数字幅频均衡功率放大器 (2)
智能会议系统完整简练培训材料
DLP投影机
DLP投影机的原理
• 先利用一组聚光镜将灯泡发出的光线传递通过在高速旋转 的色轮(Color wheel),再利用第二组镜片将通过色轮的 光线均匀汇聚在DMD元件上。经由DMD反射,光线会进入投 影镜头将图像成像在屏幕上。
Mirror +12deg Mirror +12deg
1 pixel
模拟信号 Analog
非平衡式 (UnBalance) 平衡式 (Balance)
音频信号
非平衡式 (UnBalance)
数字信号 Digital
平衡式 (Balance)
TRS MONO
TRS STEREO
BNC
XLR
XLR
XLR
RCA
视频信号
复合视频 Composite-Video 超级视频 S-Video 模拟分量视频 RGBHV Video VGA视频 (RGB Video)
RCA
S-Video
BNC*5
VGA
BNC
BNC*2
Output 切换器 Switcher Input 1 Input 2
„„
Output
Output
„„
Output
Input N
切换分配器 Switcher-Divider
Output
Output 分配器 Divider Input
„„
Output Input 1 Input 2
扬声器各种布置方式及其特点
扬声器集中布置方式
天花板 扬声器
听众区 话筒
扬声器分散式布置方式
扬声器 话筒
传声器
传声器是一种将声信号转换为电信号的换能器件,俗称话筒、麦克风。传声器 的好坏将直接影响声音的质量。图为各种传声器的外观图。
基于TMS320F2812的数字幅频均衡功率放大器的设计
技 水应 问
基 于 TMS F 8 3 0 2 2 1 2的
数 字 幅 频 均 衡 功 率 放 大器 的设 计
个 电路 以 T 3 0 2 1 数 字信 号处理 器 为核 心 ,输入 的小 信 号 MS 2 F 8 2 经 前置 运算 放大 器 I 2 7 大 后 ,经 带阻 网络 衰减 ,然 后通过 NA l 放 A/ 转换 器 AD 8 0采样 后 ,将采 样信 号数 字化 后交 由 D P进 D S3 S
引 言
在 声 音 的放 大传 输 过 程 中 ,由 于设 备或 器 件 的原 因 ,导 致
2 单 元 电 路 设 计
2 1 前 置放 大 电路设 计 。
信 号 幅度 对 频 率 的 响应 往 往 不 一致 ,这样 声 音 经 过放 大 器 输 出 本 文 选 用 的运放 是 T 公 司 的低 噪 声 、低 失真 的 仪表 放 大器 l 后 ,就达 不 到 原 来 的声 音 效 果。 音 频均 衡 器 作 为 高 品质 音 响 不 IA 1 ,其 失真 度 在 频 率 为 1 H ,增 益 为 2 d ( 0倍 放 大 ) N 27 Kz 0 B1 O
当有输 入信 号时 , 先对 小信号 进 行前 置放 大 ( 大于 4 0倍 ) 0 , 调 节 到 一 个 比较 合 适 的 电压 ,然后 再 进 行输 出 电阻 的 匹 配 ,使
” ”
之达 到 6 0欧 姆 ,再 输 到 带阻 网络 ,进 行 幅度 衰 减 ,衰 减 的 信 0 号 经 过调 理 后 送 到 ~D 采样 模 块 进行 采 样 ,采 样 得 到 的数 据送 入 D P处理 , S S D P对 其进 行 二阶 的 l l R滤波 , 数字 幅频 均衡 。 进行 均 衡 之 后 的信 号 是 数 字量 ,将 其 送 入 DA还 原 ,最 后输 到 功 率 / 放 大模 块 ,用 示波器 显 示波 形。 系统整 体 方案如 图 1 示 : 所
全国电子竞赛放大器类赛题
“放大器类”赛题2.1.1 “放大器类赛题” 历届都有在9届电子设计竞赛中,“放大器类赛题” 除了1994年外,其它每届都有,共有9题:①实用低频功率放大器(1995年A题);②测量放大器(1999年A题);③高效率音频功率放大器(2001年D题);④宽带放大器(2003年B题);⑤程控滤波器(2007年D 题本科组);⑥可控放大器(2007年I题高职高专组);⑦宽带直流放大器(2009年C题);⑧数字幅频均衡的功率放大器(2009年F题);⑨低频功率放大器(2009年G题)。
其中:与音频功率放大器有关的有4题。
与宽带放大器有关的有2题。
与直流、低频放大器有关的有3题。
比较历届赛题可以看到,“放大器类”赛题的要求是越来越高,如:在“程控滤波器(2007年D题本科组)”中要求放大器电压增益为60dB,输入信号电压振幅为10mV。
制作“简易幅频特性测试仪”,其扫频输出信号的频率变化范围是100Hz~200kHz,频率步进10kHz。
在“数字幅频均衡的功率放大器(2009年F题)” 中要求:当输入正弦信号v i电压有效值为5mV、功率放大器接8Ω电阻负载(一端接地)时,要求输出功率≥10W。
功率放大电路的-3dB通频带为20Hz~20kHz。
功率放大电路的效率≥60%。
宽带放大器(2003年B题)”中要求3dB通频带10kHz~6MHz,最大增益≥58dB(3dB 通频带10kHz~6MHz,最大输出电压有效值≥6V,数字显示输出正弦电压有效值。
“宽带直流放大器(2009年C题)”中要求最大电压增益A V≥60dB,输入电压有效值V i≤10 mV。
放大器的输入电阻≥50Ω,3dB通频带0~10MHz;负载电阻(50±2)Ω,最大输出电压正弦波有效值V o≥10V。
注意:放大器同时也是各赛题中一个必不可少的组成部分。
2.1.2 常用的一些放大器(包含OP)芯片历届的“放大器类赛题” (包括其他赛题)中使用到的一些放大器(包含OP)芯片有:AD526精确程控放大器ADI公司,AD603,低噪声、90 MHz可变增益放大器.,ADI公司,AD605双通道、低噪声、单电源可变增益放大器,ADI公司,AD620低漂移、低功耗仪表放大器,增益设置范围1~10000 ADI公司, AD783,采样保持电路,ADI公司,AD811高性能视频运算放大器(电流反馈型宽带运放),ADI公司,AD818高速低噪声电压反馈型运放,ADI公司,AD8011 300 MHz、1 mA 电流反馈放大器,ADI公司,AD8056双路、低成本、300 MHz电压反馈型放大器ADI公司,AD8564,四路7 ns单电源高速比较器,ADI公司,AC524/AC525 5~500 MHz级联放大器,teledyne 公司,BUF634,250mA高速缓冲器,TI公司,/cnCA3140单运算直流放大器,Intersil Corporation,HFA1100 850MHz、低失真电流反馈放大器,Intersil Corporation,INA118精密低功耗仪表放大器,TI公司,/cnLF356 JFET输入运算放大器,National Semiconductor Corpora,LM311具有选通信号的差动比较器,National Semiconductor Corpora,LF356,JFET输入运算放大器,National Semiconductor Corpora,LM393电压比较器,National Semiconductor Corpora,LM7171高速电压反馈运算放大器,National Semiconductor Corpora,LM358/LM158/LM258/LM2904双运算放大器,National Semiconductor Corpora,LM2902,LM324/LM324A,LM224/ LM224A四运算放大器,National Semiconductor Corpora,LT1210 1.1A,35MHz电流反馈放大器,linear公司,/product/LT1210 MAX4256,UCSP封装、单电源、低噪声、低失真、满摆幅运算放大器,Maxim公司,MAX912, MAX913单/双路、超高速、低功耗、精密的TTL比较器,Maxim公司,MAX477 ,300MHz、高速运算放大器,Maxim公司,MAX427/ MAX437低噪声、高精度运算放大器,Maxim公司MAX900高速、低功耗、电压比较器,Maxim公司NE5532双路低噪声高速音频运算放大器,TI公司,/cnNE5534低噪声高速音频运算放大器,TI公司,/cnOP27低噪声、精密运算放大器ADI公司,OP37低噪声、精密运算放大器ADI公司,OPA637,精密、高速、低漂移、高增益放大器,TI公司,/cnOPA637,精密、高速、低漂移高增益放大器,TI公司,/cnOPA642高速低噪声电压反馈型运放,TI公司,/cnOPA690,宽带50MHz、电压反馈运算放大器,TI公司,/cnOPA690 高速、电压反馈型运放(大于等于50MHz),TI公司,/cn PGA202KP,数字可编程仪表放大器,TI公司,/cnTHS3091单路高压低失真电流反馈运算放大器,TI公司,/cnTHS3092高压低失真电流反馈运算放大器,TI公司,/cnTL084,JFET 输入运算放大器,TI公司,/cnµA741标准线性放大器,TI公司,/cn以上各放大器IC和OP的更多资料,可以登录有关网站查询得到(以运算放大器的型号为关键词)。
基于FPGA的数字幅频均衡功率放大器
基于FPGA的数字幅频均衡功率放大器
王振红;刘随强;刘杰林;赵树新;林志彬;丁子瑜
【期刊名称】《中国科技信息》
【年(卷),期】2012(000)015
【摘要】数字信号幅频均衡功率放大器是解决功率放大器前置信号在传输过程中不同频率信号幅度衰减的问题。
本课题中,采用带阻网络模拟实际的信道,功率放大器前置信号经带阻网络,幅频特性衰减变化很大。
应用FPGA在数字信号处理上的优势,实现数字信号幅度均衡的高速处理,使功率放大器音质得到提高。
【总页数】1页(P111)
【作者】王振红;刘随强;刘杰林;赵树新;林志彬;丁子瑜
【作者单位】北方工业大学;北方工业大学;北方工业大学;北方工业大学;北方工业大学;北方工业大学
【正文语种】中文
【相关文献】
1.基于FPGA的数字幅频均衡器的设计 [J], 闭吕庆
2.基于FPGA的数字幅频均衡功率放大器设计 [J], 王键;黄靓;袁燕燕
3.基于FPGA的数字幅频均衡功率放大器的设计 [J], 张波;陶薇薇;董夏叶;董喆;姜睿
4.基于TMS320F2812的数字幅频均衡功率放大器的设计 [J], 杜月林;刘青
5.基于FPGA的数字幅频均衡功率放大器设计 [J], 王键[1];黄靓[1];袁燕燕[2]
因版权原因,仅展示原文概要,查看原文内容请购买。
历年年全国大学生电子设计竞赛题目
2015年全国大学生电子设计竞赛题目【本科组】双向DC-DC变换器(A题)风力摆控制系统(B题)多旋翼自主飞行器(C题)增益可控射频放大器(D题)80MHz-100MHz频谱分析仪(E题)数字频率计(F题)短距视频信号无线通信网络(G题)第一届(1994年)第一届(1994年)全国大学生电子设计竞赛A.简易数控直流电源B.多路数据采集系统第二届(1995年)第二届(1995年)全国大学生电子设计竞赛A.实用低频功率放大器B.实用信号源的设计和制作C.简易无线电遥控系统D.简易电阻、电容和电感测试仪第三届(1997年)第三届(1997年)全国大学生电子设计竞赛A.直流稳定电源B.简易数字频率计C.水温控制系统D.调幅广播收音机第四届(1999年)第四届(1999年)全国大学生电子设计竞赛A.测量放大器B.数字式工频有效值多用表C.频率特性测试仪D.短波调频接收机E.数字化语音存储与回放系统第五届(2001年)第五届(2001年)全国大学生电子设计竞赛A.波形发生器B.简易数字存储示波器C.自动往返电动小汽车D.高效率音频功率放大器E.数据采集与传输系统F.调频收音机第六届(2003年)第六届(2003年)全国大学生电子设计竞赛A.电压控制LC振荡器B.宽带放大器C.低频数字式相位测量仪D.简易逻辑分析仪E.简易智能电动车F.液体点滴速度监控装置第七届(2005年)第七届(2005年)全国大学生电子设计竞赛A.正弦信号发生器B.集成运放测试仪C.简易频谱分析仪D.单工无线呼叫系统E.悬挂运动控制系统F.数控恒流源G.三相正弦波变频电源第八届(2007年)第八届(2007年)全国大学生电子设计竞赛A.音频信号分析仪B.无线识别C.数字示波器D.程控滤波器E.开关稳压电源F.电动车跷跷板G.积分式直流数字电压表H.信号发生器I.可控放大器J.电动车跷跷板第九届(2009年)第九届(2009年)全国大学生电子设计竞赛A.光伏并网发电模拟装置B.声音导引系统C.宽带直流放大器D.无线环境监测模拟装置E.电能收集充电器F.数字幅频均衡功率放大器G.低频功率放大器H.LED点阵书写显示屏I.模拟路灯控制系统第十届(2011年)A.开关电源模块并联供电系统B.基于自由摆的平板控制系统C.智能小车D. LC 谐振放大器E.简易数字信号传输性能分析仪F.帆板控制系统G.简易自动电阻测试仪H.波形采集、存储与回放系统第十一届(2013年)A.单相AC-DC变换电路B.四旋翼自主飞行器C.简易旋转倒立摆及控制装置D.射频宽带放大器E.简易频率特性测试仪F.红外光通信装置G.手写绘图板J.电磁控制运动装置K.简易照明线路探测仪L.直流稳压电源及漏电保护装置第十二届(2015年)【本科组】双向DC-DC变换器(A题)风力摆控制系统(B题)多旋翼自主飞行器(C题)增益可控射频放大器(D题)80MHz-100MHz频谱分析仪(E题)数字频率计(F题)短距视频信号无线通信网络(G题)【高职高专组】LED闪光灯电源(H题)风板控制装置(I题)小球滚动控制系统(J题)获奖状况。
电子设计竞赛技术报告格式
设计报告格式规范1页面要求技术报告正文要求必须为6页内。
电路图、程序流程图、程序清单等可作为附录另加。
设计报告要求控制在20页左右,设计报告统一用A4纸打印。
报告从正文开始统一编页码、左侧装订。
报告每页左方必须留出3cm空白,空白内不得有任何文字,以便顶端密封装订。
2字体格式各级大标题字体为小三号宋体加黑,各级小标题为四号宋体加黑。
摘要内容为小四号宋体,但是“摘要”二字需要加粗。
正文内容为小四号宋体,标题和正文一律用宋体。
3段落格式各级大标题为1.5倍行距,各级小标题为1.2倍行距。
摘要、正文、参考文献等非标题内容为单倍行距。
正文首行缩进2字符,标题无缩进。
4图表要求(1).电路图、流程图等一律用Altium Designer Release 10、word或Microsoft Visio2010等软件工具画出;——网站下载的图表不能直接粘贴采用!!。
(2).图表要求清晰、美观、整洁,必须用图表标号(如“图1 系统框图”格式。
图标号位于下方,表标号位于该表的上方;5内容说明5.1封面单独1页(白纸或黄纸)只有题号、密号(编号)。
5.2摘要、关键词摘要:150~200字,单独1页。
对技术报告内容作一个简要的、概括性的介绍。
内容应包括:系统最终的实施方案、具体实现的手段、系统设计的主要创新点、结果分析、结论。
避免出现对论文内容的自我评价,且要采用第三人称,避免出现“本文”、“作者”等主语。
关键词:选用的词要具有专指性,一个词表达一个主题范畴。
避免出现概念含糊的情况。
例如:《数字幅频均衡的功率放大器》采用关键词“数字幅频均衡”、“D类功率放大器”,比采用关键词“幅频均衡”、“功率放大器”要恰当。
第一关键词要体现出学科分类。
5.3目录内容必须对应页码号,最好采用自动生成页码的方法。
5.4设计报告正文常应包括下述内容(以下内容供参考):一、引言叙述对题目的理解,以及设计思路和特点。
(200字以内)二、系统方案包括方案比较、方案论证、方案选择。
任务二 调谐放大器的制作与测试 (2)
项目二
调谐放大器的制作与测试
调幅收音机的输入回路接收了广播电台的调幅信号后,经变频电路将载波频率统 一变换为465kHz。此时的中频电压信号很弱,远不能保证功率放大器的正常工作,需 对它进行电压放大。同时,为防止噪声和干扰信号影响己调信号质量,中频电压放大 电路还需要具有相应的选频功能,只对载波频率为465kHz的调幅信号进行放大,而对 其它频率的信号进行有效的抑制。像这种具有选频放大功能的电路,就称为调谐放大 器。其中,具有选频特性的网络是LC并联电路,正是利用LC回路的并联谐振特性来实 现选频的,所以又将它称为调谐回路。 实际使用的调谐放大器,为了实现阻抗匹配,级间耦合往往采用变压器耦合方式。 根据一级放大器中有几个调谐回路,将调谐放大器又分为单调谐放大器与双调大电路,它实质上就是变压器耦合的单调放大 器。偏置电阻R5引入直流负反馈,可使电路获得较稳定的静态工作点;基极旁路电容 C4 可提高电路增益。T3、T4为输入、输出耦合的中频变压器(常称为中周),调节磁芯 上、下位置可改变耦合系数,也就改变了原边等效电感,调节了谐振频率 f 。(调为 465kHz);同时,中周外壳为磁屏罩,是为了屏蔽掉外磁场的干扰;原边绕组中心抽头 且交流接地,是为了提高谐振回路的品质因数Q和对音频信号的选择性。 需要指出的是,调谐放大器工作的稳定性是其重要的性能指标。影响电路稳定性的主 要原因是三极管的内部反馈,它使前后级的谐振频率相互影响,谐振曲线不对称,并可 能在输入端形成正反馈,引起自激振荡。
双调谐放大器的级间耦合有变压器耦合和电容耦合两种,分别如图所示。通过调 节变压器的磁芯位置或耦合电容Ck,可改变耦合的松紧程度,最终改善通频带与选择 性。
变压器耦合
电容耦合
两个调谐回路之间的耦合程度,对放大器幅频特性有很大的影响。松耦合时,幅 频特性曲线呈单峰;紧耦合下,幅频特性曲线呈双峰;而当调节到临界耦合时,幅频 特性曲线呈现平顶现象,此时的电路可兼顾通频带与选择性两方面。
一种数字幅频均衡功率放大器的设计
本 , 用软 件去 抖动算 法 。 采 去抖 动算法 主要 由 2部分
构成 : 多次 延 时判 断消 除边 沿抖 动 ; 对 连 续 的 5 ① ②
=
图 7 测 试 电 路连 接 图
41 前 置 放 大 器 性 能 指 标 测 试 .
于 1 k 的最 大衰 减大 于 1 d 0 Hz 0 B。
43 均衡 输 出测试 . 测试 方法 :用万 用 表 A i n3 4 1 gl t3 0 A监 视 电 e
( ) 置放 大器放 大倍 数 测试 1前 测 试方 法 :用 万用 表 A i n3 4 1 gl t3 0 A监 视 电 e
运放 。
22 带 阻 网络 .
络 频率 响应 曲线 数据确 定均 衡器 系数 ,与采 样波 形 数 据相 乘后 由 DA转换 器转 换成 模拟 信号输 出。 /
2 理论分析与设 计
21 前 置 放 大 器 .
带阻 网络 结构与 参数 如 图 2所示 ,但 由于原件
参数 的离散 性 , 相对 于 1k z的输 出 电压 幅度 最 其 0H 大衰 减 可能 达不 到 l d 这 时把 l0 电阻 阻值 适 O B, 0Q
压 有 效值 . 置信 号 源 A i n3 2 0 设 g et3 2 A输 出 lHz l k 正 弦 波。 节输 出 电压 幅度使 万 用表 读数 约为 5 调 mV, 用 万 用表 测量 读取 电压 有效 值 , 电压放 大倍 数 。
测 试结 果 : F5 0 mV,V= .0 mV . 1 0 】218 结果 分 析 : 】 4 1 大 于 4 0 A /=2 , V 0 () 2 通频 带测 试
第九届全国大学生电子设计竞赛题目
总分
30
基本
要求
实际制作完成情况
50
发挥
部分
完成第(1)项
7
完成第(2)项
2
完成第(3)项
7
完成第(4)项
6
完成第(5)项
12
完成第(6)项
5
完成第(7)项
6
其他
5
总分
50
无线环境监测模拟装置(D题)
【本科组】
一、任务
设计并制作一个无线环境监测模拟装置,实现对周边温度和光照信息的探测。该装置由1个监测终端和不多于255个探测节点组成(实际制作2个)。监测终端和探测节点均含一套无线收发电路,要求具有无线传输数据功能,收发共用一个天线。
(4)可移动声源在运动过程中任意时刻超过Ox线左侧的距离小于5cm。
(5)可移动声源到达Ox线后,必须有明显的光和声指示。
(6)功耗低,性价比高。
2.发挥部分
(1)将可移动声源转向180度(可手动调整发声器件方向),能够重复基本要求。
(2)平均速度大于10cm/s。
(3)定位误差小于1cm。
(4)可移动声源在运动过程中任意时刻超过Ox线左侧距离小于2cm。
二、要求
1.基本要求
(1)制作2个探测节点。探测节点有编号预置功能,编码预置范围为B~B。探测节点能够探测其环境温度和光照信息。温度测量范围为0℃~100℃,绝对误差小于2℃;光照信息仅要求测量光的有无。探测节点采用两节1.5V干电池串联,单电源供电。
(2)制作1个监测终端,用外接单电源供电。探测节点分布示意图如图1所示。监测终端可以分别与各探测节点直接通信,并能显示当前能够通信的探测节点编号及其探测到的环境温度和光照信息。
电子设计竞赛仪器仪表类题目列表
2009年)全国大学生电子设计竞赛题目数字幅频均衡功率放大器(F题)【本科组】一、任务设计并制作一个数字幅频均衡功率放大器。
该放大器包括前置放大、带阻网络、数字幅频均衡和低频功率放大电路,其组成框图如图1所示。
图1 数字幅频均衡功率放大器组成框图二、要求1.基本要求(1)前置放大电路要求:a. 小信号电压放大倍数不小于400倍(输入正弦信号电压有效值小于10mV)。
b. -1dB通频带为20Hz~20kHz。
c. 输出电阻为600Ω。
(2)制作带阻网络对前置放大电路输出信号v1进行滤波,以10kHz时输出信号v2电压幅度为基准,要求最大衰减≥10dB。
带阻网络具体电路见题目说明1。
(3)应用数字信号处理技术,制作数字幅频均衡电路,对带阻网络输出的20Hz~20kHz信号进行幅频均衡。
要求:a. 输入电阻为600Ω。
b. 经过数字幅频均衡处理后,以10kHz时输出信号v3电压幅度为基准,通频带20Hz~20kHz内的电压幅度波动在±1.5dB以内。
2. 发挥部分制作功率放大电路,对数字均衡后的输出信号v3进行功率放大,要求末级功放管采用分立的大功率MOS晶体管。
(1)当输入正弦信号v i电压有效值为5mV、功率放大器接8Ω电阻负载(一端接地)时,要求输出功率≥10W,输出电压波形无明显失真。
(2)功率放大电路的-3dB通频带为20Hz~20kHz。
(3)功率放大电路的效率≥60%。
(4)其他。
三、说明1.题目基本要求中的带阻网络如图2所示。
图中元件值是标称值,不是实际值,对精度不作要求,电容必须采用铝电解电容。
图2 带阻网络2.本题中前置放大电路电压放大倍数是在输入信号v i电压有效值为5mV的条件下测试。
3.题目发挥部分中的功率放大电路不得使用MOS集成功率模块。
4.本题中功率放大电路的效率定义为:功率放大电路输出功率与其直流电源供给功率之比,电路中应预留测试端子,以便测试直流电源供给功率。
汽车音响改装中汽车功放基本功能设置方法
汽车音响改装中汽车功放基本功能设置方法默认分类2008-12-08 14:05:24 阅读293 评论0 字号:大中小订阅汽车音响改装中汽车功放基本功能设置方法从功能上看,现时的汽车功放产品大多数都已具备下列功能。
一、电子分音(Crossover)此项功能设置分三种选择:FULL—全音;HP:高通—只让分频点(如80Hz)以上的频率通过,此设置主要用于中、高音扬声器;LP:低通—只让分频点(如80Hz)以下的频率通过,此设置主要用于低音扬声器。
其中有一些还设置为分频点可调式,可因应不同的系统设计进行设定分频点,有些则固定在80Hz、100Hz、120Hz这几个频率上。
二、信号输入(lineinput)选择有RCA信号(低电压)和主机喇叭线(高电平)两种输入方式。
其中要获得良好的音质可选择RCA信号输入(理想的频响以及优异的信噪比,但前提是主机有RCA输出),若主机无RCA输出或保留原车主机的情况下,就只有选用带高电平输入的功放。
另外,很多功放产品都带一组或两组的信号输出(lineouput),将信号传送到另一台功放,这不仅可以节省分音器的费用,更可以保证有出色的音质,因为不同的商家在信号输出不够分配时所采用的做法各异,有的处理手法会令音质变差。
三、输入增益调整(Gain)此旋钮是用于调整功放的输入电压与主机传输过来的信号电压达到最理想的匹配状态,以保证声音不会有任何的失真。
四、桥接输出(bridged)当功放采用桥式接法后,输出功率一般可以提高2倍,从而使它在需要的时候又多了一种用途(如用来推超低音扬声器)。
五、音调调节有相当部分产品设置有低音(Bass)、高音(Tweeter)调节,可分别在45Hz、10KHz两个频率进行提升或衰减,调整范围在0dB-12dB之间,能令重播的低音更加丰满、深沉,汽车用品之家社区衷心感谢您的访问,如果您转载本文章,请注明出自汽车用品之家社区/,本贴地址:/viewthread.php?tid=1101均衡器在汽车音响中的作用1、音响系统中使用图示均衡器的目的已经具有了主机-功放-扬声器这些基本的音响系统,要想使这个系统的音质提高和调节的更加细致,使音乐播放的更加完整,就要在音响系统加入均衡器。
历届全国大学生电子设计竞赛试题
历届全国大学生电子设计竞赛试题第一届(1994年)全国大学生电子设计竞赛题目(1)简易数控直流电源(A题)(2)多路数据采集系统(B题)第二届(1995年)全国大学生电子设计竞赛题目(1)实用低频功率放大器(A题)(2)实用信号源的设计和制作(B题)(3)简易无线电遥控系统(C题)(4)简易电阻、电容和电感测试仪(D题)第三届(1997年)全国大学生电子设计竞赛题目(1)直流稳压电源(A题)(2)简易数字频率计(B题)(3)水温控制系统(C题)(4)调幅扩播收音机(D题)第四届(1999年)全国大学生电子设计竞赛题目(1)测量放大器设计(A题)(2)数字式工频有效值多用表(B题)(3)频率特性测量仪设计(C题)(4)短波调频接收机设计(D题)(5)数字化语音存储与回放系统(E题)第五届(2001年)全国大学生电子设计竞赛题目(1)波形发生器(A题)(2)简易数字存储示波器(B题)(3)自动往返电动小汽车(C题)(4)高效率音频功率放大器(D题)(5)数据采集与传输系统(E题)(6)调频收音机(F题)第六届(2003年)全国大学生电子设计竞赛题目(1)电压控制LC振荡器(A题)(2)宽带放大器(B题)(3)低频数字式相位测量仪(C题)(4)简易逻辑分析仪(D题)(5)简易智能电动车(E题)(6)液体点滴速度监控装置(F题)第七届(2005年)全国大学生电子设计竞赛题目(1)正弦信号发生器(A题)(2)集成运放测试仪(B题)(3)简易频谱分析仪(C题)(4)单工无线呼叫系统(D题)(5)悬挂运动控制系统(E题)(6)数控恒流源(F题)(7)三相正弦波变频电源(G题)第八届(2007年)全国大学生电子设计竞赛题目(1)音频信号分析仪(八)【本科组】(2)无线识别(B)【本科组】(3)数字示波器(C)【本科组】(4)程控滤波器(D)【本科组】(5)开关稳压电源(E)【本科组】(6)电动车跷跷板(F)【本科组】(7)积分式直流数字电压表(G)【高职高专组】(8)信号发生器(三)【高职高专组】(9)可控放大器(D【高职高专组】(10)电动车跷跷板(J)【高职高专组】第九届(2009年)全国大学生电子设计竞赛题目(1)光伏并网发电模拟装置(A题)【本科组】(2)声音导引系统(B题)【本科组】(3)宽带直流放大器(C题)【本科组】(4)无线环境监测模拟装置(D题)【本科组】(5)电能收集充电㈱(E题)【本科组】(6)数字幅频均衡的功率放大器(F题)【本科组】(7)低频功率放大器(G题【高职高专组D(8)LED点阵书写显示屏(H题【高职高专组D (9)模拟路灯控制系统Q题【高职高专组】)。
均衡放大器
均衡放大器(equalizer)
Xie Meng-xian. (电子科大,成都市)
均衡放大器又称为补偿(放大)器,是一种具有特殊频率特性的放大器。
这种放大器的增益-频率特性不一定要在必需的频带内是恒定(特性曲线平坦)的,而是根据需求、具有某种特别的频率特性。
例如录音-放音机中的放大器,因为在录音时会压缩低频信号的幅度、增强高频信号的幅度,所以在再生(放音)时就需要具有相反频率特性(即压缩高频幅度、增强低频幅度)的放大器来补偿之,以还原真实的声音。
在再生时所采用的这种再生放大器就是一种均衡放大器。
常用的均衡放大器是反馈式均衡放大器。
下图是两级的反馈均衡放大器电路,其中的EQ就是具有频率补偿特性的反馈回路。
平坦放大器(flat amplifier)
在必要的频率范围内具有恒定增益特性曲线(即平坦曲线)的放大器即称为平坦放大器。
一般情况下使用的多半都是这种平坦放大器。
平坦放大器的增益-频率特性与均衡放大器的恰恰相反,后者的增益-频率特性不是平坦的,而是按照需要而变化的——增益随频率而变化。
数字功放简介
数字功放简介数字功放采用早已存在的D类放大器电路,D类放大器的电路采用场效应管H-桥式链接。
电路场效应输出的脉冲波经过恢复得到原来的正弦波,驱动扬声器产生声音。
数字功放原理数字功放的功放管工作在开关状态,理论状态晶体管导通时内阻为零,两端没有电压,当然没有功率消耗;而截止时,内阻无穷大,电流又为零,也不消耗.所以作为控制元件的晶体管本身不消耗功率,电源的利用率就特别高.图1是数字D类功放的工作原理框图.D类功放处理的是经脉宽调制(PWM)的音频数字信号,声音信息埋藏在脉冲的占空比或脉冲密度中.图示是音频信号的一种PWM调制方法,最为直观;较多采用的是以脉冲密度来表示信号大小的,脉冲密度大的地方,表示电压高;稀的地方,电压就低.双向信号可用其它方式调制,如占空比50%,即脉冲宽度与间隔宽度1:1,表示信号幅值为零;占空比大于50% ,幅度为正,这时数值越大,正幅度越高;占空比小于50%,幅度为负,越小越负.因为这种信号并不需要与外接设备直接相连,也就不需要格式完全统一,各厂可按自行研发的最佳方案调制.音频PWM编码可以从两种途径获得,一是对模拟音频信号进行模数变换直接生成PWM数字音频.二是对其它编码的数字音频,如CD的PCM编码,通过数字信号处理技术变换成PWM 码.获得后用此信号去控制大电流的开关型功率MOSFET由功率管输出一个大能量的PWM码.输出电压的大小由电源电压高低决定,输出的电流由负载扬声器的阻抗和电路形式决定.功率管工作在开关状态,只要开关特性好,线性要求几乎没有,制造成本比音响对管低,工业控制上这类MOSFET已用得很普遍,取材方便.由于开关管导通时的饱和压降和截止时的漏电流也会损失一些电能,但总效率仍有百分之九十几,为各类放大电路效率之冠.开关晶体输出的是脉宽调制波形,要成为可听的模拟音频信号,还需经过一路带宽为20KHz的低通滤波器,滤去脉冲波形中的高频成分,见图3,一般说来功放的输出电压对选取电容的耐压不成问题,只是电感最大允许电流要设计正确.数字功放由于效率高,管子的耗损小,功放的散热结构可以做得非常小巧简单,整个电路可以做得很小.所以,首先在笔记本电脑、有源音箱和声卡上采用.带有数字功放的声卡可直接接通普通音箱,这样使用就方便得多.随着技术的发展,数字功放也进入音响领域,TACT公司2000年推出的一款数字功放TACT Audio"黄金时代",令发烧音响界改变发结数字功放的成见,国内成都天奥公司更早就推出了用于家庭影院的数字多声道功放,深圳的三诺公司也在研发数字功放的有源音箱.国外多家芯片公司已推出带各种功能的数字功放IC器件,为整机生产厂更新产品提供了便利条件.一场功放革命正在悄然兴起.从图1可以看出数字功放的另一优点是可以直接放大数字音频信号.CD和DVD碟片上输出的音频信号是数字化的,现在播放机解码后要经过数模变换,变成模拟音频后再送出.而采用数字功放后,就可把解码后的PCM数字音频信号直接进入数字信号处理电路处理成PWM码进行放大.省去了播放机中的数模变换和数字功放中的模数变换二个较贵重部分,不但音质受损少,成本也可降低.利用数字功放技术生产整机时,音量调节方案会成为机种档次的分界线.简单方案就像传统模拟功放那样由电位器衰减模拟信号的输入幅度,实现音量衰减.这种方式数字信号的量化比特率得不到充分利用,小音量时信噪比下降,动态范围变小.而且也不能用于数字音频直接输入系统.较好的方案是采用调节电源电压的方式来衰减音量,以改变加到低通滤波器上的脉冲电压幅度来改变输出功率.这样量化比特率仍可充分利用,由于电压下降,量化噪声也随之下降,所以音量减小,但信噪比和动态范围仍能保持不变.由于功放电源的功率较大,改变电源电压不能用电阻衰减或分压方式来实现,必须从电源整流稳压部分就开始.TACT公司采用的方法是在数字稳压电源的DC-DC逆变过程中,改变占空比来改变最终输出电压.这类方案目前还只能在分立元件做功率输出部分的整机中采用,集成化数字功放IC仍用衰减模拟输入为主来调节音量.从现状来看,数字功放已能商品运用在功率一般的普通用途放大器上性价比和小型、节电等方面都有长处.几瓦的小功率型集成功放芯片,控制电路和功率开关器件已一体化,使用非常方便.几十瓦以上的大功率用数字功放芯片,一般只集成控制电路部分,大功率开关器件需另外集成或自行配置,以便整机设计灵活.在H F领域中,数字功放还只能算是在探索,离商品化还有一段过程.但数字功放是功率放大后起之秀这点是不容置疑的.数字功放制作方法在音频的领域中功率放大器一般可以分为5类,就是A类、AB类、B类、C类和D类,一般C类功放在发射电路中,不能直接性采用模拟信号输入,而其他的四种可以直接输出模拟信号,放大之后信号用来推动扬声器发出声音.D类是比较特殊的一种功放,它以通、断两种状态存在.因此,它不能直接放大模拟音频信号,而需要把模拟信号经"脉宽调制"变换后再放大.外行曾把此种具有"开关"方式的放大,称为"数字放大器",事实上,这种放大器还不是真正意义的数字放大器,它仅仅使用PWM调制,即用采样器的脉宽来模拟信号幅度.这种放大器没有量化和PCM编码,信号是不可恢复的.传统D类的PWM调制,信号精度完全依赖于脉宽精度,大功率下的脉宽精度远远不能满足要求.因此必须研究真正意义的数字功放,即全(纯)数字功率放大器.数字功放是新一代高保真的功放系统,它将数字信号进行功率转换后,通过滤波器直接转换为音频信号,没有任何模拟放大的功率转换过程.CD唱机(或DVD机)、DAT(数字录音机)、PCM(脉冲编码调制录音机)都可作为数字音源,用光纤和同轴电缆口直接输出到数字功放.此外,数字功放也具备模拟音频输入接口,可适应现有模拟音源.国外对数字音频功率放大器领域进行了二三十年的研究.在20世纪60年代中期,日本研制出8bit的数字音频功率放大器;1983年,国外提出了D类(数字)PWM功率放大器的基本结构.但是这些功放仅能实现低位D/A功率转换,若要实现16bit、44.1KHz采样的功率放大器.随着数字信号处理(DSP)和音频数字压缩技术的结合、新型离散功率器件及其应用的发展,使开发实用化的16bit数字音频功率放大器成为可能.国内外一些从事数字信号处理的技术人员,专门研究音频数字编码技术,在不损伤音频信号质量的情况下,尽量压缩数据库.经过多次实验,终于将末级功放开关频率由没有压缩数据时的约2.8GHz减至小于1MHz,从而降低了对开关功放管的要求.同时在开关功率放大部分,采用了驱动缓冲器和平衡电桥技术,实现了在不提高工作电压的情况下能够输出较大的功率,并且设计了完善的防止开关管击穿的保护电路.2.技术特点国内外一些公司研制出的数字功放,直接从CD唱机的接口(光纤和数字同轴电缆)接受数字PCM音频信号(模拟音频信号必须经过内置的A/D转换变成数字信号后才能进行处理),在整个信号处理和功率放大过程中,全部采用数字方式,只有在功率放大后为了推动音箱才转化为模拟信号.数字功放的主要技术特点为:(1) 采用两电平(0、1)多脉宽脉冲差值编码.(2) 采用平衡电桥脉冲速推技术.(3) 采用高倍率数字滤波技术.(4) 利用数字算法处理噪声问题.(5) 采用非线性抵消技术.{{分页}}3. 工作原理如图1所示,数字功放从光纤或数字同轴电缆接口接受数字PCM音频编码信号,或通过模拟音频输入接口接收模拟音频信号,并通过内部A/D转换器得到数字音频信号,再通过专用音频DSP芯片进行码型变换,得到所需要的音频数字编码格式,经过小信号数字驱动电路送入开关功率放大电路进行功率放大,最后将功率脉冲信号通过滤波器,提取模拟音频信号.图1 全数字音频功放电路的组成框图由图1可知,音频数字信号经过DSP编码后,直接控制场效应管开关网络的工作状态.场效应管驱动器用来缓冲DSP并增强信号,使之能驱动大功率MOSFET开关管.由于高电平脉冲信号只有微分分量,故需通过积分电路才能得到大功率原始音频信息.下面用一个简单的数字和物理模型来阐述数字功放的编码过程,如图2所示.图2 数字功放编码过程示意图图中表示两个相邻采样点N和N+1的采样值为AN和AN+1,中间点a1、a2、a3……为超采样点.超采样点是由数字滤波器计算产生的.通过数字滤波器后,所有采样点包括超采样点所构成的音频信号是比较平滑的.{{分页}}在数字功放中,首先建立一组不同脉宽的脉冲单元,它的脉宽虽然各不相同,但其宽度始终固定的,都是系统时钟周期的倍数.第一个超采样点a1与数值AN的差为Δx1,即a1-AN=Δx1,得到Δx1后,即用上述脉冲单元去量度它,仅用一个脉冲单元表示,余数保留至下次量度,假设余数为ΔΔx1.接着传送的第二个差值编码为a2-a1=Δx2,由于上次还保留余数ΔΔx1,所以还应加上,即当前应用一个脉冲单元去量度Δx2+ΔΔx1,同样余数保留至下一次累计.由此看出,用脉冲单元表示后的余数,即低于最小量度单位的部分并没有丢失,而是累加至相邻超采样点上.而从音频信号的角度来说,曲线AN,a1,a2,a3……AN+1下方的面积和原值相等,因此音频信号并没有产生失真,但曲线增加了以ΔΔx1,ΔΔx2……ΔΔxN幅度上下波动的噪声,这种噪声分量不大,频率很高,用一个较简单的滤波器就可滤除,不会影响到音频信号还原.在能量放大部分,采用平衡电桥开关技术,每通道使用四只MOSFET开关功放管构成平衡电桥开关网络.当功放管处于开关放大状态时,输出波形和输入的脉冲信号波形相同,但幅度近似于工作电压,即VOUT=VBUS,经滤波器滤波后,输出到负载上的波形峰值为VBUS.设MOSFET管内阻为rDSON,负载阻值为RLOAD,电源电压为VBUS,滤波器阻抗为Rx,则负载上均方值电流IRMS=VBUS/[(2rDSON+RLOAD+Rx)]所以负载上承受的功率为PLOAD=I2RMSXRLOAD={V2BUS/[2(2rDSON+RLOAD+Rx)2]}XRLOADη=[RLOAD/(2rDSON+RLOAD+Rx)]/[1+fX(■+▲)]其中■=16VBUS/[π2XIRATEX(2rDSON+RLOAD+Rx)]▲=2IRATE(t2RR/VBUS)(2rDSON+RLOAD+Rx)当包含有开关损耗时,效率可由下式计算:采用RFP22N10 MOSFET功放,内阻rDSON为0.08Ω,负载RLOAD为8Ω,工作电压VBUS为40V,开关频率f为700KHz,变换速率IRATE 为50A/us,翻转恢复时间tRR为100ns,滤波器内阻Rx为0.04Ω,可算出:PLOAD=95W,η=78%.在滤波器设计时,我们采用六阶巴特沃斯低通滤波器,用于将大功率数字脉冲信号转换为模拟音频信号.巴特沃斯滤波器的特点是带内平坦度高,从而使得输出音频信号幅频特性较好.数字功放中音质和载波频率的关系数字功放一直以来被许多人认为低音很不错,但是高音刺耳.在我们开发这个产品的过程当中,其实也发现了这个问题.我们回到数字功放的原理: 音频信号(20~20K)经过一个PWM的调制,然后通过一个开关功率放大电路,把PWM信号放大,最后通过滤波器,把PWM信号滤除掉,这样就剩下一个大功率的音频信号可以直接推动喇叭了.这个调制过程是数字功放的关键.一般现在流行的几个数字功放的方案的PWM频率都是工作在300K~500K范围,有些低音跑甚至工作在100K以下的频率.工作频率越高,越难选择开关管,开关的速度如果变慢了,容易发热,想减轻发热,就需要把死区调大,死区调大了,就导致失真变大.这个是一个两难的选择.于是选用极端快速的开关管,是数字功放第一要务.数字功放的采样频率,直接决定了音质,这个是我们在开发数字功放的过程中发现的一个重要现象.举个简单的例子,应该可以很好理解这个原理.假设PWM的开关频率为300K(300~450K是现在市面上的数字功放的最常见的频率),1: 如果输入一个20HZ的低频信号进入,那么等于把一个20HZ的低频信号周期分割为15000个采样点,这个采样点足够在输出的时候完美表达一个正玄波的波形,低音可以得到很好的表现.2: 如果输入一个1K的中频信号,那么他就产生300K/1K , 也就是一个周期300个采样点,这个还是可以接受的,但是已经开始恶化了.3: 如果输入一个20K的中频信号,那么只产生300K/20K ,也就是一个周期15个采样点, 已经不能完整表达一个正玄波了,个人认为,这就是高音恶化难听的主要原因,我们再来看看,到底多高的频率能高好的表达音频信号.下面是一个表:PWM 20 250 500 1K 2K 5K 10K 15K 20K100K 5000 400 200 100 50 20 10 7 5300K 15000 1200 600 300 150 60 30 20 15500K 25000 2000 1000 500 250 100 50 33 25600K 30000 2400 1200 600 300 120 60 40 301000K 50000 4000 2000 1000 500 200 100 67 502000K 100000 8000 4000 2000 1000 400 200 133 100从上表,可以看出,如果PWM的频率是100K 输入一个20K的音频信号,他只能把20K的一个周期分辨出5个信号,这显然不行,100K最高可以比较好的表达1K的信号(有100个采样点),所以工作在100K的数字功放只能是作为低音炮(20~250HZ).一个300K的数字功放也只能比较完美的表达5K(有60个采样点)的高音.一个600K的数字功放,可以比较好的表达10K的音频当工作频率达到1~2M的时候,才能真正的把高音的失真减低,减低并不等于完美:)能追求更高的频率是每个数字功放设计师的梦想,但是必须基于更先进的器件(更高的工作频率的功率管).采样频率越低,高频波形的折线化越严重,为什么有些低频率(400K)的数字功放失真怎么那么低呢.这个主要是出现在失真的测量方法上,普通的失真测量是输入1K信号,输出后测量1K信号产生的谐波(2K 3K,4K ,5K等),2K 4K 比较高,那是偶次失真(电子管常见的失真),3K5K比较高是奇次失真(晶体管电路常见的失真),也就是说实际上标称的失真只是代表1KHZ的失真,而不能代表其他信号频率的失真.于是就会产生了标称失真很低,但是实际的听感不舒服了.大家可以回头去看看上面哪个表,300K以上的数字功放对1KHZ的表达是比较完美的了.从这个角度,也证明了平时大家的感觉,为什么数字功放高音总是不舒服.关键的问题还是基频不够高.从另一个角度,我们再探讨一下基频和音频信号的关系.----关于滤波器.数字功放,基本都有滤波器(小功率的现在发展到没滤波器了),这个滤波器的作用主要是把PWM的基频滤除,一个陡峭的滤波器是非常难以设计的.双方的频率越靠近,想用简单的滤波器把两个不同频率的信号分离越困难.所以说,频率越高滤波器越容易处理.当然频率高滤波器使用的材料是有很大区别的.很多300~500K的数字功放只使用一个两阶滤波器.这个是远远不够的,很多数字功放输出都有0.3~1V的静态电压,我测试过两家提供的半成品板,有家甚至达到了3V的高频电压输出,这个是非常恐怖的事情.这个输出电压是高频电压,频率就是PWM的基频,虽然理论上这个信号是听不见的,但是他会严重干扰高音喇叭的工作.我初期设计过600K的CLASS-D 必须使用4阶以上的滤波器才能有效减低这个输出电压.DDX的数字功放解决方案前言随着现在数字音源和数字音频的快速发展,在对数字音频信号直接放大的数字音频放大器也得到了飞速的发展.它有效率的与数字音源对接,实现了端到端的纯数字音频处理和放大的优点.这种DDX音频放大器可以接受来自DSP直接输入的数字音频编码信号,采用专利的DDX信号处理技术来控制高效的功率器件,不需要为每个声道准备D/A转换器,从而减少了中间不必要的转换层级,音质得到显着的改善,成本也随着零部件数目的减少而下降,从而把高音质、低功耗和低制造成本带到人气很旺的高速增长的应用领域,如平板电视机、无线产品和个人音响系统.DDX音频放大器的基本结构DDX音频放大器包括2个主要部分:第一部分是采用专利DDX技术的调制器,它把数字音频接口得到的或者A/D转换得到的PCM数字音频数据转换成三态调制信号输出;第二部分是功率输出级,它包括三态驱动逻辑电路和全桥电路.经过三态调制的脉冲信号控制全桥电路中晶体管的导通与截止,在负载的两端产生极性相反的脉冲信号,脉冲的频率成份包含还原的音频信号和与调制过程相关的高频分量,因此通常需要在输出级和扬声器之间插入一个低通滤波器,避免高频分量直接驱动扬声器,从而在扬声器上得到还原并且放大的音频输出(如图1所示).图1 DDX基本功能块图DDX音频放大器驱动方式和调制方式DDX音频放大器的输出级采用全桥电路,它包含两个半桥输出级.每个半桥电路包括两个输出晶体管,一个是连接到正电源的高端功率管,另一个是连接到负电源的低端功率管.全桥电路可以由单电源供电,在相同的电源电压下,全桥电路的输出信号摆幅是半桥电路的两倍,理论上可以提供的最大输出功率是其四倍.传统的D类放大器采用差分工作方式,开关信号控制两个半桥电路中功率管的导通与截止,半桥A的输出极性必须与半桥B的输出极性相反,使负载电流从一个半桥流入,从另一个半桥流出,为滤波器提供极性相反的脉冲信号,因此只存在正态和负态这两种差分工作状态.图2 DDX驱动状态DDX音频放大器的调制器采用DDX专利的三态调制技术,增加了一个共模工作状态,即两个半桥输出的极性相同(都为低),从而使滤波器的两端被连接到地.这个共模状态称为阴尼态,和差分工作状态配合产生DDX三态调制,如图2所示.阴尼态用于表示低功率水平,代替两态方案中在正态和负态之间的开关.当音频信号处于低功率水平的时候,传统的两态方案仍然使输出晶体管处于开关状态,输出正负抵消的无用信号给滤波器和扬声器,这样不但增加了的开关损耗和能量开销,降低了音频放大器的效率和信噪比,而且不断地处于开关状态不可避免地产生EMI.DDX三态调制方案利用阴尼态表示低功率水平,正态和负态用于对扬声器提供大功率.在相同测试条件下,DDX三态调制方案比采用两态调制方案的传统D 类放大器产生的高频载波分量低16dB,在低功率水平时的放大器效率提高了20%.DDX三态调制方案的独有特性也改善了电源抑制比(PSRR),因为在低功率水平时,滤波器的差分动作非常小,阴尼态使扬声器的两端接地,从而使电源的噪声不被听见.许多D类放大器采用PWM输出至器件输入的负反馈环路以改善器件的线性,通过控制环路对输出进行校正,以减少失真问题和电源问题.闭环设计的优势是以可能出现的稳定性问题为代价的,这也是所有反馈系统共同面临的问题.而DDX音频放大器采用数字开环的设计,即使在驱动低阻抗扬声器的时候也不会产生放大器的稳定性问题.同时,利用先进的数字信号处理技术(DSP),对预期的输出级误差进行预补偿或者校正,也可以改善放大器的线性输出特性.并且可以在数字域对每个通道音频信号独立地编程,进行诸如分段EQ控制,低音/高音控制和音量控制等处理,而这些都可以通过I2C数字接口对内部寄存器进行编程来实现,不仅方便了用户的开发和使用,而且为用户增加了附加价值.DDX音频放大器种类DDX音频放大器芯片主要分成两类,一类是完全独立的设计,即DDX控制芯片和音频功率放大器芯片是分开的,最多能处理八个音频通道,最大输出功率为单通道350W;另一类是单芯片设计,即集成了DDX控制和音频功率放大器功能,同时拥有2.1通道的DDX控制和音频放大器,输出总功率为40W至160W.用户可以根据产品开发的实际需要进行灵活地选择和搭配组合.参考设计方案-平板电视专用音箱下面我们以意法半导体(STM)最新推出的一款DDX音频放大器STA328为例,来具体了解DDX音频放大器的结构和功能,以及如何利用DDX音频放大器进行产品设计和开发.该解决方案的主要特征:*音频放大器的输出为2.0通道(2×80W)或者2.1通道(2×40W+1×80W);*32条预设音频EQ曲线;*四选一HDMI选择开关控制器;*接收模拟立体声音频信号;*接收光纤和同轴接口的真数字编码音频信号(立体声PCM);*红外线遥控.随着平板电视设计变得更薄,扬声器变得更小,机箱声学特性越来越不理想,修正音频信号变得十分重要.我们为平板电视设计的这种2.1通道专用音箱,就是充分利用了DDX单芯片的高集成度,结合从声源到扬声器的纯数字流处理能力,为平板电视提供低成本、高效能、高音质的外置音响系统.这套专用音箱参考方案的电路结构如图3所示.图3 平板电视专用音箱参考方案的电路结构示意图这套音箱可以通过红外线遥控进行操作,意法半导体(STM)- ST72324作为人机界面控制MCU,接受来自红外遥控器的指令,向DDX音频放大器STA328发出相应的控制命令.另外,ASAHI KASEI MICROSYSTEMS (AKM)- AK4113是一个24位立体声数字音频接收器,可以接收来自光纤接口和同轴接口的高保真数字编码音频信号,然后转化为PCM音频信号,通过I2S总线输出,可以支持高达216KHz的采样率;AKM - AK5358A是一个高性价比的24位立体声A/D转换器,把立体声模拟音频信号转换为PCM音频信号,通过I2S总线输出.AK4113和AK5358A可以分别接收来自数字接口和模拟接口的音频信号源,为DDX音频放大器STA328提供PCM数字音频信号.设置STA328的输出级为2.1通道(2×40W+1×80W),搭配相应的音箱,还原并且放大来自前端数字音源或者模拟音源的音频信号.由于是针对平板电视这样的显示播放平台,当面临多个高清内容源的输入选择时,大多数平板电视的HDMI接口在使用上就会显得不方便,因此我们加入了英特矽尔(Intersil)-ISL54100.它是一个四选一HDMI选择开关控制器,不仅可以切换各路数字视频和音频信号,而且具有重新整理功能,通过一个内置的锁相环进行重新同步调整和均衡,可有效恢复因线材物理上的问题造成的信号衰变,能将高清信号传输距离延长15米.结语利用DDX音频放大器对数字音源输出的音频信号进行直接处理和放大,可以方便地实现高保真,高效率和低成本的音频放大器,为数字音源,音频处理和功率放大的整合提供了完整的端到端数字解决方案.。
《机电一体化系统设计基础》作业1、2、3、4参考答案..
《机电一体化系统设计基础》作业1、2、3、4参考答案形成性考核作业1一、判断题(正确的打√,错误的打×)1.机电一体化系统的主要功能就是对输入的物质按照要求进行处理,输出具有所需特性的物质。
(×)2.系统论、信息论、控制论是机电一体化技术的理论基础,是机电一体化技术的方法论。
(√)3.信息处理技术是指在机电一体化产品工作过程中,与工作过程各种参数和状态以及自动控制有关的信息输入、识别、变换、运算、存储、输出和决策分析等技术。
(√)4.自动控制是在人直接参与的情况下,通过控制器使被控对象或过程自动地按照预定的规律运行。
(×)5.产品的组成零部件和装配精度高,系统的精度一定就高。
(×)6.为减少机械传动部件的扭矩反馈对电机动态性能的影响,机械传动系统的基本固有频率应低于电气驱动部件的固有频率的2~3倍,同时,传动系统的固有频率应接近控制系统的工作频率,以免系统产生振荡而失去稳定性。
(×)7.传动机构的转动惯量取决于机构中各部件的质量和转速。
(×)8.在闭环系统中,因齿轮副的啮合间隙而造成的传动死区能使系统以6~10倍的间隙角产生低频振荡,采用消隙装置,以提高传动精度和系统稳定性。
(×)9.进行机械系统结构设计时,由于阻尼对系统的精度和快速响应性均产生不利的影响,因此机械系统的阻尼比ξ取值越小越好。
(×)10.滚珠丝杠垂直传动时,必须在系统中附加自锁或制动装置。
(√)11.采用偏心轴套调整法对齿轮传动的侧隙进行调整,结构简单,且可以自动补偿侧隙。
(√)×12.采用虚拟样机代替物理样机对产品进行创新设计测试和评估,延长了产品开发周期,增加了产品开发成本,但是可以改进产品设计质量,提高面向客户与市场需求能力。
(√)×二、单选题1.以下产品属于机电一体化产品的是(C )。
A.游标卡尺B.电话C.全自动洗衣机 D.非指针式电子表2.为提高机电一体化机械传动系统的固有频率,应设法(A )。
全国大学生电子设计大赛分类-电源类
电压、电流的测量和数字显示功能。 (6) 其他。
三、说明
(1)DC-DC 变换器不允许使用成品模块,但可使用开关电源控制芯片。 (2)U2 可通过交流调压器改变 U1 来调整。DC-DC 变换器(含控制电路)只
数字幅频均衡功率放大器(F 题)
【本科组大器。该放大器包括前置放大、带阻网 络、数字幅频均衡和低频功率放大电路,其组成框图如图 1 所示。
图 1 数字幅频均衡功率放大器组成框图
二、要求
1.基本要求 (1)前置放大电路要求: a. 小信号电压放大倍数不小于 400 倍(输入正弦信号电压有效值小于 10mV)。 b. -1dB 通频带为 20Hz~20kHz。 c. 输出电阻为 600Ω。 (2)制作带阻网络对前置放大电路输出信号 v1 进行滤波,以 10kHz 时输出 信号 v2 电压幅度为基准,要求最大衰减≥10dB。带阻网络具体电路见 题目说明 1。 (3)应用数字信号处理技术,制作数字幅频均衡电路,对带阻网络输出的 20Hz~20kHz 信号进行幅频均衡。要求: a. 输入电阻为 600Ω。 b. 经过数字幅频均衡处理后,以 10kHz 时输出信号 v3 电压幅度为基准, 通频带 20Hz~20kHz 内的电压幅度波动在±1.5dB 以内。
2、发挥部分
(1)在 Rs=1Ω,Es=1.2V~3.6V 时,以尽可能大的电流向电池充电。 (2)能向电池充电的 Es 尽可能低。当 Es≥1.1V 时,取 Rs =1Ω;
当 Es<1.1V 时,取 Rs =0.1Ω。 (3)电池完全放电,Es 从 0 逐渐升高时,能自动启动充电功能(充电输出 端开路电压
国赛电赛信号组讲座
目录
01 团队 02 模块准备
03 电赛题训练 04 校赛演练 05 国赛实战
国赛实战
国赛的比赛时间通常都为4天三夜,在奇数年的8、9月份进行。 国赛题目往往偏重于指标性能,题目的变化性不会很大,但是指标会 明显提升,如13年的D题“射频宽带放大器”的发挥部分要求宽带达 到100MHz。创新题型可能会有,就像13年的G题“手写绘图板”, 初看还以为是控制题,实则是一个微弱信号类题型,换汤不换药。省 赛题型则在学术性题目的前提下往往会加入更多的创新题型,如14年 的D题“带啸叫检测与抑制的音频功率放大器”,啸叫一词之前都没 怎么听说过,但仔细看看,只是在之前的知识的基础上再加一个FFT 的音频啸叫检测功能,硬件电路只是以前的模块的组合,最多有些改 动。所以参加过比赛的同学都知道,硬件和程序模块都准备得很充分 的话,比赛就相对容易些,要克服的只是赛题中的难点。
团队
这就是好伙伴、好团队的合作氛围, 你的每一份努力和付出都会给队友带来非 常大的鼓励,都会加快电赛准备的进程。 所以大家一旦确定好要做好比赛,就要做 一个好组员,与队友之间要互相督促、互 相鼓励,为电赛做好充分的准备。
目录
01 团队 02 模块准备
03 电赛题训练 04 校赛演练 05 国赛实战
目录
01 团队 02 模块准备
03 电赛题训练 04 校赛演练 05 国赛实战
校赛演练
校赛的复赛和决赛通常在5、6月份进行,校 赛复赛是对国赛的一次演练,以三人一个小组为 单位参加比赛,有规定的比赛时间,完成相应的 实物制作,按要求撰写电赛报告,相应的测评流 程。校赛决赛则是模拟国赛中的决赛,要求完成 模拟电路方面的制作,通常涉及到简单的信号产 生、滤波电路,主要是考察硬件员的模拟电路设 计、制作和调试的能力,在国赛中得分在满分的 一半以下时,就会失去评定国家奖的机会。
电子测量蒋焕文答案
电子测量蒋焕文答案【篇一:电子测量教学大纲】class=txt>电子测量一、总体说明(一) 学时与学分本课程学时: 72学时(课内)本课程学分: 4学分(二) 授课对象电子类本科生(三) 先修课程电路理论、模拟和数字电子技术、信号与系统(四)教学目的《电子测量》是电子类专业的专业基础课,是实践性很强课程。
该课程涉电子技术、信号与系统的知识。
课程的任务是使学生通过学习掌握最基本的测量原理和测量方法;具备一定的误差分析和数据处理能力:对新技术在电子测量中的应用有一定的了解。
为学习后续课程打好基础。
二、主要内容及基本要求第一章测量误差理论与数据处理(12学时)主要内容1.1 测量误差的基本概念1.2 测量误差的估计和处理1.3 测量误差的合成和分配1.4 测量数据处理1.5 新型电力电子器件基本要求1.1 理解测量误差的基本概念,熟悉测量误差的分类1.2 熟悉误差的估计和处理方法1.3 了解测量误差的合成和分配原则1.4 掌握测量数据处理的基本方法1.5 了解新型电力电子器件的特点及其基本应用第二章示波测试和测量技术(12学时)主要内容2.1 示波测试的基本原理2.2 通用示波器2.3 取样技术在示波器中的应用2.4 示波器的多波形显示2.5 示波器的存贮和记忆2.6 示波器的使用基本要求2.1 掌握示波测试的基本工作原理2.2 掌握通用示波器的基本原理和电路组成2.3 了解取样技术在示波器中的应用2.4 了解示波器的多波形显示2.5 了解示波器的存贮和记忆原理及其应用2.6 掌握通用示波器的主要使用方法第三章频率与时间的测量(8学时)主要内容3.1 频率或时间的原始基准3.2 电子计数器测频方法3.3 电子计数器测周方法3.4 时间间隔的测量3.5 不同测量模式的测量误差3.6 标准频率源的测量基本要求3.1 了解频率和时间的原始基准3.2 掌握电子计数器测频法(测周法)的基本原理和应用。
3.3 掌握时间间隔的测量原理和方法3.4 了解不同测量模式的测量误差3.5 了解标准频率源的测量原理和方法第四章电压测量技术(8学时)主要内容4.1 电压测量的基本要求和基本的测量仪器4.2 交流电压的测量4.3 分贝的测量4.4 噪声的测量4.5 电压测量的数字化方法4.6 以电压测量为基础的数字仪表4.7 高频电压测量4.1 熟悉电压测量的基本要求,了解电压测量仪器的分类4.2 掌握交流电压的测量原理和方法4.3 掌握分贝的测量原理和方法4.4 掌握噪声的测量原理和方法4.5 熟悉电压测量的数字化方法4.6 熟悉以电压测量为基础的数字仪表的原理和组成4.7 了解高频电压测量的方法和测量标准第五章测量用信号源(10学时)主要内容5.1 正弦信号发生器5.2 频率合成式信号发生器5.3 频率合成器基本要求5.1 了解正弦信号发生器的分类,掌握正弦信号发生器的原理和组成 5.2 掌握频率合成式信号发生器的原理和组成5.3 熟悉频率合成器的原理和组成第六章频域测量(8学时)主要内容6.1 线性系统频率特性的测量6.2 网络分析仪6.3 白噪声在线性系统测试中的应用6.4 信号的频谱分析基本要求6.1 掌握线性系统频率特性的正弦测量、扫频测量、多频测量原理和测量方法6.2 熟悉网络分析仪的工作原理和主要用途,掌握s参数的测量方法6.3 了解白噪声在线性系统测试中的应用6.4 掌握频谱分析仪的原理和使用方法第七章智能仪器与自动测试系统(6学时)主要内容7.1 智能仪器7.2 个人测试仪器7.3 自动测试系统7.1 了解智能仪器和数字存贮示波器的组成和工作原理。
实用功率放大器(新)2
功率放大电路(一)调整和性能测试一、目的1、 根据编写的工艺文件组装一台音响放大器。
2、 了解OTL 功效的工作原理和特点,掌握其调试方法。
3、 掌握音响发达器的电压增益、幅频特性、输出阻抗、失真系数、最大输出功率、效率等指标的测量方法。
4、 进一步学习示波器、失真度测量仪的正确使用。
二、设备及器材直流稳压电源、函数信号发生器、双踪示波器、失真度仪、数字万用表各一台。
三、内容及要求 〈一〉静态调整1、 初步检查电路焊接正确无误,调RP1滑动片逆时针到底,RP2、RP3、RP4中间位置、RP5逆时针到底2、 用万用表检查测试板电源两端口无短路,根据电路图要求加12V 直流电源、观察各元器件无冒烟,用手摸元器件应无过热元件。
如发现上述现象,停电排故后再试。
3、 正常后不加U 1=0,调RP4至V 4发射极电压为6V 。
4、 调RP5至V 6管的基极到V 4管的基极电压为1.8V 左右,此时I C5、I C7应为5—10mA 。
1、 调试电路无交越失真和限幅失真,接负载R L 。
令U i ≤100mV(峰-峰值),f=1KHz ,加入放大器输入端,用示波器观察输出信号应无交越失真,如有调RP5刚好无交越失真,也应无双向限幅失真,如有减小输入信号幅度使放大器输出信号刚好无限幅失真。
2LR U P 820max= 3、 测量功率放大器效率。
在上述条件,测量整机供电电流(忽略前的电路损耗)则电源功率为EC E P P I E P max0=*=η4、测量功率放大器输出阻抗:在上述条件下,将R L 断开,用示波器测输出端开路电压V out :则L ooout R U U U R *-=5、测量失真度,在上述条件下,接上负载用失真度仪测输出信号失真系数6、测量电路增益测试条件:f=1KHZ R L=8ΩV i≤100mV(不出现失真为准)用毫伏表测下列各点音频信号电压,计算各级增益和总增益。
7、幅频特性测量在上述测试后,选一输入电压(输出不出现失真点),测幅特频特性并作出曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——硬件电路设计
摘要
本文设计了一个基于 FPGA 的数字信号处理技术的幅频均衡功率放大器(硬 件电路)。系统由前置放大器、低通滤波、带阻网络、AD 转换、FPGA 数字幅频 均衡、DA 转换及功率放大电路构成。 前置放大是采用运放 NE5532 设计的同相比例放大电路,实现了 500 倍的电 压放大,通频带为 20hz-20khz,输出电阻为 600 欧;无源 T 型带阻滤波器的中 心频率是 10kHz,衰减为-11.735db;AD 转换电路采用 16 位,转换速率 250ksps 的 ADS8505 芯片,在 FPGA 设计一个数字幅频参数均衡器,补偿前级带阻网络的 频响特性,以达到幅频均衡的目的,通频带 20hz-20KHz 内的电压幅度波动在 1.5db 以内。数字幅频均衡后的信号通过 DAC5687(采样率 500ksps)转换,并 在 OCL 低频功放电路驱动负载,OCL 功率放大电路输出功率大于 10W,转换效率 大于 50%。基本实现题目要求。
关键字: 数字幅频均衡; 功率放大器; 前置放大; 带阻滤波器; ADC;DAC;
.
Digital Amplitude-Frequency Balanced Power Amplifier ——Circuit Design
This thesis is to design a digital amplitude-frequency balanced amplifier by digital signal processing technology on FPGA . The system is consists of pre-amplifier, low pass filter, band-stop network, A / D sampling, FPGA digital amplitude and frequency equalization circuit, DA conversion and power amplification circuit. Preamplifier is a circuit which Amplifier with the phase ratio consists by NE5532, voltage of 500-fold magnification, when the pass band attenuation -0.56db as 20hz-20khz, output resistance is 600 ohm. The center frequency of passive band-stop filter is 10kHz, the attenuation -11.735db, after sampling the output signal through the AD, in the FPGA ,the design of a digital amplitude and frequency parameters of the equalizer to compensate the former level frequency response characteristics of band-stop networks to achieve the objective of balanced amplitude and frequency - pass band 20hz-20KHz range of the voltage fluctuations within the 1.5db. DA sampling the signal by digital amplitude-frequency balanced into the OCL low-frequency power amplifier circuit and driving the load. The OCL power amplifier circuit output power of 12.6W, conversion efficiency of 65%. This amplifier can better handle the signal to achieve power amplification
3.23 带阻网络的设计过程............................................................... 14 3.3 数字幅频均衡处理....................................................................... 18 3.31 A/D 转换电路........................................................................... 18 3.32 数字均衡的理论分析与设计.................................................. 22 3.33 D/A 转换电路设计................................................................... 24 3.4 功率放大电路............................................................................... 25 3.41 原理介绍.................................................................................. 25 3.42 OCL 放大器的设计方法........................................................... 28 第四章 电路调试与性能测试............................................................ 34
Keywords: digital amplitude-frequency equalization; Power
Amplifier; Preamplifier; Bandstop filter;A/D;
目
第一章
录
绪 论...................................................................................... 5
3.1 前置放大电路............................................................................... 10 3.11 NE5532 的介绍......................................................................... 10 3.12 同相比例放大电路.................................................................. 11 3.13 同相比例放大组成的前置放大电路...................................... 12 3.2 带阻网络........................................................................................13 3.21 滤波器的介绍与分类.............................................................. 13 3.22 无源带阻滤波器的设计原理.................................................. 13
5.1 论文工作总结............................................................................... 38 5.2 心得体会........................................................................................38 致谢...........................................................................................................39 参考文献.................................................................................................. 40 附录 1:英文翻译—原文....................................................................... 41 附录 2:英文翻译—译文................................ 47
2.1 系统结构介绍................................................................................. 7 2.2 前置放大电路的方案论证............................................................. 7 2.3 带阻网络电路的方案论证............................................................. 7 2.4 数字幅频均衡的方案论证............................................................. 8 2.5 功率放大电路的方案论证............................................................. 8 第三章 各部分电路设计.................................................................... 10