2020-2020学年度聿怀初级中学一模数学试卷参考答案
汕头市聿怀初级中学数学第一次中考模拟试题含答案
.汕头市聿怀初级中学2015-2016学年度下学期九年级数学科第一次模拟考试问卷命题人:林少锐(考试时间:100分钟,总分:120分)一、选择题:(本大题共10个小题,每小题3分,共30分) 1. 计算-4×(-3)的结果是( ▲ ).A. -12B. 12C. 7D. -72.下列运算正确..的是( ▲ ). A .633a a a =+ B .12)1(2+=+a a C .222)(b a ab = D .236a a a =÷ 3.甲、乙、丙、丁四名选手参加200米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到第1道的概率是( ▲ ).A .0B .41C .21D .1 4.方程532=-x 解是( ▲ ).A . 4B . 5C . 3D .6 5.下列标志中,可以看作是轴对称图形.....的是( ▲ ). A . B . C . D .6.如图,菱形ABCD 中,对角线AC 、BC 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为32,则OH =( ▲ ).A .8B .6C .3D .4第6题 第9题 第10题 7.一次函数12--=x y 的图象不经过...下列哪个象限( ▲ ). A . 第一象限 B . 第二象限C . 第三象限D . 第四象限8.不等式组⎩⎨⎧≥+-01012x x >的解集是( ▲ ).A . x >21B .﹣1≤x<21C . x <21D .x≥﹣19.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心, 把△CDB 顺时针旋转90°,则旋转后点D 的对应点D ′的坐标是( ▲ ).A .(2,10)B .(﹣2,0)C .(2,10)或(﹣2,0)D .(10,2)或(﹣2,0)10. 如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A ,B 在围成的正方体上的距离是( ▲ ).A .3B .2C .1D . 0二、填空题: (本大题共6小题,每小题4分,共24分) 11.计算:12121++++m mm m =▲.12.二次根式2-x 中x 的取值范围是是▲.13.如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠1等于▲.(填写度数)第13题 第14题 第15题14.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角板的斜边AB 上,BC 与DE 交于点M .如果∠ADF =100°,那么∠BMD 为▲.(填写度数)15.已知二次函数)0(2≠++=a c bx ax y 的图象如图,且关于x 的一元二次方程02=-++m c bx ax没有实数根,有下列结论:①042>ac b -;②0>abc ;③2>m .其中正确结论的个数是▲个. 16.在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位…依此类推,第n 步的走法是:当n 能被3整除时,则向右走1个单位;当n 被3除,余数为1时,则向上走1个单位;当n 被3除,余数为2时,则向上走2个单位;当走完第2015步时,棋子所处位置的坐标是___▲_____.三、解答题:(本大题共3个小题,每小题6分,共18分)解答时每小题必须给出必要的演算过程或推理步骤. 17.(6分)计算:3330tan )31()2015(2--⨯︒++--π18.(6分)先化简,再求值:)1)(1()2(2a a a +-++,其中43-=a .19.(6分)如图,点B 在射线AE 上,∠1=∠2,∠3=∠4.求证:AC=AD .四、解答题:(本大题共3个小题,每小题7分,共21分)解答时每小题必须给出必要的演算过程或推理步骤.4321B DEA.20.(7分) △ABC 中,∠ABC =80°, ∠BAC =40°,AB 的垂直平分线分别与AC 、AB 交于点D 、E.(1)尺规作图:在图中作出AB 的垂直平分线DE. (2)连接BD ,证明△ABC∽△BDC .21.(7分) 在一个不透明的盒子里,装有三个分别写有数字-1、0、1的乒乓球(形状、大小一样),先从盒子里随机取出一个乒乓球,记下数字后放回..盒子,摇匀后再随机取出一个乒乓球,记下数字. (1)请用树状图或列表的方法求两次取出乒乓球上的数字相同的概率;(2)求两次取出乒乓球上的数字之积等于0的概率.22.(7分)在2014年6月23日第十届保护韩江母亲河徒步节上,如图所示,某同学为了测得一段南北流向的河段的宽,在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31°的方向上,沿河岸向北前行40米到达B 处,测得C 在B 北偏西45°的方向上,请你根据以上数据,求这段河段的宽度.(参考数值:tan 31°≈53)五、解答题:(本大题共3个小题,每小题9分,共27分)解答时每小题必须给出必要的演算过程或推理步骤.23.(9分))在荔枝种植基地有A 、B 两个品种的树苗出售,已知A 种比B 种每株多20元,买1株A 种树苗和2株B 种树苗共需200元.(1)问A 、B 两种树苗每株分别是多少元?(2)为扩大种植,某农户准备购买A 、B 两种树苗共36株,且A 种树苗数量不少于B 种数量的一半,请求出费用最省的购买方案.24. (9分)) 已知平行四边形ABCD 中,对角线AC 和BD 相交于点O ,AC=10, BD=8. (1)若AC ⊥BD ,试求四边形ABCD 的面积;(2)若AC 与BD 的夹角∠AOD=60°,求四边形ABCD 的面积;(3)试讨论:若把题目中“平行四边形ABCD ”改为“四边形ABCD ”,且∠AOD=θ,AC=a ,BD=b ,试求四边形ABCD 的面积(用含θ,a ,b 的代数式表示).25.(9分) 如图甲,四边形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,顶点在B 点的抛物线交x轴于点A 、D ,交y 轴于点E ,连结AB 、AE 、BE .已知tan ∠CBE =13,A (3,0),D (-1,0),E (0,3). (1)求抛物线的解析式与顶点B 的坐标; (2)求证:CB 是△ABE 外接圆的切线;(3)试探究坐标轴上是否存在一点P ,使以D 、E 、P 为顶点的三角形与△ABE 相似,若存在,直接写出....点 P 的坐标;若不存在,请说明理由;(4)设△AOE 沿x 轴正方向平移t 个单位长度(0<t ≤3)时,△AOE 与△ABE 重叠部分的面积为s ,求s 与 t 之间的函数关系式,并指出t 的取值范围.汕头市聿怀初级中学2015-2016学年度 九年级数学科第一次模拟考试试卷参考答案选择题(每题3分,共30分)BCBADDAABC图甲AED C By x O 图乙(备用图)A ED C By xO.填空题(每题4分,共24分)11. 1 ; 12. x ≥2 ;13. 35° ;14. 85°;15. 2 ;16. (671,2016) 解答题:17.(本题6分)解:原式=333391-⨯++………4分 =10………6分18. (本题6分)解:原式= 22144a a a -+++………2分= 54+a ………4分当43-=a 时,原式 = 5)43(4+-⨯ = 2 ………6分19. (本题6分)证明:∵∠3、∠4分别是△ABC 和△ABD 的外角 ∴∠3=∠1+∠C ,∠4=∠2+∠D又∵∠1=∠2,∠3=∠4 ∴∠C = ∠D ………3分 又∵AB=AB ,∠1=∠2∴△ABC ≌△ABD (AAS ) ………5分 ∴AC=AD. ………6分20. (本题7分)解:(1)如图,直线DE 为所求. ………3分(2)∵DE 是AB 的垂直平分线∴BD=AD∴∠ABD=∠A=40°∵∠BDC 是△ABD 的外角 ∴∠BDC=∠A+∠ABD=80° ∴∠BDC=∠ABC ∵∠C=∠C∴△ABC ∽△BDC ………7分21. (本题7分)解: (1)树状图:由图可知,共产生9种等可能结果, ∵两次数字相同的有3种. ∴P(两次数字相同)=3193=………5分 (2)(数字之积为0有5种情况,∴P(两数之积为0) 95=………7分22. (本题7分)解:过点C 作CD ⊥AB 于D , ………1分 由题意 31=∠DAC , 45=∠DBC ,设CD=x 米, 则BD = CD = x 米,∴AD =AB+BD =(40+x )米, ∵在Rt ACD ∆中,tan DAC ∠=ADCD,∴5340=+x x ,解得x = 60.………6分答:这段河段的宽度约为60米. ………7分23. (本题9分)解:(1)设A 种树苗每株x元,则B 种树苗每株)20(-x 元,依题意得:200)20(2=-+x x 解得:80=x∴6020=-x答:A 种树苗每株80元,则B 种树苗每株60元. ………4分(2)设购买A 种树苗m 株,费用为y 元,则)36(6080m m y -+=即:216020+=m y由)(m m -≥3621得:12≥m∵20>0,∴y 随m 的增大而增大∴当12=m 时,y 有最小值为:240021601220=+⨯=y∴费用最省的方案是:购买A 种树苗12株,B 种树苗24株. ………9分24. (本题9分) 解:(1)∵AC ⊥BD∴四边形ABCD 的面积为:BD AC ⨯⨯21=81021⨯⨯=40………2分(2)过点A 分别作AE ⊥BD 于E………3分∵四边形ABCD 为平行四边形4321B D A C ED.∴521===AC CO AO ,421===BD DO BO ∵在Rt △AOE 中,AOAE=∠AOE sin∴23523560sin 5sin =⨯=︒⨯=∠⋅=AOE AO AE ………4分 ∴3523542121=⨯⨯=⋅=AE OD S AOD △………5分 ∴四边形ABCD 的面积为:3204AOD ==△S S ………6分(3)如图所示过点A,C 分别作AE ⊥BD ,CF ⊥BD ,垂足分别为E,F………7分在Rt △AOE 中,AOAE=∠AOE sin∴θsin sin ⋅=∠⋅=AO AOE AO AE同理可得:θsin sin ⋅=∠⋅=CO COF CO CF ………8分∴四边形ABCD 的面积为:CF BD 21AE BD 21S CBD ABD ⋅+⋅=+=△△S S)(sin BD 21CO AO +⋅=θ θθsin 21sin 21ab CD BD =⋅⋅=25. (本题9分) 解:(1∵抛物线经过E(0,3)∴)10()30(3+⋅-⋅=a ∴322++-=x x y .∵4)1(2+--=x y ∴顶点B 为(1,4)………2分(2)如图,证明:过点B 作BM ⊥y 于点M ,则M(0,4).在Rt △AOE 中,OA =OE =3,∴∠1=∠2=45°,AE . 在Rt △EMB 中,EM =OM -OE =1=BM ,∴∠MEB =∠MBE =45°,BE . ∴∠BEA =180°-∠1-∠MEB =90°.∴AB 是△ABE 外接圆的直径.………3分∵在Rt △ABE 中,tan ∠BAE =BE AE =13=tan ∠CBE ,∴∠BAE =∠CBE .又∵在Rt △ABE 中,∠BAE +∠3=90°,∴∠CBE +∠3=90°. ∴∠CBA =90°,即CB ⊥AB . ∴CB 是△ABE 外接圆的切线.………4分 (3)P 1(0,0),P 2(9,0),P 3(0,-13).………6分(注:第3小题共2分,对一个或两个得1分,全对得2分)(4)解:设直线AB 的解析式为)0(≠+=k b kx y .则30,4.k b k b +=⎧⎨+=⎩解得2,6.k b =-⎧⎨=⎩∴62+-=x y .过点E 作射线EF ∥x 轴交AB 于点F ,当y =3时,得x =32,∴F(32,3). ①:如图7,当0<t ≤32时,设△AOE 平移到△DNM 的位置,MD 交AB 于点H ,MN 交AE 于点G .则ON =AI =t ,过点H 作LK ⊥x 轴于点K ,交EF 于点L .由△AHI ∽△FHM ,得HLHK FM AI =.即332t HK HK t =--.解得HK =2t .∴S 阴=S △MND -S △GNA -S △HAD =12×3×3-12(3-t)2-12t ·2t =-32t 2+3t .………7分②:如图8,当32<t ≤3时,设△AOE 平移到△PQR 的位置,PQ 交AB 于点I ,交AE 于点V .由△IQA ∽△IPF ,得AQ IQFP IP =.即3332IQ t IQ t -=--.解得IQ =2(3-t). ∴S 阴=S △IQA -S △VQA =12×(3-t)×2(3-t)-12(3-t)2=12(3-t)2=12t 2-3t +92.综上所述:s =22333 0),221933 (3).222t t t t t t ⎧-+<⎪⎪⎨⎪-+<⎪⎩≤≤(………9分 (第4小题每个关系式1分,共2分;取值范围两个都正确1分)备用图2备用图1。
2020中考一模考试《数学卷》附答案解析
2020年中考综合模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________第一部分 选择题(共18分)一、选择题(本大题共有6小题,每小题3分,共18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.-2020的相反数是( ) A .2020B .2020-C .12020D .12020-2.下列计算正确的是( )A .5B 2C .=D =3.如图所示的几何体,从正面看到的平面图形是( )A .B .C .D .4.下列说法正确的是( )A .“经过有交通信号的路口遇到红灯”是必然事件B .已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C .投掷一枚硬币正面朝上是随机事件D .明天太阳从东方升起是随机事件5.下列方程中,有两个不相等的实数根的是( ) A .2542x x -=- B .2(1)(51)5x x x --= C .24510x x -+=D .2(4)0x -=6.一次函数23y x =-与y 轴的交点坐标为( ) A .(0,3)-B .(0,3)C .3(2,0)D .3(2-,0)第二部分 非选择题(共132分)二、填空题(本大题共有10小题,每小题3分,共30分,请把答案直接填写在答题卡相应.....位置..上)7= . 8.某公益机构设立了网站接受爱心捐助,旨在推动社会和谐、发展公益慈善事业.据网站统计,目前已有大约2451000人献爱心.将“2451000”用科学记数法表示为 . 9.在32232()()xy x y =的运算过程中,依据是 . 10.分解因式:22369xy x y y --= .11.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是 (用数学概念作答)12.三角形两边长分别是2,4,第三边长为偶数,第三边长为 .13.如图,在平行四边形ABCD 中,2AB =,5BC =.BCD ∠的平分线交AD 于点F ,交BA 的延长线于点E ,则AE 的长为 .(第13题图)(第14题图)(第16题图)14.如图,已知ABC ∆中,90B ∠=︒,D ,E 分别为BC ,AC 的中点,连结DE ,过D 作AC 的平行线与CAB ∠的角平分线交于点F ,连结EF ,若EF DF ⊥,2AC =,则DEF ∠的正弦值为 .15.已知x ,y ,z 为实数,且满足257x y z +-=-,2x y z -+=,试比较22x y -与2z 的大小关系是 .16.如图,AB 为O e 的直径,点C 为AB 延长线上一点,过点C 作CD 切O e 于点D ,若6AB =,10AC =,则sin BCD ∠= .(第16题图)三、解答题(本大题共有10题,共102分。
2020年中考数学一模试卷【答案+解析】
2020年中考数学一模试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.(3分)4的算术平方根是()A.4B.2C.±2D.±42.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)PM2.5是指大气中直径不大于0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×105B.2.5×106C.2.5×10﹣5D.2.5×10﹣64.(3分)方程x2﹣3x+2=0的解是()A.x1=1,x2=2B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2D.x1=﹣1,x2=25.(3分)下列计算正确的是()A.x3+x2=x5B.x3•x2=x5C.x6÷x2=x3D.(x3)2=x5 6.(3分)如图是由几个相同的小正方体组成的一个几何体,若该几何体的俯视图的面积为5,则这个几何体的主视图的面积为()A.3B.4C.5D.67.(3分)已知点A(2,m),B(﹣1,6)在反比例函数y=的图象上,则m的值为()A.﹣3B.﹣6C.3D.68.(3分)将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3B.y=﹣2x2﹣3C.y=(x﹣2)2﹣3D.y=(x+2)2+3 9.(3分)如图,在周长为12cm的▱ABCD中,AB<AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.5cm C.6cm D.7cm10.(3分)如图,⊙O的半径为5,OC垂直弦AB于点C,OC=3,则弦AB的长为()A.4B.5C.6D.8二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)分式方程=的解为.12.(4分)已知点P1(﹣2,y1),P2(2,y2)在二次函数y=(x+1)2﹣2的图象上,则y1y2.(填“>”,“<”或“=”)13.(4分)如图,正方形ABCD的边长为2,BE平分∠DBC交CD于点E,将△BCE绕点C顺时针旋转90°得到△DCF,延长BE交DF于G,则BF的长为.14.(4分)如图,BC是⊙O的直径,AB、AD是⊙O的切线,若∠C=40°,则∠A的度数为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:2cos45°﹣|﹣|+()0﹣(﹣2)2;(2)解不等式组:.16.(6分)计算:(+)÷.17.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡AC的坡度为1:10(即AE:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角α=30°,已知小明身高CD=1.6m,求旗杆AB的高度.(参考数据:tan30°≈0.58,结果保留整数)18.(8分)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c (1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.19.(10分)如图,一次函数y=kx+b(k<0)的图象与反比例函数y=的图象都经过点A (a,4),一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求这两个函数的表达式;(2)将直线AB向下平移5个单位长度后与第四象限内的反比例函数图象交于点D,连接AD、BD,求△ADB的面积.20.(10分)如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.一、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知直线y=ax+b经过点(﹣1,2),则a﹣b的值为.22.(4分)有四张正面分别标有数字﹣2,﹣6,2,6的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中抽取一张,将该卡片上的数字记为a;不放回,再从中抽取一张,将该卡片上的数字记为b,则使关于x的不等式组的解集中有且只有3个非负整数解的概率为.23.(4分)在平面直角坐标系中,若点P(a,b)的坐标满足a=b≠0,则称点P为“对等点”.已知二次函数y=x2+mx﹣m的图象上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m的值为.24.(4分)如图,矩形ABCD中,AB=6,AD=2,E是边CD上一点,将△ADE沿直线AE折叠得到△AFE,BF的延长线交边CD于点G,则DG的最大值为.25.(4分)如图,直线y=﹣x+b与x、y轴的正半轴交于点A,B,与双曲线y=﹣交于点C(点C在第二象限内),点D,过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若=,则b的值为.二、解答题(本大题共3个小题,共30分)26.(8分)某商场打算在年前用30000元购进一批彩灯进行销售,由于进货厂家促销,实际可以以8折的价格购进这批彩灯,结果可以比计划多购进了100盏彩灯.(1)该商场购进这种彩灯的实际进价为多少元?(2)该商场打算在实际进价的基础上,每盏灯加价50%的销售,但可能会面临滞销,因此将有20%的彩灯需要降价,以5折出售,该商场要想获利不低于15000元,应至少在购进这种彩灯多少盏?27.(10分)如图,在正方形ABCD中,点E是BC边上一点,连接AE,将△ABE绕点E 顺时针旋转得到△A1B1E,点B1在正方形ABCD内,连接AA1、BB1;(1)求证:△AA1E∽△BB1E;(2)延长BB1分别交线段AA1,DC于点F、G,求证:AF=A1F;(3)在(2)的条件下,若AB=4,BE=1,G是DC的中点,求AF的长.28.(12分)如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.(3分)4的算术平方根是()A.4B.2C.±2D.±4【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵22=4,∴4算术平方根为2.故选:B.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.3.(3分)PM2.5是指大气中直径不大于0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×105B.2.5×106C.2.5×10﹣5D.2.5×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故选:D.4.(3分)方程x2﹣3x+2=0的解是()A.x1=1,x2=2B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2D.x1=﹣1,x2=2【分析】把方程的左边的式子进行分解,得出两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程可化为:(x﹣1)(x﹣2)=0∴x1=1,x2=2.故选:A.5.(3分)下列计算正确的是()A.x3+x2=x5B.x3•x2=x5C.x6÷x2=x3D.(x3)2=x5【分析】根据合并同类项,同底数幂的乘除法,幂的乘方,对各选项分析判断后利用排除法求解.【解答】解:A、x3与x2不是同类项,不能合并,原计算错误,故此选项不符合题意;B、x3•x2=x5,原计算正确,故此选项符合题意;C、x6÷x2=x4,原计算错误,故此选项不符合题意;D、(x3)2=x6,原计算错误,故此选项不符合题意.故选:B.6.(3分)如图是由几个相同的小正方体组成的一个几何体,若该几何体的俯视图的面积为5,则这个几何体的主视图的面积为()A.3B.4C.5D.6【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【解答】解:根据该几何体的俯视图的面积为5,可知每个小正方体的棱长为1,从正面看有两层,底层是三个正方形,上层是一个正方形,所以这个几何体的主视图的面积为4.故选:B.7.(3分)已知点A(2,m),B(﹣1,6)在反比例函数y=的图象上,则m的值为()A.﹣3B.﹣6C.3D.6【分析】将点A、B的坐标分别代入函数解析式,列出方程组,通过解方程组求得k、m 的值即可.【解答】解:把点A(2,m),B(﹣1,6)分别代入,得.解得k=﹣6,m=﹣3.故选:A.8.(3分)将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3B.y=﹣2x2﹣3C.y=(x﹣2)2﹣3D.y=(x+2)2+3【分析】抛物线y=x2的顶点坐标为(0,0),向左平移2个单位,再向上平移3个单位,所得的抛物线的顶点坐标为(﹣2,3),根据顶点式可确定所得抛物线解析式.【解答】解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣2,3),又因为平移不改变二次项系数,所以所得抛物线解析式为:y=(x+2)2+3.故选:D.9.(3分)如图,在周长为12cm的▱ABCD中,AB<AD,AC、BD相交于点O,OE⊥BD 交AD于E,则△ABE的周长为()A.4cm B.5cm C.6cm D.7cm【分析】根据平行四边形的性质得出OB=OD,进而利用线段垂直平分线得出BE=ED,进而解答即可.【解答】解:∵四边形ABCD是平行四边形,∴OB=OD,∵OE⊥BD,∴OE是BD的线段垂直平分线,∴BE=ED,∵△ABE的周长=AB+AE+BE=AB+AE+ED=AB+AD=6cm.故选:C.10.(3分)如图,⊙O的半径为5,OC垂直弦AB于点C,OC=3,则弦AB的长为()A.4B.5C.6D.8【分析】连接OA,由垂径定理得:AC=BC,根据勾股定理,可以求出AC的长,从而得AB的长.【解答】解:如图,连接OA,∵OC⊥AB于点C,∴AC=BC,∵⊙O的半径是5,∴OA=5,又OC=3,所以在Rt△AOC中,AC===4,所以AB=2AC=8.故选:D.二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)分式方程=的解为x=2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x=6x﹣2,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.12.(4分)已知点P1(﹣2,y1),P2(2,y2)在二次函数y=(x+1)2﹣2的图象上,则y1<y2.(填“>”,“<”或“=”)【分析】根据点P1、P2的横坐标结合二次函数图象上点的坐标特征,即可得出y1、y2的值,比较后即可得出结论.【解答】解:当x=﹣2时,y1=(﹣2+1)2﹣2=﹣1;当x=2时,y2=(2+1)2﹣2=7.∵﹣1<7,∴y1<y2.故答案为<.13.(4分)如图,正方形ABCD的边长为2,BE平分∠DBC交CD于点E,将△BCE绕点C顺时针旋转90°得到△DCF,延长BE交DF于G,则BF的长为6﹣2.【分析】过点E作EM⊥BD于点M,则△DEM为等腰直角三角形,根据角平分线以及等腰直角三角形的性质即可得出ME的长度,再根据正方形以及旋转的性质即可得出线段BF的长.【解答】解:过点E作EM⊥BD于点M,如图所示.∵四边形ABCD为正方形,∴∠BDC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∴EM=DE,∵BE平分∠DBC,EM⊥BD,∴EM=EC,设EM=EC=x,∵CD=2,∴DE=2﹣x,∴x=(2﹣x),解得x=4﹣2,∴CM=4﹣2,由旋转的性质可知:CF=CE=4﹣2,∴BF=BC+CF=2+4﹣2=6﹣2.故答案为:6﹣2.14.(4分)如图,BC是⊙O的直径,AB、AD是⊙O的切线,若∠C=40°,则∠A的度数为100°.【分析】连接OD,根据圆周角定理求出∠BOD,根据切线的性质得到∠ABO=90°,∠ADO=90°,根据四边形内角和等于360°计算即可.【解答】解:连接OD,由圆周角定理得,∠BOD=2∠C=80°,∵BC是⊙O的直径,AB、AD是⊙O的切线,∴OB⊥AB,OD⊥AD,∴∠ABO=90°,∠ADO=90°,∴∠A=180°﹣∠BOD=100°,故答案为:100°.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:2cos45°﹣|﹣|+()0﹣(﹣2)2;(2)解不等式组:.【分析】(1)本题涉及零指数幂、平方、特殊角的三角函数值、绝对值、二次根式化简5个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可得解.【解答】解:(1)2cos45°﹣|﹣|+()0﹣(﹣2)2=2×﹣+1﹣4=﹣+1﹣4=﹣3;(2),解不等式①得x>1.5;解不等式②得x≤3.故不等式组的解集为1.5<x≤3.16.(6分)计算:(+)÷.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=.17.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡AC的坡度为1:10(即AE:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角α=30°,已知小明身高CD=1.6m,求旗杆AB的高度.(参考数据:tan30°≈0.58,结果保留整数)【分析】首先根据题意分析图形,本题涉及到两个直角三角形,进而求得BE、AE的大小,再利用AB=BE﹣AE可求出答案.【解答】解:作DG⊥AE于G,则∠BDG=α,则四边形DCEG为矩形.∴DG=CE=35m,EG=DC=1.6m在直角三角形BDG中,BG=DG•×tanα=35×0.58=20.3m,∴BE=20.3+1.6=21.9m.∵斜坡AC的坡比为i AC=1:10,CE=35m,∴EA=35×=3.5,∴AB=BE﹣AE=21.9﹣3.5≈18m.答:旗杆AB的高度为18m.18.(8分)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c(1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【分析】(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)由题意可得:该校初四学生共有:105÷0.35=300(人),答:该校初四学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示;(3)画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.19.(10分)如图,一次函数y=kx+b(k<0)的图象与反比例函数y=的图象都经过点A (a,4),一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求这两个函数的表达式;(2)将直线AB向下平移5个单位长度后与第四象限内的反比例函数图象交于点D,连接AD、BD,求△ADB的面积.【分析】(1)先由一次函数y=kx+b(k<0)的图象经过点C(3,0),得出3k+b=0①,由于一次函数y=kx+b的图象与y轴的交点是(0,b),根据三角形的面积公式可求得b 的值,然后利用待定系数法即可求得函数解析式;(2)将直线AB向下平移5个单位后得到直线ED的解析式为y=﹣x﹣3,得到E(﹣,0),解方程组得到B(6,﹣2),连接AE,BE,根据三角形的面积公式即可得到结论.【解答】解:(1)∵一次函数y=kx+b(k<0)的图象经过点C(3,0),∴3k+b=0①,点C到y轴的距离是3,∵k<0,∴b>0,∵一次函数y=kx+b的图象与y轴的交点是(0,b),∴×3×b=3,解得:b=2.把b=2代入①,解得:k=﹣,则函数的解析式是y=﹣x+2.故这个函数的解析式为y=﹣x+2;把点A(a,4)代入y=﹣x+2得,4=﹣a+2,解得:a=﹣3,∴A(﹣3,4),∴m=﹣12,∴反比例函数的解析式为y=﹣;(2)∵将直线AB向下平移5个单位后得到直线ED的解析式为y=﹣x﹣3,当y=0时,即0=﹣x﹣3,解得:x=﹣,∴E(﹣,0),解得,,,∴B(6,﹣2),连接AE,BE,∵AB∥DE,∴S△ADB=S△AEB=(3+)×4+(3+)×2=.20.(10分)如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.【分析】(1)连接OC,OE,根据等腰三角形的性质得到∠E=∠OCE,求得∠E+∠ODE =90°,得到∠PCD=∠ODE,得到OC⊥PC,于是得到结论;(2)连接AC,BE,BC,根据相似三角形的性质得到=,推出CD•DE=AO2﹣OD2;由△ACP∽△CBP,得到,得到PD2=PD2+2PD•OD+OD2﹣OA2,于是得到结论;(3)由(2)知,CD•DE=AO2﹣OD2;把已知条件代入得到OD=1(负值舍去),求得AD=3,由(2)知,CD•DE=2OD•PD,于是得到结论.【解答】(1)证明:连接OC,OE,∵OC=OE,∴∠E=∠OCE,∵E是的中点,∴=,∴∠AOE=∠BOE=90°,∴∠E+∠ODE=90°,∵PC=PD,∴∠PCD=∠PDC,∵∠PDC=∠ODE,∴∠PCD=∠ODE,∴∠PCD+∠OCD=∠ODE+∠E=90°,∴PC是⊙O的切线;(2)证明:连接AC,BE,BC,∵∠ACD=∠DBE,∠CAD=∠DEB,∴△ACD∽△EBD,∴=,∴CD•DE=AD•BD=(AO﹣OD)(AO+OD)=AO2﹣OD2;∵AB为⊙O的直径,∴∠ACB=90°,∵∠PCO=90°,∴∠ACP+∠ACO=∠ACO+∠BCO=90°,∴∠ACP=∠BCO,∵∠BCO=∠CBO,∴∠ACP=∠PBC,∵∠P=∠P,∴△ACP∽△CBP,∴,∴PC2=PB•P A=(PD+DB)(PD﹣AD)=(PD+OD+OA)(PD+OD﹣OA)=(PD+OD)2﹣OA2=PD2+2PD•OD+OD2﹣OA2,∵PC=PD,∴PD2=PD2+2PD•OD+OD2﹣OA2,∴OA2﹣OD2=2OD•PD,∴CD•DE=2OD•PD;(3)解:∵AB=8,∴OA=4,由(2)知,CD•DE=AO2﹣OD2;∵CD•DE=15,∴15=42﹣OD2,∴OD=1(负值舍去),由(2)知,CD•DE=2OD•PD,∴PD==,∴P A=PD﹣AD=.一、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知直线y=ax+b经过点(﹣1,2),则a﹣b的值为﹣2.【分析】由点的坐标,利用一次函数图象上点的坐标特征可求出a﹣b的值,此题得解.【解答】解:∵直线y=ax+b经过点(﹣1,2),∴2=﹣a+b,∴a﹣b=﹣2.故答案为:﹣2.22.(4分)有四张正面分别标有数字﹣2,﹣6,2,6的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中抽取一张,将该卡片上的数字记为a;不放回,再从中抽取一张,将该卡片上的数字记为b,则使关于x的不等式组的解集中有且只有3个非负整数解的概率为.【分析】首先根据题意可求得,所有可能结果,然后解不等式组求得不等式组的解集得出符合要求的点的坐标,再利用概率公式即可求得答案.【解答】解:根据题意列出树状图得:则(a,b)的等可能结果有:(﹣2,﹣6),(﹣2,2),(﹣2,6),(﹣6,﹣2),(﹣6,2),(﹣6,6),(2,﹣2),(2,6),(2,﹣6),(6,﹣2),(6,2),(6,﹣6)共12种;,解①得:x<7,当a>0,解②得:x>,根据不等式组的解集中有且只有3个非负整数解,则3<x<7时符合要求,故=3,即b=6,a=2符合要求,当a<0,解②得:x<,根据不等式组的解集中有且只有3个非负整数解,则x<3时符合要求,故=3,即b=﹣6,a=﹣2符合要求,故所有组合中只有2种情况符合要求,故使关于x的不等式组的解集中有且只有3个非负整数解的概率为:=.故答案为:.23.(4分)在平面直角坐标系中,若点P(a,b)的坐标满足a=b≠0,则称点P为“对等点”.已知二次函数y=x2+mx﹣m的图象上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m的值为1.【分析】设这两个“对等点”的坐标为(a.a)和(﹣a,﹣a),代入抛物线的解析式,两式相减,计算即可求得.【解答】解:设这两个“对等点”的坐标为(a.a)和(﹣a,﹣a),代入y=x2+mx﹣m得,①﹣②得2a=2am,解得m=1,故答案为1.24.(4分)如图,矩形ABCD中,AB=6,AD=2,E是边CD上一点,将△ADE沿直线AE折叠得到△AFE,BF的延长线交边CD于点G,则DG的最大值为2.【分析】如图,以点A为圆心,AD长为半径画弧,过点B作弧的切线交CD于点G,切点为F,此时点E和点G重合,DG的最大值即为DE的长.再根据矩形性质和勾股定理即可求出DG的长.【解答】解:如图,以点A为圆心,AD长为半径画弧,过点B作弧的切线交CD于点G,切点为F,此时点E和点G重合,DG的最大值即为DE的长.∵BC=AD=2,AB=CD=6,根据翻折可知:DE=EF=x,AF=AD=2,则CE=CD﹣DE=6﹣x,在Rt△ABF中,根据勾股定理,得BF==4,则BE=BF+EF=4+x,在Rt△BEC中,根据勾股定理,得(4+x)2=(6﹣x)2+(2)2,解得x=2.则DG的最大值为2.故答案为:2.25.(4分)如图,直线y=﹣x+b与x、y轴的正半轴交于点A,B,与双曲线y=﹣交于点C(点C在第二象限内),点D,过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若=,则b的值为3.【分析】根据双曲线的对称性得到BC=AD,设BC=AD=a,用a表示出点C和得D的坐标,根据梯形面积公式、三角形面积公式求出a、b的关系,根据反比例函数图象上点的坐标特征列出方程,解方程求出b.【解答】解:由题意点B的坐标为(0,b),点A的坐标为(b,0),∴OA=OB=b,∵直线y=﹣x+b关于直线y=x对称,反比例函数y=﹣关于y=x对称,∴BC=AD,设BC=AD=a,则C(﹣a,b+a),D(b+a,﹣a),∵=,∴=,整理得,12a2+17ab﹣14b2=0,解得,a1=b,a2=﹣b(舍去),则D(b,﹣b),∴b×(﹣b)=﹣4,解得,b1=3,b2=﹣3(舍去),∴b=3,故答案为:3.二、解答题(本大题共3个小题,共30分)26.(8分)某商场打算在年前用30000元购进一批彩灯进行销售,由于进货厂家促销,实际可以以8折的价格购进这批彩灯,结果可以比计划多购进了100盏彩灯.(1)该商场购进这种彩灯的实际进价为多少元?(2)该商场打算在实际进价的基础上,每盏灯加价50%的销售,但可能会面临滞销,因此将有20%的彩灯需要降价,以5折出售,该商场要想获利不低于15000元,应至少在购进这种彩灯多少盏?【分析】(1)设该商场实际购进每盏彩灯为x元,则实际进价为0.8x元,根据实际比计划多购进100盏彩灯,列方程求解;(2)设再购进彩灯a盏,根据利润=售价﹣进价和货栈要想获得利润不低于15000元列出不等式并解答.【解答】解:(1)设该商场实际购进每盏彩灯为x元,则实际进价为0.8x元,依题意得:=+100,解得x=75,经检验x=75是所列方程的根,则0.8x=0.8×75=60(元).答:该货栈实际购进每盏彩灯为60元;(2)设再购进彩灯a盏,由(1)知,实际购进30000÷60=500(盏),依题意得:(500+a)(1﹣20%)×60×50%+(500+a)×20%×[60×(1+50%)×0.5﹣60]≥15000,解得a≥.因为a取正整数,所以a=215.答:至少再购进彩灯215盏.27.(10分)如图,在正方形ABCD中,点E是BC边上一点,连接AE,将△ABE绕点E 顺时针旋转得到△A1B1E,点B1在正方形ABCD内,连接AA1、BB1;(1)求证:△AA1E∽△BB1E;(2)延长BB1分别交线段AA1,DC于点F、G,求证:AF=A1F;(3)在(2)的条件下,若AB=4,BE=1,G是DC的中点,求AF的长.【分析】(1)由EB=EB1,EA=EA1,可得∠EBB1=∠EB1B,∠EAA1=∠EA1A,由∠BEB1=∠AEA1,可得∠EBB1=∠EB1B=∠EAA1=∠EA1A,由此即可证明;(2)连接BF,延长EB1交AA1于M.由△MFB1∽△MEA1,推出△MEF∽△MA1B1,推出∠MFE=∠MB1A1=90°,即EF⊥AA1,由EA=EA1,可得AF=F A1;(3)首先求出AE,由cos∠GBC=cos∠EAF===,在Rt△AEF中,根据AF=AE•cos∠EAF,计算即可;【解答】(1)证明:如图∵EB=EB1,EA=EA1,∴∠EBB1=∠EB1B,∠EAA1=∠EA1A,∵∠BEB1=∠AEA1,∴∠EBB1=∠EB1B=∠EAA1=∠EA1A,∴△AA1E∽△BB1E.(2)证明:连接BF,延长EB1交AA1于M.∵∠BB1B=∠FB1M=∠MA1E,∠FMB1=∠EMA1,∴△MFB1∽△MEA1,∴=,∴=,∵∠EMF=∠A1MB1,∴△MEF∽△MA1B1,∴∠MFE=∠MB1A1=90°,∴EF⊥AA1,∵EA=EA1,∴AF=F A1.(3)解:在Rt△ABE中,∵AB=4,BE=1,∴AE==,∵DG=GC,∴cos∠GBC=cos∠EAF===,在Rt△AEF中,AF=AE•cos∠EAF=•=.28.(12分)如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.【分析】(1)先求出对称轴为x=4,进而求出AB=4,进而求出点A,B坐标,即可得出结论;(2)利用面积的和差建立方程求解,即可得出结论;(3)Ⅰ、当点Q在对称轴右侧时,先判断出点E,M,Q,P四点共圆,得出∠EMQ=90°,利用同角的余角相等判断出∠EMF=∠HGM,得出tan∠EMF==2,得出HG =HM=1,进而求出Q(8,6),得出结论;Ⅱ、当点Q在对称轴左侧时,先判断出△PDQ∽△EFP,得出,进而判断出DP=,PF=2QD,即可得出结论.【解答】解:(1)对称轴为直线x=﹣=4,则CD=4,∵四边形ABDC为平行四边形,∴DC∥AB,DC=AB,∴DC=AB=4,∴A(2,0),B(6,0),把点A(2,0)代入得y=ax2﹣8ax+12得4a﹣16a+6=0,解得a=,∴二次函数解析式为y=x2﹣4x+6;(2)如图1,设E(m,m2﹣4m+6),其中2<m<6,作EN⊥y轴于N,如图2,∵S梯形CDEN﹣S△OCD﹣S△OEN=S△ODE,∴(4+m)(6﹣m2+4m﹣6)﹣×4×6﹣m(﹣m2+4m﹣6)=12,化简得:m2﹣11m+24=0,解得m1=3,m2=8(舍),∴点E的坐标为(3,﹣);(3)Ⅰ、当点Q在对称轴右侧时,如图2,过点E作EF⊥PM于F,MQ交x轴于G,∵∠PQE=∠PME,∴点E,M,Q,P四点共圆,∵PE⊥PQ,∴∠EPQ=90°,∴∠EMQ=90°,∴∠EMF+∠HMG=90°,∵∠HMG+∠HGM=90°,∴∠EMF=∠HGM,在Rt△EFM中,EF=1,FM=,tan∠EMF==2,∴tan∠HGM=2,∴,∴HG=HM=1,∴点G(5,0),∵M(4,﹣2),∴直线MG的解析式为y=2x﹣10①,∵二次函数解析式为y=x2﹣4x+6②,联立①②解得,(舍)或,∴Q(8,6),∴点Q到对称轴的距离为8﹣4=4;Ⅱ、当点Q在对称轴左侧时,如图3,过点E作EF⊥PM于F,过点Q作QD⊥PM于D,∴∠DQP+∠QPD=90°,∵∠EPQ=90°,∴∠DPQ+∠FPE=90°,∴∠DQP=∠FPE,∵∠PDQ=∠EFP,∴△PDQ∽△EFP,∴,由Ⅰ知,tan∠PQE==2,∵EF=1,∴=,∴DP=,PF=2QD,设Q(n,n2﹣4n+6),∴DQ=4﹣n,DH=n2﹣4n+6,∴PF=DH+FH﹣DP=n2﹣4n+6+﹣=n2﹣4n+7,∴n2﹣4n+7=2(4﹣n),∴n=2+(舍)或n=2﹣,∴DQ=4﹣n=2+,即点Q到对称轴的距离为4或2+.。
2020年度中考初三数学一模试卷(含答案解析)
2020年初三数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.-3的绝对值是 A .-13B .-3C .13D .32.函数中y =x2-x 自变量x 的取值范围是A .x ≥2B .x ≤2C .x ≠2D .x >23.在下列四个图形中,是中心对称图形的是A .B .C .D .4.下列运算正确的是 A .2a 2+a 2=3a 4B .(-2a 2)3=8a 6C .a 3÷a 2=aD .(a -b )2=a 2-b 25.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的 A .最高分B .方差C .中位数D .平均数6.下列图形中,主视图为①的是A .BC .D .7.已知a -b =2,则a 2-b 2-4b 的值为 A .2B .4C .6D .88.下列判断错误的是A .对角线互相垂直且相等的平行四边形是正方形B .对角线互相垂直平分的四边形是菱形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形9.如图,平面直角坐标系中,A (-8,0),B (-8,4),C (0,4),反比例函数y =k x的图象分别与线段AB ,BC 交于点D ,E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k = A .-20B .-16C .-12D .-810.如图,等边三角形ABC 边长是定值,点O 是它的外心,过点O 任意作一条直线分别交AB ,BC 于点D ,E .将△BDE 沿直线DE 折叠,得到△B ′DE ,若B ′D ,B ′E 分别交AC 于点F ,G ,连接OF ,OG ,则下列判断错误的是 A .△ADF ≌△CGEB .△B ′FG 的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形OGB ′F 的面积是一个定值二、填空题(本大题共8小题,每小题2分,共16分) 11.16的平方根是 .12.某人近期加强了锻炼,用“微信运动”记录下了一天的行走步数为12400,将12400用科学记数法表示应为 . 13.若3m =5,3n =8,则32m +n= .14.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为 . 15.如图,四边形ABCD 内接于⊙O ,OC ∥AD ,∠DAB =60°,∠ADC =106°,则∠OCB = . 16.如图,△ABC 中,∠C =90°,AC =3,AB =5,D 为BC 边的中点,以AD 上一点O 为圆心的O 和AB ,BC 均相切,则⊙O 的半径为 .(第16题图)(第15题图)ABCDFGB′O(第10题图)(第9题图)(第6题图①)17.如图,二次函数y =(x +2)2+m 的图象与y 轴交于点C ,与x 轴的一个交点为A (-1,0),点B在抛物线上,且与点C 关于抛物线的对称轴对称.已知一次函数y =kx +b 的图象经过A ,B 两点,根据图象,则满足不等式(x +2)2+m ≤kx +b 的x 的取值范围是 .18.如图,正方形ABCD 和Rt △AEF ,AB =5,AE =AF =4,连接BF ,DE .若△AEF 绕点A 旋转,当∠ABF 最大时,S △ADE = .三、解答题(共84分) 19.(本题满分8分)(1)计算:(π-3)0+2sin45°-⎝ ⎛⎭⎪⎫18-1 (2)解不等式组:⎩⎨⎧1-2x <3x +13<220.(本题满分8分)解方程: (1)x 2-8x +1=0 (2)3x -2-1-x2-x=121.(本题满分8分)如图,□ABCD 中,E 为AD 的中点,直线BE ,CD 相交于点F .连接AF ,BD . (1)求证:AB =DF ;(2)若AB =BD ,求证:四边形ABDF 是菱形.ABCDEF(第18题图)(第17题图)22.(本题满分8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A ,B ,C ,D ,E 五个组,x 表示测试成绩,A 组:90≤x ≤100;B 组:80≤x <90;C 组:70≤x <80;D 组:60≤x <70;E 组:x <60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有________人,请将两幅统计图补充完整; (2)抽取的测试成绩的中位数落在________组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?调查测试成绩扇形统计图ADFEBC23.(本题满分8分)有甲,乙两把不同的锁和A,B,C三把不同的钥匙.其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好能都打开的概率.(请用“画树状图”或“列表”等方法给出分析过程)24.(本题满分8分)如图,△ABC中,⊙O经过A,B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.25.(本题满分8分)某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p≥1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.y/千克)26.(本题满分8分)如图,线段OB 放置在正方形网格中,现请你分别在图1,图2,图3添画(工具只能用直尺)射线OA ,使tan ∠AOB 的值分别为1,2,3.27.(本题满分10分)已知,二次函数y =ax 2+2ax -3a (a >0)图象的顶点为C ,与x 轴交于A ,B 两点(点A 在点B 的左侧),点C ,B 关于过点A 的直线l 对称,直线l 与y 轴交于D . (1)求A ,B 两点坐标及直线l 的解析式; (2)求二次函数解析式;(3)在第三象限抛物线上有一个动点E ,连接OE 交直线l 于点F ,求EFOF的最大值.BO图3B O图2B O图128.(本题满分10分)如图,矩形ABCD ,AB =2,BC =10,点E 为AD 上一点,且AE =AB ,点F 从点E 出发,向终点D 运动,速度为1 cm/s ,以BF 为斜边在BF 上方作等腰Rt △BFG ,以BG ,BF 为邻边作□BFHG ,连接AG .设点F 的运动时间为t 秒,(1)试说明:△ABG ∽△EBF ;(2)当点H 落在直线CD 上时,求t 的值;(3)点F 从E 运动到D 的过程中,直接写出HC 的最小值.图2AB CDE图1ABC DFEG H9.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示出点D的纵坐标和点E的横坐标,由三角形相似和对称,可求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∴AF:EG=BD:BE,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.10.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【分析】A、根据等边三角形ABC的内心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF =∠EOG,可证明△DOF≌△GOF≌△GOE,△OAD≌△OCG,△OAF≌△OCE,可得AD=CG,AF=CE,从而得△ADF≌△CGE;B、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC﹣S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,可作判断.【解答】解:A、连接OA、OC,∵点O是等边三角形ABC的内心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+S△ADF=S四边形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC ﹣S△OFG,过O作OH⊥AC于H,∴S△OFG=•FG•OH,由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确;故选:D.16.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.【分析】过点O作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可.【解答】解:过点O作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB•OE+BD•OF=CD•AC,即5×OE+2×OE=2×3,解得OE=,∴⊙O的半径是.故答案为:.17.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,与x轴的一个交点为A(﹣1,0),点B 在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数y=kx+b的图象经过A,B两点,根据图象,则满足不等式(x+2)2+m≤kx+b的x的取值范围是﹣4≤x≤﹣1 .【分析】将点A代入抛物线中可求m=﹣1,则可求抛物线的解析式为y=x2+4x+3,对称轴为x=﹣2,则满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1.【解答】解:抛物线y=(x+2)2+m经过点A(﹣1,0),∴m=﹣1,∴抛物线解析式为y=x2+4x+3,∴点C坐标(0,3),∴对称轴为x=﹣2,∵B与C关于对称轴对称,点B坐标(﹣4,3),∴满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1,故答案为﹣4≤x≤﹣1.18.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE= 6 .【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.22.某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A、B、C、D、E五个组,x表示测试成绩,A组:90≤x≤100;B组:80≤x<90;C组:70≤x<80;D组:60≤x<70;E组:x<60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有400 人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在B组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?【分析】(1)根据E组的人数和所占的百分比可以求得本次调查的人数,再根据条形统计图中的数据可以求得B组和C组所占的百分比.根据本次调查的总人数和B组所占的百分比可以求得B组的人数;(2)根据扇形统计图中的数据可以得到中位数落在哪一组;(3)根据统计图中的数据可以计算出该校初三测试成绩为优秀的学生有多少人.【解答】解:(1)本次抽取的学生共有:40÷10%=400(人),故答案为:400;A所占的百分比为:100÷400×100%=25%,C所占的百分比为:80÷400×100%=20%,B组的人数为:400×30%=120,补全的统计图如下图所示;(2)由扇形统计图可知,抽取的测试成绩的中位数落在B组内,故答案为:B;(3)1200×(25%+30%)=660(人),答:该校初三测试成绩为优秀的学生有660人.【点评】本题考查频数分布直方图、扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.有甲、乙两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好都能打开的概率(请用“画树状图”或“列表”等方法给出分析过程)【分析】首先根据题意列表,得所有等可能的结果,可求得打开一把锁的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图:可能出现的等可能性结果有6种,分别是(A,B),(A,C),(B,A),(B,C),(C,A),(C,B),只有1种情况(有先后顺序)恰好打开这两把锁P(恰好打开这两把锁)=.【点评】此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.24.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.【分析】(1)连接BO并延长交⊙O于点E,连接DE.由圆周角定理得出∠BDE=90°,再求出∠EBD+∠DBC=90°,根据切线的判定定理即可得出BC是⊙O的切线;(2)分别求出等边三角形DOB的面积和扇形DOB的面积,即可求出答案.【解答】证明:(1)连接BO并延长交⊙O于点E,连接DE.∵BE是⊙O的直径,∴∠BDE=90°,∴∠EBD+∠E=90°,∵∠DBC=∠DAB,∠DAB=∠E,∴∠EBD+∠DBC=90°,即OB⊥BC,又∵点B在⊙O上,∴BC是⊙O的切线;(2)连接OD,∵∠BOD=2∠A=60°,OB=OD,∴△BOD是边长为6的等边三角形,∴S△BOD=×62=9,∵S扇形DOB==6π,∴S阴影=S扇形DOB﹣S△BOD=6π﹣9.【点评】本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出∠EBD+∠DBC=90°和分别求出扇形DOB和三角形DOB的面积.25.某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p≥1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.【分析】本题是通过构建函数模型解答销售利润的问题.(1)设购进水果a千克,水果售价定为m元/千克,水果商才不会亏本,则有a•m(1﹣5%)≥(12.5+0.8)a,解得m即可(2)可先求出y与销售单价x之间的函数关系为:y=﹣5x+130,再根据销售利润=销售量×(售价﹣进价),列出销售利润w与销售价x之间的函数关系式,即可求最大利润(3)设扣除捐赠后利润为s,则s=﹣5x2+(5p+200)x﹣130(p+14),再根据对称轴的位置及增减性进行判断即可.【解答】解:(1)设购进水果a千克,水果售价定为m元/千克,水果商才不会亏本,则有a•m(1﹣5%)≥(12.5+0.8)a则a>0可解得:m≥14∴水果商要把水果售价至少定为14元/千克才不会亏本(2)由(1)可知,每千克水果的平均成本为14元得y与销售单价x之间的函数关系为:y=﹣5x+130由题意得:w=(x﹣14)y=(x﹣14)(﹣5x+130)=﹣5x2+200x﹣1820整理得w=﹣5(x﹣20)2+180∴当x=20时,w有最大值∴当销售单价定为20元时,每天获得的利润w最大,最大利润是180元.(3)设扣除捐赠后利润为s则s=(x﹣14﹣p)(﹣5x+130)=﹣5x2+(5p+200)x﹣130(p+14)∵抛物线的开口向下∴对称轴为直线x==∵销售价格大于每千克22元时,扣除捐赠后每天的利润s随x的增大而减小∴≤22解得p≤4故1≤p≤4【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.26.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.【分析】根据勾股定理以及正切值对应边关系得出答案即可.【解答】解:如图1所示:tan∠AOB===1,如图2所示:tan∠AOB===2,如图3所示:tan∠AOB===3,故tan∠AOB的值分别为1、2、3..【点评】此题主要考查了应用与设计作图以及锐角三角函数关系、勾股定理等知识,正确构造直角三角形是解题关键.27.已知,如图,二次函数y=ax2+2ax﹣3a(a>0)图象的顶点为C与x轴交于A、B两点(点A在点B左侧),点C、B关于过点A的直线l:y=kx﹣对称.(1)求A、B两点坐标及直线l的解析式;(2)求二次函数解析式;(3)如图2,过点B作直线BD∥AC交直线l于D点,M、N分别为直线AC和直线l上的两动点,连接CN,NM、MD,求D的坐标并直接写出CN+NM+MD的最小值.【分析】(1)令二次函数解析式y=0,解方程即求得点A、B坐标;把点A坐标代入直线l解析式即求得直线l.(2)把二次函数解析式配方得顶点C(﹣1,﹣4a),由B、C关于直线l对称可知AB=AC,用a表示AC的长即能列得关于的方程.求得a有两个互为相反数的解,由二次函数图象开口向上可知a>0,舍去负值.(3)①用待定系数法求直线AC解析式,由BD∥AC可知直线BD解析式的k与AC的k相同,再代入点B坐标即求得直线BD解析式.把直线l与直线BD解析式联立方程组,求得的解即为点D坐标.②由点B、C关于直线l对称,连接BN即有B、N、M在同一直线上时,CN+MN=BN+MN=BM最小;作点D关于直线AC的对称点Q,连接DQ交直线AC于点E,可证B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ最小,CN+NM+MD最小值=BM+MD最小值=BQ.由直线AC垂直平分DQ且AC∥BD可得BD⊥DQ,即∠BDQ=90°.由B、D坐标易求BD的长;由B、C关于直线l 对称可得l平分∠BAC,作DF⊥x轴于F则有DF=DE,所以DQ=2DE=2DF=4;利用勾股定理即求得BQ的长.【解答】解:(1)当y=0时,ax2+2ax﹣3a=0解得:x1=﹣3,x2=1∴点A坐标为(﹣3,0),点B坐标为(1,0)∵直线l:y=kx﹣经过点A∴﹣3k﹣=0 解得:k=﹣∴直线l的解析式为y=﹣x﹣(2)∵y=ax2+2ax﹣3a=a(x+1)2﹣4a∴点C坐标为(﹣1,﹣4a)∵C、B关于直线l对称,A在直线l上∴AC=AB,即AC2=AB2∴(﹣1+3)2+(﹣4a)2=(1+3)2解得:a=±(舍去负值),即a=∴二次函数解析式为:y=x2+x﹣(3)∵A(﹣3,0),C(﹣1,﹣2),设直线AC解析式为y=kx+b∴解得:∴直线AC解析式为y=﹣x﹣3∵BD∥AC∴设直线BD解析式为y=﹣x+c把点B(1,0)代入得:﹣+c=0 解得:c=∴直线BD解析式为y=﹣x+∵解得:∴点D坐标为(3,﹣2)如图,连接BN,过点D作DF⊥x轴于点F,作D关于直线AC的对称点点Q,连接DQ交AC于点E,连接BQ,MQ.∵点B、C关于直线l对称,点N在直线l上∴BN=CN∴当B、N、M在同一直线上时,CN+MN=BN+MN=BM,即CN+MN的最小值为BM∵点D、Q关于直线AC对称,点M在直线AC上∴MQ=MD,DQ⊥AC,DE=QE∴当B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ,即BM+MD的最小值为BQ∴此时,CN+NM+MD=BM+MD=BQ,即CN+NM+MD的最小值为BQ∵点B、C关于直线l对称∴AD平分∠BAC∵DF⊥AB,DE⊥AC∴DE=DF=|y D|=2∴DQ=2DE=4∵B(1,0),D(3,﹣2)∴BD2=(3﹣1)2+(﹣2)2=16∵BD∥AC∴∠BDQ=∠AEQ=90°∴BQ=∴CN+NM+MD的最小值为8.28.如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D 运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.【分析】(1)根据两边成比例夹角相等即可证明两三角形相似;(2)如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.首先证明△GFN≌△FHM,想办法求出点H的坐标,构建方程即可解决问题;(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.推出点H 在直线y=x+上运动,根据垂线段最短即可解决问题;【解答】(1)证明:如图1中,∵△ABE,△BGF都是等腰直角三角形,∴==,∵∠ABE=∠GBF=45°,∴∠ABG=∠EBF,∴△ABG∽△EBF.(2)解:如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.∵△GFH是等腰直角三角形,∴FG=FH,∠GNF=∠GFH=∠HMF=90°,∴∠GFN+∠HFM=90°,∠HFM+∠FHM=90°,∴∠GFN=∠FHM,∴△GFN≌△FHM,∴GN=FM,FN=HM,∵△ABG∽△EBF,∴==,∠AGB=∠EFB,∵∠AKG=∠BKF,∴∠GAN=∠KBF=45°,∵EF=t,∴AG=t,∴AN=GN=FM=t,∴AM=2+t,HM=FN=2+t,∴H(2+t,4+t),当点H在直线CD上时,2+t=10,解得t=.(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.∴点H在直线y=x+上运动,如图,作CH垂直直线y=x+垂足为H.根据垂线段最短可知,此时CH的长最小,易知直线CH的解析式为y=﹣3x+30,由,解得,∴H(8,6),∵C(10,0),∴CH==2,∴HC最小值是2.。
2020年中考一模测试《数学卷》带答案解析
中考数学综合模拟测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2-的相反数是( ) A. 2-B. 2C.12D. 12-2.已知a b <,下列不等式中,变形正确的是( ) A .a 3b 3->-B. 3a 13b 1->-C. 3a 3b ->-D.a b 33> 3.下面四个图形中,是三棱柱的平面展开图的是( ) A.B.C.D.4.使分式42x -有意义的x 的取值范围是( ) A. x >2B. x <2C. x≠2D. x≥25.下列运算错误的是( ) A. ()326aa =B. ()222x y x y +=+C. 239-=-D. 461200 6.1210=⨯6.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是( ) A. 1B. 2C. 3D. 47.不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是( ) A.112B.16C.14D.128.如果将抛物线241y x x =--平移,使它与抛物线21y x =-重合,那么平移的方式可以是( ) A. 向左平移2个单位,向上平移4个单位 B. 向左平移2个单位,向下平移4个单位C. 向右平移2个单位,向上平移4个单位D. 向右平移2个单位,向下平移4个单位9.如图,AB 是O e 的直径,CD 是O e 的弦,如果37ACD ∠=o ,那么BAD ∠=( )A. 51oB. 53oC. 57oD. 60o10.如图,已知ABC V 中,5,4,3,AB AC BC DE ===是AC 的垂直平分线,DE 交AB 于点,D 交AC 于点,E 连接,CD 则CD 的值为( )A. 1B. 1.5C. 2D. 2.511.已知Rt ACB V 中,点D 为斜边AB 的中点,连接,CD 将DCB V 沿直线DC 翻折,使点B 落在点E 的位置,连接,,DE CE AE DE ,交AC 于点,F 若6,8,BC AC ==则AE 的值为( )A.1425B.145C.125D.1122512.如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上的一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则下列结论中:①4ABM FDM S S =V V ;②265PN =;③tan ∠EAF=34;④.PMN DPE V V ∽正确的是()A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(每题3分,满分18分,将答案填在答题纸上)13.若30p +=,则p =____. 14.分解因式:32a 4ab -= .15.若2x =是关于x 的一元二次方程280(0)ax bx a +-=≠的解,则代数式20202a b ++的值是________. 16.如图,点G 是ABC V 的重心,AG 的延长线交BC 于点D ,过点G 作GE //BC 交AC 于点E ,如果BC 6=,那么线段GE 的长为______.17.如图,圆锥母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是_____.18.如图,分别过反比例函数3y x=图象上的点()()11221,,2,P y P y , ...(),n n P n P ···作x 轴的垂线,垂足分别为12,,A A ······n A ,连接1223,,A P A P ···1,n n A P -再以1112,,A P A P 为一组邻边画一个平行四边形1112,A PB P ,以2223,A P A P 为一组邻边画一个平行四边形22A P 23B P ,依此类推,则点n B 的纵坐标是_____.(结果用含n 代数式表示)三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(1)计算:1012019272302cos -⎛⎫++-︒ ⎪⎝⎭(2)先化简,再求值,22453262a a a a a --÷-+++,其中5a =-. 20.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (2,2),B (4,0),C (4,-4). (1)请在图中画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1; (2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧画出△A 2B 2C 2,; (3)填空:△AA 1A 2的面积为________________.21.如图,已知()()14,,1,2A B m --是一次函数y kx b =+与反比例函数()20y x x=-<图象的两个交点,AC x ⊥轴于,C BD y ⊥轴于D .(1)求一次函数解析式及m 的值;(2)P 是线段AB 上的一点,连接,,PC PD 若PCA V 和PDB △面积相等,求点P 坐标. 22.在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A :乒乓球,B :篮球,C :跑步,D :跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图.请你结合图中信息解答下列问题:(1)样本中喜欢B 项目的人数百分比是 ,其所在扇形统计图中的圆心角的度数是 ; (2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?23.某建设工程队计划每小时挖掘土石方540方,现决定租用甲、乙两种型号的挖掘机来完成这项工作,已知一台甲型挖掘机与一台乙型挖掘机每小时共挖土140方,5台甲型挖掘机与3台乙型挖掘机恰好能完成每小时的挖掘量.(1)求甲、乙两种型号的挖掘机每小时各挖土多少方?(2)若租用一台甲型挖掘机每小时100元,租用一台乙型挖掘机每小时120元,且每小时支付的总租金不超过850元,又恰好完成每小时的挖掘量,请设计该工程队的租用方案.24.已知直线PA 交O e 于A B 、两点,AE 是O e 的直径,点C 为O e 上一点,且AC 平分PAE ∠,过C 作CD PA ⊥,垂足为D .()1求证:CD 为O e 的切线;()2若2CD AD =,O e 的直径为20,求线段AC AB 、的长.25.如图,已知抛物线23y ax bx =++与x 轴交于点()()1,0,3,0A B -.(1)求该抛物线的表达式;(2)点E 是线段BC 上方的抛物线上一个动点,求BEC △的面积的最大值;(3)点P 是抛物线的对称轴上一个动点,当以A 、P 、C 为顶点的三角形是直角三角形时,求出点P 的坐标. 26.如图1,在△ABC 中,AB =BC =5,AC =6.△ECD 是△ABC 沿BC 方向平移得到的,连接AE .AC 和BE 相交于点O .(1)判断四边形ABCE 是怎样的四边形,说明理由;(2)如图2,P 是线段BC 上一动点(图2),(不与点B 、C 重合),连接PO 并延长交线段AE 于点Q ,QR ⊥BD ,垂足为点R .①四边形PQED 的面积是否随点P 的运动而发生变化.若变化,请说明理由;若不变,求出四边形PQED 的面积;②当线段PB的长为何值时,△PQR与△BOC相似.答案与解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2-的相反数是( ) A. 2- B. 2C.12D. 12-【答案】B 【解析】 【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 . 2.已知a b <,下列不等式中,变形正确的是( ) A. a 3b 3->- B. 3a 13b 1->-C. 3a 3b ->-D.a b 33> 【答案】C 【解析】 【分析】根据不等式的性质解答即可.【详解】解:A 、不等式a b <的两边同时减去3,不等式仍成立,即33a b -<-,故本选项错误; B 、不等式a b <的两边同时乘以3再减去1,不等式仍成立,即3131a b -<-,故本选项错误; C 、不等式a b <的两边同时乘以3-,不等式的符号方向改变,即33a b ->-,故本选项正确; D 、不等式a b <的两边同时除以3,不等式仍成立,即33a b<,故本选项错误; 故选C .【点睛】本题考查了不等式的性质.注意:不等式两边都乘以同一个负数,不等号的方向改变. 3.下面四个图形中,是三棱柱的平面展开图的是( )A. B. C. D.【答案】C 【解析】 【分析】根据三棱柱的展开图的特点作答. 【详解】A 、是三棱锥的展开图,故不是; B 、两底在同一侧,也不符合题意; C 、是三棱柱的平面展开图; D 、是四棱锥的展开图,故不是. 故选C .【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征. 4.使分式42x -有意义的x 的取值范围是( ) A. x >2 B. x <2C. x≠2D. x≥2【答案】C 【解析】 【分析】根据分式有意义的条件:分母不等于0即可求解. 【详解】解:根据题意得:x-2≠0,解得:x≠2. 故选C .考点:分式有意义的条件. 5.下列运算错误的是( ) A. ()326a a =B. ()222x y x y +=+C. 239-=-D. 461200 6.1210=⨯【答案】B 【解析】 【分析】根据幂的乘方、完全平方公式、有理数的乘方、科学计数法逐项计算即可. 【详解】A . ()326aa =,正确;B . ()2222x y x xy y +=++,错误;C.239-=-,正确;D.461200 6.1210=⨯,正确;故选B.【点睛】本题考查了幂的乘方、完全平方公式、有理数的乘方、科学计数法,熟练掌握各知识点是解答本题的关键.6.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A. 1B. 2C. 3D. 4【答案】A【解析】【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【详解】①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选A.【点睛】考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.112B.16C.14D.12【答案】B【解析】【分析】先画树状图展示所有12种等可能的结果数,再找出两次都摸到白球的结果数,然后根据概率公式求解.【详解】画树状图为:共有12种等可能的结果数,其中两次摸出的球都是的白色的共有2 种, 所以两次都摸到白球的概率是21126=. 故选B .【点睛】考查了利用树状图法求概率,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n 是解题关键. 8.如果将抛物线241y x x =--平移,使它与抛物线21y x =-重合,那么平移的方式可以是( )A. 向左平移2个单位,向上平移4个单位B. 向左平移2个单位,向下平移4个单位C. 向右平移2个单位,向上平移4个单位D. 向右平移2个单位,向下平移4个单位【答案】A【解析】【分析】先把241y x x =--化为顶点式,然后根据平移的规律解答即可.【详解】∵241y x x =--=(x-2)2-5,∴把y=(x-2)2-5向左平移2个单位,向上平移4个单位,可得21y x =-.故选A .【点睛】本题考查了二次函数图象的平移,其规律是:将二次函数解析式转化成顶点式y=a (x -h )2+k (a ,b ,c 为常数,a ≠0),确定其顶点坐标(h ,k ),在原有函数的基础上“左加右减括号内,上加下减括号外”,熟练掌握这一规律是解答本题的关键.9.如图,AB 是O e 的直径,CD 是O e 的弦,如果37ACD ∠=o ,那么BAD ∠=( )A. 51oB. 53oC. 57oD. 60o【答案】B【解析】【分析】 连接BD ,因为AB 为直径,所以90ADB ∠=o ,根据同弧所对圆周角相等,所以ACD ABD ∠=∠,进而可求出BAD ∠的大小.【详解】解:如图所示:连接BD ,Q AB 为直径,∴90ADB ∠=o ,根据同弧所对圆周角相等,∴37ACD ABD ∠=∠=o ,90903753BAD ABD ∴∠=-∠=-=o o o o .故选:B【点睛】本题考查圆的知识点,其中同弧所对的圆周角相等与直径所对的圆周角是直角是解题的关键.10.如图,已知ABC V 中,5,4,3,AB AC BC DE ===是AC 的垂直平分线,DE 交AB 于点,D 交AC 于点,E 连接,CD 则CD 的值为( )A. 1B. 1.5C. 2D. 2.5【答案】D【解析】【分析】 直接利用勾股定理的逆定理得出△ABC 是直角三角形,进而得出线段DE 是△ABC 的中位线,再利用直角三角形斜边的中线等于斜边的一半得出DC 的长.【详解】解:∵AB=5,AC=4,BC=3,∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形,∵DE 是AC 的垂直平分线,∴AE=EC=2,DE//BC ,且线段DE 是△ABC 的中位线,∴D 是AB 中点,∴DC=152⨯=2.5. 故选:D .【点睛】此题主要考查了勾股定理的逆定理,三角形中位线的性质,以及直角三角形斜边的中线等于斜边的一半的性质,得出DE 是△ABC 的中位线是解题关键.11.已知Rt ACB V 中,点D 为斜边AB 的中点,连接,CD 将DCB V 沿直线DC 翻折,使点B 落在点E 的位置,连接,,DE CE AE DE ,交AC 于点,F 若6,8,BC AC ==则AE 的值为( )A. 1425B.145C.125D.11225【答案】B【解析】【分析】直角三角形的勾股定理和斜边中线等于斜边一半可以得到等腰三角形的边长,通过作辅助线,可将所求的问题进行转化求BE,由折叠得CD是BE的中垂线,借助三角形的面积公式,可以求出BG,进而求出BE,由等腰三角形的性质,可得DN是三角形的中位线,得到DN等于BE的一半,求出DN,在根据勾股定理,求出AN,进而求出AE.【详解】解:过点D作DM⊥BC,DN⊥AE,垂足为M、N,连接BE交CD于点G,∵Rt△ACB中,2268+=10,∵点D为斜边AB的中点,∴CD=AD=BD=12AB=5,在△DBC中,DC=DB,DM⊥BC,∴MB=MC=12BC=3,∴2253-,由折叠得,CD垂直平分BE,∠BDC=∠EDC,在△ADE中,DA=DE,DN⊥AE,∴AN=NE=12 AE,∴DN是△ABE的中位线,∴DN//BE,DN=12 BE,在△DBC中,由三角形面积公式得:12BC•DM=12DC•BG,即:6×4=5×BG , ∴BG=245=DN , 在Rt △ADN 中,AN=222475=55⎛⎫- ⎪⎝⎭, ∴AE=2AN=145, 故选:B .【点睛】本题考查了直角三角形的性质、等腰三角形的性质、三角形的中位线以及勾股定理等知识,综合应用知识较强,理解和掌握这些知识是解决问题的前提和关键.12.如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上的一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则下列结论中:①4ABM FDM S S =V V ;②265PN =;③tan ∠EAF=34;④.PMN DPE V V ∽正确的是() A. ①②③B. ①②④C. ①③④D. ②③④ 【答案】A【解析】【分析】 利用正方形的性质,得出∠DAN =∠EDC ,CD =AD ,∠C =∠ADF 即可判定△ADF ≌△DCE (ASA ),再证明△ABM ∽△FDM ,即可解答①;根据题意可知:AF =DE =AE 5,再根据三角函数即可得出③;作PH ⊥AN 于H .利用平行线的性质求出AH =24585453HN ==,即可解答②;利用相似三角形的判定定理,即可解答④【详解】解:∵正方形ABCD 的边长为2,点E 是BC 的中点,∴AB =BC =CD =AD =2,∠ABC =∠C =∠ADF =90°,CE =BE =1,∵AF ⊥DE ,∴∠DAF +∠ADN =∠ADN +∠CDE =90°,∴∠DAN =∠EDC ,在△ADF 与△DCE 中,C AD CDCDE ⎧⎪=⎨⎪⎩∠ADF=∠∠DAF=∠ , ∴△ADF ≌△DCE (ASA ),∴DF =CE =1,∵AB ∥DF ,∴△ABM ∽△FDM , ∴24S ABM AB S FDM DF ∆⎛⎫== ⎪∆⎝⎭, ∴S △ABM =4S △FDM ;故①正确;根据题意可知:AF =DE =AE∵12 ×AD ×DF =12×AF ×DN , ∴DN, ∴EN,AN=5, ∴tan ∠EAF =34EN AN =,故③正确, 作PH ⊥AN 于H .∵BE ∥AD , ∴2PA AD PE BE==, ∴P A=3, ∵PH ∥EN , ∴23AH PA AN AE ==, ∴AH=23HN ==, ∴= ∴PN,故②正确, ∵PN ≠DN ,∴∠DPN ≠∠PDE ,∴△PMN 与△DPE 不相似,故④错误.故选A .【点睛】此题考查三角函数,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质二、填空题(每题3分,满分18分,将答案填在答题纸上)13.若30p +=,则p =____.【答案】3-【解析】【分析】根据互为相反数相加得零求解即可.【详解】∵30p +=,∴p =-3.故答案为:-3.【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,只有符号不同的两个数是互为相反数,互为相反数相加得零.14.分解因式:32a 4ab -= .【答案】()()a a 2b a 2b +-【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式a 后继续应用平方差公式分解即可:()()()3222a 4ab a a 4ba a 2b a 2b -=-=+-. 15.若2x =是关于x 的一元二次方程280(0)ax bx a +-=≠的解,则代数式20202a b ++的值是________.【答案】2024【解析】【分析】把x=2代入已知方程求得2a+b的值,然后将其整体代入所求的代数式并求值即可.【详解】解:∵关于x的一元二次方程280ax bx+-=的解是x=2,∴4a+2b-8=0,则2a+b=4,∴2020+2a+b=2020+(2a+b)=2020+4=2024.故答案是:2024.【点睛】本题考查了一元二次方程的解定义,以及求代数式的值,解题时,利用了“整体代入”的数学思想.16.如图,点G是ABCV的重心,AG的延长线交BC于点D,过点G作GE//BC交AC于点E,如果BC6=,那么线段GE的长为______.【答案】2【解析】分析:由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.详解:∵点G是△ABC重心,BC=6,∴CD=12BC=3,AG:AD=2:3,∵GE∥BC,∴△AEG∽△ADC,∴GE:CD=AG:AD=2:3,∴GE=2.故答案为2.点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG:AD=2:3是解题的关键.17.如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是_____.【答案】33.【解析】【分析】圆锥的侧面展开图是扇形,从A 点出发绕侧面一周,再回到A 点的最短的路线即展开得到的扇形的弧所对弦,转化为求弦的长的问题.【详解】解:如下图,将圆锥侧面展开,A 点对应的点为'A 点,连接'AA 即为最短路线,过P 点作PO ⊥'AA ,则AO=1','2A O APO APA ∠=∠.∵图中扇形的弧长是2π,根据弧长公式得到2π=3180n π, ∴n =120°即扇形的圆心角是120°,∴∠APO=60°,∴AO=AP ×sin60°=332, ∴弧所对的弦长'AA =2AO =3故答案为:3【点睛】本题考查圆锥的侧面展开图,垂径定理,解直角三角形. 正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键18.如图,分别过反比例函数3y x=图象上的点()()11221,,2,P y P y , ...(),n n P n P ···作x 轴的垂线,垂足分别为12,,A A ······n A ,连接1223,,A P A P ···1,n n A P -再以1112,,A P A P 为一组邻边画一个平行四边形1112,A PB P ,以2223,A P A P 为一组邻边画一个平行四边形22A P 23B P,依此类推,则点n B 的纵坐标是_____.(结果用含n 代数式表示)【答案】()631n n n ++ 【解析】【分析】根据反比例函数图象上点的坐标特征求得点P 1、P 2的纵坐标,由平行四边形对边平行且相等的性质求得点B 1的纵坐标是y 2+y 1、B 2的纵坐标是y 3+y 2、B 3的纵坐标是y 4+y 3,据此可以推知点B n 的纵坐标.【详解】解:∵点P 1(1,y 1),P 2(2,y 2)在反比例函数3y x =的图象上, ∴y 1=3,y 2=32; ∴P 1A 1=y 1=3;又∵四边形A 1P 1B 1P 2,是平行四边形,∴P 1A 1=B 1P 2=3,P 1A 1//B 1P 2 ,∴点B 1的纵坐标是:y 2+y 1=32+3,即点B 1的纵坐标是92; 同理求得,点B 2的纵坐标是:y 3+y 2=35122+=; 点B 3的纵坐标是:y 4+y 3=37144+=; …∴点B n 的纵坐标是:y n+1+y n =33631(1)n n n n n ++=++; 故答案是:()631n n n ++. 【点睛】本题考查了平行四边形的性质、反比例函数图象上点的坐标特征、反比例函数的图象.解答此题的关键是根据平行四边形的对边平行且相等的性质求得点B n 的纵坐标y n+1+y n .三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(1)计算:10120192302cos -⎛⎫+︒ ⎪⎝⎭(2)先化简,再求值,22453262a a a a a --÷-+++,其中5a =-.【答案】(1)3+(2)32a -+,1. 【解析】【分析】(1)先根据负整数指数幂、零指数幂的意义,二次根式的性质,以及特殊角的三角函数值逐项化简,再算加减即可;(2)先根据分式混合运算的法则把所给代数式化简,再把5a =-代入计算即可.【详解】(1)解:原式212=++3=+;(2)解:原式()()()23253222a a a a a a +-=⋅-++-+ 2522a a =-++ 32a =-+, 当5a =-时,原式3152=-=-+. 【点睛】本题考查了实数的混合运算,分式的化简求值,熟练掌握特殊角的三角函数值以及分式的运算法则是解答本题的关键.20.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (2,2),B (4,0),C (4,-4). (1)请在图中画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧画出△A 2B 2C 2,; (3)填空:△AA 1A 2的面积为________________.【答案】3【解析】【分析】(1)根据平移的性质直接求出特殊点的对应点坐标,连线即可;(2根据位似变换的性质,确定位似中心,根据位似比作图即可;(3)由格点坐标,根据三角形的面积求解即可.【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求,(3)△AA 1A 2的面积=12×6=3. 点睛:本题考查了利用位似变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题关键.21.如图,已知()()14,,1,2A B m --是一次函数y kx b =+与反比例函数()20y x x=-<图象的两个交点,AC x ⊥轴于,C BD y ⊥轴于D .(1)求一次函数解析式及m 的值;(2)P 是线段AB 上的一点,连接,,PC PD 若PCA V 和PDB △面积相等,求点P 坐标.【答案】(1)1522y x =+,2m =;(2)P 点坐标是55,24⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)把()1,B m -代入反比例函数2y x =-即可求出m 的值,再把1(4,)2A -,()1,2B -代入y kx b =+,用待定系数法求解即可;(2)设15,22P x x ⎛⎫+ ⎪⎝⎭,根据PCA V 和PDB △面积相等列方程求解即可. 【详解】(1)把()1,B m -代入反比例函数2y x =-得,2m =, y kx b =+的图象过点()14,,1,22A B ⎛⎫⎪⎭- ⎝-,则 1422k b k b ⎧-+=⎪⎨⎪-+=⎩,解得1252k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴一次函数的解析式为1522y x =+; (2)连接,PC PD 、如图,设15,22P x x ⎛⎫+ ⎪⎝⎭, 由PCA V 和PDB △面积相等得()1111542222122x x ⎛⎫=⨯-⨯- ⎪⎝⨯⨯-⎭+, 解得52x =-, ∴155224y x =+=, P ∴点坐标是55,24⎛⎫-⎪⎝⎭. 【点睛】本题考查了反比例函数与一次函数的综合,三角形的面积公式,以及数形结合的数学思想,熟练掌握待定系数法是解答本题的关键.22.在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A :乒乓球,B :篮球,C :跑步,D :跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图.请你结合图中信息解答下列问题:(1)样本中喜欢B 项目人数百分比是 ,其所在扇形统计图中的圆心角的度数是 ; (2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?【答案】解:(1)20%,72°.(2)答案见解析:(3)440 人.【解析】【分析】(1)根据扇形统计图知,样本中喜欢B项目的人数百分比是:1-44%-28%-8%=20%,其所在扇形统计图中的圆心角的度数是3600×20%=700.(2)由A的数据求出样本人数:44÷44%=100(人),从而得到B的人数:100×20%=20(人),据此将条形统计图补充完整.(3)用样本的数据估计总体.【详解】解:(1)1-44%-8%-28%=20%,所在扇形统计图中的圆心角的度数是:360×20%=72°故答案为:20%,72°.(2)调查的总人数是:44÷44%=100(人),则喜欢B的人数是:100×20%=20(人),条形统计图补充完整如图:(3)∵1000×44%=440(人),∴估计全校喜欢乒乓球的人数是440 人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.某建设工程队计划每小时挖掘土石方540方,现决定租用甲、乙两种型号的挖掘机来完成这项工作,已知一台甲型挖掘机与一台乙型挖掘机每小时共挖土140方,5台甲型挖掘机与3台乙型挖掘机恰好能完成每小时的挖掘量.(1)求甲、乙两种型号的挖掘机每小时各挖土多少方?(2)若租用一台甲型挖掘机每小时100元,租用一台乙型挖掘机每小时120元,且每小时支付的总租金不超过850元,又恰好完成每小时的挖掘量,请设计该工程队的租用方案.【答案】(1)甲型号的挖掘机每小时挖土60方,乙型号的挖掘机每小时挖土80方;(2)该工程队的租用方案为租1台甲型挖掘机和6台乙型挖掘机.【解析】【分析】(1)设甲型号的挖掘机每小时挖土x 方,乙型号的挖掘机每小时挖土y 方,根据“一台甲型挖掘机与一台乙型挖掘机每小时共挖土140方,5台甲型挖掘机与3台乙型挖掘机每小时共挖土540方”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设租用m 台甲型挖掘机、n 台乙型挖掘机,根据每小时共挖土540方,即可得出关于m 、n 的二元一次方程,结合m 、n 均为正整数即可得出租车方案,再根据每小时支付的总租金不超过850元,即可确定租车方案.【详解】(1)设甲型号的挖掘机每小时挖土x 方,乙型号的挖掘机每小时挖土y 方,根据题意得:14053540x y x y +=⎧⎨+=⎩, 解得:6080x y =⎧⎨=⎩, 答:甲型号的挖掘机每小时挖土60方,乙型号的挖掘机每小时挖土80方;(2)设租用m 台甲型挖掘机、n 台乙型挖掘机,根据题意得:6080540m n +=,化简得:3427m n +=,493m n ∴=-, m n Q 、均为正整数,53m n =⎧∴⎨=⎩或16m n =⎧⎨=⎩, 当53m n ==、时,支付租金:10051203860⨯+⨯=(元),860850>Q ,∴此租车方案不符合题意;当16m n ==、时,支付租金: 10011206820⨯+⨯=(元),820850<Q ,∴此租车方案符合题意.答:该工程队的租用方案为租1台甲型挖掘机和6台乙型挖掘机.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据每小时共挖土540方结合m 、n 均为正整数,找出各租车方案. 24.已知直线PA 交O e 于A B 、两点,AE 是O e 的直径,点C 为O e 上一点,且AC 平分PAE ∠,过C 作CD PA ⊥,垂足为D .()1求证:CD 为O e 的切线;()2若2CD AD =,O e 的直径为20,求线段AC AB 、的长.【答案】(1)详见解析;(2)45AC =,AB=12.【解析】【分析】(1)连接OC ,根据题意可得∠ACD+∠CAD=90°,根据角平分线的条件可证得∠DCO=90°,则CD 为O e 的切线;(2)作OF AB ⊥于F ,可得2CD AD =,在Rt AOF V 中,根据勾股定理列方程求解.【详解】证明:(1)连接OC .Q 点C 在O e 上,OA OC =,OCA OAC ∴∠=∠,CD PA ⊥Q ,90CDA ∴∠=︒,90CAD DCA ∴∠+∠=︒,AC Q 平分PAE ∠,DAC CAO ∴∠=∠,90DCO DCA ACO DCA DAC ∴∠=∠+∠=∠+∠=︒,CD ∴是O e 切线.(2)作OF AB ⊥于F ,90OCD CDF OFD ∴∠=∠=∠=︒,∴四边形CDFO 是矩形,,OC FD OF CD ∴==,2CD AD =Q ,设AD x =,则2OF CD x ==,10DF OC ==Q ,10AF x ∴=﹣,在Rt AOF V 中,222AF OF OA +=,()()22210210x x ∴-+=,解得4x =或0(舍去), 46,45AD AF AC ∴===,,OF AB ⊥Q ,212AB AF ∴==.【点睛】本题考查切线的判定定理及利用圆的相关性质进行计算,利用垂径定理和勾股定理求解是解答此题的关键.25.如图,已知抛物线23y ax bx =++与x 轴交于点()()1,0,3,0A B -.(1)求该抛物线的表达式;(2)点E 是线段BC 上方的抛物线上一个动点,求BEC △的面积的最大值;(3)点P 是抛物线的对称轴上一个动点,当以A 、P 、C 为顶点的三角形是直角三角形时,求出点P 的坐标.【答案】(1)2y x 2x 3=-++;(2)△BEC 的面积的最大值为278;(3)符合条件的点P 的坐标是(1)23-,或8(1,)3或()1,1或()12,. 【解析】【分析】(1)将点A 、B 的坐标代入函数解析式,列出方程组,通过解方程组求得a 、b 的值即可;(2)利用待定系数法确定直线BC 解析式,由函数图象上点的坐标特征求得点E 、F 的坐标,然后根据两点间的距离公式求得EF 长度,结合三角形的面积公式列出函数式,根据二次函数最值的求法求得点E 的横坐标,易得其纵坐标,则点E 的坐标迎刃而解了;(3)需要分类讨论:点A 、P 、C 分别为直角顶点,利用勾股定理求得答案.【详解】(1)∵抛物线23y ax bx =++与x 轴交于点()()1,0,3,0A B -, 309330a b a b -+=⎧∴⎨++=⎩,解得12a b =-⎧⎨=⎩, 223y x x ∴=-++;(2)如图,作//EF y 轴交BC 于点,F 记BEC △的面积为S ,设直线BC 的解析式为y=kx+b , ()()3,0,0,3B C Q ,∴303k b b +=⎧⎨=⎩, 解得=13k b -⎧⎨=⎩, ∴直线BC 解析式为:3y x =-+.设2(3)2E m m m -++,,则3()F m m -+,, ()()222333.EF m m m m m ∴=-++--+=-+, ()221133273322228S EF OB m m m ⎛⎫∴=⋅=-+⨯=--+ ⎪⎝⎭, 当32m =时,278S =最大, 此时,点E 的坐标是315,24⎛⎫⎪⎝⎭; ()3设()()()1,, 1,00,3P n A C -、,()222222104,13610AC AP n CP n n n ==++=-∴=-+,; ①当AC AP ⊥时,222,AC AP CP +=即22104610n n n ++=-+.解得23n =-; ②当AC CP ⊥时,222AC CP AP +=,即22106104n n n +-+=+,解得83n =; ③当AP CP ⊥时,222,AP CP AC +=即22461010n n n ++-+=.解得1n =或2.综上所述,符合条件的点P 的坐标是(1)23-,或8(1,)3或()1,1或()1,2, 【点睛】主要考查了待定系数法求二次函数的解析式和一次函数解析式,利用二次函数求最值,勾股定理,以及二次函数与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.26.如图1,在△ABC 中,AB =BC =5,AC =6.△ECD 是△ABC 沿BC 方向平移得到的,连接AE .AC 和BE 相交于点O .。
2020届初中学业水平 第一模拟考试 数学试题(含答案)
解不等式组 得-4≤x<2.5, -------------------------7 分 则该不等式组的整数解为-4,-3,-2,-1,0,1,2, ∵x≠±1 且 x≠±2,x≠0, ∴x=-4 或 x=-3,
当 x=-4 时,原式=- = ;
当 x=-3 时,原式=- = . -------------------------10 分 22、(12 分)解: 设每只 A 型口罩销售利润为 a 元,每只 B 型口罩销售利润为 b 元,根据题意得
(2)连接 OC,设⊙O 的半径为 r, ∵AH=3、CH=4, ∴OH=r﹣3,OC=r,
则(r﹣3)2+42=r2,
解得:r= , ∵GM∥AC, ∴∠CAH=∠M, ∵∠OEM=∠AHC, ∴△AHC∽△MEO,
∴ = ,即 = ,-------------------------13 分
解得:EM= . 25.【13 分】解:(1)∵线段 OB 的长是方程 x2﹣2x﹣8=0 的解,
13、-b(3a-2)2 ,11;14、 ﹣1,a≥-3 且 a≠±1;15、
16、 17、(2,2)) 18、 -6<a≤-5
19、
20、
三、解答题:本大题共 6 个小题,满分 74 分.解答时请写出必要的演推过程.
21、(10 分)解:原式=
-·
=
-
=
-
= =- ,
-------------------------5 分
即药店购进 A 型口罩 500 只、B 型口罩 1500 只,才能使销售总利润最大;
设 B 型口罩降价的幅度是 x,根据题意得
,
解得
.
答:B 型口罩降价的幅度 23、(12 分)
2020年中考数学一模试卷和答案解析
2020年中考数学一模试卷一、选择题(本大题8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1.2﹣的相反数是()A.﹣2﹣B.2﹣C.﹣2 D.2+2.下列图形中,是中心对称图形,但不是轴对称图形的有()A.1个 B.2个 C.3个 D.4个3.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A.7.1×107B.0.71×10﹣6C.7.1×10﹣7D.71×10﹣84.如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC于点D,若DE垂直平分AB,则∠C 的度数为()A.90°B.84°C.64°D.58°(4题)(7题)(8题)5.计算(2a3b2)2÷ab2的结果为()A.2a2B.2a5b2C.4a4b2D.4a5b26.若一次函数y=kx+b图象经过第一、三、四象限,则关于x的方程x2﹣2x+kb+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根7.如图,在平面直角坐标系中,已知点A(2,4),B(4,1),以原点O为位似中心,将△OAB 缩小为原来的,则点A的对应点A的坐标是()A.(2,)B.(1,2)C.(4,8)或(﹣4,﹣8) D.(1,2)或(﹣1,﹣2)8.如图,二次函数y=ax2+c的图象与反比例函数y=的图象相交于A(﹣,1),则关于x的不等式ax2+c>的解集为()A.x<﹣B.x>﹣C.x<﹣或x>0 D.﹣<x<1二、填空题(本题6小题,每小题3分,共18分)9.计算:﹣(﹣)﹣2=.10.据统计,2019年国庆假日期间,我市共接待游客600万人次.其中各景区接待游客人次占总接待游客人次比例如图所示.预计今年国庆假日期间我市总接待游客人次将比去年增长20%,则预计今年国庆假日期间崂山景区将接待游客约为万人次.(10题)(11题)(13题)11.如图,点A,B,C在⊙O上,∠A=26°,∠AOB=100°,则∠B的度数为°.12.某学校要新购置一批课桌椅,现有甲、乙两种规格的课桌椅可供选择.已知购买甲种课桌椅3套比购买乙种2套共多60元;购买甲种5套和乙种3套,共需1620元.求甲、乙两种规格的课桌椅每套价格分别是多少元?若设甲、乙两种规格的课桌椅每套价格分别是x和y元,根据题意,可列方程组为.13.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为cm2.14.如图,点O是正方形ABCD对角线AC和BD的交点,E是BD上一点,过点D作DF⊥CE于F,交OC于G,过点E作EH⊥BC于H,已知正方形ABCD的边长为2,∠ECH=30°,则线段CG的长为.三、作图题(用圆规、直尺作图,不写作法,保留作图痕迹)15.如图,△ABC是一块三角形木料,现要在该木料中切割出一个圆形模板,要求圆形模板经过木料边缘AB上的点P,且与边缘AB,AC都相切,请在图中画出符合条件的圆形模板.四、解答题(共9小题,共74分)16.(1)化简:(a﹣)×;(2)已知﹣5,2x+1,2﹣x这三个实数在数轴上所对应的点从左到右依次排列,求x的取值范围.17.甲乙两人用两张黑桃和两张红心共四张扑克牌做游戏,规则如下:把四张扑克牌背面朝上,充分洗匀后,随机从中抽取两张,若这两张牌的花色相同,则甲获胜,否则乙获胜.这个游戏对双方公平吗?请说明理由.18.如图是某斜拉桥引申出的部分平面图,AE,CD是两条拉索,其中拉索CD与水平桥面BE的夹角为72°,其底端与立柱AB底端的距离BD为4米,两条拉索顶端距离AC为2米,若要使拉索AE与水平桥面的夹角为35°,请计算拉索AE的长.(结果精确到0.1米)(参考数据:sin35°≈,cos35°≈,tan35°≈,sin72°≈,cos72°≈,tan72°≈)19.某市为了解学生数学学业水平,对八年级学生进行质量监测.甲、乙两个学校八年级各有300名学生参加了质量监测,分别从这两所学校个随机抽取了20名学生的本次测试成绩如下(满分100分)甲:75 86 74 81 76 75 70 95 70 79 81 74 70 80 86 69 83 75 86 75乙:73 93 88 81 40 72 81 94 83 77 83 80 70 81 73 78 82 80 70 81将收集的数据进行整理,制成如下条形统计图:注:60分以下为不及格,60~69分为及格,70~79分为良好,80分及以上为优秀.通过对两组数据的分析制成上面的统计表,请根据以上信息回答下列问题:(1)补全条形统计图,并估计本次监测乙校达到优秀的学生总共约有多少人?(2)求出统计表中的a,b的值;(3)请判断哪个学校的数学学业水平较好,说说你的理由.20.某果品超市经销一种水果,已知该水果的进价为每千克15元,通过一段时间的销售情况发现,该种水果每周的销售总额相同,且每周的销售量y(千克)与每千克售价x(元)的关系如表所示每千克售价x(元)2530 40每周销售量y(千克)240200150(1)写出每周销售量y(千克)与每千克售价x(元)的函数关系式;(2)由于销售淡季即将来临,超市要完成每周销售量不低于300千克的任务,则该种水果每千克售价最多定为多少元?(3)在(2)的基础上,超市销售该种水果能否到达每周获利1200元?说明理由.21.已知:如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点H,G,连接DH,BG.(1)求证:△AEH≌△CFG;(2)连接BE,若BE=DE,则四边形BGDH是什么特殊四边形?请说明理由.22.有一个抛物线型蔬菜大棚,将其截面放在如图所示的直角坐标系中,抛物线可以用函数y=ax2+bx来表示.已知大棚在地面上的宽度OA为8米,距离O点2米处的棚高BC为米.(1)求该抛物线的函数关系式;(2)求蔬菜大棚离地面的最大高度是多少米?(3)若借助横梁DE建一个门,要求门的高度不低于1.5米,则横梁DE的宽度最多是多少米?23.【问题提出】:将一个边长为n(n≥2)的正三角形的三条边n等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少呢?【问题探究】:要研究上面的问题,我们不妨先从特例入手,进而找到一般规律.探究一:将一个边长为2的正三角形的三条边平分,连接各边中点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?如图1,连接边长为2的正三角形三条边的中点,从上往下:共有1+2+3=6个结点.边长为1的正三角形,第一层有1个,第二层有2个,共有1+2=3个,线段数为3×3=9条;边长为2的正三角形有1个,线段数为3条,总共有3×(1+2+1)=2×(1+2+3)=12条线段.探究二:将一个边长为3的正三角形的三条边三等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?如图2,连接边长为3的正三角形三条边的对应三等分点,从上往下:共有1+2+3+4=10个结点.边长为1的正三角形,第一层有1个,第二层有2个,第三层有3个,共有1+2+3=6个,线段数为3×6=18条;边长为2的正三角形有1+2=3个,线段数为3×3=9条,边长为3的正三角形有1个,线段数为3条,总共有3×(1+2+3+1+2+1)=3×(1+2+3+4)=30条线段.探究三:请你仿照上面的方法,探究将边长为4的正三角形的三条边四等分(图3),连接各边对应的等分点,该三角形被剖分的网格中的结点个数和线段数分别是多少?(画出示意图,并写出探究过程)【问题解决】:请你仿照上面的方法,探究将一个边长为n(n≥2)的正三角形的三条边n等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?(写出探究过程)【实际应用】:将一个边长为30的正三角形的三条边三十等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?24.(12分)如图,矩形ABCD中,AB=8cm,AD=10cm,E是AD上一点,AE=6cm,连接BE,CE.点P从点E出发,沿EB方向向点B匀速运动,同时点Q从点C出发,在BC的延长线上匀速运动,P,Q的运动速度均为lcm/s.连接DQ,PQ,PQ交CE于F,设点P,Q的运动时间为t(s)(0<t<10).(1)当t为何值时,PQ⊥BE?(2)设四边形PQDE的面积为y(cm2),求y与t之间的函数关系式.(3)是否存在某一时刻t,使得S四边形PQDE :S矩形ABCD=7:10?若存在,求出t的值;若不存在,请说明理由.(4)过点P作PG⊥CE于G,在P,Q运动过程中,线段FG的长度是否发生变化?若变化,说明理由:若不变化,求出线段FG的长度.2020年中考数学一模试卷参考答案与试题解析一、选择题(本大题8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)2﹣的相反数是()A.﹣2﹣B.2﹣C.﹣2 D.2+【分析】根据相反数的定义解答.【解答】解:依题意得:2﹣的相反数是﹣(2﹣)=﹣2+.故选:C.【点评】考查了实数的性质.属于基础题,熟记相反数的定义即可解题.2.(3分)下列图形中,是中心对称图形,但不是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【分析】直接利用轴对称图形和中心对称图形的概念求解.【解答】解:第1个图形是轴对称图形,但不是中心对称图形,故此选项错误;第2个图形是轴对称图形,不是中心对称图形,故此选项错误;第3个图形既是中心对称图形也是轴对称图形,故此选项错误;第4个图形不是轴对称图形,是中心对称图形,故此选项正确;故选:A.【点评】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.3.(3分)肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A.7.1×107B.0.71×10﹣6C.7.1×10﹣7D.71×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数字0.00000071用科学记数法表示为7.1×10﹣7,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC于点D,若DE垂直平分AB,则∠C的度数为()A.90°B.84°C.64°D.58°【分析】根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B=32°,根据角平分线的定义、三角形内角和定理计算即可.【解答】解:∵DE垂直平分AB,∴DA=DB,∴∠DAB=∠B=32°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=32°,∴∠C=180°﹣32°﹣32°﹣32°=84°,故选:B.【点评】本题考查的是线段的垂直平分线的性质、角平分线的定义,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.(3分)计算(2a3b2)2÷ab2的结果为()A.2a2B.2a5b2C.4a4b2D.4a5b2【分析】根据整式的除法即可求出答案.【解答】解:原式=4a6b4÷ab2=4a5b2故选:D.【点评】本题考查整式的除法,解题的关键是熟练运用整式的除法法则,本题属于基础题型.6.(3分)若一次函数y=kx+b图象经过第一、三、四象限,则关于x的方程x2﹣2x+kb+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根【分析】由一次函数图象的位置可确定出k、b的符号,再计算方程的判别式即可.【解答】解:∵一次函数y=kx+b图象经过第一、三、四象限,∴k>0,b<0,∴kb<0,∴△=(﹣2)2﹣4(kb+1)=4﹣4kb﹣4=﹣4kb>0,∴关于x的方程x2﹣2x+kb+1=0有两个不相等的实数根,故选:A.【点评】本题主要考查根的判别式,正确判断出根的判别式的符号是解题的关键.7.(3分)如图,在平面直角坐标系中,已知点A(2,4),B(4,1),以原点O为位似中心,将△OAB缩小为原来的,则点A的对应点A的坐标是()A.(2,)B.(1,2) C.(4,8)或(﹣4,﹣8) D.(1,2)或(﹣1,﹣2)【分析】根据平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.【解答】解:以O为位似中心,把△OAB缩小为原来的,则点A的对应点A′的坐标为(2×,4×)或[2×(﹣),4×(﹣)],即(1,2)或(﹣1,﹣2),故选:D.【点评】本题考查的是位似变换的性质,平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.8.(3分)如图,二次函数y=ax2+c的图象与反比例函数y=的图象相交于A(﹣,1),则关于x的不等式ax2+c>的解集为()A.x<﹣B.x>﹣C.x<﹣或x>0 D.﹣<x<1【分析】把点P的纵坐标代入反比例函数解析式求出点P的坐标,再根据函数图象写出抛物线在双曲线上方部分的x的取值范围即可.【解答】解:∵点A横坐标为﹣,∴不等式ax2+c>的解集是x<﹣或x>0.故选:C.【点评】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便.二、填空题(本题6小题,每小题3分,共18分)9.(3分)计算:﹣(﹣)﹣2=2﹣2.【分析】根据二次根式的除法法则和负整数指数的意义计算.【解答】解:原式=+﹣4=2+2﹣4=2﹣2.故答案为2﹣2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.10.(3分)据统计,2017年国庆假日期间,我市共接待游客600万人次.其中各景区接待游客人次占总接待游客人次比例如图所示.预计今年国庆假日期间我市总接待游客人次将比去年增长20%,则预计今年国庆假日期间崂山景区将接待游客约为108万人次.【分析】先求得今年国庆假日期间我市总接待游客人次,再用样本中崂山景区将接待游客的百分比乘以今年的总人次即可得.【解答】解:今年国庆假日期间我市总接待游客人次为600×(1+20%)=720(万人次),所以预计今年国庆假日期间崂山景区将接待游客约为720×(1﹣8%﹣11%﹣66%)=108(万人次),故答案为:108.【点评】本题主要考查扇形统计图,解题的关键是掌握各项目的百分比之和为1及样本估计总体思想的运用.11.(3分)如图,点A,B,C在⊙O上,∠A=26°,∠AOB=100°,则∠B的度数为76°.【分析】设OB与AC交于点D,由三角形内角和定理和对顶角相等得到∠CDB=∠ADO=54°,结合圆周角定理推知∠ACB=50°,再在△CBD中,由三角形内角和定理求得∠B的度数.【解答】解:设OB与AC交于点D,∵在△AOD中,∠A=26°,∠AOD=100°,∴∠ADO=180°﹣26°﹣100°=54°,∴∠CDB=∠ADO=54°.又∠DCB=∠AOB=50°,∴在△CBD中,∠B=180°﹣50°﹣54°=76°.故答案是:76.【点评】本题主要考查圆周角定理,掌握在同圆或等圆中同弧所对的圆周角是圆心角的一半是解题的关键.12.(3分)某学校要新购置一批课桌椅,现有甲、乙两种规格的课桌椅可供选择.已知购买甲种课桌椅3套比购买乙种2套共多60元;购买甲种5套和乙种3套,共需1620元.求甲、乙两种规格的课桌椅每套价格分别是多少元?若设甲、乙两种规格的课桌椅每套价格分别是x和y元,根据题意,可列方程组为.【分析】设甲、乙两种规格的课桌椅每套价格分别是x和y元,根据:购买甲种课桌椅3套比购买乙种2套共多60元;购买甲种5套和乙种3套,共需1620元列出方程组求解即可;【解答】解:设甲、乙两种规格的课桌椅每套价格分别是x和y元,根据题意可得:,故答案为:,【点评】本题主要考查二元一次方程组的应用能力,根据题意准确抓住相等关系是解题的根本和关键.13.(3分)用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为(60+75π)cm2.【分析】求得该几何体的侧面积以及底面积,相加即可得到表面积.【解答】解:侧面积为10×(6+)=60+50π,底面积之和为:2×=15π,∴该几何体的表面积为60+50π+15π=60+65π,故答案为:60+65π.【点评】本题主要考查了几何体的表面积,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.14.(3分)如图,点O是正方形ABCD对角线AC和BD的交点,E是BD上一点,过点D作DF ⊥CE于F,交OC于G,过点E作EH⊥BC于H,已知正方形ABCD的边长为2,∠ECH=30°,则线段CG的长为﹣.【分析】证明△DOG≌△COE,求出OE=OG,求出CG=BE,解直角三角形求出BH、EH,根据勾股定理求出BE,求出OB,即可求出BE,即可求出答案.【解答】解:四边形ABCD是正方形,∴AC⊥BD,OD=OC,∴∠DOG=∠COE=90°,∴∠OEC+∠OCE=90°,∵DF⊥CE,∴∠OEC+∠ODG=90°,∴∠ODG=∠OCE,在△DOG和△COE中∴△DOG≌△COE(ASA),∴OE=OG,∵四边形ABCD是正方形,∴OB=OC,∴CG=BE,∵四边形BACD是正方形,∴∠OBC=45°,∵EH⊥BC,∴∠BHE=∠CHE=90°,∴BH=HE,设BH=HE=x,∵∠ECH=30°,∴CH=EH=x,∵BC=2,∴x+x=2解得:x=﹣1,即BH=EH=﹣1,在Rt△BHE中,由勾股定理得:BE==﹣,∴CG=BE=﹣,故答案为:﹣.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、作图题(用圆规、直尺作图,不写作法,保留作图痕迹)15.(4分)如图,△ABC是一块三角形木料,现要在该木料中切割出一个圆形模板,要求圆形模板经过木料边缘AB上的点P,且与边缘AB,AC都相切,请在图中画出符合条件的圆形模板.【分析】作∠BAC的角平分线和AB的垂线即可得到结论.【解答】解:作∠BAC的角平分线AM,过作AB的垂线PN交AM于O,以O为圆心,PO的长为半径的⊙O即为所求.【点评】本题考查了作图﹣应用与设计作图,切线的判定和性质,正确的作出图形是解题的关键.四、解答题(共9小题,共74分)16.(8分)(1)化简:(a﹣)×;(2)已知﹣5,2x+1,2﹣x这三个实数在数轴上所对应的点从左到右依次排列,求x的取值范围.【分析】(1)根据分式的减法和乘法可以解答本题;(2)根据数轴的特点可以列出相应的不等式组,从而可以求得x的取值范围.【解答】解:(1)(a﹣)×===a﹣b;(2)∵﹣5,2x+1,2﹣x这三个实数在数轴上所对应的点从左到右依次排列,∴,解得,﹣3<x<,即x的取值范围是,﹣3<x<.【点评】本题考查分式的混合运算、实数与数轴、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.17.(6分)甲乙两人用两张黑桃和两张红心共四张扑克牌做游戏,规则如下:把四张扑克牌背面朝上,充分洗匀后,随机从中抽取两张,若这两张牌的花色相同,则甲获胜,否则乙获胜.这个游戏对双方公平吗?请说明理由.【分析】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解.【解答】解:根据题意画图如下:共有12中情况,从4张牌中任意摸出2张牌花色相同的有4种可能,花色不同的有8种可能,所以甲获胜的概率为=、乙获胜的概率为=,由于≠,所以这个游戏对双方不公平.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.18.(6分)如图是某斜拉桥引申出的部分平面图,AE,CD是两条拉索,其中拉索CD与水平桥面BE的夹角为72°,其底端与立柱AB底端的距离BD为4米,两条拉索顶端距离AC为2米,若要使拉索AE与水平桥面的夹角为35°,请计算拉索AE的长.(结果精确到0.1米)(参考数据:sin35°≈,cos35°≈,tan35°≈,sin72°≈,cos72°≈,tan72°≈)【分析】利用锐角三角函数关系得出AB的长,进而得出AE的长即可得出答案.【解答】解:由题意可得:tan72°===,解得:BC=,则AB=BC+AC=+2=(m),故sin35°===,解得:AE≈26.2,答:拉索AE的长为26.2m.【点评】此题主要考查了解直角三角形的应用,正确得出AB的长是解题关键.19.(6分)某市为了解学生数学学业水平,对八年级学生进行质量监测.甲、乙两个学校八年级各有300名学生参加了质量监测,分别从这两所学校个随机抽取了20名学生的本次测试成绩如下(满分100分)甲:75 86 74 81 76 75 70 95 70 79 81 74 70 80 86 69 83 75 86 75乙:73 93 88 81 40 72 81 94 83 77 83 80 70 81 73 78 82 80 70 81将收集的数据进行整理,制成如下条形统计图:注:60分以下为不及格,60~69分为及格,70~79分为良好,80分及以上为优秀.通过对两组数据的分析制成上面的统计表,请根据以上信息回答下列问题:(1)补全条形统计图,并估计本次监测乙校达到优秀的学生总共约有多少人?(2)求出统计表中的a,b的值;(3)请判断哪个学校的数学学业水平较好,说说你的理由.【分析】(1)依据已知条件即可补全条形统计图,依据乙组数据的优秀率即可估计本次监测乙校达到优秀的学生总数;(2)依据两组数据,即可得到a,b的值;(3)依据两组数据的平均数相同,而两组数据良好以上的人数相同,但是乙组数据优秀的人数较多,故乙校的数学学业水平较好.【解答】解:(1)补全条形统计图:本次监测乙校达到优秀的学生总共约有300×=180(人);(2)乙班的中位数a=(80+81)=80.5;甲班的众数b为75;(3)两组数据的平均数相同,而两组数据良好以上的人数相同,但是乙组数据优秀的人数较多,故乙校的数学学业水平较好.(答案不唯一)【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.(8分)某果品超市经销一种水果,已知该水果的进价为每千克15元,通过一段时间的销售情况发现,该种水果每周的销售总额相同,且每周的销售量y(千克)与每千克售价x(元)的关系如表所示每千克售价x(元)2530 40240200150每周销售量y(千克)(1)写出每周销售量y(千克)与每千克售价x(元)的函数关系式;(2)由于销售淡季即将来临,超市要完成每周销售量不低于300千克的任务,则该种水果每千克售价最多定为多少元?(3)在(2)的基础上,超市销售该种水果能否到达每周获利1200元?说明理由.【分析】(1)直接利用反比例函数解析式求法得出答案;(2)直接利用y=300代入求出答案;(3)利用w=1200进而得出答案.【解答】解:(1)由表格中数据可得:y=,把(30,200)代入得:y=;(2)当y=300时,300=,解得:x=20,即该种水果每千克售价最多定为20元;(3)由题意可得:w=y(x﹣15)=(x﹣15)=1200,解得:x=经检验:x=是原方程的根,答:超市销售该种水果能到达每周获利1200元.【点评】此题主要考查了反比例函数的应用以及分式方程的应用,正确得出y与x的函数的关系式是解题关键.21.(8分)已知:如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点H,G,连接DH,BG.(1)求证:△AEH≌△CFG;(2)连接BE,若BE=DE,则四边形BGDH是什么特殊四边形?请说明理由.【分析】(1)先根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAH=∠FCG,从而利用ASA可作出证明;(2)根据平行四边形的性质及(1)的结论可得BH DG,则由有一组对边平行且相等的四边形是平行四边形证明四边形BHDG是平行四边形,再证明BH=DH即可得到四边形BHDG是菱形.【解答】证明:(1)四边形ABCD是平行四边形,∴∠DAB=∠BCD,∴∠EAH=∠FCG,又∵AD∥BC,∴∠E=∠F.∵在△AEH与△CFG中,,∴△AEH≌△CFG(ASA);(2)连接BE,∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,又由(1)得AH=CG,∠AEH=∠F,AE=CF,∴BH DG,∴四边形BHDG是平行四边形,∵AE=CF,AD=BC,∴DE=BF,∵BE=DE,∴BE=BF,∴∠BEF=∠F,∵∠AEH=∠F,∴∠BEF=∠DEF,在△BEH和△DEH中,∵,∴BH=DH,∵四边形BHDG是平行四边形,∴四边形BHDG是菱形.【点评】本题主要考查了平行四边形的性质、菱形的判定以及全等三角形的判定与性质,解题的关键是熟练掌握ASA和SAS证明两个三角形的判定以及菱形的判定定理,此题有一定的难度.22.(10分)有一个抛物线型蔬菜大棚,将其截面放在如图所示的直角坐标系中,抛物线可以用函数y=ax2+bx来表示.已知大棚在地面上的宽度OA为8米,距离O点2米处的棚高BC为米.(1)求该抛物线的函数关系式;(2)求蔬菜大棚离地面的最大高度是多少米?(3)若借助横梁DE建一个门,要求门的高度不低于1.5米,则横梁DE的宽度最多是多少米?【分析】(1)直接利用待定系数法求出二次函数解析式进而得出答案;(2)利用配方法求出二次函数顶点式进而得出答案;(3)利用y=1.5代入求出答案.【解答】解:(1)由题意可得,抛物线经过(2,),(8,0),故,解得:,故抛物线解析式为:y=﹣x2+x;(2)y=﹣x2+x=﹣(x﹣4)2+3,故蔬菜大棚离地面的最大高度是3米;(3)由题意可得:当y=1.5时,1.5=﹣x2+x,解得:x1=4+2,x2=4﹣2,故DE=x1﹣x2=4+2﹣(4﹣2)=4.【点评】此题主要考查了二次函数的应用,正确得出函数解析式是解题关键.23.(10分)【问题提出】:将一个边长为n(n≥2)的正三角形的三条边n等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少呢?【问题探究】:要研究上面的问题,我们不妨先从特例入手,进而找到一般规律.探究一:将一个边长为2的正三角形的三条边平分,连接各边中点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?如图1,连接边长为2的正三角形三条边的中点,从上往下:共有1+2+3=6个结点.边长为1的正三角形,第一层有1个,第二层有2个,共有1+2=3个,线段数为3×3=9条;边长为2的正三角形有1个,线段数为3条,总共有3×(1+2+1)=2×(1+2+3)=12条线段.探究二:将一个边长为3的正三角形的三条边三等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?如图2,连接边长为3的正三角形三条边的对应三等分点,从上往下:共有1+2+3+4=10个结点.边长为1的正三角形,第一层有1个,第二层有2个,第三层有3个,共有1+2+3=6个,线段数为3×6=18条;边长为2的正三角形有1+2=3个,线段数为3×3=9条,边长为3的正三角形有1个,线段数为3条,总共有3×(1+2+3+1+2+1)=3×(1+2+3+4)=30条线段.探究三:请你仿照上面的方法,探究将边长为4的正三角形的三条边四等分(图3),连接各边对应的等分点,该三角形被剖分的网格中的结点个数和线段数分别是多少?(画出示意图,并写出探究过程)【问题解决】:请你仿照上面的方法,探究将一个边长为n(n≥2)的正三角形的三条边n等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?(写出探究过程)【实际应用】:将一个边长为30的正三角形的三条边三十等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?【分析】模仿探究一、二即可解决问题;【解答】解:探究三:如图3中,连接边长为4的正三角形三条边的对应四等分点,从上往下:共有1+2+3+4+5=15个结点.边长为1的正三角形,第一层有1个,第二层有2个,第三层有3个,第四层有4个,共有1+2+3+4=10个结点个数,线段数为3×10=30条;边长为2的正三角形有1+2+3=6个,线段数为3×6=18条,边长为3的正三角形有3个,线段数为3×3=9,边长为4的正三角形有1个,线段数为3条,总共有3×(1+2+3+4+1+2+3+3+1)=4×(1+2+3+4+5)=60条线段.问题解决:探究将一个边长为n(n≥2)的正三角形的三条边n等分,连接各边对应的等分点,从上往下:共有1+2+3+4+5=15个结点.边长为1的正三角形,第一层有1个,第二层有2个,第三层有3个,第四层有4个,••第n层有n个,共有1+2+3+4+…+n个结点个数,线段数为3×(1+2+3=4+…+n)条;边长为2的正三角形有1+2+3=6个,线段数为3×6=18条,边长为3的正三角形有3个,线段数为3×3=9,边长为4的正三角形有1个,线段数为3条,…边长为n 的三角形1个,线段数为3,线段的个数为n(1+2+3+…+n+1).。
2020年中考数学一模试卷及答案
2020年中考数学一模试卷及答案题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.在实数|−3|,−2,0,π中,最小的数是()A. |−3|B. −2C. 0D. π2.如图,直线AD//BC,若∠1=42°,∠BAC=78°,则∠2的度数为()A. 42°B. 50°C. 60°D. 68°3.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A. 2.147×102B. 0.2147×103C. 2.147×1010D. 0.2147×10114.下列计算正确的是()A. a3⋅a3=2a3B. a2+a2=a4C. a6÷a2=a3D. (−2a2)3=−8a65.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A. 55°B. 60°C. 65°D. 70°6.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A. 2、40B. 42、38C. 40、42D. 42、407.下列命题是假命题的是()A. 平行四边形是轴对称图形B. 角平分线上的点到角两边的距离相等C. 正六边形的内角和是720°D. 不在同一直线上的三点确定一个圆8.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A. 40°B. 50°C. 60°D. 80°9.在同一直角坐标系中,二次函数y=x2与反比例函数y=1(x>0)的图象如图所示,若两个函数图象上有三个不同的点xA(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为().A. 1B. mC. m2D. 1m 10.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A. △ADF≌△CGEB. △B′FG的周长是一个定值C. 四边形FOEC的面积是一个定值D. 四边形的面积是一个定值第2页,共32页二、填空题(本大题共6小题,共18.0分)11. 在函数y =√x+2x中,自变量x 的取值范围是______.12. 方程组{x −y =2x +2y =5的解是______.13. 因式分解:8a 3−2ab 2=______.14. 如图,是某立体图形的三视图,则这个立体图形的侧面展开图的面积是______.(结果保留π)15. 如图,已知点A 、B 分别在反比例函数y =1x(x >0),y =−4x (x >0)的图象上,且OA ⊥OB ,则OBOA 的值为______.16. 如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC =60°,AB =12BC =1,则下列结论:①∠CAD =30°;②BD =√7;③S 平行四边形ABCD =12AB ⋅AC ;④OP =14DO ;⑤S △APO =√1312,正确的有______.三、解答题(本大题共10小题,共110.0分)17.计算:√18+(−3)0−6cos45°+(12)−1.18.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF//BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.19.先化简,再求值:(x2x−2+42−x)÷x2+4x+4x,其中x是方程x2−3x+2=0的解.20.为了解某校九年级男生200米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:第4页,共32页(1)a=______,b=______,c=______;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为______度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生200米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.21.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?22.如图,△AOB的顶点A、B分别在x轴,y轴上,∠BAO=45°,且△AOB的面积为8.(1)直接写出A、B两点的坐标;(2)过点A、B的抛物线G与x轴的另一个交点为点C.①若△ABC是以BC为腰的等腰三角形,求此时抛物线的解析式;②将抛物线G向下平移4个单位后,恰好与直线AB只有一个交点N,求点N的坐标.23.矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=k(k>0)的图象与边AC交于点E.x(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF,求∠EFC的正切值;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.第6页,共32页24.如图1,已知直线y=kx与抛物线y=−427x2+223交于点A(3,6).(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴正半轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴正半轴于点N,连结MN,若OM=ON=2,试求tan∠QNM及点Q的坐标;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m取何值时,符合条件的E点的个数只有1个.25.问题发现.(1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为______.(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值.(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.第8页,共32页答案和解析1.【答案】B【解析】解:在实数|−3|,−2,0,π中,|−3|=3,则−2<0<|−3|<π,故最小的数是:−2.故选:B.直接利用利用绝对值的性质化简,进而比较大小得出答案.此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.2.【答案】C【解析】解:∵∠1=42°,∠BAC=78°,∴∠ABC=60°,又∵AD//BC,∴∠2=∠ABC=60°,故选:C.依据三角形内角和定理,即可得到∠ABC=60°,再根据AD//BC,即可得出∠2=∠ABC= 60°.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.3.【答案】C【解析】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当第10页,共32页原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】【分析】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、合并同类项法则及同底数幂的除法、积的乘方与幂的乘方运算法则.根据同底数幂的乘法、合并同类项法则及同底数幂的除法、积的乘方与幂的乘方逐一计算可得.【解答】解:A.a3⋅a3=a6,此选项错误;B.a2+a2=2a2,此选项错误;C.a6÷a2=a4,此选项错误;D.(−2a2)3=−8a6,此选项正确.故选D.5.【答案】C【解析】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°−20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.根据旋转的性质和三角形内角和解答即可.此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.6.【答案】D【解析】解:这组数据的众数和中位数分别42,40.故选:D.根据众数和中位数的定义求解.本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.7.【答案】A【解析】解:A、平行四边形不是轴对称图形,错误,是假命题;B、角平分线上的点到角两边的距离相等,正确,是真命题;C、正六边形的内角和是720°,正确,是真命题;D、不在同一直线上的三点确定一个圆,正确,是真命题,故选:A.利用平行四边形的对称性、角平分线的性质、正多边形的内角和定理及确定圆的条件分别判断后即可确定答案.考查了命题与定理的知识,解题的关键是了解平行四边形的对称性、角平分线的性质、正多边形的内角和定理,难度不大.第12页,共32页8.【答案】D【解析】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°−∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.9.【答案】D【解析】【分析】本题考查二次函数图象的轴对称性,二次函数图象上点纵坐标相同时,对应点关于抛物线对称轴对称.三个点的纵坐标相同,由图象可知y=x2图象上点横坐标互为相反数,则x1+x2+x3= x3,再由反比例函数性质可求x3.【解答】解:设点A、B在二次函数y=x2图象上,点C在反比例函数y=1(x>0)的图象上.x因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,,则x3=1m.∴ω=x1+x2+x3=x3=1m故选D.10.【答案】D【解析】解:A、连接OA、OC,∵点O是等边三角形ABC的内心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO 平分,∴点O到AB 、的距离相等,∴点O 到、AC的距离相等,∴FO平分∠DFG,(∠FAD+∠ADF),∠DFO=∠OFG=12由折叠得:∠BDE=∠ODF=1(∠DAF+∠AFD),2∴∠OFD+∠ODF=1(∠FAD+∠ADF+∠DAF+∠AFD)=120°,2∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;第14页,共32页B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌≌△CGE,,的周长定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=13S△ABC(定值),故选项C正确;D、,过O作OH⊥AC于H,⋅FG⋅OH,∴S△OFG=12由于OH是定值,FG变化,故△OFG的面积变化,从而四边形的面积也变化,故选项D不一定正确;故选:D.A、根据等边三角形ABC的内心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF=∠EOG,可证明△DOF≌△GOF≌△GOE,△OAD≌△OCG,△OAF≌△OCE,可得AD=CG,AF=CE,从而得△ADF≌△CGE;B、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=第16页,共32页 13S △ABC(定值),可作判断; D 、方法同C ,将,根据S △OFG =12⋅FG ⋅OH ,FG 变化,故△OFG 的面积变化,从而四边形的面积也变化,可作判断. 本题考查了等边三角形的性质、三角形全等的性质和判定、角平分线的性质和判定、三角形和四边形面积及周长的确定以及折叠的性质,有难度,本题全等的三角形比较多,要注意利用数形结合,并熟练掌握三角形全等的判定,还要熟练掌握角平分线的逆定理的运用,证明FO 平分∠DFG 是本题的关键,11.【答案】x ≥−2且x ≠0【解析】解:由题意得,x +2≥0且x ≠0,解得x ≥−2且x ≠0.故答案为:x ≥−2且x ≠0.根据被开方数大于等于0,分母不等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【答案】{x =3y =1【解析】解:{x −y =2①x +2y =5②, ②−①,得:3y =3,解得:y =1,将y =1代入①,得:x −1=2,解得:x =3,所以方程组的解为{x =3y =1,故答案为:{x=3.y=1利用加减消元法求解可得.此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入法和加减法的应用.13.【答案】2a(2a+b)(2a−b)【解析】解:8a3−2ab2=2a(4a2−b2)=2a(2a+b)(2a−b).故答案为:2a(2a+b)(2a−b).首先提取公因式2a,再利用平方差公式分解因式得出答案.此题主要考查了提取公因式法分解因式以及公式法分解因式,正确应用公式是解题关键.14.【答案】65π【解析】解:由三视图可知圆锥的底面半径为5,高为12,所以母线长为13,所以侧面积为πrl=π×5×13=65π,故答案为:65π.从主视图以及左视图都为一个三角形,俯视图为一个圆形看,可以确定这个几何体为一个圆锥,由三视图可知圆锥的底面半径为5,高为12,故母线长为13,据此可以求得其侧面积.本题主要考查了由三视图确定几何体和求圆锥的侧面积.牢记公式是解题的关键,难度不大.15.【答案】12【解析】解:作AC⊥y轴于C,BD⊥y轴于D,如图,∵点A、B分别在反比例函数y=1x (x>0),y=−4x(x>0)的图象上,∴S△OAC=12×1=12,S△OBD=12×|−4|=2,∵OA⊥OB,∴∠AOB=90°∴∠AOC+∠BOD=90°,∴∠AOC=∠DBO,∴Rt△AOC∽Rt△OBD,∴S△AOCS△OBD =(OAOB)2=122,∴OAOB =12.故答案为12.作AC⊥y轴于C,BD⊥y轴于D,如图,利用反比例函数图象上点的坐标特征和三角形面积公式得到S△OAC=12,S△OBD=2,再证明Rt△AOC∽Rt△OBD,然后利用相似三角形的性质得到OAOB的值.本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.16.【答案】①②【解析】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,AD//BC,AO=CO,BO=DO,∴∠DAB=120°,且AE平分∠BAD,第18页,共32页∴∠BAE=∠DAE=60°=∠ABE,∴△ABE是等边三角形,∴AB=BE=AE,∵AB=12BC=1,∴AB=BE=AE=1,BC=2,∴EC=1=AE=BE,∴∠BAC=90°,∴∠CAD=∠BAD−∠BAC=30°,故①正确∵∠BAC=90°,∴S平行四边形ABCD=AB⋅AC,AC=√BC2−AB2=√4−1=√3,∴AO=√32,∴BO=√AB2+AO2=√1+34=√72,∴BD=√7故②正确,③错误∵AO=OC,BE=CE∴OE//AB,AB=2OE,∴ABOE=BPOP=2∴设OP=a,则BP=2a,OB=3a=OD,∴OP=13OD,∴S△APO=13S△ABO=13×12×1×√32=√312,故④⑤错误故答案为:①②由平行四边形的性质可得∠ABC=∠ADC=60°,AD//BC,AO=CO,BO=DO,可证△ABE是等边三角形,可得AB=BE=AE=1=EC,可得∠BAC=90°,即可判断①,由勾股定理可求OB的长,即可判断②,由平行四边形的面积公式可判断③,由三角形的中位线定理可判断④,由三角形的面积公式可判断⑤.本题考查了平行四边形的性质,勾股定理,三角形中位线定理,熟练运用平行四边形的性质是本题的关键.17.【答案】解:原式=3√2+1−6×√2+2=3√2+1−3√2+2=3.2【解析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.【答案】证明:(1)∵DF//BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD//BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).【解析】(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.第20页,共32页(2)由△AFD≌△CEB,容易证明AD=BC且AD//BC,可根据一组对边平行且相等的四边形是平行四边形.此题主要考查了全等三角形的判定和平行四边形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.平行四边形的判定,一组对边平行且相等的四边形是平行四边形.19.【答案】解:原式=x2−4x−2÷(x+2)2x=(x−2)(x+2)x−2⋅x(x+2)2=xx+2,解方程x2−3x+2=0得x=1或x=2(舍去),当x=1时,原式=11+2=13.【解析】分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.本题考查了分式的化简,熟练分解因式是解题的关键.20.【答案】(1)2;45;20(2)72(3)16【解析】解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=1840×100=45,c=840×100=20,故答案为:2、45、20;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,故答案为:72;(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)=212212=1616.(1)根据A等次人数及其百分比求得总人数,总人数乘以D等次百分比可得a的值,再用B、C等次人数除以总人数可得b、c的值;(2)用360°乘以C等次百分比可得;(3)画出树状图,由概率公式即可得出答案.此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:900x+5=1.5×500x,解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y元,根据题意得:500÷25×(1+1.5)y−500−900≥(500+900)×25%,解得:y≥35.答:每套悠悠球的售价至少是35元.【解析】(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x的分式方程,解之经检验后即可得出结论;第22页,共32页(2)设每套悠悠球的售价为y元,根据销售收入−成本=利润结合全部售完后总利润不低于25%,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式.22.【答案】解:(1)在Rt△AOB中,∵∠BAO=45°,∴AO=BO,⋅OA⋅OB=8,∴12∴OA=OB=4,∴A(4,0),B(0,4).(2)①当等C在点A的左侧时,易知C(−4,0),B(0,4),A(4,0),,顶点为B(0,4),时抛物线解析式为y=ax2+4,(4,0)代入得到a=−14x2+4.∴抛物线的解析式为y=−14当C与O重合时,△ABC是等腰三角形,但此时不存在过A,B,C三点的拋物线.当点C在点A的右侧时,△ABC是以BC为腰的等腰三角形,这个显然不可能,此种情形不存在,综上所述,抛物线的解析式为y=−1x2+4.4②抛物线G向下平移4个单位后,经过原点(0,0)和(4,−4),设抛物线的解析式为y=mx2+nx,把(4,−4)代入得到n=−1−4m,∴抛物线的解析式为y=mx2+(−1−4m)x,,消去y得到mx2−4mx−4=0,由{y=−x+4y=mx2+(−1−4m)x由题意△=0,∴16m2+16m=0,∵m≠0,第24页,共32页∴m =−1,∴抛物线的解析式为y =−x 2+3x , 由{y =−x +4y =−x 2+3x ,解得{x =2y =2, ∴N(2,2).【解析】(1)首先证明OA =OB ,利用三角形的面积公式,列出方程即可求出OA 、OB ,由此即可解决问题;(2)①首先确定A 、B 、C 的坐标,再利用的待定系数法即可解决问题;②抛物线G 向下平移4个单位后,经过原点(0,0)和(4,−4),设抛物线的解析式为y =mx 2+nx ,把(4,−4)代入得到n =−1−4m ,可得抛物线的解析式为y =mx 2+(−1−4m)x ,由{y =−x +4y =mx 2+(−1−4m)x ,消去y 得到mx 2−4mx −4=0,由题意△=0,可得16m 2+16m =0,求出m 的值即可解决问题.本题考查抛物线与x 轴的交点、等腰三角形的性质、待定系数法、一元二次方程的判别式等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.23.【答案】解:(1)∵OA =3,OB =4,∴B(4,0),C(4,3), ∵F 是BC 的中点, ∴F(4,32),∵F 在反比例y =kx 函数图象上, ∴k =4×32=6,∴反比例函数的解析式为y =6x , ∵E 点的坐标为3, ∴E(2,3);(2)∵F 点的横坐标为4,∴F(4,k4),∴CF =BC −BF =3−k 4=12−k4∵E 的纵坐标为3, ∴E(k3,3),∴CE =AC −AE =4−k 3=12−k 3,在Rt △CEF 中,tan ∠EFC =CECF =43,(3)如图,由(2)知,CF =12−k 4,CE =12−k 3,CE CF =43,过点E 作EH ⊥OB 于H ,∴EH =OA =3,∠EHG =∠GBF =90°, ∴∠EGH +∠HEG =90°,由折叠知,EG =CE ,FG =CF ,∠EGF =∠C =90°, ∴∠EGH +∠BGF =90°, ∴∠HEG =∠BGF , ∵∠EHG =∠GBF =90°, ∴△EHG ∽△GBF , ∴EHBG =EGFG =CECF , ∴3BG =43, ∴BG =94,在Rt △FBG 中,FG 2−BF 2=BG 2, ∴(12−k 4)2−(k 4)2=8116,∴k =218,∴反比例函数解析式为y =218x .【解析】(1)先确定出点C坐标,进而得出点F坐标,即可得出结论;(2)先确定出点F的横坐标,进而表示出点F的坐标,得出CF,同理表示出CF,即可得出结论;(3)先判断出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出结论.此题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,相似三角形的判定和性质,锐角三角函数,求出CE:CF是解本题的关键.24.【答案】解:(1)把点A(3,6)代入y=kx得;∵6=3k∴k=2,∴y=2x.OA=√32+62=3√5.(2)如图1中,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.设Q(m,2m)①当QH与QM重合时,显然QG与QN重合,此时tan∠QNM=QHQG =2mm=2;②当QH与QM不重合时,∵QN⊥QM,QG⊥QH,∴∠MQH=∠GQN,又∵∠QHM=∠QGN=90°∴△QHM∽△QGN,∴QMQN =QHQG=HMGN=2,∴tan∠QNM=QHQG =2mm=2;第26页,共32页∵OM=ON=2,∴HM=2−m,GN=2m−2,∵HM=2GN,∴2−m=2(2m−2),解得m=65,∴Q(65,125).(3)如答图2中,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R.∵∠AOD=∠BAE,∴AF=OF,∴OC=AC=12OA=32√5∵∠ARO=∠FCO=90°,∠AOR=∠FOC,∴△AOR∽△FOC,∴OFOC =AOOR=3√53=√5,∴OF=32√5×√5=152,∴点F(152,0),设点B(x,−427x2+223),过点B作BK⊥AR于点K,则△AKB∽△ARF,∴BKFR =AKAR,第28页,共32页即x−37.5−3=6−(−427x 2+223)6,解得x 1=6,x 2=3(舍去), ∴点B(6,2),∴BK =6−3=3,AK =6−2=4, ∴AB =5,(求AB 也可采用下面的方法)设直线AF 为y =kx +b(k ≠0)把点A(3,6),点F(152,0)代入得 k =−43,b =10,∴y =−43x +10,∴{y =−43x +10y =−427x 2+223, ∴{x =3y =6(舍去)或{x =6y =2, ∴B(6,2), ∴AB =5, 在△ABE 与△OED 中 ∵∠BAE =∠BED ,∴∠ABE +∠AEB =∠DEO +∠AEB , ∴∠ABE =∠DEO , ∵∠BAE =∠EOD , ∴△ABE ∽△OED ,设OE =a ,则AE =3√5−a(0<a <3√5), 由△ABE ∽△OED 得AEAB =ODOE , ∴3√5−a 5=ma ,∴m =15a(3√5−a)=−15a 2+3√55a(0<a <3√5),∴顶点为(32√5,94) 如答图3,当94时,OE =a =32√5,此时E 点有1个;当O <m <94时,任取一个m 的值都对应着两个a 值,此时E 点有2个. ∴当m =94时,E 点只有1个.【解析】(1)利用待定系数法即可解决问题;(2)如图1中,过点Q 作QG ⊥y 轴于点G ,QH ⊥x 轴于点H.设Q(m,2m).①当QH 与QM 重合时,显然QG 与QN 重合,此时tan ∠QNM =QH QG=2m m=2;②当QH 与QM 不重合时,由△QHM ∽△QGN ,即可解决问题;(3)如答图2中,延长AB 交x 轴于点F ,过点F 作FC ⊥OA 于点C ,过点A 作AR ⊥x 轴于点R.首先求出点F 坐标,AB 的长,再证明△ABE ∽△OED ,设OE =a ,则AE =3√5−a(0<a <3√5),由△ABE ∽△OED 得AEAB =ODOE ,可得3√5−a5=ma,推出m =15a(3√5−a)=−15a 2+3√55a(0<a <3√5),利用二次函数的性质解决问题即可;本题考查二次函数综合题、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会利用参数,构建方程解决问题,学会构建二次函数利用二次函数的性质解决问题,属于中考压轴题.25.【答案】(1)125;(2)9625;(3)存在.【解析】解:(1)如图①,过点C作CD⊥AB于D,根据点到直线的距离垂线段最小,此时CD最小,在Rt△ABC中,AC=3,BC=4,根据勾股定理得,AB=5,∵12AC×BC=12AB×CD,∴CD=AC×BCAB =125,故答案为125;(2)如图②,作出点C关于BD的对称点E,过点E作EN⊥BC于N,交BD于M,连接CM,此时CM+MN= EN最小;∵四边形ABCD是矩形,∴∠BCD=90°,CD=AB=3,根据勾股定理得,BD=5,∵CE⊥BC,∴12BD×CF=12BC×CD,∴CF=BC×CDBD =125,由对称得,CE=2CF=245,在Rt△BCF中,cos∠BCF=CFBC =35,∴sin∠BCF=45,在Rt△CEN中,EN=CEsin∠BCE=245×45=9625;即:CM+MN的最小值为9625;(3)如图3,∵四边形ABCD是矩形,∴CD=AB=3,AD=BC=4,∠ABC=∠D=90°,根据勾股定理得,AC=5,∵AB=3,AE=2,第30页,共32页∴点F在BC上的任何位置时,点G始终在AC的下方,设点G到AC的距离为h,∵S四边形AGCD =S△ACD+S△ACG=12AD×CD+12AC×ℎ=12×4×3+12×5×ℎ=52ℎ+6,∴要四边形AGCD的面积最小,即:h最小,∵点G是以点E为圆心,BE=1为半径的圆上在矩形ABCD内部的一部分点,∴EG⊥AC时,h最小,由折叠知∠EGF=∠ABC=90°,延长EG交AC于H,则EH⊥AC,在Rt△ABC中,sin∠BAC=BCAC =45,在Rt△AEH中,AE=2,sin∠BAC=EHAE =45,∴EH=45AE=85,∴ℎ=EH−EG=85−1=35,∴S四边形AGCD最小=52ℎ+6=52×35+6=152,过点F作FM⊥AC于M,∵EH⊥FG,EH⊥AC,∴四边形FGHM是矩形,∴FM=GH=35,∵∠FCM=∠ACB,∠CMF=CBA=90°,∴△CMF∽△CBA,∴CFAC =FMAB,∴CF5=353,∴CF=1∴BF=BC−CF=4−1=3.(1)根据点到直线的距离最小,再用三角形的面积即可得出结论;(2)先根据轴对称确定出点M和N的位置,再利用面积求出CF,进而求出CE,最后用三角函数即可求出CM+MN的最小值;(3)先确定出EG⊥AC时,四边形AGCD的面积最小,再用锐角三角函数求出点G到AC 的距离,最后用面积之和即可得出结论,再用相似三角形得出的比例式求出CF即可求出BF.此题是四边形综合题,主要考查了矩形的性质,点到直线的距离,轴对称,解本题的关键是确定出满足条件的点的位置,是一道很好的中考常考题.第32页,共32页。
2020年中考数学一模试卷(含答案) (2)
2020年中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的绝对值是()A.﹣B.﹣3C.D.32.(3分)函数y=中自变量x的取值范围是()A.x≠2B.x≥2C.x≤2D.x>23.(3分)在下列四个图形中,是中心对称图形的是()A.B.C.D.4.(3分)下列运算正确的是()A.2a2+a2=3a4B.(﹣2a2)3=8a6C.a3÷a2=a D.(a﹣b)2=a2﹣b25.(3分)某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.最高分B.中位数C.方差D.平均数6.(3分)下列图形中,主视图为图①的是()A.B.C.D.7.(3分)已知a﹣b=2,则a2﹣b2﹣4b的值为()A.2B.4C.6D.88.(3分)下列判断错误的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相平分的四边形是平行四边形9.(3分)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20B.﹣16C.﹣12D.﹣810.(3分)如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)16的平方根是.12.(2分)某人近期加强了锻炼,用“微信运动”记录下了一天的行走的步数为12400,将12400用科学记数法表示应为.13.(2分)若3m=5,3n=8,则32m+n=.14.(2分)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.15.(2分)如图,四边形ABCD内接于⊙O,OC∥AD,∠DAB=60°,∠ADC=106°,则∠OCB=°.16.(2分)如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.17.(2分)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,与x轴的一个交点为A(﹣1,0),点B在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数y=kx+b的图象经过A,B两点,根据图象,则满足不等式(x+2)2+m≤kx+b的x的取值范围是.18.(2分)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE=.三、解答题(共84分)19.(8分)(1)计算:(π﹣3)0+2sin45°﹣()﹣1;(2)解不等式组:.20.(8分)解方程:(1)x2﹣8x+1=0;(2)﹣=1;21.(8分)如图,▱ABCD中,E为AD的中点,直线BE、CD相交于点F.连接AF、BD.(1)求证:AB=DF;(2)若AB=BD,求证:四边形ABDF是菱形.22.(8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A、B、C、D、E五个组,x表示测试成绩,A组:90≤x ≤100;B组:80≤x<90;C组:70≤x<80;D组:60≤x<70;E组:x<60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?23.(8分)有甲、乙两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好都能打开的概率.(请用“画树状图”或“列表”等方法给出分析过程)24.(8分)如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.25.(8分)某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p≥1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.26.(8分)如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.27.(10分)已知,二次函数y=ax2+2ax﹣3a(a>0)图象的顶点为C,与x轴交于A,B两点(点A在点B的左侧),点C,B关于过点A的直线l对称,直线l与y轴交于D.(1)求A,B两点坐标及直线l的解析式;(2)求二次函数解析式;(3)在第三象限抛物线上有一个动点E,连接OE交直线l于点F,求的最大值.28.(10分)如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.2020年江苏省无锡市宜兴外国语学校中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【解答】解:﹣3的绝对值是3.故选:D.2.【解答】解:根据题意得:2﹣x≠0,解得:x≠2.故函数y=中自变量x的取值范围是x≠2.故选:A.3.【解答】解:A、不是中心对称图形,故此选项不符合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不符合题意;D、不是中心对称图形,故此选项不符合题意;故选:B.4.【解答】解:A、系数相加字母及指数不变,故A不符合题意;B、积的乘方等于乘方的积,故B不符合题意;C、同底数幂的除法底数不变指数相减,故C符合题意;D、(a﹣b)2=a2﹣2ab+b2,故D不符合题意;故选:C.5.【解答】解:某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的中位数.故选:B.6.【解答】解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.7.【解答】解:∵a﹣b=2,∴原式=(a+b)(a﹣b)﹣4b=2(a+b)﹣4b=2a+2b﹣4b=2(a﹣b)=4,故选:B.8.【解答】解:A、对角线互相垂直且相等的平行四边形是正方形,故本选项错误;B、对角线互相垂直平分的四边形是菱形,故本选项错误;C、对角线相等的四边形不一定是矩形,例如:等腰梯形的对角线相等,故本选项正确;D、对角线互相平分的四边形是平行四边形,故本选项错误;故选:C.9.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∴AF:EG=BD:BE,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.10.【解答】解:A、连接OA、OC,∵点O是等边三角形ABC的内心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠F AD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠F AD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+S△ADF=S四边形OF AD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC﹣S,△OFG过O作OH⊥AC于H,∴S△OFG=•FG•OH,由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确;故选:D.二、填空题(本大题共8小题,每小题2分,共16分)11.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.12.【解答】解:12400=1.24×104.故答案为:1.24×104.13.【解答】解:∵3m=5,3n=8,∴32m+n=(3m)2×3n=52×8=200.故答案为:200.14.【解答】解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.故答案为:2.15.【解答】解:∵OC∥AD,∴∠OCD=180°﹣∠ADC=74°,∵四边形ABCD内接于⊙O,∴∠BCD=180°﹣∠DAB=120°,∴∠OCB=∠BCD﹣∠OCD=46°,故答案为:46.16.【解答】解:过点O作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB•OE+BD•OF=CD•AC,即5×OE+2×OE=2×3,解得OE=,∴⊙O的半径是.故答案为:.17.【解答】解:抛物线y=(x+2)2+m经过点A(﹣1,0),∴m=﹣1,∴抛物线解析式为y=x2+4x+3,∴点C坐标(0,3),∴对称轴为x=﹣2,∵B与C关于对称轴对称,点B坐标(﹣4,3),∴满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1,故答案为﹣4≤x≤﹣1.18.【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.三、解答题(共84分)19.【解答】解:(1)原式=1+2×﹣8=﹣7;(2),由①得:x>﹣1,由②得:x<5,则不等式组的解集为﹣1<x<5.20.【解答】解:(1)∵x2﹣8x=﹣1,∴x2﹣8x+16=﹣1+16,即(x﹣4)2=15,则x﹣4=±,∴x=4;(2)两边都乘以x﹣2,得:3+1﹣x=x﹣2,解得x=3,经检验x=3是原分式方程的解.21.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD.∵点F在CD的延长线上,∴FD∥AB.∴∠ABE=∠DFE.∵E是AD中点,∴AE=DE.在△ABE和△DFE中,,∴△ABE≌△DFE(AAS)∴AB=DF;(2)证明:∵△ABE≌△DFE,∴AB=DF.∵AB∥DF,AB=DF,∴四边形ABDF是平行四边形.∵AB=BD,∴四边形ABDF是菱形.22.【解答】解:(1)本次抽取的学生共有:40÷10%=400(人),故答案为:400;A所占的百分比为:100÷400×100%=25%,C所占的百分比为:80÷400×100%=20%,B组的人数为:400×30%=120,补全的统计图如下图所示;(2)由扇形统计图可知,抽取的测试成绩的中位数落在B组内,故答案为:B;(3)1200×(25%+30%)=660(人),答:该校初三测试成绩为优秀的学生有660人.23.【解答】解:画树状图:可能出现的等可能性结果有6种,分别是(A,B),(A,C),(B,A),(B,C),(C,A),(C,B),只有1种情况(有先后顺序)恰好打开这两把锁P(恰好打开这两把锁)=.24.【解答】证明:(1)连接BO并延长交⊙O于点E,连接DE.∵BE是⊙O的直径,∴∠BDE=90°,∴∠EBD+∠E=90°,∵∠DBC=∠DAB,∠DAB=∠E,∴∠EBD+∠DBC=90°,即OB⊥BC,又∵点B在⊙O上,∴BC是⊙O的切线;(2)连接OD,∵∠BOD=2∠A=60°,OB=OD,∴△BOD是边长为6的等边三角形,∴S△BOD=×62=9,∵S扇形DOB==6π,∴S阴影=S扇形DOB﹣S△BOD=6π﹣9.25.【解答】解:(1)设购进水果a千克,水果售价定为m元/千克,水果商才不会亏本,则有a•m(1﹣5%)≥(12.5+0.8)a则a>0可解得:m≥14∴水果商要把水果售价至少定为14元/千克才不会亏本(2)由(1)可知,每千克水果的平均成本为14元得y与销售单价x之间的函数关系为:y=﹣5x+130由题意得:w=(x﹣14)y=(x﹣14)(﹣5x+130)=﹣5x2+200x﹣1820整理得w=﹣5(x﹣20)2+180∴当x=20时,w有最大值∴当销售单价定为20元时,每天获得的利润w最大,最大利润是180元.(3)设扣除捐赠后利润为s则s=(x﹣14﹣p)(﹣5x+130)=﹣5x2+(5p+200)x﹣130(p+14)∵抛物线的开口向下∴对称轴为直线x==∵销售价格大于每千克22元时,扣除捐赠后每天的利润s随x的增大而减小∴≤22解得p≤4故1≤p≤426.【解答】解:如图1所示:tan∠AOB===1,如图2所示:tan∠AOB===2,如图3所示:tan∠AOB===3,故tan∠AOB的值分别为1、2、3..27.【解答】解:(1)对于y=ax2+2ax﹣3a,令y=0,则x=﹣3或1,则点A、B的坐标分别为:(﹣3,0)、(1,0),则函数的对称轴为:x=﹣1,则顶点C坐标为:(﹣1,﹣4a),∵点C,B关于直线l对称,如下图:∴AC=AB=4,即(﹣3+1)2+(0+4a)2=42,解得:a=(负值已舍去),故点C的坐标为:(﹣1,﹣2),则BC==4=AB=AC,故△ABC为等边三角形,∵点C,B关于直线l对称,则BC∠⊥AD,故∠BAD=30°,则设直线l的表达式为:y=﹣x+b,将点A的坐标代入上式并解得:b=﹣,故直线l的表达式为:y=﹣x﹣;(2)由(1)知a=,故抛物线的表达式为:y=x2+x﹣;(3)∵直线l的表达式为:y=﹣x﹣;∴点D的坐标为:(0,﹣),即OD=,过点E作y轴的平行线交AD于点H,设点E(x,x2+x﹣),则点H(x,﹣x﹣),则EH=(﹣x﹣)﹣(x2+x﹣)=﹣x2﹣x+,∵HE∥y轴,∴△HEF∽△DOF,∴==﹣x2﹣x+,∵0,故有最大值,当x=﹣时,最大值为.28.【解答】(1)证明:如图1中,∵△ABE,△BGF都是等腰直角三角形,∴==,∵∠ABE=∠GBF=45°,∴∠ABG=∠EBF,∴△ABG∽△EBF.(2)解:如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.∵△GFH是等腰直角三角形,∴FG=FH,∠GNF=∠GFH=∠HMF=90°,∴∠GFN+∠HFM=90°,∠HFM+∠FHM=90°,∴∠GFN=∠FHM,∴△GFN≌△FHM,∴GN=FM,FN=HM,∵△ABG∽△EBF,∴==,∠AGB=∠EFB,∵∠AKG=∠BKF,∴∠GAN=∠KBF=45°,∵EF=t,∴AG=t,∴AN=GN=FM=t,∴AM=2+t,HM=FN=2+t,∴H(2+t,4+t),当点H在直线CD上时,2+t=10,解得t=.(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.∴点H在直线y=x+上运动,如图,作CH垂直直线y=x+垂足为H.根据垂线段最短可知,此时CH的长最小,易知直线CH的解析式为y=﹣3x+30,由,解得,∴H(8,6),∵C(10,0),∴CH==2,∴HC最小值是2.。
2020年度中考初三数学一模试卷(含答案解析)
2020年初三数学一模试卷、选择题(本大题共10小题,每小题3分,共30分) 1 . —3的绝对值是1A.—-3x2.函数中y=三自变量%的取值范围是7.已知a —b = 2,贝U a2—b2—4b的值为C . 6D . 88.下列判断错误的是A .对角线互相垂直且相等的平行四边形是正方形13名参加决赛,其中一名同学已经知道自己A.最高分B.方差C.中位数 D .平均数C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形B. x <24 .下列运算正确的是A . 2a2+ a2= 3 a4B . (—2a2)3= 8a5 6C . a3+a2= aD . (a —b)2= a2—b2B.对角线互相垂直平分的四边形是菱形A. x >2是中心对称图形的是C.k9 .如图,平面直角坐标系中, A (- 8 , 0), B (- 8 , 4), C (0, 4),反比例函数 y = 一的图象分别X与线段AB , BC 交于点D , E ,连接DE .若点B 关于DE 的对称点恰好在 OA 上,则k = A . - 20B . - 16C . - 12D . - 810 .如图,等边三角形 ABC 边长是定值,点 0是它的外心,过点 0任意作一条直线分别交 AB , BC 于 点D , E .将ABDE 沿直线DE 折叠,得到△ BDE ,若B'D , B'E 分别交AC 于点F , G ,连接OF , 0G , 则下列判断错误的是 B.A B FG 的周长是一个定值11 . 16的平方根是 ____________12 .某人近期加强了锻炼,用“微信运动”记录下了一天的行走步数为表示应为 ___________ .13 .若 3m = 5 , 3n = 8,贝H 32m + n = _________________14 .用一个圆心角为120 °,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为 ___________________ . 15 .如图,四边形 ABCD 内接于O O , OC //AD ,/DAB = 60 °,A DC = 106 °,^UQCB = __________________ 16 .如图,A ABC 中,/C = 90 °,AC = 3, AB = 5 , D 为BC 边的中点,以 AD 上一点O 为圆心的 O 和AB , BC 均相切,则O O 的半径为A . △ADF 也/CGEC •四边形FOEC 的面积是一个定值D •四边形OGB 'F 的面积是一个定值(第6题图①)、填空题(本大题共8小题,每小题2分,共16分)12400,将12400用科学记数法17.如图,二次函数y= (x+ 2)1 2+ m的图象与y轴交于点C,与x轴的一个交点为A (- 1, 0),点B在抛物线上,且与点C关于抛物线的对称轴对称•已知一次函数y= kx + b的图象经过A, B两点,根据图象,则满足不等式(x + 2)2+ m <kx + b的x的取值范围是______________ .18 .如图,正方形ABCD和Rt△AEF, AB = 5 , AE= AF= 4,连接BF, DE.若△AEF绕点A旋转,当/ABF 最大时,S ZADE = ____________1求证:AB = DF;2若AB = BD,求证:四边形ABDF是菱形.三、解答题(共84分)19 .(本题满分8分)1(1 )计算:(n—3)°+ 2sin45 °-一81 - 2x v 3(2)解不等式组:x + 1v 2320 .(本题满分8分)解方程:(1) x2- 8x + 1 = 0(2)3x-221 .(本题满分8分)如图, □ABCD中,E为AD的中点,直线BE, CD相交于点F.连接AF, BD.22 .(本题满分8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学 生的测试成绩进行统计(根据成绩分为A ,B ,C ,D ,E 五个组,x 表示测试成绩,A 组:90 <x <100 ;B 组:80 <x v 90 ;C 组:70 <x v 80 ;D 组:60 V 70 ;E 组:x V 60 ),通过对测试成绩的分析, 得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1 )抽取的学生共有 _________ ,请将两幅统计图补充完整; (2 )抽取的测试成绩的中位数落在 __________ 内;(3 )本次测试成绩在 80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?23 .(本题满分8分)有甲,乙两把不同的锁和 A , B , C 三把不同的钥匙•其中两把钥匙分别能打开这两把锁,第三把钥匙 不能打开这两把锁•随机取出两把钥匙开这两把锁,求恰好能都打开的概率.(请用“画树状图”或 “列表”等方法给出分析过程)B C调查测试成绩扇形统计图调查测试成绩条形统计图(分)24.(本题满分8分)如图,△ ABC中,O O经过A, B两点,且交AC于点D,连接BD,/DBC = /BAC .(1)证明BC与O O相切;25.(本题满分8分)某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1 )商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p》1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.26.(本题满分8分)如图,线段0B放置在正方形网格中,现请你分别在图1,图2,图3添画(工具只能用直尺)射线OA,使tan ZAOB的值分别为1,2,3.27 .(本题满分10分)已知,二次函数y = ax2+ 2ax —3a (a> 0)图象的顶点为C,与x轴交于A, B两点(点A在点B的左侧),点C, B关于过点A的直线I对称,直线l与y轴交于D .(1 )求A, B两点坐标及直线I的解析式;(2)求二次函数解析式;EF(3)在第三象限抛物线上有一个动点E,连接OE交直线I于点F,求OF的最大值.28 .(本题满分10 分)如图,矩形ABCD , AB = 2 , BC = 10 ,点E 为AD 上一点,且AE = AB ,点F 从点E 出发,向终点D 运动,速度为1 cm/s ,以BF 为斜边在BF 上方作等腰 Rt 壬FG ,以BG , BF 为邻边作CBFHG ,连接AG •设点F 的运动时间为t 秒,(1)试说明:△ ABG S /EBF ;(2)当点H 落在直线CD 上时,求t 的值;(3)点F 从E 运动到D 的过程中,直接写出 HC 的最小值.图1图29 .如图,平面直角坐标系中, A (- 8 , 0), B (- 8 , 4), C (0, 4),反比例函数y =鱼的图象分别与线段AB,BC交于点D,E,连接DE •若点B关于DE的对称点恰好在OA上,贝U k =( )形相似和对称,可求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG丄OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则ABDE^zFDE,•••BD = FD, BE= FE,Z DFE=Z DBE= 90A . - 20 B. - 16 C.- 12 D . - 8【分析】根据A (- 8 , 0), B (- 8 , 4 ), C (0 , 4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示出点D的纵坐标和点E的横坐标,由三角易证△ADF S £FE•丄厂•丽五,•••AF : EG = BD : BE ,••A (- 8 , 0), B (- 8 , 4), C (0 , 4), .•.AB = 0C = EG = 4 , OA = BC = 8 , •••D 、E 在反比例函数y =上的图象上,x•••E 出,4)、D (- 8,上)4 8•••OG = EC = , AD =-—,48•••BD = 4+二,BE = 8+-84•••AF =丄二二在Rt A ADF 中,由勾股定理: AD 2+AF 2 = DF 2 即:(-丄)2+2 2=( 4+丄)2解得:k =- 12 故选:C .10 •如图,等边三角形 ABC 边长是定值,点 O 是它的外心,过点 O 任意作一条直线分别交 AB , BC 于点D ,巳将厶BDE 沿直线DE 折叠,得到△ B'DE ,若B'D , B'E 分别交AC 于点F , G ,连接OF , OG , 则下列判断错误的是(* *” ----- —*甘 E 〜A .△ADF 也zCGEB .△B'FG的周长是一个定值C •四边形FOEC的面积是一个定值D •四边形OGB'F的面积是一个定值【分析】A、根据等边三角形ABC的内心的性质可知:AO平分/BAC,根据角平分线的定理和逆定理得:FO平分Z DFG,由外角的性质可证明/ DOF = 60。
2024年广东省汕头市汕头市聿怀初级中学数学九上开学联考模拟试题【含答案】
2024年广东省汕头市汕头市聿怀初级中学数学九上开学联考模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)菱形ABCD 的一条对角线长为6,边AB 的长为方程y 2﹣7y+10=0的一个根,则菱形ABCD 的周长为()A .8B .20C .8或20D .102、(4分)如图,平行四边形ABCD 中,4AB =,3BC =,30DCB ∠=,动点E 从B 点出发,沿B C D A ---运动至A 点停止,设运动的路程为x ,ABE ∆的面积为y ,则y 与x 的函数关系用图象表示正确的是()A .B .C .D .3、(4分)的结果为()A .B .±5C .-5D .54、(4分)如图,线段AB 两个端点的坐标分别是A (6,4),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为()A .(3,2)B .(4,1)C .(3,1)D .(4,2)5、(4分)如图,在矩形ABCD 中,AB=1,.将矩形ABCD 绕点A 逆时针旋转至矩形AB′C′D′,使得点B′恰好落在对角线BD 上,连接DD′,则DD′的长度为()A .BC +1D .26、(4分)如图,在平面直角坐标系中,直线y=23x -23与矩形ABCD 的边OC 、BC 分别交于点E 、F ,已知OA=3,OC=4,则△CEF 的面积是()A .6B .3C .12D .7、(4分)矩形具有而菱形不一定具有的性质是()A .对角相等B .对边相等C .对角线相等D .对角线互相垂直8、(4分)已知α是一元二次方程x 2-x -1=0较大的根,则下面对α的估计正确的是()A .0<α<1B .1<α<1.5C .1.5<α<2D .2<α<3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,△ABC 中,AB=AC ,点B 在y 轴上,点A 、C 在反比例函数y=kx(k >0,x >0)的图象上,且BC ∥x 轴.若点C 横坐标为3,△ABC 的面积为54,则k 的值为______.10、(4分)数学家们在研究15,12,10这三个数的倒数时发现:-=-.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x >5),则x =________.11、(4分)已知:x =2y =-,代数式222x xy y -+的值为_________.12、(4分)要从甲、乙、丙三名学生中选出一名学生参加数学竟赛。
汕头市聿怀中学数学水平测试试卷及答案分析
汕头市聿怀中学数学水平测试试卷及答案分析第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1. 某地区某天的最高气温是8℃,最低气温是-2℃,则该地区这一天的温差是( )A. -10℃B. -6℃C. 6℃D. 10℃2.............2015............27100000000....27100000000.........( )A.271×108 B.2.71×109 C.2.71×1010 D.2.71×10113.下列各式中正确的是 ( )(A) 134-=-- (B)0)5(5=--(C)3)7(10-=-+ (D)5)4(45-=----4﹒如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是( )5.如图,数轴上的点A 和点B 分别表示数a 与数b , 下列结论中正确的是……………………………( )A.a .b B..a ...b . C..a .b D. a .b .06.在-6,0,1/6,1 这四个数中,最大的数是 ( )A .-6B .0C .1/6D .1 (第5题) A . B . C . D .7、某商品价格a元,降低10%后,又降低了10%,销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.a元B.1.08a元 C.0.972a元D.0.96a元8..........A.x.y.....B.x.y.....C.x..y..2..D.x.y...9、一个数的绝对值是1/9,则这个数可以是()A.1/3B.1/9C.1/9或者-1/9D.-1/910 下列一组是按一定规律排列的数:1,2,4,8,16,……,则第2016个数是 ( )A、 B、 C、 D、4032第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. 化简-9/3的结果是 .12.某商品的售价为a元,现按8折出售,则实际售价可表示为 . 13.国家体育场“鸟巢”的建筑面积达258000m2,用科学记数法表示为____________ m2.14. 给x取一个合适的有理数使|x+5|+|x+7|的值最小,这个最小值是15.汽车开始行驶时,油箱内有油50 升,如果每小时耗油6 升,则油箱内剩余油量Q (升)与行驶时间t(小时)的函数关系为,其中常量为,变量为.三、解答题(本大题共7个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(本题满分8分)(1)15-(-8) -12 (2)22+2×[(-3)2-3÷]17.(10分)化简:①2(2a2+9b)+(-5a2-4b) ②4x2-[6x-(3x-7)-2x2]③先化简,再求值:3m2n-[ 2mn2-2(mn-32m2n)+mn)]+3mn2,其中m=3,n=-13.18.已知:A=2a2+3ab-2a-1,B=-a2+ab+1 (1)当a=-1,b=2时,求4A-(3A-2B)的值;(2)若(1)中的代数式的值与a的取值无关,求b的值.19、男女运动员各一名在环形跑道上练习长跑,男运动员比女运动员速度快,他们从同一起点沿相反方向同时出发,每隔25秒相遇一次.现在他们从同一起跑点沿相同方向同时出发,经过25分钟男运动员追上女运动员,并且比女运动员多跑20圈.求 (1)男运动员的速度是女运动员的多少倍?(2)男运动员追上女运动员时,女运动员跑了多少圈?20.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-2表示的点与数表示的点重合(2)若-1表示的点与3表示的点重合,回答以下问题:① 5表示的点与数表示的点重合;② 若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?21.(本题6分)已知数轴上有A、B、C三个点,分别表示有理数-24,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=___________,PC=_____________;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C 点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.22. 仔细观察下面的日历,回答下列问题:⑴在日历中,用正方形框圈出四个日期(如图)。
2020年中考数学一模试卷及答案
2020年中考数学一模试卷及答案一、选择题1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab = 2.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( ) A .2B .3C .5D .7 3.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣1 4.不等式x+1≥2的解集在数轴上表示正确的是( ) A .B .C .D .5.如图,是一个几何体的表面展开图,则该几何体是( )A .三棱柱B .四棱锥C .长方体D .正方体 6.若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣34 7.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q8.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα9.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm 10.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元. A .140 B .120 C .160D .100 11.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 ( )A .B .C .D .12.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .18二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.15.不等式组0125x a x x ->⎧⎨->-⎩有3个整数解,则a 的取值范围是_____. 16.若一个数的平方等于5,则这个数等于_____.17.若a ,b 互为相反数,则22a b ab +=________.18.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.19.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____.20.10a b b --=,则1a +=__. 三、解答题21.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).(1)求y 1与y 2的函数解析式.(2)求每天的销售利润W 与x 的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?22.解方程:x 21x 1x-=-. 23.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.24.已知:如图,在ABC V 中,AB AC =,AD BC ⊥,AN 为ABC V 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明25.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】分别计算出各项的结果,再进行判断即可.【详解】A.2222a a a +=,故原选项错误;B. 322223x x y xy x y xy y ++---,故原选项错误;C. 3412()a a =,计算正确;D. 222()ab a b =,故原选项错误.故选C【点睛】本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.2.C解析:C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C .考点:众数;中位数.3.B解析:B【解析】【分析】由题意可知A=111)11x x ++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x ++-=111x x x +-g =21x x - 故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键. 4.A解析:A【解析】试题解析:∵x+1≥2,∴x ≥1.故选A .考点:解一元一次不等式;在数轴上表示不等式的解集.5.A解析:A【分析】本题可以根据三棱柱展开图的三类情况分析解答【详解】三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的那个长方形.此题目中图形符合第2种情况故本题答案应为:A【点睛】熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.6.B解析:B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.7.C解析:C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.8.B解析:B【解析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=AC sinβ,∴AB:AD=ACsinα:ACsinβ=sinsinβα,故选B.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.9.C解析:C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.10.B解析:B【解析】【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得11.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.12.C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.二、填空题13.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.14.3【解析】【分析】分别延长AEBF交于点H易证四边形EPFH为平行四边形得出G为PH中点则G的运行轨迹为三角形HCD的中位线MN再求出CD的长运用中位线的性质求出MN的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G 的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=3,即G的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.15.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得解析:﹣2≤a<﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:5【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:5故答案为:5【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.17.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab (a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab += ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.18.【解析】【分析】根据关于x 的一元二次方程ax2+2x+2﹣c =0有两个相等的实数根结合根的判别式公式得到关于a 和c 的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a (2﹣c )=0整理得:解析:【解析】【分析】根据“关于x 的一元二次方程ax 2+2x+2﹣c =0有两个相等的实数根”,结合根的判别式公式,得到关于a 和c 的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a (2﹣c )=0,整理得:4ac ﹣8a =﹣4,4a (c ﹣2)=﹣4,∵方程ax 2+2x+2﹣c =0是一元二次方程,∴a≠0,等式两边同时除以4a 得:12c a-=-, 则12c a+=, 故答案为:2.【点睛】 本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.19.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x ,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6, ∴这组数据的中位数为352+=4, 故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键. 20.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab 的值进而即可得出答案【详解】∵+|b ﹣1|=0又∵∴a ﹣b=0且b ﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要解析:【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出a ,b 的值,进而即可得出答案.【详解】b ﹣1|=0,0≥,|1|0b -≥,∴a ﹣b =0且b ﹣1=0,解得:a =b =1,∴a +1=2.故答案为2.【点睛】本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a 、b 的方程是解题的关键.三、解答题21.(1)y 2与x 的函数关系式为y 2=-2x+200(1≤x<90);(2)W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩ (3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x <50、50≤x <90两种情况分别列函数关系式可得;(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y1=kx+b,将(1,41),(50,90)代入,得k b41,50k b90,+=⎧⎨+=⎩解得k1,b40,=⎧⎨=⎩∴y1=x+40,当50≤x<90时,y1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90);+≤<⎧⎨≤<⎩ 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,+=⎧⎨+=⎩解得:m2,n200,=-⎧⎨=⎩故y2与x的函数关系式为y2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x180x2?000(1x50), 120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)当1≤x<50时,∵W=-2x2+180x+2000=-2(x-45)2+6050,∴当x=45时,W取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W随x的增大而减小,∴当x=50时,W取得最大值,最大值为6000元;综上,当x=45时,W取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.22.2x=.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.49.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.24.(1)见解析(2)12AD BC=,理由见解析.【解析】【分析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.(2)由正方形ADCE的性质逆推得AD DC=,结合等腰三角形的性质可以得到答案.【详解】(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=12×180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当12AD BC=时,四边形ADCE是一个正方形.理由:∵AB=AC, AD⊥BC ,BD DC∴=12AD BC =Q ,AD BD DC ∴== , ∵四边形ADCE 为矩形, ∴矩形ADCE 是正方形. ∴当12AD BC =时,四边形ADCE 是一个正方形. 【点睛】本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.25.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x 档次的产品,根据单件利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x 档次的产品,根据题意得:[10+2(x -1)]×[76-4(x -1)]=1024, 整理得:x 2﹣16x +48=0,解得:x 1=4,x 2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x 的一元二次方程.。
广东省汕头市聿怀初级中学2020-2021学年高三数学理期末试题含解析
广东省汕头市聿怀初级中学2020-2021学年高三数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知平面向量,满足,,则与的夹角为A.B.C.D.参考答案:B2. 设双曲线C:()的左、右焦点分别为 F1,F2.若在双曲线的右支上存在一点P,使得 |PF1|=3|PF2|,则双曲线C的离心率e的取值范围为(A) (1,2] (B)(C) (D) (1,2)参考答案:A3. 已知i是虚数单位,复数z满足,则|z|= ()A. 1B.C.D. 5参考答案:A【分析】利用复数的乘法除法运算法则即可得出.【详解】因为,所以.故答案A【点睛】本题考查了复数的乘法除法以及求模的运算,考查了计算能力,属于基础题.4. 已知向量,,若∥,则= A. B.4 C. D.16参考答案:C因为,所以,即,选C.5. 命题,,则为…………()A. B.C. D.参考答案:C6. 满足,则()A. B. C. D.参考答案:D7. (5分)(2013?长宁区一模)函数y=,x∈(﹣π,0)∪(0,π)的图象可能是下列图象中的()A. B. C. D.参考答案:考点:函数的图象.专题:数形结合.分析:根据三角函数图象及其性质,利用排除法即可.解答:∵是偶函数,排除A,当x=2时,,排除C,当时,,排除B、C,故选D.点评:本题考查了三角函数的图象问题,注意利用函数图象的寄偶性及特殊点来判断.8. 若实数满足不等式组,且的最小值等于,则实数的值等于()A. B. C.D.参考答案:A试题分析:三直线交点为,因此直线过点B时取最小值,即,选A.考点:线性规划【易错点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.9. 符合以下性质的函数称为“S函数”:①定义域为R,②f(x)是奇函数,③f(x)<a(常数a>0),④f(x)在(0,+∞)上单调递增,⑤对任意一个小于a的正数d,至少存在一个自变量x0,使f(x0)>d.下列四个函数中,,,中“S函数”的个数为()A.1个B.2个C.3个D.4个参考答案:C【考点】函数奇偶性的性质;函数单调性的判断与证明.【专题】函数思想;分析法;函数的性质及应用.【分析】逐个判断函数是否符合新定义的5个条件.【解答】解:(1)∵f1(x)=arctanx的定义域为R,∵﹣<arctanx,∴f1(x)的值域为(﹣a,a),∵f1(x)是奇函数,在(0,+∞)上是增函数,∴f1(x)是S函数,(2)f2(x)=的定义域为R,∵﹣1<<1,∴f2(x)的值域是(﹣a,a),∵f2(﹣x)==﹣f2(x),∴f2(x)是奇函数,当x>0时,f2(x)==a﹣,∵a>0,∴f2(x)在(0,+∞)上是增函数.∴f2(x)是S 函数.(3)由解析式可知f3(x)的定义域为R,当x>0时,a﹣<a,当x<0时,﹣a﹣>﹣a,∴f3(x)的值域是R,不符合条件③,∴f3(x)不是S函数.(4)f4(x)的定义域为R,∵ =1﹣,2x>0,∴﹣1<<1,∴f4(x)的值域是(﹣a,a).f4(﹣x)=a?=a?=﹣f4(x).∴f4(x)是奇函数.∵f4(x)=a(1﹣),∴f4(x)在(0,+∞)上是增函数.∴f4(x)是S函数.故选:C.【点评】本题考查了函数的定义域,奇偶性,值域,属于中档题.10. 已知集合,,若,则实数a值集合为()A. {-1}B. {2}C.{-1,2}D. {-1,0,2}参考答案:D【分析】,可以得到,求出集合的子集,这样就可以求出实数值集合.【详解】,的子集有,当时,显然有;当时,;当时,;当,不存在,符合题意,实数值集合为,故本题选D.【点睛】本题考查了通过集合的运算结果,得出集合之间的关系,求参数问题.重点考查了一个集合的子集,本题容易忽略空集是任何集合的子集这一结论.二、填空题:本大题共7小题,每小题4分,共28分11. 将三项式展开,当时,得到如下左图所示的展开式,右图所示的广义杨辉三角形:第0行 1第1行 1 1 1第2行 1 2 3 2 1第3行 1 3 6 7 6 3 1第4行 1 4 10 16 19 16 10 4 1……观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角形,其构造方法:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数的,缺少的数计为0)之和,第行共有个数.若在的展开式中,项的系数为75,则实数的值为___________.参考答案:2试题分析:展开式中系数为1 5 15 30 45 51 45 30 15 5 1,所以在的展开式中,项的系数为考点:新定义12. 2018年俄罗斯世界杯将至,本地球迷协会统计了协会内180名男性球迷,60名女性球迷在观察场所(家里、酒吧、球迷广场)上的选择,制作了如图所示的条形图,用分层抽样的方法从中抽取48名球迷进行调查,则其中选择在酒吧观赛的女球迷人数为_________人.参考答案:总球迷是人,家里的女性球迷是人,球迷广场女性人,所以在酒吧观赛的女球迷是人,抽样中,选择在酒吧观赛的女球迷人数为人.13. 已知函数f(x)=x|x﹣2|,则不等式的解集为.参考答案:[﹣1,+∞)【考点】函数的图象.【专题】函数的性质及应用.【分析】化简函数f(x),根据函数f(x)的单调性,解不等式即可.【解答】解:当x≤2时,f(x)=x|x﹣2|=﹣x(x﹣2)=﹣x2+2x=﹣(x﹣1)2+1≤1,当x>2时,f(x)=x|x﹣2|=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1,此时函数单调递增.由f(x)=(x﹣1)2﹣1=1,解得x=1+.由图象可以要使不等式成立,则,即x≥﹣1,∴不等式的解集为[﹣1,+∞).故答案为:[﹣1,+∞).【点评】本题主要考查不等式的解法,利用二次函数的图象和性质是解决本题的关键,使用数形结合是解决本题的基本思想.14. 在平面直角坐标系xOy中,点F为抛物线x2=8y的焦点,则点F到双曲线x2﹣=1的渐近线的距离为.参考答案:【考点】双曲线的简单性质.【分析】求得抛物线的焦点和双曲线的渐近线方程,再由点到直线的距离公式计算即可得到所求值.【解答】解:抛物线x2=8y的焦点F(0,2),双曲线的渐近线方程为y=±3x,则F到双曲线的渐近线的距离为d==.故答案为:.15. 如图,PB为△ABC外接圆O的切线,BD平分∠PBC,交圆O于D,C,D,P共线.若AB⊥BD,PC⊥PB,PD=1,则圆O的半径是.参考答案:2【考点】与圆有关的比例线段.【分析】连结AD,由PB为圆O的切线,得∠PBD=∠BCP=∠BAD,结合BD为∠PBC的平分线,可得∠PDB=2∠PBD=60°,在Rt△BPD中,由PD=1,得BD=2,由Rt△ABD与Rt△BPD的内角关系得AD的长度,即得圆O的半径.【解答】解:如右图所示,连结AD,∵PB为圆O的切线,∴∠PBD=∠BCD=∠BAD,∵BD为∠PBC的平分线,∴∠PBD=∠CBD,∴∠PDB=∠CBD+∠BCD=∠PBD+∠PBD=2∠PBD,又∵PC⊥PB,∴∠PBD=∠BCD=∠CBD=∠BAD=30°,∠PDB=60°.由PD=1,得BD=2PD=2.在△ABD中,∵AB⊥BD,∴AD是圆O的直径,且直径AD=2BD=4,∴圆O的半径为2.故答案为:2.16. 若复数为虚数单位)为纯虚数,则____________.参考答案:略17. 已知正方体ABCD-A1B1C1D1的体积为1,点M在线段BC上(点M异于B、C两点),点N为线段CC1的中点,若平面AMN截正方体ABCD-A1B1C1D1所得的截面为四边形,则线段BM的取值范围为_______________参考答案:三、解答题:本大题共5小题,共72分。
2020-2021汕头市聿怀中学数学升学试卷及答案分析
2020-2021汕头市聿怀中学数学升学试卷及答案分析第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1、下列方程中,一元一次方程是()A. 2x=1B. 3x–5C. 3+7=10D.x^2=42.绝对值等于7的数是()A .7 B.﹣7 C.±7 D.0和73.在有理数﹣3,0,,﹣6,3.6,﹣2015中,属于非负数的有()A.1个B.2个C.3个D.4个4.如果表示有理数,那么的值: ( )(A)可能是负数(B)不可能是负数(C)必定是正数(D)可能是负数也可能是正数5、若4/x表示一个整数,则整数x可取的值共有().A. 8个B. 4个C. 3个D. 2个6.延长线段AB到C,下列说法正确的是()A.点C在线段AB上B.点C在直线AB上C.点C不在直线AB上D.点C在直线BA的延长线上7.下列各组数中,数值相等的是()A.34和43B.﹣42和(﹣4)2C.﹣23和(﹣2)3D.(﹣2×3)2和﹣22×328.下列合并同类项中,正确的是( )A.2a+3b=5ab B.5b2﹣2b2=3 C.3ab﹣3ba=0 D.7a+a=7a29.下列各组数中,相等的是( )A.﹣1与(﹣4)+(﹣3) B.|﹣3|与﹣(﹣3)C.与D.(﹣4)2与﹣1610.下列说法正确的是()A. 正数和负数统称有理数B. 正整数和负整数统称为整数C. 小数3.14不是分数D. 整数和分数统称为有理数第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.绝对值小于2.5的整数有个,它们的积为.12.一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了原点,则点A所表示的数是.13.去年,中央财政安排资金8 200 000 000元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为元.14.规定符号※的意义为:a※b=ab-a+b+1,那么(-2)※5=.16.将正整数从1开始,按如图所表示的规律排列.规定图中第m行、第n列的位置记作(m,n),如正整数8的位置是(2,3),则正整数136的位置记作.三、解答题(本大题共7个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算题.(1)25+|﹣2|÷(﹣)﹣(﹣2)2(2)(﹣﹣)÷(﹣)+(﹣)(3)(a2+4ab)﹣2(2a2﹣3ab)17.计算:(本题满分16分,每小题4分)⑴ -16+23+(-17)-(-7) (2) -212 +÷(-2)×(-)18.如图,所有小正方形的边长都为1,A 、B 、C 都在格点上. (1)过点C 画直线AB 的平行线(不写画法,下同); (2)过点A 画直线BC 的垂线,并注明垂足..为G ;过点A 画直线AB 的垂线,交BC 于点H .(3)线段 的长度是点A 到直线BC 的距离;(4)线段AG 、AH 的大小..关系为 AG AH .(填写下列符号>,<,之一 )19.下表为国外几个城市与北京的时差(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数): 城市 东京 巴黎 伦敦 纽约 莫斯科 悉尼 时差(时) +1 ﹣7 ﹣8 ﹣13 ﹣5 +2(1)北京6月11日20时是巴黎的什么时间? (2)北京6月11日20时是悉尼的什么时间?(3)小莹的爸爸于6月11日20时从北京乘飞机,经过16小时的航行到达纽约,到达纽约时北京时间是多少?20.情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12 根跳绳需元.小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.21.某单位在五月份准备组织部分员工到青岛旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为1000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有( >10 )人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含的代数式表示,并化简。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 4 页
汕头市聿怀初级中学2020-2020学年度 九年级数学科第一次模拟考试试卷参考答案
选择题(每题3分,共30分) BCBAD DAABC 填空题(每题4分,共24分)
11. 1 ; 12. x ≥2 ;13. 35° ;14. 85° ;15. 2 ;16. (671,2020) 解答题:
17.(本题6分)解:原式=333
3
91-⨯+
+ ………4分 =10
………6分
18. (本题6分)解:原式= 2
2
144a a a -+++
………2分
= 54+a
………4分 当43-
=a 时,原式 = 5)4
3
(4+-⨯ = 2
………6分
19. (本题6分)证明:∵∠3、∠4分别是△ABC 和△ABD 的外角 ∴∠3=∠1+∠C ,∠4=∠2+∠D
又∵∠1=∠2,∠3=∠4 ∴∠C = ∠D ………3分 又∵AB=AB ,∠1=∠2
∴△ABC ≌△ABD (AAS ) ………5分 ∴AC=AD.
………6分
20. (本题7分)解:(1)如图,直线DE 为所求.
………3分
(2)∵DE 是AB 的垂直平分线
∴BD=AD
∴∠ABD=∠A=40°
∵∠BDC 是△ABD 的外角 ∴∠BDC=∠A+∠ABD=80° ∴∠BD C=∠ABC ∵∠C=∠C
∴△ABC∽△BDC
………7分
4
32
1B
D C E
第 2 页 共 4 页
21. (本题7分)解: (1)树状图:
由图可知,共产生9种等可能结果,
∵两次数字相同的有3种.
∴P(两次数字相同)=
3
1
93=
………5分 (2)(数字之积为0有5种情况,∴P(两数之积为0) 9
5=
………7分
22. (本题7分)解:过点C 作CD ⊥AB 于D , ………1分 由题意ο
31=∠DAC ,ο
45=∠DBC ,设CD=x 米, 则BD = CD = x 米,
∴AD =AB+BD =(40+x )米, ∵在Rt ACD ∆中,tan DAC ∠=AD
CD
,
∴
5
3
40=+x x ,解得x = 60.
………6分
答:这段河段的宽度约为60米. ………7分
23. (本题9分)解:(1)设A 种树苗每株x 元,则B 种树苗每株)20(-x 元,依题意得: 200)20(2=-+x x 解得:80=x
∴6020=-x
答:A 种树苗每株80元,则B 种树苗每株60元.
………4分
(2)设购买A 种树苗m 株,费用为y 元,则)36(6080m m y -+=即:216020+=m y 由)(m m -≥362
1
得:12≥m ∵20>0,∴y 随m 的增大而增大
∴当12=m 时,y 有最小值为:240021601220=+⨯=y
∴费用最省的方案是:购买A 种树苗12株,B 种树苗24株. ………9分
D
第 3 页 共 4 页
24. (本题9分) 解:(1)∵AC ⊥BD
∴四边形ABCD 的面积为:
BD AC ⨯⨯21=8102
1
⨯⨯=40
………2分
(2)过点A 分别作AE ⊥BD 于E ………3分 ∵四边形ABCD 为平行四边形
∴521==
=AC CO AO ,42
1
===BD DO BO ∵在Rt △AOE 中,AO
AE
=∠AOE sin
∴2
3523560sin 5sin =⨯=︒⨯=∠⋅=AOE AO AE ………4分
∴352
3
542121=⨯
⨯=⋅=AE OD S AOD △ ………5分
∴四边形ABCD 的面积为:3204AOD ==△S S
………6分 (3)如图所示过点A,C 分别作AE ⊥BD ,CF ⊥BD ,垂足分别为E,F ………7分
在Rt △AOE 中,AO
AE
=
∠AOE sin ∴θsin sin ⋅=∠⋅=AO AOE AO AE
同理可得:θsin sin ⋅=∠⋅=CO COF CO CF ………8分
∴四边形ABCD 的面积为:CF BD 2
1
AE BD 21S CBD ABD ⋅+⋅=+=△△S S
)(sin BD 21
CO AO +⋅=θ
θθsin 21
sin 21ab CD BD =⋅⋅= ………9分
25. (本题9分)
解:(1)由题意,设抛物线解析式为)0)(1)(3(≠+-=a x x a y . ∵抛物线经过E(0,3)
∴)10()30(3+⋅-⋅=a 解得:1-=a
∴322
++-=x x y .
∵4)1(2
+--=x y ∴顶点B 为(1,4)
………
2分 (2)如图,证明:过点B 作BM ⊥y 于点M ,则M(0,4). 在Rt△AOE 中,OA =OE =3,
∴∠1=∠2=45°,AE 22OA OE +2. 在Rt△EMB 中,EM =OM -OE =1=BM ,
∴∠MEB =∠MBE =45°,BE 22EM BM +2. ∴∠BEA =180°-∠1-∠MEB =90°.
∴AB 是△ABE 外接圆的直径. ………3分
∵在Rt△ABE 中,tan ∠BAE =
BE AE =1
3
=tan ∠CBE , ∴∠BAE =∠CBE .
又∵在Rt△ABE 中,∠BAE +∠3=90°,∴∠CBE +∠3=90°. ∴∠CBA =90°,即CB ⊥AB . ∴CB 是△ABE 外接圆的切线.
………4分
A
E
D C B
y x
O P 3 1
2
3 P 2 M
第 4 页 共 4 页
(3)P 1(0,0),P 2(9,0),P 3(0,-13
). ………6分
(注:第3小题共2分,对一个或两个得1分,全对得2分)
(4)解:设直线AB 的解析式为)0(≠+=k b kx y .
则30,4.k b k b +=⎧⎨+=⎩解得2,6.k b =-⎧⎨=⎩
∴62+-=x y .
过点E 作射线EF ∥x 轴交AB 于点F ,当y =3时,得x =32,∴F(32
,3).
①:如图7,当0<t ≤
3
2
时,设△AOE 平移到△DNM 的位置,MD 交AB 于点H ,MN 交AE 于点G . 则ON =AI =t ,过点H 作LK ⊥x 轴于点K ,交EF 于点L . 由△AHI ∽△FHM ,得
HL
HK FM AI =
.即332
t HK HK t =--.解得HK =2t .
∴S 阴=S △MND -S △GNA -S △HAD =12×3×3-12(3-t)2-12t ·2t =-32
t 2
+3t .
………7分
②:如图8,当3
2
<t ≤3时,设△AOE 平移到△PQR 的位置,PQ 交AB 于点I ,交AE 于点V .由△IQA ∽△IPF ,得
AQ IQ FP IP =
.即3332
IQ t IQ
t -=--.解得IQ =2(3-t).
∴S 阴=S △IQA -S △VQA =
12×(3-t)×2(3-t)-12(3-t)2=12(3-t)2
=12t 2-3t +92
. 综上所述:s =2
2333 0),221933 (3).2
22t t t t t t ⎧-+<⎪⎪⎨⎪-+<⎪⎩≤≤( ………9分
(第4小题每个关系式1分,共2分;取值范围两个都正确1分)
备用图2
备用图1。