浅谈同角三角函数基本关系式的应用

合集下载

同角三角函数的基本关系式知识讲解

同角三角函数的基本关系式知识讲解

同角三角函数基本关系【学习目标】1.借助单位圆,理解同角三角函数的基本关系式: αααααtan cos sin ,1cos sin 22==+,掌握已知一个角的三角函数值求其他三角函数值的方法;2.会运用同角三角函数之间的关系求三角函数值、化简三角式或证明三角恒等式。

【要点梳理】要点一:同角三角函数的基本关系式(1)平方关系:22sincos 1αα+= (2)商数关系:sin tan cos ααα= (3)倒数关系:tan cot 1⋅=αα,sin csc 1αα⋅=,cos sec 1αα⋅=要点诠释:(1)这里“同角”有两层含义,一是“角相同”,二是对“任意”一个角(使得函数有意义的前提下)关系式都成立;(2)2sin α是2(sin )α的简写;(3)在应用平方关系时,常用到平方根,算术平方根和绝对值的概念,应注意“±”的选取。

要点二:同角三角函数基本关系式的变形1.平方关系式的变形: 2222sin 1cos cos 1sin αααα=-=-,,212sin cos (sin cos )αααα±⋅=±2.商数关系式的变形sin sin cos tan cos tan αααααα=⋅=,。

【典型例题】 类型一:已知某个三角函数值求其余的三角函数值例1.已知t an α=-2,求si nα,cos α的值。

【思路点拨】先利用sin "tan 2"cos ααα==-,求出si nα=-2c osα,然后结合sin 2α+cos 2α=1,求出sin α,cos α。

【解析】 解法一:∵tan α=-2,∴sin α=-2cos α。

①又sin 2α+cos 2α=1, ②由①②消去si nα得(-2co sα)2+c os 2α=1,即21cos 5α=。

当α为第二象限角时,cos α=,代入①得sin α=。

当α为第四象限角时,cos α=,代入①得sin α=。

同角三角函数的基本关系式课件

同角三角函数的基本关系式课件
利用同角三角函数的基本关系式, 可以将复杂的三角函数表达式进
行化简。
转换函数形式
通过同角三角函数的关系式,可 以实现三角函数的转换,如正弦 与余弦、正切与余切之间的转换。
证明恒等式
利用同角三角函数的基本关系式, 可以证明各种三角恒等式。
在解决实际问题中的应用
物理问题求解
在物理问题中,经常需要用到三角函数的知识,同角三角函数的 基本关系式是解决这类问题的重要工具。
03
代数证明法
通过代数运算和恒等变换, 利用已知的三角恒等式推 导出同角三角函数的基本 关系式。
几何证明法
利用单位圆的性质和三角 形的相似性质,通过几何 图形和角度关系证明同角 三角函数的基本关系式。
向量证明法
利用向量的数量积和向量 模的性质,通过向量的运 算证明同角三角函数的基 本关系式。
证明过程
证明结果
同角三角函数的基本关系式
sin^2θ + cos^2θ = 1,tanθ = sinθ/cosθ,cotθ = cosθ/sinθ等。
证明结果的应用
同角三角函数的基本关系式在解三角形、求三角函数的值、 判断三角函数的单调性等方面有广泛的应用。
பைடு நூலகம்
04
同角三角函数的基本关系式应用
在解三角形中的应用
代数证明过程
通过三角恒等式的变换,将同角 三角函数的基本关系式化简为已 知的三角恒等式或基本的代数恒
等式。
几何证明过程
利用单位圆的性质,将三角函数的 角度转化为单位圆上的弧长,再利 用三角形相似性质推导出同角三角 函数的基本关系式。
向量证明过程
利用向量的数量积和向量模的性质, 将同角三角函数的基本关系式转化 为向量的运算,通过向量的运算证 明。

同角三角函数的基本关系式

同角三角函数的基本关系式
2 2
证法二:因为
(1 sin )(1 sin ) 1 sin cos
2 2
由原题可知 1 - sin 0, cos 0, cos 1 sin 所以 1 sin cos
证法三:
cos 0,1 sin 0 cos cos (1 sin ) 原式左边 2 1 sin cos cos (1 sin ) cos (1 sin ) 2 2 1 sin cos 1 sin 右边 cos
同角三角函数基本关系式的应用
1.求值题型
已知某个角的一个三角函数 值,求这个角的其余三角函数值.
3 例6 已知 sin , 求 cos ,tan 的值. 5
注意开方运算时根号前正、负号的选取, 即根据角所在的象限讨论正负号。
课本P23 练习 1,2,3
2.化简三角函数式. 函数种类要最少,项数要最少,函数 次数尽量低,能求出值的要求出数值,尽 量使分母不含三角形式和根式。
主客呀."能给咱壹千斤吗?"根汉问道."壹千斤..."在场の十几人都张大了嘴巴,这还是人吗,这小子也太能吃了,买壹千斤腌牛肉吃?(正文贰叁贰7壹千斤)贰叁贰捌赚钱"有!"中年老板立即拍板道:"小老弟呀,给你算便宜壹些吧,你给二十二壹斤就好了,壹共是二万二...""好, 谢谢了..."根汉立即就掏出了二万五千星海币,厚厚の壹大叠放在桌上,又说道:"再给咱准备十几缸红米酒吧,这里剩下の钱能装多少装多少吧...""好の..."中年老板笑得合不拢嘴,赶紧将这壹大叠钱给收好了,开什么玩笑,这壹天の功夫,就做了两个月の生意.今天真得烧香 拜拜财神了,壹斤少说也得赚个八到十块星海币

同角三角函数的基本关系(公开课)

同角三角函数的基本关系(公开课)

具体形式
sin(x) = cos(x - π/2), cos(x) = sin(x + π/2), tan(x) = sec(x) - 1, cot(x) = csc(x) - 1等。
意义
同角三角函数是三角函数 的基本关系之一,是解
同角三角函数具有周期性, 其周期为2π。
同角三角函数的和差公式
定义
总结词
同角三角函数的和差公式是三角函数 中重要的基本公式之一,用于描述两 个同角三角函数值之间的关系。
详细描述
同角三角函数的和差公式表示为 sin(x+y)=sinxcosy+cosxsiny和 cos(x+y)=cosxcosy-sinxsiny,其中x 和y为角度,sin和cos为正弦和余弦函 数。
具体形式
sin(x/2) = ±√[(1-cosx)/2]、
cos(x/2) = ±√[(1+cosx)/2]、
tan(x/2)
=
±√[(1-
cosx)/(1+cosx)]。
性质
奇偶性
半角公式具有奇偶性,即当角度加上或减去180度时,其对应的半 角函数值会变成相反数。
周期性
半角函数具有周期性,其周期为180度,即当角度增加或减少360 度时,其对应的半角函数值不变。
物理应用
在物理中,同角三角函 数的基本关系可以用来 描述一些物理现象,例 如振动、波动等。
THANKS
感谢观看
y = cos(ax + b),其中 a、b为常数。
y = tan(ax + b),其中 a、b为常数。
y = cot(ax + b),其中a、 b为常数。
02

第二节-同角三角函数基本关系式与诱导公式

第二节-同角三角函数基本关系式与诱导公式

∴sin2α+144 sin2α=169 sin2α=1,
25
25
又由α为第二象限角知sin α>0,
∴sin α= 5 ,故选C.
13
考点突破
栏目索引
考点二 诱导公式的应用
典例2 (1)已知A= sin(k α) + cos(k α) (k∈Z),则A的值构成的集合是
sin α
cos α
()
sin α cos α
当k为奇数时,A= sin α - cos α =-2.
sin α cos α
∴A的值构成的集合是{2,-2}.
(2)f(x)= sin x sin x =-tan2x,
cos x (cos x)
f
21
4
=-tan2
21
4
=-tan2
3 4
π=-1.
考点突破
栏目索引
考点突破
栏目索引
易错警示
1.诱导公式的两个应用 (1)求值:负化正,大化小,化到锐角为终了. (2)化简:统一角,统一名,同角名少为终了. 2.含2π整数倍的诱导公式的应用 由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可 直接将2π的整数倍去掉后再进行运算,如cos(5π-α)=cos(π-α)=-cos α.
由①得cos α= 1 -sin α,
5
将其代入②,整理得
25sin2α-5sin α-12=0.
∵α是三角形的内角,
∴sin α= 4 ,∴cos α=- 3 ,
5
5
∴tan α=- 4 .
3
(2)
cos2α
1
sin2α
=
sin2α cos2α cos2α sin2α

高中数学 同角三角函数的基本关系与诱导公式

高中数学   同角三角函数的基本关系与诱导公式
4 ∵tan α=- , 3
4 2 - + 1 tan2α+1 3 1 25 ∴ 2 = = =- 。 42 7 cos α- sin2α 1-tan2α 1- - 3
22 22 【规律方法】 (1) (1) 利用 sin α+ cos α= 可以实现角 的正弦、余弦的 【规律方法】 利用 sin α+ cos α= 11 可以实现角 αα 的正弦、余弦的
sin α= 4, 5 得 3 cos α=- , 5
1 (2)把 2 用 tan α 表示出来,并求其值。 cos α-sin2α sin2α+ cos2α sin2α+ cos2α tan2α+1 1 cos2α 【解】 = = = 。 cos2α- sin2α cos2α- sin2α cos2α- sin2α 1-tan2α cos2α
(4)诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”与α 的
大小无关。( √
解析
)
正确。
1 1 (5)若 sin(kπ-α)= (k∈Z),则 sin α= 。( × ) 3 3 1 1 解析 错误。当 k=2n 时,sin α=- ;当 k=2n+1 时,sin α= (n∈ 3 3
Z)。
[判一判] (1)sin2θ+cos2φ=1。(
×)
解析 错误。sin2θ+cos2φ的值不确定。 (2)同角三角函数的基本关系式中角α可以是任意角。( × )
sin α π 解析 错误。tan α= 中,α≠ +kπ,k∈Z。 cos α 2
(3)六组诱导公式中的角α可以是任意角。( × ) 解析 错误。有关正切函数的诱导公式,必须使tan α有意义。
2sinπ+αcosπ-α-cosπ+α 23π (2)f(α)= (1+2sin α≠0), 则 f- = 3π π 6 1+sin2α+cos +α-sin2 +α 2 2

同角三角函数的基本关系式及诱导公式在高考中的地位

同角三角函数的基本关系式及诱导公式在高考中的地位

同角三角函数的基本关系式及诱导公式在高考中的地位同角三角函数是数学课程中基础重要的概念,也是高考试题考查的重要内容之一。

本文将重点讨论同角三角函数的基本关系式及诱导公式在高考中的地位,即在考试中对它们加以考查的重要性。

一、同角三角函数的基本关系式同角三角函数的基本关系式是指三角函数的两个函数在同一角度时的关系式,例如sinθ,cosθ,tanθ等。

基本关系式可以从不同的计算方法分析出来,例如从正弦定理,余弦定理及正切定理中,以及在正弦波中对对角线的分析,等等。

基本关系式对于同角三角函数的求值以及使用十分重要,在高考中也是试题的常考内容,考生们在复习备考时要重点认真学习。

二、同角三角函数的诱导公式同角三角函数的诱导公式,是指将三角函数的关系式,通过简单的推导,导出同角三角函数的多对一关系,例如:sin2θ=2sin*cos θcos2θ=cos2θ-sin2θ,tan2θ=2tanθ/(1-tan2θ)等函数之间的关系。

诱导公式是由基本关系式推导出来的,同时又是基本关系式的延伸,在学习和使用同角三角函数方面,诱导公式的作用也十分重要,考生们在理解和掌握基本关系式的基础上,要深入学习诱导公式。

三、同角三角函数的基本关系式及诱导公式在高考中的重要地位同角三角函数的基本关系式及诱导公式,是高考数学课程重要的内容,在学习中占有重要地位。

此外,高考试题中,也会针对同角三角函数的基本关系式及诱导公式进行考查,可以是求解或分析等形式,对考生来说,对这两类关系式的掌握,有助于取得更好的成绩。

四、总结同角三角函数的基本关系式及诱导公式,是数学学科中重要的基础概念,也是高考数学考查的重要内容。

考生在学习备考时,要重点认真学习和掌握基本关系式及诱导公式,以充分备考,提高高考成绩。

同角三角函数的基本关系式的应用

同角三角函数的基本关系式的应用

作业:
3.求证:
(1)sin4 cos4 sin2 cos2 ;
(2)sin4 sin2 cos2 cos2 1;
(3) sin2 cos2 2 1 2sin2 .
tan
谢谢!
因此 sin4 cos4 2sin2 1.
例3 求证 (2) tan2 sin2 tan2 sin2 ;
分析: 一个角、两个函数名、二次
证明:(2) 原式左边 tan2 tan2 cos2
思路:差→积
tan2 (1 cos2 )
tan2 sin2 右边 因此 tan2 sin2 tan2 sin2 .
5
解:已知平方得 sin2 cos2 2sin cos 1
5
所以 1 2sin cos 1
5
解得 sin cos 2
5
变式1 已知 sin cos 5 ,求sin cos 的值.
5
1.方程思想
2.两个代数式直接建立联系
解: sin cos
5 5
解得
sin2 cos2 1
sin
5 5

sin
25 5
cos
25 5
cos
5 5
解:已知平方得
sin2 cos2 2sin cos 1
5
所以 1 2sin cos 1
5
解得 sin cos 2
5
变式2
已知 sin cos
5 5

3 ,求 sin cos 的值.
2
分析: 两个代数式可以建立联系吗?
sin cos 2 1 2sin cos
例3 求证 (3) cos 1 sin . 1 sin cos

同角三角函数的基本关系

同角三角函数的基本关系

同角三角函数的基本关系教学分析:与三角函数的定义域、符号的确定一样,同角三角函数的基本关系式的推导,紧扣了定义,是按照一切从定义出发的原则进行的,通过对基本关系的推导,应注意学生重视对基本概念学习的良好习惯的形成,学会通过对基本概念的学习,善于钻研,从中不断发掘更深层次的内涵.同角三角函数的基本关系式将“同角”的四种不同的三角函数直接或间接地联系起来,在使用时一要注意“同角”,至于角的表达形式是至关重要的,如sin 24π+cos 24π=1等,二要注意这些关系式都是对于使它们有意义的那些角而言的,如tan α中的α是使得tanα有意义的值,即α≠kπ+2,k ∈Z .已知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能,在求值时,根据已知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根.三维目标1.通过三角函数的定义导出同角三角函数基本关系式,并能运用同角三角函数的基本关系式进行三角函数的化简与证明.2.同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(2)化简三角函数式;(3)证明三角恒等式.通过本节的学习,学生应明了如何进行三角函数式的化简与三角恒等式的证明.3.通过同角三角函数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法.重点难点教学重点:课本的三个公式的推导及应用.教学难点:课本的三个公式的推导及应用.教学过程一.导入新课问题1.先请学生回忆任意角的三角函数定义,然后引导学生先计算后观察以下各题的结果,并鼓励学生大胆进行猜想,教师点拨学生能否用定义给予证明,由此展开新课.计算下列各式的值:(1)sin 290°+cos 290°; (2)sin 230°+cos 230°; (3) 60cos 60sin ; (4)135cos 135sin . 提出问题①在以下两个等式中的角是否都可以是任意角?若不能,角α应受什么影响?图1如图1,以正弦线MP 、余弦线OM 和半径OP 三者的长构成直角三角形,而且OP=1.由勾股定理有OM 2+MP 2=1.因此x 2+y 2=1,即sin 2α+cos 2α=1(等式1).显然,当α的终边与坐标轴重合时,这个公式也成立.根据三角函数的定义,当α≠kπ+2π,k ∈Z 时,有 aa cos sin =tanα (等式2). 这就是说,同一个角α的正弦、余弦的平方和等于1,商等于角α的正切.②对于同一个角的正弦、余弦、正切,至少应知道其中的几个值才能利用基本关系式求出其他的三角函数的值.活动:问题①先让学生用自己的语言叙述同角三角函数的基本关系,然后教师点拨学生思考这两个公式的用处.同时启发学生注意“同一个角”这个前提条件,及使等式分别有意义的角的取值范围.问题②可让学生展开讨论,点拨学生从方程的角度进行探究,对思考正确的学生给予鼓励,对没有思路的学生教师点拨其思考的方法,最后得出结论“知一求二”.讨论结果:①在上述两个等式中,不是所有的角都可以是任意角,在第一个等式中,α可以是任意角,在第二个等式中α≠kπ+2π,k ∈Z . ②在上述两个等式中,只要知道其中任意一个,就可以求出其余的两个.知道正弦(余弦),就可以先求出余弦(正弦),用等式1;进而用第二个等式2求出正切.二.应用举例例1 已知sinα=54,并且α是第二象限的角,求cosα,tanα的值. 活动:同角三角函数的基本关系学生应熟练掌握,先让学生接触比较简单的应用问题,明确和正确地应用同角三角函数关系.可以引导学生观察与题设条件最接近的关系式是sin 2α+cos 2α=1,故cosα的值最容易求得,在求cosα时需要进行开平方运算,因此应根据角α所在的象限确定cosα的符号,在此基础上教师指导学生独立地完成此题.解:因为sin 2α+cos 2α=1,所以cos 2α=1-sin 2α=1-(54)2=259. 又因为α是第二象限角,所以cosα<0.于是cosα=259-=53-, 从而tanα=a a cos sin =54×(35-)=34-. 点评:本题是直接应用关系求解三角函数值的问题,属于比较简单和直接的问题,让学生体会关系式的用法.应使学生清楚tanα=34-中的负号来自α是第二象限角,这也是根据商数关系直接运算后的结果,它不同于在选用平方关系式的三角函数符号的确定.例2 已知cosα=178-,求sinα,tanα的值. 活动:教师先引导学生比较例1、例2题设条件的相异处,根据题设条件得出角的终边只能在第二或第三象限.启发学生思考仅有cosα<0是不能确定角α的终边所在的象限,它可能在x 轴的负半轴上(这时cosα=-1).解:因为cosα<0,且cosα≠-1,所以α是第二或第三象限角.如果α是第二象限角,那么 sinα=a 2cos -1=2)178(1--=1715, tanα=a a cos sin =1715×(817-)=815-, 如果α是第三象限角,那么sinα=175-,tanα=34-. 点评:在已知角的一个三角函数值但是不知道角所在的象限的时候,应先根据题目条件讨论角的终边所在的象限,分类讨论所有的情况,得出所有的解.例3 求证:.cossin 1sin 1cos x x x +=- 活动:先让学生讨论探究证明方法,教师引导思考方向.教材中介绍了两种证明方法:证法一是从算式一边到另一边的证法,算式右边的非零因式1+sinα,在左边没有出现,可考虑左边式子的分子、分母同乘以1+sinx,再化简;在证法二中可以这样分析,要让算式成立,需证cos 2x=(1+sinx)(1-sinx),即cos 2x=1-sin 2x,也就是sin 2x+cos 2x=1,由平方关系可知这个等式成立,将上述分析过程逆推便可以证得原式成立.证法一:由cosx≠0,知sinx≠1,所以1+sinx≠0,于是左边=右边=+=-+=-+=+-+x x xx x x x x x x x x x cos sin 1sin 1)sin 1(cos sin 1)sin 1(cos )sin 1)(sin 1()sin 1(cos 22 所以原式成立.证法二:因为(1-sinx)(1+sinx)=1-sin 2x=cos 2x=cosxcosx,且1-sinx≠0,cosx≠0,所以.cos sin 1sin 1cos xx x x +=-教师启发学生进一步探究:除了证法一和证法二外你可否还有其他的证明方法.教师和学生一起讨论,由此可探究出证法三.依据“a -b=0⇔a=b”来证明恒等式是常用的证明方法,由学生自己独立完成.证法三:因为0cos )sin 1(cos cos cos )sin 1()sin 1(cos cos )sin 1()sin 1)(sin 1(cos cos cos sin 1sin 1cos 2222=--=---=--+-=+--x x x x x x x x x x x x x x x x x 所以.cos sin 1sin 1cos xx x x +=- 点评:这是一道很有训练价值的经典例题,教师要充分利用好这个题目.从这个例题可以看出,证明一个三角恒等式的方法有很多.证明一个等式,可以从它的任何一边开始,证得它等于另一边;还可以先证得另一个等式成立,从而推出需要证明的等式成立.例4 化简.440sin -12︒活动:引导学生探究:原式结果为cos440°时是不是最简形式,还应怎么办?教师引导学生运用诱导公式一化简为cos80°,由于cos80°>0,因此︒80cos 2=|cos80°|=cos80°,此题不难,让学生独立完成.解:原式=)80(360sin -12︒+︒=︒80sin -12=︒80sin -12=cos80°.点评:恰当利用平方关系和诱导公式化简三角函数式.提醒学生注意化简后的简单的三角函数式应尽量满足以下几点:(1)所含的三角函数种类最少;(2)能求值(指准确值)的尽量求值;(3)不含特殊角的三角函数值.变式训练化简:︒︒cos402sin40-1答案:cos40°-sin40°.点评:提醒学生注意:1±2sinαcosα=sin 2α+cos 2α±2sinαcosα=(sinα±cosα)2,这是一个很重要的结论.三.课本本节练习.四.课堂小结由学生回顾本节所学的方法知识:①同角三角函数的基本关系式及成立的条件,②根据一个任意角的正弦、余弦、正切中的一个值求出其余的两个值(可以简称“知一求二”)时要注意这个角的终边所在的位置,从而出现一组或两组或四组(以两组的形式给出).“知一求二”的解题步骤一般为:先确定角的终边位置,再根据基本关系式求值,若已知正弦或余弦,则先用平方关系,再用其他关系求值;若已知正切或余切,则构造方程组求值.教师和学生一起归纳三角函数式化简与三角恒等式的证明的一般方法及应注意的问题,并让学生总结本节用到的思想方法.五.作业1.化简(1+tan 2α)cos 2α;2.已知tanα=2,求aa a a cos sin cos sin -+的值. 答案:1.1;2.3.设计思路公式的推导和应用是本节课的重点,也是本节课的难点.公式的应用实际上是求可化为完全平方的三角函数式的“算术平方根”的化简题和证明题,这类问题可按下列情形分别处理:(1)如果这个三角函数式的值的符号可以确定,则可以根据算术平方根的定义直接得到结果;(2)如果这个三角函数式的值的符号不可以确定,则可根据题设条件,经过合理的分类讨论得到结果.三角函数式的化简,体现了由繁到简的最基本的数学解题原则,它不仅需要学生能熟悉和灵活运用所学的三角公式,还需要熟悉和灵活运用这些公式的等价形式,同时,这类问题还具有较强的综合性,对其他非三角知识的灵活运用也具有较高的要求,在教学时要注意进行相关知识的复习.证明恒等式的过程实质上就是分析转化和消去等式两边差异来促成统一的过程,证明时常用的方法一般有以下三种:(1)依据相等关系的传递性,从等式一边开始,证明它等于另一边,证明时一般遵循由繁到简的原则.(2)依据“等于同量的两个量相等”证明左、右两边等于同一个式子.(3)依据等价转化思想,证明与原式等价的另一个式子成立,从而推出原式成立.教材上在运用这一方法时使用的是综合法,初学恒等式的证明时,运用等价转化的方法可以使证明的思路更清楚一些,实际上,使用综合法时不一定要求进行等价转化,只需证明等式成立的充分条件即可(教师知道即可),证明方法中分别运用到了分式的基本性质和算式的基本性质.使学生明白,如果算式中含有正弦、余弦、正切等三角函数,为了便于将算式两边沟通,可通过“切化弦”使两边的三角函数相同.。

同角三角函数基本关系式及诱导公式

同角三角函数基本关系式及诱导公式

=sin2θ+sinθcosθ- 2cos2θ
=sin2θ+ssiinn2θθc+oscθo-s2θ 2cos2θ=tan2θta+n2tθa+nθ1- 2

22+ 2- 22+1
2=23..
答案:D
(2)已知 tan(π-α)=-23,且 α∈-π,-π2,则cocso-sπα-+α3+sin9sπin+αα=________. 解析:由 tan(π-α)=-23,得 tanα=23, 则cocso-sπα-+α3+sin9sπin+αα=-cocosαsα-+39sisninαα=-11-+39tatnanαα=-1- 1+26=-15.
解析:∵sinθ+cosθ=43,∴sinθcosθ=178.
又∵(sinθ-cosθ)2=1-2sinθcosθ=29,θ∈0,π4,
∴sinθ-cosθ=-
2 3.
答案:-
2 3
6.已知 α 为锐角,cos32π+α=45,则 cos(π+α)=________.
解析:∵cos32π+α=sinα=45,且 α 为锐角, ∴cosα=35,∴cos(π+α)=-cosα=-35. 答案:-35
答案:32
(2)已知 cosπ6-θ=a,则 cos56π+θ+sin23π-θ的值是________. 解 析 : 因 为 cos 56π+θ = cos π-π6-θ = - cos π6-θ = - a , sin 23π-θ = sinπ2+π6-θ=cosπ6-θ=a,所以 cos56π+θ+sin23π-θ=0. 答案:0
题型二 诱导公式的应用 例 1 (1)tancoπs+-ααc-os32ππs+inα-si3nπα--α32π=________. 解析:原式=tanαcosαsin-2π+α+π2

高三数学考点-同角三角函数的基本关系及诱导公式

高三数学考点-同角三角函数的基本关系及诱导公式

4.2 同角三角函数的基本关系及诱导公式1.同角三角函数的基本关系(1)由三角函数的定义,同角三角函数间有以下两个等式: ①____________________; ②____________________.(2)同角三角函数的关系式的基本用途:①根据一个角的某一三角函数值,求出该角的其他三角函数值;②化简同角的三角函数式;③证明同角的三角恒等式. 2.三角函数的诱导公式 (1)(2)诱导公式的规律:三角函数的诱导公式可概括为:奇变偶不变,符号看象限.其中“奇变偶不变”中的奇、偶分别是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则正、余弦互变,正、余切互变;若是偶数倍,则函数名称________.“符号看象限”是把α当成________时,原三角函数式中的角⎝⎛⎭⎫如π2+α 所在________原三角函数值的符号.注意:把α当成锐角是指α不一定是锐角,如sin(360°+120°)=sin120°,sin(270°+120°)=-cos120°,此时把120°当成了锐角来处理.“原三角函数”是指等号左边的函数. (3)诱导公式的作用:诱导公式可以将任意角的三角函数转化为________三角函数,因此常用于化简和求值,其一般步骤是: 任意负角的三角函数―――――――――→去负(化负角为正角)任意正角的三角函数―――――→脱周脱去k ·360°0°到360°的三角函数―――――――→化锐(把角化为锐角 )锐角三角函数 3.sin α+cos α,sinαcos α,sin α-cos α三者之间的关系 (sin α+cos α)2=________________; (sin α-cos α)2=________________;(sin α+cos α)2+(sin α-cos α)2=________________; (sin α+cos α)2-(sin α-cos α)2=________________.自查自纠1.(1)①sin 2α+cos 2α=1 ②sin αcos α=tan α2.(1)x 函数sin x cos x tan x -α -sin α cos α -tan α π2±α cos α ∓sin α π±α ∓sin α -cos α ±tan α 3π2±α -cos α ±sin α 2π±α±sin αcos α±tan α(2)不变 锐角 象限 (3)锐角3.1+sin2α 1-sin2α 2 2sin2α(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin2α=( )A .-79B .-29 C.29 D.79解:sin2α=2sin αcos α=(sin α-cos α)2-1-1=-79.故选A .(2016·贵州4月适应性考试)若sin ⎝⎛⎭⎫π2+α=-35,且α∈⎝⎛⎭⎫π2,π,则sin(π-2α)=( ) A.2425 B.1225 C .-1225 D .-2425解:由sin ⎝⎛⎭⎫π2+α=-35得cos α=-35,又α∈⎝⎛⎭⎫π2,π,则sin α=45,所以sin(π-2α)=sin2α=2sin αcos α=-2425.故选D . (2017·重庆检测)已知α是第四象限角,且sin α+cos α=15,则tan α2=( )A.13 B .-13 C.12 D .-12解:因为sin α+cos α=15,α是第四象限角,所以sin α=-35,cos α=45,则tan α2=sinα2cos α2=2sin 2α22sin α2cosα2=1-cos αsin α=-13.故选B .(2016·四川)sin750°=________.解:因为sin θ=sin(k ·360°+θ)(k ∈Z ),所以sin750°=sin(2×360°+30°)=sin30°=12.故填12.(2017·郑州质检)已知cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2,则sin 3(π-α)+cos (α+π)5cos ⎝⎛⎭⎫5π2-α+3sin ⎝⎛⎭⎫7π2-α的值为________. 解:因为cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2,所以-sin α=-2cos α,则sin α=2cos α,代入sin 2α+cos 2α=1,得cos 2α=15.所以sin 3(π-α)+cos (α+π)5cos ⎝⎛⎭⎫52π-α+3sin ⎝⎛⎭⎫72π-α=sin 3α-cos α5sin α-3cos α=8cos 3α-cos α7cos α=87·cos 2α-17=335.故填335.类型一 利用同角三角函数的基本关系式进行化简和求值(1)(2017·全国卷Ⅰ)已知a ∈⎝⎛⎭⎫0,π2,tan α=2,则cos ⎝⎛⎭⎫α-π4=________; (2)已知sin α=13,求tan α;(3)已知sin α=m (m ≠0,m ≠±1),求tan α. 解:(1)由tan α=2得sin α=2cos α.又sin 2α+cos 2α=1,所以cos 2α=15.因为α∈⎝⎛⎭⎫0,π2,所以cos α=55,sin α=255. 因为cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4, 所以cos ⎝⎛⎭⎫α-π4=55×22+255×22=31010. 故填31010.(2)因为sin α=13,所以α是第一或第二象限角.当α是第一象限角时, cos α=1-sin 2α=1-⎝⎛⎭⎫132=223,所以tan α=sin αcos α=24;当α是第二象限角时,tan α=-24. (3)因为sin α=m (m ≠0,m ≠±1),所以cos α=±1-sin 2α=±1-m 2(当α为第一、四象限角时取正号,当α为第二、三象限角时取负号).所以当α为第一、四象限角时,tan α=m1-m 2;当α为第二、三象限角时,tan α=-m1-m 2 .【点拨】给值求值的关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(1)设sin α2=45,且α是第二象限角,则tan α2的值为________.解:因为α是第二象限角,所以α2是第一或第三象限角.①当α2是第一象限角时,有cos α2=1-sin 2α2=1-⎝⎛⎭⎫452=35,所以tan α2=sinα2cosα2=43;②当α2是第三象限角时,与sin α2=45矛盾,舍去.综上,tan α2=43.故填43.(2)已知sin α-cos α=2,α∈(0,π),则tan α=________. 解法一:由⎩⎨⎧sin α-cos α=2,sin 2α+cos 2α=1,得2cos 2α+22cos α+1=0,即(2cos α+1)2=0,所以cos α=-22.又α∈(0,π),所以α=3π4,tan α=tan 3π4=-1.解法二:因为sin α-cos α=2,所以(sin α-cos α)2=2,得sin2α=-1.因为α∈(0,π),所以2α∈(0,2π),2α=3π2,所以α=3π4,tan α=-1.故填-1.类型二 诱导公式的应用(1)(2016·全国卷Ⅰ)已知θ是第四象限角,且sin ⎝⎛⎭⎫θ+π4=35,则tan ⎝⎛⎭⎫θ-π4=________. 解:由题意知,θ+π4是第一象限角,得cos ⎝⎛⎭⎫θ+π4=45, 根据同角三角函数关系式可得tan ⎝⎛⎭⎫θ+π4=34. 所以tan ⎝⎛⎭⎫θ-π4=tan ⎝⎛⎭⎫θ+π4-π2=-1tan ⎝⎛⎭⎫θ+π4=-43.故填-43. (2)化简sin (2π-α)cos (π+α)cos ()π2+αcos ()11π2-αcos (π-α)sin (3π-α)sin (-π-α)sin ()9π2+α. 解:原式=(-sin α)(-cos α)(-sin α)(-sin α)(-cos α)·sin α·sin α·cos α=-tan α. 【点拨】①三角式的化简通常先用诱导公式,将角度统一后再用同角三角函数关系式,这可以避免交错使用公式时导致的混乱.②在运用公式时正确判断符号至关重要.③三角函数的化简、求值是三角函数中的基本问题,也是高考常考的问题,要予以重视.④正确理解“奇变偶不变,符号看象限”可以提高解题效率.(1)化简sin 2(π+α)-cos(π+α)·cos(-α)+1.解:原式=sin 2α-(-cos α)·cos α+1=sin 2α+cos 2α+1=2.(2)(2017·北京)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=________. 解:因为α和β的终边关于y 轴对称,所以α+β=π+2k π,k ∈Z ,那么sin β=sin α=13,cos α=-cos β,这样cos(α-β)=cos αcos β+sin αsin β=-cos 2α+sin 2α=2sin 2α-1=-79.故填-79.类型三 关于sin α,cos α的齐次式问题已知tan αtan α-1=-1,求下列各式的值.(1)sin α-3cos αsin α+cos α; (2)sin 2α+sin αcos α+2.解:由已知得tan α=12.(1)sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.(2)sin 2α+sin αcos α+2=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝⎛⎭⎫122+12⎝⎛⎭⎫122+1+2=135. 【点拨】(1)形如a sin α+b cos α和a sin 2α+b sin αcos α+c cos 2α的式子分别称为关于sin α,cos α的一次齐次式和二次齐次式,对涉及它们的三角变换通常转化为正切(分子分母同除以cos α或cos 2α)求解.如果分母为1,可考虑将1写成sin 2α+cos 2α.(2)已知tan α=m 的条件下,求解关于sin α,cos α的齐次式问题,必须注意以下几点:①一定是关于sin α,cos α的齐次式(或能化为齐次式)的三角函数式.②因为cos α≠0,所以可以用cos n α(n ∈N *)除之,这样可以将被求式化为关于tan α的表示式,可整体代入tan α=m 的值,从而完成被求式的求值运算.③注意1=sin 2α+cos 2α的运用.(荆州2017届质量检测)已知tan(5π-x )=2,则2cos 2x2-sin x -1sin x +cos x=________.解:tan(5π-x )=2,即tan(π-x )=2,得tan x =-2.又因为2cos 2x2-1=cos x ,所以2cos 2x2-sin x -1sin x +cos x =cos x -sin x sin x +cos x=1-tan x tan x +1=-3.故填-3.1.诱导公式用角度制和弧度制表示都可,运用时应注意函数名称是否要改变以及正负号的选取.2.已知一个角的某一个三角函数值,求这个角的其他三角函数值,这类问题用同角三角函数的基本关系式求解,一般分为三种情况:(1)一个角的某一个三角函数值和这个角所在的象限或终边所在的位置都是已知的,此类情况只有一组解. (2)一个角的某一个三角函数值是已知的,但这个角所在的象限或终边所在的位置没有给出,解答这类问题,首先要根据已知的三角函数值确定这个角所在的象限或终边所在的位置,然后分不同的情况求解.(3)一个角的某一个三角函数值是用字母给出的,此类情况须对字母进行讨论,并注意适当选取分类标准,一般有两组解.3.计算、化简三角函数式常用技巧(1)减少不同名的三角函数,或化切为弦,或化弦为切,如涉及sin α,cos α的齐次分式问题,常采用分子分母同除以cos n α(n ∈N *),这样可以将被求式化为关于tan α的式子. (2)巧用“1”进行变形,如1=sin 2α+cos 2α=tan45°等. (3)平方关系式需开方时,应慎重考虑符号的选取.(4)熟悉sin α+cos α,sin α-cos α,sin αcos α三者之间的内在联系,利用(sin α±cos α)2=1±2sin αcos α进行和积转换,可知一求二.1.sin585°的值为( )A .-22 B.22 C .-32 D.32解:sin585°=sin ()90°×6+45°=-sin45°=-22.故选A .2.(福建四地六校2017届月考)已知cos ⎝⎛⎭⎫θ+π2=45,-π2<θ<π2,则sin2θ的值等于( ) A .-2425 B.2425 C .-1225 D.1225解:由cos ⎝⎛⎭⎫θ+π2=45,-π2<θ<π2,得sin θ=-45,cos θ=35,则sin2θ=2sin θcos θ=-2425.故选A . 3.(江西上饶2017届一模)已知sin ⎝⎛⎭⎫α-π12=13,则cos ⎝⎛⎭⎫α+17π12 的值等于( ) A.13 B.223 C .-13 D .-223解:由cos ⎝⎛⎭⎫α+17π12=cos ⎝⎛⎭⎫α-π12+3π2=sin ⎝⎛⎭⎫α-π12=13.故选A . 4.(2016·全国卷Ⅲ)若tan α=34,则cos 2α+2sin2α=( )A.6425B.4825 C .1 D.1625解法一:cos 2α+2sin2α=cos 2α+2sin2αsin 2α+cos 2α=1+4tan α1+tan 2α=6425. 解法二:由tan α=34,得sin α=34cos α,sin α=35,cos α=45或sin α=-35,cos α=-45,所以cos 2α+2sin2α=1625+4×1225=6425.故选A .5.(2016·长春质检)已知tan α=2,α为第一象限角,则sin2α+cos α=( )A. 5B.4+255C.4+55D.5-25解:由三角函数定义sin α=255,cos α=55,故sin2α+cos α=2sin αcos α+cos α=4+55.故选C .6.(2016·淮南二模)已知sin α+cos α=12,α∈(0,π),则1-tan α1+tan α=( )A .-7 B.7 C. 3 D .-3解:因为(sin α+cos α)2=1+2sin αcos α=14,所以sin αcos α=-38,又α∈(0,π),所以sin α>0,cos α<0.因为(sin α-cos α)2=1-2sin αcos α=74,所以cos α-sin α=-72.所以1-tan α1+tan α=cos α-sin αcos α+sin α=-7212=-7.故选A .7.(2016江苏冲刺卷)已知θ是第三象限角,且sin θ-2cos θ=-25,则sin θ+cos θ=________.解:由平方关系得⎝⎛⎭⎫2cos θ-252+cos 2θ=1,且cos θ<0,解得cos θ=-725,从而sin θ=-2425,故sin θ+cos θ=-3125.故填-3125.8.(2015·四川)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.解:因为sin α+2cos α=0,所以sin α=-2cos α,由同角三角函数关系式得cos 2α+4cos 2α=1,所以cos 2α=15,所以2sin αcos α-cos 2α=-4cos 2α-cos 2α=-5cos 2α=-1.故填-1.9.已知sin(3π+θ)=13,求值:cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝⎛⎭⎫θ-3π2cos (θ-π)-sin ⎝⎛⎭⎫3π2+θ.解:因为sin(3π+θ)=-sin θ=13,所以sin θ=-13.所以原式=-cos θcos θ(-cos θ-1)+cos θcos θ·(-cos θ)+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ =2⎝⎛⎭⎫-132=18. 10.已知sin θ-cos θ=12,求:(1)sin θcos θ; (2)sin 3θ-cos 3θ; (3)sin 4θ+cos 4θ.解:(1)将sin θ-cos θ=12两边平方得:1-2sin θcos θ=14,sin θcos θ=38.(2)sin 3θ-cos 3θ=(sin θ-cos θ)(sin 2θ+sin θcos θ+cos 2θ)=12×⎝⎛⎭⎫1+38=1116. (3)sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ =1-2×⎝⎛⎭⎫382=2332.11.(1)已知tan α=3,求23sin 2α+14cos 2α的值.(2)已知1tan α-1=1,求11+sin αcos α的值.解:(1)23sin 2α+14cos 2α=23sin 2α+14cos 2αsin 2α+cos 2α=23tan 2α+14tan 2α+1=23×32+1432+1=58.(2)由1tan α-1=1得tan α=2,11+sin αcos α=sin 2α+cos 2αsin 2α+cos 2α+sin αcos α=tan 2α+1tan 2α+tan α+1=22+122+2+1=57. (黄冈2017届期末)已知函数y =sin(πx +φ)-2cos(πx +φ)(0<φ<π)的图象关于直线x =1对称,则sin2φ=( ) A.35 B .-35 C.45 D .-45解:y =f (x )=sin(πx +φ)-2cos(πx +φ)=5sin(πx +φ-α),其中sin α=25,cos α=15, 因为函数的图象关于x =1对称,所以y =f (1)=±5,即π+φ-α=π2+k π,k ∈Z ,sin2φ=sin2⎝⎛⎭⎫α-π2+k π=sin(2α-π+2k π)=sin(2α-π)=-sin2α=-2sin αcos α=-2×25×15=-45 .故选D .。

高考数学复习讲义:同角三角函数的基本关系与诱导公式

高考数学复习讲义:同角三角函数的基本关系与诱导公式

返回
3.已知 tanπ6-α= 33,则 tan56π+α=________. 解析:tan56π+α=tanπ-π6+α=tan[ π-( π6-α ) ] =-tanπ6-α=- 33.
答案:-
3 3
返回
研透高考·深化提能
1.利用诱导公式把任意角的三角函数转化为锐角三角函 数的步骤
也就是:“负化正,大化小,化到锐角为终了.”
“切”的表达式,进行求值.常见的结构有:
①sin α,cos α的二次齐次式(如asin2α+bsin αcos α+
ccos2α)的问题常采用“切”代换法求解;
②sin
α,cos
α的齐次分式如acssiinn
α+bcos α+dcos
αα的问题常采
用分式的基本性质进行变形.
(2)切化弦:利用公式tan
返回
(2)已知-π2<α<0,sin α+cos α=15,则cos2α-1 sin2α=(
)
7
25
A.5
B. 7
7
24
C.25
D.25
返回
[解析] ∵sin α+cos α=15,
∴1+2sin αcos α=215,
∴2sin αcos α=-2245,(cos α-sin α)2=1+2245=4295.
3
课时跟踪检测
返回
突破点一 同角三角函数的基本关系
返回
抓牢双基·自学回扣
[基本知识]
1.同角三角函数的基本关系 (1)平方关系:sin2α+cos2α=1(α∈R ) . (2)商数关系: tan α=csions ααα≠kπ+π2,k∈Z .
返回
2.同角三角函数基本关系式的应用技巧

同角三角函数的基本关系及应用

同角三角函数的基本关系及应用

高中数学:同角三角函数的基本关系及应用(1)若sin α=-513,且α为第四象限角,则tan α的值等于( D )A.125B .-125 C.512D .-512解析:因为α为第四象限角且sin α=-513, 所以cos α=1-sin 2α=1213,故tan α=sin αcos α=-512. (2)已知-π2<x <0,sin x +cos x =15. ①求sin x -cos x 的值; ②求tan x ;③求1cos 2x -sin 2x的值.解:①∵sin x +cos x =15,∴(sin x +cos x )2=⎝ ⎛⎭⎪⎫152,即1+2sin x cos x=125,∴2sin x cos x =-2425.∵(sin x -cos x )2=sin 2x -2sin x cos x +cos 2x =1-2sin x cos x =1+2425=4925.a又∵-π2<x <0,∴sin x <0,cos x >0, ∴sin x -cos x <0.b由ab 可知sin x -cos x =-75. ②由已知条件及①可知⎩⎪⎨⎪⎧sin x +cos x =15,sin x -cos x =-75,解得⎩⎪⎨⎪⎧sin x =-35,cos x =45,∴tan x =-34. ③由①可得1cos 2x -sin 2x =1(cos x +sin x )(cos x -sin x )=115×75=257.∴1cos 2x -sin 2x=257. 【结论探究1】 在典例(2)条件下,求sin x -2cos x4sin x +cos x 的值.解:sin x -2cos x 4sin x +cos x =tan x -24tan x +1=-34-2-3+1=118.【结论探究2】 在典例(2)条件下,求sin 2x +sin2x 的值.解:sin 2x +sin2x =sin 2x +2sin x cos x sin 2x +cos 2x =tan 2x +2tan x tan 2x +1=-35.同角三角函数关系式的应用方法(1)利用sin 2α+cos 2α=1可实现α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)由一个角的任一三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系”公式,需求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论.(3)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(4)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.(1)(2019·贵州七校联考)已知sin α+cos α=2,则tan α+cos αsin α的值为( D )A .-1B .-2 C.12 D .2解析:∵sin α+cos α=2,∴(sin α+cos α)2=2,∴sin αcos α=12.∴tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α=2. (2)已知α为第二象限角,则cos α·1+tan 2α+sin α·1+1tan 2α=0__.解析:原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α·1|cos α|+sin α·1|sin α|,因为α是第二象限角,所以sin α>0,cos α<0, 所以cos α·1|cos α|+sin α·1|sin α|=-1+1=0,即原式等于0.。

同角三角函数基本关系

同角三角函数基本关系

【基础知识精讲】1.同角三角函数的基本关系式根据三角函数定义,容易得到如下关系式(1)平方关系 sin 2α+cos 2α=11+tan 2α=sec 2α1+cot 2α=csc 2α(2)乘积关系 sin α=cos α²tan α,cos α=sin α²cot αcot α=cos α²csc α,csc α=cot α²sec α sec α=csc α²tan α,tan α=sec α²sin α(3)倒数关系 sin α²csc α=1,cos α²sec α=1,tan α²cot α=1说明:(1)以上关系式仅当α的值使等式两边都有意义时才能成立.例如,当α=2πk (k∈Z)时,tan α²cot α=1就不成立.另外,要注意是同角,如sin 2α+cos 2α=1,但sin 2α+cos 2β=1就不恒成立.(2)对公式除了顺用,还应学会逆用、变用、活用.例如,由sin 2α+cos 2α=1变形为cos 2=1-sin 2α,cos α=±α2sin 1-,sin α²cos α=21)cos (sin 2-+αα等等.对于cos α=±α2sin 1-,“±”号的选取要由α所在象限来确定,当α在第一或第四象限时,取“+”;当α在第二或第三象限时,取“-”.而对于其他形式的公式就不必考虑符号问题.如α是第二象限角,tan α=ααcos sin 而不能认为tan α=-ααcos sin (因为α是第二象限角,所以tan α为负值).其实α在第二象限,sin α为正值,cos α为负值,所以tan α=ααcos sin 结果自然得负值,如果再加“-”,结果就得正值了.(3)要注意“1”的代换.如可用sin 2α+cos 2α,sec 2α-tan 2α,sin α²csc α,tan α²cot α等去代换1.(4)记忆方法(如图).首先某函数与它的余函数在同一水平线上. ①在对角线上的两个三角函数值的乘积等于1,如tan α²cot α=1. ②在阴影的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方,如1+tan 2α=sec 2α。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档