02009 抽象代数

合集下载

抽象代数——精选推荐

抽象代数——精选推荐

抽象代数⼀、课程⽬的与教学基本要求本课程是在学⽣已学习⼤学⼀年级“⼏何与代数”必修课的基础上,进⼀步学习群、环、域三个基本的抽象的代数结构。

要求学⽣牢固掌握关于这三种抽象的代数结构的基本事实、结果、例⼦。

对这三种代数结构在别的相关学科,如数论、物理学等的应⽤有⼀般了解。

⼆、课程内容第1章准备知识(Things Familiar and Less Familiar)10课时复习集合论、集合间映射及数学归纳法知识,通过学习集合间映射为继续学习群论打基础。

1、⼏个注记(A Few Preliminary Remarks)2、集论(Set Theory)3、映射(Mappings)4、A(S)(The Set of 1-1 Mappings of S onto Itself)5、整数(The Integers)6、数学归纳法(Mathematical Induction)7、复数(Complex Numbers)第2章群(Groups) 22课时建⽴关于群、⼦群、商群及直积的基本概念及基本性质;通过实例帮助建⽴抽象概念,掌握群同态定理及其应⽤;了解有限阿贝尔群的结构。

1、群的定义和例⼦(Definitions and Examples of Groups)2、⼀些简单注记(Some Simple Remarks)3、⼦群(Subgroups)4、拉格朗⽇定理(Lagrange’s Theorem)5、同态与正规⼦群(Homomorphisms and Normal Subgroups)6、商群(Factor Groups)7、同态定理(The Homomorphism Theorems)8、柯西定理(Cauchy’s Theorem)9、直积(Direct Products)10、有限阿贝尔群(Finite Abelian Groups) (选讲)11、共轭与西罗定理(Conjugacy and Sylow’s Theorem)(选讲)第3章对称群(The Symmetric Group) 8课时掌握对称群的结构定理,了解单群的概念及例⼦。

抽象代数

抽象代数

代数系统Mathematical Structure或Mathematical System 关于代数系统与计算机科学的关系为什么抽象代数是计算机科学的理论基础之一?1)抽象代数研究的对象与计算机科学研究的对象都是一般的通用客体2)代数系统为计算机系统(包括理论系统、计算机系统组成的结构、工具与环境系统的结构、应用系统的结构、系统的结构分类以及它们之间的关系等)提供必要的理论模型;3)不论是计算机科学的基础学科、技术学科和应用学科,还是计算机科学的边缘学科,抽象代数都给它们提供了最基本的思维方法代数系统和以前我们所了解的代数学有什么不同?1)对象:以前的代数学中研究的对象都是数(实数和复数)或用字母表示的数;代数系统研究的对象是某集合元素的总体,甚至有时并不指出这个集合是什么,也不指出集合中是元素是什么;2)运算:以前的代数学中研究的运算是数的四则运算;而代数系统研究的对象不仅仅是加、减、乘、除四则运算,而是满足一定抽象条件的运算,有时也不指出具体的运算是什么;3)两者的关系:以前我们所了解的代数只是代数系统的一个特例。

代数系统究竟是什么?定义一个代数系统时,并不是一个具体的代数系统,而是满足一定抽象条件的一类代数系统的总体,因此,研究的是代数系统的总体结构,提出一个同属于某一大类的所有代数结构的理论模型。

如果对代数系统的对象和运算进行不同的解析,只要在这个解析下可满足这种抽象的结构,则形成一个具体的代数系统。

代数系统和计算机有什么关系?计算机是一个通用的计算模型,其通用性在于:任何一个可计算的问题,如果问题本身是有结果的(例如,最后总可以回答“是”或“非”的),只要不考虑时间和空间的可能性,原则上都可以在计算机上得到结果。

计算机的结构也是一个通用结构。

只要根据某具体需求解的问题,而对计算机系统的对象(数据模型)和运算(所做的操作)进行解析,则计算机系统就成为解决这个问题的具体理论模型。

代数系统的思维方法如何决定计算机科学的思维方法?代数系统的基本思维方法是构造的方法和公理的方法。

【大学数学】重新理解系列之三:抽象代数

【大学数学】重新理解系列之三:抽象代数

【大学数学】重新理解系列之三:抽象代数我学过一学期的抽象代数,但感觉啥都没学到,对那些定义、定理没啥理解,完全就是考验记忆能力,但是下面的几篇文章居然勾起了哥学习抽象代数的欲望,对现代数学三大支柱一直的抽象代数感兴趣的同学可以慢慢看看,其实学习一门数学课时先读读这方面的科普文章,对整体把握和学习效果有非常大的提升。

文章列表:1. 初学者应该如何学习抽象代数2. 漫谈抽象代数(非常好)3. 抽象代数不抽象4. 抽象代数的人间烟火5. 抽象代数学习方法6. 近世代数概论前言7. 近世代数学习方法(之后的几篇文章还没来得及看)8. 群论问题与物理问题(和众多牛人的讨论总结)9. 近世代数基础课件(感觉很不错)10. 近世代数发展简史11. 近世代数的应用12. 抽象代数学习报告初学者应该如何学习抽象代数曾经看到一些抽象代数(近世代数)的初学者有这样的疑问:我们为什么要研究像群这样的抽象结构呢?有人解释说这是刻画对称性,也有人解释说是现代数学的一种语言,有点道理却又语焉不详。

【为什么学抽象代数?多么实际而迫切的问题,但学了也没能回答这个问题。

既然抽象代数研究的是结构,那么就对应数学物理工程医学中的实际的结构,如化学中物质结构、网络结构等等,我觉得都是可以用上去的,这都是一下想到的,没有详细去考证。

】为什么要研究群呢?提出这类问题的人困惑的并不是群的本质,而是需要一个合理的过渡,我觉得从具体的代数到抽象代数之间的过渡可以类比于从算术到普通代数的过渡。

记得我第一次遇到代数时感到很奇怪,为什么一眼就能看出答案的问题,非要设个未知量x来解方程。

直到后来发现几个x可以抵消,我才算领会了方程的方便,再后来遇到二次的情形就非要列方程不可了。

如果说方程中字母x代表某个数的话,那么群中的字母g又代表什么呢?它不仅代表处在某个地位上的数,更是代表一个特殊的位置,这样的位置是与整个群的结构相互联系的。

比如在三阶循环群中,两个生成元尽管作为数是不同的,但它们在群的地位却是一致的。

02009抽象代数

02009抽象代数

高纲0926江苏省高等教育自学考试大纲02009抽象代数江苏教育学院编江苏省高等教育自学考试委员会办公室一、课程性质、目的和要求抽象代数即近世代数是现代数学的一个重要分支,是研究多种代数结构的一门学科。

它是现代科学各个分支的基础,而且随着科学技术的不断进步,特别是计算机的发展与推广,近世代数的思想、理论与方法的应用越来越广泛。

它的思想方法已经渗透到数学的多个分支,它的结果已应用到众多学科领域,它的内容对中学代数教学有指导意义。

本课程是师范院校数学专业学生的必修课,也是教师本科自考的必考课程。

近世代数的内容丰富,在本科阶段不可能全部掌握,根据所选教材,要求考生在学习本课程中,掌握近世代数的基本概念、基本理论和方法,使学生拓宽眼界,扩大知识领域,提高抽象思维能力和逻辑推理能力,提高数学修养与技巧,以便能深入理解中学代数的内容和方法,为进一步学习其它学科创造条件。

课程内容包括:基本概念;群;环;整环里的因子分解。

二、课程内容与考核要求第一章基本概念本章中介绍的一些基本概念是数学各个分支的基础,也是学习本课程各个代数体系的必备知识。

其主要内容有1.集合的概念与运算2.映射的定义与几种特殊映射的性质3.卡氏积与代数运算4.等价关系与集合的分类考试要求:掌握集合的概念与运算,掌握集合的交、并、集合A的幂集A2的定义及表示,熟练掌握习题7、8的结论;了解映射的定义与几种特殊映射的性质,掌握映射的合成,熟练掌握定理1.6及习题2、6的结论;掌握代数运算的定义与判定方法, 熟练掌握习题2;掌握等价关系与集合的分类的定义及相关性质,能够由等价关系得出集合分类,并能正确给出商集,熟练掌握习题5、6。

第二章群群是具有一种代数运算的代数体系,即具有一个代数运算的集合,它是近世代数中比较古老且内容丰富的重要分支。

其主要内容有1.半群的定义及性质2.群的定义及等价条件3.元素阶的定义及性质4.循环群的定义及结构5.子群及判定条件6.变换群7.群的同态与同构、Cayley定理8.子群的陪集、Lagrange定理9.正规子群与商群、正规子群的等价条件10.同态基本定理与同构定理考试要求:掌握半群的定义及定理2.1、定理2.2、定理2.3、定理2.4的结论;掌握群的定义及性质,如定理2.5、定理2.6及推论;熟练掌握群的一些重要例子,如例1、例3、例4、例7,熟练掌握习题2、3、6、9;掌握元素阶的定义及相关重要性质,如定理2.8、定理2.9、定理2.10,熟练掌握例1、例2;熟练掌握循环群的定义、构造及性质,如定理2.11、定理2.12、定理2.13及推论1、推论2, 熟练掌握例5、例6及习题2、3、5、8、9;熟练掌握子群的定义及性质,如定理2.14、定理2.16、定理2.21及例3、例5、习题2、4、5;掌握变换群的概念及有关结论,熟练掌握n次对称群、循环置换的概念及性质,特别是3次、4次对称群元素的表示、运算及性质,如定理2.23、定理2.24、定理2.25、定理2.27、例4及习题4;掌握群的同态、同构的定义、性质以及Cayley定理及定理2.28、定理2.30,会求同态象与同态核,掌握习题1、2;掌握子群陪集的概念及性质,熟练掌握Lagrange 定理及及其推论1、推论2、例5、例6,熟练掌握习题2、3、4、5;掌握正规子群的定义及等价命题定理2.40, 能够正确判定子群与正规子群, 掌握例1、例2、例4、例6、例7的结论及习题2、3、6,正确掌握商群的概念及性质(推论);掌握并正确使用同态基本定理,熟练掌握复习题二中的第2、4题。

《抽象代数》课程大纲(草稿-细节待完善)

《抽象代数》课程大纲(草稿-细节待完善)

《抽象代数》课程大纲(草稿-细节待完善)一、课程简介课程名称:抽象代数学时/学分:68/4先修课程:线性代数(E)面向对象:致远学院本科生(计算机班)教学目标:本课程是为致远学院(计算机班)开设的系列代数课程的第二部分。

通过整个课程的学习使学生掌握近世代数学(又叫抽象代数)的基本理论、思想与方法,使学生的计算能力和抽象思维能力得到系统的训练和提高,为将来进一步学习其它专业课程和将来的应用奠定坚实的代数基础。

在教学过程中特别强调结合具体的例子来理解近世代数学的数学思想和思维方法,注意介绍最新的科研成果以开阔同学的视野。

主要内容:群(子群、群同态及基本定理、 Sylow定理、群作用及其应用),环(环同态、理想、商环、 多项式环与矩阵环),域(素子域,域的扩张, 可裂域与有限域)二、教学内容第一章 预备知识主要内容:等价关系、等价类、商集合与满映射; 数论中的整除与同余:Euler定理与Fermat小定理重点与难点:商集合与满映射的一一对应性第二章群与对称性主要内容:群的定义以及重要例子(循环群、二面体群与其他旋转群);子群与旁集(Coset): Lagrange定理,计数公式(1);正规子群与商群;群同态基本定理重点与难点:群同态基本定理;商群第三章群作用主要内容:群作用与群方程;各种具体的群作用(共轭作用;Cayley定理;抽象群作用);Burnside引理及其应用;Sylow定理及其应用重点与难点:群作用;轨道个数的计数公式(即群方程)第四章环主要内容:子环与理想、商环;多项式环及其商环;模n的剩余类环;PID与欧氏整环;整环中的素元与不可约元;UFD重点与难点:理想与商环;环的特征;分解问题第五章域主要内容:素域与域扩张; 单扩域;代数扩域:定义及例子;分裂域、正规扩域; 有限域:重点是分裂域和有限域重点与难点:域扩张;分裂域三、教学进度安排第一章.预备知识(6课时)1.1.等价关系、等价类、商集合与满映射(4学时)1.2.初等数论中的整除与同余:Euler定理与Fermat小定理(2学时)习题课(2学时)第二章. 群与对称性(20学时)2.1.群的定义以及重要例子(循环群、二面体群与其他旋转群;置换群) (4学时)2.2.子群与旁集(Coset): Lagrange定理,计数公式(1);由子集生成的子群;群的表达式(generators and relations)(6学时)2.3.正规子群与商群: 定义;重要例子;Cauchy引理(作为商群的应用)(4学时)2.4. 群同态基本定理以及第一第二同构定理; (2学时)2.5. 自同构与内自同构(2学时)2.6. 群的内、外直积(2学时)习题课(2学时)第三章. 群作用(共10学时)3.1抽象群作用: 轨道; 稳定化子; 计数公式(2)(2学时)3.2 群方程;各种具体的群作用(共轭作用;Cayley定理;抽象群作用)(3学时)3.3 Burnside引理及其应用(2学时)3.4 Sylow定理及其应用(3学时)习题课(2学时)第四章.环(16学时)4.1 定义(均有单位元且为结合环)以及重要例子(矩阵环,多项式环,形式幂级数环, 整数剩余类环) (2学时)4.2子环与理想: 重点是理想; 理想的生成问题;(2学时)4.3商环与环同态:同态基本定理及其应用(4学时)4.4 素理想与整环;最大理想与域 (2学时)4.5 多项式环及其商环的表达(与多项式带余除法的联系)(2学时)4.6. PID与欧氏环(2学时)4.7. 整环中的不可约元与素元;UFD理论介绍(2学时)习题课(2学时)第五章. 域(共12学时)5.1素域与域扩张: 强调与线性代数的联系(2学时)5.2单扩域;代数扩域: 强调与多项式环商环构造的联系(4学时)5.3 分裂域与正规扩域(2学时)5.4有限域(4)习题课(2学时)第六章. 偏序集、格与Bool代数(共4学时)6.1 偏序集与格 (2学时)6.2 Bool代数(2学时)习题课-总复习(2学时)四、课程考核及说明(1) 20%为平时成绩20%为大作业(小论文)60%为考试成绩(2)总课时(68学时)之外安排大约12学时习题课,由助教唱主角;另有若干次答疑(一般放在第8周后的周六或者周日进行)。

自考科目代码

自考科目代码

233009077.xls
E016 F009 F010 E017 E018 G010 F011 G011 A001 B005 D005 D006 G012 A002 B006 C003 E019 F012 E020 C004 A003 F013 G013 H018 E021 F014 H019 H020 F015 G014 00239 狱政管理学 00245 刑法学 00246 国际经济法概论 00247 国际法 00249 国际私法 00258 保险法 00259 公证与律师制度 00260 刑事诉讼法学 00266 社会心理学(一) 00272 社会工作概论 00273 社会工作实务 00275 社会问题 00277 行政管理学 00282 个案社会工作 00283 社会行政 00284 心理卫生与心理咨询 00292 市政学 00315 当代中国政治制度 00318 公共政策 00321 中国文化概论 00345 秘书学概论 00355 公安秘书学 00357 治安管理学 00360 预审学 00369 警察伦理学 00370 刑事证据学 00371 公安决策学 00383 学前教育学 00386 幼儿文学(一) 00387 幼儿园组织与管理 第 3 页,共 17 页 全国卷 全国卷 全国卷 全国卷 全国卷 全国卷 全国卷 全国卷 省卷 省卷 省卷 省卷 全国卷 省卷 省卷 省卷 全国卷 全国卷 全国卷 省卷 省卷 全国卷 全国卷 全国卷 全国卷 全国卷 全国卷 全国卷 省卷 全国卷
Hale Waihona Puke 33009077.xlsG034 H046 A016 E039 E040 G035 F034 D017 G036 F035 G037 B019 H047 H048 F036 H049 F037 E041 G038 E042 E043 H050 B020 G039 F038 E044 G040 A017 E045 H051 02141 计算机网络技术 02151 工程制图 02173 无机化学(二) 02182 文献检索 02183 机械制图(一) 02185 机械设计基础 02187 电工与电子技术 02191 机械制造技术 02197 概率论与数理统计(二) 02198 线性代数 02200 现代设计方法 02204 经济管理 02205 微型计算机原理与接口技术 02209 机械制造装备设计 02234 电子技术基础(一) 02238 模拟、数字及电力电子技术 02243 计算机软件基础(一) 02245 机电一体化系统设计 02275 计算机基础与程序设计 02316 计算机应用技术 02318 计算机组成原理 02323 操作系统概论 02324 离散数学 02325 计算机系统结构 02326 操作系统 02335 网络操作系统 02354 信号与系统 02358 单片机原理及应用 02365 计算机软件基础(二) 02368 通信英语 第 8 页,共 17 页 全国卷 全国卷 省卷 省卷 全国卷 全国卷 全国卷 省卷 全国卷 全国卷 全国卷 省卷 全国卷 省卷 全国卷 全国卷 全国卷 全国卷 全国卷 全国卷 全国卷 全国卷 省卷 全国卷 全国卷 全国卷 全国卷 省卷 全国卷 全国卷

《抽象代数基础》习题解答

《抽象代数基础》习题解答

⎝ i=1 ⎠
k =1
k =1
aw 所以,对于任意的正整数 n 和 m ,等式成立. hd 考 察 A 中 任 意 n ( n ≥ 1 ) 个 元 素 a1, a2, ⋯, an : 当 n ≥ 3 时 , 要 使 记 号 k a1 ⋅ a2 ⋅ ⋯ ⋅ an 变成有意义的记号,必需在其中添加一些括号规定运算次序.现在我 . 们来阐明:在不改变元素顺序的前提下,无论怎样在其中添加括号,运算结果总是 w n w 等于∏ ai . w i=1
,
gf
⎛1
=
⎜⎜ ⎝
3
2 4
3 1
4 2
5⎞ 5⎟⎟⎠
,
f −1
⎛1 = ⎜⎜⎝3
2 1
3 2
4 5
5⎞ 4 ⎟⎟⎠
.
7.设 a = (i1 i2 ⋯ ik ) ,求 a−1 . 解 我们有 a = (ik ik−1 ⋯ i1) . 8.设 f 是任意一个置换,证明: f ⋅ (i1 i2 ⋯ ik ) ⋅ f −1 = ( f (i1) f (i2 ) ⋯ f (ik )) .
网 事实上,当 n = 1 或 n = 2 时,无需加括号,我们的结论自然成立.当 n = 3 时,由
于“ ⋅ ”适合结合律,我们的结论成立.假设当 n ≤ r ( r ≥ 1 )时我们的结论成立.考察
案 n = r +1 的 情 形 : 不 妨 设 最 后 一 次 运 算 是 a ⋅b , 其 中 a 为 a1, a2, ⋯, an 中 前
所以 Z 关于该乘法构成一个群.
4.写出 S3 的乘法表.
解 S3 = {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}, S3 的乘法表如下:

《抽象代数》教学大纲

《抽象代数》教学大纲

《抽象代数》教学大纲一、课程基本信息课程编码:061112B中文名称:抽象代数英文名称:AbstractA1gebra课程类别:专业基础课程总学时:48(理论40,实践8)总学分:3适用专业:数学与应用数学先修课程:高等代数二、课程的性质、目标和任务抽象代数(或近世代数)是数学与应用数学专业学生的一门专业课,是高等代数的继续和提高,本课程主要研究各种代数系统一-群、环、域等的结构。

通过本课程的学习,使学生获得一定的抽象代数基础知识,受到代数方法的初步训练,提高辩证思维和逻辑推理能力,并为进一步学习专业知识打下基础。

三、课程教学基本要求1、授课:以课堂讲授为主,采取板书配以多媒体的方式。

2、习题课:进行典型问题分析,方法总结,难题讲解,与学生黑板演题相结合,训练学生的逻辑思维能力,解题能力和思维严密性。

3、作业:每次课后配以一定量的书面作业,按学院统一要求每周批改一次。

4、辅导:每周进行答疑辅导。

四、课程教学内容及要求第一章基本概念(6学时)【教学目标与要求】1、理解代数运算,同态与同构等概念。

2、掌握等价关系,集合的分类等概念。

【教学重点与难点】1、教学重点:代数运算、同态与同构。

2、教学难点:等价关系与集合分类的内在联系。

【教学内容】1.1集合1.2映射与变换1.3代数运算14运算律1.5同态与同构1.6等价关系与集合的分类第二章群(16学时)【教学目标与要求】1、掌握群和半群的定义,熟知群和半群的一些典型实例;理解元素阶的定义和性质。

2、理解并掌握循环群的概念和表示。

3、了解变换群,理解置换群。

4、理解陪集、指数的概念和Iagrange定理。

【教学重点与难点】1、教学重点:群的概念,子群、循环群、置换群、陪集的概念和基本性质。

2、教学难点:变换群。

【教学内容】2.1群的定义和初步性质2.2群中元素的阶2.3子群2.4循环群2.5变换群2.6置换群3.7陪集、指数和1agrange定理第三章正规子群和群的同态与同构(14学时)【教学目标与要求】1、掌握正规子群和商群的定义和性质。

2009抽象代数

2009抽象代数

2009抽象代数湖北省⾼等教育⾃学考试⼤纲课程名称:抽象代数课程代码:2009第⼀部分课程性质与⽬标⼀、课程性质与特点《抽象代数》是湖北省⾼等教育⾃学考试数学教育专业本科的⼀门重要的专业基础课。

作为代数学的⼀门重要的⼊门课程,具有⾼度的抽象性,它的研究对象是各种代数结构以及它们之间的内在联系,它的思想和⽅法已渗透到数学的⼏乎所有的分⽀。

《抽象代数》的许多内容对于中学数学教学也具有重要的指导意义,作为数学教育专业的学⽣,学习抽象代数的基础知识,掌握其基本理论和基本思想⽅法是⼗分必要的,对于学⽣加深理解数学的基本思想和⽅法, 提⾼抽象思维能⼒, 培养数学修养都具有重要意义。

不仅如此,它的理论也已应⽤到⾃然科学技术的许多⽅⾯,已成为物理、通信、系统⼯程、计算机科学等领域的研究⼈员的基本⼯具。

抽象代数是数学教育专业的必修课程,根据⾼等教育⾃学考试课程设置的相关规定,该课程代码为2009,总教学时数为80学时,6学分,所需预修课程是《⾼等代数》或《⾼等代数与解析⼏何》。

《抽象代数》的主要内容包括群、环、域的基本概念和基本性质。

⼆、课程⽬标与基本要求通过本课程的学习使学⽣了解抽象代数的基本概念,常⽤术语,掌握抽象代数的基本思想和推理⽅法,培养学⽣的抽象思维能⼒、逻辑推理能⼒、运算能⼒、综合应⽤知识解决有关实际问题的能⼒和⾃学能⼒,为后续课程的学习提供条件,为学⽣今后从事数学教学和数学研究⼯作奠定扎实的理论基础。

⾃学应考者在理解抽象的代数结构时,应从熟悉的常见例⼦出发来理解抽象的代数结构(如从整数集合、剩余类集合、⼀个⾮空集合上的所有可逆变换来引出群的概念;从整数集合、剩余类集合、域上的多项式集合、域上的⽅阵集合等来引出环、域的概念等)。

⼤纲中少量加*号的内容⾃学应考者可根据实际情况决定是否⾃学。

⾃学应考者可以阅读⼀些关于抽象代数应⽤的例⼦和有关抽象代数发展历史的资料,激发学习兴趣,培养和提⾼⾃学能⼒。

坚持做好课后练习,在整个⾃学过程中,都要按计划选作⼀定数量的课后练习,并要求在复习基本知识的基础上完成。

抽象代数的基本概念与运算

抽象代数的基本概念与运算
范畴论在几何学中的应用:范畴论是现代数学的一个重要分支,它在几何学中有着广泛的应用,例如同调代数、 代数拓扑等领域。
在代数学中的应用
群论:抽象代数中的群论在数学中有着广泛的应用,如对称性、组合数学等。 环论:环论在代数几何、线性代数等领域有着重要的应用,如多项式环、矩阵环等。 域论:域论在数论、代数几何等领域有着重要的应用,如代数数论、伽罗瓦理论等。 模论:模论在代数几何、同调代数等领域有着重要的应用,如向量模、自由模等。

定义:环是由加法封闭、结合律和单位元构成的代数结构 分类:根据定义不同,环可以分为整环、除环、交换环等 运算:环中元素可以进行加法、减法、乘法等运算,满足结合律和交换律 性质:环具有一些重要的性质,如零因子不可约、唯一分解性等
元素:域的元素可以是数字、 字母或其他符号

运算:域中定义了加法、减法、 乘法和除法四种基本运算
起源:19世纪初,数学家开始研究抽象代数 奠基人:Galois、Cayley等数学家为抽象代数的发展做出了重要贡献 重要成果:群论、环论、域论等分支的形成与发展 应用领域:在数学、物理、计算机科学等领域有广泛的应用
抽象代数的研究对象
代数系统:由集合 和运算组成的代数 结构,包括群、环、 域等。
代数性质:研究代 数系统的性质和关 系,如同态、同构 等。
汇报人:XX
应用领域限制:虽然抽象代数在某些领域中得到了应用,但它仍然没有得到广泛 应用,这限制了其发展前景。
理论难度:抽象代数的理论比较深奥,难以理解和掌握,这给其发展和应用带来 了一定的挑战。
交叉学科融合:抽象代数需要与其他数学分支和学科进行交叉融合,以拓展其应 用领域和研究范围,这需要更多的努力和探索。
未来发展方向与展望
定义:域是一种数学结构,由 集合和定义在该集合上的运算 组成

第六章代数系统(抽象代数)

第六章代数系统(抽象代数)

{b} 。 。{b}
{a,b} 。 。{a,b}
...
N2 + <0,0>。 <0,1>。 <0,2>。 <1,0>。 <1,1>。
。。N01 。2 。3
N2 × <0,0>。 <0,1>。 <0,2>。
。。N01 。2
...
<1,0>。 。3
<1,1>。
...
...
<1,2>。
<1,2>。
...
...
作业 第178页 (2)
6-2 二元运算的性质*
这一节是重要的一节。因为就是根据运算的性质将代 数系统分成半群、独异点、群、交换群、环、域、格、 布尔代数等,这些性质多数是大家所熟悉的。 一. 封闭性
设是X上的二元运算,如果对任何x,y∈X,有xy∈X, 则称在X上封闭。
例如在N上加法+和乘法×封闭,而减法不封闭。 从运算表可以很容易看出运算是否封闭。 二.交换性 设是X上的二元运算,如果对任何x,y∈X,有xy=yx, 则称是可交换的。 大家都知道:加法、乘法、交、并、对称差是可交换。
是相对的右零元。如果θL=θR=θ,对任何x∈X,有
θx=xθ=θ, 称θ是相对的零元。 θR
例如:对乘法×,零元是0,
∩ Φ {a} {b} {a,b}
对并运算∪,零元是全集E , θL Φ Φ Φ Φ Φ
对交运算∩,零元是Φ , 从运算表找左零元θL :θL所在
{a} Φ {a} Φ {a} {b} Φ Φ {b} {b} {a,b} Φ {a} {b} {a,b}
第六章 代数系统(抽象代数)

高考数学中的抽象代数解析技巧

高考数学中的抽象代数解析技巧

高考数学中的抽象代数解析技巧高考数学是所有中国学生都必须面对的一项考试。

而数学的抽象代数是高考数学中最难的一部分,也是考生们最头痛的一部分。

因为抽象代数是一门非常抽象的学科,需要学习很多数学符号和定义。

但是,如果你能正确掌握一些解析技巧,你就可以在高考数学中轻松面对抽象代数部分。

一、掌握基本定义抽象代数的核心是掌握基本定义。

在高考数学中,抽象代数主要涉及以下几个方面的定义:环、域、子群、正规子群、陪集等。

环是一个带有加法和乘法运算的集合,满足一些特定的性质。

域是一个带有加法、乘法、减法、除法运算的集合,也满足一些特定的性质。

子群是一个群的一个子集,可以继承群的运算法则。

正规子群是一个子群,如果它是原群的陪集分解中一个划分的代表元素。

陪集是一个群相对于一个给定的子群上的等价类。

在高考中,掌握这些定义对于解决抽象代数问题至关重要。

二、熟练运用基本工具掌握基本定义还不够,学生们还必须学会应用基本工具。

在高考中,最常见的抽象代数工具是证明和求解方程。

证明通常需要假设定理的前提条件,然后利用已知知识从中推导出结论。

而对于方程的求解,许多情况下需要使用陪集或者正规子群的知识。

例如,在高考中可以遇到这样一道题目:“已知$a, b$ 是整数,$n$ 是一个大于 $1$ 的正整数,证明:$(a+b)^n \equiv a^n+b^n\pmod{ab}$。

”这道题目需要利用二项式定理和一些模运算的知识,最终得出结论。

又例如,在高考中可以遇到这样一道题目:“设$G$ 是一个群,$H$ 是 $G$ 的非空子集,若 $x, y \in G$ 有 $xy^{-1} \in H$,证明$xH= yH$ 或 $xH \cap yH = \emptyset$。

”这道题目需要运用子群、陪集和正规子群的知识,最终得出结论。

三、拓展应用知识掌握基本定义和基本工具只是高考时成功的基础。

要在数学竞赛中超群,需要掌握更多的拓展应用知识。

例如,在高考数学中可以涉及拉格朗日定理和钦奎定理。

高二数学抽象代数探索

高二数学抽象代数探索

高二数学抽象代数探索在高中数学的学习过程中,抽象代数作为一门重要的分支学科,为我们提供了更深入的数学思维方式和解决问题的工具。

通过学习抽象代数,我们可以更好地理解和应用数学的本质,培养我们的逻辑思维和问题解决能力。

本文将探索一些高二数学抽象代数的概念和实践应用。

一、群论的初步探索1. 定义与基本性质在抽象代数中,群是指一个非空集合,以及在该集合上定义的一个二元运算。

这个二元运算必须满足封闭性、结合律、单位元存在性和逆元存在性。

通过群的定义和基本性质,我们可以研究和解决一些抽象的数学问题。

2. 群的例子常见的群有整数集合、有理数集合和实数集合。

此外,对于一个正整数n,我们可以定义模n加法群。

群的例子还有对称群和置换群等等。

通过研究这些例子,我们可以更好地理解群的概念和性质。

二、环论的初步研究1. 定义与基本性质环是指一个非空集合,以及在该集合上定义的两个二元运算:加法和乘法。

这两个二元运算必须满足封闭性、结合律、交换律、单位元存在性、零元存在性和分配律。

通过环的定义和基本性质,我们可以研究和解决一些与代数系统相关的问题。

2. 环的例子常见的环有整数环、有理数环和实数环。

除此之外,多项式环也是一个常见的例子。

通过研究这些例子,我们可以更好地理解环的概念和性质。

三、域论的初步探索1. 定义与基本性质域是指一个非空集合,以及在该集合上定义的两个二元运算:加法和乘法。

这两个二元运算必须满足封闭性、结合律、交换律、单位元存在性、零元存在性、逆元存在性和分配律。

域是一种更加抽象和一般化的数学结构,可以用来研究和解决更复杂的数学问题。

2. 域的例子常见的域有有理数域和实数域。

此外,我们还可以构造无理数域和有限域等等。

通过研究这些例子,我们可以更好地理解域的概念和性质。

通过以上的学习和探索,我们不仅可以加深对抽象代数的理解,还可以培养我们的抽象思维和问题解决能力。

抽象代数作为一门重要的数学学科,不仅对数学专业有着深远影响,也在其他领域具有广泛的应用。

数学抽象知识点总结

数学抽象知识点总结

数学抽象知识点总结数学抽象的历史可以追溯到古希腊时期,当时数学家们开始研究数学的一般性质和规律,而不仅仅局限在具体的数值上。

随着时间的推移,数学抽象逐渐发展成为一门独立的学科,并产生了许多重要的理论和应用。

数学抽象的主要内容包括抽象代数、抽象几何、数学分析等,这些内容在数学理论和工程应用中都发挥着重要的作用。

本文将对数学抽象的相关知识点进行总结,以帮助读者对这一领域有更深入的了解。

一、抽象代数抽象代数是数学抽象的一大分支,它研究的是各种代数结构及其共性和变体。

在抽象代数中,代数结构是研究的核心,它包括了群、环、域、向量空间等概念。

1.1 群群是抽象代数中的一个重要概念,它描述了一种代数结构,包括了一个集合与一个二元运算。

具体的定义是:若一个集合G与一个二元运算*满足以下条件,则称(G,*)为一个群。

(1)封闭性:对于任意的a、b∈G,都有a*b∈G。

(2)结合律:对于任意的a、b、c∈G,有(a*b)*c=a*(b*c)。

(3)单位元:存在一个元素e∈G,使得对于任意的a∈G,有a*e=e*a=a。

(4)逆元:对于任意的a∈G,存在一个元素b∈G,使得a*b=b*a=e。

群的定义为我们提供了一种一般性的代数结构,它可以描述很多不同的数学对象,比如整数集合、矩阵集合等。

在实际应用中,群的相关理论被广泛应用于密码学、物理学等学科。

1.2 环环是另一个重要的代数结构,在群的基础上增加了一个乘法运算。

具体的定义是:若一个集合R与两个二元运算+和*满足以下条件,则称(R,+,*)为一个环。

(1)加法运算满足交换律。

(2)R关于+满足结合性、单位元和逆元。

(3)乘法运算满足结合性。

(4)乘法对加法有分配律。

环的概念运用非常广泛,例如在数论、代数几何等分支学科中都有重要的应用。

1.3 域域是环的扩展,它是一种具有更多性质的代数结构。

具体的定义是:若一个集合F与两个二元运算+和*满足以下条件,则称(F,+,*)为一个域。

《抽象代数基础》习题解答

《抽象代数基础》习题解答

数学分析、高等代数、解析几何、中学数学建模、离散数学、高等几何、概率统计、竞赛数学、运筹学、数学教学实践、初等代数研究、初等几何研究、教法研究、计算机辅助教学、教育学、教育心理学、大学英语等。

《抽象代数基础》习题答解于延栋编盐城师范学院数学科学学院二零零九年五月第一章 群 论§1 代数运算1.设},,,{c b a e A =,A 上的乘法”“⋅的乘法表如下: · ea b c e ea b c a ae c b b b ce a cc b a e证明: ”“⋅适合结合律. 证明 设z y x ,,为A 中任意三个元素.为了证明”“⋅适合结合律,只需证明)()(z y x z y x ⋅⋅=⋅⋅.下面分两种情形来阐明上式成立.I.z y x ,,中至少有一个等于e .当e x =时,)()(z y x z y z y x ⋅⋅=⋅=⋅⋅;当e y =时,)()(z y x z x z y x ⋅⋅=⋅=⋅⋅;当e z =时,)()(z y x y x z y x ⋅⋅=⋅=⋅⋅.II .z y x ,,都不等于e .(I)z y x ==.这时,)()(z y x e x x z z e z y x ⋅⋅=⋅===⋅=⋅⋅.(II)z y x ,,两两不等.这时,)()(z y x x x e z z z y x ⋅⋅=⋅==⋅=⋅⋅.(III)z y x ,,中有且仅有两个相等.当y x =时,x 和z 是},,{c b a 中的两个不同元素,令u 表示},,{c b a 中其余的那个元素.于是,z z e z y x =⋅=⋅⋅)(,z u x z y x =⋅=⋅⋅)(,从而,)()(z y x z y x ⋅⋅=⋅⋅.同理可知,当z y =或x z =时,都有)()(z y x z y x ⋅⋅=⋅⋅.2.设”“⋅是集合A 上一个适合结合律的代数运算.对于A 中元素,归纳定义∏=ni ia 1为: 111a a i i =∏=,1111+=+=⋅⎪⎪⎭⎫ ⎝⎛=∏∏r r i i r i i a a a .证明:∏∏∏+==+==⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛m n k k m j j n n i i a a a 111.进而证明:在不改变元素顺序的前提下,A 中元素的乘积与所加括号无关.证明 当1=m 时,根据定义,对于任意的正整数n ,等式成立.假设当r m =(1≥r )时,对于任意的正整数n ,等式成立.当1+=r m 时,由于”“⋅适合结合律,我们有⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛∏∏=+=m j j n n i i a a 11⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛=∏∏+=+=111r j j n n i i a a ⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛=++=+=∏∏111r n r j j n n i i a a a 111++=+=⋅⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛=∏∏r n r j j n n i i a a a ∏∏∏+=++=+++===⋅⎪⎪⎭⎫ ⎝⎛=m n k k r n k k r n r n i i a a a a 11111.所以,对于任意的正整数n 和m ,等式成立.考察A 中任意n (1≥n )个元素n a a a ,,,21 :当3≥n 时,要使记号n a a a ⋅⋅⋅ 21变成有意义的记号,必需在其中添加一些括号规定运算次序.现在我们来阐明:在不改变元素顺序的前提下,无论怎样在其中添加括号,运算结果总是等于∏=ni i a 1.事实上,当1=n 或2=n 时,无需加括号,我们的结论自然成立.当3=n 时,由于”“⋅适合结合律,我们的结论成立.假设当r n ≤(1≥r )时我们的结论成立.考察1+=r n 的情形:不妨设最后一次运算是b a ⋅,其中a 为n a a a ,,,21 中前s (n s <≤1)个元素的运算结果,b 为n a a a ,,,21 中后s n -个元素的运算结果.于是,根据归纳假设,∏==s j j a a 1, ∏-=+=sn k k s a b 1.所以最终的运算结果为∏∏∏=-=+==⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛=⋅n i i s n k k s s j j a a a b a 111. 3.设Q 是有理数集.对于任意的Q ,∈b a ,令2b a b a +=⋅,证明: ”“⋅是Q 上的一个代数运算,它既不适合结合律也不适合交换律.证明 众所周知,对于任意的Q ,∈b a ,Q 2∈+=⋅b a b a .所以”“⋅是Q 上的一个代数运算.令0=a ,1=b ,2=c .由于521212)10()(2=+=⋅=⋅⋅=⋅⋅c b a ,255050)21(0)(2=+=⋅=⋅⋅=⋅⋅c b a ,从而,)()(c b a c b a ⋅⋅≠⋅⋅,所以”“⋅不适合结合律.由于521212=+=⋅=⋅c b ,312122=+=⋅=⋅b c ,.从而,b c c b ⋅≠⋅.所以”“⋅不适合交换律.§2 群的概念1.证明:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎭⎫ ⎝⎛=Z d c b a d c b a G ,,, 关于矩阵的加法构成一个群. 证明 首先,众所周知,∅≠G ,G B A ∈+,G B A ∈∀,.由于矩阵的加法适合结合律,G 上的加法适合结合律.其次,令⎪⎪⎭⎫ ⎝⎛=0000O ,则G O ∈,并且A O A A O =+=+,G A ∈∀.最后,对于任意的G d c b a A ∈⎪⎪⎭⎫ ⎝⎛=,令⎪⎪⎭⎫ ⎝⎛----=-d c b a A ,则G A ∈-且O A A A A -+-=-+)()(.所以G 关于矩阵的加法构成一个群.2.令⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=1001,1001,1001,1001G ,证明:G 关于矩阵的乘法构成一个群. 证明 将⎪⎪⎭⎫ ⎝⎛1001记作E ,并将G 中其余三个矩阵分别记作C B A ,,.于是,G 上的乘法表如下:·E A B C EE A B C AA E CB BB C E A C C BA E由于矩阵的乘法适合结合律,G 上的乘法适合结合律.从乘法表可知,X XE EX ==,E XX =,G Y X ∈∀,.所以G 关于矩阵的乘法构成一个群.3.在整数集Z 中,令2-+=⋅b a b a ,Z ∈∀b a ,.证明:Z 关于这样的乘法构成一个群.证明 对于任意的Z ∈c b a ,,,我们有42)2()2()(-++=-+-+=⋅-+=⋅⋅c b a c b a c b a c b a ,42)2()2()(-++=--++=-+⋅=⋅⋅c b a c b a c b a c b a ,从而)()(c b a c b a ⋅⋅=⋅⋅.这就是说,该乘法适合结合律.其次,Z ∈2,并且对于任意的Z ∈a ,我们有222222⋅=-+==-+=⋅a a a a a ,a a a a a a a a ⋅-=-+-=--+=-⋅)4(2)4(2)4()4(.所以Z 关于该乘法构成一个群.4.写出3S 的乘法表.解 )}231(),321(),32(),31(),21(),1{(3=S ,3S 的乘法表如下: ·)1( )21( )31( )32( )321( )231( )1( )1( )21( )31( )32( )321( )231()21()21( )1( )231( )321( )32( )31( )31( )31( )321( )1( )231( )21( )32()32( )32( )231( )321()1( )31( )21( )321( )321( )31( )32( )21( )231()1( )231( )231( )32( )21( )31( )1( )321(5.设),(⋅G 是一个群,证明: ”“⋅适合消去律.证明 设G c b a ∈,,.若c a b a ⋅=⋅,则c c e c a a c a a b a a b a a b e b =⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅=----)()()()(1111.同理,若a c a b ⋅=⋅,则c b =.这就表明,”“⋅适合消去律.6.在5S 中,令⎪⎪⎭⎫ ⎝⎛=4513254321f ,⎪⎪⎭⎫ ⎝⎛=2543154321g . 求gf fg ,和1-f .解 我们有⎪⎪⎭⎫ ⎝⎛=3451254321fg ,⎪⎪⎭⎫ ⎝⎛=5214354321gf ,⎪⎪⎭⎫ ⎝⎛=-45213543211f . 7.设)(21k i i i a =,求1-a .解 我们有)(11i i i a k k -=.8.设f 是任意一个置换,证明:))()()(()(21121k k i f i f i f f i i i f =⋅⋅-. 证明 事实上,易见,)(,),(),(21k i f i f i f 是},,2,1{n 中的k 个不同的数字.由直接计算可知,11),())()()((1121-≤≤=⋅⋅+-k j i f i f f i i i f j j k ;)())()()((1121i f i f f i i i f k k =⋅⋅- .其次,对于任意的)}(,),(),({\},,2,1{21k i f i f i f n i ∈,i 在121)(-⋅⋅f i i i f k 之下的像是i 本身.所以))()()(()(21121k k i f i f i f f i i i f =⋅⋅-.9.设S 是一个非空集合,”“⋅是S 上的一个代数运算,若”“⋅适合结合律,则称),(⋅S 是一个半群(或者称S 关于”“⋅构成一个半群).证明:整数集Z 关于乘法构成一个半群,但不构成一个群.证明 众所周知,Z 是非空集合,对于任意的Z ,∈b a ,总有Z ∈⋅b a ,并且整数乘法适合结合律,所以Z 关于乘法构成一个半群.其次,令1=e .于是,对于任意的Z ∈a ,总有a e a a e =⋅=⋅.但是,Z 0∈,并且不存在Z ∈b ,使得e b =⋅0.所以Z 关于乘法不构成一个群.10.设A 是一个非空集合,S 是由A 的所有子集构成的集合.则集合的并”“ 是S 上的一个代数运算.证明:),( S 是一个半群.证明 众所周知,对于任意的S Z Y X ∈,,,总有)()(Z Y X Z Y X =.这就是说,S 上的代数运算”“ 适合结合律,所以),( S 是一个半群.注 请同学们考虑如下问题:设A 是一个非空集合,S 是由A 的所有子集构成的集合.定义S 上的代数运算”“∆ (称为对称差)如下:)\()\(X Y Y X Y X =∆,S Y X ∈∀,.求证:),(∆S 是一个交换群.11.令⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎭⎫ ⎝⎛=Z ,,,d c b a d c b a S .证明S 关于矩阵的乘法构成一个半群. 证明 众所周知,对于任意的S C B A ∈,,,总有S AB ∈,)()(BC A C AB =.这就是说,矩阵的乘法是S 上的一个代数运算,并且适合结合律,所以S 关于矩阵的乘法构成一个半群.12.设),(⋅S 是一个半群,S e ∈称为S 的一个左(右)单位元,如果对于任意的S a ∈都有a a e =⋅(a e a =⋅).对于S a ∈,如果存在S b ∈使e a b =⋅(e b a =⋅),则称a 左(右)可逆的,b 是a 的一个左(右)逆元.假设S 有左(右)单位元e 且S 中每个元素都有关于e 的左(右)逆元.证明:),(⋅S 是一个群.证明 设a 是S 中任意一个元素.任取S b ∈,使得e b a =⋅.再任取S c ∈,使得e c b =⋅.于是,我们有c e c b a c b a e a a ⋅=⋅⋅=⋅⋅=⋅=)()(且e c b c e b c e b a b =⋅=⋅⋅=⋅⋅=⋅)()(.因此a b e b a ⋅==⋅.所以e a a b a a b a a e ⋅=⋅⋅=⋅⋅=⋅)()(.由以上两式可知,e 是单位元,S 中每个元素a 都有逆元b .所以),(⋅S 是一个群. 对于S 有左单位元e 且S 中每个元素都有关于e 的左逆元的情形,请同学们自己证明.13.设G 是一个群,证明:111)(---=a b ab ,G b a ∈∀,.证明 对于任意的G b a ∈,,我们有e aa aea a bb a a b ab ====------111111)())((,e b b eb b b a a b ab a b ====------111111)())((.所以111)(---=a b ab ,G b a ∈∀,.16.设G 是一个群,证明:G 是交换群的充要条件是222)(b a ab =,G b a ∈∀,.证明 必要性是显然的.现在假设G 满足该条件.于是,对于任意的G b a ∈,,我们有222)(b a ab =,即aabb abab =.运用消去律(第5题)立即可得ba ab =.所以G 是交换群.17.设G 是一个群.假设对于任意的G a ∈都有e a =2,证明:G 是交换群. 证明 我们有222)(b a ee e ab ===,G b a ∈∀,.由上题知,G 是交换群.18.设G 是非空集合,”“⋅是G 上的一个代数运算且适合结合律.(1)证明:),(⋅G 是一个群当且仅当对于任意的G b a ∈,,方程b x a =⋅和b a y =⋅在G 中都有解.(2)假设G 是有限集,证明:),(⋅G 是一个群当且仅当”“⋅适合消去律.证明 (1)当),(⋅G 是一个群时,显然,对于任意的G b a ∈,,b a x ⋅=-1是方程b x a =⋅的解,1-⋅=a b y 是方程b a y =⋅的解.现在假设对于任意的G b a ∈,,方程b x a =⋅,b a y =⋅在G 中都有解.任取G a ∈,考察方程a x a =⋅.根据假设,方程a x a =⋅有解G e x ∈=.设b 是G 中任意一个元素,考察方程b a y =⋅.根据假设,方程b a y =⋅有解G c y ∈=.于是,我们有b ac e a c e a c e b =⋅=⋅⋅=⋅⋅=⋅)()(.由于G b ∈的任意性,上式表明e 是半群),(⋅G 的一个右单位元.再考察方程e x a =⋅.根据假设,方程e x a =⋅有解G d ∈.由于G a ∈的任意性,这表明G 中每个元素关于右单位元e 都有右逆元.所以),(⋅G 是一个群.(2)当),(⋅G 是一个群时,根据第5题,”“⋅适合消去律.现在假设},,,{21n a a a G =,并且”“⋅适合消去律.任取},,2,1{,n k i ∈,考察方程k i a x a =⋅.由于”“⋅适合左消去律,因此k a 必出现于乘法表的第i 行中.这就意味着存在},,2,1{n j ∈,使得k j i a a a =⋅,从而方程k i a x a =⋅在G 中有解.同理,由于”“⋅适合右消去律,方程k i a a y =⋅在G 中有解.这样一来,根据(1),),(⋅G 是一个群.19.证明命题2.8中的表示法在不计循环置换的顺序的意义下是唯一的.注注 宜将这道题表述成“证明:在不计循环置换的顺序的意义下,在用命题2.8中的证明中所说的方法将一个置换n S f ∈表示成两两不相交的循环置换的乘积时,表达式是唯一的”.证明 显然,当f 是单位置换时,表达式就是f f =.不妨设f 不是单位置换,u f f f f 21=和v g g g f 21=都是在用命题2.8中的证明中所说的方法将置换n S f ∈表示成两两不相交的循环置换的乘积的表达式.于是,u f f f ,,,21 两两不相交,v g g g ,,,21 两两不相交,而且它们的阶都大于或等于2.考察任意的l f (u l ≤≤1):设)(21s l i i i f =.由u f f f f 21=和v g g g f 21=可知,存在'l (v l ≤≤'1),使得)(21't l j j j g =,},,,{211t j j j i ∈.不妨设11j i =.由u f f f f 21=和v g g g f 21=可知,t s =并且k k j i =,},,2,1{s k ∈∀,从而,'l l g f =.由于u f f f ,,,21 两两不相交,v g g g ,,,21 两两不相交,并且不计循环置换的顺序,不妨设l l g f =,},,2,1{u l ∈∀.假设v u <,则u g g g f 21=,由此可见,当v l u ≤<时,l g 必与u g g g ,,,21 中某一个相交.这与我们的假设矛盾.所以v u =.这就表明,v g g g f 21=和v g g g f 21=是同一个表达式.§3 子 群1.设)(P n GL G =是数域P 上的n 级一般线性群,H 是G 的由全体n 阶可逆的对角矩阵组成的子集,证明:H 是G 的子群.证明 众所周知,H 非空,并且有H A AB ∈-1,,H B A ∈∀,,其中AB 表示矩阵A 与矩阵B 的乘积,1-A 表示矩阵A 的逆矩阵.所以H 是G 的子群.2.设G 是一个群,H 是G 的非空子集,证明:H 是G 的子群的充分必要条件是H ab ∈-1,H b a ∈∀,.证明 由定理3.3可知,当H 是G 的子群时,H 满足条件. 假设H 满足条件.对于任意的H b a ∈,,我们有H aa e ∈=-1.因为H 满足条件,由H b a e ∈,,可知,H ea a ∈=--11,H eb b ∈=--11.因为H 满足条件,由H b a ∈-1,可知11)(--=b a ab .总而言之 对于任意的H b a ∈,,我们有H a ab ∈-1,.根据定理3.3,H 是G 的子群.3.设H 是群G 的子群,G a ∈,证明:}|{11H h aha aHa ∈=--也是G 的子群(称为H 的一个共轭子群).证明 显然,1-aHa 是G 的非空子集.设121,-∈aHa b b .于是,存在H h h ∈21,,使得111-=a ah b ,121-=a ah b .因此11211121))((----=a ah a ah b b 1112111211)(------∈==aHa a h h a a ah a ah . 所以1-aHa 是G 的子群.4.设G 是交换群,0>n 为整数,令}|{e a G a H n =∈=,证明:H 是G 的子群. 证明 显然H e ∈.若H b a ∈,,则e ee b a ab n n n ===--11)()(,从而,H ab ∈-1.由此可见,H 是G 的子群.5.设G 是交换群,证明:G 的所有阶为有限的元素构成的集合是G 的子群. 证明 令H 表示G 的所有阶为有限的元素构成的集合.显然H e ∈.设H b a ∈,,其中m a =||,n b =||.于是,e ee b a ab m n n m m n ===--)()()(1,从而,H ab ∈-1.由此可见,H 是G 的子群.6.设G 是群,G b a ∈,,证明:a 与1-bab 具有相同的阶.证明 显然,对于任意的正整数n ,11)(--=b ba bab n n ,从而,e bab e b ba e a n n n =⇔=⇔=--)(11.由此可见,a 与1-bab 具有相同的阶.7.设)(21k i i i a =是循环置换,求a 的阶.解 当1=k 时,显然,)1(=a ,k a =||.当1>k 时,我们有11(+=j i i i a )1()1≠-j i ,}1,,2,1{-∈∀k j ,)1(=k a ,从而,k a =||.8.设群G 的除单位元外的每个元素的阶都为2,证明:G 是交换群. 证明 参看§2习题第17题.17.设G 是一个群.假设对于任意的G a ∈都有e a =2,证明:G 是交换群. 证明 我们有222)(b a ee e ab ===,G b a ∈∀,.由上题知,G 是交换群.9.设G 是群,G b a ∈,,证明:ab 与ba 具有相同的阶.证明 注意到111))((---=a ab a ba ,根据第6题的结论,ab 与ba 具有相同的阶.10.设G 是群,G b a ∈,,ba ab =.假设a 的阶与b 的阶互素,证明:||||||b a ab =.证明 令m a =||,n b =||,k ab =||.由于e e e b a ab m n m n n m m n ===)()()(,根据命题3.12可以断言mn k |.其次,我们有kn kn k n kn kn kn kn a e a b a b a ab e =====)()(,从而,根据命题 3.12,kn m |.因为m 与n 互素,由kn m |可知k m |.同理可知,k n |.由于m 与n 互素,因此k mn |.所以mn k =,即||||||b a ab =.11.设Z 是整数集关于加法构成的群,H 是Z 的子群,证明:存在H n ∈使〉〈=n H .证明 众所周知,H ∈0.当}0{=H 时,显然〉〈=0H .现在假设}0{≠H .于是,存在H m ∈使0≠m .这时H m ∈-,并且,在m 和m -中,一个是正数,另一个是负数.令n 表示H 中的最小正数.显然,我们有H qn ∈,Z ∈∀q .现在考察任意的H m ∈:众所周知,存在整数q 和r ,使得r qn m +=,n r <≤0.于是,H qn m r ∈-=.由于令n 是H 中的最小正数,必有0=r ,从而,qn m =.上述表明}|{Z ∈=q qn H .所以〉〈=n H . 12.设G 是一个群,1H ,2H 都是G 的子群.假设1H 不包含于2H 且2H 不包含于1H ,证明:21H H 不是G 的子群.证明 由于1H 不包含于2H 且2H 不包含于1H ,是G 的子群,因此存在21\H H a ∈且存在12\H H b ∈.于是,21,H H b a ∈.假设1H ab ∈,则11)(H ab a b ∈=-,矛盾.因此1H ab ∉.同理,2H ab ∉.这样一来,21H H ab ∉.所以21H H 不是G 的子群.13.设G 是一个群, ⊆⊆⊆⊆n G G G 21是G 的一个子群链,证明:nn G ∞=1 是G 的子群.证明 设n n G b a ∞=∈1, .于是,存在正整数i 和j 使得i G a ∈,j G b ∈.令},max{j i k =.k G b a ∈,.由于k G 是G 的子群,因此k G ab ∈-1,从而,n n G ab ∞=-∈11 .所以n n G ∞=1 是G 的子群.14.证明:)}1()31(),12{(n (2≥n )是n S 的一个生成集.证明 考察任意的对换n S j i ∈)(:若1=i 或1=j ,则)}1()31(),12{()(n j i ∈.若1≠i 且1≠j ,则)1()1()1()(i j i j i =.这就是说,对于每一个对换n S j i ∈)(,要么它本身属于)}1()31(),12{(n ,要么它可以表示成)}1()31(),12{(n 中的一些对换的乘积.这样一来,根据推论2.10可以断言,每一个n S f ∈可以表示成)}1()31(),12{(n 中的一些对换的乘积.由此可见,〉〈⊆)1()31(),12(n S n ,从而,〉〈=)1()31(),12(n S n .§4 循环群1.证明:循环群是交换群.证明 设〉〈=a G 是一个循环群.于是,}|{Z ∈=n a G n (参看课本第12页倒数第4行).众所周知,m n n m n m a a a a a ==+,Z ∈∀n m ,.所以G 是交换群.2.设G 是一个群,G a ∈.假设a 的阶为n ,证明:对任意整数r ,有),(||n r n a r =. 证明 令〉〈=a H .由于n a =||,根据命题 3.10,H 是有限循环群.根据命题4.2,),(||n r n a r =.3.设〉〈=a G 是一个n 阶循环群,r 是任意整数,证明:r a 与),(n r a 具有相同的阶且〉〈=〉〈),(n r r a a .证明 根据命题4.2,我们有||),()),,((||),(r n r a n r n n n r n a ===. 根据命题 3.10,〉〈r a 和〉〈),(n r a 都是G 的),(n r n 阶子群.显然,),(n r r a a 〈∈,从而, 〉〈⊆〉〈),(n r r a a .由此可见,〉〈=〉〈),(n r r a a .4.设〉〈=a G 是一个n 阶循环群,证明:G a r =〉〈当且仅当1),(=n r .证明 根据命题4.2,我们有G a r =〉〈n a r =⇔||n n r n =⇔),(1),(=⇔n r . 5.设〉〈=a G 是循环群,〉〈=s a H 和〉〈=t a K 是G 的两个子群,证明:〉〈=],[t s a K H .证明 显然K H a t s ∈],[,从而,K H a t s ⊆〉〈],[. 为了证明〉〈=],[t s a K H ,现在只需证明〉〈⊆],[t s a K H .考察任意的K H x ∈:当x 为G 的单位元e 时,显然〉〈∈],[t s a x .不妨假定e x ≠.于是,由H x ∈知,存在Z ∈i ,使得is a x =;由K x ∈知,存在Z ∈j ,使得jt a x =.因为e x ≠,所以0≠st .众所周知,1)),(,),((=t s t t s s , 从而,存在Z ,∈v u ,使得1),(),(=+t s vt t s us . 于是,我们有),(),(),(),(),(),()()(t s vtis t s usjt t s vtt s ust s vt t s us a a x x x x ===+〉〈∈==+],[],)[(],[],[t s t s iv ju n t s niv t s nju a a a a ,其中,当0≥st 时1=n ,当0<st 时1-=n .综上所述,对于任意的K H x ∈,总有〉〈∈],[t s a x .所以〉〈⊆],[t s a K H .6.设〉〈=a G 是n 阶循环群,〉〈=s a H 和〉〈=t a K 是G 的两个子群,证明:K H =的充要条件是),(),(n t n s =.证明 假设K H =.根据命题4.2,我们有),(||||),(n t n a a n s n t s ===, 从而,),(),(n t n s =.假设),(),(n t n s =.于是,),(),(n t n s a a =,从而,〉〈=〉〈),(),(n t n s a a .这样根据第3题的结论可以断言,〉〈=〉〈t s a a ,即K H =.7.设G 是无限循环群,证明:G 有且仅有两个生成元.证明 由于G 是无限循环群,不妨设a 是G 的一个生成元.于是,1-a 也是G 的一个生成元,并且a a ≠-1.这就是说,G 有两个不同的生成元.其次,假设b 是G 的任意一个生成元.由于〉〈=a G ,因此存在Z ∈n ,使得n a b =.由于〉〈=b G 且G a ∈,因此存在Z ∈k ,使得nk k a b a ==.由此可见,1±=n ,即a b =或1-=a b .所以G 有且仅有两个生成元.8.设〉〈=a G 是无限循环群,〉〈=s a H 和〉〈=t a K 是G 的两个子群,证明:K H =的充要条件是t s ±=.证明 当t s ±=时,显然K H =.假设K H =.显然,当}{e H =时,0==t s ,从而,t s ±=.不妨假定}{e H ≠.于是0≠s .由K a s ∈可知,存在Z ∈i ,使得it s =;由H a t ∈可知,存在Z ∈j ,使得js t =.因此ijs s =.由于0≠s ,由ijs s =可知1=ij ,从而,1±=i .所以t s ±=.§5 正规子群与商群1.证明:循环群的商群也是循环群.证明 设〉〈=a G 是循环群,H 是G 的子群.于是,我们有〉〈=∈=∈=aH n aH n H a H G n n }Z |){(}Z |{/.这就表明,H G /是循环群.2.设G 是群,i N ,I i ∈,是G 的一族正规子群,证明:i I i N ∈ 也是G 的正规子群.证明 众所周知,i I i N ∈ 是G 的正规子群.显然,我们有a N a N aN N a i I i i I i i I i i I i )()()()(∈∈∈∈=== ,G a ∈∀.所以i I i N ∈ 也是G 的正规子群.3.设1N ,2N 是群G 的正规子群且}{21e N N = ,证明:对于任意的1N a ∈,2N b ∈,都有ba ab =.证明 对于任意的1N a ∈,2N b ∈,由于1N 是群G 的正规子群,根据命题5.11我们有111N b ba ∈--,从而,111N b aba ∈--;由于2N 是群G 的正规子群,根据命题5.11我们有21N aba ∈-,从而,211N b aba ∈-=.因此2111N N b aba ∈--,从而,e b aba =--11.由此可见ba ab =.4.设H 是群G 的子群且2]:[=H G ,证明:H 是G 的正规子群.证明 我们已经知道,H Ha H a H aH =⇔∈⇔=,G a ∈∀.任意给定G a ∈.当H a ∈时,Ha H aH ==.当H a ∉时,Ha H aH H =∅=,并且,由2]:[=H G 可知,Ha H G aH H ==.由此可见Ha aH =.所以H 是G 的正规子群.5.设H 是群G 的有限子群,n H =||.假设G 只有一个阶为n 的子群,证明:H 是G 的正规子群.证明 任取G a ∈,考察1-aHa :由§3习题第3题知,1-aHa 是G 的子群.定义H 到1-aHa 的映射ϕ如下:1)(-=axa x ϕ,H x ∈∀.显然ϕ是双射.因此n aHa =-||1.由于G 只有一个阶为n 的子群,因此H aHa =-1.这样一来,由于a 的任意性,根据命题5.11可以断言,H 是G 的正规子群.6.设G 是群,H 和K 是G 的子群,(1)证明:HK 是G 的子群KH HK =⇔.(2)假设H 是G 的正规子群,证明:HK 是G 的子群.(3)假设H 和K 都是G 的正规子群,证明:HK 是G 的正规子群.证明 (1)假设HK 是G 的子群.于是,对于任意的G a ∈,我们有HK a ∈HK a ∈⇔-1⇔存在H h ∈和K k ∈,使得hk a =-1⇔存在H h ∈和K k ∈,11--=h k aKH a ∈⇔.所以KH HK =.假设KH HK =.为了证明HK 是G 的子群,任意给定HK b a ∈,.于是,存在H h h ∈21,和K k k ∈21,,使得11k h a =,22k h b =.因此121211122111))(())((----==h k k h k h k h ab .由于KH HK k k h =∈-)(1211,因此存在H h ∈3和K k ∈3,使得331211)(h k k k h =-,从而, HK KH h h k h h k h k k h ab =∈===-=---)()())((123312331212111.这样一来,由于HK b a ∈,的任意性,我们断言:HK 是G 的子群.(2)由于H 是G 的正规子群,我们有 KH kH Hk HK K k K k ===∈∈ .这样,根据(1),HK 是G 的子群.(3)根据(2),HK 是G 的子群.此外,还有a HK Ka H aK H K Ha K aH HK a )()()()()()(=====,G a ∈∀.所以HK 是G 的正规子群.7.设G 是群,H 和K 是G 的子群且H K ⊆,证明:]:][:[]:[K H H G K G =.注 证明这道题时还要用到如下约定:∞=∞⋅∞=⋅∞=∞⋅n n ,N ∈∀n .此外,这道题与§7中的Lagrange 定理类似,而且其证明难度不亚于Lagrange 定理的证明难度,因此安排在这里不太合适.证明 首先,由于K 是H 的子群,因此G a aH aK ∈∀⊆,.由此可见,当∞=]:[H G 时,∞=]:[K G ,从而,]:][:[]:[K H H G K G =.其次,由于}|{}|{G a aK H h hK ∈⊆∈,因此当∞=]:[K H 时,∞=]:[K G ,从而]:][:[]:[K H H G K G =.现在假设∞<]:[H G 且∞<]:[K H .令m H G =]:[,n K H =]:[.由m H G =]:[知,存在G a a a m ∈,,,21 ,使得H a G r mr 1== ,其中诸H a r 两两不相交.由n K H =]:[知,存在H b b b n ∈,,,21 ,使得K b H s ns 1== ,其中诸K b s 两两不相交.这样一来,我们有K b a K b a G s r n s m r s n s r mr )()(1111====== .)(*现在我们来阐明上式中的诸K b a s r )(两两不相交.为此,设},,2,1{',m r r ∈,},,2,1{',n s s ∈,我们来比较K b a s r )(与K b a s r )(''.当'r r ≠时,由于H K b s ⊆,H K b s ⊆',因此∅=⊆H a H a K b a K b a r r s r s r ''')()( ,从而,∅=K b a K b a s r s r )()('' ,即K b a s r )(与K b a s r )(''不相交.当'r r =且's s ≠时,∅=K b K b s s ' ,从而,K b a K b a K b a K b a s r s r s r s r )()()()(''''' =∅=∅==''')(r s s r a K b K b a ,即K b a s r )('与K b a s r )(''不相交.所以)(*式中的诸K b a s r )(两两不相交.这样一来,根据)(*式可以断言,mn K G =]:[,即]:][:[]:[K H H G K G =.8.设H 是群G 的子群,假设H 的任意两个左陪集的乘积仍是一个左陪集,证明:H 是G 的正规子群.证明 任取G a ∈.由于H 是H 的左陪集,因此存在H 的左陪集bH ,使得bH aH H H Ha ==)()(,由此可见,bH Ha ⊆,bH a ∈,从而bH aH =.所以aH Ha ⊆.由于a 的任意性,根据上式我们又可以断言,H a Ha 11--⊆.将上式两边左乘a ,右乘a ,得Ha aH ⊆.所以Ha aH =.由于a 的任意性,这就意味着H 是G 的正规子群.§6 群的同构与同态1.设f 是群1G 到群2G 的同构,g 是群2G 到群3G 的同构,证明:1-f 是群2G 到群1G 的同构;gf 是群1G 到群3G 的同构.证明 众所周知,1-f 是2G 到1G 的双射.其次,又因f 保持乘法运算,故对于任意的2','G b a ∈总有''))'())'(())'()'((11b a b f f a f f b f a f f ==----,从而,)'()'()''(111b f a f b a f ---=.所以1-f 是群2G 到群1G 的同构.众所周知,gf 是1G 到3G 的双射.又因f 和g 都保持乘法运算,故对于任意的1,G b a ∈总有))()()(())(())(())()(())(())((b gf a gf b f g a f g b f a f g ab f g ab gf ====. 所以gf 是群1G 到群3G 的同构.2.设H 是群G 的子群,1-aHa 是H 的共轭子群,证明:1-aHa 与H 同构. 证明 定义H 到1-aHa 的映射f 如下:1)(-=axa x f ,H x ∈∀.直接从f 的定义可以明白,f 是满射.利用消去律容易推知,f 是单射.因此f 是双射.其次,对于任意的H y x ∈,总有)()())(()()(111y f x f aya axa a xy a xy f ===---.所以f 是群H 到群1-aHa 的同构,从而,H aHa ≅-1.3.设f 是群G 到群'G 的同构,证明:对于任意的G a ∈,|)(|||a f a =.举例说明,若f 是群G 到群'G 的同态,则a 的阶与)(a f 的阶不一定相同.证明 将群G 和群'G 的单位元分别记做e 和'e .注意到根据命题6.5,我们可以断言:对于任意的正整数n ,我们有')(')(e a f e a f e a n n n =⇔=⇔=.由此可见,|)(|||a f a =.假设2||≥G ,}{'e G =,其中e 为G 的单位元,f 为G 到'G 的映射.则f 是G 到'G 的同态.任取G a ∈,使得e a ≠,则0||>a ,1|||)(|==e a f ,从而,|)(|||a f a ≠.4.分别建立HN 到)/(N H H 和G 到)//()/(N H N G 的同态来证明定理6.11.注 定理6.11的内容如下:设G 是一个群,N 是G 的正规子群.(1)若H 是G 的子群,则N HN N H H /)()/(≅ ;(2)若H 是G 的正规子群且N H ⊇,则H G N H N G /)//()/(≅. 证明 (1)设H 是G 的子群.显然,N H 是H 的正规子群;N 是HN 的正规子群.考察任意的HN a ∈:假设332211h n n h n h a ===,其中,H h h ∈21,,N n n ∈21,.则11221-=n n h h ,从而,N H n n h h ∈=--121211.因此 )()(21N G h N H h =.这样一来,我们可以定义HN 到)/(N H H 的映射f 如下:对于任意的HN a ∈,)()(N H h a f =,若hn a =,其中H h ∈,N n ∈.由HN H ⊆可知,f 是满射.任意给定HN b a ∈,.不妨设11n h a =,22n h b =.由于HN 是G 的子群,因此HN ab ∈,从而,存在H h ∈3和N n ∈3,使得332211n h n h n h ab ==.因此)()(3N H h ab f =.另一方面,我们有)())())((()()(2121N H h h N H h N H h b f a f ==.注意到N 是G 的正规子群和命题5.11,易知N H h n h n n h h h h h ∈=-----111112123211321)))((()(,从而,)()(321N H h N H h h =,即)()()(b f a f ab f =.所以f 是HN 到)/(N H H 的满同态.最后,对于任意hn a =(H h ∈,N n ∈),我们有N a N h N H h N H N H h f a ∈⇔∈⇔∈⇔=⇔∈ )()(Ker . 因此N f =)(Ker .这样一来,根据群的同态基本定理,N HN N H H /)()/(≅ .(2)设H 是G 的正规子群且N H ⊇.显然,N H /是N G /的正规子群.定义G 到)//()/(N H N G 的映射f 如下:)/)(()(N H aN a f =,G a ∈∀.显而易见,f 是满射.由于N H /是N G /的正规子群,因此对于任意的G b a ∈,,总有)/)(/)()(()/)(()(N H N H bN aN N H abN ab f ==)()()/)()(/)((b f a f N H bN N H aN ==.因此f 是G 到)//()/(N H N G 的满同态.其次,对于任意的G a ∈,我们有N H aN N H N H aN f a //)/)(()(Ker ∈⇔=⇔∈hN aN H h =∈⇔使得存在,H a ∈⇔.因此H f =)(Ker .这样一来,根据群的同态基本定理,H G N H N G /)//()/(≅.5.设G 是群,1G ,2G 是G 的有限子群,证明:||||||||212121G G G G G G =. 注 与§5习题中第8题类似,这道题也宜安排在§7习题中.证明 令21G G H =.于是,H 既是1G 的子群,又是2G 的子群.设m H G =]:[1.则有)(11H c G j mj == ,(*)其中1G c j ∈,m j ≤≤1.显然,诸H c j 两两不相交;有且仅有一个},,2,1{m j ∈,使得H c j ∈;并且||||211G G G m =. 由于2G H ⊆,因此22G HG =.这样,由(*)式可以推得)())(())((21212121G c HG c G H c G G j m j j m j j m j ====== .(**)对于任意的},,2,1{,m j i ∈,考察2G c i 与2G c j :若22G c G c j i =,则21G c c i j ∈-,从而, H G G c c i j =∈-211 .由此可得,H c H c j i =,从而,j i =.这就表明,诸2G c j 两两不相交. 这样一来,由(**)式可以知,||||||||||2121221G G G G G m G G =⋅=. 6.设G 是群,证明: G G →1-a a是群G 到群G 的同构的充分必要条件是G 为交换群.如果G 是交换群,证明:对于任意的Z ∈k ,G G →k a a是一个同态.证明 将G 到自身的映射G G →1-a a记做f .显然f 是双射.于是,f 是群G 到群G 的同构)()()(b f a f ab f =⇔,G b a ∈∀,,即111)(---=b a ab ,G b a ∈∀, 11)()(--=⇔ba ab ,G b a ∈∀,ba ab =⇔,G b a ∈∀,是交换群G ⇔.假设G 是交换群,Z ∈k .将G 到自身的映射G G →k a a记做g .于是,我们有)()()()(b g a g b a ab ab g k k k ===,G b a ∈∀,.所以g 是一个同态.7.设f 是群G 到群'G 的满同态,'H 是'G 的正规子群,证明:'/')'(/1H G H f G ≅-.证明 由于'H 是'G 的正规子群,根据定理6.7,)'(1H f -是G 的正规子群.现在定义G 到'/'H G 的映射g 如下:')()(H a f a g =.由f 是群G 到群'G 的满同态可知g 是G 到'/'H G 的满射.其次,注意到'H 是'G 的正规子群,对于任意的G b a ∈,,有)()()')()(')(('')()(')()(b g a g H b f H a f H H b f a f H ab f ab g ====. 所以g 是G 到'/'H G 的满同态.最后,对于任意的G a ∈,我们有)'(')('')()(Ker 1H f a H a f H H a f g a -∈⇔∈⇔=⇔∈.因此)'()(Ker 1H f g -=.这样一来,根据群的同态基本定理,'/')'(/1H G H f G ≅-.8.设G 是群,1G ,2G 是G 的正规子群.假设21G G G =且}{21e G G = (此时称G 是1G 和2G 的内直积),证明:21G G G ⨯≅.证明 定义21G G ⨯到G 的映射f 如下:ab b a f =)),((,21),(G G b a ⨯∈∀.由21G G G =可知,f 是满射.现在设212211),(),,(G G b a b a ⨯∈,并且)),(()),((2211b a f b a f =.于是,2211b a b a =,从而,11112112G G b b a a ∈=--,从而,e b b a a ==--112112.这意味着21a a =且21b b =,即),(),(2211b a b a =.由此可见,f 是单射,从而,f 是双射. 对于任意的212211),(),,(G G b a b a ⨯∈,我们有))(()),(()),)(,((212121212211b b a a b b a a f b a b a f ==,))(()),(()),((22112211b a b a b a f b a f =.由于1G ,2G 是G 的正规子群且}{21e G G = ,由§5习题第3题可知,))(())((22112121b a b a b b a a =.因此)),(()),(()),)(,((22112211b a f b a f b a b a f =,从而,f 是群21G G ⨯到群G 的同构.所以21G G G ⨯≅.9.设1G ,2G 是群,证明:1221G G G G ⨯≅⨯.证明 定义21G G ⨯到12G G ⨯的映射f 如下:),()),((a b b a f =,21),(G G b a ⨯∈∀.显然,f 是双射.其次,对于任意的212211),(),,(G G b a b a ⨯∈,我们有),()),(()),)(,((212121212211a a b b b b a a f b a b a f ==,)),(()),((),)(,(),(221122112121b a f b a f a b a b a a b b ===.所以f 是群21G G ⨯到群12G G ⨯的同构,从而,1221G G G G ⨯≅⨯.10.设q p ,是不同的素数,证明:q p pq Z Z Z ⊕≅.证明 对于任意的Z ∈i 和任意的N ∈n ,将以i 为代表元的模n 同余类记做n i ][.于是,对于任意的Z ∈j i ,,注意到q p ,是不同的素数,我们有q q p p pq pq j i j i j i q j i p j i pq j i ][][][][)(|)(|)(|][][==⇔--⇔-⇔=且且. 这样一来,我们可以定义pq Z 到q p Z Z ⊕的映射f 如下:)][,]([)]([q p pq i i i f =,pq pq i Z ∈∀][.考察映射f :设pq pq pq j i Z ∈][,][且)]([)]([pq pq j f i f =.则)][,]([)][,]([q p q p j j i i =,即p p j i ][][=且q q j i ][][=,从而,pq pq j i ][][=.因此f 是单射.其次,显然 ||||q p pq Z Z Z ⊕=.因此f 是双射.最后,对于任意的pq pq pq j i Z ][,][∈,我们有)][,]([)]([)][]([q p pq pq pq j i j i j i f j i f ++=+=+,)][,][()][,]([)][][,][]([q p q p q q p p j j i i j i j i +=++=)]([)]([pq pq j f i f +=.所以f 是群pq Z 到群q p Z Z ⊕的同构,从而,q p pq Z Z Z ⊕≅.§7 有限群1.设G 是群,H 是G 的正规子群,n H G =]:[,证明:对于任意的G a ∈都有H a n ∈.证明 由于n H G =]:[,因此n H G =|/|.根据推论7.2,对于任意的G a ∈,商群H G /中元素aH 的阶整除n .因此H aH H a n n ==)(,从而,H a n ∈.2.设G 和'G 分别是阶为m 和n 的有限循环群,证明:存在G 到'G 的满同态的充要条件是m n |.证明 假设f 是G 到'G 的满同态.根据群的同态基本定理,')(Ker /G f G ≅.根据Lagrange 定理,我们有|)(||)(Ker ||'||)(Ker |)](Ker :[f Ker n f G f f G m =⋅=⋅=,从而,m n |.假设m n |.令〉〈=a G ,〉〈=n a N .于是,N 是G 的正规子群,nm N =||,N G /是n 元循环群.显然,'/G N G ≅.设f 是N G /到'G 的同构,f 是G 到N G /的自然同态.则gf 是G 到'G 的满同态.3.设G 是有限群,p 为素数,1≥r .如果|||G p r ,证明:G 一定有阶为r p 的子群.注 我们介绍过Sylow 定理的如下形式:设G 是n 阶有限群,其中,m p n r =,p 是素数,r 是非负整数,m 是正整数,并且1),(=m p .那么,对于任意的},,1,0{r k ∈,G 有k p 阶子群.显而易见,这道题已经包含在Sylow 定理中.这是因为: 由|||G p r 知,存在正整数s 和m ,使得m p n s =,其中1),(=m p .于是,s r ≤.根据Sylow 定理,G 有r p 阶子群.下面我们采用证明Sylow 定理的方法给出这道题的直接证明.证明 假设|||G p r .则存在正整数s 和m ,使得m p n s =,其中1),(=m p .显然,s r ≤.根据Sylow 定理,存在G 的子群H 使s p H =||.现在只需证明H 一定有阶为r p 的子群.为此,对s 施行第二数学归纳法.当1=s 时,显然结论成立.假设t 是整数,并且当t s ≤时,对于任意的正整数s r ≤,H 有r p 阶子群.下面我们来阐明:当1+=t s 时,对于任意的正整数s r ≤,H 有r p 阶子群.事实上,由1||+=t p H 可知,对于H 的每个真子群'H ,都有]':[|H H p .由群G 的类方程∑∈+=C H a a N H C H \]:[||||(其中C 为群H 的中心)立即可知|||C p .由于C 是交换群,根据引理7.4,存在C c ∈,使得p c =||.由C c ∈可知,〉〈c 是H 的正规子群.令〉〈=c H H /'.则t p c H H =〉〈=|||||'|. 根据归纳假设,对于任意的正整数r ,'H 有1-r p 阶子群'K .根据命题5.13,存在H的子群K ,使得K c ⊆〉〈且〉〈=c K H /',从而,r r p p p c K c H =⋅=〉〈⋅〉〈=-1|/||||'|.4.设G 是有限群,p 为素数,如果G 的每个元素的阶都是p 的方幂,则称G 是p -群.证明:G 是p -群||G ⇔是p 的一个幂.证明 显然,当||G 是p 的一个幂时,G 是p -群.现在假设||G 不是p 的一个幂.于是,存在素数p q ≠,使的m q G r =||,其中1),(=m q ,1≥r .根据Sylow 定理,G 有r q 阶子群H .所以G 不是p -群.5.证明:阶小于或等于5的群都是交换群.证明 显然1阶群是交换群.由推论7.2立即可知,2阶群、3阶群和5阶群都是循环群,因而都是交换群.设G 是4阶群.根据推论7.2,G 中元素的阶只能是1,2或4.当G 中有4阶元素时,G 是循环群,因而是交换群.当G 中有4阶元素时,G 中的元素,除单位元外,都是2阶元素.不妨设},,,{c b a e G =.容易验证,G 就是Klein 四元群,因而是交换群.6.设G 是群,1G ,2G 是G 的有限子群,假设1|))||,(|21=G G ,证明:||||||2121G G G G =.证明 由于21G G 既1G 的子群,又是2G 的子群,根据推论7.2,||21G G 是||1G 与||2G 的公约数.因为1|))||,(|21=G G ,所以1||21=G G .这样一来,根据§6习题第5题,我们有||||||||||||21212121G G G G G G G G == .第二章 环 论§1 环的概念1.证明:命题1.3的(5)-(7).注 命题1.3的(5)-(7)的原文如下:(设R 是一个环,则)(5)j n i mj i m j j n i i b a b a ∑∑∑∑=====1111)()(;(6))()()(ab n nb a b na ==,其中n 为整数;(7)若R 是交换环,则k k n n k k n n b a C b a -=∑=+0)(, n n n b a ab =)(.显然,(5)中应加进“其中),,2,1(n i a i =和),,2,1(m j b j =为R 中的任意元素,m 和n 为任意正整数”;(6)中应加进“a 和b 为R 中的任意元素”;(7)中应加进“其中,a 和b 为R 中的任意元素,n 为任意正整数,并且约定b b a =0,a ab =0”.证明 首先,因为乘法对加法适合分配律,所以j n i mj i m j j n i i m j j n i i b a b a b a ∑∑∑∑∑∑========111111)()()(. 这就是说,命题1.3(5)成立.其次,当0=n 时,根据命题 1.3(1),我们有00)(==b b na ,00)(==a nb a ,0)(0=ab ,从而,)()()(ab n nb a b na ==.当n 是正整数时,令 a a i =,b b i =,n i ,,2,1 =,则因乘法对加法适合分配律,我们有)()()(2121ab n b a b a b a b a a a b na n n =+++=+++= ,)()()(2121ab n ab ab ab b b b b a nb a n n =+++=+++= ,从而,)()()(ab n nb a b na ==.当n 是负整数时,根据命题1.3(2)和刚才证明的结论,我们有nab ab n b a n b a n b na =--=--=--=))()(()))((()))((()(,)())()(())()(()))((()(ab n ab n b a n b n a nb a =--=--=--=,从而,)()()(ab n nb a b na ==.这就是说,命题1.3(6)成立.最后,假定R 是交换环.我们用数学归纳法来证明等式k k n n k k n n b a C b a -=∑=+0)((*)成立.事实上,当1=n 时,显然(*)式成立.假设当r n =r (为某个正整数)时,(*)式成立. 当1+=r n 时,我们有k k r rk k r r n b a C b a b a b a b a -=∑+=++=+0)())(()(k k r r k k r k k r r k k r b a C b b a C a -=-=∑∑+=001110)1(11++--=-+=++++=∑∑r k k r r k k r k k r r k k r r b b a C b a C a1)1(11)1(11+-+=--+=++++=∑∑r k k r r k k r k k r r k k r r b b a C b a C a1)1(111)(+-+=-++++=∑r k k r r k k r k r r b b a C C a1)1(111+-+=++++=∑r k k r r k k r r b b a C ak k r r k k r b a C -++=+∑=)1(101k k n n k k n b a C -=∑=0. 所以对于一切正整数n ,(*)式成立.此外,由于乘法适合结合律和交换律,由第一章的§1知,n n n b a ab =)(.2.令}Z ,|2{]2[Z ∈+=b a b a ,证明]2[Z 关于实数的加法和乘法构成一个环.证明 显然,)],2[Z (+是一个交换群;)],2[Z (⋅是一个半群(也就是说,乘法适合结合律);乘法对加法适合分配律.所以),],2[Z (⋅+是一个环.(验证过程从略.)3.设R 是闭区间],[b a 上的所有连续实函数构成的集合.对于任意的R g f ∈,,定义)()())((x g x f x g f +=+,)()())((x g x f x g f =⋅,],[b a x ∈∀.证明:R 关于这样定义的”“+和”“⋅构成一个环. 证明 简单的数学分析知识告诉我们,),(+R 是一个交换群;),(⋅R 是一个半群(也就是说,乘法”“⋅适合结合律);乘法”“⋅对加法”“+适合分配律.所以),,(⋅+R 是一个环.4.设R 是有单位元1的环,n 是正整数.形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n a a a a a a a a a 2122221141211,其中R a ij ∈,n j i ,,2,1, =, 的表格称为环R 上的n n ⨯矩阵(或n 阶方阵).令)(R M n 是环R 上的所有n n ⨯矩阵构成的集合.完全类似于数域上矩阵,可以定义环上的矩阵的加法和乘法,证明:)(R M n 关于矩阵的加法和乘法构成一个环.记)(R M n 中单位矩阵为n I .对)(R M A n ∈,如果存在)(R M B n ∈,使得n I BA AB ==,则称A 是可逆的,称B 是A 的一个逆矩阵,证明:若A 可逆,则其逆是唯一的,记A 的逆矩阵为1-A .证明 完全类似于数域上矩阵,容易验证)(R M n 上的加法适合结合律和交换律(从略).令n O 表示所有元素都为R 的零元的n 阶方阵;对于任意的)(R M A n ∈,将A 中每个元素都代之以其负元而得到矩阵记做A -.显而易见,对于任意的)(R M A n ∈,有A O A n =+,n O A A =-+)(.所以)(R M n 关于矩阵加法交换群.完全类似于数域上矩阵,容易验证:)(R M n 上的乘法适合结合律,并且对)(R M n 上的加法适合分配律(从略).所以)(R M n 关于矩阵的加法和乘法构成一个环.假设)(R M A n ∈是任意一个可逆矩阵,并且矩阵B 和C 都是A 的逆矩阵.则矩阵n I AC AB ==,从而,C C I C BA AC B BI B n n =====)()(.这就表明A 的逆矩阵是唯一的.5.设R 是一个环,假设),(+R 是一个循环群,证明:R 是交换环.证明 设a 是循环群),(+R 的一个生成元.于是,对于任意的R y x ∈,,存在Z ,∈n m ,使得ma x =,na y =,从而,根据命题1.3(6),yx ma na ma n a a mn a na m a na ma xy ======))(())(()))(())(())((.。

《抽象代数基础》习题解答

《抽象代数基础》习题解答

《抽象代数基础》习题答解于延栋编盐城师范学院数学科学学院二零零九年五月第一章 群 论§1 代数运算1.设},,,{c b a e A =,A 上的乘法”“⋅的乘法表如下:证明: ”“⋅适合结合律.证明 设z y x ,,为A 中任意三个元素.为了证明”“⋅适合结合律,只需证明)()(z y x z y x ⋅⋅=⋅⋅.下面分两种情形来阐明上式成立.I.z y x ,,中至少有一个等于e .当e x =时,)()(z y x z y z y x ⋅⋅=⋅=⋅⋅;当e y =时,)()(z y x z x z y x ⋅⋅=⋅=⋅⋅;当e z =时,)()(z y x y x z y x ⋅⋅=⋅=⋅⋅.II .z y x ,,都不等于e .(I)z y x ==.这时,)()(z y x e x x z z e z y x ⋅⋅=⋅===⋅=⋅⋅.(II)z y x ,,两两不等.这时,)()(z y x x x e z z z y x ⋅⋅=⋅==⋅=⋅⋅.(III)z y x ,,中有且仅有两个相等.当y x =时,x 和z 是},,{c b a 中的两个不同元素,令u 表示},,{c b a 中其余的那个元素.于是,z z e z y x =⋅=⋅⋅)(,z u x z y x =⋅=⋅⋅)(,从而,)()(z y x z y x ⋅⋅=⋅⋅.同理可知,当z y =或x z =时,都有)()(z y x z y x ⋅⋅=⋅⋅.2.设”“⋅是集合A 上一个适合结合律的代数运算.对于A 中元素,归纳定义∏=ni ia 1为: 111a a i i =∏=,1111+=+=⋅⎪⎪⎭⎫ ⎝⎛=∏∏r r i i r i i a a a .证明:∏∏∏+==+==⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛m n k k m j j n n i i a a a 111.进而证明:在不改变元素顺序的前提下,A 中元素的乘积与所加括号无关.证明 当1=m 时,根据定义,对于任意的正整数n ,等式成立.假设当r m =(1≥r )时,对于任意的正整数n ,等式成立.当1+=r m 时,由于”“⋅适合结合律,我们有⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛∏∏=+=m j j n n i i a a 11⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛=∏∏+=+=111r j j n n i i a a ⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛=++=+=∏∏111r n r j j n n i i a a a 111++=+=⋅⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛=∏∏r n r j j n n i i a a a ∏∏∏+=++=+++===⋅⎪⎪⎭⎫ ⎝⎛=m n k k r n k k r n r n i i a a a a 11111.所以,对于任意的正整数n 和m ,等式成立.考察A 中任意n (1≥n )个元素n a a a ,,,21 :当3≥n 时,要使记号n a a a ⋅⋅⋅ 21变成有意义的记号,必需在其中添加一些括号规定运算次序.现在我们来阐明:在不改变元素顺序的前提下,无论怎样在其中添加括号,运算结果总是等于∏=ni i a 1.事实上,当1=n 或2=n 时,无需加括号,我们的结论自然成立.当3=n 时,由于”“⋅适合结合律,我们的结论成立.假设当r n ≤(1≥r )时我们的结论成立.考察1+=r n 的情形:不妨设最后一次运算是b a ⋅,其中a 为n a a a ,,,21 中前s (n s <≤1)个元素的运算结果,b 为n a a a ,,,21 中后s n -个元素的运算结果.于是,根据归纳假设,∏==s j j a a 1, ∏-=+=sn k k s a b 1.所以最终的运算结果为∏∏∏=-=+==⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛=⋅n i i s n k k s s j j a a a b a 111. 3.设Q 是有理数集.对于任意的Q ,∈b a ,令2b a b a +=⋅,证明: ”“⋅是Q 上的一个代数运算,它既不适合结合律也不适合交换律.证明 众所周知,对于任意的Q ,∈b a ,Q 2∈+=⋅b a b a .所以”“⋅是Q 上的一个代数运算.令0=a ,1=b ,2=c .由于521212)10()(2=+=⋅=⋅⋅=⋅⋅c b a ,255050)21(0)(2=+=⋅=⋅⋅=⋅⋅c b a ,从而,)()(c b a c b a ⋅⋅≠⋅⋅,所以”“⋅不适合结合律.由于521212=+=⋅=⋅c b ,312122=+=⋅=⋅b c ,.从而,b c c b ⋅≠⋅.所以”“⋅不适合交换律.§2 群的概念1.证明:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎭⎫ ⎝⎛=Z d c b a d c b a G ,,, 关于矩阵的加法构成一个群. 证明 首先,众所周知,∅≠G ,G B A ∈+,G B A ∈∀,.由于矩阵的加法适合结合律,G 上的加法适合结合律.其次,令⎪⎪⎭⎫ ⎝⎛=0000O ,则G O ∈,并且A O A A O =+=+,G A ∈∀.最后,对于任意的G d c b a A ∈⎪⎪⎭⎫ ⎝⎛=,令⎪⎪⎭⎫ ⎝⎛----=-d c b a A ,则G A ∈-且O A A A A -+-=-+)()(.所以G 关于矩阵的加法构成一个群.2.令⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=1001,1001,1001,1001G ,证明:G 关于矩阵的乘法构成一个群. 证明 将⎪⎪⎭⎫ ⎝⎛1001记作E ,并将G 中其余三个矩阵分别记作C B A ,,.于是,G 上的乘法表如下:由于矩阵的乘法适合结合律,G 上的乘法适合结合律.从乘法表可知,X XE EX ==,E XX =,G Y X ∈∀,.所以G 关于矩阵的乘法构成一个群.3.在整数集Z 中,令2-+=⋅b a b a ,Z ∈∀b a ,.证明:Z 关于这样的乘法构成一个群.证明 对于任意的Z ∈c b a ,,,我们有42)2()2()(-++=-+-+=⋅-+=⋅⋅c b a c b a c b a c b a ,42)2()2()(-++=--++=-+⋅=⋅⋅c b a c b a c b a c b a ,从而)()(c b a c b a ⋅⋅=⋅⋅.这就是说,该乘法适合结合律.其次,Z ∈2,并且对于任意的Z ∈a ,我们有222222⋅=-+==-+=⋅a a a a a ,a a a a a a a a ⋅-=-+-=--+=-⋅)4(2)4(2)4()4(.所以Z 关于该乘法构成一个群.4.写出3S 的乘法表.解 )}231(),321(),32(),31(),21(),1{(3=S ,3S 的乘法表如下:5.设),(⋅G 是一个群,证明: ”“⋅适合消去律.证明 设G c b a ∈,,.若c a b a ⋅=⋅,则c c e c a a c a a b a a b a a b e b =⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅=----)()()()(1111.同理,若a c a b ⋅=⋅,则c b =.这就表明,”“⋅适合消去律.6.在5S 中,令⎪⎪⎭⎫ ⎝⎛=4513254321f ,⎪⎪⎭⎫ ⎝⎛=2543154321g . 求gf fg ,和1-f .解 我们有⎪⎪⎭⎫ ⎝⎛=3451254321fg ,⎪⎪⎭⎫ ⎝⎛=5214354321gf ,⎪⎪⎭⎫ ⎝⎛=-45213543211f . 7.设)(21k i i i a =,求1-a .解 我们有)(11i i i a k k -=.8.设f 是任意一个置换,证明:))()()(()(21121k k i f i f i f f i i i f =⋅⋅-. 证明 事实上,易见,)(,),(),(21k i f i f i f 是},,2,1{n 中的k 个不同的数字.由直接计算可知,11),())()()((1121-≤≤=⋅⋅+-k j i f i f f i i i f j j k ;)())()()((1121i f i f f i i i f k k =⋅⋅- .其次,对于任意的)}(,),(),({\},,2,1{21k i f i f i f n i ∈,i 在121)(-⋅⋅f i i i f k 之下的像是i 本身.所以))()()(()(21121k k i f i f i f f i i i f =⋅⋅-.9.设S 是一个非空集合,”“⋅是S 上的一个代数运算,若”“⋅适合结合律,则称),(⋅S 是一个半群(或者称S 关于”“⋅构成一个半群).证明:整数集Z 关于乘法构成一个半群,但不构成一个群.证明 众所周知,Z 是非空集合,对于任意的Z ,∈b a ,总有Z ∈⋅b a ,并且整数乘法适合结合律,所以Z 关于乘法构成一个半群.其次,令1=e .于是,对于任意的Z ∈a ,总有a e a a e =⋅=⋅.但是,Z 0∈,并且不存在Z ∈b ,使得e b =⋅0.所以Z 关于乘法不构成一个群.10.设A 是一个非空集合,S 是由A 的所有子集构成的集合.则集合的并”“ 是S 上的一个代数运算.证明:),( S 是一个半群.证明 众所周知,对于任意的S Z Y X ∈,,,总有)()(Z Y X Z Y X =.这就是说,S 上的代数运算”“ 适合结合律,所以),( S 是一个半群.注 请同学们考虑如下问题:设A 是一个非空集合,S 是由A 的所有子集构成的集合.定义S 上的代数运算”“∆ (称为对称差)如下:)\()\(X Y Y X Y X =∆,S Y X ∈∀,.求证:),(∆S 是一个交换群.11.令⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎭⎫ ⎝⎛=Z ,,,d c b a d c b a S .证明S 关于矩阵的乘法构成一个半群. 证明 众所周知,对于任意的S C B A ∈,,,总有S AB ∈,)()(BC A C AB =.这就是说,矩阵的乘法是S 上的一个代数运算,并且适合结合律,所以S 关于矩阵的乘法构成一个半群.12.设),(⋅S 是一个半群,S e ∈称为S 的一个左(右)单位元,如果对于任意的S a ∈都有a a e =⋅(a e a =⋅).对于S a ∈,如果存在S b ∈使e a b =⋅(e b a =⋅),则称a 左(右)可逆的,b 是a 的一个左(右)逆元.假设S 有左(右)单位元e 且S 中每个元素都有关于e 的左(右)逆元.证明:),(⋅S 是一个群.证明 设a 是S 中任意一个元素.任取S b ∈,使得e b a =⋅.再任取S c ∈,使得e c b =⋅.于是,我们有c e c b a c b a e a a ⋅=⋅⋅=⋅⋅=⋅=)()(且e c b c e b c e b a b =⋅=⋅⋅=⋅⋅=⋅)()(.因此a b e b a ⋅==⋅.所以e a a b a a b a a e ⋅=⋅⋅=⋅⋅=⋅)()(.由以上两式可知,e 是单位元,S 中每个元素a 都有逆元b .所以),(⋅S 是一个群. 对于S 有左单位元e 且S 中每个元素都有关于e 的左逆元的情形,请同学们自己证明.13.设G 是一个群,证明:111)(---=a b ab ,G b a ∈∀,.证明 对于任意的G b a ∈,,我们有e aa aea a bb a a b ab ====------111111)())((,e b b eb b b a a b ab a b ====------111111)())((.所以111)(---=a b ab ,G b a ∈∀,.16.设G 是一个群,证明:G 是交换群的充要条件是222)(b a ab =,G b a ∈∀,.证明 必要性是显然的.现在假设G 满足该条件.于是,对于任意的G b a ∈,,我们有222)(b a ab =,即aabb abab =.运用消去律(第5题)立即可得ba ab =.所以G 是交换群.17.设G 是一个群.假设对于任意的G a ∈都有e a =2,证明:G 是交换群. 证明 我们有222)(b a ee e ab ===,G b a ∈∀,.由上题知,G 是交换群.18.设G 是非空集合,”“⋅是G 上的一个代数运算且适合结合律.(1)证明:),(⋅G 是一个群当且仅当对于任意的G b a ∈,,方程b x a =⋅和b a y =⋅在G 中都有解.(2)假设G 是有限集,证明:),(⋅G 是一个群当且仅当”“⋅适合消去律.证明 (1)当),(⋅G 是一个群时,显然,对于任意的G b a ∈,,b a x ⋅=-1是方程b x a =⋅的解,1-⋅=a b y 是方程b a y =⋅的解.现在假设对于任意的G b a ∈,,方程b x a =⋅,b a y =⋅在G 中都有解.任取G a ∈,考察方程a x a =⋅.根据假设,方程a x a =⋅有解G e x ∈=.设b 是G 中任意一个元素,考察方程b a y =⋅.根据假设,方程b a y =⋅有解G c y ∈=.于是,我们有b ac e a c e a c e b =⋅=⋅⋅=⋅⋅=⋅)()(.由于G b ∈的任意性,上式表明e 是半群),(⋅G 的一个右单位元.再考察方程e x a =⋅.根据假设,方程e x a =⋅有解G d ∈.由于G a ∈的任意性,这表明G 中每个元素关于右单位元e 都有右逆元.所以),(⋅G 是一个群.(2)当),(⋅G 是一个群时,根据第5题,”“⋅适合消去律.现在假设},,,{21n a a a G =,并且”“⋅适合消去律.任取},,2,1{,n k i ∈,考察方程k i a x a =⋅.由于”“⋅适合左消去律,因此k a 必出现于乘法表的第i 行中.这就意味着存在},,2,1{n j ∈,使得k j i a a a =⋅,从而方程k i a x a =⋅在G 中有解.同理,由于”“⋅适合右消去律,方程k i a a y =⋅在G 中有解.这样一来,根据(1),),(⋅G 是一个群.19.证明命题2.8中的表示法在不计循环置换的顺序的意义下是唯一的.注注 宜将这道题表述成“证明:在不计循环置换的顺序的意义下,在用命题2.8中的证明中所说的方法将一个置换n S f ∈表示成两两不相交的循环置换的乘积时,表达式是唯一的”.证明 显然,当f 是单位置换时,表达式就是f f =.不妨设f 不是单位置换,u f f f f 21=和v g g g f 21=都是在用命题2.8中的证明中所说的方法将置换n S f ∈表示成两两不相交的循环置换的乘积的表达式.于是,u f f f ,,,21 两两不相交,v g g g ,,,21 两两不相交,而且它们的阶都大于或等于2.考察任意的l f (u l ≤≤1):设)(21s l i i i f =.由u f f f f 21=和v g g g f 21=可知,存在'l (v l ≤≤'1),使得)(21't l j j j g =,},,,{211t j j j i ∈.不妨设11j i =.由u f f f f 21=和v g g g f 21=可知,t s =并且k k j i =,},,2,1{s k ∈∀,从而,'l l g f =.由于u f f f ,,,21 两两不相交,v g g g ,,,21 两两不相交,并且不计循环置换的顺序,不妨设l l g f =,},,2,1{u l ∈∀.假设v u <,则u g g g f 21=,由此可见,当v l u ≤<时,l g 必与u g g g ,,,21 v u =.这就表明,v g g g f 21=和v g g g f 21=是同一个表达式.§3 子 群1.设)(P n GL G =是数域P 上的n 级一般线性群,H 是G 的由全体n 阶可逆的对角矩阵组成的子集,证明:H 是G 的子群.证明 众所周知,H 非空,并且有H A AB ∈-1,,H B A ∈∀,,其中AB 表示矩阵A 与矩阵B 的乘积,1-A 表示矩阵A 的逆矩阵.所以H 是G 的子群.2.设G 是一个群,H 是G 的非空子集,证明:H 是G 的子群的充分必要条件是H ab ∈-1,H b a ∈∀,.证明 由定理3.3可知,当H 是G 的子群时,H 满足条件. 假设H 满足条件.对于任意的H b a ∈,,我们有H aa e ∈=-1.因为H 满足条件,由H b a e ∈,,可知,H ea a ∈=--11,H eb b ∈=--11.因为H 满足条件,由H b a ∈-1,可知11)(--=b a ab .总而言之 对于任意的H b a ∈,,我们有H a ab ∈-1,.根据定理3.3,H 是G 的子群.3.设H 是群G 的子群,G a ∈,证明:}|{11H h aha aHa ∈=--也是G 的子群(称为H 的一个共轭子群).证明 显然,1-aHa 是G 的非空子集.设121,-∈aHa b b .于是,存在H h h ∈21,,使得111-=a ah b ,121-=a ah b .因此11211121))((----=a ah a ah b b1112111211)(------∈==aHa a h h a a ah a ah . 所以1-aHa 是G 的子群.4.设G 是交换群,0>n 为整数,令}|{e a G a H n =∈=,证明:H 是G 的子群. 证明 显然H e ∈.若H b a ∈,,则e ee b a ab n n n ===--11)()(,从而,H ab ∈-1.由此可见,H 是G 的子群.5.设G 是交换群,证明:G 的所有阶为有限的元素构成的集合是G 的子群. 证明 令H 表示G 的所有阶为有限的元素构成的集合.显然H e ∈.设H b a ∈,,其中m a =||,n b =||.于是,e ee b a ab m n n m mn ===--)()()(1,从而,H ab ∈-1.由此可见,H 是G 的子群.6.设G 是群,G b a ∈,,证明:a 与1-bab 具有相同的阶.证明 显然,对于任意的正整数n ,11)(--=b ba bab n n ,从而,e bab e b ba e a n n n =⇔=⇔=--)(11.由此可见,a 与1-bab 具有相同的阶.7.设)(21k i i i a =是循环置换,求a 的阶.解 当1=k 时,显然,)1(=a ,k a =||.当1>k 时,我们有11(+=j i i i a )1()1≠-j i ,}1,,2,1{-∈∀k j ,)1(=k a ,从而,k a =||.8.设群G 的除单位元外的每个元素的阶都为2,证明:G 是交换群. 证明 参看§2习题第17题.9.设G 是群,G b a ∈,,证明:ab 与ba 具有相同的阶. 证明 注意到111))((---=a ab a ba ,根据第6题的结论,ab 与ba 具有相同的阶.10.设G 是群,G b a ∈,,ba ab =.假设a 的阶与b 的阶互素,证明:||||||b a ab =.证明 令m a =||,n b =||,k ab =||.由于e e e b a ab m n m n n m mn ===)()()(,根据命题3.12可以断言mn k |.其次,我们有kn kn k n kn kn kn kn a e a b a b a ab e =====)()(,从而,根据命题 3.12,kn m |.因为m 与n 互素,由kn m |可知k m |.同理可知,k n |.由于m 与n 互素,因此k mn |.所以mn k =,即||||||b a ab =.11.设Z 是整数集关于加法构成的群,H 是Z 的子群,证明:存在H n ∈使〉〈=n H .证明 众所周知,H ∈0.当}0{=H 时,显然〉〈=0H .现在假设}0{≠H .于是,存在H m ∈使0≠m .这时H m ∈-,并且,在m 和m -中,一个是正数,另一个是负数.令n 表示H 中的最小正数.显然,我们有H qn ∈,Z ∈∀q .现在考察任意的H m ∈:众所周知,存在整数q 和r ,使得r qn m +=,n r <≤0.于是,H qn m r ∈-=.由于令n 是H 中的最小正数,必有0=r ,从而,qn m =.上述表明}|{Z ∈=q qn H .所以〉〈=n H .12.设G 是一个群,1H ,2H 都是G 的子群.假设1H 不包含于2H 且2H 不包含于1H ,证明:21H H 不是G 的子群.证明 由于1H 不包含于2H 且2H 不包含于1H ,是G 的子群,因此存在21\H H a ∈且存在12\H H b ∈.于是,21,H H b a ∈.假设1H ab ∈,则11)(H ab a b ∈=-,矛盾.因此1H ab ∉.同理,2H ab ∉.这样一来,21H H ab ∉.所以21H H 不是G 的子群.13.设G 是一个群, ⊆⊆⊆⊆n G G G 21是G 的一个子群链,证明:nn G ∞=1 是G 的子群.证明 设n n G b a ∞=∈1, .于是,存在正整数i 和j 使得i G a ∈,j G b ∈.令},max{j i k =.k G b a ∈,.由于k G 是G 的子群,因此k G ab ∈-1,从而,n n G ab ∞=-∈11 .所以n n G ∞=1 是G 的子群.14.证明:)}1()31(),12{(n (2≥n )是n S 的一个生成集.证明 考察任意的对换n S j i ∈)(:若1=i 或1=j ,则)}1()31(),12{()(n j i ∈.若1≠i 且1≠j ,则)1()1()1()(i j i j i =.这就是说,对于每一个对换n S j i ∈)(,要么它本身属于)}1()31(),12{(n ,要么它可以表示成)}1()31(),12{(n 中的一些对换的乘积.这样一来,根据推论2.10可以断言,每一个n S f ∈可以表示成)}1()31(),12{(n 中的一些对换的乘积.由此可见,〉〈⊆)1()31(),12(n S n ,从而,〉〈=)1()31(),12(n S n .§4 循环群1.证明:循环群是交换群.证明 设〉〈=a G 是一个循环群.于是,}|{Z ∈=n a G n (参看课本第12页倒数第4行).众所周知,m n n m n m a a a a a ==+,Z ∈∀n m ,.所以G 是交换群.2.设G 是一个群,G a ∈.假设a 的阶为n ,证明:对任意整数r ,有),(||n r n a r =. 证明 令〉〈=a H .由于n a =||,根据命题3.10,H ),(||n r n a r =. 3.设〉〈=a G 是一个n 阶循环群,r 是任意整数,证明:r a 与),(n r a 具有相同的阶且〉〈=〉〈),(n r r a a .证明 根据命题4.2,我们有||),()),,((||),(r n r a n r n n n r n a ===. 根据命题 3.10,〉〈r a 和〉〈),(n r a 都是G 的),(n r n 阶子群.显然,),(n r r a a 〈∈,从而,〉〈⊆〉〈),(n r r a a .由此可见,〉〈=〉〈),(n r r a a .4.设〉〈=a G 是一个n 阶循环群,证明:G a r =〉〈当且仅当1),(=n r .证明 根据命题4.2,我们有G a r =〉〈n a r =⇔||n n r n =⇔),(1),(=⇔n r . 5.设〉〈=a G 是循环群,〉〈=s a H 和〉〈=t a K 是G 的两个子群,证明:〉〈=],[t s a K H .证明 显然K H a t s ∈],[,从而,K H a t s ⊆〉〈],[. 为了证明〉〈=],[t s a K H ,现在只需证明〉〈⊆],[t s a K H .考察任意的K H x ∈:当x 为G 的单位元e 时,显然〉〈∈],[t s a x .不妨假定e x ≠.于是,由H x ∈知,存在Z ∈i ,使得is a x =;由K x ∈知,存在Z ∈j ,使得jt a x =.因为e x ≠,所以0≠st .众所周知,1)),(,),((=t s t t s s , 从而,存在Z ,∈v u ,使得1),(),(=+t s vt t s us . 于是,我们有),(),(),(),(),(),()()(t s vtis t s usjt t s vtt s ust s vt t s us a a x x x x ===+〉〈∈==+],[],)[(],[],[t s t s iv ju n t s niv t s nju a a a a ,其中,当0≥st 时1=n ,当0<st 时1-=n .综上所述,对于任意的K H x ∈,总有〉〈∈],[t s a x .所以〉〈⊆],[t s a K H .6.设〉〈=a G 是n 阶循环群,〉〈=s a H 和〉〈=t a K 是G 的两个子群,证明:K H =的充要条件是),(),(n t n s =.证明 假设K H =.根据命题4.2,我们有),(||||),(n t n a a n s n t s ===, 从而,),(),(n t n s =.假设),(),(n t n s =.于是,),(),(n t n s a a =,从而,〉〈=〉〈),(),(n t n s a a .这样根据第3题的结论可以断言,〉〈=〉〈t s a a ,即K H =.7.设G 是无限循环群,证明:G 有且仅有两个生成元.证明 由于G 是无限循环群,不妨设a 是G 的一个生成元.于是,1-a 也是G 的一个生成元,并且a a ≠-1.这就是说,G 有两个不同的生成元.其次,假设b 是G 的任意一个生成元.由于〉〈=a G ,因此存在Z ∈n ,使得n a b =.由于〉〈=b G 且G a ∈,因此存在Z ∈k ,使得nk k a b a ==.由此可见,1±=n ,即a b =或1-=a b .所以G 有且仅有两个生成元.8.设〉〈=a G 是无限循环群,〉〈=s a H 和〉〈=t a K 是G 的两个子群,证明:K H =的充要条件是t s ±=.证明 当t s ±=时,显然K H =.假设K H =.显然,当}{e H =时,0==t s ,从而,t s ±=.不妨假定}{e H ≠.于是0≠s .由K a s ∈可知,存在Z ∈i ,使得it s =;由H a t ∈可知,存在Z ∈j ,使得js t =.因此ijs s =.由于0≠s ,由ijs s =可知1=ij ,从而,1±=i .所以t s ±=.§5 正规子群与商群1.证明:循环群的商群也是循环群.证明 设〉〈=a G 是循环群,H 是G 的子群.于是,我们有〉〈=∈=∈=aH n aH n H a H G n n }Z |){(}Z |{/.这就表明,H G /是循环群.2.设G 是群,i N ,I i ∈,是G 的一族正规子群,证明:i I i N ∈ 也是G 的正规子群.证明 众所周知,i I i N ∈ 是G 的正规子群.显然,我们有a N a N aN N a i I i i I i i I i i I i )()()()(∈∈∈∈=== ,G a ∈∀.所以i I i N ∈ 也是G 的正规子群.3.设1N ,2N 是群G 的正规子群且}{21e N N = ,证明:对于任意的1N a ∈,2N b ∈,都有ba ab =.证明 对于任意的1N a ∈,2N b ∈,由于1N 是群G 的正规子群,根据命题5.11我们有111N b ba ∈--,从而,111N b aba ∈--;由于2N 是群G 的正规子群,根据命题5.11我们有21N aba ∈-,从而,211N b aba ∈-=.因此2111N N b aba ∈--,从而,e b aba =--11.由此可见ba ab =.4.设H 是群G 的子群且2]:[=H G ,证明:H 是G 的正规子群.证明 我们已经知道,H Ha H a H aH =⇔∈⇔=,G a ∈∀.任意给定G a ∈.当H a ∈时,Ha H aH ==.当H a ∉时,Ha H aH H =∅=,并且,由2]:[=H G 可知,aH H G aH H ==.由此可见Ha aH =.所以H 是G 的正规子群.5.设H 是群G 的有限子群,n H =||.假设G 只有一个阶为n 的子群,证明:H 是G 的正规子群.证明 任取G a ∈,考察1-aHa :由§3习题第3题知,1-aHa 是G 的子群.定义H 到1-aHa 的映射ϕ如下:1)(-=axa x ϕ,H x ∈∀.显然ϕ是双射.因此n aHa =-||1.由于G 只有一个阶为n 的子群,因此H aHa =-1.这样一来,由于a 的任意性,根据命题5.11可以断言,H 是G 的正规子群.6.设G 是群,H 和K 是G 的子群,(1)证明:HK 是G 的子群KH HK =⇔.(2)假设H 是G 的正规子群,证明:HK 是G 的子群.(3)假设H 和K 都是G 的正规子群,证明:HK 是G 的正规子群.证明 (1)假设HK 是G 的子群.于是,对于任意的G a ∈,我们有HK a ∈HK a ∈⇔-1⇔存在H h ∈和K k ∈,使得hk a =-1⇔存在H h ∈和K k ∈,11--=h k aKH a ∈⇔.所以KH HK =.假设KH HK =.为了证明HK 是G 的子群,任意给定HK b a ∈,.于是,存在H h h ∈21,和K k k ∈21,,使得11k h a =,22k h b =.因此121211122111))(())((----==h k k h k h k h ab .由于KH HK k k h =∈-)(1211,因此存在H h ∈3和K k ∈3,使得331211)(h k k k h =-,从而, HK KH h h k h h k h k k h ab =∈===-=---)()())((123312331212111.这样一来,由于HK b a ∈,的任意性,我们断言:HK 是G 的子群.(2)由于H 是G 的正规子群,我们有KH kH Hk HK K k K k ===∈∈ . 这样,根据(1),HK 是G 的子群.(3)根据(2),HK 是G 的子群.此外,还有a HK Ka H aK H K Ha K aH HK a )()()()()()(=====,G a ∈∀.所以HK 是G 的正规子群.7.设G 是群,H 和K 是G 的子群且H K ⊆,证明:]:][:[]:[K H H G K G =. 注 证明这道题时还要用到如下约定:∞=∞⋅∞=⋅∞=∞⋅n n ,N ∈∀n .此外,这道题与§7中的Lagrange 定理类似,而且其证明难度不亚于Lagrange 定理的证明难度,因此安排在这里不太合适.证明 首先,由于K 是H 的子群,因此G a aH aK ∈∀⊆,.由此可见,当∞=]:[H G 时,∞=]:[K G ,从而,]:][:[]:[K H H G K G =.其次,由于}|{}|{G a aK H h hK ∈⊆∈,因此当∞=]:[K H 时,∞=]:[K G ,从而]:][:[]:[K H H G K G =.现在假设∞<]:[H G 且∞<]:[K H .令m H G =]:[,n K H =]:[.由m H G =]:[知,存在G a a a m ∈,,,21 ,使得H a G r mr 1== ,其中诸H a r 两两不相交.由n K H =]:[知,存在H b b b n ∈,,,21 ,使得K b H s ns 1== ,其中诸K b s 两两不相交.这样一来,我们有K b a K b a G s r n s m r s n s r m r )()(1111====== .)(*现在我们来阐明上式中的诸K b a s r )(两两不相交.为此,设},,2,1{',m r r ∈,},,2,1{',n s s ∈,我们来比较K b a s r )(与K b a s r )(''.当'r r ≠时,由于H K b s ⊆,H K b s ⊆',因此∅=⊆H a H a K b a K b a r r s r s r ''')()( ,从而,∅=K b a K b a s r s r )()('' ,即K b a s r )(与K b a s r )(''不相交.当'r r =且's s ≠时,∅=K b K b s s ' ,从而,K b a K b a K b a K b a s r s r s r s r )()()()(''''' =∅=∅==''')(r s s r a K b K b a ,即K b a s r )('与K b a s r )(''不相交.所以)(*式中的诸K b a s r )(两两不相交.这样一来,根据)(*式可以断言,mn K G =]:[,即]:][:[]:[K H H G K G =.8.设H 是群G 的子群,假设H 的任意两个左陪集的乘积仍是一个左陪集,证明:H 是G 的正规子群.证明 任取G a ∈.由于H 是H 的左陪集,因此存在H 的左陪集bH ,使得bH aH H H Ha ==)()(,由此可见,bH Ha ⊆,bH a ∈,从而bH aH =.所以aH Ha ⊆.由于a 的任意性,根据上式我们又可以断言,H a Ha 11--⊆.将上式两边左乘a ,右乘a ,得Ha aH ⊆.所以Ha aH =.由于a 的任意性,这就意味着H 是G 的正规子群.§6 群的同构与同态1.设f 是群1G 到群2G 的同构,g 是群2G 到群3G 的同构,证明:1-f 是群2G 到群1G 的同构;gf 是群1G 到群3G 的同构.证明 众所周知,1-f 是2G 到1G 的双射.其次,又因f 保持乘法运算,故对于任意的2','G b a ∈总有''))'())'(())'()'((11b a b f f a f f b f a f f ==----,从而,)'()'()''(111b f a f b a f ---=.所以1-f 是群2G 到群1G 的同构.众所周知,gf 是1G 到3G 的双射.又因f 和g 都保持乘法运算,故对于任意的1,G b a ∈总有))()()(())(())(())()(())(())((b gf a gf b f g a f g b f a f g ab f g ab gf ====. 所以gf 是群1G 到群3G 的同构.2.设H 是群G 的子群,1-aHa 是H 的共轭子群,证明:1-aHa 与H 同构. 证明 定义H 到1-aHa 的映射f 如下:1)(-=axa x f ,H x ∈∀.直接从f 的定义可以明白,f 是满射.利用消去律容易推知,f 是单射.因此f 是双射.其次,对于任意的H y x ∈,总有)()())(()()(111y f x f aya axa a xy a xy f ===---.所以f 是群H 到群1-aHa 的同构,从而,H aHa ≅-1.3.设f 是群G 到群'G 的同构,证明:对于任意的G a ∈,|)(|||a f a =.举例说明,若f 是群G 到群'G 的同态,则a 的阶与)(a f 的阶不一定相同.证明 将群G 和群'G 的单位元分别记做e 和'e .注意到根据命题6.5,我们可以断言:对于任意的正整数n ,我们有')(')(e a f e a f e a n n n =⇔=⇔=.由此可见,|)(|||a f a =.假设2||≥G ,}{'e G =,其中e 为G 的单位元,f 为G 到'G 的映射.则f 是G 到'G 的同态.任取G a ∈,使得e a ≠,则0||>a ,1|||)(|==e a f ,从而,|)(|||a f a ≠.4.分别建立HN 到)/(N H H 和G 到)//()/(N H N G 的同态来证明定理6.11.注 定理6.11的内容如下:设G 是一个群,N 是G 的正规子群.(1)若H 是G 的子群,则N HN N H H /)()/(≅ ;(2)若H 是G 的正规子群且N H ⊇,则H G N H N G /)//()/(≅. 证明 (1)设H 是G 的子群.显然,N H 是H 的正规子群;N 是HN 的正规子群.考察任意的HN a ∈:假设332211h n n h n h a ===,其中,H h h ∈21,,N n n ∈21,.则11221-=n n h h ,从而,N H n n h h ∈=--121211.因此)()(21N G h N H h =. 这样一来,我们可以定义HN 到)/(N H H 的映射f 如下:对于任意的HN a ∈,)()(N H h a f =,若hn a =,其中H h ∈,N n ∈.由HN H ⊆可知,f 是满射.任意给定HN b a ∈,.不妨设11n h a =,22n h b =.由于HN 是G 的子群,因此HN ab ∈,从而,存在H h ∈3和N n ∈3,使得332211n h n h n h ab ==.因此)()(3N H h ab f =.另一方面,我们有)())())((()()(2121N H h h N H h N H h b f a f ==.注意到N 是G 的正规子群和命题5.11,易知N H h n h n n h h h h h ∈=-----111112123211321)))((()(,从而,)()(321N H h N H h h =,即)()()(b f a f ab f =.所以f 是HN 到)/(N H H 的满同态.最后,对于任意hn a =(H h ∈,N n ∈),我们有N a N h N H h N H N H h f a ∈⇔∈⇔∈⇔=⇔∈ )()(Ker . 因此N f =)(Ker .这样一来,根据群的同态基本定理,N HN N H H /)()/(≅ .(2)设H 是G 的正规子群且N H ⊇.显然,N H /是N G /的正规子群.定义G 到)//()/(N H N G 的映射f 如下:)/)(()(N H aN a f =,G a ∈∀.显而易见,f 是满射.由于N H /是N G /的正规子群,因此对于任意的G b a ∈,,总有)/)(/)()(()/)(()(N H N H bN aN N H abN ab f ==)()()/)()(/)((b f a f N H bN N H aN ==.因此f 是G 到)//()/(N H N G 的满同态.其次,对于任意的G a ∈,我们有N H aN N H N H aN f a //)/)(()(Ker ∈⇔=⇔∈hN aN H h =∈⇔使得存在,H a ∈⇔.因此H f =)(Ker .这样一来,根据群的同态基本定理,H G N H N G /)//()/(≅.5.设G 是群,1G ,2G 是G 的有限子群,证明:||||||||212121G G G G G G =. 注 与§5习题中第8题类似,这道题也宜安排在§7习题中. 证明 令21G G H =.于是,H 既是1G 的子群,又是2G 的子群.设m H G =]:[1.则有)(11H c G j mj == ,(*)其中1G c j ∈,m j ≤≤1.显然,诸H c j 两两不相交;有且仅有一个},,2,1{m j ∈,使得H c j ∈;并且||||211G G G m =. 由于2G H ⊆,因此22G HG =.这样,由(*)式可以推得)())(())((21212121G c HG c G H c G G j m j j m j j mj ====== .(**)对于任意的},,2,1{,m j i ∈,考察2G c i 与2G c j :若22G c G c j i =,则21G c c i j ∈-,从而,H G G c c i j =∈-211 .由此可得,H c H c j i =,从而,j i =.这就表明,诸2G c j 两两不相交. 这样一来,由(**)式可以知,||||||||||2121221G G G G G m G G =⋅=. 6.设G 是群,证明:G G →1-a a是群G 到群G 的同构的充分必要条件是G 为交换群.如果G 是交换群,证明:对于任意的Z ∈k ,G G →k a a是一个同态.证明 将G 到自身的映射G G →1-a a记做f .显然f 是双射.于是,f 是群G 到群G 的同构)()()(b f a f ab f =⇔,G b a ∈∀,,即111)(---=b a ab ,G b a ∈∀, 11)()(--=⇔ba ab ,G b a ∈∀,ba ab =⇔,G b a ∈∀,是交换群G ⇔.假设G 是交换群,Z ∈k .将G 到自身的映射G G →k a a记做g .于是,我们有)()()()(b g a g b a ab ab g k k k ===,G b a ∈∀,.所以g 是一个同态.7.设f 是群G 到群'G 的满同态,'H 是'G 的正规子群,证明:'/')'(/1H G H f G ≅-.证明 由于'H 是'G 的正规子群,根据定理6.7,)'(1H f -是G 的正规子群.现在定义G 到'/'H G 的映射g 如下:')()(H a f a g =.由f 是群G 到群'G 的满同态可知g 是G 到'/'H G 的满射.其次,注意到'H 是'G 的正规子群,对于任意的G b a ∈,,有)()()')()(')(('')()(')()(b g a g H b f H a f H H b f a f H ab f ab g ====. 所以g 是G 到'/'H G 的满同态.最后,对于任意的G a ∈,我们有)'(')('')()(Ker 1H f a H a f H H a f g a -∈⇔∈⇔=⇔∈.因此)'()(Ker 1H f g -=.这样一来,根据群的同态基本定理,'/')'(/1H G H f G ≅-.8.设G 是群,1G ,2G 是G 的正规子群.假设21G G G =且}{21e G G = (此时称G 是1G 和2G 的内直积),证明:21G G G ⨯≅.证明 定义21G G ⨯到G 的映射f 如下:ab b a f =)),((,21),(G G b a ⨯∈∀.由21G G G =可知,f 是满射.现在设212211),(),,(G G b a b a ⨯∈,并且)),(()),((2211b a f b a f =.于是,2211b a b a =,从而,11112112G G b b a a ∈=--,从而,e b b a a ==--112112.这意味着21a a =且21b b =,即),(),(2211b a b a =.由此可见,f 是单射,从而,f 是双射. 对于任意的212211),(),,(G G b a b a ⨯∈,我们有))(()),(()),)(,((212121212211b b a a b b a a f b a b a f ==,))(()),(()),((22112211b a b a b a f b a f =.由于1G ,2G 是G 的正规子群且}{21e G G = ,由§5习题第3题可知,))(())((22112121b a b a b b a a =.因此)),(()),(()),)(,((22112211b a f b a f b a b a f =,从而,f 是群21G G ⨯到群G 的同构.所以21G G G ⨯≅.9.设1G ,2G 是群,证明:1221G G G G ⨯≅⨯.证明 定义21G G ⨯到12G G ⨯的映射f 如下:),()),((a b b a f =,21),(G G b a ⨯∈∀.显然,f 是双射.其次,对于任意的212211),(),,(G G b a b a ⨯∈,我们有),()),(()),)(,((212121212211a a b b b b a a f b a b a f ==,)),(()),((),)(,(),(221122112121b a f b a f a b a b a a b b ===.所以f 是群21G G ⨯到群12G G ⨯的同构,从而,1221G G G G ⨯≅⨯.10.设q p ,是不同的素数,证明:q p pq Z Z Z ⊕≅.证明 对于任意的Z ∈i 和任意的N ∈n ,将以i 为代表元的模n 同余类记做n i ][.于是,对于任意的Z ∈j i ,,注意到q p ,是不同的素数,我们有q q p p pq pq j i j i j i q j i p j i pq j i ][][][][)(|)(|)(|][][==⇔--⇔-⇔=且且. 这样一来,我们可以定义pq Z 到q p Z Z ⊕的映射f 如下:)][,]([)]([q p pq i i i f =,pq pq i Z ∈∀][.考察映射f :设pq pq pq j i Z ∈][,][且)]([)]([pq pq j f i f =.则)][,]([)][,]([q p q p j j i i =,即p p j i ][][=且q q j i ][][=,从而,pq pq j i ][][=.因此f 是单射.其次,显然 ||||q p pq Z Z Z ⊕=.因此f 是双射.最后,对于任意的pq pq pq j i Z ][,][∈,我们有)][,]([)]([)][]([q p pq pq pq j i j i j i f j i f ++=+=+,)][,][()][,]([)][][,][]([q p q p q q p p j j i i j i j i +=++=)]([)]([pq pq j f i f +=.所以f 是群pq Z 到群q p Z Z ⊕的同构,从而,q p pq Z Z Z ⊕≅.§7 有限群1.设G 是群,H 是G 的正规子群,n H G =]:[,证明:对于任意的G a ∈都有H a n ∈.证明 由于n H G =]:[,因此n H G =|/|.根据推论7.2,对于任意的G a ∈,商群H G /中元素aH 的阶整除n .因此H aH H a n n ==)(,从而,H a n ∈.2.设G 和'G 分别是阶为m 和n 的有限循环群,证明:存在G 到'G 的满同态的充要条件是m n |.证明 假设f 是G 到'G 的满同态.根据群的同态基本定理,')(Ker /G f G ≅.根据Lagrange 定理,我们有|)(||)(Ker ||'||)(Ker |)](Ker :[f Ker n f G f f G m =⋅=⋅=,从而,m n |.假设m n |.令〉〈=a G ,〉〈=n a N .于是,N 是G 的正规子群,n m N =||,N G /是n 元循环群.显然,'/G N G ≅.设f 是N G /到'G 的同构,f 是G 到N G /的自然同态.则gf 是G 到'G 的满同态.3.设G 是有限群,p 为素数,1≥r .如果|||G p r ,证明:G 一定有阶为r p 的子群.注 我们介绍过Sylow 定理的如下形式:设G 是n 阶有限群,其中,m p n r =,p 是素数,r 是非负整数,m 是正整数,并且1),(=m p .那么,对于任意的},,1,0{r k ∈,G 有k p 阶子群.显而易见,这道题已经包含在Sylow 定理中.这是因为: 由|||G p r 知,存在正整数s 和m ,使得m p n s =,其中1),(=m p .于是,s r ≤.根据Sylow 定理,G 有r p 阶子群.下面我们采用证明Sylow 定理的方法给出这道题的直接证明.证明 假设|||G p r .则存在正整数s 和m ,使得m p n s =,其中1),(=m p .显然,s r ≤.根据Sylow 定理,存在G 的子群H 使s p H =||.现在只需证明H 一定有阶为r p 的子群.为此,对s 施行第二数学归纳法.当1=s 时,显然结论成立.假设t 是整数,并且当t s ≤时,对于任意的正整数s r ≤,H 有r p 阶子群.下面我们来阐明:当1+=t s 时,对于任意的正整数s r ≤,H 有r p 阶子群.事实上,由1||+=t p H 可知,对于H 的每个真子群'H ,都有]':[|H H p .由群G 的类方程∑∈+=C H a a N H C H \]:[||||(其中C 为群H 的中心)立即可知|||C p .由于C 是交换群,根据引理7.4,存在C c ∈,使得p c =||.由C c ∈可知,〉〈c 是H 的正规子群.令〉〈=c H H /'.则t p c H H =〉〈=|||||'|. 根据归纳假设,对于任意的正整数r ,'H 有1-r p 阶子群'K .根据命题5.13,存在H 的子群K ,使得K c ⊆〉〈且〉〈=c K H /',从而,r r p p p c K c H =⋅=〉〈⋅〉〈=-1|/||||'|.4.设G 是有限群,p 为素数,如果G 的每个元素的阶都是p 的方幂,则称G 是p -群.证明:G 是p -群||G ⇔是p 的一个幂.证明 显然,当||G 是p 的一个幂时,G 是p -群.现在假设||G 不是p 的一个幂.于是,存在素数p q ≠,使的m q G r =||,其中1),(=m q ,1≥r .根据Sylow 定理,G 有r q 阶子群H .所以G 不是p -群.5.证明:阶小于或等于5的群都是交换群.证明 显然1阶群是交换群.由推论7.2立即可知,2阶群、3阶群和5阶群都是循环群,因而都是交换群.设G G 中元素的阶只能是1,2或4.当G 中有4阶元素时,G 是循环群,因而是交换群.当G 中有4阶元素时,G 中的元素,除单位元外,都是2阶元素.不妨设},,,{c b a e G =.容易验证,G 就是Klein 四元群,因而是交换群.6.设G 是群,1G ,2G 是G 的有限子群,假设1|))||,(|21=G G ,证明:||||||2121G G G G =.证明 由于21G G 既1G 的子群,又是2G 的子群,根据推论7.2,||21G G 是||1G 与||2G 的公约数.因为1|))||,(|21=G G ,所以1||21=G G .这样一来,根据§6习题第5题,我们有||||||||||||21212121G G G G G G G G == .第二章 环 论§1 环的概念1.证明:命题1.3的(5)-(7).注 命题1.3的(5)-(7)的原文如下:(设R 是一个环,则)(5)j n i mj i m j j n i i b a b a ∑∑∑∑=====1111)()(;(6))()()(ab n nb a b na ==,其中n 为整数;(7)若R 是交换环,则k k n n k k n n b a C b a -=∑=+0)(, n n n b a ab =)(.显然,(5)中应加进“其中),,2,1(n i a i =和),,2,1(m j b j =为R 中的任意元素,m 和n 为任意正整数”;(6)中应加进“a 和b 为R 中的任意元素”;(7)中应加进“其中,a 和b 为R 中的任意元素,n 为任意正整数,并且约定b b a =0,a ab =0”.证明 首先,因为乘法对加法适合分配律,所以j n i mj i m j j n i i m j j n i i b a b a b a ∑∑∑∑∑∑========111111)()()(. 这就是说,命题1.3(5)成立.其次,当0=n 时,根据命题 1.3(1),我们有00)(==b b na ,00)(==a nb a ,0)(0=ab ,从而,)()()(ab n nb a b na ==.当n 是正整数时,令a a i =,b b i =,n i ,,2,1 =, 则因乘法对加法适合分配律,我们有)()()(2121ab n b a b a b a b a a a b na n n =+++=+++= ,)()()(2121ab n ab ab ab b b b b a nb a n n =+++=+++= ,从而,)()()(ab n nb a b na ==.当n 是负整数时,根据命题1.3(2)和刚才证明的结论,我们有nab ab n b a n b a n b na =--=--=--=))()(()))((()))((()(,)())()(())()(()))((()(ab n ab n b a n b n a nb a =--=--=--=,从而,)()()(ab n nb a b na ==.这就是说,命题1.3(6)成立.最后,假定R 是交换环.我们用数学归纳法来证明等式k k n n k k n n b a C b a -=∑=+0)((*)成立.事实上,当1=n 时,显然(*)式成立.假设当r n =r (为某个正整数)时,(*)式成立. 当1+=r n 时,我们有k k r rk k r r n b a C b a b a b a b a -=∑+=++=+0)())(()(k k r r k k r k k r r k k r b a C b b a C a -=-=∑∑+=001110)1(11++--=-+=++++=∑∑r k k r r k k r k k r r k k r r b b a C b a C a1)1(11)1(11+-+=--+=++++=∑∑r k k r r k k r k k r r k k r r b b a C b a C a1)1(111)(+-+=-++++=∑r k k r r k k r k r r b b a C C a1)1(111+-+=++++=∑r k k r r k k r r b b a C ak k r r k k r b a C -++=+∑=)1(101k k n n k k n b a C -=∑=0. 所以对于一切正整数n ,(*)式成立.此外,由于乘法适合结合律和交换律,由第一章的§1知,n n n b a ab =)(.2.令}Z ,|2{]2[Z ∈+=b a b a ,证明]2[Z 关于实数的加法和乘法构成一个环.证明 显然,)],2[Z (+是一个交换群;)],2[Z (⋅是一个半群(也就是说,乘法适合结合律);乘法对加法适合分配律.所以),],2[Z (⋅+是一个环.(验证过程从略.)3.设R 是闭区间],[b a 上的所有连续实函数构成的集合.对于任意的R g f ∈,,定义)()())((x g x f x g f +=+,)()())((x g x f x g f =⋅,],[b a x ∈∀.证明:R 关于这样定义的”“+和”“⋅构成一个环.证明 简单的数学分析知识告诉我们,),(+R 是一个交换群;),(⋅R 是一个半群(也就是说,乘法”“⋅适合结合律);乘法”“⋅对加法”“+适合分配律.所以),,(⋅+R 是一个环.4.设R 是有单位元1的环,n 是正整数.形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n a a a a a a a a a 2122221141211,其中R a ij ∈,n j i ,,2,1, =, 的表格称为环R 上的n n ⨯矩阵(或n 阶方阵).令)(R M n 是环R 上的所有n n ⨯矩阵构成的集合.完全类似于数域上矩阵,可以定义环上的矩阵的加法和乘法,证明:)(R M n 关于矩阵的加法和乘法构成一个环.记)(R M n 中单位矩阵为n I .对)(R M A n ∈,如果存在)(R M B n ∈,使得n I BA AB ==,则称A 是可逆的,称B 是A 的一个逆矩阵,证明:若A 可逆,则其逆是唯一的,记A 的逆矩阵为1-A .证明 完全类似于数域上矩阵,容易验证)(R M n 上的加法适合结合律和交换律(从略).令n O 表示所有元素都为R 的零元的n 阶方阵;对于任意的)(R M A n ∈,将A 中每个元素都代之以其负元而得到矩阵记做A -.显而易见,对于任意的)(R M A n ∈,有A O A n =+,n O A A =-+)(.所以)(R M n 关于矩阵加法交换群.完全类似于数域上矩阵,容易验证:)(R M n 上的乘法适合结合律,并且对)(R M n 上的加法适合分配律(从略).所以)(R M n 关于矩阵的加法和乘法构成一个环.假设)(R M A n ∈是任意一个可逆矩阵,并且矩阵B 和C 都是A 的逆矩阵.则矩阵n I AC AB ==,从而,C C I C BA AC B BI B n n =====)()(.这就表明A 的逆矩阵是唯一的.5.设R 是一个环,假设),(+R 是一个循环群,证明:R 是交换环.证明 设a 是循环群),(+R 的一个生成元.于是,对于任意的R y x ∈,,存在Z ,∈n m ,使得ma x =,na y =,从而,根据命题1.3(6),yx ma na ma n a a mn a na m a na ma xy ======))(())(()))(())(())((. 所以R 是交换环.6.设),,(⋅+R 是一个有单位元1的环,对于任意的R b a ∈,,令1-+=⊕b a b a ,a ⊙ab b a b -+=,证明:⊕和⊙是R 上的两个代数运算且关于加法⊕和乘法⊙也构成一个有单位元的环.注 到此为止,还要求证明⊕和⊙是R 上的代数运算已没有什么意义.因此这道题可改为:设),,(⋅+R 是一个有单位元1的环,定义R 上的代数运算加法⊕和乘法⊙如下:1-+=⊕b a b a ,a ⊙ab b a b -+=,R b a ∈∀,.证明:R 关于加法⊕和乘法⊙也构成一个有单位元的环.证明 (显而易见,⊕和⊙都是R 上的代数运算.)对于任意的R c b a ∈,,,有c b a c b a ⊕-+=⊕⊕)1()()(1)1(c b a c b a ⊕⊕=--++=;a b a b b a b a ⊕=-+=-+=⊕11;a a a =-+=⊕111;1111)11(=--++=-+⊕a a a a .由此可见,),(⊕R 是以1为零元的交换群.其次,对于任意的R c b a ∈,,,有a (⊙)b ⊙c )(ab b a -+=⊙c c ab b a c ab b a )()(-+-+-+=abc bc ac ab c b a +---++=)()(bc c b a bc c b a -+--++=a =⊙a bc cb =-+)(⊙b (⊙)c ;a ⊙a cb =⊕)(⊙)1(-+c b )1()1(-+--++=c b a c b a。

抽象代数——群的基本定义和一些例子

抽象代数——群的基本定义和一些例子

抽象代数——群的基本定义和一些例子原创 2015年08月28日 14:26:33群论的基本概念点较多,且各概念点之间关系纵横交错,学习起来颇有本科时初学线性代数时的感觉,觉得有必要整理一下,先梳理一下群的基本定义和例子。

首先作几点说明:1、群(group)、环(ring)、域(field)是抽象代数(abstract algebra)中基本的代数结构(algebraic structures)2、上述这些代数结构是抽象代数(abstract algebra)的研究对象之一,另一个研究对象是通过研究这些代数结构间的保持运算的映射(态射(morphism))3、1872年,F.Klein在被聘为埃尔朗根大学的数学教授的就职演讲中阐述了几何学统一的思想:所谓几何学,就是研究几何图形对于某类变换群保持不变的性质的学问,或者说任何一种几何学只是研究与特定的变换群有关的不变量(《埃尔朗根纲领(Erlangen Program)》)〇、前置概念名称英文名称定义说明代数运算AlgebraCalculation非空集合S与自己的笛卡尔积S×S到S的一个映射在群论中通常是指所谓的二元代数运算正交点变换又称为保距变换(isometry)正交矩阵OrthogonalMatrixAA T=A T A=E酉矩阵Unitary Matrix UU H=U H U=E n式中H为共轭转置一、群的定义1、群的基本定义序号 定义 说明1 代数运算 定义了一个代数运算的非空几何2 结合律(ab)c=a(bc ),∀a,b,c ∈G3 单位元存在律 ∃s ∈G,ea=ae=a ,∀a ∈G 4逆元存在律 ∀a ∈G ,∃b ∈G,ab=e2、 群定义的衍生名称 英文名称 定义 说明群Group满足前述全部4条群的基本定义的非空集合半群 Semigroup 仅满足前述群的基本定义中的前2条的非空集合,即:1)定义了集合上的代数运算2)适用结合律但是,并不要求存在单位元和逆元也有地方称为仿群幺半群Monoid满足前述群的基本定义中的前3条的非空集合,即:1)定义了集合上的代数运算 2)适用结合律 3)存在单位元但是,并不要求存在逆元 阿贝Abel在满足前述全部4条群的基本定义的前提ab=ba ,∀a,b ∈G名称英文名称定义说明尔群Group 下,再补充一条:群元素满足交换律二、群的例子1、生活中群的例子名称英文名称说明平面晶体群Plane CrystallographicGroup又被称为贴墙纸群(Wallpaper Group)已经G.Polya在1924年完成对平面晶体群的分类:共有17种不同的平面晶体群空间晶体群Space CrystallographicGroupFedorov和Schonflies分别独立地证明了空间晶体群共有230个魔方群Rubik’s Cube group 2、数集中群的例子名称符号定义说明整数加群实数加群n次单位根群U n U n的生成元成为复数域中的本原n次单位根(primitive n th root of unity)3、几何中群的例子中文名称英文名称符号定义说明欧几里得群EuclideanGroupE n n维空间所有正交点变换的集合E2为平面欧氏群E3为空间欧氏群二面体群DihedralGroupD n正n边形的对称(性)群,n≥34、代数中群的例子中文名称英文名称符号定义说明模Z m Z m=0,1,2,…,m−1该群的生成元是文名称英文名称符号定义说明n剩余类环1¯(i¯=i1¯)Z m的单位群Z m’s Group ofUnitsU(Z m)或Z∗mZ m=0,1,2,…,m−1该群的生成元是1¯(i¯=i1¯)Z p的乘法群Z∗p当m为素数p时,Z m中所有非零元组成的集合对于乘法构成的一个abel群该群是一个abel群当m为素数时,根据欧拉定理Z p中的所有元素都有逆元(inverse unit)一般线性群General LinearGroupGL n(F)域F上所有n级可逆矩阵组成的集合,对于矩阵的乘法所成的群是矩阵群(Matrix Group)的一种特殊线性群Special LinearGroupSL n(F)在一般线性群定义的基础上再补充定义,所有的矩阵行列式为1是矩阵群(Matrix Group)的一种正交群OrthogonalGroupO n实数域上所有n级正交矩阵(AA T=A T A=E)组成的集合是矩阵群(Matrix Group)的一种特殊正交群SpecialOrthogonalGroupSO n在正交群定义的基础上再补充定义,所有的矩阵行列式为1是矩阵群(Matrix Group)的一种通常SO n被称为n维旋转群(Rotation Group)它所指定的旋转对应的旋转轴可以通过求解一个线性方程组的基础解析来计算得到酉Unitary Group U n复数域上所有n级酉文名称英文名称符号定义说明群矩阵组成的集合,对于矩阵乘法所成的群特殊酉群Special UnitaryGroupSU n在酉群定义的基础上再补充定义,所有的矩阵行列式为1集合Ω的全变换群FullTransformationGroup on Set ΩSΩ非空集合Ω到自身的所有双射组成的集合,对于映射的乘法构成的一个群n元对称群Symmetric Groupon n lettersS n SΩ,当Ω为有限集合时S n具备对称性这时其中的每一个元素(是一个双射)被称为Ω的一个置换(permutation),对于Ω有n个元素的情形,该置换被称为n元置换(permutation on nletters)S n中引入了r-轮换(r-cycle)的概念;特别的,当r=2时,轮换被称为对换(transposition);并且可以说明:每一个置换都可以表示成一些对换的乘积并且对于置换进一步引入了由其等价的对换分解式中的对换的个数的奇偶性确定的奇置换或偶置换n元交AlternatingGroup on nA n S n中所有偶置换组成的集合文英文名称符号定义说明名称letters错群。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高纲0926江苏省高等教育自学考试大纲02009抽象代数江苏教育学院编江苏省高等教育自学考试委员会办公室一、课程性质、目的和要求抽象代数即近世代数是现代数学的一个重要分支,是研究多种代数结构的一门学科。

它是现代科学各个分支的基础,而且随着科学技术的不断进步,特别是计算机的发展与推广,近世代数的思想、理论与方法的应用越来越广泛。

它的思想方法已经渗透到数学的多个分支,它的结果已应用到众多学科领域,它的内容对中学代数教学有指导意义。

本课程是师范院校数学专业学生的必修课,也是教师本科自考的必考课程。

近世代数的内容丰富,在本科阶段不可能全部掌握,根据所选教材,要求考生在学习本课程中,掌握近世代数的基本概念、基本理论和方法,使学生拓宽眼界,扩大知识领域,提高抽象思维能力和逻辑推理能力,提高数学修养与技巧,以便能深入理解中学代数的内容和方法,为进一步学习其它学科创造条件。

课程内容包括:基本概念;群;环;整环里的因子分解。

二、课程内容与考核要求第一章基本概念本章中介绍的一些基本概念是数学各个分支的基础,也是学习本课程各个代数体系的必备知识。

其主要内容有1.集合的概念与运算2.映射的定义与几种特殊映射的性质3.卡氏积与代数运算4.等价关系与集合的分类考试要求:掌握集合的概念与运算,掌握集合的交、并、集合A的幂集A2的定义及表示,熟练掌握习题7、8的结论;了解映射的定义与几种特殊映射的性质,掌握映射的合成,熟练掌握定理1.6及习题2、6的结论;掌握代数运算的定义与判定方法, 熟练掌握习题2;掌握等价关系与集合的分类的定义及相关性质,能够由等价关系得出集合分类,并能正确给出商集,熟练掌握习题5、6。

第二章群群是具有一种代数运算的代数体系,即具有一个代数运算的集合,它是近世代数中比较古老且内容丰富的重要分支。

其主要内容有1.半群的定义及性质2.群的定义及等价条件3.元素阶的定义及性质4.循环群的定义及结构5.子群及判定条件6.变换群7.群的同态与同构、Cayley定理8.子群的陪集、Lagrange定理9.正规子群与商群、正规子群的等价条件10.同态基本定理与同构定理考试要求:掌握半群的定义及定理2.1、定理2.2、定理2.3、定理2.4的结论;掌握群的定义及性质,如定理2.5、定理2.6及推论;熟练掌握群的一些重要例子,如例1、例3、例4、例7,熟练掌握习题2、3、6、9;掌握元素阶的定义及相关重要性质,如定理2.8、定理2.9、定理2.10,熟练掌握例1、例2;熟练掌握循环群的定义、构造及性质,如定理2.11、定理2.12、定理2.13及推论1、推论2, 熟练掌握例5、例6及习题2、3、5、8、9;熟练掌握子群的定义及性质,如定理2.14、定理2.16、定理2.21及例3、例5、习题2、4、5;掌握变换群的概念及有关结论,熟练掌握n次对称群、循环置换的概念及性质,特别是3次、4次对称群元素的表示、运算及性质,如定理2.23、定理2.24、定理2.25、定理2.27、例4及习题4;掌握群的同态、同构的定义、性质以及Cayley定理及定理2.28、定理2.30,会求同态象与同态核,掌握习题1、2;掌握子群陪集的概念及性质,熟练掌握Lagrange定理及及其推论1、推论2、例5、例6,熟练掌握习题2、3、4、5;掌握正规子群的定义及等价命题定理2.40, 能够正确判定子群与正规子群, 掌握例1、例2、例4、例6、例7的结论及习题2、3、6,正确掌握商群的概念及性质(推论);掌握并正确使用同态基本定理,熟练掌握复习题二中的第2、4题。

第三章环环是具有两中代数运算的代数体系,它也是近世代数中的一个重要分支。

其主要内容有1. 环的定义;整环、除环、域的定义及性质2. 子环及判定条件3.环的同态与同构4.理想与商环5.素理想与极大理想6. 商域7.多项式环8.扩域9.有限域考试要求:熟练掌握环、整环、除环、域的概念及相关命题:定理3.1及推论、定理3.2、定理3.3、定理3.4及推论。

熟练掌握几个重要环的例子,如例1、例2、例3、例5、例7、例9、例10,掌握环的单位元、零因子的定义及性质,熟练掌握习题5、9、10、11;掌握子环、子域的概念以及判定定理3.5、定理3.6,掌握例1、例4、例6,需要注意:子环S与环R在是否可交换、有无零因子、有无单位元等性质上有一定的联系,但是并不一定一致;掌握环的同态与同构的定义及相关性质(定理3.10、定理3.11),会求同态象与同态核,需要注意:当R与'R满同态时,R与'R 在是否可交换、有无零因子、有无单位元等性质上有一定的联系,但是并不完全一致;熟练掌握习题2、3;掌握理想与商环的概念及相关命题(定理3.14、定理3.17及推论、定理3.18); 熟练掌握主理想的构造(推论1),熟练掌握例2、例5、例6、例7、例8及习题1、2、4、7;正确应用同态基本定理及同构定理; 掌握素理想与极大理想的定义、判定方法及相关命题(定理3.22、定理3.23及推论),熟练掌握例1、例2、例3、例4、例5及习题1、2、3;了解商域及多项式环的构造;了解域的研究方法,掌握代数元的极小多项式的性质及求法,掌握有限扩域的概念及定理3.35。

第四章 整环里的因子分解在整数环Z 中,每个不等于1±的非零整数都能分解成有限个素数的乘积,而且除了因数次序和1±的因数差别外,分解是惟一的。

同样,在数域P 上的一元多项式环][x P 中,每个次数1≥的多项式都能分解成有限个不可约多项式的乘积,而且除了因子次序和零次因式的差别外,分解是惟一的。

在这一章里,我们将对一般的整环讨论元素分解的理论,给出整环中因子分解惟一性定理成立的一些条件,并介绍几种惟一分解定理成立的整环。

其主要内容有1. 不可约元、素元、最大公因子2. 惟一分解环3. 主理想环4. 欧氏环5. 惟一分解环上的一元多项式环6. 因子分解与多项式的根考试要求:掌握整环中的单位、相伴、真因子、不可约元、素元、最大公因子的概念及其性质,熟练掌握例1、例2及习题2、3、4;掌握惟一分解元、惟一分解环的定义及其性质,熟练掌握例1及习题1;熟练掌握主理想环的概念及主理想环的例子,如:整数环Z 、域F 上的一元多项式环][x F ,知道整数环Z 上的一元多项式环][x Z 不是主理想环,掌握定理4.14、定理4.15、定理4.16及其习题4、5;熟练掌握欧氏环的定义及欧氏环的例子,如:整数环Z 、高斯(Gauss)整数环][i Z 、域F 、域F 上的一元多项式环][x F ,掌握定理4.17、定理4.18;掌握惟一分解环上的一元多项式环也是惟一分解环;了解因式分解与多项式的根的概念及其性质,掌握例子及习题1、2、3。

三、 有关说明(一)教材:自学教材:1、《近世代数》,朱平天主编,科学出版社,2001年版;2、《抽象代数基础》,李克正主编,清华大学出版社,2007年。

教材1可作为应考者复习应考的主要参考教材,教材2可作为应考者补充和提高抽象代数知识的主要参考。

本课程考试命题以大纲为依据。

其他参考书目:《近世代数基础》,张禾瑞编,人民教育出版社, 1984年版。

(二)自学方法的指导本课程作为一门专业课程,内容抽象,综合性强,自学者在自学过程中应该注意以下几点:1.本课程在学生具备初等代数、高等代数知识的基础上,系统地学习群、环、域的基础知识。

因此,自学前,要注意知识的积累与衔接。

应仔细阅读课程考试大纲,了解课程的性质、地位和要求,熟悉掌握课程的基本内容,使以后的学习紧紧围绕课程的基本要求。

2.所配教材是自学的主要依据,自学时应结合教材及课程考试大纲和参考书目,熟练掌握基本概念和方法的同时,能结合具体例子进行练习和运用,以达到本课程的要求。

(三)对社会助学的要求1.应熟知考试大纲对课程所提出的总的要求和各章节的知识点。

2.对考生进行辅导时,主要以指定的教材为主,同时以考试大纲为依据,关注补充参考书目,注重提高学生的抽象思维能力和逻辑推理能力,增强数学修养与技巧,提高解决问题的能力。

(四)关于命题和考试的若干规定1.本大纲各章节所提到的考核要求中,各条细目都是考试的内容,试题覆盖到各章节,适当突出重点章节,加大重点内容的覆盖密度。

2.试题难度结构合理,记忆、理解、综合性试题比例大致为4:4:2。

3.本课程考试试卷可能采用的题型有:填空题、判断改错题、计算简答题、证明题(见附件题型示例)。

4.考试方式为闭卷笔试,考试时间为150分钟,评分采用百分制,60分为及格。

附录 题型举例一、填空题例 设)(a G =是12阶循环群,则G 的生成元集合为 },,,{1175a a a a .二、判断改错题(若不正确请改正或说明理由)例 设A Q =,,a b A ∈,则22a b a =+ Q 上的代数运算. ( ⨯)理由: 22a b a =+ Q 不封闭.三、计算简答题例 找出整数环Z 的所有素理想和极大理想. 解: 整数环Z 的所有素理想有:)()(,},0{是素数p p Z (3分)由于整数环Z 是有单位元的交换环,所以它的极大理想都是素理想,因此,整数环Z 的所有极大理想有:))((是素数p p . (2分)四、证明题例 在整数环Z 上的一元多项式环][x Z 中,证明:),2(x 不是主理想.证明:因为一元多项式环][x Z 是有单位元的交换环,所以]}[)(,)(:)()(2{),2(2121x Z x f x f x xf x f x ∈+=]}[)(:)(2{0x Z x f x xf a ∈+=即 ),2(x 是由][x Z 中常数项为偶数的多项式所组成. (2分) 若),2(x 是主理想,则存在][)(x Z x p ∈,使 ))((),2(x p x =于是 ))((2x p ∈, ))((x p x ∈.即 )()(2x q x p =, )()(x h x p x =, ][)(),(x Z x h x q ∈因此,由,得 ))((2x p ∈Z a x p ∈=)(. (4分) 再由)()()(x ah x h x p x ==,得1±=a . 于是),2()(1x x p ∈=± 矛盾. 因此, ),2(x 不是主理想. (2分)。

相关文档
最新文档