泡沫压裂
压裂常用药剂
按化学性质分类常用的压裂液有水基压裂液、油基压裂液、泡沫压裂液、乳状压裂液、醇基压裂液以及酸基压裂液等六种类型。
1.水基压裂液是以清水做溶剂或分散介质,向其中加入稠化剂、添加剂配制而成的。
主要采用三种水溶性聚合物作为稠化剂,即植物胶及衍生物(脈尔胶、田菁胶、香豆胶等)、纤维素衍生物和合成聚合物。
这几种高分子聚合物在水中溶胀成溶胶,经交联剂交联后形成黏度极高的冻胶,在施工结束后,为了使冻胶破胶还需要加入破胶剂。
2.油基压裂液是矿场原油或炼厂粘性成品油均可作油基压裂液,但其黏度较低、热稳定性差、携砂能力不好、压裂液效率低。
目前多用稠化油,基液为原油、汽油、柴油、煤油或凝析油。
稠化剂为脂肪酸皂(如脂肪酸铝皂,磷酸酯铝盐等),矿场最高砂比可达30% (体积比)。
稠化油压裂液遇地层水后会自动破乳,所以无需加入破胶剂。
3.泡沫压裂液是一种新型水基压裂液,它是液体、气体及添加剂的混合物。
基液多用淡水、盐水、聚合物水溶液,气相为二氧化碳、氮气、天然气,发泡剂用非离子型活性剂。
其最大特点是易于返排、滤失少以及摩阻低等,它具有弱酸性,可溶解近井地带及地层中的无机垢和部分岩石中的碳酸盐矿物,抑制粘土膨胀,改善或保护了油气层。
缺点是砂比不能过高、井深不能过大。
适用于低渗透、易水敏、高压油层和下部受水层威胁的油井以及气井的压裂,是一种综合性能较理想的压裂液体系。
4.乳状压裂液是指水包油型乳化液,基本上综合水基压裂液和油基压裂液的优点。
由于外相为水冻胶,所以乳状液的摩阻低、黏度高、热稳定,性好,其悬砂能力强,滤失低。
由于乳状液所含的水比较少,进入地层的水不多,因此可以较好的防止粘土膨胀和运移。
主要有聚合物乳化压裂液和植物胶冻胶原油乳化压裂液。
5.醇基压裂液由彳氐碳醇、稠化剂、水、PH调节剂、粘土稳定剂、助排剂等构成醇基压裂液。
醇基压裂液对砂岩储层无水敏、水锁伤害,而且还有解水锁的能力。
能有效降低水相滞留伤害,补充地层能量,具有返排能力强、低伤害等特点,能有效改善裂缝导流能力,提高压裂效果。
《井下作业》第四章水力压裂技术
货源广、便于配制、价钱便宜。大型压裂中,压裂液是压裂施工费用中的主要组
成部分。速溶连续配制工艺大大方便了施工,减少了对液罐及场地的要求。
二、压裂液的类型
目前常用的压裂液有水基压裂液、酸基压裂液、油基压裂液、乳状压裂液及泡沫压裂液
等。具有粘度高、摩阻低及悬砂能力好等优点的水基冻胶压裂液,已成为矿场主要使用的压
裂液
81
( 一 )水 基 压 裂 液
水基压裂液是用水溶胀性聚合物经交联剂交联后形成的冻胶。常用的成胶剂有植物胶、
纤维素衍生物以及合成聚合物;交联剂有硼酸盐、钛、锆等有机金属盐等。在施工结束后,
为了使冻胶破胶还需要加入破胶剂,常用破胶剂有过硫酸铵、高锰酸钾和酶等。
活性水压裂液
在水溶液中加入表面活性剂的低粘压裂液称为活性水压裂液。这种压裂液配制简单、成
第 四 章 水 力 压 裂 技 术
水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中, 在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,在井底附近地层 产生裂缝。继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在 支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和导流能力的填砂裂缝,使井达到 增产、增注的目的。
施工资料统计出来的,破裂压力梯度值为:
。可以用各地区的破裂压力梯度的
大小估计裂缝的形态,一般认为 小于
时形成垂直裂缝,而大于
时
则是水平裂缝。因此深地层出现的多为垂直裂缝,浅地层出现水平裂缝的几率大。这是由于
浅地层的垂向应力相对比较小,近地表地层中构造运动也较多,水平应力大于垂应力的几率
也大。有时会碰到破裂压力梯度特高的地层,这可能是由于构造关系或岩石抗张强度特别大
页岩气co2泡沫压裂技术
页岩气co2泡沫压裂技术
现阶段,利用岩石毛细孔中的co2赋存量,利用其作为液体的体积膨胀及液体的许多性质,结合页岩气压裂技术,从而开发出了页岩气co2泡沫压裂技术。
首先,页岩气co2泡沫压裂技术是以低温液体co2为介质,通过液体发泡及压裂,使得油气藏毛细孔内许多封闭的油气节点与此液体co2充分接触,从而获得大量的页岩气。
其次,这样的技术能够有效的提高对深层页岩气的采收率,同时能够有效的减少污染,减少对环境的污染。
最后,岩石毛细孔中的co2不仅当作介质使用,其在页岩气开发过程中也可以被有效的利用,从而达到节能环保的目的。
总之,页岩气co2泡沫压裂技术是一种能够有效实现页岩气开采过程中高效减排的环保技术,并且具有节能环保、节约用水、降低开采成本等优点。
关于压裂的20个常识
关于压裂的20个常识1、水力压裂水力压裂简称压裂,是油气井增产、注入井增注的一项重要技术措施。
它是利用地面高压泵组,将压裂液以大大超过地层吸收能力的排量注入井中,在井底造成高压,并超过井壁处的地层闭合应力及岩石的抗张强度,使地层破裂,形成裂缝,然后,继续将带有支撑剂的液体注入缝中,使此缝向外延伸,并在缝内填以支撑剂,停泵后地层中即形成有足够长度和一定宽度及高度的填砂裂缝。
2、笼统压裂笼统压裂是在已射孔炮眼部位的上部下入封隔器、喷砂器等下井工具,对射孔部位进行压裂,达到对目的层的解堵或改造。
3、封隔器分层压裂封隔器分层压裂是通过封隔器分层压裂管柱来实现的,适用于非均质程度小,层间含水率差异小,且已按常规射孔的高中低渗透、多油层的改造。
4、限流法压裂限流法压裂是通过低密度射孔、大排量供液,形成足够的炮眼摩阻,使井筒内保持较高的压力,从而达到连续压开一些破裂压力相近层的目的。
5、复合压裂复合压裂是指高能气体压裂技术、热化学工艺技术、酸化工艺技术与水力压裂技术相结合的技术。
该技术适用于低温、欠压、稠油、含蜡量高的储层的改造。
6、CO2泡沫压裂CO2泡沫压裂是把液态二氧化碳和水基压裂液形成的混合液泵入井中,实施压裂,达到增产增注的目的。
该技术适用于低压低产气井、水敏性地层、特低渗透油层和稠油井。
7、同步压裂同步压裂是指对2口或2口以上的配对井进行同时压裂。
同步压裂采用的是使压力液及支撑剂在高压下从一口井向另一口井运移距离最短的方法,来增加水力压裂裂缝网络的密度及表面积,利用井间连通的优势来增大工作区裂缝的程度和强度,最大限度地连通天然裂缝。
8、水力喷射压裂水力喷射压裂是用高速和高压流体携带砂体进行射孔,打开地层与井筒之间的通道后,提高流体排量,从而在地层中打开裂缝的水力压裂技术。
9、压裂车压裂车是压裂的主要动力设备,它的作用是给压裂液加压,并大排量地注向地层,压开地层,并将支撑剂注入裂缝。
主要由运载汽车、驱泵动力、传动装置、压裂泵四部分组成。
氮气泡沫压裂技术研究与应用
氮气泡沫压裂技术研究与应用
随着油气勘探领域的不断发展,氮气泡沫压裂技术已经成为常见的油气资源开采方式之一。
本文旨在对氮气泡沫压裂技术进行研究与应用探讨。
首先,文章介绍了氮气泡沫压裂技术的基本原理及工作流程。
该技术利用氮气与水混合产生泡沫,通过泡沫的物理性质和化学反应,达到增强岩石破裂和增强油气渗透性的效果。
文章还详细介绍了氮气泡沫压裂技术的特点和适用范围,以及其与其他压裂技术的比较。
其次,文章系统地介绍了氮气泡沫压裂技术的研究进展和应用情况。
研究方面主要包括泡沫稳定性、泡沫的物理性质和岩石破裂机理等方面。
应用方面则介绍了氮气泡沫压裂技术在不同地质条件下的实际应用案例,如页岩气、致密油和致密气等方面的应用情况。
最后,文章总结了氮气泡沫压裂技术的优点和不足,提出了未来的研究方向和发展趋势。
氮气泡沫压裂技术具有成本低、节能环保、可控性强等优点,但在泡沫稳定性和压裂效果方面还存在一定的问题,需要进一步加强研究和改进。
未来氮气泡沫压裂技术的发展方向可能会涉及到新型压裂剂和新型泡沫稳定剂的研究和应用。
- 1 -。
二氧化碳泡沫压裂的分析与研究
二氧化碳泡沫压裂的分析与研究田少华(中国石油川庆钻探工程有限公司长庆井下技术作业公司陕西西安710018)摘要:随着现代石油开采的地层属性不断复杂化,传统的水基压裂液已难以满足现代石油开采的实际需求。
二氧化碳(CO 2)泡沫压裂是一种压裂液体系,因注入CO 2使压裂液体系中液体与气体可以互存。
本文主要通过分析CO 2泡沫压裂的机理,并对其适用性进行探讨。
关键词:CO 2;泡沫压裂;机理;适用性随着石油工业的发展,其储层越来越复杂,且非均质性也不断增强,较多地层出现低压、低渗现象,使入井液返排的难度不断升高,从而导致地层的二次污染。
传统的水基压裂液存在压裂液破胶不完全的问题,且在破胶后会有部分残渣余留于裂缝中,会使充填层的渗透率大幅降低,造成压裂效果不明显,难以满足石油工业的发展需求[1]。
而二氧化碳(CO2)泡沫压裂作为一种新型的压裂液体系,是一种能满足现在石油工业发展的重要技术。
一、CO 2泡沫压裂机理分析CO2泡沫压裂液体系在一些低压、低渗的储层中具有非常显著的施工效果,其工作机理主要包括二氧化碳泡沫压裂体系粘度高、滤失低、悬砂性好、摩阻小以及反排能力强等。
1.CO 2泡沫压裂体系粘度高CO2泡沫压裂体系在添加一定的稠化剂之后,并将CO2气体注入,因该气体结果具有的特点,能有效提高压裂液体系的粘度。
CO2泡沫的粘度主要取决于泡沫的质量与液相性能,其质量性能越好,则表明气泡的密集性就越好;而气泡的干扰、摩擦阻力越大,也就表明其粘度越高。
通常情况下,泡沫质量达到75%至80%之间时,其粘度就会达到最大。
因此,通过将其液相粘度增大,既可以有效提高泡沫的稳定性,还能有效增强泡沫流体的粘度,从而使CO2泡沫压裂液的造缝能力不断增强,最终产生出裂缝宽度越大、长度越长。
2.CO 2泡沫压裂体系滤失低CO2泡沫压裂液与传统的水基冻胶压裂液比较,具有滤失系数低与滤失量较小等特点,主要是由于该体系中添加了一定的稠化剂,从而使其造壁能力增强。
压裂工艺技术
3.利用压裂液粘度和密度控制裂缝高度 压裂液粘度越大,裂缝越高,保持在50-100mPa·较合适。 s 要控制裂缝向上延伸,应采用密度较高的压裂液;要控制裂 缝向下延伸,则应采用密度较低的压裂液。 (二)人工隔 层控制裂缝 高度技术 1.用漂浮 式转向剂控 制裂缝向上 延伸技术 (1)工作原 理
(2) 对漂浮式转向剂性能要求
(4)技术要求
1)水力锚的啮合力必须大于施工时作用于封隔器上的上顶力, 以免顶弯油管; 2)施工时作用于封隔器上下的压差必须小于封隔器允许的最 大压差;
3)压裂层的射孔段与上面一层射孔段之间的距离,中深井应
不小于3m,深井应不小于5m。
2.双封隔器分层压裂
(1)管柱结构图
(2)用途 在射开多层的油气井中, 对其中任意一层进行压裂。 (3)特点
(5)孔眼持球力
考虑孔眼和堵球几何尺寸的影响,需对上式进行修正。即
当FH’>Fu时,堵球才能坐封在孔眼处不脱落!
4.选择堵球直径与堵球数量的经验公式 (1)选择堵球直径经验公式
(2)选择堵球数量的经验公式
5.不同密度差、不同流量与封堵效率关系
(三)限流法分层压裂
1.限流法分层压裂工艺原理
3.表面活性剂
在气、液混合后,使气体成气泡状均匀分散在液体中形成泡沫。
4.滑套封隔器分层压裂 有两种管柱类型,而且开关滑套方式也有两种。 国内最常用的是只有喷砂器带滑套的管柱和采用投球憋压 方法打开滑套。 (1)管柱结构图 (2)用途 1)可以不动管柱、不压井、不放喷一次施工分压多层; 2)对多层进行远层压裂和投产。 (3)特点 1)对油气层伤害小,有利于保护油气层; 2)由于受管柱内径限制,一般最多只能用三级滑套,一次分 压四层; 3)如果一次压多层,必须起钻换管柱,才能对下部层位进行 排液投产。
增产措施:CO2泡沫压裂技术文档
CO2压裂工艺技术CO2压裂工艺技术是80年代以来发展起来的新工艺技术,它是以液态CO2或CO2与其它压裂液混合,加入相应添加剂,来代替常规水基压裂液完成造缝、携砂、顶替等工序的压裂工艺技术。
根据使用的压裂液组成不同,CO2压裂工艺技术可分为二氧化碳液体压裂、二氧化碳(甲醇)稠化水压裂、二氧化碳与氮气双相泡沫压裂和二氧化碳泡沫压裂四种形式,其中以二氧化碳泡沫压裂最为常用。
⑴原理CO2压裂液主要成分是液态CO2、原胶液和若干种化学添加剂。
在压裂施工注入过程中,随深度的增加,温度逐渐升高,达到一定温度后,CO2开始汽化,形成原胶为外相,CO2为内相的两相泡沫液。
由于泡沫液具有气泡稠密的密封结构,气泡间的相互作用而影响其流动性,从而使泡沫具有“粘度”,因而具有良好的携砂性能,在压裂施工中起到与常规水基压裂液相同的作用。
⑵技术优点①液体的二氧化碳在地层中既能溶于油又能溶于水,改善原油的物性,降低油水界面张力,有效提高油气采收率;②二氧化碳压裂液和常规压裂液相比,只有极少量的水和固相颗粒进入地层,同时二氧化碳泡沫可在裂缝壁面形成阻挡层,从而大大减少滤失,减少对地层的伤害;③CO2泡沫压裂液的PH值在3.5左右,即可有效防止粘土膨胀,又能对地层起解堵作用,有利于保护或增加地层孔隙渗透性,对水敏性地层效果更佳;④返排时,随井底压力下降,二氧化碳起到气驱作用,对于低产能井,有助于提高返排能力和加速返排速度。
使用CO2压裂,返排出的液体一般为总液量的75~90%,可以减少地层伤害,这是使用二氧化碳压裂气层的主要原因之一。
⑶二氧化碳泡沫压裂设计方法二氧化碳泡沫压裂设计采用“恒定内相”的设计方法,即把水基液部分看作外相,液态二氧化碳和支撑剂看作内相,施工过程中总排量和水基压裂液的排量恒定,随着加入支撑剂浓度的提高,液态二氧化碳的排量相应减小,使支撑剂和液态二氧化碳的体积量始终保持一个恒定值,这样有利于降低施工压力,提高施工一次成功率。
泡沫压裂
一种抗高温二氧化碳泡沫压裂液的研究1.泡沫压裂1.1泡沫压裂介绍。
利用特殊装备、特殊的化学添加剂,使用CO2/N2泡沫液作为压裂液进行加砂压裂的水力压裂施工方式称为“泡沫压裂”。
常用的CO2泡沫压裂的压裂液是由液体CO2(-18℃)和凝胶水(压裂液基液)与发泡剂构成的“气-液分散体系”,这种分散体系是热力学不稳定体系.1.2 CO泡沫压裂液的优点。
21.用于低渗油气层改造,CO2溶于水中形成低PH值的碳酸水可以减少粘土膨胀提高渗透率增加近井地带导流能力致使产量提高。
2.减少了水基压裂液用量,因此大大减少了压裂液对储层的污染。
3.具有低滤失性,提高了液体效率,有利于裂缝型油气藏的改造。
4.较高的表观粘度,是理想的前置液和携砂液,造缝能力强,携砂能力强。
5.在储层中汽化后,增加地层能量,提高返排率,有利于保护地层,减少油层污染。
6.CO2可大量溶解在原油中,使原油体积膨胀,粘度下降,增加原油流动性,使原油产量增加。
7. CO 2饱和碳酸水的界面张力为清水的20~30%,使流动阻力大大降低,是较好的助排剂1.3 CO泡沫压裂的发展概况2●70 年代开始使用水+ 起泡剂+N 2组成的比较原始的泡沫压裂液,砂液比只有1-2PPG(1PPG=119.8kg/m 3 ),但解决了低压井的压后液体返排问题●80年代初采用水+起泡剂+聚合物+N2/CO2组成的泡沫压裂液,巨大地提高了泡沫压裂液的粘度及稳定性,砂液比提高到了4-5PPG,高压储层泡沫压裂工艺技术获得成功,使得该技术得到了飞速发展。
80年代末开始采用水+起泡剂+聚合物+交联剂+CO2组成的泡沫压裂液,泡沫的稳定性进一步提高,造缝能力、抗温能力和携砂能力进一步增强,高温下砂液比也可达到4-5PPG,深井高温储层泡沫压裂技术得到发展。
1.4 CO 2 泡沫压裂的工艺技术的特点及用途1.4.1恒内相设计当支撑剂浓度增加时,保持压裂液基液排量稳定,但相应降低液体CO2排量,使其降低值与支撑剂占的空间值相当,内相(气体+支撑剂)和外相(液体)保持平衡,以保证压裂液的泡沫质量、表观粘度恒定。
二氧化碳干法压裂案例
二氧化碳干法压裂案例
二氧化碳干法压裂是一种使用液态二氧化碳作为压裂介质的压裂技术。
这种技术可以避免常规压裂技术中可能出现的水相伤害,如水敏和水锁现象。
以下是二氧化碳干法压裂的案例:
1. 吉林油田的二氧化碳蓄能压裂:这是一种无水相压裂技术,以液态二氧化碳为压裂介质,使用高强度固体颗粒作为支撑剂。
这种技术在吉林油田得到了应用,并取得了良好的效果。
2. “二氧化碳+氮气”泡沫压裂技术:这种技术是在压裂施工中同时注入二氧化碳及氮气。
具体的施工方法是,将液态二氧化碳或添加了其他化学剂的液态二氧化碳注入地层,在地层条件下气化。
依靠液态二氧化碳的造壁性,在储层中形成动态裂缝,为油气流动提供导流能力较高的渗流通道。
施工后地层中无液体残留。
如需更多二氧化碳干法压裂案例,建议查阅相关资料或咨询石油专家获取帮助。
CO2泡沫压裂技术介绍
80 70 60 50 40 30 20 10 0 0 FL-36 YPF-1 B-18
ä (min) ª¼ Ê
不同起泡剂水溶液的泡沫稳定性对比 ö Ë Î ® Á ¿ (ml)
50
100
150
200
250
(3)CO2泡沫压裂液添加剂优选 • 起泡剂优选
从起泡效 率和泡沫稳 定性对比看, FL-36起泡剂 性能最好, B-18和YPF-1 起泡剂性能 相当。
三、CO2泡沫压裂液技术
(1) CO2泡沫压裂的优点
•为压后工作液返排提供了气体驱替作用。 •气态的CO2能控制液体滤失,提高压裂液效率。
•减少了水基压裂液的用液量。
•CO2 与水反应产生碳酸,有效地降低了系统的总 pH 值,降低了压 裂液对基质的伤害。 •降低了压裂液的表面张力,有助于压裂液的迅速反排等特点。
(2)CO2在井筒及地层中发泡条件分析
CO2运输和储存的条件下是-17℃温度和2.1MPa压力,压裂过程 中压力超出临界压力,只是在井筒泵入一定量的低温压裂液后温度较 低,无法满足CO2以气体的形态存在,也就是CO2与压裂液混合不具 备发泡条件而不能发泡。例如,假如压裂液和CO2混合的比例为1:1, 如果压裂液的温度为10℃,那么,压裂液和CO2混合后,混合液的温 度大大降低,显然,CO2压裂液在混合处不能发泡。但是由于地层温 度远高于地面温度,随着压裂液沿井筒进入地层,温度逐渐上升, CO2的温度可能高于30.6℃,这样CO2以气体的形态存在,也就是CO2 压裂液具备了能发泡的条件。
CO2泡沫压裂 特种设备
SS2000/IC330型CO2增压泵车
最大流量4.65m3/min 最大工作压力2.76MPa 最大压差0.69 MPa 最高转速350rpm,最高功率75KW
泡沫压裂液工艺技术
泡沫压裂液工艺技术泡沫压裂液工艺技术是一种在油气田开发中广泛应用的一种新型工艺技术。
它是通过将压裂液中的泡沫剂注入到岩石裂缝中,使岩石裂缝得到强化和扩张,进而提高油气田产能和采收率。
泡沫压裂液工艺技术具有操作简单、高效节能、环保等优点,被广泛应用于油气田开发中。
泡沫压裂液工艺技术的关键是制备高质量的泡沫液。
泡沫液的制备通常包括三个主要步骤:泡沫剂的选择与配置、泡沫液的稳定性控制和泡沫液的性能调整。
首先是泡沫剂的选择与配置。
泡沫剂一般是由表面活性剂和助剂组成。
表面活性剂主要起到降低界面张力和增加界面面积的作用,常用的表面活性剂有非离子型、阴离子型和阳离子型等。
通过合理选择和配比,可以得到具有较好稳定性和泡沫性能的泡沫剂。
其次是泡沫液的稳定性控制。
泡沫液的稳定性是制备高质量泡沫液的关键。
泡沫液的稳定性受到多种因素的影响,如泡沫剂的种类与浓度、水质和环境因素等。
通过调整泡沫剂的浓度、增加助剂的使用等方式,可以增加泡沫液的稳定性,提高泡沫液在压裂作业过程中的效果。
最后是泡沫液的性能调整。
泡沫液的性能调整主要是根据不同的压裂需求,进行泡沫液的流变性能和稳定性调整。
流变性能的调整可以通过改变泡沫剂的种类和浓度、添加流变剂等方式实现。
稳定性的调整主要包括改变泡沫液的PH值、添加稳定剂等方式。
通过调整泡沫液的性能,可以提高泡沫液的效果,满足油气田开发的需求。
泡沫压裂液工艺技术在油气田开发中有着广泛的应用前景。
它不仅可以提高油气田的产能和采收率,还可以减少水资源的消耗,降低对环境的影响。
同时,泡沫压裂液工艺技术的操作简单、高效节能,能够提高施工效率,降低开采成本。
因此,泡沫压裂液工艺技术将成为未来油气田开发的重要工艺技术,为国家能源产业的可持续发展做出贡献。
CO2泡沫压裂液浅析
CO2泡沫压裂液浅析摘要:对于目前石油资源日渐紧张的国际社会而言,CO2泡沫压裂液由于其巨大的经济效益和社会效益必将成为国际关注的必需发展的重大技术。
本文主要从泡沫压裂液技术状况、CO2泡沫压裂液基本原理及特点和影响CO2泡沫压裂液性能的主要因素等方面介绍CO2泡沫压裂液的研究与应用。
关键词:CO2泡沫压裂液泡沫质量液包气乳状液1.泡沫压裂液技术状况泡沫压裂液是一种液包气乳状液,是大量气体在少量液体中的均匀分散体。
泡沫体按气体含量的多少分为两种体系。
泡沫质量fgtp<52%的为增能体系,一般用做常规压裂后的尾随液(后置液)帮助反排;52%<fgtp<96%的称为泡沫体系,具有含液量低、携砂、悬砂能力强、滤失低、粘度高、反排能力强等特点。
通常施工所用的泡沫压裂液,泡沫质量(井底温度压力条件下)多在65%`85%之间。
按所用气体种类分为N2泡沫液和CO2泡沫液。
N2泡沫可与一切基液(水、盐水、甲醇、乙醇、酸类、凝析油、矿产原油、二甲苯、精炼油等)配伍。
CO2泡沫是在1982年后才发展起来的,与N2泡沫相比,与地层流体的相容性更好,并能降低界面张力,但只能与水、甲醇、乙醇配伍。
泡沫压裂液由基液、气体、起泡剂、稳定剂及其他添加剂组成。
概括起来,国外泡沫压裂液发展经历了下列四个阶段:第一代泡沫压裂液:水+起泡剂(上世纪70年代),N2,携砂比1~2lb/gal (120~240kg/m3),压后易反排,可用于低压气井压裂;第二代泡沫压裂液:水+起泡剂+聚合物(上世纪80年代),N2,CO2,压裂液粘度较高,稳定性较大,砂液比4~5lb/gal(480~600kg/m3),适用于高压油气藏压裂;第三代泡沫压裂液:水+起泡剂+聚合物+交联剂(上世纪80年代末至90年代初),以N2泡沫压裂液为主,粘度和稳定性进一步提高,造缝和携砂能力增强,适用于高温深井大型水力压裂,砂液比达到5lb/gal(600kg/m3);第四代泡沫压裂液:恒定内相,控制内相体积,降低施工摩阻,可满足大型压裂施工,最高砂液比达12lb/gal(1440kg/m3)以上,加砂量达150吨以上。
非常规储层压裂改造技术进展及应用
非常规储层压裂改造技术进展及应用一、本文概述随着全球能源需求的持续增长,非常规储层资源的开发利用越来越受到重视。
非常规储层,如页岩、致密砂岩等,由于其低孔低渗特性,压裂改造技术成为了提高其开采效率的关键。
本文旨在综述非常规储层压裂改造技术的最新进展,包括压裂液体系、压裂工艺、裂缝监测与控制等方面,并探讨这些技术在国内外油气田的实际应用情况。
通过对相关文献的梳理和案例分析,本文旨在为非常规储层压裂改造技术的发展提供理论支持和实践指导,推动该领域的技术创新和产业升级。
二、非常规储层压裂改造技术的发展历程非常规储层压裂改造技术的发展,经历了从传统水力压裂到现代复杂储层压裂技术的转变。
在过去的几十年里,随着全球能源需求的不断增长,以及对传统油气资源的日益开采,非常规储层如页岩、致密砂岩等逐渐成为油气勘探开发的重要领域。
这些储层具有低孔、低渗、非均质性强等特点,使得常规的压裂技术难以满足开发需求,推动了非常规储层压裂改造技术的不断创新与发展。
初期,非常规储层压裂主要依赖于传统的水力压裂技术,通过高压泵注大量液体来形成裂缝,从而提高储层的渗透性。
然而,这种方法在非常规储层中往往效果不佳,因为这些储层的岩石性质复杂,裂缝扩展困难。
随着技术的进步,科研人员开始尝试使用多种压裂液体系,如泡沫压裂液、稠化压裂液等,以提高压裂效果和降低对储层的伤害。
同时,为了更精确地控制裂缝的扩展方向和长度,研究人员开始引入地质导向、数值模拟等先进技术,为压裂施工提供更为准确的指导。
近年来,随着水平井技术的广泛应用,非常规储层压裂改造技术迎来了新的突破。
水平井技术能够使得井筒与储层接触面积更大,有利于裂缝的扩展和油气的流动。
在此基础上,研究人员又进一步开发出了分段压裂、多级压裂等复杂压裂技术,以适应不同储层条件和开发需求。
随着环保要求的日益严格,非常规储层压裂改造技术也在不断探索环保型压裂液和减少水资源消耗的新方法。
例如,利用二氧化碳等环保介质作为压裂液,既能够满足压裂需求,又能减少对环境的影响。
油井压裂工艺原理及工艺解析
油井压裂工艺原理及工艺解析摘要:油井压裂改造工艺是现代油田在进行实际勘测、开采、开发中广泛应用的、关键的增产措施,通常在油田的实际生产中,因为地质条件、油层等方面的特点,这项工艺也会随之出现变化。
现代对压裂工艺进行有效的完善与普及,对于油田企业扩大产能、提高产量是非常有帮助的,更能让有效的石油资源获得更为充分的使用。
关键词:油井压裂;工艺原理;工艺方法解析;一、现代压裂工艺的阐释压裂工艺一般使用地面上的高压泵组,往油井中注入排量高于底层吸收能力的高粘度液体,让其能够在油井底端形成高雅,在形成的高雅高出底层本身破裂的压力时,就会在油井底部产生一条或者几条裂缝,在压裂液体进入到这些裂缝中以后,基于支撑剂发挥的作用,能在油井底端形成一定的裂缝空间,其在高压泵停止之后也不会出现闭合。
这样的裂缝空间有非常好的导流作用,使油井渗流的状况被有效改善,实现增产、增注的目标。
二、压裂工艺的增产原理因为地球表面的地质构造较为复杂,具有非均质性,所以油井难以让地层中的所有石油储集区实现沟通相连,也无法让油井实现最大的产能。
而是用油井压裂工艺,能在油井底端造出一个人工裂缝,这个裂缝空间能联通地层中的各个石油储集区域,其能让油井拓展供油面积,既减少了油井数量,更切实节约了成本投入,最终实现增产的目标。
另外,压裂工艺产生的裂缝空间,能切实避免由于钻井、生产等环节中引起的石油储层污染,导致石油产量被降低的情况,确保石油质量的同时更提高了石油产量。
三、压裂工艺的原理(一)压裂工艺的发展压裂工艺最早产生与美国,初期的压裂操作中充当压裂油的是原油,现在这项工艺所使用的设施、压裂液、支撑剂等有已经得到了有效的创新,工艺技术也更为多样。
现代实际操作中使用的压裂液一般是水基、油基、乳状压裂液以及泡沫等。
压裂工艺最早在我国进行实际应用是上世纪70年代,而我国现代压裂工艺已经排在国际前列。
这项技术在未来的发展中,会对压裂液、支撑剂的使用效率进行有效的提升与优化,对多项技术综合的大型化、综合化发展。
CO2泡沫
CO2泡沫压裂基本原理及特点1.CO2泡沫压裂基本原理在物理上,CO2有三种不同的相态,即气、液、固。
气态临界温度和压力分别为31℃和1071Psi,在18℃液态条件下其密度为1.02g/cm3,1 m3转化为0℃,1atm的气态标准体积为517 m3。
CO2泡沫压裂是由液态CO2和增稠剂及多种化学添加剂组成的液-液混合物,携带支撑剂迅速进入地层,随着液体在井筒和地层中温度的升高,当温度达到31℃的临界点以后液态的CO2开始汽化,形成以CO2为内相由含高分子聚合物的水基压裂液为外相的气液两相分散体系,由于泡沫两相体系的出现使流体粘度显著增加,通过起泡剂和高分子聚合物的作用,大大增加了泡沫流体的稳定性,形成了低滤失、低密度和易反排的压裂液特性。
因此,CO2泡沫压裂液流体具备了压裂液的必要条件,并拥有了常规水基压裂液不能相比的多种优势。
2.CO2泡沫压裂的特点(1)CO2泡沫是CO2液体分散于水基冻胶液中的分散体系,CO2是分散相,水基冻胶液是连续相,当温度超过31℃时,气化的CO2泡迅速膨胀后,则CO2变成连续相,水基液为分散相(2)CO2泡沫的加入,可降低液体的界面张力,从而增加了压裂液的反排能力,减少毛管力的作用。
(3)减少水基压裂液的用量。
(4)CO2的加入,可使压裂液的PH值降低,对防止粘土膨胀及三价铁、铝盐的沉淀都有一定的作用。
(5)由于CO2泡沫增加了压裂液的粘度,可以起到控制压裂液滤失的作用。
(6)CO2泡沫液的摩阻大,施工时液柱压力低,因而施工压力高,不利于施工。
CO2泡沫压裂压裂施工程序(1)井筒处理;(2)射孔;(3)按方案设计下钻;施工前一天下好压裂钻具,坐好井口连接好放喷管线。
(4)配液;施工前清洗储液罐,按设计配好施工液体,胍胶液与液体CO2的比例为1:1。
(6)冲管线、试压;摆好施工车辆,辅助车辆及测试设备,连接好地面高低压管线,低压管线0.5MPa下不刺不漏,高压管线按预计破压的125%进行试压。