《电机与拖动》课程设计_小型单相变压器设计
《电机与拖动》变压器---单相变压器实验
《电机与拖动》变压器---单相变压器实验一、实验目的1.通过空载和短路实验测定变压器的变比和参数。
2.通过负载实验测取变压器的运行特性。
二、预习要点1.变压器的空载和短路实验有什么特点?实验中电源电压一般加在哪一方较合适?2.在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小?3.如何用实验方法测定变压器的铁耗及铜耗?三、实验项目1.空载实验测取空载特性U O=f(I O),P O=f(U O)。
2.短路实验测取短路特性U K=f(I K),P K=f(I)。
3.负载实验保持U1=U1N,cos =1的条件下,测取U2=f(I2)。
2四、实验设备及仪器1.交流电压表、电流表、功率、功率因数表(NMCL-001)2.三相可调电阻器900Ω(NMEL-03)3.旋转指示灯及开关板(NMEL-05B)4.单相变压器Array五、实验方法1.空载实验实验线路如图2-1。
图2-1 空载实验接线图实验时,变压器低压线圈2U1、2U2接电源,高压线圈1U1、1U2开路。
A、V1、V2分别为交流电流表、交流电压表。
其中用一只电压表,交替观察变压器的原、副边电压读数。
W为功率表,需注意电压线圈和电流线圈的同名端,避免接错线。
a.未上主电源前,将调压器旋钮逆时针方向旋转到底。
并合理选择各仪表量程。
变压器T U1N/U2N=220V/110V,I1N/I2N=0.4A/0.8A。
b.合上交流电源总开关,即按下绿色“闭合”开关,顺时针调节调压器旋钮,使变压器空载电压U0=1.2U N。
c.然后,逐次降低电源电压,在1.2~0.5U N的范围内;测取变压器的U0、I0、P0,共取6~7组数据,记录于表2-1中。
其中U=U N的点必须测,并在该点附近测的点应密些。
为了计算变压器的变化,在U N以下测取原方电压的同时测取副方电压,填入表2-1中。
e.测量数据以后,断开三相电源,以便为下次实验作好准备。
表2-12.短路实验实验线路如图2-2。
《电机与拖动》课程设计_小型单相变压器设计
小型单相变压器设计小型单相变压器简介变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。
实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。
小型变压器指的是容量1000V.A 以下的变压器。
最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、 彼此绝缘的绕组(构成电路)构成。
这类变压器在生活中的应用非常广泛。
一、 变压器的工作原理变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E 型和C 型铁心。
变压器(transformer )是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。
变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。
一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。
原绕组各量用下标1表示,副绕组各量用下标2表示。
原绕组匝数为1N ,副绕组匝数为2N 。
图(1)变压器结构示意图理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压1u ,产生电流1i ,建立磁通φ,沿铁心闭合,分别在原副绕组中感应电动势21e e 和。
(1) 电压变换当一次绕组两端加上交流电压1u 时,绕组中通过交流电流1i ,在铁心中将产生既与一次绕组交链,又与二次绕组交链的主磁通φ。
(1-1)(1-2)(1-3)(1-4)说明只要改变原、副绕组的匝数比,就能按要求改变电压。
(2) 电流变换变压器在工作时,二次电流2I 的大小主要取决于负载阻抗模|1Z |的大小,而一次电流1I 的大小则取决于2I 的大小。
2211I U I U = 又(1-5)K II U U I 22121==∴(1-6)说明变压器在改变电压的同时,亦能改变电流。
小型变压器的原理:小型单相变压器一般是指工频小容量单相变压器。
二、 变压器的基本结构1、 铁心:铁心是变压器磁路部分。
课程设计 任务书1 《小型单相变压器设计》
题目:小型单相变压器设计
1.设计任务:
设计一个小型单相变压器,能够满足不同小型设备的电源要求。
小型变压器的一次侧/二次侧电压为220V/24V(或48V)。
2.设计要求:
1)根据变压器的基本原理,设计出变压器的基本结构
2)选定铁芯尺寸、绕组匝数以及导线规格
3)完成单相变压器的参数测定,并分析运行特性
4)撰写设计报告、总结以及心得
3.设计用设备和器件:
功率表、万用表、交流电流表、交流电压表
4.设计计划安排:
5.主要参考文献:
1)《电机与拖动》,戴文进编著,清华大学出版社,2008
2)《电机与拖动基础》,杨文焕编著,西安电子科技大学出版社,2008
3)《电机与拖动》,杨天明编著,中国林业出版社出版社,2008。
电机与变压器教 案2 (小型单相变压器的制作)
教案正页序号2教案附页2、小型变压器的设计四、课题所需的相(一)自耦变压器1、单相自耦变压器2、三相自耦变压器自压仅降压,只要入、输出对下,就变成压器。
入低压侧,这是很不安全的,所以低压侧应有防止过电压的保护措施。
2)如果在自耦变压器的输入端把相线和零线接反,虽然二次侧输出电压大小不变,仍可正常工作,但这时输出“零线”已经为“高电位”,是非常危险的。
(3). 自耦变压器输出功率S2=U2I2=U2(I+I1)=U2 I +U2I1=S’2+S’’2S’2为绕组之间电磁感应传递的能量,而S’’2为电路直接从一次侧传递的能量。
从U2I1= S’’2可导出:S’’2=S2/K通常,自耦变压器变比K=1.2~2的状态下,优点明显。
(二)仪用互感器1、电流互感器工作原理电流互感器结构上与普通双绕组变压器相似,也有铁心和一次侧、二次侧绕组,但它的一次侧绕组匝数很少,只有一匝到几匝,导线都很粗。
电流互感器的二次侧绕组匝数较多,它与电流表或功率表的电流线圈串联成为闭合电路,由于这些线圈的阻抗都很小,所以二次侧近似于短路状态。
由于二次侧近似于短路,所以互感器的一次侧的电压也几乎为零,因为主磁通正比于一次侧输入电压,总磁势为零。
2、电压互感器工作原理路中,流电流,被电压互感器的原理和普通降压变压器是完全一样的,不同的是它的变压比更准确;电压互感器的一次侧接有高电压,而二次侧接有电压表或其他仪表(如功率表、电能表等)的电压线圈。
因为这些负载的阻抗都很大,电压互感器近似运行在二次侧开路的空载状态, U2为二次侧电压表上的读数,只要乘变比K就是一次侧的高压电压值。
仪用互感器的结构和使用注意事项比较比较内容电流互感器电压互感器结构一次绕组匝数很少,只有一匝到几匝,导线都很粗,串联在被测的电路中; 二次绕组匝数较多,二次侧近似于短路状态。
运行中二次侧不得开路。
一次侧接有高电压,而二次侧近似开路状态,运行中,二次侧不能短路。
左右(即电弧上电压)。
电机及拖动课程设计
《电机及拖动基础》课程设计任务书一、设计课程题目单相变压器的设计二、设计要求设计一台单相变压器,要求额定值S N=1KV,U1N/ U2N=220/110V。
要求合理设计变压器一次的侧和二次侧(等效)电阻、电感、绕组匝数及其主磁通。
在整个设计中要注意培养灵活运用所学的电机拖动知识和创造性的思维方式以及创造能力要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。
等效电路应有计算和说明。
课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。
课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。
在整个设计中要注意培养独立分析和独立解决问题的能力要求学生在教师的指导下,独力完成设计。
严禁抄袭,严禁两篇设计报告基本相同,甚至完全一样。
课题设计的主要内容如下:1>介绍变压器的工作原理和基本结构;2>分析T型等效电路的理论知识并画出T型等效电路;3>依据T型等效电路分析所给参数,设计并计算一次测参数、二次侧参数和主磁通;4>最后写出本次课程设计的总结。
第一章 变压器的工作原理和基本结构1.1工作原理:变压器是利用电磁感应原理从一个电路向另一个电路传递电能或传输信号的一种电器,这两个电路只有磁的耦合,通常没有电的联系;具有相同的频率但又不同的电压和电流,也可以有不同的相数。
变压器的两个线圈套在同一个铁心柱上,以增大其耦合作用。
与电源相连的绕组,接受交流电能,通常称为原边绕组(初级绕组、原边绕组),以A 、X 标注其出线端;与负载相连的绕组,送出交流电能,通常称为副边绕组(次级绕组、副边绕组),以a 、x 标注其出线端。
与原边绕组相关的物理量均以下角标“1”来表示,与副边绕组相关的物理量均以下标“2”来表示。
例如原边的匝数、电压、电动势、电流分别以N 1、u 1、e 1、i 1来表示;副边的匝数、电压、电动势、电流分别以N 2、u 2、e 2、i 2来表示。
电机与拖动基础实验报告--单相变压器实验
实验报告(理工类)开课学院及实验室:电气信息学院6A203 实验时间:2015年4月25日一、实验目的通过空载和短路实验测定变压器的变比和参数。
二、实验原理三、实验设备、仪器及材料四、实验步骤1、空载实验1)在三相调压交流电源断电的条件下,按图2-4-1接线。
被测变压器选用三相组式变压器DJ1O中的一只作为单相变压器,其额定容量P N=48.4W,U IN∕U2N=121∕31.8V,I√I2N=0.4/1.6A0变压器的低压线圈a、X接电源,高压线圈A、X开路。
2)选好所有电表量程。
将控制屏左侧调压器旋钮向逆时针方向旋转到底,即将其调到输出电压为零的位置。
3)合上交流电源总开关,按下“开”按钮,便接通了三相交流电源。
调节三相调压器旋钮,使变压器空载电压U O=1.2U N,然后逐次降低电源电压,在1.2〜0.2UN的范围内,测取变压器的U。
、I。
、P0o 4)测取数据时,U=U N点必须测,并在该点附近测的点较密,共测取数据7-8组。
记录于表2-4-1中。
5)为了计算变压器的变比,在UN以下测取原方电压的同时测出副方电压数据也记录于表2-4-1中。
测取短路特性Uκ=f(Iκ),Pκ=f(Iκ),cosΦκ=f(Iκ)o2、短路实验D按下控制屏上的“关”按钮,切断三相调压交流电源,按图2-4-2接线(以后每次改接线路,都要关断电源)。
将变压器的高压线圈接电源,低压线圈直接短路。
2)选好所有电表量程,将交流调压器旋钮调到输出电压为零的位置。
3)接通交流电源,逐次缓慢增加输入电压,直到短路电流等于1.II N为止,在(0.2〜1.1)IN范围内测取变压器的U K、I K、P KO4)测取数据时,IK=IN点必须测,共测取数据6-7组记录于表2-4-2中。
五、实验过程记录(数据、图表、计算等)六、实验结果分析及问题讨论。
课程设计---小型单相变压器的设计
课程设计---小型单相变压器的设计课程设计名称:电机与拖动基础课程设计题目:小型单相变压器的设计专业:机电动力与信息工程系班级:姓名:学号:课程设计任务书一、设计题目:小型单相变压器的设计。
二、设计任务:设计一个小型单相变压器。
三、设计计划:1.查阅相关资料。
2.确定设计方案。
3.进行设计并定稿。
4.进行可行性分析。
四、设计要求:安全可靠,技术领先,投资合理,标准统一,运行高效。
所以,本次设计应该体现统一性,适应性,先进性,可靠性和经济性。
指导教师:教研室主任:中国矿业大学课程设计成绩评定表学期2012—2013年度第一学期姓名专业电气工程班级课程名称电机与拖动基础设计题目小型单相变压器的设计评评定指标分值得分知识创新性20理论正确性20内容难易15定标准性结合实际性10知识掌握程度15书写规范性10 工作量10 总成绩100 评语:任课教师徐建华时间年月日备注·摘要电,现今社会已经近乎于主导地位的洁净能源,还在继续提高着自己的位置。
围绕着它所展开的学术研究也一天天的多了起来,针对着世界能源紧缺这个不可回避的问题,人们把希望寄托到了电的身上。
它的产生方式很多,这就为它能多方式的产生打下了基础,如水能、风能等不好利用的能源,都能被合理的转化成电能,可见电的发展前景是很广阔的。
发电、变电、用电,很多课题都已经大规模的展开,变压器也是其中一门很重要的学科。
变压器是一种静止的电器,他广泛应用于电力系统及测量、控制和一些特殊的用电设备上。
目录1铁心 (6)1.1铁心 (6)1.2铁心用硅钢片 (7)1.3铁心常见故障 (8)2线圈 (8)2.1变压器线圈的作用 (8)2.2线圈的绕组形式 (8)3其他部分 (9)3.1二次侧总容量 (9)3.2一次侧绕组的容量 (10)3.3变压器额定总量 (10)3.4一次电流的确定 (10)4心得体会 (16)5参考文献 (17)一:铁心1:铁心的作用和形式铁心是变压器的基本部件,由磁导体和夹紧装置组成,所以它有两个作用。
电机拖动教学设计案例
知识目标
素质目标
①团队协作
掌握变压器负载运行电磁关系
掌握变压器负载运行电②自主学习能力的培
教学 掌握变压器负载运行的基本方程式 磁关系
养。
掌握变压器负载运行的等效电路及 掌 握变 压器 负载 运行 的
目标 相量图
基本方程式
掌握变压器负载运行的
等效电路及相量图
任务 任务:画图说明 与案 例 重点 重点:变压器负载运行的等效电路及相量图 难点 及解 决方 难点:变压器负载运行的基本方程式 法
《电机及拖动》课程课堂教学单元设计
进度序号:4
本次课标题: 第四讲 变压器参数的测定
授课 电气 1305、6、7
班级
教
上课 时间
第 4 周 3 月 28-31 日 第 1-4 节
周 第
月
日
节
上课 地点
2#301 2#304
学 1 掌握变压器空载试验 2 掌握变压器短路试验
目
的 能力目标
1.掌握变压器空载试验 教学
体会
注:“课程单元”可以使一个能力项目训练,也可以是一章或一节。
《电机及拖动》课程课堂教学单元设计
进度序号:7
本次课标题: 第七讲 其他用途的变压器
授课 班级
教
电气 1305、6、7
上课 时间
第 7 周 4 月 18-21 日 第 1-4 节
周 第
月
日
节
要求学生通过本次任务的训练 学 ① 掌握自偶变压器
3 认识变压器
讲述
老师提问, 85
学生回答
教案
4 总结
5
课后
学生学习态度认真,效果良好。
体会
注:“课程单元”可以使一个能力项目训练,也可以是一章或一节。
《电机与拖动》课程设计_小型单相变压器设计
小型單相變壓器的設計和繞制班級: 08機電3班姓名: *****學號: 04040803034指導教師: *****日期: 6月25日目錄一、小型單相變壓器簡介二、變壓器的工作原理三、變壓器的基本結構四、設計內容五、實例計算六、結論七、心得體會一、小型單相變壓器簡介變壓器是通過電磁耦合關係傳遞電能的設備,用途可綜述為:經濟的輸送電能、合理的分配電能、安全的使用電能。
實際上,它在變壓的同時還能改變電流,還可改變阻抗和相數。
小型變壓器指的是容量1000V.A 以下的變壓器。
最簡單的小型單相變壓器由一個閉合的鐵心(構成磁路)和繞在鐵心上的兩個匝數不同、 彼此絕緣的繞組(構成電路)構成。
這類變壓器在生活中的應用非常廣泛。
二、變壓器的工作原理變壓器的功能主要有:電壓變換;阻抗變換;隔離;穩壓(磁飽和變壓器)等,變壓器常用的鐵心形狀一般有E 型和C 型鐵心。
變壓器是利用電磁感應原理將某一電壓的交流換成頻率相同的另一電壓的交流電的能量的變換裝備。
變壓器的主要部件是一個鐵心和套在鐵心上的兩個繞組,如圖(1)所示。
一個繞組接電源,稱為原繞組(一次繞組、初級),另一個接負載,稱為副繞組(二次繞組、次級)。
原繞組各量用下標1表示,副繞組各量用下標2表示。
原繞組匝數為1N ,副繞組匝數為2N 。
圖(1)變壓器結構示意圖理想狀況如下(不計電阻、鐵耗和漏磁),原繞組加電壓1u ,產生電流1i ,建立磁通 ,沿鐵心閉合,分別在原副繞組中感應電動勢21e e 和。
(1) 電壓變換當一次繞組兩端加上交流電壓1u 時,繞組中通過交流電流1i ,在鐵心中將產生既與一次繞組交鏈,又與二次繞組交鏈的主磁通φ。
(1-1)(1-2)(1-3)(1-4)說明只要改變原、副繞組的匝數比,就能按要求改變電壓。
(2)電流變換變壓器在工作時,二次電流2I 的大小主要取決於負載阻抗模|1Z |的大小,而一次電流1I 的大小則取決於2I 的大小。
2211I U I U = 又 (1-5)K II U U I 22121==∴ (1-6)說明變壓器在改變電壓的同時,亦能改變電流。
《电机与拖动》课程标准
《电机与拖动》课程标准一、课程说明二、课程定位本课程是电气类专业必修课,在人才培养方案中起承上启下的作用,具有十分重要的地位,为后续专业课程的学习及从事电工安装、维护等工作打下良好的理论和专业技术技能基础。
通过本课程的学习,使学生掌握各类电机的工作原理、基本结构及运行特性,掌握直流和交流电力拖动系统的组成、起动、制动和调速的分析计算方法及必要的测试技能,从而能合理地使用电机以满足后续专业课对该方面知识的需要,同时也为学生在今后从事专业技术工作中,保证电机工作稳定、可靠和经济运行打下扎实基础。
三、设计思路本课程来源于维修电工所需知识、技能、素质及能力分析所整合的典型工作任务相关学习领域。
通过行为导向的项目式教学,加强学生实践技能的培养,培养学生的综合职业能力和职业素养;独立学习及获取新知识、新技能、新方法的能力;与人交往、沟通及合作等方面的态度和能力。
四、课程培养目标通过本课程的学习,使学生掌握各种电机的基础理论和拖动的基础知识,培养学生独立思考、钻研探索的兴趣,在平时学习实践中不断获取成就感、满足感和兴奋感,具有收集和处理信息的能力、获取新知识的能力、综合运用所学知识分析和解决问题的能力,形成良好的思维习惯、工作方法和科学态度,在未来的岗位上有能力进一步学习新技术,解决新问题。
具体目标如下:1.专业能力(1)掌握常用交、直流电机、特种电机的基本结构和工作原理;(2)掌握电机的机械特性,起动、制动、调速控制等电路结构与工作原理;(3)掌握单相、三相变压器的特性及应用,变压器结构与原理;(4)掌握基本的实验方法和操作技能以及常用电气仪表(器)的使用;(5)掌握一定的电磁计算方法,培养学生运算能力;(6)懂得应用电机基本理论分析电机及拖动的实际问题;(7)熟悉电机与电力拖动系统的基本的实验方法与技能;(8)懂得正确合理选择各种电机和变压器的能力;(9)能够处理电机运行常见故障的能力;(10)能够正确使用各种电工工具。
电机与拖动课程设计题目(新)
电机与拖动课程设计题目(新)电机与拖动课程设计题目基本要求:按学号循环选题题目1:小型单相变压器设计设计要求:分析变压器的工作原理;确定变压器的额定容量;计算铁心尺寸、绕组匝数及导线直径;根据以上内容给出一具体实例进行计算求解。
题目2:他励直流电动机串电阻降压启动设计设计要求:分析他励直流电动机工作原理;画出电路,分析串电阻机械特性;根据机械特性曲线分析串电阻降压起动过程特点;查找设定合理的电动机额定参数,至少给出三组电阻变化对应参数的计算。
题目3:并励直流电动机电压调速设计设计要求:分析并励直流电动机工作原理;画出电路,分析电压变化机械特性;根据机械特性曲线分析电压调速特点;查找设定合理的化对应参数的计算。
题目4:并励直流电动机串电阻调速设计设计要求:分析并励直流电动机工作原理;画出电路,分析串电阻机械特性;根据机械特性曲线分析分析串电阻调速特点;查找设定合理的电动机额定参数,至少给出三组电阻变化对应参数的计算。
题目5:三相绕线型异步电动机转子回路串电阻起动设计设计要求:分析三相绕线型异步电动机工作原理;画出电路,分析串电阻机械特性;根据机械特性曲线分析串电阻降压起动过程特点;查找设定合理的电动机额定参数,至少给出三组电阻变化对应参数的计算。
题目6:三相鼠笼型异步电动机的自耦变压器降压起动设计设计要求:分析三相鼠笼型异步电动机工作原理;画出电路,分析降压机械特性;根据机械特性曲线分析自耦变压器降压起动过程特点;查找设定合理的电对应参数的计算;题目7:三相绕线型异步电动机的转子回路串电阻调速设计设计要求:分析三相绕线型异步电动机工作原理;画出电路,分析串电阻机械特性;根据机械特性曲线分析串电阻调速特点;查找设定合理的电动机额定参数,至少给出三组电阻变化对应参数的计算。
题目8:三相鼠笼型异步电动机的定子串电阻降压起动设计设计要求:分析三相鼠笼型异步电动机工作原理;画出电路,分析定子串电阻机械特性;根据机械特性曲线分析定子串电阻降压起动特点;查找设定合理的电动机额定参数,至少给出三组电阻变化对应参数的计算。
小型单相变压器设计
小型单相变压器设计
设计一个小型单相变压器需要考虑以下几个方面:
1. 电压比:
确定输入电压和输出电压的比例,这决定了变压器的变压比。
2. 功率:
根据输出负载的功率需求确定变压器的功率大小。
功率需求越大,变压器的尺寸和重量也会增加。
3. 磁芯选择:
选择适合设计功率的铁芯材料,常见的材料有硅钢片,铁氧体等。
磁芯的选择需要考虑磁导率、饱和磁感应强度、温度系数等因素。
4. 匝数:
根据变压器的变压比和输入电压确定输出电压的匝数。
匝数的选择会影响变压器的尺寸和重量。
5. 导线选择:
选择适合设计功率和电流的导线。
导线的选择需要考虑截面积、电阻、热容量等因素。
6. 散热设计:
根据变压器的功率大小,确定散热器的尺寸和散热效果。
散热器的设计需要考虑材料的导热系数、表面积等因素。
7. 安全保护:
为变压器设计过流保护、过温保护等安全措施,以防止过载和过热。
8. 绝缘:
为了确保电气安全,变压器的绝缘应达到要求,例如使用绝缘胶带包裹线圈,使用合适的绝缘材料。
以上是设计小型单相变压器的一些基本考虑因素,具体的设计过程需要根据实际需求和规范来进行。
小型单相变压器设计实例
式中的 Bm =1.1T
(铁心材料国热压求出各线圈的匝数 N1=N0U1=3.4×220=748 N2=(1.05~1.10)N0U2=1.10×3.4×300=1122 N3=(1.05~1.10)N0U3=1.10×3.4×50=187 4、计算导线直径 d 导线的截面积: Ac=I/j I1=(1.1- 1.2)S/U1==1.15×79.3/220=0.415(A) Ac1=0.415/2.5=0.17 mm
同理:
12
小型单相变压器设计
Ac2=0.08 mm2 Ac3=0.04 mm2 为高强度聚酯包线 QZ0.05。
d2=0.32 mm d3=0.23 mm
根据所求解的数据:可以取原边的材料为高强度聚酯包线 QZ0.06,副边的材料
13
小型单相变压器设计
五、 结论
通过这次的设计我知道了小型变压器质量可以从他的空载损耗和短路损耗判断出来, 越小越好,同时工作温度也会低,并有很好的负载,通过空载电流的测定,铁损较大的变 压器,发热量大,安培匝数设计要是不合理,空载电流会大增,就会造成温升增大,有损 寿命。电压变化;若以高压侧绕组为一次侧绕组,低压侧绕组为二次绕组。则变压器起降 压作用,反之起升压作用。电流变换;变压器在工作时二次侧电流的大小取决于负载阻抗 模的大小,一次侧电流大小取决于二次绕组。二次侧绕组向负载输出的功率只能由一次绕 组从电流吸收,然后通过主磁通传递到二次绕组,二次侧电流变化时,依次侧发生响应的 变化。阻抗变换:负载直接接电源时,电源的负载阻抗模,通过变压器接电源时相当于将 电源的阻抗模去平方。在电子技术当中通常利用变压器变换作用来是实现“阻抗匹配” 。
17
16
小型单相变压器设计
八、致谢
电机拖动课程设计
重庆邮电大学移通学院课程设计报告姓名专业电气工程与自动化学号指导教师2011.1210一、建立单相变压器负载运行的数学模型,并详细说明1、变压器的一次侧接交流电源,二次侧接负载,二次侧中便有负载电流流过,这种情况称为负载运行。
如图所示:变压器空载运行时,一次绕组由空载电流i0建立了空载时的主磁通。
当二次绕组接上负载阻抗Z L时,在e2的作用下,二次绕组流过负载电流i2,并产生二次绕组磁动势F2=N2i2。
根据楞次定律,该磁动势力图削弱空载时的主磁通,因而引起e1的减小。
由于电源电压u1不变,所以e1的减小会导致一次电流的增加,即由空载电流i0变为负载时电流i1,其增加的磁动势用以抵消N2 i2对空载主磁通的去磁影响,使负载时的主磁通基本回升至原来空载时的数值,使得电磁关系达到新的平衡。
因此,负载时的主磁通由一、二次绕组的磁动势共同建。
变压器负载运行时,通过电磁感应关系,将一次、二次绕组电流紧密地联系在一起,i2的增加或减小必然同时引起i1的增加或减小;相应地,二次绕组输出功率的增加或减小,必然同时引起一次绕组输入功率的增加或减小,这就达到了变压器通过电磁感应传递能量的目的。
则: - e 1 i 1= e 2 i 22. 负载运行时的基本方程式 (1) 磁动势平衡方程式变压器负载运行时, 一次电流由空载时的 i 0 变为负载时的 i 1,由于 Z 1 较小, 因此一次绕组漏阻抗压降 I 1Z 1 也仅为(3~5)%U 1N ,当忽略不计时,有U 1≈E 1,故当电源电压U 1 和频率 f 1 不变时,产生 E 1 的主磁通 Φm 也应基本不变,即从空载到负载的稳定状态,主磁通基本不变。
所以,负载时建立主磁通所需的合成磁动势 F 1+F 2 与空载时所需的磁动势F 0 也应基本不变, 即有磁动势平衡方程1式2式将1式 2式两边除以 N 1 并移项,便得3式负载时一次电流 由两个分量组成,一个是励磁电流 ,于建立主磁通Φm ; 另一个是供给负载的负载电流分量 ,用以抵消二次绕组磁动势的去磁作用,保持主磁通基本不变。
《电机与拖动》变压器---单相变压器的并联运行实验
《电机与拖动》变压器---单相变压器的并联运行实验一、实验目的1.学习变压器投入并联运行的方法。
2.研究阻抗电压对负载分配的影响。
二、预习要点1.单相变压器并联运行的条件。
2.如何验证两台变压器具有相同的极性。
3.阻抗电压对负载分配的影响。
三、实验项目1.将两台单相变压器投入并联运行。
2.阻抗电压相等的两台单相变压器并联运行,研究其负载分配情况。
3.阻抗电压不相等的两台单相变压器并联运行,研究其负载分配情况。
四、实验设备及仪器1.电机教学实验台主控制屏;2.功率及功率因数表;3.三相心式变压器;4.三相可调电阻90Ω(NMEL-04);5.波形测试及开关板(NMEL-05B)。
五、实验线路和操作步骤实验线路如图2-19所示。
图中单相变压器Ⅰ和Ⅱ选用三相心式变压器中任意两台,变压器的高压绕组并联接电源,低压绕组经开关S1并联后,再由开关S3接负载电阻R L。
由于负载电流较大,R L可采用并串联接法(选用NMEL-04的90Ω与90Ω并联再与180Ω串联,,则首端1U1与1V1为同极性端,反之为异极性端。
2U2-U2V1。
2V2(2)投入并联:检查两台变压器的变比相等和极性相同后,合上开关S1,即投入并联。
若KI与KⅡ不是严格相等,将会产生环流。
2.阻抗电压相等的两台单相变压器并联运行。
a.投入并联后,合上负载开关S3。
b.在保持原方额定电压不变的情况下,逐次增加负载电流,直至其中一台变压器的输出电流达到额定电流为止,测取I、I I、IⅡ,共取5~6组数据记录于表2-24中。
表2-243.阻抗电压不相等的两台单相变压器并联运行。
打开短路开关S2,变压器Ⅱ的副方串入电阻R,R数值可根据需要调节(一般取5~10Ω之间),重复前面实验测出I、I I、IⅡ,共取5~6组数据,记录于表2-25中。
表2-25六、实验报告1.根据实验(2)的数据,画出负载分配曲线I I=f(I)及IⅡ=f(I)。
2.根据实验(3)的数据,画出负载分配曲线I I=f(I)及IⅡ=f(I)。
电机与拖动-实验一-单相变压器
rm PO 2
IO
= 1.23 /(0.063)2 = 309.90
Zm
UO IO
பைடு நூலகம்
= 110 / 0.063 = 1746.03
2 2 = X m Zm rm
1746.32 309.90 2 = 1773.32
2.负载实验
1)实验线路如图 2-3 所示。 按照图 2-1 接好电路图 2) 测取数据时, I2=0 和 I2=I2N=0.4A 必测,共取数据 6~7 组,记录于表 2-1 中。 表 2-1 序 号 1 195.5 0.120 2 192.2 0.150 3 187.9 0.199 4 183.5 0.250 U2(V) I2(A)
cos 2 =1
U1=UN=110V 6 173.3 0.366 7 170.0 0.401
5 176.9 0.325
3)由测量得到的数据绘制出当 cos 2 =1 外特性曲线 U2=f(I2)如图 2-2 所示 并由特性曲线计算出 I2=I2N 时的电压变化率 △U: 由 表 2-1 可 得 当 I2=I2N=0.4 时 U2=170.0 则
U U 20 U 2 100% U 20
220
=
170
220
100%
= 23%
图 2-2
1.交流电压表、交流电流表、功率及功率因数表(MEL-0010,NMEL-17) 2.单相变压器(NMEL-25A) 3.三相可调电阻 900Ω (NMEL-03) 4.旋转指示灯及开关板(NMEL-05B)
四.实验过程及实验结果
1.空载实验
1)实验线路如图 1-1 。按照接线图连接好线路 打上电源,按照要求测量需 要测试的数据。
电机与拖动基础电子教案 第一篇变压器
2、其他部件:除器身外,典型的油锓电力变压 器中还有油箱、变压器油、绝缘套管及继电保护 装置等部件。 二、变压器的分类: 变压器的种类很多,可按其用途、结构、相数、 冷却方式等不同来进行分类。 1、按用途分类,可分为电力变压器(主要用在输 配电系统中,又分为升压变压器、降压变压器、 联络变压器和厂用变压器)、仪用互感器(电压 互感器和电流互感器)、特种变压器(如调压变 压器、试验变压器、电炉变压器、整流变压器、 电焊变压器等)。
1、额定容量SN 额定容量是指额定运行时的视在功率。以 VA、kVA或MVA表示。由于变压器的效率很 高,通常一、二次侧的额定容量设计成相 等。 2、额定电压U2N和U2N 正常运行时规定加在一次侧的端电压称为 变压器一次侧的额定电压 U2N。二次侧的额 定电压U2N 是指变压器一次侧加额定电压时 二次侧的空载电压。额定电压以V或kV表示。 对三相变压器,额定电压是指线电压。 3、 额定电流I2N和I2N
2)磁通的正方向与产生它的电流的正方向符 合右手螺旋定则 3)感应电动势的正方向与产生它的磁通的正方 向符合右手螺旋定则 电压u1,u2的正方向表示电位降低,电动势e1,e2的正 方向表示电位升高。在原方, u1 由首端指向末端, 1从首端流入。当u1与1同时为正或同时为负时,表 示电功率从原方输入,称为电动机惯例。在副方, u2和2的正方向是由 e2的正方向决定的,即2沿e2的 正方向流出。当u2和2同时为正或同时为负时,电 功率从副方输出,称为发电机惯例。
3.正方向的规定: 从理论上讲,正方向可以任意选择,因各 物理量的变化规律是一定的,并不依正方 向的选择不同而改变。但正方向规定不同, 列出的电磁方程式和绘制的相量图也不同。 在电机方向的学科中通常按习惯方式规定 正方向,称为惯例。具体原则如下: 1)在负载支路,电流的正方向与电压降的 正方向一致,而在电源支路,电流的正方 向与电动势的正方向一致
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小型单相变压器设计小型单相变压器简介变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。
实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。
小型变压器指的是容量1000V.A 以下的变压器。
最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、 彼此绝缘的绕组(构成电路)构成。
这类变压器在生活中的应用非常广泛。
一、 变压器的工作原理变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E 型和C 型铁心。
变压器(transformer )是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。
变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。
一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。
原绕组各量用下标1表示,副绕组各量用下标2表示。
原绕组匝数为1N ,副绕组匝数为2N 。
图(1)变压器结构示意图理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压1u ,产生电流1i ,建立磁通φ,沿铁心闭合,分别在原副绕组中感应电动势21e e 和。
(1) 电压变换当一次绕组两端加上交流电压1u 时,绕组中通过交流电流1i ,在铁心中将产生既与一次绕组交链,又与二次绕组交链的主磁通φ。
(1-1)(1-2)(1-3)(1-4)说明只要改变原、副绕组的匝数比,就能按要求改变电压。
(2) 电流变换变压器在工作时,二次电流2I 的大小主要取决于负载阻抗模|1Z |的大小,而一次电流1I 的大小则取决于2I 的大小。
2211I U I U = 又(1-5)K II U U I 22121==∴(1-6)说明变压器在改变电压的同时,亦能改变电流。
小型变压器的原理:小型单相变压器一般是指工频小容量单相变压器。
二、 变压器的基本结构1、 铁心:铁心是变压器磁路部分。
为减少铁心内磁滞损耗涡流损耗,通常铁心用含硅量较高的、厚度为0.35或0.5mm 、表面涂有绝漆的热轧或冷轧硅钢片叠装而成。
铁心分为铁柱和铁轭两部分,铁柱上套装有绕组线圈,铁轭则是作为闭合磁路之用,铁柱和铁轭同时作为变压器的机械构件。
铁心结构有两种基本形式:心式和壳式。
2、 绕组:绕组是变压器的电路部分。
一般采用绝缘纸包的铝线或铜线绕成。
为了节省铜材,我国变压器线圈大部分是采用铝线。
图(2)3、 其它结构部件:储油柜、气体继电器、油箱。
图(3)单相心式变压器1—铁柱;2—铁轭;3—高压线圈;4—低压线圈三、 设计内容计算内容有四部分:额定容量的确定;铁心尺寸的选定;绕组的匝数与导线直径;绕组(线圈)排列及铁心尺寸的最后确定。
1. 额定容量的确定变压器的容量又称表现功率和视在功率,是指变压器二次侧输出的功率,通常用KVA 表示。
(1) 二次侧总容量小容量单相变压器二次侧为多绕组时,若不计算各个绕组的等效的阻抗及其负载阻抗的幅角的差别,可认为输出总视在功率为二次侧各绕组输出视在功率之代数和,即I U IU I U S nn +++= (3)3222(3-1)式中 S 2——二次侧总容量(V ·A )U 2,U3,……U n ——二次侧各个绕组电压的有效值(V );I 2,I3,……I n —— 二次侧各个绕组的负载电流有效值(A )。
(2) 一次绕组的容量对于小容量变压器来说,我们不能就认为一次绕组的容量等于二次绕组的总容量,因为考虑到变压器中有损耗,所以一次绕组的容量应该为(单位为V ·A )(3-2)式中 S 1——变压器的额定容量;η——变压器的效率,约为0.8~0.9,表3-1 所给的数据是生产时间的统计数据,可供计算时初步选用。
由于本次设计为小型单相变压器,所以不考虑在三相变压器中的情况,只考虑在小型单相变压器的情况。
小型单相变压器的额定容量取一、二绕组容量的平均值,S=21*(S 1+S 2)(单位为V·A ) (3-3)(4) 一次电流的确定11)2.1~1.1(U S I =(3-4)式中(1.1~1.2)考虑励磁电流的经验系数,对容量很小的变压器应取大的系数。
2. 铁心尺寸的选定(1) 计算铁心截面积A为了减小铁损耗,变压器的铁心是用彼此绝缘的硅钢片叠成或非晶材料制成。
其中套有绕组的部分称为铁心柱,连接铁心柱的部分称为铁轭,为了减少磁路中不必要的气隙,变压器铁心在叠装时相临两层硅钢片的接缝要相互错开。
小容量变压器铁心形式多采用壳式,中间心柱上套放绕组,铁心的几何尺寸如图(4)所示。
图(4)小容量心柱截面积A 大小与其视在功率有关,一般用下列经验公式计算单位为(cm 2)。
SA K 0= (3-5)A ——铁心柱的净面积,单位为cm 2K——截面计算系数,与变压器额定容量S n 有关,按表3-2选取,当采用优质冷轧硅钢片时K 0可取小些截面积计算系数K 0 表3-2 截面积计算系数K 0的估算值计算心柱截面积A 后,就可确定心柱的宽度和厚度,根据图3可知K cab ab A '== (3-6)式中 a ——心柱的宽度(mm );b ——心柱的净叠厚(mm );'b ——心柱的实际厚度(mm );Kc——叠片系数,是考虑到铁心叠片间的绝缘所占空间引起铁心面积的减小所引入的。
对于0.5mm 厚,两面涂漆绝缘的热轧硅钢片,K c =0.93;对于0.35mm 厚两面涂漆绝缘的热轧硅钢片,K c =0.91;对于0.35mm 厚,不涂漆的冷轧钢片,K c =0.95。
按A 的值,确定a 和b 的大小,答案是很多的,一般取b=(1.2~2.0)a ,,并尽可能选用通用的硅钢片尺寸。
表3-3列出了通用的小型变压器硅钢片尺寸。
3. 绕组的匝数与导线直径(1) 计算每伏电压应绕的匝数从变压器的电势公式E=4.44fNB m A,若频率f=50Hz,可得出每伏所需的匝数AA f E NB B N m m 380105.444.410⨯=== (3-7)式中0N ——对应于每伏电压的匝数,单位:匝/VB m ——铁心柱内工作磁密最大值,单位:TA ——铁心柱截面积,单位:cm 2当铁心材料国热轧硅钢片时,取B m =1.0~1.2T ;采用冷轧硅钢片时,可取B m =1.2~1.5T 然后根据N 和各线圈额定电压求出各线圈的匝数 U N N 11=(3-8) 202)10.1~05.1(U N N =(3-9)U N N303)10.1~05.1(=(3-10)式中N 1、N 2 ……N n ——各线圈的匝数。
为补偿负载时漏阻抗压降,副边各线圈的匝数均增加了5%~10%。
(2) 计算导线直径d小型变压器的线圈多采用漆包圆铜线(QZ 型或QQ 型)绕制。
为限制铜损耗及发热,按各个绕组的负载电流,选择导线截面,如选的小,则电流密度大,可节省材料,但铜耗增加,温升增高。
小容量变压器是自然冷却的干式变压器,容许电流密度较低,根据实践经验,通过导线的电流密度J 不能过大,对于一般的空气自然冷却工作条件,J=2—3A/mm 2。
对于连续工作时可取J=2.5A/mm 2 导线的截面积:A c =I/j.导线的直径:mm j Ij I d 13.14==π导线直径可根据工作电流计算 ,式中: d —原、副边各线圈导线直径,单位:mm ;I —原、副边各线圈中的工作电流,单位:A ;根据算出的直径查电工手册或表3-4选取相近的标准线径。
当线圈电流大于10A 时,可采用多根导线并联或选用扁铜线。
4. 绕组(线圈)排列及铁心尺寸的最后确定。
绕组的匝数和导线的直径确定后,可作绕组排列。
绕组每层匝数为')]4~2([9.0d h N c -=(3-11)式中 d '—绝缘导线外径(mm );h ——铁心窗高(mm );0.9——考虑绕组框架两端厚度的系数; (2~4)——考虑裕度系数。
各绕组所需层数为c N m N =(3-12)各绕组厚度为()i i i i t m d δγ'=++ i=1,2,…,n(3-13)式中 σ——层间绝缘厚度(mm ),导线较细(0.2mm 以下),用一层厚度为0.02~0.04mm 白玻璃纸,导线较粗(0.2mm 以上),用一层厚度为0.05~0.07mm 的电缆纸(或牛皮纸),更粗的导线,可用厚度为0.12mm 的青壳纸;γ——绕组间的绝缘厚度(mm ),当电压不超过500V 时,可用2~3层电缆纸夹1~2层黄蜡布等。
绕组总厚度为)2.1~1.1()...(210⨯++++=t t t t n t (3-14)式中 t 0——绕组框架的厚度(mm );1.1~1.2——考虑裕度的系数。
计算所得的绕组总厚度t 必须略小于铁心窗口宽度c ,若t>c,可加大铁心叠装厚度,减小绕组匝数或重选硅钢片的尺寸,按上述步骤重复计算和核算,至合适时为止。
四、 实例计算如上图所示,取V U 2201= V U 3002= V U 503= A I 2.02= A I 1.03= 计算变压器的主要参数,并选择可行的材料。
解:1、计算变压器的额定容量S N1)计算副边的容量:S 2=U 2 I 2 + U 3 I 3=300*0.2+50*0.1=65(V·A )2)计算原边的容量:21S S =/η根据表1:小型单相变压器的效率η的估算值可以取η=0.82 因此,21S S =/η=65/0.82=79.3(V·A )3)计算变压器的额定容量N S =1/2(21S S +)=0.5*(65+79.3)=72.2(V·A )考虑到存在着一定的损耗,故可以定变压器的额定容量近似取75V·A 2、 铁心尺寸的选定1)计算铁心截面积A A =κ0N S根据表2. 截面积计算系数K0的估算值可以取K0=1.40因此,A =κ0N S(cm2) 2)铁心中柱宽度a 与铁心叠厚b 的计算根据表3.参数a 、b 的选取可以近似取a=28mm因此,b=110F/a=110*12.1/28=47.5 mm.此时b/a=47.5/28=1.7满足b=(1.2~2)a 的通常要求。
3、计算绕组线圈匝数1)求出每伏电压应绕的匝数mm AB A fB E N N 45000044.41030====3.4(匝/V ) 式中的m B =1.1T (铁心材料国热轧硅钢片)2) 根据0N 和各线圈额定电压求出各线圈的匝数 1N =0N U1=3.4*220=7482N =(1.05~1.10)0N U 2=1.10*3.4*300=11223N =(1.05~1.10)0N U 3=1.10*3.4*50=187 4、计算导线直径d导线的截面积:Ac=I/j.11)2.1~1.1(U SI = =1.15*79.3/220=0.415(A)Ac1=0.415/2.5=0.17 mm 21d ==同理:Ac2=0.08 mm 2 2d =0.32 mmAc3=0.04 mm 23d =0.23 mm根据所求解的数据:可以取原边的材料为高强度聚酯包线QZ0.06副边的材料为高强度聚酯包线QZ0.05五、 结论在本次的课程设计也是以《电机与拖动》我们的教材为主线,我们基本能按照设计任务书、指导书、技术条件的要求进行。