实验七-最大气泡压力法测定溶液表面张力

合集下载

实验七 最大气泡法测定液体的表面张力

实验七  最大气泡法测定液体的表面张力

实验七 最大气泡法测定液体的表面张力卓冶13 李金阳(一)、实验目的1.掌握最大气泡法测定液体的表面张力的原理和方法。

2.熟悉表面张力的意义和性质,测定不同浓度液体的表面张力。

3.熟悉表面吸附的性质及与表面张力的关系。

(二)、实验原理溶剂中加入溶质后,溶剂的表面张力要发生变化,加入表面活性物质(能显著降低溶剂表面张力的物质)则它们在表面层的浓度要大于在溶液内部的浓度,加入非表面活性物质则它们在表面层的浓度比溶液内部低。

这种表面浓度与溶液内部浓度不同的现象叫溶液的吸附。

显然,在指定的温度压力下,溶质的吸附量与溶液的表面张力及溶液的浓度有关。

从热力学可知,它们之间的关系遵守吉布斯吸附等温方程:Tdc d RTc ⎪⎭⎫ ⎝⎛-=Γσ (7—1) 式中:Γ—为溶质在单位面积表面层中的吸附量(mol ·m -2); σ—为溶液的表面张力(N ·m -2);c —为溶液浓度(mol ·m -3);;R —气体常数,8.314J ·mol -1·K -1;T —为绝对温度(K )。

当)/(dc d σ<0时,Γ > 0,即溶液的表面张力随着溶液浓度的增加而下降时,吸附量为正值,称为正吸附,反之,当)/(dc d σ> 0时,Γ< 0称为负吸附。

吉布斯吸附等温方程式应用范围很广,但上述形式只适用于稀溶液。

通过实验测得不同浓度溶液的表面张力1σ、2σ……即可求得吸附量Γ。

本实验采用最大气泡压力法测定正丁醇水溶液的表面张力值。

试验装置如图(7—1)所示。

图7—1 表面张力测定装置1—样品管 2—毛细管 3—压瓶4—精密数字压力计 5—大气平衡管 6—活塞 图7—2 气泡曲率半径的变化规律将欲测表面张力的溶液装入样品管中,使毛细管的端口与液面相切,液体即沿毛细管上升,打开减压瓶3的活塞6,使里面的水慢慢的滴出,则系统内的压力慢慢减小,毛细管2液面上受到一个比样品管中液面上大的压力,此时毛细管内液面就会下降,直到在毛细管端面形成一个稳定的气泡。

最大气泡压力法测定溶液表面张力.

最大气泡压力法测定溶液表面张力.

物理化学实验最大气泡压力法测定溶液表面张力C210 2010-04-12T=286.15K P=85.02kPa一、实验目的1.掌握最大气泡法测定溶液表面张力的原理和方法2.测水溶液的表面张力并计算定不同浓度正丁醇计算吸附量3.加深对表面张力、表面自由能、表面张力和吸附量关系的理解二、实验原理处于溶液表面的分子,受到不平衡的分子间力的作用而具有表面张力s.气泡最大压力法测定表面张力装置见实物;实验中通过滴水瓶滴水抽气使得体系压力下降,大气压与体系压力差△p逐渐把毛细管中的液面压至管口,形成气泡。

如果毛细管半径很小,则形成的气泡基本上是球形的;当气泡开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时曲率半径R和毛细管半径r相等,曲率半径达最小值,根据拉普拉斯公式得:附加压力达最大值ΔP max=σ/r min。

气泡进一步长大,R变大,附加压力则变小,直到气泡逸出。

加入表面活性物质时溶液的表面张力会下降,溶质在表面的浓度大于其在本体的浓度,此现象称为表面吸附现象;单位溶液表面积上溶质的过剩量称为表面吸附量Γ, Γ=-(c/RT)*( dσ/dc).对可形成单分子层吸附的表面活性物质,溶液的表面吸附量Γ与溶液本体浓度c之间的关系符合朗格谬尔吸附等温式: Γ=Γ∞*kc/1+kc朗格谬尔吸附等温式的线性形式为: c/Γ=c/Γ∞+1/kΓ∞Γ∞为饱和吸附时,单位溶液表面积上吸附的溶质的物质的量,则每个溶质分子在溶液表面上的吸附截面积为:A m=1/(N A*Γ∞)三、仪器与试剂恒温槽装置;数字式微压差计;抽气瓶l个;表面张力测定仪烧杯(1000mL);T形管1个;电导水;正丁醇(A.R.)及其不同浓度的标准溶液;四、实验步骤1.仪器常数的测定将表面张力测定仪清洗干净;在干净的表面张力测定仪中装入电导水,使毛细管上端塞子塞紧时,毛细管刚好与液面垂直相切;抽气瓶装满水,连接好后旋开下端活塞使水缓慢滴出;控制流速使气泡从毛细管平稳脱出(每个气泡4-6秒),记录气泡脱出瞬间数字微压差计的最大数值,取三次并求平均值。

溶液表面张力的测定——最大气泡压力法

溶液表面张力的测定——最大气泡压力法

实验七 溶液表面张力的测定——最大气泡压力法一. 实验目的1. 用最大气泡法测定不同浓度乙醇溶液的表面张力。

2. 了解表面张力的性质, 表面自由能的意义以及表面张力和吸附的关系。

3. 学会镜面法作切线的方法。

二. 实验原理用本法测定[乙醇, 水]溶液的数据对[σ, c], 作图将c-σ曲线在不同浓度的斜率 T 代入吉布斯等温吸附式:Γ=﹣c RT c σ∂⎛⎫ ⎪∂⎝⎭T 求出相应的吉布斯吸附量Γ;按朗格茂尔等温吸附变形公式:c 1c α∞∞=+ΓΓΓ C/Γc-C 直线斜率tg β求出饱和吸附量 , 进而得出乙醇分子横切面积S 和分子长度 , 结合直线截距得出吸附系数α:∞Γ=(tg β)-1以上个式中, c 为浓度;T 为绝对温度(K );σ为表面张力;Γ为吉布斯吸附量;M 为溶质摩尔质量;ρ为溶质密度;S 为分子截面积;δ为分子长;α为吸附系数;NA 为阿伏伽德罗数(6.02×1023/mol );R 为气体常数。

为了求以上参数, 关键是测σ。

表面张力及界面张力, 矢量。

源于凝聚相界面分子受力不平衡, 意为表面的单位长度收缩力。

σ也是在个条件下凝聚系表面相得热力学强度性质, 如果恒温、恒压下扩大单位表面积所需的可逆功, 故亦称为表面自由焓。

1. σ与凝聚相和表面共存接触相种类有关, 还与T,P 有关, 与凝聚相纯度和杂志种类有关。

浓度升高, 溶液的σ有增有减, 随溶质、溶剂而异, 表面活性剂是两亲分子, 他们的水溶液σ随浓度升高先剧降, 后微升, 在渐趋稳定。

σ随c 而变化的本质是溶液表面浓度对体相浓度的偏离, 此现象称为表面吸附。

表面吸附量Γ与浓度有关, 用吉布斯等温方程求出 为σ-c 曲线在指定浓度的斜率。

<0, Γ>0为正吸附, 表面浓度较体浓度高, 达饱和吸附时, Γ趋于饱和吸附量 , 此时两亲分子在溶液表面处于高度有序的竖立密集, 形成单分子膜。

,2. 若将兰格缪尔等温吸附式中的吸附量赋予吉布斯吸附量的特定意义, 则可从其变形式求出 设分子吸附层厚δ, δ即两亲分子长。

(情绪管理)最大气泡压力法测定溶液的表面张力最全版

(情绪管理)最大气泡压力法测定溶液的表面张力最全版

(情绪管理)最大气泡压力法测定溶液的表面张力最大气泡压力法测定溶液的表面张力壹、实验目的1.掌握最大气泡压力法测定表面张力的原理和技术。

2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。

二、基本原理在壹个液体的内部,任何分子周围的吸引力是平衡的。

可是在液体表面表面层中,每个分子都受到垂直于且指向液体内部的不平衡力。

所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能,通常把增大壹平方米表面所需的最大功A或增大壹平方米所引起的表面自由能的变化△G,称为单位表面的表面能,其单位为J·m-1;而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N·m-1。

如欲使液体表面面积增加ΔS时,所消耗的可逆功A应该是:壹A=ΔG=σΔS(1)液体的表面张力和温度有关,温度愈高,表面张力愈小。

根据能量最低原则,若溶质能降低溶剂的表面张力,则表面层中溶质的浓度应比溶液内部的浓度大,如果所加溶质能使溶剂的表面张力升高,那么溶质在表面层中的浓度应比溶液内部的浓度低。

这种表面浓度和溶液内部浓度不同的现象叫做溶液的表面吸附。

在壹定的温度和压力下,溶液表面吸附溶质的量和溶液的表面张力和加入的溶质量(即溶液的浓度)有关,它们之间的关系可用吉布斯(Gibbs)公式表示:Γ=-()T(2)式中:Γ为吸附量(mol·m-1);σ为表面张力(J·m-1);T为绝对温度(K);c为溶液浓度(mol.L -1);R为气体常数(8.314J.K—I·mol-1)。

()T表示在壹定温度下表面张力随溶液浓度而改变的变化率。

如果σ随浓度的增加而减小,也即()T<0,则Γ>0,此时溶液表面层的浓度大于溶液内部的浓度,称为正吸附作用。

如果σ随浓度的增加而增加即()T>0,则Γ<0,此时溶液表面层的浓度小于溶液本身的浓度,称为负吸附作用。

物理化学实验- 最大气泡法测定溶液的表面张力

物理化学实验- 最大气泡法测定溶液的表面张力

g
表面分子:受到向内拉力,液体有自
动收缩表面而呈球形的趋势.
l
如果把一个分子由内部迁移到表面,就需要对抗拉力 而做功。在温度、压力和组成都恒定时,可逆地使表 面增加ΔS所需对体系做的功,叫表面功,可表示为:
-A=ΔG=σΔS
σ称为表面自由能,单位为J/m2。若把σ看作为作用在界 面上每单位长度边缘上的力,通常称为表面张力。
思考题
1.用最大气泡法测定表面张力时为什么要读最大压力差? •2.如果毛细管末端插入溶液中进行测量行吗?为什么? •3.本实验中为什么要读取最大压力差?

3. 调节恒温为25oC。
▪ 4.仪器常数测定
先以蒸馏水作为待测液测定其仪器常数。方法是将干燥的毛 细管垂直地插到使毛细管的端点刚好与水面相切,打开滴液 漏斗,控制滴液速度,使毛细管逸出的气泡,速度约为5s~ 10s1个。从精密数字压差计读取最大读数。可读三次,取其 平均值。通过手册 查出实验温度时水的表面张力,利用公
仪器与试剂
表面张力测定仪 一套 阿贝折射仪 一台 精密数字压差计 一台 烧杯 滴管 乙醇 去离子水
毛细管 支管试管
滴液漏斗
低真空测压 仪
实验步骤
1.安装仪器:洗净仪器并按图装置。对需干燥的仪器作 干燥处理。
2.配置乙醇溶液: 分别配制0%,20%, 40%, 60%, 80%,乙醇溶液各 50mL。
式K= / p1 求出仪器常数K。
▪ 5.待测样品表面张力的测定:用待测溶液洗净试管和毛 细管,加入适量样品于试管中,按照仪器常数测定的方法,
测定不同待测样品的p计算其表面张力。
▪ 6.乙醇溶液的折光率测定:用每个样品测出p后,随即
用滴管吸取该溶液滴置于棱镜上,用阿贝折光仪测其折光 率nD查工作曲线得各样品的准确浓度。

物理化学实验报告:最大泡压法测定溶液的表面张力

物理化学实验报告:最大泡压法测定溶液的表面张力

欲使液体产生新的表面 ΔA,就需对其做功,其大小应与 ΔA 成正比:
-W′=σ·ΔA
(1)
它表示液体表面自动缩小趋势的大小,σ 称为比表面自由能,其量纲为 J·m-2。因其量 纲又可以写成 N·m-1,所以 σ 还可称为表面张力。其量值与溶液的成分、溶质的浓度、温
度及表面气氛等因素有关。
2、溶液的表面吸附
至于恒温水浴内恒温 10min。毛细管需垂直并注意液面位置,然后按图接好测量系统。慢慢
打开抽气瓶活塞,注意气泡形成的速率应保持稳定,通常控制在每分钟 8-12 个气泡为宜,
即数字微压微压差测量仪的读数(瞬间最大压差)约在 700-800pa 之间。读数 3 次,取平均
值。
4、测量乙醇溶液的表面张力
按实验步骤三分别测量不同浓度的乙醇溶液。从稀到浓依次进行。每次测量前必须用少量
根据能量最低原理,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部
大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低,这种
表面浓度与内部浓度不同的现象叫做溶液的表面吸附。在指定的温度和压力下,溶质的吸
附量与溶液的表面张力及溶液的浓度之间的关系遵守吉布斯(Gibbs)吸附方程:
1.3435
25%乙醇
-0.478
1.3465
30%乙醇
-0.452
1.3491
35%乙醇
-0.450
1.3516
40%乙醇
-0.422
1.3539
2.数据处理:
(1)以纯水的测量结果按方程计算 K′值。
解得 K′=σ1∕△p1=71.97*10-3N*m-1/(-0.765kpa)=0.094 (2)根据所测折光率,由实验提供的浓度-折光率工作曲线查出各溶液的浓度。

七、最大气泡法测定溶液的表面张力

七、最大气泡法测定溶液的表面张力

宁 波 工 程 学 院物理化学实验报告专业班级 化工114班 姓名 提子 序号 17 同组姓名 指导老师 胡爱珠 杨建平 实验日期 2013.5.21 实验名称 实验七 最大气泡压力法测定溶液的表面张力一、实验目的1、掌握最大气泡压力法测定表面张力的原理和技术。

2、通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表明自由能、表面张力和吸附量关系的理解。

二、实验原理1、在指定的温度和压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵守吉布斯吸附等温式: 根据朗格缪尔公式:以c/Г对c 作图,得以直线,该直线的斜率为1/Г∞三、实验仪器、试剂1、仪器:最大泡压表面张力仪1套、洗耳球1个、移液管(50ml 和1ml)各1只、烧杯(500ml)2、试剂:正丁醇(分析纯)、蒸馏水 四、实验步骤1、仪器准备与检漏将表面张力仪容器和毛细管先用洗液洗净,再顺次用自来水和蒸馏水漂洗,烘干后按图接好。

检查是否漏气。

2、仪器常数的测定调节液面与毛细管端相切,并调节分液漏斗,使气泡由毛细管尖端成单泡逸出,且速度控制在每分钟形成气泡5-10个。

当气泡刚脱离管端的一瞬间,压力计中液位差达到最大值,此时记录下Δp 最大值;改变气泡逸出速率(控制在每分钟5-10个),再依此记录2次,取其平均值。

再由手册中查出实验温度时水的表面张力,求得仪器常数K 。

3、表面张力随溶液浓度变化的测定在上述体系中,按浓度从低到高的顺序依次测定预先配好的正丁醇溶液的Δp 最大值,每次置换溶液前都先用新溶液润洗2次,再按2方法测定。

五、数据记录与处理1、计算仪器常数K 和溶液表面张力γ,绘制γ-c 等温线。

室温:27.9℃ 大气压力:100.21Kpa 恒温槽温度:30℃ γ水:71.18×10-3 N/m K:1.1041×10-4c d RT dcГγ=-Kc1KcГГ∞=+c 1+Kc c 1 K K ГГГГ∞∞∞==+2RP γ∆=max 2RP γ∆=maxK p γ=∆浓度c(mol/dm3) 水0.02 0.04 0.06 0.08 0.1 0.12 0.16 0.2 0.24Δpm ax(Pa) 644.7 621.3 576.0 542.3 515.7 491.7 471.7 449.0 419.0 397.7 Δpmax1(Pa)646 622 577 542 515 493 470 451 418 398 Δpmax2(Pa)643 621 576 543 517 490 472 448 419 397 Δpmax3(Pa)645 621 575 542 515 492 473 448 420 398 γ×10-3(N/m) 71.18 68.60 63.60 59.88 56.94 54.29 52.08 49.58 46.26 43.91 由图表数据作γ-c等温线图:由图1可得Y = 0.07142-0.20629*X+0.39219*X2可以得到γ-c的关系式为Y = 0.07142-0.20629*C+0.39219*C2由此得到dγ/dc=0.78438c-0.20629将不同的c值代入上式,就可以得到在不同浓度c下的dγ/dc了。

最大泡压法测定溶液的表面张力

最大泡压法测定溶液的表面张力

最大泡压法测定溶液的表面张力、实验目的1掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。

2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。

3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量醇分子的截由表面张力的实验数据求正丁面积及吸附层的厚度。

二、实验原理1表面张力的产生液体表面层的分子一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,由于前者的作用要比后者大,因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力,如图所示,这种吸引力使表面上的分子自发向内挤促成液体的最小面积。

在温度、压力、组成恒定时,每增加单位表面积,体系的表面自由能的增值称为单位表面的表面能(J ∙m2)。

若看作是垂直作用在单位长度相界面上的力,即表面张力(N∙ m1)。

事实上不仅在气液界面存在表面张力,在任何两相界面都存在表面张力。

表面张力的方向是与界面相切,垂直作用于某一边界,方向指向是表面积缩小的一侧。

液体的表面张力与液体的纯度有关。

在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。

由于表面张力的存在,产生很多特殊界面现象。

2、弯曲液面下的附加压力静止液体的表面在某些特殊情况下是一个弯曲表面。

由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。

弯曲液体表面平衡时表面张力将产生一合力P s,而使弯曲液面下的液体所受实际压力与外压力不同。

当液面为凹形时,合力指向液体外部,液面下的液体受到的实际压力为:P = P o - F S ;当液面为凸形时,合力指向液体内部,液面下的液体受到的实际压力为:P = P o + P S 。

这一合力P S ,即为弯曲表面受到的附加压力,附加压力的方向总是指向曲率中心。

附加压力与表面张力的关系用拉普拉斯方程表示:(式中σ为表面张力,R 为弯曲表面的曲率半径,该公式是拉普拉斯方程的特殊式,适用于当弯曲表面刚好为半球形的情况)。

物理化学实验最大泡压法测定溶液的表面张力

物理化学实验最大泡压法测定溶液的表面张力
体/晶体的界面张力。
有些溶解溶质会使表面张力增大,有些溶解溶质会使表面张力 减小。
2020/8/3
9
热力学上,系统总是向减少自由能方向进行液体表面
的自由能总是趋向最小。
如果加入溶质B如果降低了溶剂A的表面张力,则表面层就会吸 收更多的溶质原子形成正吸附现象。
→表面活性物质→跑向表面 反之,如果加入溶质B后,增加了溶剂的表面张力,则表面层就 会排斥溶质原子B,而形成负吸附现象。
五、数据记录
表2 各浓度正丁醇的Δpr的测定
正丁醇 1 2 3 4 5 6
Δpr
σ1(N·m-1)
mol·L-1
(平均值)
0.02
0.05
0.10
0.20
0.25

0.30
0.35
0.50
1 p prr, , 1 22或 1K'pr, 1 求各浓度下的表面张力σ1
六、数据处理
求算各个浓度的吸附量
吉布斯吸附方程 - c d
rpr,2
1 pr,1 2 pr,2
已知σ2,便可就得σ1
1 p prr, , 1 22或 1K'pr, 1
三、实验装置
p#(大气压)
微压差测量仪
pA
Δpr= p#-pA
四、实验步骤
1. 按图组装仪器。 2. 用蒸馏水测定毛细管常数K' 。 计算所需0.5 mol·L-1正丁醇体积,并配制25 ml各 .3
→表面非活性物质→跑向内部 如果加入溶质B后,并不改变溶剂的表面张力,则不形成吸附现 象,整个溶液浓度是均匀的。
2020/8/3
10
吉布斯溶液表面的吸附公式,通常写成:
RCT(C)T
表明了溶质对某液相的活性和和非活性的程度

最大气泡法测定溶液的表面张力

最大气泡法测定溶液的表面张力

KC
作(C/Γ)-C图,直线斜率的倒数即为Γ∞ 。
如果以N代表1m2 表面上溶质的分子数,则有:N=Γ∞ L
可得每个溶质分子在表面上所占据的横截面积:
σ= 1/(ΓΓ∞ )
因此,若 测得不同浓度下溶液的表面张力,从σ-C曲线上求出不同 浓度的吸附量Γ,再从(C/Γ)-C直线上求出Γ∞ ,便可以计算出溶质 分子的横截面积σB 。
▪ 数字式微压差测量仪
1台
毛细管 支管试管
滴液漏斗
低真空测压 仪
实验步骤
▪1.安装仪器:洗净仪器并按图装置。对需干燥的仪器作干 燥处理。
▪2.配置乙醇溶液: 分 别 配 制 0 . 02mol/L , 0.05mol / L , 0 . 10mol / L , 0.15mol/L,0.20mol/L,0.25mol/L,0.30mol/L, 0.35mol/L乙醇溶液各50mL。
dC
称为正吸附; 称为负吸附;
乙醇是表面活性物质,能降低溶剂的表面张力,它们在水溶液表面 的排列情况随浓度不同而异:当浓度小时,分子可以平躺在表面上; 浓度增大时,分子的极性基团取向溶剂内部,而非极性基团基本上 取向空间;当浓度增大到一定程度时,溶质分子占据了所有表面,就 形成饱和吸附层。
以表面张力对浓度作图,可得到σ-C曲线,从图中可以看出,在开始 时σ随浓度的增加而迅速下降,以后的变化比较缓慢。
数据处理
▪ 1.由附录表中查出实验温度时水的表面张力,算出毛细管常 数K。
▪ 2.由实验结果计算各份溶液的表面张力 ,并作 ~c曲线。
▪ 3. 在 ~c 曲 线 上 分 别 在 0 . 050mol/L , 0 . 100mol / L ,
0.150mol/L,0.200mol/L,0.250mol/L和0.300mol

最大泡压法测定溶液的表面张力

最大泡压法测定溶液的表面张力

最大泡压法测定溶液的表面张力
1. 连接电源,打开电源开关(在仪器后面板上),在水浴槽中加入蒸
馏水至加热棒的上沿处。

2. 设置水浴温度(一般设置为25℃,当气温较高时,一般设置为气
温+5℃),开启加热开关和搅拌开关,调节合适的搅拌速率(一般为550-600r/min左右)。

3. 清洗样品管,装入蒸馏水至刻度线处,调节液位调节器,使毛细
管与液面相切,恒温10-15min,进行毛细管常熟测定。

4. 将仪器的出气口与样品管的增压操作口连接,将增/减压操作切换
开关打到增压侧,调节气速调节器使压力变化容易读数,记录压力表显示的最大正压力值,读取三组数据;将增/减压操作切换开关打到中间位置(断路位置),将仪器的出气口与样品管的减压操作口连接,将增/减压操作切换开关打到减压侧,调节气速调节器使压力变化容易读数,记录压力表显示的最大负压力值,读取三组数据;用水的标准表面张力值和上述测定的最大正压力值与最大负压力值的差值计算毛细管常数。

5. 依照步骤4和5,对待测样品溶液进行测量。

从小浓度依次到大浓
度,每次测完后将样品倒入废液回收处,直接用下一个高浓度样品涮洗样品管,再次装入样品,恒温10-15min后进行测量。

(应注意液位计的液位高度变化,切不可液位相差过高)
6. 测量结束,关闭增/减压开关,关闭搅拌,关闭控温开关,打开平
衡开关,使两液位计液位向平,关闭平衡开关。

7. 数据处理,计算待测溶液溶质(正丁醇)的分子截面积。

最大泡压法测定溶液的表面张力(泡压法、滴重法、毛细管升高法)

最大泡压法测定溶液的表面张力(泡压法、滴重法、毛细管升高法)

表面张力的测定——最大气泡压力法、滴重法、毛细管升高法一、实验原理:1.最大气泡压力法测定表面张力(装置如下图所示):其中,B是管端为毛细管的玻璃管,与液面相切。

毛细管中大气压为P0。

试管A中气压为P,当打开活塞E时,C中的水流出,体系压力P逐渐减小,逐渐把毛细管液面压至管口,形成气泡。

当气泡在毛细管口逐渐长大时,其曲率半径逐渐变小,气泡达最大时便会破裂。

此时气泡的曲率半径最小,即等于毛细管半径r,气泡承受的压力差也最大△P=P0-P=2γ/r 此压力差可由压力计D读出,故γ=r△P/2若用同一支毛细管测两种不同液体,其表面张力分别为γ1、γ2,压力计测得压力差分别为△P1、△P2则:γ1/γ2=△P1/△P2若其中一种液体的γ已知,例如水,则另一种液体的表面张力可由上式求得。

2.毛细管身升高法(装置如下图所示):毛细管法测定表面张力仪器毛细管表面张力示意图当一根洁净的,无油脂的毛细管浸进液体,液体在毛细管内升高到h高度。

在平衡时,毛细管中液柱重量与表面张力关系为:2πσrcosθ=πr2gdhσ=gdhr/2cosθ(1)如果液体对玻璃润湿,θ=0,cosθ=1(对于很多液体是这样情况),则:σ=gdhr/2 (2)式中σ为表面张力;g为重力加速度;d为液体密度;r为毛细管半径。

上式忽略了液体弯月面。

如果弯月面很小,可以考虑为半球形,则体积应为:πr3 -2/3πr3 =1/3πr3从(2)可得:σ=gdr/2(h+1/3r)(3)更精确些,可假定弯月面为一椭圆球。

(3)式应变为:σ=gdhr/2(1+1/3(r/h)-0.1288(r/h)2+0.1312(r/h)3)(4)3. 滴重法(装置如右图所示):从图中可看出,当达到平衡时,从外半径为r的毛细管滴下的液体重量应等于毛细管周边乘以表面张力,即:mg=2πσr (5)式中m为液滴质量;r为毛细管外半径;σ为表面张力;g为重力加速度。

事实上,滴下来的仅仅是液滴的一部分。

最大气泡压力法测定溶液表面张力

最大气泡压力法测定溶液表面张力

最大气泡压力法测定溶液表面张力一、前言表面张力是指液体表面处的分子间相互作用力,是液体表面能量和单位面积的量度。

在实际应用中,表面张力常常被用来描述液体与固体或气体之间的相互作用,如液滴形态、液滴与固体表面接触角等。

因此,测定溶液表面张力具有重要的理论和实际意义。

最大气泡压力法是一种常用的测定溶液表面张力的方法。

该方法基于气泡在液体中升降时所受到的阻力与气泡直径之间的关系,通过测量最大气泡升降速度和直径来计算溶液的表面张力。

二、实验步骤1. 实验仪器和试剂准备(1)实验仪器:最大气泡压力法测定仪、电子天平、恒温水槽。

(2)试剂:去离子水、丙酮、十二烷基硫酸钠(SDS)、甘油。

2. 样品制备将待测样品加入到清洁干燥的容器中,并在恒温水槽中调节至所需温度。

3. 测定最大气泡压力(1)在样品表面加入一定量的SDS和甘油,使得液面平整且不出现颗粒状物质。

(2)将测定仪的玻璃管插入到样品中,并通过注射器向玻璃管中注入空气,形成一个气泡。

(3)调节测定仪的升降速度,当气泡升至一定高度时停止升降,记录此时的气泡直径和压力。

(4)逐步增加气泡压力并记录相应的气泡直径和压力值,直至气泡破裂或者脱离液面为止。

4. 计算表面张力根据测得的最大气泡直径和压力值,可以通过下列公式计算溶液表面张力:γ = (4σ/3r) (ΔP/P0)其中,γ为溶液表面张力;σ为水-空气界面张力常数;r为最大气泡半径;ΔP为最大气泡压差;P0为大气压强。

5. 数据处理对于同一样品,在不同温度下进行多次测量,并取平均值计算出表面张力。

三、实验注意事项1. 实验前要仔细清洗测定仪和玻璃管,避免杂质对实验结果的影响。

2. 在加入SDS和甘油时要注意控制添加量,避免过量引起液面不平整。

3. 测定时要保持恒温,避免温度变化对实验结果的影响。

4. 测定时要保持气泡升降速度稳定,并逐步增加气泡压力,避免气泡破裂或脱离液面。

5. 测定同一样品时要进行多次测量,并取平均值计算表面张力,提高实验结果的准确性。

最大泡压法测定液体表面张力

最大泡压法测定液体表面张力

问答题:1、气泡溢出速度较快或者不成单泡,对实验结果有什么影响?毛细管尖端为什么要刚好接触液面?答案:出泡速率不能太快,因为出泡速率快将使表面活性物质来不及在气泡表面达到吸附平衡,也将使气体分子间摩擦力和流体与管壁间的摩擦力增大,这将造成压力差增大,使表面张力测定值偏高。

所以要求从毛细管中溢出的气泡必须单泡溢出,有利于表面活性物质在表面达到吸附平衡,并可减少气体分子及气体与管壁之间的摩擦力,才能获得平衡的表面张力。

毛细管插入溶液中的深度直接影响测量结果的准确性。

假如毛细管尖端插入液下,会造成压力不只是液体表面的张力,还有插入部分液体的静压力。

为了减少静压力的影响,应尽可能减少毛细管的插入和深度,使插入深度△h接近0。

毛细管内的空气压力与管口处的液体表面张力平衡,插入一定深度后,需增加空气压力才能抵消这一深度的液柱压力,使实验测得的表面张力值偏高。

2、影响实验结果的关键因素有哪些?答案:实验中,气泡的速度对实验数据有很大的影响。

速度过快,会使数据变大。

因此,保持相同的气泡速度对于本实验的成败有很大的关系。

而实验装置中,随着滴液漏斗中水的不断流出,滴液的速度会减慢,装置的此处有待改进。

另外,毛细管的竖直以及毛细管进入液面的深度,对于测定结果都有一定的影响,实验中应该注意。

实验数据处理也是很关键的一步,对测量结果有较大影响。

3、最大气泡法测表面张力时为什么要读取最发压力差?答案:测定时在毛细管口与液面相接触的地方形成气泡,其曲率半径R先逐渐变小,当达到R=r(毛细管半径)时,R值最小,附加压力p=2∕R也达到最大,且此时对于同一毛细管,p(max)只与物质的r(伽马)值有关(单值函数关系),所以都读最大压力差。

4、温度和压力的变化对测定结果有无影响?如果有,有什么影响?答案:温度越高,表面张力越小,到达临界温度时,液体与气体不分,表面张力趋近于零。

最大泡压法测定时,系统与外界大气的压力差越大,表面张力就越大。

最大气泡法测定溶液的表面张力

最大气泡法测定溶液的表面张力

最大气泡法测定溶液的表面张力一、前言表面张力是指液体表面上的分子间相互作用力,它对于液体的物理性质和化学性质都有着重要的影响。

因此,测定液体的表面张力是研究其性质和应用的基础之一。

最大气泡法是一种常用的测定溶液表面张力的方法,本文将详细介绍最大气泡法测定溶液表面张力的原理、仪器设备、实验步骤以及注意事项等内容。

二、原理在液体中形成一个平衡状态下的气泡,需要克服两种力:一种是气泡内部压强产生的膨胀力;另一种是由于液体表面张力引起的收缩力。

当这两种力相等时,气泡停止膨胀并保持稳定状态。

因此,可以通过测量形成最大气泡所需压强来计算出溶液表面张力值。

三、仪器设备1. 水槽:用于放置容器和调节温度。

2. 水平支架:用于支撑容器。

3. 外壳:包裹水槽和容器。

4. 管道系统:用于通气和排放气体。

5. 气泡发生器:用于生成气泡。

6. 压力计:用于测量气泡内部压强。

四、实验步骤1. 准备工作:将水槽中的水加热到所需温度,将容器放在水槽中,并调整水平支架,使容器位于水平位置。

将外壳套在水槽上,并保证密封性。

连接好管道系统和气泡发生器,调整好通气量和排放量。

2. 测定最大气泡:将容器中的溶液注入到气泡发生器中,并在一定时间内形成一个稳定的最大气泡。

记录下形成最大气泡所需的压强值。

3. 重复实验:重复以上操作,测定多组数据并取均值。

4. 计算表面张力:根据以下公式计算表面张力:γ = (P - P0) * V / (2 * L)其中,γ为表面张力;P为最大气泡所需压强;P0为环境压强;V为最大气泡体积;L为环绕最大气泡的液体周长。

五、注意事项1. 实验过程中要保持环境稳定,避免外界干扰。

2. 测定前要确保仪器设备的清洁和无漏气现象。

3. 测量压强时要注意气泡内部压强和环境压强的差值,以避免误差。

4. 测定时要注意控制通气量和排放量,保证气泡的稳定性。

5. 温度对表面张力有较大影响,应在实验中进行温度控制。

六、总结最大气泡法是一种常用的测定溶液表面张力的方法。

7 实验七 最大气泡压力法测定液体的表面张力

7   实验七  最大气泡压力法测定液体的表面张力

实验七 最大气泡压力法测定液体的表面张力一、实验目的1、用最大气泡法测定不同浓度正丁醇溶液的表面张力,计算溶液表面吸附量、被吸附分子的截面积和吸附层厚度。

2、掌握最大气泡法测定溶液表面张力的原理和技术。

二、实验原理在指定的温度和压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵守吉布斯(Gibbs)吸附方程:TC RT C σ∂⎛⎫Γ=-⎪∂⎝⎭ 以σ对C 作图,可得到σ-C 曲线,在曲线上任选一点a 作切线,即可得到该点所对应浓度的斜率T Z C C σ∂⎛⎫=- ⎪∂⎝⎭ 再由 TCZ RTC RT σ∂⎛⎫Γ=-= ⎪∂⎝⎭,求出不同浓度下的吸附量Γ。

据朗格谬尔(Langmuir)吸附公式:Г∞为饱和吸附量,即表面被吸附物铺满一层分子时的Г,线性化得1A L∞=Γ截可求被吸附分子的截面积(L 为阿佛加得罗常数)。

若已知溶质的密度ρ,分子量M ,就可计算出吸附层厚度δσ的最大气泡法测定原理是:2U p p p g h Rσρ∆=-==∆大气体系型管 实验时,用已知表面张力的纯水标定后再测定不同浓度样品溶液2222H OH O H O p g h Rσρ∆==∆2p g h Rσρ∆==∆样品样品样品 2222H O H O H OH Op h p h σσσ∆∆==∆∆样品样品样品三、仪器药品最大泡压法表面张力仪1套吸耳球1个移液管(50mL和1mL) 各1只烧杯(500mL) 1只正丁醇(AR)蒸馏水超级恒温槽1套四、实验步骤1. 仪器准备与检漏将表面张力仪容器和毛细管先用洗液洗净,再顺次用自来水和蒸馏水漂洗,烘干后按图连接好。

将水注入抽气管中。

在测量管中蒸馏水,用吸耳球由活塞处抽气,调节液面,使之恰好与细口管尖端相切。

然后关紧活塞,再打开抽气瓶活塞,这时瓶中水流出,使体系内的压力降低,当压力计中液面指示出若干厘米的压差时,关闭活塞,停止抽气。

若2min~3min内,压力计液面高度差不变,则说明体系不漏气,可以进行实验。

实验七-最大气泡压力法测定溶液表面张力

实验七-最大气泡压力法测定溶液表面张力

一、实验目的1.掌握最大气泡压力法测定表面张力的原理与技术。

2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力与吸附量关系的理解。

二、实验原理1、在一定温度下纯液体的表面张力为定值,当加入溶质形成溶液时,表面张力发生变化,其变化的大小决定于溶质的性质与加入量的多少。

根据能量最低原理,溶质能降低溶剂的表面张力时,表面层溶质的浓度比溶液内部大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低,这种表面浓度与内部浓度不同的现象叫做溶液的表面吸附。

在指定的温度与压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵循吉布斯吸附等温式:Γ = –(c/RT)*(dγ/dc)①式中,Г为溶液在表层的吸附量;γ为表面张力;c为吸附达到平衡时溶液在介质中的浓度。

根据朗格谬尔(Langmuir)公式:Γ =Γ∞Kc/(1+Kc)②Γ∞为饱与吸附量,即表面被吸附物铺满一层分子时的Γ∞c/Γ =(1+Kc)/(Γ∞K)= c/Γ∞+1/Γ∞K ③以c/Г对c作图,则图中该直线斜率为1/Г∞。

由所得的Г∞代入A m=1/Г∞L可求被吸附分子的截面积(L为阿伏伽德罗常数)。

2、本实验用气泡最大压力法测定溶液的表面张力,其仪器装置如图1所示:图1、最大气泡压力法测量表面张力的装置示意图1、恒温套管;2、毛细管(r在0.15~0.2mm);3、U型压力计(内装水);4、分液漏斗;5、吸滤瓶;6、连接橡皮管。

将待测表面张力的液体装于表面张力仪中,使毛细管的端面与液面相切,液面即沿毛细管上升,打开抽气瓶的活塞缓缓抽气,毛细管内的液面上受到一个比A瓶中液面上大的压力,当此压力差——附加压力(△P=P大气–P系统)在毛细管端面上产生的作用力稍大于毛细管液体的表面张力时,气泡就从毛细管口脱出,此附加压力与表面张力成正比,与气泡的曲率半径成反比,其关系式为:ΔP=2γ/R ④式中,ΔP为附加压力;γ为表面张力;R为气泡的曲率半径。

最大气泡压力法测定溶液表面张力

最大气泡压力法测定溶液表面张力

物理化学实验最大气泡压力法测定溶液表面张力C2102010-04-12一、实验目的1.掌握最大气泡法测定溶液表面张力的原理和方法2.测水溶液的表面张力并计算定不一样浓度正丁醇计算吸附量3.加深对表面张力、表面自由能、表面张力和吸附量关系的理解二、实验原理处于溶液表面的分子,遇到不均衡的分子间力的作用而拥有表面张力s.气泡最大压力法测定表面张力装置见实物;实验中经过滴水瓶滴水抽气使得系统压力降落,大气压与系统压力差△p渐渐把毛细管中的液面压至管口,形成气泡。

假如毛细管半径很小,则形成的气泡基本上是球形的;当气泡开始形成时,表面几乎是平的,这时曲率半径最大;跟着气泡的形成,曲率半径渐渐变小,直到形成半球形,这时曲率半径R和毛细管半径r相等,曲率半径达最小值,依据拉普拉斯公式得:附带压力达最大值Pmax=σ/r min。

气泡进一步长大,R变大,附带压力则变小,直到气泡逸出。

加入表面活性物质时溶液的表面张力会降落,溶质在表面的浓度大于其在本体的浓度,此现象称为表面吸附现象;单位溶液表面积上溶质的剩余量称为表面吸附量Γ,Γ=-(c/RT)*(dσ/dc).对可形成单分子层吸附的表面活性物质,溶液的表面吸附量Γ与溶液本体浓度c之间的关系切合朗格谬尔吸附等温式:Γ=Γ∞*kc/1+kc 朗格谬尔吸附等温式的线性形式为:c/Γ=c/Γ∞+1/kΓ∞Γ为饱和吸附时,单位溶液表面积上吸附的溶质的物质的量,则每个溶质分子在溶液表面上的吸附截面∞积为:Am =1/(NA*Γ)∞三、仪器与试剂恒温槽装置;数字式微压差计;抽气瓶l个;表面张力测定仪烧杯(1000mL);T形管1个;电导水;正丁醇(A.R.)及其不一样浓度的标准溶液;四、实验步骤.仪器常数的测定将表面张力测定仪冲洗洁净;在洁净的表面张力测定仪中装入电导水,使毛细管上端塞子塞紧时,毛细管恰好与液面垂直相切;抽气瓶装满水,连结好后旋开下端活塞使水迟缓滴出;控制流速负气泡从毛细管安稳脱出(每个气泡4-6秒),记录气泡脱出瞬时数字微压差计的最大数值,取三次并求均匀值。

07.最大气泡压力法测定正丁醇溶液的表面张力

07.最大气泡压力法测定正丁醇溶液的表面张力

实验名称:最大气泡压力法测定正丁醇溶液的表面张力实验目的:1. 进一步熟悉恒温槽的使用;2. 了解溶液的表面吸附对表面张力的影响;3. 学会用气泡最大压力法测定液体的表面张力;4. 测定不同浓度下正丁醇溶液的表面张力,作σ ~ C 曲线,进而求得表面吸附量和正丁醇分子的截面积。

实验原理:据Gibbs 吸附等温式:C d RT dCσΓ=-(其中σ —表面张力,Γ—表面超量),极性有机物和表面活性物质,dC>0时d σ<0,则Γ >0,发生正吸附,即表层浓度大于本体浓度。

其σ ~ C 是一条曲线,曲线上某点作切线,切线斜率即d σ /dC ,可求得此浓度时的表面超量Γ。

又溶液表面吸附是单分子层吸附,符合Langmuir 吸附等温式,即1bC bC∞Γ=Γ+,可转换成11C C b ∞∞=+ΓΓΓ,以C /Γ ~ C 作图,可得一直线,其斜率倒数即为饱和吸附量Γ∞,每个分子在溶液表面所占的截面积1Aq N ∞=Γ⋅。

本实验采用最大气泡法测定溶液的表面张力,当外管压力下降时,外界大气通过毛细管进入,在管底端形成弯曲液面,并且弯曲程度越来越大,直至形成一个气泡,气泡最完整最大时,曲率半径最小,等于毛细管半径,此时产生的附加压力2p r σ∆=最大。

气泡外围的压力00p p p p =-∆=-真空度,则p ∆=真空度,即读数。

对水有2p rσ∆=水水,溶液有2p rσ∆=液液,则p p σσ∆=⨯∆液液水水。

实验步骤:1.恒温槽调节——装配好恒温槽,在水槽中加入5/6的水量,设定好控制温度(一般要比环境温度高5 ~ 10℃),并开启恒温槽;2. 玻璃仪器清洗——将毛细管插入洗涤剂溶液中,至少浸泡10 min ,取出,套在橡皮管中冲洗干净;将二通试管用洗涤剂清洗,并冲洗干净,然后二者用蒸馏水润洗,备用。

3. 表面张力测定装置准备——在二通试管中装入蒸馏水,插入毛细管,塞紧塞子,将多余的水通过二通排出,直至毛细管末端与水相切。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验目的
1.掌握最大气泡压力法测定表面张力的原理与技术。

2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力与吸附量关系的理解。

二、实验原理
1、在一定温度下纯液体的表面张力为定值,当加入溶质形成溶液时,表面张力发生变化,其变化的大小决定于溶质的性质与加入量的多少。

根据能量最低原理,溶质能降低溶剂的表面张力时,表面层溶质的浓度比溶液内部大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低,这种表面浓度与内部浓度不同的现象叫做溶液的表面吸附。

在指定的温度与压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵循吉布斯吸附等温式:
Γ = –(c/RT)*(dγ/dc)①
式中,Г为溶液在表层的吸附量;γ为表面张力;c为吸附达到平衡时溶液在介质中的浓度。

根据朗格谬尔(Langmuir)公式:
Γ =Γ∞Kc/(1+Kc)②
Γ∞为饱与吸附量,即表面被吸附物铺满一层分子时的Γ∞
c/Γ =(1+Kc)/(Γ∞K)= c/Γ∞+1/Γ∞K ③
以c/Г对c作图,则图中该直线斜率为1/Г∞。

由所得的Г∞代入A m=1/Г∞L可求被吸附分子的截面积(L为阿伏伽德罗常数)。

2、本实验用气泡最大压力法测定溶液的表面张力,其仪器装置如图1所示:
图1、最大气泡压力法测量表面张力的装置示意图
1、恒温套管;
2、毛细管(r在0.15~0.2mm);
3、U型压力计(内装水);
4、分液漏斗;
5、吸滤瓶;
6、连接橡皮管。

将待测表面张力的液体装于表面张力仪中,使毛细管的端面与液面相切,液面即沿毛细管上升,打开抽气瓶的活塞缓缓抽气,毛细管内的液面上受到一个比A瓶中液面上大的压力,当此压力差——附加压力(△P=P大气–P系统)在毛细管端面上产生的作用力稍大于毛细管液体的表面张力时,气泡就从毛细管口脱出,此附加压力与表面张力成正比,与气泡的曲率半径成反比,其关系式为:
ΔP=2γ/R ④
式中,ΔP为附加压力;γ为表面张力;R为气泡的曲率半径。

如果毛细管半径很小,则形成的气泡基本上是球形的。

当气泡开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时的曲率半径R与毛细管的半径r相等,曲率半径最小值,根据上式这时附加压力达最大值。

气泡进一步长大,R变大,附加压力则变小,直到气泡逸出。

根据上式,R=r时的最大附加压力为:
ΔP最大= 2γ/r ⑤
实际测量时,使毛细管端刚与液面接触,则可忽略气泡鼓起所需克服的静压力,这样就可以直接用上式进行计算。

当将其它参数合并为常数K时,则上式变为:
γ=KΔP最大⑥
式中仪器常数K可用已知表面张力的标准物质测得。

三、仪器药品
1、仪器:最大泡压法表面张力仪1套,洗耳球1个,移液管(50ml与10ml)各一支,烧杯(500mL)。

2、药品:正丁醇(分析纯),蒸馏水。

四、实验步骤
1、仪器的准备与检漏
将表面张力仪容器与毛细管先用洗液洗净,再顺次用自来水与蒸馏水漂洗,烘干后按图5-9接好,检查是否漏气。

2、仪器常数的测定
调节液面与毛细管相切,并调节分液漏斗,使气泡由毛细管尖端成单泡逸出,且速度控制在每分钟形成气泡5~10个(数显微压差测量仪为5~10s),当气泡刚脱离管端的一瞬间,压力计中液位差达到最大值,当显示的最大值比较稳定时,记下数据,重复调节2次并记下相应的数值。

再由手册查出实验温度时水的表面张力,求得仪器常数K。

3、表面张力随溶液浓度变化的测定
在上述体系中,按浓度从高到低的顺序依次测定预先配好的正丁醇溶液的△P最大值,每次置换溶液前都先用溶液润洗2次,再按2方法测定。

五、注意事项
1.仪器系统不能漏气。

2.所用毛细管必须干净、干燥,应保持垂直,其管口刚好与液面相切。

3.读取压力计的压差时,应取单个逸出时的最大压力差。

六、实验数据记录及处理
恒温槽温度室温大气压γ水
25℃25.4℃100.57KPa 71.18×10-3N.m-1
c
mol.dm-3
ΔP平均ΔP最大,1ΔP最大,2ΔP最大,3
γ×10-3
N/m
Γ×10-6
mol*m-2
c/Γ×107
m-1
水747.7 775 773 776 71.18 0 0
0.02 745 744 746 745 68.54 1.352 1.479 0.04 714.7 714 715 715 65.78 2.501 1.599 0.06 665 665 665 665 61.18 3.450 1.739 0.08 631.7 631 632 632 58.12 4.193 1.908 0.10 605.7 605 606 606 55.69 4.737 2.111 0.12 584.3 584 585 584 53.76 5.075 2.364 0.16 563 563 563 563 51.80 5.148 3.108 0.20 522.3 523 522 522 48.05 4.412 4.533 0.24 493.3 493 493 494 45.38 2.866 8.374
2、计算K值
∵γ = KΔp
∴K=γ水/ΔP最大=71.18×10-3/608.33=1.17×10-4m
根据K值得到一组γ值,以γ(N/m)--c (mol.m-3)作图如下:
根据上图,可以得到γ-c的关系式为γ=0.3187c2-0.1831c+0.07154
由此得到dγ/dc=0.6374c-0.1831,其中c的单位为mol.m-3
根据Γ = –(c/RT)*(dγ/dc)便可求出不同浓度下的Γ与c/Γ,结果见上表
3、绘制Γ-c等温线
通过公式Γ = –(c/RT)/(dγ/dc)就得一组Γ。

以Γ×10-6mol.m-2-- c /(mol.dm-3)作图如下:
4、计算A
m
由c/Γ-c等温线图可知其斜率1/Γ∞ =26.693×104,所以Γ∞=3.7463×10-6mol·m-2所以A m=1/(Γ∞L)=1/(3.7463×10-6×6.022×1023)=4.433×10-19m2;
误差计算:(4.433×10-19-3.2×10-19)/3.2×10-19=38.53%
七、结果与讨论
1、这次的实验操作的步骤很简单,就是实验量比较大,数据比较容易产生
误差。

从得到的c/Γ-c等温线来看,得到的数据不是很理想,拟合出的
直线不够精确。

可能的原因有:①液面没有跟毛细管底部完全相切;②
没有等到气泡稳定了再读数。

2、本实验是通过测最大气泡来测定溶液的表面张力,计算过程中巧妙地用
求导的方法间接地来求出τ-c的切线。

所用的毛细管必须干净,干燥,应保持垂直,其管口刚好与液面相切;读取压力计的压差时,应取气泡单个溢出时的最大压力差。

3、使用的张力管及毛细管的洗涤要彻底。

如果毛细管洗涤不干净,不仅影
响表面张力值,而且会使气泡不能有规律地单个连续逸出。

毛细管插入
溶液中的深度直接影响测量结果的准确性,这是因为溶液的静压力会增
加对气泡壁的压强,为了减少静压力的影响,应尽可能减少毛细管的插
入与深度,使插入深度与液面刚好相切。

4、如果液面是弯曲,其表面的作用力不是水平的,将有一个合力,当液面
为凸时,合力指向液体内部,当液面为凹时,合力指向液体外部,这就
是附加压力的来源。

由于附加压力而引起的液面与管外液面有高度差的
现象称为毛细管现象。

5、毛细管清洁处理应特别的予以重视,热风吹干及电炉烘烤的办法应当避
免,荡洗是好办法,但应尽量彻底。

毛细管内部可借助洗耳球,但必须
细心,不应使液体进入洗耳球内。

6、测定液体表面张力除气泡的最大压力法外,常用的还有毛细管上升法、
滴重法等。

7、Γ>0 正吸附,Γ<0 负吸附,Γ=0 无吸附作用
八、思考题
1.毛细管尖端为何必须调节得恰与液面相切?否则对实验有何影响?
答:如果将毛细管末端插入到溶液内部,毛细管内会有一段水柱,产生压力Pˊ,则测定管中的压力Pr会变小,△pmax会变大,测量结果偏大。

2.最大气泡法测定表面张力时为什么要读取最大压力差?如果气泡逸出的
很快,活几个气泡一齐出,对实验结果有无影响?
答:如果毛细管半径很小,则形成的气泡基本上是球形的。

当气泡开始
形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,曲率
半径逐渐变小,直到形成半球形,这时曲率半径R与毛细管半径r相等,曲率半径达最小值,根据拉普拉斯(Laplace)公式,此时能承受的压力差
为最大:△pmax = p0 - pr = 2σ/γ。

气泡进一步长大,R变大,附加
压力则变小,直到气泡逸出。

最大压力差可通过数字式微压差测量仪得
到。

如气泡逸出速度速度太快,气泡的形成与逸出速度快而不稳定;致
使压力计的读数不稳定,不易观察出其最高点而起到较大的误差。

相关文档
最新文档