DC-DC开关电源管理芯片的设计
DC-DC输出可调开关电源设计说明书
DC-DC输出可调开关电源摘要本系统为DC-DC升降压变换器,由CPU最小系统模块、供电模块、升压模块、降压模块、液晶显示模块和辅助电路六部分组成。
选用SMT32F103作为主控制器,采用降压芯片LM2596-ADJ作为实现降压,将AD采集的输出电压和电流与预设值比较,然后通过DA调节输出电压电流,对于降压模式的下恒流或恒压工作状态也可通过按键进行切换,同时调节按键可实现输出电压或电流大小的变换;升压模块采用了LM2577-ADJ,手动滑动变阻器的阻值可调节输出电压;加入液晶显示系统工作模式和输出电压、电流;对于升降压的切换也可通过按键切换;供电电源提供了3.3V和12V,分别为CPU、液晶和运放偏置供电;辅助电路方便开发者的调试。
最终系统能够在手动切换工作模式的情况下输出预设的电压和电流,并显示出来。
关键词:DC-DC 升降压可调abstractThe system for the DC-DC buck converter, the minimum system CPU module, power supply module, boost module, step-down module, LCD display module and the auxiliary circuit six parts. SMT32F103 chosen as the main controller, buck chip LM2596-ADJ as enabling buck, the AD acquisition of output voltage and current compared with the preset value, then adjust the output voltage and current through the DA, the constant current mode buck or constant work status can also be switched through the button while adjusting key enables the size of the output voltage or current transformation; step-up module uses the LM2577-ADJ, manual sliding rheostat resistance adjustable output voltage; added liquid crystal display system working mode and the output voltage and current; the buck switch can also be switched by key; providing a 3.3V power supply and 12V, respectively, CPU, LCD bias supply and the op amp; facilitate the development of the secondary circuit debugging. Final system can output a preset voltage and current in the case of manual operating mode switch, and displayed.Key words:DC-DC Boosted、Reduce voltage Adjustable目录第一章绪论 (1)1.1 开关电源概述 (1)1.2 开关电源与线性电源比较 (1)1.3 开关电源发展趋势与应用 (1)第二章系统功能介绍 (2)第三章系统方案选取与框图 (3)3.1 系统整体框图 (3)3.2 系统方案选取 (3)第四章硬件电路设计 (6)4.1 主控制器 (6)4.2 供电模块 (7)4.3 降压模块电路设计 (8)4.4 升压模块电路设计 (10)4.5 液晶显示电路 (13)五硬件开发环境 (14)5.1 Altium Designer 09 (14)5.2 电源设计软件SwitchPro (14)5.3 电路板雕刻机LPKF ProtoMat E33 (15)675.4 电镀机LPKF MiniLPS (17)5.5 SMD精密无铅回焊炉ZB-2518H (17)第六章软件设计框图 (20)第七章系统调试 (21)参考文献 (22)总结致谢 (23)附录 (24)第一章绪论1.1 开关电源概述我们身边使用的任何一款电子设备都离不开它可靠的电源,计算机电源全面实现开关电源化于80年代,并率先完成计算机的电源更新换代,进入90年代,开关电源开始进入各种电子、电气设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已大面积使用了开关电源,更加促进了开关电源技术的迅猛发展。
DCDC电源芯片内部结构全解
DCDC电源芯片内部结构全解DC-DC电源芯片是一种特殊的集成电路,用于将直流电(DC)转换为所需的不同电压的直流电。
它通常由许多不同的部分组成,每个部分都具有特定的功能,可以实现高效的电能转换。
接下来,我将对DC-DC电源芯片的内部结构进行详细解释。
1.输入滤波器:电源芯片的第一个部分是输入滤波器,用于过滤输入电源的干扰和噪声,确保输入电源干净稳定,以提供可靠的工作电压。
2.整流桥:在输入电压经过滤波器后,进入整流桥。
整流桥由四个二极管组成,可以将交流电(AC)转换为直流电(DC),以供后续电路使用。
3.拉电感器:拉电感器是一种具有高电感值的元件,用于存储电能并滤波电流。
拉电感器通过存储能量,使电源芯片能够提供稳定的输出电流。
4.开关管/开关MOS管:开关管是DC-DC电源芯片的核心部分之一、它负责控制电源的开关周期,调整输出电压。
开关管通常是MOSFET管,其具有低导通电阻和快速开关速度,以提供高效的能量转换。
5.控制电路:控制电路是DC-DC电源芯片的另一个重要组成部分,负责监测并控制输出电压。
它包括一个反馈回路,用于调整开关管的开关频率和占空比,以确保输出电压达到预期值。
控制电路还可以包括一些保护功能,如过压保护和过载保护,以防止电源芯片受到损害。
6.输出滤波器:输出滤波器用于滤波输出电压,去除可能存在的高频噪声,并提供干净稳定的输出电压。
输出滤波器通常由电容器和电感器组成,能够平滑输出电压并减少纹波。
除了上述主要部分外,DC-DC电源芯片还可能包括其他辅助功能,如温度保护、短路保护和过流保护等。
这些保护功能能够保护电源芯片不受外部故障和不恰当使用的影响。
总之,DC-DC电源芯片内部结构的主要组成部分包括输入滤波器、整流桥、拉电感器、开关管、控制电路和输出滤波器。
这些部分通过协同工作实现电源的高效转换和稳定的输出电压。
同时,电源芯片可能还包括一些辅助功能,如保护功能,以确保电源芯片的安全运行。
dcdc芯片手册
DC-DC芯片手册1. 引言DC-DC芯片作为电源管理系统中的核心组件之一,扮演着将直流电压转换为其他直流电压的重要角色。
本文将深入探讨DC-DC芯片的技术特点、应用场景以及手册的编写与使用。
1.1 DC-DC芯片的基本概念介绍DC-DC芯片的基本概念,阐述其在电源管理中的作用,以及在不同电子设备中的广泛应用。
1.2 DC-DC芯片手册的重要性强调DC-DC芯片手册在设计、调试和维护电源系统中的重要性,以及为用户提供准确信息的必要性。
2. 技术特点与规格详细介绍DC-DC芯片的技术特点和规格,使读者对该芯片有一个全面的了解。
2.1 输入与输出电压范围阐述DC-DC芯片所支持的输入和输出电压范围,以及在不同工作条件下的稳定性和性能。
2.2 效率与功率密度探讨DC-DC芯片的能效表现,包括效率的计算方法和功率密度的重要性。
2.3 转换拓扑与控制方式介绍不同DC-DC芯片的转换拓扑结构和控制方式,以及它们在实际应用中的优劣和适用场景。
3. 电路连接与布局建议提供DC-DC芯片在电路中的连接方式和布局建议,以确保最佳性能和稳定性。
3.1 输入输出电容的选择详细讨论在设计中如何选择适当的输入和输出电容,以保障电源系统的稳定性。
3.2 输入输出滤波电感的应用阐述滤波电感在DC-DC芯片电路中的作用,以及如何选择和应用合适的滤波电感。
3.3 PCB布局与散热设计探讨PCB布局对DC-DC芯片性能的影响,以及良好的散热设计对延长芯片寿命的重要性。
4. 保护特性与故障诊断详细介绍DC-DC芯片的保护特性,以及在故障发生时的诊断方法。
4.1 过流与过压保护讨论DC-DC芯片在过流和过压情况下的保护机制,确保电源系统的安全稳定运行。
4.2 温度保护与限流功能阐述芯片的温度保护机制和限流功能,以应对在高温或过载情况下可能出现的问题。
5. DC-DC芯片手册的编写与更新探讨编写DC-DC芯片手册的步骤和要点,以及在新版本发布时如何进行更新。
BUCK型DCDC开关电源芯片的设计与实现
BUCK型DCDC开关电源芯片的设计与实现一、Buck型DC-DC开关电源的原理Buck型DC-DC开关电源采用PWM(脉宽调制)技术实现降压功率转换。
其基本原理是通过开关管(MOSFET)的开关控制,使电源源电压经过电感产生瞬间高压脉冲,然后经过二极管和电容进行滤波,从而得到较低的输出电压。
1.选取合适的芯片2.电路设计在电路设计中,需要考虑以下关键元件:(1)开关管(MOSFET):选择合适的MOSFET型号,使其能够承受输入电压和输出电流,并具有低导通压降和低开关损耗。
(2)电感:选择合适的电感器件,使其具有足够的电感值,以满足电路的输出电流要求,同时要考虑其饱和电流和电流纹波等参数。
(3)二极管:选用具有较高效率和低电压降的二极管,以减小功率损耗。
(4)滤波电容:选择适当的电容容值和工作电压,以保证输出电压的稳定性和滤波效果。
3.控制电路设计(1)比较器:用于比较输出电压反馈和参考电压,生成PWM信号。
(2)误差放大器:通过调节反馈电压和参考电压之间的差值,实现输出电压的稳定控制。
(3)反馈电路:将输出电压反馈给误差放大器,使其可以实时调节PWM信号。
4.输出过压保护与过流保护为了确保开关电源在异常工作条件下能够保持安全可靠的操作,需要添加过压保护和过流保护电路。
过压保护电路通常通过监测输出电压,当输出电压超过设定阈值时,立即切断开关管的导通。
过流保护电路通过监测输出电流,当输出电流超过设定阈值时,同样会切断开关管的导通。
5.PCB布局与散热设计在设计过程中,需要合理布局电路元件,以减小元件之间的相互干扰,并降低热量产生。
合理进行散热设计,确保开关管和散热器的有效散热,以保证开关电源的稳定工作。
三、BUCK型DC-DC开关电源的测试与调试完成电路设计后,需要进行测试和调试来验证设计的正确性和可靠性。
主要包括以下测试:(1)输入电压测试:测试开关电源在不同输入电压下的输出电压和效率。
(2)输出电压稳定性测试:测试开关电源在稳定工作状态下,输出电压随负载变化的情况。
DCDC电源芯片内部结构全解
DCDC电源芯片内部结构全解DC/DC电源芯片是一种将电源输入电压转换为所需输出电压的器件,常用于各种电子设备中。
它内部结构复杂,包括输入滤波电容、整流电路、开关电路、控制芯片等多个模块。
下面将从这些模块的功能和结构逐一解析DC/DC电源芯片的内部结构。
1.输入滤波电容:DC/DC电源芯片通常会在输入端接入滤波电容,用于滤除输入端的高频噪声和纹波。
这样可以保证输入电源的稳定性和提高整个系统的抗干扰能力。
2.整流电路:在DC/DC电源芯片内部,输入端的电压需要经过整流电路转换为直流电压。
整流电路通常由二极管桥或者MOS管组成,用于将输入的交流电压转换为直流电压。
3.输入滤波电感:在整流后,输入端的直流电压会带有一定的纹波。
为了进一步减小输入端的纹波,通常在芯片内部添加输入滤波电感。
输入滤波电感一般为一个线圈,具有高频电流衰减的特性。
4. 开关电路:DC/DC电源芯片内部会包含一个开关电路,用于将输入端的直流电压转换为所需的输出电压。
开关电路通常由MOS管组成,通过开关动作来控制输入电压的频率和占空比。
常见的开关电路包括降压型(Buck)和升压型(Boost)等,用于实现不同的电压转换。
5.控制芯片:DC/DC电源芯片内部的控制芯片用于对开关电路进行控制和调节。
控制芯片通常具有高精度的反馈电路,能够实时监测输出电压,并通过控制开关电路的频率和占空比来调节输出电压的稳定性和精度。
6.输出滤波电感和电容:在输出端,为了滤除输出电压的纹波和噪声,DC/DC电源芯片内部通常会添加输出滤波电感和电容。
输出滤波电感和电容主要起到平滑输出电压的作用,提供稳定的电源给外部负载。
7.保护电路:为了保护电源芯片和外部负载免受过电流、过压、过温等异常情况的影响,DC/DC电源芯片内部通常会包含一些保护电路。
例如过流保护、过压保护、过温保护等。
这些保护电路能够在异常情况下及时切断电源输出,并发出相应的警报信号。
总之,DC/DC电源芯片内部结构由输入滤波电容、整流电路、输入滤波电感、开关电路、控制芯片、输出滤波电感和电容以及保护电路等多个模块组成。
电源设计之 DC/DC 工作原理及芯片详解-设计应用
电源设计之DC/DC 工作原理及芯片详解-设计应用DC/DC电源指直流转换为直流的电源,从这个定义上看,LDO(低压差线性稳压器)芯片也应该属于DC/DC电源,但一般只将直流变换到直流,且这种转换是通过开关方式实现的电源称为DC/DC电源。
一、工作原理要理解DC/DC的工作原理,首先得了解一个定律和开关电源的三种基本拓扑(不要以为开关电源的基本拓扑很难,你继续往下看)。
1、电感电压伏秒平衡定律一个功率变换器,当输入、负载和控制均为固定值时的工作状态,在开关电源中,被称为稳态。
稳态下,功率变换器中的电感满足电感电压伏秒平衡定律:对于已工作在稳态的DC/DC功率变换器,有源开关导通时加在滤波电感上的正向伏秒一定等于有源开关截止时加在该电感上的反向伏秒。
是不是觉得有点难理解,接着往下看其公式推导过程。
伏秒平衡方程推算过程:电感的基本方程为:V(t)=L*dI(t)/dt,即电感两端的电压等于电感感值乘以通过电感的电流随时间的变化率。
根据上述方程,可得dI(t)=1/L∫V(t)dt,对于稳态的一个功率变换器,其应保证在一个周期内电感中的能量充放相等,反映在V-t图中即表示在一个周期内其面积之和为0,所以得出电感电压伏秒平衡定律。
此处可参考:DC/DC电源详解第8页(如果此处还无法理解,可先阅读下面开关电源三种基本拓扑的工作原理)。
扩展资料:1、当一个电感突然加上一个电压时,其中的电流逐渐增加,并且电感量越大,其电流增加越慢;2、当一个电感上的电流突然中断,会在电感两端产生一个瞬间高压,并且电感量越大该电压越高;3、电容的基本方程为:I(t)=dV(t)/(C*dt),当一电流流经电容时,电容两端电压逐渐增加,并且电容量越大电压增加越慢;2、开关电源三种基本拓扑2.1、BUCK降压型图1 BUCK型基本拓扑简化工作原理图图2 电感V-t特性图BUCK降压型基本拓扑原理如图1所示,其电感L1的V-t特性图如图2。
基于SG3525的DCDC开关电源设计
... 基于SG3525的DC/DC开关电源设计The Design of DC/DC Switching PowerSupply Based on SG3525... 毕业设计任务书题目基于SG3525的DC/DC开关电源设计一、设计内容设计一个基于SG3525可调占空比的推挽式DC/DC开关电源,给出系统的电路设计方法以及主要单元电路的参数计算。
二、基本要求1. 系统工作原理及设计思路。
2. 设计开关电源主电路。
3. 选择电源变压器,设计开关管的驱动控制电路。
4. 主要元器件的选择。
5. 利用saber进行系统仿真。
三、主要技术指标输入电压为DC10—35V,输入额定电压为12V,输出为360V,额定功率为500W。
电路以SG3525为控制芯片,使电源工作性能稳定,电源效率高。
四、应收集的资料及参考文献[1] 邹怀虚. 电源应用技术[M]. 北京:科学出版社.1998[2] 刘胜利. 现代高频开关电源实用技术[M]. 北京:电子工业出版社,2001五、毕业设计进度计划第1—2周:收集资料,完成系统工作原理及设计思路开题报告。
第3周:设计开关电源主电路。
第4—6周:选择电源变压器,设计开关管的驱动控制电路及主要元器件的选择。
第7周:中期检查。
第8—11周:利用saber进行系统仿真。
第12—13周:论文审核定稿。
第14—15周:答辩。
...毕业设计开题报告题目基于SG3525的DC/DC开关电源设计一、研究背景21世纪是信息化的时代,信息化的快速发展使得人们对于电子设备、产品的依赖性越来越大,而这些电子设备、产品都离不开电源。
开关电源相对于线性电源具有效率、体积、重量等方面的优势,尤其是高频开关电源正变得更轻,更小,效率更高,也更可靠,这使得高频开关电源成为了应用最广泛的电源。
从开关电源的组成来看,它主要由两部分组成:功率级和控制级。
功率级的主要任务是根据不同的应用场合及要求,选择不同的拓扑结构,同时兼顾半导体元件考虑设计成本;控制级的主要任务则是根据电路电信号选择合适的控制方式,目前的开关电源以PWM控制方式居多。
DCDC电源设计方案
DCDC电源设计方案DC-DC电源设计是一种将直流电源转换为不同电压或电流输出的电源设计方案。
DC-DC电源的设计目标是提供高效率、稳定可靠的电源输出,确保电路正常工作和设备正常运行。
本文将介绍DC-DC电源设计的基本原理、设计步骤和一些具体的设计方案。
一、DC-DC电源设计的原理和基本概念DC-DC电源设计基于开关电源的原理,使用开关元件(如MOS管)周期性地开启和关闭来控制电源输出电压和电流的变化。
通过调整开关元件的开关频率、占空比和电压波形等参数,可以实现不同输出电压和电流的调节。
DC-DC电源设计中,常用的基本概念有:1.输入电压:直流电源输入的电压值,例如12V、24V等。
2.输出电压:DC-DC电源输出的电压值,例如5V、3.3V等。
3.输出电流:DC-DC电源输出的电流值,例如1A、2A等。
4.效率:DC-DC电源输出功率与输入功率之比,用来衡量电源转换的效率。
5.稳定性:DC-DC电源输出电压或电流的稳定性,要求在负载变化、输入电压波动等情况下仍能保持稳定。
二、DC-DC电源设计的步骤DC-DC电源设计一般包括以下几个步骤:1.确定设计需求和参数:根据目标设备的需求和规格,确定DC-DC电源的输入电压、输出电压和输出电流等参数。
2. 选择拓扑结构:根据需求参数和应用场景选择合适的DC-DC拓扑结构,常见的有反激式、降压Buck型、升压Boost型、降压升压Buck-Boost型等。
3.选择元器件和设计电路:根据拓扑结构选择合适的开关元件、滤波电感、滤波电容和控制电路等元器件,并设计合理的电路连接方式和参数。
4.进行电路仿真和优化:使用仿真软件对电路进行仿真分析,评估电路的性能指标,并根据仿真结果对电路进行优化调整。
5.PCB设计和布局:根据电路设计结果进行PCB设计和布局,确保电路的稳定性和可靠性。
6.电路调试和测试:对设计好的PCB电路进行调试和测试,验证电路的稳定性、效率和输出性能是否符合设计要求。
dcdc开关电源管理芯片的设计
DC-DC开关电源管理芯片的设计引言电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性;而开关电源更为如此,越来越受到人们的重视;目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源;目前电力电子与电路的发展主要方向是模块化、集成化;具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便;从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动,应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种 PWM控制结构的研究就成为研究的热点;在这样的前提下,设计开发开关电源DC-DC 控制芯片,无论是从经济,还是科学研究上都是是很有价值的;1. 开关电源控制电路原理分析DC-DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成另—等级直流输出电压;在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间长度来控制平均输出电压,这种方法也称为脉宽调制PWM法;PWM从控制方式上可以分为两类,即电压型控制voltage mode control和电流型控制current mode control ;电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PWM信号;从控制理论的角度来讲,电压型控制方式是一种单环控制系统;电压控制型变换器是一个二阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流;二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作;图1即为电压型控制的原理框图;图1 电压型控制的原理框图电流型控制是指将误差放大器输出信号与采样到的电感峰值电流进行比较.从而对输出脉冲的占空比进行控制,使输出的电感峰值电流随误差电压变化而变化;电流控制型是一个一阶系统,而一阶系统是无条件的稳定系统;是在传统的PWM电压控制的基础上,增加电流负反馈环节,使其成为一个双环控制系统,让电感电流不在是一个独立的变量,从而使开关变换器的二阶模型变成了一个一阶系统;信号;从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成;在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阂值;电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电感电流的动态变化,电压外环只负责控制输出电压;因此电流型控制模式具有比起电压型控制模式大得多的带宽;图2 电流型控制原理框图电流型控制模式有不少优点:线性调整率电压调整率非常好;整个反馈电路变成了一阶电路,由于反馈信号电路与电压型相比,减少了一阶,因此误差放大器的控制环补偿网络得以简化,稳定度得以提高并且改善了频响,具有更大的增益带宽乘积;具有瞬时峰值电流限流功能;简化了反馈控制补偿网络、负载限流、磁通平衡等电路的设计,减少了元器件的数量和成本,这对提高开关电源的功率密度,实现小型化,模块化具有重要的意义;当然了也有缺点,例如占空比大于50%时系统可能出现不稳定性,可能会产生次谐波振荡;另外,在电路拓扑结构选择上也有局限,在升压型和降压—升压型电路中,由于储能电感不在输出端,存在峰值电流与平均电流的误差;对噪声敏感,抗噪声性差等等;对于这样的缺点现在已经有了解决的方案,斜波补偿是很必要的一种方法;2.芯片内部模块的设计本目的是设计一个基于PWM控制的boost升压式DC-DC电源转换芯片,该芯片实现基于双环电压环和电流环一阶控制系统的电流模式PWM控制电路, 在该集成模块内将包括控制、驱动、保护、检测电路等;最后在电路系统基本框架的基础上,结合电力电子技术与微电子技术,采用采用BiCMOS工艺,具体针对DC-DC变换电路的实现进行研究;系统方面的设计以及系统框图和各个功能模块的设计思想图3 系统模块原理框图下面分别的介绍系统各个功能模块:①误差放大电路误差是用于调整变换器的高增益差分放大器;放大器产生误差信号,他被供给PWM比较器;当输出电压样本与内部电压基准比较并放大差值时产生误差信号;误差放大器的2号脚Vref就是基准电压产生的固定基准;② PWM比较器当来自电流取样信号,当然是电感电流和振荡器产生的补偿谐波想加后的电流信号,超过误差信号时,PWM比较器翻转,复位驱动锁存器断开电源开关,以此来控制开关管的开通与关断;③振荡器模块振荡器电路提供一定频率的时钟信号,以设置变换器工作频率,以及用于斜率补偿的定时斜升波;时钟波形为脉冲,而定时斜升波就是用于斜波补偿的,在电感取样端相加;④驱动器锁存器锁存器包括RS触发器与相关逻辑,它通过接通和断开驱动电路来控制电源开关的状态;来自锁存器的低输出电平把它断开;正常工作方式下,在时钟脉冲期间触发器被置为高电平,当PWM比较器输出变为高电平时锁存器复位;⑤软启动电路模块当整个系统刚启动时,电感产生一个很大的冲击电流,软启动让系统开始时不能在全占空比下启动,使输出电压以受控的上升速率增加至额定稳压点;设计思想是利用外接电容的充放电使得占空比慢慢提高,达到输出稳定的目的;⑥电流采样电路提供斜率补偿电流灵敏电压给PWM比较器;⑦保护电路模块监视电源开关的电流,若该值超过额定峰值,则该电路作用,重新开始软启动周期;3.设计中必须要考虑的几点细节问题①关于斜波补偿这是在上文提到过的电流控制型开关变换器中存在的根本性问题;电流控制型就是将实际的电感电流和电压外环设定的电流值分别接到PWM比较器的两端进行比较,用来控制开关管;下面分析斜波补偿的原因;如下图分别是占空比大于50%和小于50%的尖峰电流控制的电感电流波形图;图4 斜坡补偿原理分析其中Ve是电压放大器输出的电流设定值,ΔI0是扰动电流,m1,m2分别是电感电流的上升沿及下降沿斜率;由图可知,当占空比小于50%时扰动电流引起的电流误差ΔI l变小了,而占空比大于50%时扰动电流引起的电流误差ΔI l变大了;所以尖峰电流模式控制在占空比大于50%时,经过一个周期会将扰动信号扩大,从而造成工作不稳定,这时需给删比较器加坡度补偿以稳定电路,加了坡度补偿,即使占空比小于50%,电路性能也能得到改善;因此斜坡补偿能很好的增加电路稳定性,使电感电流平均值不随占空比变化,并减小峰值和平均值的误差,斜坡补偿还能抑制次谐波振荡和振铃电感电流;这里就不再详细地说明,斜波补偿方面必须要确定补偿波形的斜率的精确大小,采用的方法就是建立系统模型,导出传递函数,计算出补偿斜率的值;这是很关键的一步;②关于软启动问题DC/ DC开关电源在启动过程中 ,容易产生浪涌电流 ,可能对电子系统产生损伤;为避免启动时输入电流过大,输出电压过冲,在设计中必须采用软启动电路,该方法的不足之处是 ,当输出电压的阈值未达到时 ,发生浪涌电流现象可能对电子系统造成损伤 ,而且在输出电压达到阈值之后 ,也可能因为偶然的过流使得电源多次重新启动;因此应采用基于周期到周期的电流限制门限来限制上电时的浪涌电流,并防止电源多次重新启动;如图5图5 软启动电路4.总结本文对开关电源工作原理进行了详细的分析,对芯片内部模块进行了设计,最后采用BiCMOS工艺对芯片进行实现;,对芯片系统方面的设计又整体的把握,详细的论述了芯片设计的思想,这种方法对其他领域的芯片系统设计又很大帮助,因此有很大意义;。
DCDC电源设计方案
DCDC电源设计方案一、选取DC-DC电源拓扑结构在进行DC-DC电源设计之前,首先需要选择合适的拓扑结构。
常见的DC-DC拓扑结构有Buck(降压)、Boost(升压)、Buck-Boost(升降压)及SEPIC等。
具体选择哪种拓扑结构,需要根据实际应用需求来决定。
以Buck为例,其具有简单、稳定、高效的特点,适合输出电压低于输入电压的场合。
二、计算输入输出参数根据实际需求,计算DC-DC电源的输入输出参数,包括输入电压、输出电压、输出电流等。
这些参数将决定了电源所需的功率、电流和电压范围,为选择合适的元器件提供了依据。
三、选择元器件选择合适的电容器、电感器、开关管、二极管等元器件。
其中,在选择电容器和电感器时,需要考虑元器件的电流和电压容量、频率响应等特性,以保证电源设计的可靠性和稳定性。
在选择开关管和二极管时,需要考虑其导通压降、频率响应和损耗等特性,以提高DC-DC电源的效率和稳定性。
四、设计控制电路根据所选择的拓扑结构,设计出合适的控制电路。
其中,关键的元件是PWM控制器,它能够控制开关管的开关频率和占空比,从而实现对输出电压的调整和稳定。
在设计控制电路时,需要考虑电源的稳定性、保护功能和过载能力等。
五、PCB布线设计PCB布线设计是DC-DC电源设计的重要环节,它影响着电路的高频特性和噪声干扰。
在进行布线设计时,需要注意元器件之间的布局、功率地和信号地的分离、降低线路的传输损耗和改善信号完整性,以提高电路的性能和稳定性。
六、电源性能测试与验证在完成DC-DC电源的设计之后,需要进行性能测试和验证。
通过测试电源的输出电压、输出电流、负载调整能力、效率等参数,验证电源设计的稳定性和可靠性,以确保电源符合设计要求。
七、优化与改进对已完成的DC-DC电源设计进行评估和改进。
如果存在性能不足或不稳定的情况,需要进行优化和改进,调整电源的拓扑结构和元器件选择,优化PCB布线和控制电路,提高电源的效率和可靠性。
基于TMS320F28027的DC-DC开关电源设计附源程序
“DSP系统设计与创新实践”课程论文论文名称:基于TMS320F28027的DC-DC开关电源学生姓名:学号:专业: 电子科学与技术班级:2013年6月16日基于TMS320F28027的DC-DC开关电源摘要开关电源作为线性稳压电源的一种替代产物,在现代电子产品中已被广泛应用。
因此作为学习电子科学与技术专业的当代大学生,相当有必要对开关电源进行相应的研究。
本设计就是以TMS320F28027为核心控制芯片,采用脉宽调制(PWM)方式的降压型开关电源。
我们利用7805和AMS1117的线性降压稳压芯片对12V的电源适配器进行双级降压,形成TMS320F28027专用的3.3V稳定电源;并通过TMS320F28027对输出电压进行实时AD采样,然后和根据GPIO 3的状态来设定输出不同电压时计算的AD的标准值进行比较,以调节输出为50KHZ的ePWM 的占空比,并把该ePWM的矩形波信号经三级管9013初步放大之后,再经过三极管8050和8550构成的互补推挽放大器放大后来驱动功率场效应管(IRF4905);从而利用BUCK型降压电路实现了稳定的5V或3.3V的电压输出。
之后,我们对制作完成的开关电源进行了ePWM放大波形,输出电压和输出纹波的测试,对遇到的问题进行反复分析,并解决了部分问题。
最后的通过实际测试,本设计基本上满足的当初的设计要求。
关键词:开关电源;TMS320F28027;互补推挽放大器;BUCK型降压器引言现在的开关电源具有转换效率高,体积小,工作频率高的特点,已经被广泛用于电子计算机、通信、航天、家电和国防等领域中。
国内开关电源技术的发展,基本上起源于20世纪70年代末和80年代初,经过20多年的不断发展,开关电源技术有了重大进步和突破。
新型功率器件的开发促进了开关电源的高频化,功率MOSFET和IGBT可使小型开关电源的工作频率达到400kHz(AC/DC)或1MHz(DC/DC);软开关技术使高频开关电源的实现有了可能,它不仅可以减少电源的体积和重量,而且提高了电源的效率(国产6kW通信开关电源采用软开关技术,效率可达93%);控制技术的发展以及专用控制芯片的生产,不仅使电源电路大幅度简化,而且使开关电源的动态性能和可靠性大大提高;有源功率因数校正技术(APFC)的开发,提高了AC/DC开关电源的功率因数,既治理了电网的谐波污染,又提高了开关电源的整体效率。
BUCK型DCDC开关电源芯片的设计与实现
BUCK型DCDC开关电源芯片的设计与实现BUCK型DCDC开关电源芯片是一种常用于电子设备中的降压型直流到直流转换器。
它能够将输入电压降低到较低的输出电压,同时还能够提供高效的电力转换。
本文将介绍BUCK型DCDC开关电源芯片的设计与实现。
首先,BUCK型DCDC开关电源芯片的设计需要考虑以下几个关键因素:1.输入输出电压:确定所需的输入和输出电压范围。
输入电压应该大于最小额定输入电压,输出电压应小于输入电压。
2.输入输出电流:根据应用需求确定所需的输入和输出电流。
这将影响开关器件和滤波器的尺寸选择。
3.开关频率:选择适当的开关频率以平衡功率转换效率和电路尺寸。
较高的开关频率能够减小开关器件尺寸,但可能导致更多的开关损耗。
4.控制方式:选择合适的控制方式,比如PWM调制或恒定频率和变占空比调制。
PWM调制常用于高功率应用,而恒定频率和变占空比调制常用于低功率应用。
接下来是BUCK型DCDC开关电源芯片的实现过程:1.选择电源芯片:根据设计需求,选择适当的BUCK型DCDC开关电源芯片。
考虑芯片的输入输出电压范围、电流能力和控制功能等因素。
2.设计输入和输出滤波器:根据电源芯片的输入输出电流要求,设计适当的输入输出滤波器来减小电流纹波和噪音。
3.设计控制电路:根据选择的控制方式,设计控制电路来生成适当的PWM信号或调制信号。
这可以使用定时器、比较器和反馈电路等元件实现。
4.选择开关器件:根据输入输出电压和电流要求,选择合适的功率开关器件。
这些器件应能够处理所需的功率和频率要求,并具备低开关损耗和低导通电阻。
5.进行电路布局和焊接:根据设计要求,在PCB上进行电路布局和元器件焊接。
应留出足够的空间来放置所有的电路元件,并确保良好的热管理。
6.进行测试和调试:完成电路布局和焊接后,进行对电路的测试和调试。
这包括验证输入输出电压、电流和效率等参数。
如果有必要,进行相应的调整和优化。
最后,完成BUCK型DCDC开关电源芯片的设计与实现后,可以将其应用于各种电子设备中。
常用dcdc芯片内部原理
常用dcdc芯片内部原理
DC/DC电源芯片的内部原理主要包括以下几个方面:
1. 电压调节:DC/DC电源芯片通常通过反馈电压与内部基准电压的比较,调节MOS管的驱动波形占空比,以保持输出电压的稳定。
2. 同步整流技术:为了提高DC/DC电源芯片的效率,通常会采用同步整流技术。
当二极管导通时存在管压降,因此续流二极管所消耗的功率将会成为DC/DC电源主要功耗。
为了解决这个问题,通常会使用导通电阻极小的MOS管取代续流二极管,然后通过控制器同时控制开关管和同步整流管,保证两个MOS管不能同时导通,以防止短路。
3. 频率控制:DC/DC电源芯片中一般有RT引脚,改变RT引脚与地之间的电阻即可改变DCDC的频率。
改变RT的电阻,其实是通过改变电容充电恒流源的大小改变振荡器的频率。
4. 使能电路:使能电路的基本原理是基于斯密特触发器。
当Vi 大于Vt1时,输出为高门限,当小于Vt2时,为低门限。
设置好电阻比例以及输出门限值,即可得到输入门限电压。
此外,DC/DC电源芯片内部还可能包含误差放大器、温度保护、限流保护和软启动电路等部分,以确保电源芯片的稳定性和可靠性。
以上信息仅供参考,如有需要,建议咨询专业技术人员。
DCDC开关电源的设计
引言随着电子技术的飞速发展,现代电子测量装置往往需要负电源为其内部的集成电路芯片与传感器供电。
如集成运算放大器、电压比较器、霍尔传感器等。
负电源的好坏很大程度上影响电子测量装置运行的性能,严重的话会使测量的数据大大偏离预期。
目前,电子测量装置的负电源通常采用抗干扰能力强,效率高的开关电源供电方式。
以往的隔离开关电源技术通过变压器实现负电压的输出,但这会增大负电源的体积以及电路的复杂性。
而随着越来越多专用集成DC/DC控制芯片的出现,使得电路简单、体积小的非隔离负电压开关电源在电子测量装置中得到了越来越广泛的应用。
因此,对非隔离负电压开关电源的研究具有很高的实用价值。
传统的非隔离负电压开关电源的电路拓扑有以下两种,如图1、图2所示。
图3是其滤波输出电容的充电电流波形。
由图3可见,采用图2结构的可获得输出纹波更小的负电压电源,并且在相同电感峰值电流的情况下其带负载能力更强。
由于图2的开关器件要接在电源的负极,这会使得其控制电路会比图1来得复杂,因此在市场也没有实现图2电路结构(类似于线性稳压电源调节芯片7915功能)的负电压开关电源控制芯片。
为了弥补现有非隔离负电压开关电源技术的不足,以获得一种带负载能力强、输出纹波小的非隔离负电压开关电源,本文提出一种采用Boost开关电源控制芯片LT1935及分立元件实现了图2所示原理的基于峰值电流控制的新型非隔离负电压DC/DC开关电源。
图1 传统的非隔离负电压开关电源电路结构1图2 传统的非隔离负电压开关电源电路结构2图3 两种开关电源滤波电容的充电电流波形1 工作原理分析本文设计的非隔离负电压DC/DC开关电源如图4所示,负电源工作在连续电流模式。
当电源控制器LT1935内部的功率三极管导通时,直流电源给输出电感L1和输出电容C1充电。
当电源控制器LT1935内部的功率三极管关断时,输出电感L1中的电流改由通过肖特基二极管VD1提供的低阻抗回路继续给输出电容C1充电直至下一个周期电源控制器LT1935内部的功率三极管再次导通。
DCDC模块电源的设计方法
DCDC模块电源的设计方法DC-DC模块电源设计是一种常见的电源设计方法,它将输入电压转换为稳定的输出电压以供电路中其他组件使用。
在设计DC-DC模块电源时,需要考虑输入电压范围、输出电压、电流需求、效率、稳定性、尺寸和成本等多个因素。
下面将介绍DC-DC模块电源的设计方法,包括步骤和注意事项。
**步骤一:确定需求**在开始设计DC-DC模块电源之前,首先要确定电路的需求。
这包括输入电压范围、输出电压、输出电流需求、效率要求、稳定性需求等。
通过分析电路的需求,可以确定设计的基本参数。
**步骤二:选择拓扑结构**在确定电路需求后,需要选择适合的拓扑结构。
常见的DC-DC模块拓扑结构包括降压、升压、升降压和反激等。
根据电路的需求和设计参数,选择最合适的拓扑结构。
**步骤三:选择关键器件**选择关键器件包括功率开关管、电感、电容、稳压器等。
功率开关管的选型要考虑其经济性、效率、导通电阻等关键参数;电感和电容的选型要考虑其容值、电流承受能力和尺寸等;稳压器的选型要考虑其输出电压稳定性和负载能力等。
在选择关键器件时,要综合考虑各种因素,确保电路的性能和稳定性。
**步骤四:设计控制电路**设计控制电路是DC-DC模块电源设计的关键步骤。
控制电路通常包括PWM控制器、反馈网络、过压保护、欠压保护等。
PWM控制器用于控制功率开关管的开关,实现输出电压的稳定调节;反馈网络用于监测输出电压,进行反馈控制;过压保护和欠压保护用于保护电路和负载。
设计控制电路时,要确保其稳定性和可靠性,同时满足电路需求。
**步骤五:设计输出滤波**设计输出滤波电路是为了减小输出波形的纹波和噪声,提高输出电压的稳定性。
输出滤波电路通常包括LC滤波器和电容滤波器,可以有效滤除高频干扰和谐波。
通过合理设计输出滤波电路,可以提高电路性能和稳定性。
**步骤六:仿真和调试**在设计完成后,需要进行仿真和调试。
通过仿真软件模拟电路的工作状态,验证设计参数和性能。
基于SG3525的DCDC开关电源设计
基于SG3525的DC/DC开关电源设计The Design of DC/DC Switching PowerSupply Based on SG3525毕业设计任务书毕业设计开题报告摘要本文主要目的是设计一款基于SG3525的推挽式DC/DC开关电源,首先可以将DC10~35V,转变成DC360V,额定功率达到500W。
可应用在低压转高压的设备中,特别是适用于低压输入的车载逆变电源的前级升压等。
通过对比研究,设计了基于SG3525的推挽式DC/DC开关电源的主拓扑结构,将前级的低压直流电通过变压器耦合升压,输出经过桥式整流和LC滤波,得到360V 直流高压。
MOSFET漏源极采用RC吸收电路,对变压器漏感产生的尖峰电压进行吸收。
电压的反馈采用TL431和PC817结合的隔离采样方式,实现了前后级的电气隔离。
电压反馈信号送入SG3525的比较端,与SG3525的内部三角波进行比较,可以得到占空比变化的PWM波形,实现对输出电压的闭环控制。
通过对主电路工作原理分析和参数计算,完成了硬件电路的设计,最后通过电力电子仿真软件SABER对电路进行仿真验证,可以在输入电压全范围内实现稳压输出360V,输出功率达到额定要求,电路性能稳定,响应速度快。
关键词:SG3525推挽DC/DC开关电源SABER仿真AbstractThe main purpose of this paper is based on a push-pull DC/DC SG3525 switching power supply, can be transformed into DC10~35V, DC360V, rated power reaches 500W. Can be used in high pressure and low pressure rotor device, especially suitable for low voltage inverter power input before voltage etc..Through the comparative study, design the main topology of push-pull DC/DC switching power supply based on SG3525, the low voltage DC power stage through transformer step-up, output filtered bridge rectifier and LC, 360V DC high voltage. MOSFET drain source using RC snubber circuit, peak voltage of transformer leakage generated by absorption. Isolation by TL431 and PC817 combined with the feedback sampling voltage, electrical isolation between the before and after class. Comparison of terminal voltage feedback signal is sent to SG3525, compared with the internal triangular wave SG3525, can get the PWM duty cycle waveform changes, to achieve closed-loop control of output voltage.Through the work of the main circuit principle analysis and parameter calculation, completed the hardware circuit design, the power electronic simulation software SABER to verify the circuit, the input voltage can achieve the full range output voltage 360V, output power reaches the rated circuit requirements, stable performance, fast response speed.Key words:SG3525 push-pull DC/DC SABER simulation目录第1章绪论 (1)1.1课题研究的目的意义 (1)1.2国内外研究现状 (1)1.3论文研究内容 (2)第2章课题设计要求及方案 (3)2.1设计要求 (3)2.2设计方案 (3)第3章系统主要元器件介绍 (5)3.1SG3525芯片介绍 (5)3.1.1 引脚功能说明 (6)3.1.2 SG3525的工作原理 (7)3.2 TL431工作原理介绍 (9)3.3PC817性能介绍 (11)3.4高频变压器 (12)第4章硬件电路设计 (14)4.1 推挽电路原理及设计 (14)4.2 SG3525控制电路设计 (17)4.3 TL431和PC817反馈电路设计 (18)4.4 高频变压器设计 (19)第5章saber仿真验证 (22)5.1 仿真软件介绍 (22)5.2 系统仿真电路图 (23)5.3 仿真结果 (23)第6章结论 (27)参考文献 (28)致谢 (29)附录 (30)附录A外文资料 (30)附录B电路原理图 (47)石家庄铁道大学四方学院毕业设计第1章绪论1.1 课题研究的目的意义随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展[1]。
DC-DC升压开关电源设计
一、设计要求本课程要求设计一个DC-DC升压开关电源,输入低压直流信号,输出为高压直流信号。
设计要求:1、输入5V直流,输出12V、100mA直流2、在额定负载情况下,纹波的峰-峰值<=30mV3、输出尖峰电压峰-峰值<=200mV4、100mA电压下降<=30mV二、设计方案1、理论基础The boost converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。
在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。
这时,输入电压流过电感。
二极管防止电容对地放电。
由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。
随着电感电流增加,电感里储存了一些能量。
当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。
而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。
升压完毕。
说起来升压过程就是一个电感的能量传递过程。
充电时,电感吸收能量,放电时电感放出能量。
如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。
如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。
2、实际方案本课题采用驱动式开关升压方式,主要利用电容和电感的储能特性实现。
具体可以分为以下几个部分。
第一个是振源,因为是开关电路,所以需要利用高频的方波信号实现三极管的导通与截止。
然后的主放大电路用来给负载端升压,需要一个三极管和一个电感,利用电感的储能实现直流信号的输出。
由于在开关闭合的瞬间,电感上会产生巨大的瞬时电压,而且电感的充电与放电是交替进行的,所以输出不可能是一个单纯的直流信号,那么就需要一个滤波电路把交流信号滤除。
之后为了稳定输出电压,就需要一个负反馈调节电路来控制主放大电路的开关。
三、方框图四、框内电路设计1、振荡电路此部分电路是由一个555定时器构成的多谐振荡器,它的工作原理如下:555的阈值输入THR和触发输入TRI相连,由电容的端电压Uc控制。
基于PWM模式控制的Buck型DC_DC芯片的设计
2
基于 PWM 模式控制的 Buck 型 DC_DC 芯片的设计
得了可喜的成就,但现在电源管理类芯片的研发与销售仍是各大外企占据垄断地 位,国内的企业规模小、起步晚,还无法打入国际市场。在现在经济危机的影响 下,各大外企纷纷急剧缩水,而中国政府加倍关注于电子产品的研发,并投入了 巨额的人力、财力。可以预计今后我国电源管理类芯片的产业必能飞速发展,在 国际市场上占据一席之地。
peakcurrentmodedcdcconverterfrequencycompensationhighefficiencyslopecompensation西安电子科技大学西安电子科技大学西安电子科技大学西安电子科技大学学位论文独创性学位论文独创性学位论文独创性学位论文独创性或创新性或创新性或创新性或创新性声明声明声明声明秉承学校严谨的学风和优良的科学道德本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果
Abstract
The paper is based on the project “Design technique research of analog and digital mixed IC for single chip” and it mainly studies the design and realization of a Buck DC_DC converter. Started from the electronic characteristic requirements, through systematic design, circuit design and performance simulation, a high efficiency、 wide range power supply and high current Buck DC_DC converter with peak current-mode is introduced in this paper. This paper detailedly analyses the basic principles of Buck DC_DC. It also deeply studies on small-signal control models for the whole circuit stability and design of frequency compensation network parameters. Using the peak current-PWM mode control, the chip has a fast transient response speed to the variety of supply voltage and load. It achieves a high conversion efficiency across all load extension for the application of synchronous rectification technique. A piecewise linear slope compensation circuit is designed not only to overcome the disadvantages of open loop instability, subharmonic oscillation and the sensitivity of noise influence when the duty cycle is greater than 0.5, but also enhance the load capability. In addition, many protection circuits are integrated in the chip, such as over temperature protection, over voltage protection, short circuit protection, reverse current protection and so on. Based on 0.25um 40V BCD process, the whole chip and its submodules have been designed and simulated by Cadence spectre. The results indicate that the chip has excellent characteristic parameters and a good performance on regulated ratio of supply voltage and load, the switch current can attain 3.4A and the efficiency is up to 93%. Now the chip is in layout design. Keyword: Peak Current Mode DC_DC Converter Frequency Compensation
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引言
电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。
而开关电源更为如此,越来越受到人们的重视。
目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。
目前电力电子与电路的发展主要方向是模块化、集成化。
具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。
从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动,应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种 PWM控制结构的研究就成为研究的热点。
在这样的前提下,设计开发开关电源DC-DC 控制芯片,无论是从经济,还是科学研究上都是是很有价值的。
1. 开关电源控制电路原理分析
DC-DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成另—等级直流输出电压。
在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间长度来控制平均输出电压,这种方法也称为脉宽调制[PWM]法。
PWM从控制方式上可以分为两类,即电压型控制(voltage mode control)和电流型控制(current mode control)。
电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PWM信号。
从控制理论的角度来讲,电压型控制方式是一种单环控制系统。
电压控制型变换器是一个二阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。
二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。
图1即为电压型控制的原理框图。
图1 电压型控制的原理框图
电流型控制是指将误差放大器输出信号与采样到的电感峰值电流进行比较.从而对输出脉冲的占空比进行控制,使输出的电感峰值电流随误差电压变化而变化。
电流控制型是一个一阶系统,而一阶系统是无条件的稳定系统。
是在传统的PWM电压控制的基础上,增加电流负反馈环节,使其成为一个双环控制系统,让电感电流不在是一个独立的变量,从而使开关变换器的二阶模型变成了一个一阶系统。
信号。
从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成。
在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阂值。
电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电感电流的动态变化,电压外环只负责控制输出电压。
因此电流型控制模式具有比起电压型控制模式大得多的带宽。
图2 电流型控制原理框图
电流型控制模式有不少优点:线性调整率(电压调整率)非常好;整个反馈电路变成了一阶电路,由于反馈信号电路与电压型相比,减少了一阶,因此误差放大器的控制环补偿网络得以简化,稳定度得以提高并且改善了频响,具有更大的增益带宽乘积;具有瞬时峰值电流限流功能;简化了反馈控制补偿网络、负载限流、磁通平衡等电路的设计,减少了元器件的数量和成本,这对提高开关电源的功率密度,实现小型化,模块化具有重要的意义。
当然了也有缺点,例如占空比大于50%时系统可能出现不稳定性,可能会产生次谐波振荡;另外,在电路拓扑结构选择上也有局限,在升压型和降压—升压型电路中,由于储能电感不在输出端,存在峰值电流与平均电流的误差。
对噪声敏感,抗噪声性差等等。
对于这样的缺点现在已经有了解决的方案,斜波补偿是很必要的一种方法。
2.芯片内部模块的设计
本目的是设计一个基于PWM控制的boost升压式DC-DC电源转换芯片,该芯片实现基于双环(电压环和电流环)一阶控制系统的电流模式PWM控制电路,在该集成模块内将包括控制、驱动、保护、检测电路等。
最后在电路系统基本框架的基础上,结合电力电子技术与微电子技术,采用采用BiCMOS工艺,具体针对DC-DC变换电路的实现进行研究。
系统方面的设计以及系统框图和各个功能模块的设计思想
图3 系统模块原理框图
下面分别的介绍系统各个功能模块:
①误差放大电路误差是用于调整变换器的高增益差分放大器。
放大器产生误差信号,他被供给PWM比较器。
当输出电压样本与内部电压基准比较并放大差值时产生误差信号。
误差放大器的2号脚Vref就是基准电压产生的固定基准。
② PWM比较器当来自电流取样信号,当然是电感电流和振荡器产生的补偿谐波想加后的电流信号,超过误差信号时,PWM比较器翻转,复位驱动锁存器断开电源开关,以此来控制开关管的开通与关断。
③振荡器模块振荡器电路提供一定频率的时钟信号,以设置变换器工作频率,以及用于斜率补偿的定时斜升波。
时钟波形为脉冲,而定时斜升波就是用于斜波补偿的,在电感取样端相加。
④驱动器锁存器锁存器包括RS触发器与相关逻辑,它通过接通和断开驱动电路来控制电源开关的状态。
来自锁存器的低输出电平把它断开。
正常工作方式下,在时钟脉冲期间触发器被置为高电平,当PWM比较器输出变为高电平时锁存器复位。
⑤软启动电路模块当整个系统刚启动时,电感产生一个很大的冲击电流,软启动让系统开始时不能在全占空比下启动,使输出电压以受控的上升速率增加至额定稳压点。
设计思想是利用外接电容的充放电使得占空比慢慢提高,达到输出稳定的目的。
⑥电流采样电路提供斜率补偿电流灵敏电压给PWM比较器。
⑦保护电路模块监视电源开关的电流,若该值超过额定峰值,则该电路作用,重新开始软启动周期。
3.设计中必须要考虑的几点细节问题
①关于斜波补偿
这是在上文提到过的电流控制型开关变换器中存在的根本性问题。
电流控制型就是将实际的电感电流和电压外环设定的电流值分别接到PWM比较器的两端进行比较,用来控制开关管。
下面分析斜波补偿的原因。
如下图分别是占空比大于50%和小于50%的尖峰电流控制的电感电流波形图。
图4 斜坡补偿原理分析
其中Ve是电压放大器输出的电流设定值,ΔI0是扰动电流,m1,m2分别是电感电流的上升沿及下降沿斜率。
由图可知,当占空比小于50%时扰动电流引起的电流误差ΔI l变小了,而占空比大于50%时扰动电流引起的电流误差ΔI l变大了。
所以尖峰电流模式控制在占空比大于50%时,经过一个周期会将扰动信号扩大,从而造成工作不稳定,这时需给删比较器加坡度补偿以稳定电路,加了坡度补偿,即使占空比小于50%,电路性能也能得到改善。
因此斜坡补偿能很好的增加电路稳定性,使电感电流平均值不随占空比变化,并减小峰值和平均值的误差,斜坡补偿还能抑制次谐波振荡和振铃电感电流。
这里就不再详细地说明,斜
波补偿方面必须要确定补偿波形的斜率的精确大小,采用的方法就是建立系统模型,导出传递函数,计算出补偿斜率的值。
这是很关键的一步。
②关于软启动问题
DC/ DC开关电源在启动过程中,容易产生浪涌电流,可能对电子系统产生损伤。
为避免启动时输入电流过大,输出电压过冲,在设计中必须采用软启动电路,该方法的不足之处是,当输出电压的阈值未达到时,发生浪涌电流现象可能对电子系统造成损伤,而且在输出电压达到阈值之后,也可能因为偶然的过流使得电源多次重新启动。
因此应采用基于周期到周期的电流限制门限来限制上电时的浪涌电流,并防止电源多次重新启动。
如图5
图5 软启动电路
4.总结
本文对开关电源工作原理进行了详细的分析,对芯片内部模块进行了设计,最后采用BiCMOS工艺对芯片进行实现。
,对芯片系统方面的设计又整体的把握,详细的论述了芯片设计的思想,这种方法对其他领域的芯片系统设计又很大帮助,因此有很大意义。