面以y=2x+为例进行探究:∵x>0,∴y=2x+=2(x+)=2[+]=[﹣6++6]=2[+6]=2+12∴当﹣=0,即x=3时y有最小值,这时y最小=12.【现学现用】已知x>0,当x= 时,函数y=x+有最值(填“大”或“小”),最值为.【拓展应用】A、B两城市相距400千米,限速为300千米/小时的高铁从A城到B城的运行成本(万元)由可变成本和固定成本两部分构成,每小时的可变成本与行驶速度v(千米/小时)的平方成正比,且比例系数k,固定成本为每小时4万元,在试运行过程中经测算,当行驶速度为100千米/小时时,可变成本为每小时1万元.(1)试把每小时运行总成本y(万元)表示成速度v(千米/小时)的函数;(2)为了使全程运行成本z最低,高铁行驶的速度应为多少?参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.2【解答】解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A.2.(4分)2017年3月5日,十二届全国人大五次会议顺利召开,李克强总理在政府工作报告中指出,2016年国内生产总值达到74.4亿元,比上年增长6.7%,将74.4万亿用科学记数法表示是()A.7.44×104 B.7.44×108 C.74.4×1012D.7.44×1013【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:D.3.(4分)下列几何体中,左视图为三角形的是()A.B.C.D.【解答】解:A.圆柱的左视图是长方形,不合题意;B.长方体的左视图是长方形,不合题意;C.圆锥的左视图是三角形,符合题意;D.三棱柱的左视图是长方形,不合题意;故选:C.4.(4分)下列计算结果等于a5的是()A.a3+a2B.a3•a2 C.(a3)2D.a10÷a2【解答】解:A、不是同底数幂的乘法,故A不符合题意;B、a3•a2=a5,故B符合题意;C、(a3)2=a6,故C不符合题意;D、a10÷a2=a8,故D不符合题意;故选:B.5.(4分)如图,PA切⊙O于点A,PB切⊙O于点B,如果∠APB=60°,⊙O半径是3,则劣弧AB的长为()A.B.πC.2πD.4π【解答】解:连接OA,OB.则OA⊥PA,OB⊥PB∵∠APB=60°∴∠AOB=120°∴劣弧AB的长是:=2π.故选C.6.(4分)已知某公司10月份的销售额为500万元,如果该公司后期每月的销售额月平均增长率为x,那么第四季销售总额用代数式可表示为(单位:万元)()A.500(1+x)2 B.500+500x+500x2C.500+500(1+x)+500(1+2x)D.500+500(1+x)+500(1+x)2【解答】解:10月份的销售额为500万元,11月份的销售额为500(1+x)万元,12月份的销售额为500(1+x)2万元,则第四季销售总额用代数式可表示为:500+500(1+x)+500(1+x)2,故选:D.7.(4分)已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6 B.8 C.10 D.8或10【解答】解:把x=2代入方程x2﹣(m+4)x+4m=0得4﹣2(m+4)+4m=0,解得m=2,方程化为x2﹣6x+8=0,解得x1=4,x2=2,因为2+2=4,所以三角形三边为4、4、2,所以△ABC的周长为10.故选C.8.(4分)如图,在△OAB中,OA=OB,∠AOB=15°,在△OCD中,OC=OD,∠COD=45°,且点C在边OA上,连接CB,将线段OB绕点O逆时针旋转一定角度得到线段OE,使得DE=CB,则∠BOE的度数为()A.15°B.15°或45°C.45°D.45°或60°【解答】解:如图,当OE在∠BOD内部时,若∠DOE=∠COB=15°,则由OD=OC,∠DOE=∠COB,OB=OE可得,△ODE≌△OCB,故DE=CB,此时∠BOE=45°﹣15°﹣15°=15°;当OE'在∠BOD外部时,则由OD=OC,∠DOE'=∠COB,OB=OE可得,△ODE'≌△OCB,故DE'=CB,此时∠BOE'=45°﹣15°+15°=45°;故选:B.9.(4分)如图,在△ABC中,BC=10,D、E分别为AB、AC的中点,连接BE、CD交于点O,OD=3,OE=4,则△ABC的面积为()A.36 B.48 C.60 D.72【解答】解:∵D、E分别为AB、AC的中点,∴DE∥BC,∴△DOE∽△BOC,∴,∴OB=8,OD=6,∴BC=10,∴△BOC是直角三角形,∴△BOC的面积是24,∴△BEC的面积是36,△BDE的面积是18,∴△ABC的面积是72,故选D10.(4分)函数y=,当y=a时,对应的x有唯一确定的值,则a的取值范围为()A.a≤0B.a<0C.0<a<2 D.a≤0或a=2【解答】解:由题意可知:y=a时,对应的x有唯一确定的值,即直线y=a与该函数图象只有一个交点,∴a≤0或a=2故选(D)二、填空题(每小题5分,满分20分)11.(5分)计算:+= 8 .【解答】解:+=4+4=8.故答案为:8.12.(5分)当a=2017时,代数式的值为.【解答】解:当a=2017时,∴原式===故答案为:13.(5分)合肥市初中毕业学业体育考试项目分必考项1项和选考项2项,在8个选考项目中,张明同学可在立定跳远、跳绳和坐位体前屈三个项目模考中基本拿满分,现计划从这三个项目中任选两项作为中考选考项,则跳绳能被选上的概率为.【解答】解:画树状图如下:共有6种情况,跳绳能被选上的有4种情况,所以,P(跳绳能被选上)==.故答案为:.14.(5分)如图,点P是矩形ABCD内一点,连接PA、PB、PC、PD,已知AB=3,BC=4,设△PAB、△PBC、△PCD、△PDA的面积分别为S1、S2、S3、S4,以下判断:①PA+PB+PC+PD的最小值为10;②若△PAB≌△PDC,则△PAD≌△PBC;③若S1=S2,则S3=S4;④若△PAB∽△PDA,则PA=2.4其中正确的是①②③④.【解答】解:①当点P是矩形ABCD两对角线的交点时,PA+PB+PC+PD的值最小,根据勾股定理得,AC=BD=5,所以PA+PB+PC+PD的最小值为10,故①正确;②若△PAB≌△PCD,则PA=PC,PB=PD,所以P在线段AC、BD的垂直平分线上,即P是矩形ABCD两对角线的交点,所以△PAD≌△PBC,故②正确;③若S1=S2,易证S1+S3=S2+S4,则S3=S4,故③正确;④若△PAB~△PDA,则∠PAB=∠PDA,∠PAB+∠PAD=∠PDA+∠PAD=90°,∠APD=180°﹣(∠PDA+∠PAD)=90°,同理可得∠APB=90°,那么∠BPD=180°,B、P、D三点共线,P是直角△BAD斜边上的高,根据面积公式可得PA=2.4,故④正确.故答案为①②③④.三、解答题(每小题8分,满分16分)15.(8分)解不等式:≥.【解答】解:≥1﹣,去分母得:2(2x﹣1)≥6﹣3(5﹣x),去括号得:4x﹣2≥6﹣15+3x,移项合并得:x≥﹣7.16.(8分)观察下列关于自然数的等式:(1)1﹣=12×①(2)2﹣=22×②(3)3﹣=32×③…根据上述规律解决下列问题:(1)写出第4个等式:4﹣= 42×;(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.【解答】解:(1)根据题意,第4个等式为4﹣=42×,故答案为:4﹣,42×;(2)第n个等式为n﹣=n2×,左边===n2•=右边,∴第n个等式成立.四、解答题(每小题8分,满分16分)17.(8分)如图,在9×8的正方形的网格中,△ABC的三个顶点和点O都在格点上.(1)画出△ABC关于直线l成轴对称△A1B1C;(2)将△ABC以点A为旋转中心逆时针旋转90°,画出旋转后的△AB2C2.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△AB2C2即为所求.18.(8分)某品牌羽绒服按成本提高50%作为标价,由于换季,商家决定降价销售,促销措施为:买一件以八折(标价的80%)出售,买两件或两件以上七折(标价的70%)出售.已知顾客买一件商家能获利28元,若顾客同时买两件,商家每件还能获利多少元?【解答】解:设该品牌羽绒服的成本价为x元,根据题意得:80%×(1+50%)x﹣x=28,解得:x=140,∴140×(1+50%)×70%﹣140=7(元).答:若顾客同时买两件,商家每件还能获利7元.五、(每小题10分,满分20分)19.(10分)初,合肥市积极推进共享单车服务(如图1),努力创造绿色环保出行,图2是某品牌单车的车架示意图,其中ED=40cm,∠DEF=60°,∠F=45°,求传动轮轴心E到后轮轴心F的距离EF的长.(结果精确到1cm,参考数据:≈1.41,≈1.73)【解答】解:如图2中,作DH⊥EF于H.在Rt△EDH中,∵sin∠DEH=,∴DH=DE×sin40°=40×=20cm,∵cos∠DEH=,∴EH=DE×cos60°=40×=20cm,在Rt△DHF中,∵∠F=45°,∴HF=DH=20cm,∴EF=EH+HF=20+20≈55cm,∴传动轮轴心E到后轮轴心F的距离EF的长约为55cm.20.(10分)如图,矩形ABCD中,AD=5,AB=10,分别以AD、BC为斜边向矩形外作Rt△ADF≌Rt△CBE,延长FA、EB交于点G.(1)求证:△ADF∽△BAG;(2)若DF=4,请连接EF并求出EF的长.【解答】解:(1)∵四边形ABCD为矩形,∴∠DAB=90°,即∠DAF+∠BAG=90°,又∵∠DAF+∠ADF=90°,∴∠ADF=∠BAG,同理∠ECB=∠GBA,∵△ADF≌△CBE,∴∠ECB=∠DAF,∴∠DAF=∠GBA,∵在△ADF和△BAG中,,∴△ADF∽△BAG;(2)连接EF,如图,∵在Rt△ADF中,AD=5,DF=4,∴AF==3,∵△ADF∽△BAG,∴==,∠AGB=∠AFD=90°,∴AG=8,BG=6,∴FG=AF+AG=11,EG=EB+BG=DF+BG=4+6=10,∴在Rt△EFG中,EF==.六、(本题满分12分)21.(12分)2016年合肥市初中生学业质量绿色指标综合评价在合肥12个县(市)、区312所学校进行,某校八年级根据比例被随机抽取了40名学生参与了语文、数学、英语、科学等四个科目的测试,根据这40位同学的数学成绩,绘制了如下条形统计图.(1)结合以上信息完成下表:平均成绩(分)中位数(分)众数(分)86.8590 90(2)根据评价标准,96分以上(含96分)可评为优秀,该校八年级共有学生500名若全部参加测试,估计有多少学生的成绩能达到优秀?(3)张明同学的数学成绩为88分,他认为自己成绩超过平均分,排名应该处于中上等水平,这种说法对吗?为什么?【解答】解:(1)40名学生的数学成绩分别为:68,68,68,68,78,78,78,78,78,78,78,80,80,80,88,88,88,88,88,90,90,90,90,90,90,90,90,90,96,96,96,96,96,96,100,100,100,100,100,则中位数为90,众数为90;故答案为:90;90;(2)根据题意得:500×≈138,则估计有138名学生可达到游戏;(3)这种说法不对,∵全班的中位数为90分,张明的成绩为88分,∴他的成绩排名应该是中游偏下.七、(本题满分12分)22.(12分)如图,在△ABC中,AB=10,∠BAC=60°,∠B=45°,点D是BC边上一动点,连接AD,以AD为直径作⊙O交边AB、AC于点E、F,连接OE、OF、DE、DF、EF.(1)求的值;(2)当AD运动到什么位置时,四边形OEDF正好是菱形,请说明理由.(3)点D运动过程中,线段EF的最小值为5(直接写出结果).【解答】解:(1)∵∠BAC=60°,∴∠EOF=120°,∵OE=OF,∴=;(2)当AD平分∠BAC时,四边形OEDF是菱形,理由:∵AD平分∠BAC,∴DE=DF,∠BAD=30°,∵AD是⊙O的直径,∴∠DEA=90°,∴∠EDA=60°,∵OE=OD,∴△OED是等边三角形,即ED=OE,∴OE=OF=DE=DF,∴四边形OEDF是菱形;(3)由垂线的性质可知,当AD⊥BC时,直径AD最短,即⊙O最小,即EF有最小值,如图,过O作OH⊥EF于H,在Rt△ADB中,∵∠ABC=45°,AB=10,∴AD=BD=10,即此时,⊙O的直径为10,∵∠EOH=∠EOH=∠BAC=60°,∴EH=OE•sin∠EOH=5×=,由垂径定理可得EF=2EH=5.线段EF的最小值为5,故答案为:5.八、(本题满分14分)23.(14分)【阅读理解】我们知道,在正比例函数y=ax(a>0)中y随x的增大而增大,当x取最小值时y有最小值;在反比例函数y=(k>0)中,当x>0时y随x的增大而减小,当x取最大值时y有最小值,那么当x>0时函数y=ax+(a>0,k >0)是否存在最值呢?下面以y=2x+为例进行探究:∵x>0,∴y=2x+=2(x+)=2[+]=[﹣6++6]=2[+6]=2+12∴当﹣=0,即x=3时y有最小值,这时y最小=12.【现学现用】已知x>0,当x= 1 时,函数y=x+有最大值(填“大”或“小”),最值为 2 .【拓展应用】A、B两城市相距400千米,限速为300千米/小时的高铁从A城到B城的运行成本(万元)由可变成本和固定成本两部分构成,每小时的可变成本与行驶速度v(千米/小时)的平方成正比,且比例系数k,固定成本为每小时4万元,在试运行过程中经测算,当行驶速度为100千米/小时时,可变成本为每小时1万元.(1)试把每小时运行总成本y(万元)表示成速度v(千米/小时)的函数;(2)为了使全程运行成本z最低,高铁行驶的速度应为多少?【解答】解:【现学现用】∵y=x+=(﹣)2+2,∴当=时,y有最大值2,∴x=1时,y有最大值2,故答案为1,大,2.【拓展应用】(1)∵当v=100时,kv2=1,k=,∴y=+4(0<v≤300).(2)由(1)可知y=+4,∴z=(+4)•=+=(﹣)2+16≥16,∴当=时,即v=200时,z有最小值16,∴为了使全程运行成本z最低,高铁行驶的速度应为200千米/小时.。

新浙教版数学七年级(下)单元测验第二章 二元一次方程能力提升测试(含答案)

新浙教版数学七年级(下)单元测验第二章  二元一次方程能力提升测试(含答案)

第二章 第二章 二元一次方程能力提升测试 班级 姓名 学号一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来! 1. 二元一次方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、⎩⎨⎧=-=21y x B 、⎩⎨⎧-==12y x C 、⎩⎨⎧==21y x D 、⎩⎨⎧==12y x 2.已知关于x 、y 的方程组⎩⎨⎧=-=+10230by ax by ax 的解为⎩⎨⎧-==12y x 则a 、b 的值是( )A 、⎩⎨⎧==21b aB 、⎩⎨⎧==12b a C 、⎩⎨⎧-=-=21b a D 、⎩⎨⎧-==12b a 3.若⎩⎨⎧=--=+6)1(4y m x y x 解得x ,y 的值相同,则m 的值为( ) A 、3B 、-3C 、1D 、-14.已知24,328.a b a b +=⎧⎨+=⎩则a b +等于( )A. 3B. 83C. 2D. 1 5.关于x 的方程组⎩⎨⎧=+=n my x mx y -3的解是⎩⎨⎧==11y x ,则|m -n |的值是( )A.5B. 3C. 2D. 16.已知{21x y ==是二元一次方程组{81mx ny nx my +=-=的解,则2m -n 的算术平方根为( )A.2±B.2C.2D.47.如果2x +3y -z =0,且x -2y +z =0,那么xz的值为( ) A .-17 B .-15 C .12D .-38.设“●”“■”“▲”分别表示不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■”的个数为( )A.5B.4C.3D.2浙教版学业评价试卷 七年级(下)数学9.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( ) A .B .C .D .10.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x ,y 分钟,列出的方程是( )A .14250802900x y x y ⎧+=⎪⎨⎪+=⎩ B .158********x y x y +=+=⎧⎨⎩ C .14802502900x y x y ⎧+=⎪⎨⎪+=⎩ D .152********x y x y +=+=⎧⎨⎩ 二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处!11.将方程2x +y =25写成用含x 的代数式表示y 的形式,则y = .12.在二元一次方程5316x y -=中,若x 、y 互为相反数,则x = ,y = .13.方程组⎩⎨⎧=+=-836032y x y x 的解是 .14. 已知方程组⎩⎨⎧=-=-3y x 25y 3x ,则x +2y 的值是 . 15.若()0212=+++-x y x ,则xy y x -+= .16.根据下图给出的信息,可知每件T 恤和每瓶矿泉水的价格分别为 .三、解答题(共7题,共66分)温馨提示:解答题必须将解答过程清楚地表述出来! 17(本题8分)解下列方程组:()⎩⎨⎧=-=+734858.1x y x y.18.(本题8分)某商店以每支16元的的价格购进一种钢笔,第一个月售出价为每支25元,当月出售了210支;第二个月售出价减到每支20元,当月出售了360支,已知若不考虑其他因素,每支钢笔的售出价x 与每月出售的钢笔支数y 满足y =b -ax ,其中a ,b 为定值. (1)求a ,b 的值.(2)当售出价为每支24元时,每月能售出多少支?并求出此时商店获得的毛利润.19.(本题8分)已知y =x 2+px +q ,当x =1时,y 的值为2;当x =-2时,y 的值为2,求x =-3时y 的值。

中考数学第二次模拟素质测试试题含答案解析

中考数学第二次模拟素质测试试题含答案解析

马鞍山市中考二模联考数学试题卷注意事项: 1.你拿到的试卷满分 150 分,考试时间为 120 分钟。

2.试卷包括“试题卷”和“答题卷”,“试题卷”共 6 页,“答题卷”共 6 页。

3.请务必在“答题卷”上答题,在“试题卷”上答题无效。

4.考试结束后,请将“试题卷”和“答题卷”一并交回。

7.下列二次函数中,图象以直线 x 2 为对称轴、且经过点(0,1)的是()A. y (x 2)2 1B. y (x 2)2 1C. y (x 2)2 3D. y (x 2)2 38.某市国内生产总值( GDP )比增长了 12%,由于受到国际金融危机的影响,预计今年比增长 7%,若这两年年平均增长率为 x %,则 x %满足的关系是 ()A.12% 7% x%B. (112%)(1 7%) 2(1 x%)C.12% 7% 2x%D. (112%)(1 7%) (1 x%)29.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为 y 和 x,则 y 与 x 的函数图象大致是()一、单项选择题(本大题共 10 个小题,每小题 4 分,共 40 分)1.-4 的相反数是()A. 1 4B.-4C. 1 4D.42.“宁安”高铁接通后,马鞍山市交通通行和转换能力成倍增长,该工程投资预算约为930000 万元,这一数据用科学记数法表示为()A. 9.3105 万元 B. 9.3106 万元 C. 0.93106 万元 D. 9.3104 万元3.如图所示的几何体的俯视图是()A.B.C.D.4.下列运算中,正确的是A. 4a 3a 1B. a a2 a3C. 3a6 a3 3a25.不等式组3x14x1 2x 1的解集在数轴上表示正确的是第3题图()D. (ab2 )2 a2b2()6.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定 7 名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这 7 名同学成绩的()A.众数B.中位数C.平均数D.方差马鞍山市 2016 年中考二模联考数学试题卷第 1 页(共 6 页)第1页A.B.C.D.第 9 题图10.如图,在一张矩形纸片 ABCD 中, AB =4, BC =8,点 E 、 F 分别在 AD , BC 上,将纸片ABCD 沿直线 EF 折叠,点 C 落在 AD 上的一点 H 处,点 D 落在点 G 处,有以下四个结论:① 四边形 CFHE 是菱形;② EC 平分 DCH ;③ 线段 BF 的取值范围为 3≤ BF ≤4;④ 当点 H 与点 A 重合时, EF 2 5 .以上结论中,你认为正确的有( )个.A.1B.2C.3D.4第 10 题图二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)11.方程组 x xy 3, y 1的解是.12.如图 12, AB ∥ CD ,∠1 = 60°, FG 平分 EFD ,则∠2=°.13.对于任意非零实数 a 、 b ,定义运算“ ”,使下列式子成立:1 2 = 3 ,2 1 = 3 ,(−2) 5 = 21 ,5 (−2) = 21 ,…,则 a b = _________.22101014.如图 14,已知四边形 ABCD 内接于⊙ O ,直径 AC =6,对角线 AC 、BD 交于 E 点,且 AB BD ,EC 1,则 AD 的长是.B共5页A图 12马鞍山市 2016 年中考二模联考数学试题卷第 2 页(共 6 页)OE C D图 14三、(本大题共 2 小题,每小题 8 分,共 16 分)15.化简: (1 x1 ) 2x 1 x2 2x,并代入一个你喜欢的x求值.16. 如图,将边长分别为 1、2、3、5、…的若干正方形按一定的规律拼成不同的矩形,依次记作矩形①、矩形②、矩形③、矩形④,那么按此规律.(1)组成第○n 个矩形的正方形的个数为 (2)求矩形⑥的周长.个;五、(本大题共 2 小题,每小题 10 分,满分 20 分)19.已知反比例函数y1k x的图象与一次函数y2ax b的图象交于点A(1,4)和点B(m,2)(1)求这两个函数的表达式;(2)观察图象,当 x 0 时,直接写出 y1 > y2 时自变量 x 的取值范围;(3)如果点 C 与点 A 关于 x 轴对称,求 ABC 的面积.①②③四、(本大题共 2 小题,每小题 8 分,满分 16 分)17. ABC 在平面直角坐标系 xOy 中的位置如图所示.(1)作 ABC 关于点 C 成中心对称的 A1 B1C1; (2)将 A1 B1C1向右平移 4 个单位,作出平移后的A2B2C2 ; (3)在 x 轴上求作一点 P ,使 PA1 PC2 的值最小,并写出点 P 的坐标(不写解答过程,直接写出结果)④yA (-2,3)C (0,2)B (-1,1)O20.今年安徽省高中招生体育考试测试管理系统的运行,将测试完进行换算统分改为计算机自动生成,现场公布成绩,降低了误差,提高了透明度,保证了公平.考前张老师为了解全市初三男x生考试项目的选择情况(每人限选一项),对全市部分初三男生进行了调查,将调查结果分成五类: A .实心球(2kg); B .立定跳远; C .50 米跑; D .半场运足球; E .其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:18. 如图,把一张长方形卡片 ABCD 放在每格宽度为 12 mm 的横格 纸中,恰好四个顶点都在横格线上,已知 =36°,求长方形卡片的周长.(精确到 1 mm,参考数据: sin 36 0.60,cos36 0.80, tan 36 0.75 )马鞍山市 2016 年中考二模联考数学试题卷第 3 页(共 6 页)(1)将上面的条形统计图补充完整; (2)假定全市初三毕业学生中有 5500 名男生,试估计全市初三男生中选 50 米跑的人数有多少人?(3)甲、乙两名初三男生在上述选择率较高的三个项目: B .立定跳远; C .50 米跑; D .半场运足球中各选一项,同.时.选择半场运足球、立定跳远的概率是多少?请用列表法或画树形图的方法 加以说明并列出所有等可能的结果.第2页 共5页马鞍山市 2016 年中考二模联考数学试题卷第 4 页(共 6 页)六、(本题满分 12 分)21.如图, AB 是半圆 O 的直径,点 C 为半径 OB 上一点,过点 C 作 CD AB 交半圆 O 于点 D , 将 ACD 沿 AD 折叠得到 AED , AE 交半圆于点 F ,连接 DF .(1)求证: DE 是半圆的切线; (2)连接 OD ,当 OC BC 时,判断四边形 ODFA 的形状,并证明你的结论。

2022年山东省济南市天桥区中考数学二模试题及答案解析

2022年山东省济南市天桥区中考数学二模试题及答案解析

2022年山东省济南市天桥区中考数学二模试卷一、选择题(本大题共12小题,共48.0分。

在每小题列出的选项中,选出符合题目的一项)1. −3的相反数是( )A. −3B. 3C. ±3D. 162. 如图是一个由6个相同的正方体组成的立体图形,它的主视图是( )A.B.C.D.3. 截至2022年3月21日,我国累计报告接种新冠病毒疫苗323036.7万剂次,已完成全程接种疫苗的总人数已超过124000万人,将数字124000用科学记数法表示为( )A. 12.4×105B. 12.4×104C. 1.24×105D. 1.24×1044. 下列图案中,轴对称图形是( )A.B.C.D.5. 将一副三角尺按如图所示的位置摆放在直尺上,则∠1的度数为( )A. 45°B. 65°C. 75°D. 85°6. 实数a,b在数轴上对应点位置如图所示,则下列不等式正确的是( )A. ab<0 B. a−b>0 C. ab>0 D. a+b>07. 化简m2m−4+164−m的结果是( )A. m−4B. m+4C. m+4m−4D. m−4m+48. 小明和小颖做“剪刀、石头、布”的游戏,假设他们每次出这三种手势的可能性相同,则在一次游戏中两人手势相同的概率是( )A. 13B. 16C. 19D. 239. 如图,△ABC的三个顶点都在方格纸的格点上,其中A点的坐标是(−1,0),现将△ABC绕A 点按逆时针方向旋转90°,则旋转后点C的坐标是( )A. (2,−3)B. (−2,3)C. (−2,2)D. (−3,2)10. 如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是( )A. 20°B. 30°C. 45°D. 60°11. 如图1是一台手机支架,图2是其侧面示意图,AB,BC可分别绕点A,B转动,测量知BC= 8cm,AB=16cm,当AB,BC转动到∠BAE=60°,∠ABC=50°时,点C到AE的距离约为(精确到0.1cm,参考数据:sin70°≈0.94,√3≈1.73)( )A. 13.8cmB. 7.5cmC. 6.1cmD. 6.3cm12. 在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为雅系点.已知二次函数y=ax2−4x+c(a≠0)的图象上有且只有一个雅系点(−52,−52),且当m≤x≤0时,函数y=ax2−4x+c+14(a≠0)的最小值为−6,最大值为−2,则m的取值范围是( )A. −1≤m≤0B. −72<m≤−2 C. −4≤m≤−2 D. −72≤m<−94二、填空题(本大题共6小题,共24.0分)13. 分解因式:x2+2x+1=______.14. 一个小球在如图所示的地面上自由滚动,并随机地停留在某块方砖上,则小球停留在黑色区域的概率是______.15. 若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是________.16. 已知关于x 的方程x 2+3x −m =0的一个解为−3,则它的另一个解是______.17. 如图,在Rt △ABC 中,∠C =90°,∠A =30°,BC =2.以点C 为圆心,CB 长为半径画弧,分别交AC ,AB 于点D ,E ,则图中阴影部分的面积为 (结果保留π).18. 如图,在菱形ABCD 中,AB =4,∠ABC =60°,∠EAF =60°,点E 在CB 的延长线上,点F 在DC 的延长线上,下列结论:①BE =CF ;②∠EAB =∠CEF ;③△ABE ∽△EFC ;④若∠BAE =15°,则点F 到BC 的距离为3−√3,其中正确的结论序号是______.(只填序号) 三、解答题(本大题共9小题,共78.0分。

初中数学二次函数模块考试卷+答案详解(试卷版)

初中数学二次函数模块考试卷+答案详解(试卷版)

初中数学二次函数模块考试卷+答案详解(试卷版)总分100分,考试时间90分钟一、选择题(本大题共10小题,共30.0分)1.抛物线y=−2x2−4x−5的顶点坐标是()A. (1,3)B. (−1,3)C. (1,−3)D. (−1,−3)2.点P1(−1,y1),P2(3,y2),P3(5,y3)均在二次函数y=−x2+2x+c的图象上,则y1,y2,y3的大小关系是()A. y3>y2>y1B. y3>y1=y2C. y1>y2>y3D. y1=y2>y33.若二次函数y=(x+1)(x−m)的图象的对称轴在y轴的右侧,则实数m的取值范围是()A. m<−1B. −1<m<0C. 0<m<1D. m>14.若抛物线y=x2−2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A.y=(x−2)2+3B. y=(x−2)2+5C. y=x2−1D. y=x2+45.若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2−ax()A.有最大值a4 B. 有最大值−a4C. 有最小值a4D. 有最小值−a46.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度ℎ(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是线t=9211m.其中正确结论的个数是()A. 1B. 2C. 3D. 47.在同一坐标系中一次函数y=ax−b和二次函数y=ax2+bx+c的图象可能为()A. B. C. D.8.二次函数y=ax2+bx+c的y与x的部分对应值如表:则下列判断中正确的是()A.抛物线开口向上B. y最大值为4C. 当x>1时,y随著x的增大而减小D. 当0<x<2时,y>29.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a−b+c>0;②3a+b=0;③b2=4a(c−n);④一元二次方程ax2+bx+c=n−1有两个互异实根.其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个10.在边长为2的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF//AC,分别交正方形的两条边于点E,F.设BP=x,△BEF的面积为y,则能反映y与x之间关系的图象为()A. B. C. D.二、填空题(本大题共6小题,共18.0分)11.将二次函数y=x2−2x+3写成y=a(x−ℎ)2+k的形式为______.12.若二次函数y=x2−4x+n的图象与x轴只有一个公共点,则实数n=______.13.已知二次函数y=(a−1)x2+3x+a(a−1)的图象过原点,则a的值为______ .14.已知一个二次函数的图象开口向上,顶点坐标为(0,−1),那么这个二次函数的解析式可以是______ .(只需写一个)15.若函数y=(m−2)x|m|+5x+1是关于x的二次函数,则m的值为______ .16.在如图所示的平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y=x2,当水位上涨1m时,水面宽CD为2√6m,则桥下的水面宽AB为______m.−13三、解答题(本大题共8小题,共52.0分)17.有一座抛物线型拱桥,在正常水位AB时,桥下水面宽度为20m,拱顶距水面4m;(1)如图所示的在直角坐标系中,求出该抛物线的解析式;(2)设正常水位时,桥下的水深为1.8m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时,就会影响过往船在桥下顺利航行?18.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大⋅(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.19.某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?20.已知关于x的方程x2+(2k−1)x+k2−1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.21.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x−4)2+ℎ,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=−1时,①求h的值;②通过计算判断此球能否过网.24(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为12m的Q处时,乙扣球成功,求a的值.522.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价−成本)×销量)(1)求y1与y2的函数表达式;(2)求每天的销售利润W与x的函数关系表达式;(3)销售这种文化衫的第多少天时销售利润最大,最大利润是多少?23.如图,在平面直角坐标系中,抛物线y=−x2+bx+c经过点(0,6),其对称轴.在x轴上方作平行于x轴的直线l与抛物线交于A、B两点(点A 为直线x=32在对称轴的右侧),过点A、B作x轴的垂线,垂足分别为D、C.设A点的横坐标为m.(1)求此抛物线所对应的函数关系式.(2)当m为何值时,矩形ABCD为正方形.(3)当m为何值时,矩形ABCD的周长最大,并求出这个最大值.x+c与x轴交于A,B两点,与y轴交于丁C,24.如图,已知抛物线y=ax2+85x−4与x轴交于点D,点P是抛物线y=且A(2,0),C(0,−4),直线l:y=−12ax2+8x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.5(1)试求该抛物线表达式;(2)如图(1),当点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),过点P作PH⊥y轴,垂足为H,连接AC.①求证:△ACD是直角三角形;②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ACD相似?答案解析一、选择题(本大题共10小题,共30.0分)25.抛物线y=−2x2−4x−5的顶点坐标是()A. (1,3)B. (−1,3)C. (1,−3)D. (−1,−3)【答案】D=−1,【解析】解:x=−−42×(−2)把x=−1代入得:y=−2+4−5=−3.则顶点的坐标是(−1,−3).故选D.利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.26.点P1(−1,y1),P2(3,y2),P3(5,y3)均在二次函数y=−x2+2x+c的图象上,则y1,y2,y3的大小关系是()A. y3>y2>y1B. y3>y1=y2C. y1>y2>y3D.y1=y2>y3【答案】D【解析】解:∵y=−x2+2x+c,∴对称轴为x=1,P2(3,y2),P3(5,y3)在对称轴的右侧,y随x的增大而减小,∵3<5,∴y2>y3,根据二次函数图象的对称性可知,P1(−1,y1)与(3,y1)关于对称轴对称,故y1=y2>y3,故选:D.根据函数解析式的特点,其对称轴为x=1,图象开口向下,在对称轴的右侧,y 随x的增大而减小,据二次函数图象的对称性可知,P1(−1,y1)与(3,y1)关于对称轴对称,可判断y1=y2>y3.本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.27.若二次函数y=(x+1)(x−m)的图象的对称轴在y轴的右侧,则实数m的取值范围是()A. m<−1B. −1<m<0C. 0<m<1D. m>1【答案】D【解析】解:∵令y=0,即(x+1)(x−m)=0,则x=−1或x=m,∴二次函数y=(x+1)(x−m)的图象与x轴的交点为(−1,0)、(m,0),∴二次函数的对称轴x=−1+m,2∵函数图象的对称轴在y轴的右侧,>0,∴−1+m2解得m>1.故选D.先令(x+1)(x−m)=0求出x的值即可得出二次函数与x轴的交点坐标,再根据抛物线的对称轴在y轴的右侧即可得到关于m的不等式,求出m的取值范围即可.本题考查的是抛物线与x轴的交点问题,先根据函数的解析式得出二次函数的图象与x轴的交点是解答此题的关键.28.若抛物线y=x2−2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A. y=(x−2)2+3B. y=(x−2)2+5C. y=x2−1D.y=x2+4【答案】C【解析】【分析】本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.解题时根据抛物线的平移规律即可解决问题.【解答】解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移一个单位,再向下平移3个单位,∵y=(x−1)2+2,∴原抛物线图象的解析式应变为y=(x−1+1)2+2−3=x2−1,故答案为C.29.若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2−ax()A. 有最大值a4B. 有最大值−a4C. 有最小值a4D. 有最小值−a4【答案】B【解析】解:∵一次函数y=(a+1)x+a的图象过第一、三、四象限,∴a+1>0且a<0,∴−1<a<0,∴二次函数y=ax2−ax由有最大值−a4,故选B.一次函数y=(a+1)x+a的图象过第一、三、四象限,得到−1<a<0,于是得到结论.本题考查了二次函数的最值,一次函数的性质,熟练掌握一次函数的性质是解题的关键.30.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度ℎ(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=9;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是211m.其中正确结论的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】解:由题意,抛物线的解析式为ℎ=at(t−9),把(1,8)代入可得a=−1,∴ℎ=−t2+9t=−(t−4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,ℎ=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,ℎ=11.25,故④错误.∴正确的有②③,故选:B.由题意,抛物线经过(0,0),(9,0),所以可以假设抛物线的解析式为ℎ=at(t−9),把(1,8)代入可得a=−1,可得ℎ=−t2+9t=−(t−4.5)2+20.25,由此即可一一判断.本题考查二次函数的应用、求出抛物线的解析式是解题的关键,属于中考常考题型.31.在同一坐标系中一次函数y=ax−b和二次函数y=ax2+bx+c的图象可能为()A. B. C. D.【答案】C>0,得b<0,由直线可知,【解析】解:A、由抛物线可知,a>0,x=−b2aa<0,b>0,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;>0,得b>0,由直线可知,a<0,b>0,C、由抛物线可知,a<0,x=−b2a故本选项正确;D、由抛物线可知,a<0,由直线可知,a>0,故本选项错误.故选:C.本题可先由二次函数y=ax2+bx+c图象得到字母系数的正负,再与一次函数y=ax−b的图象相比较看是否一致.本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.32.二次函数y=ax2+bx+c的y与x的部分对应值如表:则下列判断中正确的是()A. 抛物线开口向上B. y最大值为4C. 当x>1时,y随著x的增大而减小D. 当0<x<2时,y>2【答案】D【解析】解;A、由图表中数据可得出:x=1.5时,y有最大值,故此函数开口向下,故此选项错误;B、当x=1时,y=4,低于顶点坐标,故此选项错误;C、当x>1.5时,y随著x的增大而减小,故此选项错误;D、当0<x<2时,y>2,此选项正确.故选:D.利用表格中数据得出抛物线对称轴以及对应坐标轴交点,进而根据图表内容找到方程ax2+bx+c=0即y=0时x的值取值范围,得出答案即可.本题考查了二次函数的性质,解答该题时,充分利用了二次函数图象的对称性得出是解题关键.33.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a−b+c>0;②3a+b=0;③b2=4a(c−n);④一元二次方程ax2+bx+c=n−1有两个互异实根.其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(−2,0)和(−1,0)之间.∴当x=−1时,y>0,即a−b+c>0,所以①正确;=1,即b=−2a,∵抛物线的对称轴为直线x=−b2a∴3a+b=3a−2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),=n,∴4ac−b24a∴b2=4ac−4an=4a(c−n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n−1有2个公共点,∴一元二次方程ax2+bx+c=n−1有两个不相等的实数根,所以④正确.故选:C.利用抛物线的对称性得到抛物线与x轴的另一个交点在点(−2,0)和(−1,0)之间,则当x=−1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x= =1,即b=−2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得−b2a=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛到4ac−b24a物线与直线y=n−1有2个公共点,于是可对④进行判断.本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由△决定:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.34.在边长为2的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF//AC,分别交正方形的两条边于点E,F.设BP=x,△BEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.【答案】C【解析】解:∵四边形ABCD是正方形,∴AC=BD=2√2,OB=OD=12BD=√2,①当P在OB上时,即0≤x≤√2,∵EF//AC,∴△BEF∽△BAC,∴EF:AC=BP:OB,∴EF=2BP=2x,∴y=12EF⋅BP=12×2x×x=x2;②当x在OD上时,即√2<x≤2√2,∵EF//AC,∴△DEF∽△DAC,∴EF:AC=DP:OD,即EF:2√2=(2√2−x):√2,∴EF=2(2√2−x),∴y=12EF⋅BP=12×2(2√2−x)×x=−x2+√2x,这是一个二次函数,根据二次函数的性质可知:二次函数的图象是一条抛物线,开口方向决定,二次项的系数.当系数>0时,抛物线开口向上;系数<0时,开口向下.所以由此图我们会发现,EF的取值,最大是AC.当在AC的左边时,EF=2BP;所以此抛物线开口向上,当在AC的右边时,抛物线就开口向下了.故选C.分析,EF与X的关系,他们的关系分两种情况,依情况来判断抛物线的开口方向.此题的关键是利用三角形的面积公式列出二次函数解析式解决问题.二、填空题(本大题共6小题,共18.0分)35.将二次函数y=x2−2x+3写成y=a(x−ℎ)2+k的形式为______.【答案】y=(x−1)2+2【解析】解:y=x2−2x+3=(x2−2x+1)−1+3=(x−1)2+2,即y=(x−1)2+2.故答案为y=(x−1)2+2.由于二次项系数是1,所以利用配方法可直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.本题考查了二次函数解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).36.若二次函数y=x2−4x+n的图象与x轴只有一个公共点,则实数n=______.【答案】4【解析】解:y=x2−4x+n中,a=1,b=−4,c=n,b2−4ac=16−4n=0,解得n=4.故答案是:4.二次函数y=x2−4x+n的图象与x轴只有一个公共点,则b2−4ac=0,据此即可求得.本题考查了抛物线与x轴的交点,二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2−4ac决定抛物线与x轴的交点个数.△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.37.已知二次函数y=(a−1)x2+3x+a(a−1)的图象过原点,则a的值为______ .【答案】0【解析】解:把(0,0)代入y=(a−1)x2+3x+a(a−1),得a(a−1)=0,解得a=0或1,∵a−1≠0,∴a≠1,∴a=0,故答案为0.直接把原点坐标代入二次函数解析式得到关于a的方程,然后解方程,还要使a−1≠0即可.本题考查了二次函数图象上点的坐标特征:二次函数y=ax2+bx+c(a≠0)的图象上点的坐标满足其解析式.38.已知一个二次函数的图象开口向上,顶点坐标为(0,−1),那么这个二次函数的解析式可以是______ .(只需写一个)【答案】y=2x²−1【解析】解:∵抛物线的顶点坐标为(0,−1),∴该抛武线的解析式为y=ax²−1又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x²−1,故答案为:y=2x²−1.根据顶点坐标知其解析式满足y=ax²−1,由开口向上知a>0,据此写出一个即可.本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.39.若函数y=(m−2)x|m|+5x+1是关于x的二次函数,则m的值为______ .【答案】−2【解析】解:由题意得:|m|=2,且m−2≠0,解得:m=−2,故答案为:−2.根据形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数可得:|m|=2,且m−2≠0,再解即可.此题主要考查了二次函数定义,关键是掌握二次函数的一般形式y=ax2+bx+ c(a、b、c是常数,a≠0).40.在如图所示的平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y=x2,当水位上涨1m时,水面宽CD为2√6m,则桥下的水面宽AB为______m.−13【答案】6【解析】解:∵水面宽CD为2√6m,y轴是对称轴,∴D点的横坐标为√6,×(√6)2=−2,∴D的纵坐标为y=−13∵水位上涨1m时,水面宽CD为2√6m,∴B的纵坐标为−2−1=−3,x2得:把x=−3代入解析式y=−13×(−3)2=−3,∴B的横坐标为y=−13∴桥下的水面宽AB为3×2=6米,故答案为:6米.由二次函数图象的对称性可知D点的横坐标为√6,把x=√6代入二次函数关系式x2,可以求出对应的纵坐标,进而求出点B的纵坐标,再把B的纵坐标y=−13x2,即可求出B的横坐标,即AB长度的一半.代入y=−13本题考查点二次函数的实际应用,解题的关键是要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.三、解答题(本大题共8小题,共52.0分)41.有一座抛物线型拱桥,在正常水位AB时,桥下水面宽度为20m,拱顶距水面4m;(1)如图所示的在直角坐标系中,求出该抛物线的解析式;(2)设正常水位时,桥下的水深为1.8m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时,就会影响过往船在桥下顺利航行?【答案】解:(1)设该抛物线的解析式是y=ax2,结合图象,把(10,−4)代入,得100a=−4,a=−1.25x2.则该抛物线的解析式是y=−125×81=−3.24,(2)当x=9时,则有y=−1254+1.8−3.24=2.56(米).所以水深超过2.56米时就会影响过往船只在桥下的顺利航行.【解析】(1)设该抛物线的解析式是y=ax2,结合图象,只需把(10,−4)代入求解;(2)根据(1)中求得的函数解析式,把x=9代入求得y的值,再进一步求得水深超过多少米时就会影响过往船只在桥下的顺利航行.此题考查了二次函数在实际问题中的应用,能够熟练运用待定系数法求得二次函数的解析式是解题的关键.42.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大⊕(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.【答案】解:(1)∵y=x⋅50−x2=−12(x−25)2+6252,∴当x=25时,占地面积最大,即饲养室长x为25m时,占地面积y最大;(2)∵y=x⋅50−(x−2)2=−12(x−26)2+338,∴当x=26时,占地面积最大,即饲养室长x为26m时,占地面积y最大;∵26−25=1≠2,∴小敏的说法不正确.【解析】(1)根据题意用含x的代数式表示出饲养室的宽,由矩形的面积=长×宽计算,再根据二次函数的性质分析即可;(2)根据题意用含x的代数式表示出饲养室的宽,由矩形的面积=长×宽计算,再根据二次函数的性质分析即可.此题主要考查了由实际问题列二次函数关系式以及二次函数的最值问题,同时也利用了矩形的性质,解题时首先正确了解题意,然后根据题意列出方程即可解决问题.43.某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?【答案】解:(1)由题意得:y=(40+x−30)(180−5x)=−5x2+130x+1800(0≤x≤10)(2)对称轴:x=−b2a =−130−5×2=13,∵13>10,a=−5<0,∴在对称轴左侧,y随x增大而增大,∴当x=10时,y最大值=−5×102+130×10+1800=2600,∴售价=40+10=50元答:当售价为50元时,可获得最大利润2600元.(3)由题意得:−5x2+130x+1800=2145解之得:x=3或23(不符合题意,舍去)∴售价=40+3=43元.答:售价为43元时,每周利润为2145元.【解析】(1)根据销售利润=每件的利润×销售数量,构建函数关系即可.(2)利用二次函数的性质即可解决问题.(3)列出方程,解方程即可解决问题.本题考查二次函数的应用、最值问题、一元二次方程等知识,解题的关键是搞清楚利润、售价、销售量之间的关系,学会构建二次函数解决最值问题,属于中考常考题型.44.已知关于x的方程x2+(2k−1)x+k2−1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.【答案】解:(1)∵关于x的方程x2+(2k−1)x+k2−1=0有两个实数根x1,x2,∴△=(2k−1)2−4(k2−1)=−4k+5≥0,,解得:k≤54∴实数k的取值范围为k≤5.4(2)∵关于x的方程x2+(2k−1)x+k2−1=0有两个实数根x1,x2,∴x1+x2=1−2k,x1⋅x2=k2−1.∵x12+x22=(x1+x2)2−2x1⋅x2=16+x1⋅x2,∴(1−2k)2−2×(k2−1)=16+(k2−1),即k2−4k−12=0,解得:k=−2或k=6(不符合题意,舍去).∴实数k的值为−2.【解析】(1)根据方程的系数结合根的判别式,即可得出△=−4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x1+x2=1−2k、x1⋅x2=k2−1,将其代入x12+x22= (x1+x2)2−2x1⋅x2=16+x1⋅x2中,解之即可得出k的值.本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=−4k+5≥0;(2)根据根与系数的关系结合x12+x22=16+x1x2,找出关于k的一元二次方程.45.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x−4)2+ℎ,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=−124时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为125m的Q处时,乙扣球成功,求a的值.【答案】解:(1)①当a=−124时,y=−124(x−4)2+ℎ,将点P(0,1)代入,得:−124×16+ℎ=1,解得:ℎ=53;②把x =5代入y =−124(x −4)2+53,得:y =−124×(5−4)2+53=1.625, ∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,125)代入y =a(x −4)2+ℎ,得:{16a +ℎ=19a +ℎ=125, 解得:{a =−15ℎ=215, ∴a =−15. 【解析】(1)①将点P(0,1)代入y =−124(x −4)2+ℎ即可求得h ;②求出x =5时,y 的值,与1.55比较即可得出判断;(2)将(0,1)、(7,125)代入y =a(x −4)2+ℎ代入即可求得a 、h .本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式是解题的关键.46.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x(1≤x <90)天的函数图象如图所示(销售利润=(售价−成本)×销量)(1)求y 1与y 2的函数表达式;(2)求每天的销售利润W 与x 的函数关系表达式;(3)销售这种文化衫的第多少天时销售利润最大,最大利润是多少?【答案】解:(1)当1≤x <50时,设y 1=kx +b ,将(1,41)、(50,90)代入得:{k +b =4150k +b =90, 解得:{k =1b =40, ∴y 1=x +40,当50≤x <90时,y 1=90,∴y 1与x 的函数关系式为:y 1={x +40(1≤x <50)90(50≤x <90); 设y 2与x 的函数关系式为:y 2=mx +n(1≤x <90),将(50,100)、(90,20)代入得:{50m +n =10090m +n =20, 解得:{m =−2n =200, ∴y 2与x 的函数关系式为:y 2=−2x +200(1≤x <90);(2)由(1)知,当1≤x <50时,W =(x +40−30)(−2x +200)=−2x 2+180x +2000;当50≤x <90时,W =(90−30)(−2x +200)=−120x +12000,综上,W ={−2x 2+180x +2000(1≤x <50)−120x +12000(50≤x <90); (3)当1≤x <50时,W =−2x 2+180x +2000=−2(x −45)2+6050, ∴当x =45时,W 取得最大值,最大值为6050元;当50≤x <90时,W =−120x +12000,∵−120<0,W 随x 的增大而减小,∴当x =50时,W 取得最大值,最大值为6000元.综上,当x=45时,W取得最大值6050元,答:销售这种文化衫的第45天销售利润最大,最大利润是6050元.【解析】本题考查了待定系数法求一次函数解析式、二次函数的应用,由自变量的范围分情况依据相等关系建立二次函数模型是解题的关键.(1)待定系数法分别求解可得;(2)根据:销售利润=(售价−成本)×销量,分1≤x<50、50≤x<90两种情况分别列函数关系式可得;(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.47.如图,在平面直角坐标系中,抛物线y=−x2+bx+c经过点(0,6),其对称轴为直线x=32.在x轴上方作平行于x轴的直线l与抛物线交于A、B两点(点A 在对称轴的右侧),过点A、B作x轴的垂线,垂足分别为D、C.设A点的横坐标为m.(1)求此抛物线所对应的函数关系式.(2)当m为何值时,矩形ABCD为正方形.(3)当m为何值时,矩形ABCD的周长最大,并求出这个最大值.【答案】解:(1)∵对称轴为直线x=32,∴−b2×(−1)=32,∴b =3.把(0,6)代入y =−x 2+3x +c 得, 6=−0+3×0+c , 解得c =6.∴此抛物线所对应的函数关系式为y =−x 2+3x +6. (2)根据题意,得:AB =2(m −32)=2m −3, AD =−m 2+3m +6. ∵ABCD 为正方形,AB =AD . ∴2m −3=−m 2+3m +6, 解得m =1±√372.∵点A 在对称轴的右侧, ∴m >32.∴m =1−√372(舍去).∴m =1+√372.(3)设矩形ABCD 的周长为C .C =2[(2m −3)+(−m 2+3m +6)]=−2(m −52)2+372.∴当m =52时,矩形ABCD 的周长最大为372.【解析】本题考查了待定系数法求二次函数的解析式、配方法确定二次函数的顶点坐标及最值等知识,难度中等,能够考查同学们应用知识的能力. (1)首先根据对称轴求得b 值,然后代入点(0,6)求得c 值即可;(2)①首先用含m 的代数式表示出线段AB 、AD 的长,然后利用正方形ABCD 的AB =CD 得到有关m 的等式,求得m 的值即可;(3)表示出正方形的周长,然后利用配方法求最值即可.48.如图,已知抛物线y =ax 2+85x +c 与x 轴交于A ,B 两点,与y 轴交于丁C ,且A(2,0),C(0,−4),直线l :y =−12x −4与x 轴交于点D ,点P 是抛物线y =ax 2+85x +c 上的一动点,过点P 作PE ⊥x 轴,垂足为E ,交直线l 于点F .(1)试求该抛物线表达式;(2)如图(1),当点P 在第三象限,四边形PCOF 是平行四边形,求P 点的坐标; (3)如图(2),过点P 作PH ⊥y 轴,垂足为H ,连接AC .①求证:△ACD 是直角三角形;②试问当P 点横坐标为何值时,使得以点P 、C 、H 为顶点的三角形与△ACD 相似?【答案】解:(1)由题意得:{4a +85×2+c =0c =−4,解得:{a =15c =−4, ∴抛物线的表达式为y =15x 2+85x −4. (2)设P(m,15m 2+85m −4),则F(m,−12m −4).∴PF =(−1m −4)−(1m 2+8m −4)=−1m 2−21m.∵PE ⊥x 轴, ∴PF//OC .∴PF =OC 时,四边形PCOF 是平行四边形. ∴−15m 2−2110m =4,解得:m =−52或m =−8.。

中考经典模块数学试卷答案

中考经典模块数学试卷答案

一、选择题1. 下列各数中,无理数是()A. 2.5B. √3C. 1/2D. π答案:D解析:无理数是指不能表示为两个整数之比的实数,π是一个无限不循环小数,因此是无理数。

2. 已知等腰三角形ABC中,AB=AC,AD是底边BC的中线,则∠BAC的度数是()A. 30°B. 45°C. 60°D. 90°答案:C解析:在等腰三角形中,底边的中线同时也是高,所以∠BAC=∠BAD=∠CAD,由于三角形内角和为180°,所以∠BAC=60°。

3. 若a+b=10,ab=21,则a²+b²的值为()A. 81B. 100C. 121D. 144答案:C解析:由平方差公式得(a+b)² = a² + 2ab + b²,代入已知条件得10² = a² +2×21 + b²,化简得a² + b² = 100 - 42 = 58,但这个结果与选项不符,说明答案中有误。

正确答案应为a² + b² = (a+b)² - 2ab = 10² - 2×21 = 100 - 42 = 58,因此选择C。

4. 若函数f(x) = 2x + 1,则f(-3)的值为()A. -5B. -1C. 1D. 5答案:D解析:将x=-3代入函数f(x) = 2x + 1中,得f(-3) = 2×(-3) + 1 = -6 + 1 = -5,但这个结果与选项不符,说明答案中有误。

正确答案应为 f(-3) = 2×(-3) + 1 = -6 + 1 = -5,因此选择D。

二、填空题1. 若等差数列的首项为2,公差为3,则第10项的值为______。

答案:2 + (10-1)×3 = 2 + 27 = 292. 已知圆的半径为5cm,则其周长为______cm。

2020-2021人教版数学第二册模块综合测评含解析

2020-2021人教版数学第二册模块综合测评含解析

2020-2021学年新教材人教A版数学必修第二册模块综合测评含解析模块综合测评(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z满足(z-1)i=1+i,则z等于()A.-2-i B.-2+iC.2-i D.2+iC[由(z-1)i=1+i,两边同乘以-i,则有z-1=1-i,所以z =2-i.]2.已知向量a与b的夹角为30°,且|a|=1,|2a-b|=1,则|b|等于()A.错误!B.错误!C.错误!D.错误!C[由题意可得a·b=|b|cos 30°=错误!|b|,4a2-4a·b+b2=1,即4-2错误!|b|+b2=1,由此求得|b|=错误!,故选C.]3.设z=11+i+i,则|z|等于()A.12B.错误!C.错误!D.2B[∵z=错误!+i=错误!+i=错误!+i=错误!+错误!i,∴|z|=错误!=错误!.]4.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是()A.45 B.50C.55 D.60B[由频率分布直方图,知低于60分的频率为(0.01+0.005)×20=0.3。

∴该班学生人数n=错误!=50。

]5.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为()A.1 cm B.2 cmC.3 cm D.错误!cmB[S=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=表2(cm).]6.已知向量a=(cos θ-2,sin θ),其中θ∈R,则|a|的最小值为()A.1 B.2 C. 5 D.3A[因为a=(cos θ-2,sin θ),所以|a|=错误!=错误!=错误!,因为θ∈R,所以-1≤cos θ≤1,故|a|的最小值为错误!=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目1
正确
获得1分中的1分
标记题目
题干
推理一般包括()。

选择一项:
a. 类比推理和演绎推理
b. 合情推理和演绎推理
c. 逻辑推理和类比推理
d. 逻辑推理和演绎推理
反馈
Your answer is correct.
题目2
正确
获得1分中的1分
标记题目
题干
几何推理与证明是数学课程中()的重要内容。

选择一项:
a. 代数运算
b. 方程与不等式
c. 概念与定理
d. 图形与证明
反馈
Your answer is correct.
题目3
正确
获得1分中的1分
标记题目
题干
对初中学生而言,空间观念主要包括()。

选择一项:
a. 能从复杂图形中分解出基本图形
b. 能利用图形直观地描述问题,利用直观进行思考
c. 其余选项都正确
d. 能由实物形状想象出几何图形,由几何图形想象出实物形状反馈
Your answer is correct.
题目4
正确
获得1分中的1分
标记题目
题干
课程标准中提到数学能力不包括的是()。

选择一项:
a. 抽象
b. 模型
c. 推理
d. 归纳
反馈
Your answer is correct.
题目5
正确
获得1分中的1分
标记题目
题干
在平面内,将一个图形绕一定点沿某个方向转动一个角度,得到另一个图形,这样的图形变换叫作()。

选择一项:
a. 平移
b. 旋转
c. 对称
d. 相似
反馈
Your answer is correct.
题目6
正确
获得1分中的1分
标记题目
题干
“图形与几何”的课程内容,是以发展学生的三个方面展开的,下列不正确的是()。

选择一项:
a. 空间观念
b. 数据分析
c. 几何直观
d. 推理能力
反馈
Your answer is correct.
题目7
正确
获得1分中的1分
标记题目
在几何推理学习过程中,教师要特别关注哪几方面()
选择一项:
a. 发展学生的合情推理能力
b. 发展学生逻辑论证能力
c. 其余选项都正确
d. 引导学生体会证明的必要性
反馈
Your answer is correct.
题目8
正确
获得1分中的1分
标记题目
题干
下列有关空间观念的理解。

恰当的是()。

选择一项:
a. 指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体
b. 想象出物体的方位和相互之间的位置关系
c. 其余选项都正确
d. 描述图形的运动和变化
反馈
Your answer is correct.
正确
获得1分中的1分
标记题目
题干
中学阶段为培养学生独立地研究问题、获得知识、发展各种能力,教学中应多选用()。

选择一项:
a. 直观的方法
b. 活动的方法
c. 讲授的方法
d. 探究的方法
反馈
Your answer is correct.
题目10
正确
获得1分中的1分
标记题目
题干
几何作图的分类有()。

选择一项:
a. 辅助图和结果图
b. 一般图和特例图
c. 准确图和示意图
d. 其余选项都正确
反馈
Your answer is correct.
题目11
正确
获得1分中的1分
标记题目
题干
关于培养学生的几何直观,下列说法不恰当的是()。

选择一项:
a. 重视图形的画法
b. 重视变换——让图形动起来
c. 在教学中逐步养成画图的习惯
d. 学会从“数”与“形”两个角度相结合认识数学
反馈
Your answer is correct.
题目12
正确
获得1分中的1分
标记题目
题干
培养学生的几何直观的作用()。

选择一项:
a. 有助于发现、描述问题
b. 其余选项都正确
c. 有助于理解和记忆得到的结果
d. 有助于探索、发现解决问题的思路
反馈
Your answer is correct.
题目13
正确
获得1分中的1分
标记题目
题干
学生在几何推理与证明的学习中不能很好地利用迁移策略主要表现在哪几方面()选择一项:
a. 稳定性差
b. 其余选项都正确
c. 可辨别性差
d. 可利用性差
反馈
Your answer is correct.
题目14
正确
获得1分中的1分
标记题目题干
分析策略包括()
选择一项:
a. 逆向分析策略
b. 顺向分析策略
c. 逆向和顺向分析策略
d. 以上都不是
反馈
Your answer is correct.
题目15
正确
获得1分中的1分
标记题目题干
下列属于几何教学语言的是()
选择一项:
a. 文字语言
b. 图形语言
c. 符号语言
d. 其余选项都正确
反馈
Your answer is correct.
题目16
正确
获得1分中的1分
标记题目
题干
课程的实施要注意处理好如下的关系,下列不正确的是 ( )。

选择一项:
a. 归纳与演绎
b. 直接经验与间接经验
c. 过程与结果
d. 直观与抽象
反馈
Your answer is correct.
题目17
正确
获得1分中的1分
标记题目
题干
“教必有法”,但“教无定法”讲的是教学方法的运用必须()。

选择一项:
a. 做到原则性与灵活性相结合
b. 坚持以启发式为指导思想
c. 做到最佳选择
d. 做到优化组合
反馈
Your answer is correct.
题目18
正确
获得1分中的1分
标记题目
题干
如何在几何推理与证明中训练发散性思维?()
选择一项:
a. 非常规证法的训练
b. 其余选项都正确
c. 一题多变的训练
d. 一题多证的训练
反馈
Your answer is correct.
题目19
正确
获得1分中的1分
标记题目
题干
图形的变换最基本主要包括三个,下列不恰当的是()。

选择一项:
a. 旋转
b. 相似
c. 对称
d. 平移
反馈
Your answer is correct.
题目20
正确
获得1分中的1分
标记题目
题干
标识策略的运用包含哪几步()
选择一项:
a. 标记
b. 引申
c. 其余选项都正确
d. 审题
反馈
Your answer is correct.
结束回顾
跳过测验导航
测验导航
题目1此页题目2此页题目3此页题目4此页题目5此页题目6此页题目7此页题目8此页题目9此页题目10此页题目11此页题目12此页题目13此页题目14此页题目15此页题目16此页题目17此页题目18此页题目19此页题目20此页
结束回顾
您以Y02C060009高洪霞登录 (退。

相关文档
最新文档