苏教版七年级数学全册知识点总结

合集下载

苏教版初中数学知识点

苏教版初中数学知识点

苏教版初中数学知识点苏教版初中数学知识点概述一、数与代数1. 有理数- 有理数的概念- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值的概念及性质2. 整数- 整数的性质- 整数的四则运算- 整数的因数与倍数- 质数与合数3. 代数表达式- 单项式与多项式- 代数式的加减运算- 乘法公式与因式分解- 分式与分式的运算4. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 不等式及其解集- 一元一次不等式及其解法5. 二元一次方程组- 二元一次方程组的概念- 代入法与消元法解方程组 - 三元一次方程组的解法6. 函数- 函数的概念- 函数的表示方法- 一次函数与反比例函数- 二次函数的图像与性质二、几何1. 平面图形- 点、线、面的基本性质- 角的概念及分类- 三角形的性质与分类- 四边形的性质与分类- 圆的性质2. 几何图形的计算- 面积与体积的计算公式- 三角形、四边形的面积计算 - 圆的周长与面积- 空间图形的体积计算3. 相似与全等- 全等三角形的判定- 相似三角形的判定与性质 - 相似多边形- 相似三角形的面积比4. 解析几何- 坐标系的概念与应用- 直线与曲线的方程- 点、线、面间的几何关系三、统计与概率1. 统计- 数据的收集与整理- 统计图表的绘制与解读- 平均数、中位数、众数的计算- 方差与标准差的概念及计算2. 概率- 随机事件的概念- 概率的计算与表示- 事件的可能性分析- 独立事件与条件概率四、综合应用题1. 数学问题的实际应用- 利用数学知识解决实际问题- 数学建模的基本概念- 应用题的解题策略与方法2. 数学探究活动- 数学问题的发现与提出- 数学探究的方法与步骤- 数学结论的归纳与证明以上是苏教版初中数学的主要知识点概述,每个部分都包含了相应的概念、性质、公式和解题方法。

在实际教学过程中,教师会根据学生的具体情况和学习进度,逐步深入讲解每个知识点,并通过大量的练习题来巩固学生的理解和应用能力。

苏教版七年级数学知识点总结

苏教版七年级数学知识点总结

苏教版七年级数学知识点总结一、整数1. 整数的概念:自然数、0和负整数的统称。

2. 整数的比较:可以利用数轴来比较两个整数的大小。

3. 整数的加法和减法:同号相加减,异号相加减,减法可转化为加法。

4. 整数的乘法:同号相乘为正,异号相乘为负。

5. 整数的除法:除数不为0时,同号相除为正,异号相除为负。

二、有理数1. 有理数的概念:包括整数和分数。

2. 有理数的加法和减法:同分母相加减,异分母先通分再加减。

3. 有理数的乘法和除法:同号相乘为正,异号相乘为负,除法可转化为乘法。

4. 有理数的绝对值:正数的绝对值等于自身,负数的绝对值等于其相反数。

5. 有理数的大小比较:可通过转化为相同分母的分数进行比较。

6. 有理数的数轴表示:可以利用数轴上的点对应有理数。

三、代数表达式和运算1. 代数式的概念:由字母(变量)和常数通过运算符号组成的式子。

2. 代数式的运算:可以进行加法、减法、乘法和除法运算。

3. 代数式的化简:合并同类项、利用分配率等化简代数式。

4. 代数式的值:将字母替换为具体的数值,求出代数式的值。

5. 代数式的应用:通过代数式解决实际问题。

四、平方根与立方根1. 平方根的概念:一个数的平方等于它的平方根。

2. 平方根的计算:通过开平方运算,求出一个数的平方根。

3. 平方根的性质:正数的平方根是正数,0的平方根是0,负数没有实数平方根。

4. 平方根的大小比较:对于正数,平方根越大,数越大。

5. 立方根的概念:一个数的立方等于它的立方根。

6. 立方根的计算:通过开立方运算,求出一个数的立方根。

五、代数方程与方程式1. 代数方程的概念:含有未知数的等式。

2. 代数方程的解:使方程成立的未知数的值。

3. 一元一次方程:只含有一个未知数的一次方程。

4. 一元一次方程的解的性质:有无穷多个解、只有一个解、无解。

5. 解一元一次方程的方法:逆向运算法、等式两边加减法、等式两边乘除法。

6. 方程的应用:通过方程解决实际问题。

(完整版)苏教版初中数学知识点总结(适合打印)

(完整版)苏教版初中数学知识点总结(适合打印)
运算定律、性质、法则
1.分式的加、减、乘、除、乘方、开方法则2.分式的性质
⑴基本性质: = (m≠0) ⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:① · = ;② ÷ = ;③ = ;④ = ;
⑤ 技巧:
5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。
3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)
4.两点间的距离(三个距离:点-点;点-线;线-线)
5.角(平角、周角、直角、锐角、钝角)6.互为余角、互为补角及表示方法
7.角的平分线及其表示8.对顶角及性质
9.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)
⑵追及问题(同时出发):
若甲出发t小时后,乙才出发,而后在B处追上甲,则
⑶水中航行: ;
1.配料问题:溶质=溶液×浓度2.溶液=溶质+溶剂3.增长率问题:
4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。
5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

苏教版七年级数学知识点总结

苏教版七年级数学知识点总结

苏教版七年级数学知识点总结七年级数学知识点图形的初步认识一、立体图形与平面图形1、长方体、正方体、球、圆柱、圆锥等都是立体图形。

此外棱柱、棱锥也是常见的立体图形。

2、长方形、正方形、三角形、圆等都是平面图形。

3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

二、点和线1、经过两点有一条直线,并且只有一条直线。

2、两点之间线段最短。

3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。

类似的还有线段的三等分点、四等分点等。

4、把线段向一方无限延伸所形成的图形叫做射线。

三、角1、角是由两条有公共端点的射线组成的图形。

2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。

3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量单位。

把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。

四、角的比较从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

类似的,还有叫的三等分线。

初一数学复习方法考试与作业逻辑不同:我们的考试不同于作业,有些孩子作业写的还可以,准确率挺高的,但是考试成绩不理想。

比如学校上完课,回家就写当天的作业,但是考试不一样,它是阶段性的、综合性的;再比如写作业,可以看资料,不会的可以请教同学,但是考试就得靠自己;还有写作业时格式不一定规范,不一定符合标准,但是考试老师会要求很严格;另外有些孩子考试比较焦虑,考试之前,爸爸妈妈给孩子加油鼓劲,反倒孩子考不好,有些孩子甚至在考试前后一定要上厕所,排解压力,甚至影响到考试成绩。

那具体涉及到数学的复习,我以北师大版为例,可以分4个步骤:复习方法总结1回归书本,梳理章节概念公式、性质定理等就像盖房子,房子的地基是否扎实稳固。

比如我们在复习课中,要求孩子们默写公式等,记忆单项式、多项式、整式的概念,以及幂的运算、整式乘除的法则,而且一定要记住平方差和完全平方公式以及变形。

苏教版七年级全册数学知识点总结

苏教版七年级全册数学知识点总结

第二章有理数一、正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

如:二、有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数整数 0 正有理数正分数有理数有理数 0 (0不能忽视)负整数分数负有理数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数三、数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

初中数学知识点总结苏教

初中数学知识点总结苏教

初中数学知识点总结苏教一、数与代数1. 整数和有理数- 整数的概念:正整数、零、负整数及其运算(加、减、乘、除)。

- 有理数的概念:分数、小数、整数和分数的混合运算。

- 绝对值、相反数、科学计数法。

2. 代数表达式- 单项式和多项式的概念及运算。

- 合并同类项、分配律、结合律、交换律、整式的加减乘除。

- 因式分解:提公因式、公式法(平方差公式、完全平方公式)。

3. 一元一次方程与不等式- 方程和不等式的概念及基本性质。

- 解一元一次方程的基本方法:移项、合并同类项、系数化为1。

- 解一元一次不等式的基本方法:去分母、去括号、移项、合并同类项、系数化为1。

4. 二元一次方程组- 二元一次方程组的概念。

- 解方程组的基本方法:代入法、消元法(加减消元、代数代入)。

5. 函数- 函数的概念:定义、函数关系式、函数图像。

- 线性函数、二次函数、反比例函数的图像和性质。

- 函数的基本运算:函数的和、差、积、商。

二、几何1. 平面图形- 点、线、面的基本性质。

- 角的概念:邻角、对角、平行线与对角的关系。

- 三角形的分类与性质:等边、等腰、直角三角形的性质和判定。

- 四边形的分类与性质:平行四边形、矩形、菱形、正方形。

2. 图形的变换- 平移:平移的性质和作图方法。

- 旋转:旋转的性质和作图方法。

- 轴对称:轴对称图形的性质和作图方法。

3. 圆的基本性质- 圆的定义、圆心、半径、直径。

- 圆的对称性、切线的性质、弦的概念。

- 圆周角定理、圆心角定理、圆的面积和周长计算公式。

4. 空间图形- 空间几何体的基本概念:点、线、面、体。

- 多面体的分类与性质:长方体、正方体、棱柱、棱锥、圆柱、圆锥。

- 体积和表面积的计算公式。

5. 相似与全等- 全等图形的判定条件:SSS、SAS、ASA、AAS。

- 相似图形的判定条件:SSS、SAS、ASA。

- 相似三角形的性质:对应角相等、对应边成比例、面积比等于边长比的平方。

苏教版初中数学最全面知识点大全

苏教版初中数学最全面知识点大全

苏教版初中数学最全面知识点大全苏教版初中数学包含了丰富的知识点,从基础的四则运算和整数,到代数、几何和概率统计等各个方面。

以下是一个基本的数学知识点大全,供你参考:1. 四则运算及其性质- 加法- 减法- 乘法- 除法2. 整数- 整数的读写与比较- 整数的加减乘除- 整数的绝对值和相反数 - 整数的乘方和乘方根3. 分数- 分数的读写与比较- 分数的加减乘除- 分数的化简与约分- 分数的运算性质4. 小数- 小数的读写与比较- 小数的加减乘除- 小数与分数的相互转换- 小数的运算性质5. 负数- 负数的加减乘除- 负数的乘方和乘方根- 负数在实际问题中的应用6. 代数与方程- 代数式的化简- 简单方程的求解- 一元一次方程与二元一次方程的求解 - 一次方程组的解法7. 平面图形与空间图形- 直线和角的性质- 三角形、四边形、多边形的性质- 圆和圆的性质- 立体图形的名称和性质8. 空间几何- 直线和面的关系- 线段、角的部分与线段的垂直、平行关系 - 平行线的判定及其性质- 同位角、内错角和同旁内角的性质9. 比例与相似- 比例的概念与性质- 比例的四则运算- 图形的相似性质与相似判定- 相似三角形的性质和应用10. 数据分析- 平均数、中位数、众数的概念与计算 - 简单统计图的绘制与分析- 折线图、柱状图、扇形图的制作与应用 - 概率的概念与计算11. 几何证明- 线段垂直的证明- 等腰三角形性质的证明- 相等角、相似三角形的证明- 过定点作直线的证明以上只是一些基本的数学知识点,初中数学知识非常广泛,无法一一列举。

希望这些知识点对你有所帮助。

如果你对特定的知识点有问题,欢迎继续提问。

苏教版七年级数学知识点总结

苏教版七年级数学知识点总结

苏教版七年级数学知识点总结苏教版初一数学知识点二元一次方程组1、含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程2、含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。

3、二元一次方程组中两个方程的公共解叫做二元一次方程组的解。

4、代入消元法:把二元一次方程中一个方程的一个未知数用含另一个未知数的式子表示出来,再带入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这种方法叫做代入消元法,简称代入法。

5、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.6、二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.初一新生必看:数学学习方法指导1.做好预习:单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

坚持预习,找到疑点,变被动学习为主动学习,能大大提高学习效率噢,兴趣是的老师嘛。

2.认真听课:听课应包括听、思、记三个方面。

听,听知识形成的来龙去脉,听重点和难点(记住预习中的疑点了吗?更要听仔细了),听例题的解法和要求,听蕴含的数学思想和方法,听课堂小结。

思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题,大胆猜想。

记,当然是指课堂笔记了,不是记得多就是有效的知道吗?影响了听课可就不如不记了,记什么,什么时候记,可是有学问的哩,记方法,记技巧,记疑点,记要求,记注意点,记住课后一定要整理笔记。

七年级苏教版数学知识点归纳大全

七年级苏教版数学知识点归纳大全

七年级苏教版数学知识点归纳大全数学作为理工科的一门基础学科,对于每个学生来说都是非常关键的。

而在初中阶段,数学的难度也逐渐加大。

在这个阶段,学生需要建立良好的数学基础,才能在以后的学习中更好地掌握数学相关知识。

苏教版数学是初中数学教材中非常优秀的一种,其中七年级数学知识点也是千万不可错过的,下面对七年级苏教版数学知识点进行归纳总结,以便于学生更好地掌握及记忆。

1. 数的认识数的概念是数学的基础,所以数的认识是非常重要的。

七年级数学主要是从整数、分数、小数三个方面进行学习,帮助学生更全面地掌握数的认识。

重点包括:1.1 整数:整数包括正整数、负整数和0,学生需要理解整数的基本性质,掌握正整数和负整数的不同特征,并在实际生活中认识和应用整数。

1.2 分数:分数是数学中重要的概念之一,七年级学习的是分数的概念、分数的简单运算、分数的化简等知识点。

1.3 小数:小数也是数学中非常重要的数字形式,同时也是将分数转化为小数的一种方式,七年级主要是学习小数的概念、小数的读法和写法以及小数的四则运算。

2. 条件语句条件语句是计算机编程语言中非常重要的一种语言形式,而数学中也有类似的语言形式,七年级学习的是不等式和绝对值等条件语句。

需要重点掌握的内容有:2.1 不等式:学生需要了解不等式的定义、性质和表示方法,掌握不等式的基本运算,以及应用于简单的问题解决中。

2.2 绝对值:学生需要理解绝对值的概念和基本性质,如绝对值的非负性、绝对值的定义、计算绝对值等。

3. 图形的认知和计算图形的认知和计算是初中数学中非常重要的一部分,主要包括了平面图形、立体图形等,在七年级的学习中,需要掌握以下内容:3.1 平面图形:学生需要了解平面图形的分类、性质和常见的计算方法,如长方形、正方形、三角形、圆等。

3.2 立体图形:立体图形是三维空间中的图形,学生需要学习立体图形的分类、基本数量属性和计算方法,如正方体、长方体、圆柱体、圆锥体等。

苏教版七年级数学知识点归纳

苏教版七年级数学知识点归纳

苏教版七年级数学知识点归纳变量之间的关系一理论理解1、若y随x的变化而变化,则x就是自变量y就是因变量。

自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。

3、若等腰三角形顶角就是y,底角就是x,那么y与x的关系式为y=-2x.2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。

⑤总价=单价×总量。

⑥平均速度=总路程÷总时间二、列表法:使用数表结合的形式,运用表格可以则表示两个变量之间的关系。

列表时必须挑选出能够代表自变量的一些数据,并按从小到大的顺序列举,再分别谋出来因变量的对应值。

列表法的特点就是直观,可以轻易从表找到自变量与因变量的对应值,但缺点就是具备局限性,就可以则表示因变量的一部分。

三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。

四、图像特别注意:a.深入细致认知图象的含义,特别注意挑选一个能够充分反映题意的图象;b.从横轴和纵轴的实际意义认知图象上特定点的含义(座标),特别就是图像的起点、拐点、交点八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:1.随着自变量x的逐渐减少(小),因变量y逐渐减少(小)(或者用函数语言叙述也可以:因变量y随着自变量x的减少(小)而减少(小));2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).特别注意:如果在整个过程中事物的变化趋势不一样,可以使用分段叙述.比如在什么范围内随着自变量x的逐渐减少(小),因变量y逐渐减少(小)等等.九、估计(或者估算)对事物的估计(或者估算)有三种:1.利用事物的变化规律展开估算(或者估计).比如:自变量x每减少一定量,因变量y 的变化情况;平均值每次(年)的变化情况(平均值每次的变化量=(尾数-首数)/次数或差距年数)等等;2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;3.利用关系式:首先谋出来关系式,然后轻易代入表达式即可.二元一次方程组1、所含两个未知数,并且所不含未知数的项的次数都就是1的方程叫作二元一次方程2、含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。

2024年苏教版七年级数学知识点总结

2024年苏教版七年级数学知识点总结

2024年苏教版七年级数学知识点总结一、数与式1. 自然数、整数、有理数的认识和比较2. 分数的概念及其表示方法3. 数的运算:加法、减法、乘法、除法4. 整数的四则运算5. 分数的加减运算及混合运算6. 数的乘方和乘法运算律7. 简单的代数式二、比1. 比的定义和性质2. 比例和比例的性质3. 比例中的四则运算4. 百分数与百分数的运算5. 比例的应用三、形状与运动1. 平面图形:点、线、面、角的基本概念2. 直线与角3. 三角形和四边形的性质4. 平行线与它们的性质5. 梯形、菱形和平行四边形的性质6. 圆的基本性质四、数据和图表1. 数据收集与整理2. 图表的读取和分析3. 表格的制作和应用4. 统计的基本概念和统计图的绘制5. 常见统计图形的分析五、方程与不等式1. 一元一次方程与一元一次不等式2. 代数式与方程式的应用3. 做运算与解方程之间的关系六、正比例与反比例1. 直接比例与反比例2. 比例线性方程和反比例函数图形的认识3. 比例线性方程和反比例函数的应用七、整式的加减1. 代数式的加减法则和乘法法则2. 积的分配率和提公因式3. 化简代数式八、三角形的面积1. 三角形的面积及其性质2. 面积公式的推导和应用3. 相似三角形与面积的计算九、数与式的应用1. 问题的变式及解法2. 数与式的应用问题3. 代数方法解决应用问题十、数据和不等式1. 数据和不等式的综合应用2. 数据的分析、预测和预测误差3. 解决实际问题以上是____年苏教版七年级数学的主要知识点,总结如上,希望对您有所帮助。

苏教版初一数学知识点

苏教版初一数学知识点

苏教版初一数学知识点苏教版初一数学知识点概述一、数与代数1. 有理数的认识- 正数、负数、整数、分数、小数、正有理数、负有理数、非负数 - 有理数的比较大小- 有理数的加法、减法、乘法、除法运算法则- 有理数的绝对值2. 整式的加减- 单项式的概念和表示- 多项式的概念和表示- 同类项和合并同类项- 去括号法则和添括号法则- 整式的加减运算3. 一元一次方程- 方程的概念- 一元一次方程的建立和解法- 方程解的检验4. 线性不等式和不等式组- 不等式的概念- 线性不等式的解法- 不等式组的解集求解二、几何1. 线段、射线、直线- 线段的性质和表示- 射线和直线的定义- 两点间的距离2. 角的初步认识- 角的定义- 角的表示方法- 角的分类:锐角、直角、钝角3. 平行线- 平行线的定义- 平行线的性质- 平行线的判定4. 三角形的初步认识- 三角形的定义和分类- 三角形的内角和外角- 三角形的边长关系5. 四边形的初步认识- 四边形的定义和分类- 矩形、正方形的性质和判定6. 圆的初步认识- 圆的定义和性质- 圆的直径、半径、弦、弧、切线 - 圆周角和圆心角的关系三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 条形图、折线图、饼图的绘制和解读2. 概率- 随机事件的概念- 可能性的判断- 简单事件发生的可能性计算四、解题方法与技巧1. 列方程解应用题- 理解题意,找出等量关系- 建立方程或方程组- 求解方程,验证答案2. 几何证明题的解题步骤- 理解题意,画出图形- 找出已知条件和需要证明的结论- 按照逻辑顺序进行证明以上是苏教版初一数学的主要知识点概述。

在学习过程中,学生应该注重理解和掌握每个知识点的概念、性质和运算法则,并能够运用所学知识解决实际问题。

同时,培养良好的解题习惯和技巧,提高解题效率和准确率。

苏教版初中数学教材主要知识点

苏教版初中数学教材主要知识点

苏教版初中数学教材主要知识点七年级上册第一章我们与数学同行1.1生活数学1.2活动思考第二章有理数2.1比0小的数2.2数轴2.3绝对值与相反数2.4有理数的加法与减法2.5有理数的乘法与除法2.6有理数的乘方2.7有理数的混合运算第三章用字母表示数3.1字母表示数3.2代数式3.3代数式的值3.4合并同类项3.5去括号第四章一元一次方程4.1从问题到方程4.2解一元一次方程4.3用方程解决问题第五章走进图形世界5.1丰富的图形世界5.2图形的变化5.3展开与折叠5.4从三个方向看第六章平面图形的认识(一) 6.1线段、射线、直线6.2角6.3余角、补角、对顶角6.4平行6.5垂直七年级下册第七章平面图形的认识(二) 7.1探索直线平行的条件7.2探索平行线的性质7.3图形的平移7.4认识三角形7.5三角形的内角和第八章幂的运算8.1同底数幂的乘法8.2幂的乘方与积的乘方8.3同底数幂的除法第九章从面积到乘法公式9.1单项式乘单项式9.2单项式乘多项式9.3多项式乘多项式9.4乘法公式9.5因式分解(一)9.6因式分解(二)第十章二元一次方程组10.1二元一次方程10.2二元一次方程组10.3解二元一次方程组10.4用方程组解决问题第十一章图形的全等11.1全等图形11.2图形的全等11.3探索三角形全等的条件第十二章数据在我们周围12.1普查与抽样调查12.2统计图的选用12.3频数分布表和频数分布直方图第十三章感受概率13.1确定与不确定13.2可能性第一章轴对称图形1.1轴对称与轴对称图形1.2轴对称的性质1.3设计轴对称图案1.4线段、角的轴对称性1.5等腰三角形的轴对称性1.6等腰梯形的轴对称性第二章勾股定理与平方根2.1勾股定理2.2神秘的数组2.3平方根2.4立方根2.5实数2.6近似数与有效数字2.7勾股定理的应用第三章中心对称图形(一) 3.1图形的旋转3.2中心对称与中心对称图形3.3设计中心对称图案3.4平行四边形3.5矩形、菱形、正方形3.6三角形、梯形的中位线第四章数量、位置的变化4.1数量的变化4.2位置的变化4.3平面直角坐标系第五章一次函数5.1函数5.2一次函数5.3一次函数的图象5.4一次函数的应用5.5二元一次方程组的图象解法第六章数据的集中程度6.1平均数6.2中位数与众数6.3用计算器求平均数第七章一元一次不等式7.1生活中的不等式7.2不等式的解集7.3不等式的性质7.4解一元一次不等式7.5用一元一次不等式解决问题7.6一元一次不等式组7.7一元一次不等式与一元一次方程、一次函数第八章分式8.1分式8.2分式的基本性质8.3分式的加减8.4分式的乘除8.5分式方程第九章反比例函数9.1反比例函数9.2反比例函数的图象与性质9.3反比例函数的应用第十章图形的相似10.1图上距离与实际距离10.2黄金分割10.3相似图形10.4探索三角形相似的条件10.5相似三角形的性质10.6图形的位似10.7相似三角形的应用第十一章图形与证明(一)11.1你的判断对吗11.2说理11.3证明11.4 互逆命题第十二章认识概率12.1等可能性12.2等可能条件下的概率(一)12.3等可能条件下的概率(二)第一章图形与证明(二)1.1等腰三角形的性质和判定1.2直角三角形全等的判定1.3 平行四边形、矩形、菱形、正方形的性质和判定1.4等腰梯形的性质和判定1.5中位线第二章数据的离散程度2.1极差2.2方差与标准差2.3用计算器求标准差和方差第三章二次根式3.1二次根式3.2二次根式的乘除3.3二次根式的加减第四章一元二次方程4.1一元二次方程4.2一元二次方程的解法4.3用一元二次方程解决问题第五章中心对称图形(二)5.1圆5.2圆的对称性5.3圆周角5.4确定圆的条件5.5直线与圆的位置关系5.6圆与圆的位置关系5.7正多边形与圆5.8弧长及扇形的面积5.9圆锥的侧面积和全面积第六章二次函数6.1二次函数6.2二次函数的图象和性质6.3二次函数与一元二次方程6.4二次函数的应用第七章锐角三角函数7.1正切7.2正弦、余弦7.3特殊角的三角函数7.4由三角函数值求锐角7.5解直角三角形7.6锐角三角函数的简单应用第八章统计的简单应用8.1货比三家8.2中学生的视力情况调查第九章概率的简单应用9.1抽签方法合理吗9.2概率帮你做估计9.3保险公司怎样才能不亏本。

苏教版数学知识点总结

苏教版数学知识点总结

苏教版数学知识点总结一、数的类型和计算1. 自然数、整数、有理数、实数、复数的概念和关系2. 数轴上的数3. 加、减、乘、除运算4. 整除和带余除法5. 最大公约数和最小公倍数6. 除法算式的平均整数7. 小数和分数数的关系二、代数式的基本概念1. 代数式的概念2. 代数式的结构和值3. 代数式的基本性质4. 代数式的化简和展开5. 代数式的因式分解三、方程和不等式1. 方程的基本概念2. 一元一次方程的解法3. 一元一次方程的应用4. 不等式的基本概念5. 一元一次不等式的解法6. 一元一次不等式的应用7. 一元一次方程组8. 一元一次方程组的应用9. 二元一次不等式组及其应用四、直角坐标系1. 直角坐标系的概念2. 坐标的概念3. 直角坐标系中的点和图形4. 直角坐标系中的距离5. 直角坐标系中的斜率6. 直角坐标系中的方程和不等式7. 直角坐标系中的函数和图像8. 参数方程和极坐标系五、平面几何1. 角和角的度量2. 线和角的关系3. 各种角的性质4. 三角形的性质5. 直角三角形的性质6. 三角形的边、角关系7. 三角形的面积8. 相似三角形9. 平行线与平行线的性质10. 圆的基本性质11. 圆的面积和弧长12. 圆锥、圆柱、圆环的体积和表面积六、空间几何1. 空间坐标系的概念2. 空间图形的基本要素3. 点、直线、平面的位置关系4. 空间直角坐标系中的距离5. 空间直角坐标系中的平面方程6. 空间直角坐标系中的球面方程7. 点到直线和平面的距离8. 平行线和平行面的性质9. 空间几何图形的投影10. 空间几何图形的旋转七、数理统计1. 数据的收集、整理和描述2. 数据的分布和统计量3. 随机事件和概率4. 概率的计算5. 概率的应用6. 统计推断以上是苏教版数学教材中的主要知识点,每个知识点都包含了丰富的内容和扎实的理论基础。

这些知识点涵盖了数学的基础知识、代数式的应用、方程和不等式的解法、直角坐标系中的图像和函数、平面几何和空间几何中的图形和性质、数理统计的数据分析和概率计算等内容,是学生在学习数学过程中需要掌握的重点知识。

苏教版初一数学知识点归纳总结

苏教版初一数学知识点归纳总结

苏教版初一数学知识点归纳总结初中数学是中学阶段学习的重要科目之一。

在初一阶段,学生会接触到许多基础的数学知识点。

本文将对苏教版初一数学的知识点进行归纳总结,帮助同学们更好地进行学习。

一、有理数1. 自然数、整数、有理数的概念与判断:自然数包括正整数和零,整数包括正整数、零和负整数,有理数包括整数和分数。

2. 有理数的加减:有理数的加法和减法运算,符号相同则相加(相减),符号不同则取绝对值相减,结果的符号由绝对值大的数的符号决定。

3. 有理数的乘法与除法:有理数的乘法和除法运算,同号得正,异号得负,除法可以转换为乘法。

注意零的特殊性。

二、代数式与方程1. 代数式的概念与运算:代数式由常数、变量和运算符号组成,包括加法、减法、乘法和乘方等。

2. 一元一次方程:方程中只有一个未知数,未知数的最高次数是1,可以利用逆运算解方程。

3. 方程的解与实际问题:通过列方程、解方程,可以解决实际问题。

三、几何基础1. 角的概念与分类:顶点相同的两条射线构成一个角,根据角的大小可以分为锐角、直角、钝角和平角。

2. 平面图形的分类:根据边和角的性质,平面图形可以分为三角形、四边形、五边形等。

3. 三角形的性质:三角形有内角和外角,内角和为180°,外角和为360°,根据边长和角度可以分为等边三角形、等腰三角形等。

四、比例与相似1. 比例的概念与性质:比例是指两个等量关系的比值相等,可以进行比例的四则运算。

2. 比例的应用:可以通过比例解决实际问题,如倍数关系、图形的相似性等。

五、数据的搜集与处理1. 统计调查与数据的搜集:可以通过调查问卷等方式获取数据,要注意样本的选取合理性。

2. 数据的整理与描述:可以使用表格、图表等形式整理数据,并进行描述、分析。

3. 数据的分析与应用:通过对数据的分析,可以进行推断和预测,并做出相应的决策。

六、函数与图像1. 函数的概念与表示:函数是两个集合之间的一种特殊关系,可以用表格、图像等方式进行表示。

苏教版初一数学知识点完整版

苏教版初一数学知识点完整版
苏教版初一数学知识点
第一章有理数
1正数、负数、有理数、相反数、科学记数法、近似数
2数轴:用数轴来表示数
3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零
4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小 。
5有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加;
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值;
互为相反数的两数相加为零;
一个数加上零,仍得这个数。
6有理数的减法(把减法转换为加法)
减去一个数,等于加上这个数的相反数。
7有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同零相乘,都得零。
乘积是一的两个数互为倒数。
第四章图形认识初步
1 几何图形:平面图和立体图
2 点、线、面、体
3 直线、射线、线段
两点确定一条直线;
两点之间,线段最短
4 角
角的度量度数
角的比较和运算
补角和余角:等角的补角和余角相等
初一下册
第五章相交线和平行线
1 相交线:对顶角相等
2 垂线
经过一点有且只有一条直线和已知直线垂直;
连接直线外一点与直线上各点的所有线段中,垂线段最短(垂线段最短)
8有理数的除法(转换为乘法)
除以一个不为零的数,等于乘这个数的倒数。
9有理数的乘方
正数的任何次幂都是正数;
零的任何次幂都是负数;
负数的奇次幂是负数,负数的偶次幂是正数。
10混合运算顺序
(1)先乘方,再乘除,最后加减;
(2)同级运算,从左到右进行;

苏教版七年级数学知识点总结

苏教版七年级数学知识点总结

第一册第一章数学与我们同行第二章 有理数2.1正数和负数以前学过的0以外的数前面加上负号“-”的数叫做负数,像-154,-38.87,-117.3,-0.102% 以前学过的0以外的数叫做正数,像8844.43, 100, 357, 78数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义正整数、0、负整数统称整数,正分数和负分数统称分数。

2.2有理数与无理数 我们把能够写成分数形式)0,( n n m nm 是整数,的数叫做有理数。

整数和分数统称有理数。

有限小数和循环小数都可以化为分数,它们都是有理数。

无限不循环小数叫做无理数2.3 数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

在数轴上表示的两个数,右边的数总比左边的数大正数都大于0;负数都小于0;正数大于负数;两个负数,绝对值大的反而小。

一般地,设a 是一个正数,则数轴上表示a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度。

2.4 绝对值与相反数数轴上表示一个数的点与原点的距离叫做这个数的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个正数,绝对值大的正数大;两个负数,绝对值大的负数小。

符号不同、绝对值相同的两个数叫做互为相反数,其中一个数叫做另一个数的相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

2.5 有理数的加减法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

⑶一个数同0相加,仍得这个数。

苏教版七年级上册数学知识点归纳总结

苏教版七年级上册数学知识点归纳总结

一、整数1.1 整数的概念整数是由自然数、0以及它们的负数组成的数集,用来表示有向量的数量。

1.2 整数的比较与运算比较整数大小时,可以通过数轴上的位置来判断。

整数的加减法遵循符号相同则相加,符号不同则相减的规则。

二、有理数2.1 有理数的概念有理数包括整数和分数,是可以表示为两个整数之比的数。

2.2 有理数的加减乘除有理数的加减乘除遵循相同大小的数加减得到的结果仍然是同符号的数,相乘相同符号得正,相乘不同符号得负的规则。

有理数的除法可以转化为乘法运算。

三、代数3.1 代数表达式代数表达式是由数字、代数符号和运算符组成的式子,可以包括单项式、多项式等。

3.2 代数式的加减乘除代数式的加减乘除遵循相同项相加减、同底数指数相乘、指数相除的规则。

四、方程与方程组4.1 方程的概念方程是含有未知数的等式,通过求解可以得到未知数的值。

4.2 一元一次方程一元一次方程是形如ax+b=0的方程,可以通过逆运算求解出未知数的值。

4.3 解方程的基本原则解方程时,可以通过逐步化简、消去分母、合并同类项等步骤来求解未知数的值。

五、比例和比例方程5.1 比例的概念比例是两个等量的比值关系,可以表示为a:b=c:d。

5.2 比例的性质和运算比例的性质包括等比例和反比例,比例的运算包括比例乘除的运算法则。

六、百分数6.1 百分数的概念百分数是每百份之一的比例,可以表示为百分数/100=实际比例。

6.2 百分数的应用百分数可以用来表示比例关系、增减量等,应用广泛。

七、不等式7.1 不等式的概念不等式是含有大于、小于、大于等于、小于等于等符号的数学式子。

7.2 不等式的性质和解法不等式可以通过加减消去、移项、乘除等方法求解未知数的范围。

八、数据的收集和整理8.1 统计数据的方式统计数据可以通过调查、观察、抽样等方式进行收集。

8.2 统计数据的整理和分析统计数据可以通过频数、频率、累积频数等方式进行整理和分析。

九、图形的认识和绘制9.1 基本图形的认识和性质基本图形包括直线、线段、射线、角等,具有各自的特点和性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版数学知识点第二章:有理数一、实数与数轴1、整数分为正整数,0和负整数。

正整数和0统称自然数。

能被2整除的整数称为偶数,被2除余1的整数叫作奇数。

2、分数:可以写成两个整数之比的不是整数的数,叫做分数。

分数都可以转化为有限小数或循环小数。

反之,有限小数或循环小数都可以转化为分数。

3、有理数:整数和分数统称有理数。

4、无理数:无限不循环小数称为无理数。

5、实数:有理数和无理数统称为实数。

⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无理数负分数正分数分数负整数正整数整数有理数实数0 6、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

7、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

实数和数轴上的点是一一对应的关系。

二、绝对值与相反数8、绝对值:在数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。

设数轴上原点为O,点A表示的数为a,则a A =O ,设数轴上点A 表示的数为a ,点B 表示的数为b,则b a -=AB9、一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值为0. 反过来,绝对值等于它本身的数为非负数(正数或0),绝对值等于它的相反数为非正数(负数或0).10、相反数:符号不同,绝对值相等的两个数互为相反数。

0的相反数是0.在数轴上互为相反数的两个数表示的点,分居在原点两侧,并且到原点的距离相等。

相反数等于本身的数只有0.在一个数前面添上“+”号还表示这个数,在一个数前面添上“—”号,就表示求这个数的相反数。

二、实数大小的比较11、在数轴上表示两个数,右边的数总比左边的数大。

12、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。

三、实数的运算13、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

(3)任何数与0相加仍得这个数。

14、减法:减去一个数等于加上这个数的相反数。

15、加减法运算统一为加法后,可以省略加号。

也可以使用加法交换律和结合律,任意交换加数的位置,任意把两个数相加,不过移动位置时一定要连同加数的符号一起移动。

16、乘法:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。

(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。

4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何不等于0的数都等于0,(2)除以一个数等于乘以这个数的倒数。

(3)乘积为1的两个数互为倒数。

0没有倒数,倒数等于本身的数是±1.(4)0不能做除数,也不能做分母。

17、乘方:求相同因数的乘积的运算,叫作乘方。

相同因数叫作底数,因数的个数叫作指数,乘方的结果叫作幂。

平方等于本身的是0或1,立方等于本身的数是0,±1.平方等于64的数是±8.立方等于64的数是4。

正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数。

18、实数的运算顺序:先算乘方,再算乘除,最后算加减,有括号先算括号里的。

无论何种运算,都要注意先定符号后运算。

10(其中1≤a<10,n为正整数,n=N的整19、科学记数法:设N>10,则N=a×n数位数—1)。

第二章有理数整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。

任何一个有理数都可以在数轴上表示。

无限不循环小数和开平方开不尽的数叫作无理数,比如π,3.14932384626......而有理数恰恰与它相反,整数和分数统称为有理数其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。

有理数分为正数、0、负数正数又分为正整数、正分数负数又分为负整数、负分数如3,-98.11,5.72727272……,7/22都是有理数。

全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。

①加法的交换律 a+b=b+a;②加法的结合律a+(b+c)=(a+b)+c;③存在数0,使0+a=a+0=a;④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0;⑤乘法的交换律ab=ba;⑥乘法的结合律a(bc)=(ab)c;⑦分配律 a(b+c)=ab+ac;⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a;⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。

⑩0a=0 文字解释:一个数乘0还等于0。

0的绝对值还是0.有理数加减混合运算1.理数加减统一成加法的意义:对于加减混合运算中的减法,我们可以根据有理数减法法则将减法转化为加法,这样就可将混合运算统一为加法运算,统一后的式子是几个正数或负数的和的形式,我们把这样的式子叫做代数和。

2.有理数加减混合运算的方法和步骤:(1)运用减法法则将有理数混合运算中的减法转化为加法。

(2)运用加法法则,加法交换律,加法结合律简便运算。

有理数范围内已有的绝对值,相反数等概念,在实数范围内有同样的意义。

一般情况下,有理数是这样分类的:整数、分数;正数、负数和零;负有理数,非负有理数整数和分数统称有理数,有理数可以用a/b 的形式表达,其中a 、b 都是整数,且互质。

我们日常经常使用有理数的。

比如多少钱,多少斤等。

凡是不能用a/b形式表达的实数就是无理数,又叫无限不循环小数第三章:用字母表示数一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。

单独一个数或者一个字母也是代数式。

2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。

二、整式的有关概念及运算3、单项式:像x 、7、y x 22,这种数与字母的积叫做单项式。

单独一个数或字母也是单项式。

单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

单项式的系数:单项式中的数字因数叫单项式的系数。

4、多项式:几个单项式的和叫做多项式。

多项式的项:多项式中每一个单项式都叫多项式的项。

一个多项式含有几项,就叫几项式。

多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。

不含字母的项叫常数项。

(3)单项式和多项式统称为整式。

5、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

6、合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。

合并同类项的依据是乘法分配律。

7、去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都要改变符号。

去括号的依据是乘法分配律,实质就是把括号前的系数跟括号内的每一项相乘。

8、整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。

第三章用字母表示数代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。

例如:ax+2b,-2/3等。

全部初等代数总起来有十条规则。

这是学习初等代数需要理解并掌握的要点。

这十条规则是:五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方等于底数不变指数想乘;积的乘方等于乘方的积。

(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式。

(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p叫做代数式的值.求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.(3)代数式的分类把多项式中同类项合成一项,叫做合并同类项。

如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。

如2ab与-3ab,m2n与nm2都是同类项。

特别地,所有的常数项也都是同类项。

把多项式中的同类项合并成一项,叫做同类项的合并(或合并同类项)。

同类项的合并应遵照法则进行:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

第四章:一元一次方程1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解。

只含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、等式的基本性质:(1)等式两边都加上或减去同一个数或同一个整式,所得的结果仍是等式。

(2)等式两边都乘以或除以同一个不为0的数,所得的结果仍是等式。

5、一元一次方程:含有一个未知数,并且含有未知数的项的最高次数是1,这样的整式方程叫作一元一次方程。

一元一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0)6、解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

移项的依据是等式的基本性质1,去分母的依据是等式的基本性质2.系数化为1的依据是等式的基本性质2.7、解方程的最终目标就是运用等式的基本性质把方程变形为x=a的形式。

第四章一元一次方程概述只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程。

一元一次方程属于整式方程,即方程两边都是整式。

一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。

我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。

这里a是未知数的系数,b是常数,a的次数是1。

性质一.等式的性质一:等式两边加一个数或减一个数,等式两边相等。

二.等式的性质二:等式两边乘一个数或除以一个数(0除外),等式两边相等。

三.等式的性质二:两边都可以有未知数。

一元一次方程的解1,当a≠0,b=0时,方程有唯一解,x=0;2,当a≠0,b≠0时,方程有唯一解,x=-b/a。

一元一次方程与实际问题一元一次方程牵涉到许多的实际问题,例如:工程问题、种植面积问题、比赛比分问题、路程问题。

第五章走进图形世界有的面是平面、有的面是曲面。

我们知道,面与面相交成线,在棱柱与棱锥中,面与面的交线叫做棱。

(edge)其中,相邻两个侧面的交线叫做侧棱棱柱的棱与棱的交点叫做棱柱的顶点(vertex)棱锥的各侧棱的公共点叫做棱锥的顶点。

相关文档
最新文档