一元一次不等式组的应用
一元一次不等式(组)在生活中的应用
一元一次不等式(组)在生活中的应用
一元一次不等式(组)是小学数学中的一个重要内容,它在我们的日常生活中有很多应用。
以下是一些关于一元一次不等式(组)在生活中的应用:
购物打折:很多商场会举办打折活动,例如:打五折、打八折等。
我们可以用一元一次不等式来计算打折后商品的价格,帮助我们做出更明智的购物决策。
制定家庭预算:家庭预算可以帮助我们合理规划家庭收支,避免浪费。
在制定家庭预算时,我们可以使用一元一次不等式来计算各种开支和收入之间的关系,以及如何分配家庭预算。
健身计划:健身计划可以帮助我们制定科学合理的健身计划,达到健身的目的。
在健身计划中,我们可以用一元一次不等式来计算身体指标和目标之间的关系,例如:BMI指数和体重、身高之间的关系。
公交出行:公交车站的到达时间通常是不确定的,我们可以使用一元一次不等式来计算公交车的到达时间和出发时间之间的关系,以便更好地安排出行时间。
总之,一元一次不等式(组)在我们的日常生活中有很多应用。
它可以帮助我们计算各种事物之间的关系,从而更好地规划生活和工作。
一元一次不等式(组)的应用
专题20 一元一次不等式(组)的应用知识要点1.一元一次不等式(组)在实际生活中的应用,就是将实际问题转化为刻画不等关系的数学模型即不等式(组)这一数学问题,其基本步骤:(1)审:通过审题,分析已知数和未知数;(2)设:根据题意设未知数;(3)找:找出能够符合题意的不等关系;(4)列:根据不等关系列出不等式(组);(5)解:解不等式(组);(6)求:从不等式(组);(7)答:写出答案.2.注意常见的反映不等关系的关键词:如至多(或最多),不超过,不足,至少,不低于,不少于.3.利润问题中除了“利润=售价一进价(成本)=利润率×成本”外,还要注意打n 折是售价×0.1n 而不是售价×n .4.不等式(组)的解集一般是取值范围,但在实际问题中往往需要根据问题的实际意义求未知数的某特殊解,比如笔的支数、车的辆数、人数等应是整数解或非负整数解等,解答这类问题的关键是明确解的特征.典例精析例1 某种商品进价为800元,出售时标价为1200元,后来由于该商品积压,商品准备打折出售,但要保持利润不低于5%,则至少可以打多少折.【分析】关键词“不低于”的不等关系可用不等式表示,列出不等式解之即可.【解】设打x 折,依题意,得., 解得x ≥7.答:至少可以打7折.【点评】注意设未知数应“设打x 折”,不能“设至少打x 折”,同时注意打x 折应为0.1x 或.拓展与变式1 某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保持利润不低于5%,那么商店最多降 元出售商品.拓展与变式2 某商品的标价比成本价高25%,根据市场需要,该商品需降价出售,为了不亏本,至多降价百分之几?【反思】“至多”“至少”都是不等关系,结合利润问题中的数量关系和不等关系列出12000.18008005%x ⨯-≥⨯110x不等式.例2 某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?【分析】注意有15题计算分数,把答对题的分数和答错题的分数加起来,列出不等式求解,注意答对的题数应为正整数.【解】设这个学生答对x 道题,依题意得,解得.∵x 应取正整数,∴x 的最小值为12.答:这个学生至少答对12題,成绩才能在60分以上.【点评】注意根据不等式的解集结合实际情况取符合实际意义的解.拓展与变式3 为了举行班级晚会,小明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍作为奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,那么小明最多可以买多少个球拍?拓展与变式4 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132000元,已知甲、乙、丙三种电冰箱的出厂价格分别为1200元/台,1600元/台,2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求购买甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【反思】找好不等关系列出不等式,同时注意问题的解要符合问题的实际意义.例3 甲、乙两家商场以同样的价格出售同样的电器,但是各自推出的优惠方案不同. 甲商场规定:凡购买超过1 000元电器的,超出的金额按90%实收;乙商场规定:凡购买超过500元电器的,超出的金额按95%实收.顾客怎样选择商场购买电器能获得更大的优惠? ()621560x x -->1114x >【分析】设顾客所购买电器的金额为x 元,分x >1000、500<x ≤100和0<x ≤500三种情况分别比较在甲、乙两商场购买时的实际金额数.【解】设顾客所购买电器的金额为x 元,由题意得当0<x ≤500时,可任意选择甲、乙两商场;当500<x ≤1000时,可选择乙商场;当x >1000时,设甲商场实收金额为,则元;乙商场实收金额为,则 元.①当<时,即1000+(x -1000)×0.9<500+(x -500)×0.95,0.9x +100<0.95x +25,即-0.05x <-75,解得x >1500.∴当x >1500时,可选择甲商场. ②当=时,即1000+(x -1000)×0.9=500+(x -500)×0.95,0.9x +100=0.9,即-0.05x =-75,解得x =1500.∴当x =1500时,可任意选择甲、乙两商场. ③当>时,即11000+(x -1000)×0.9>500+(x -500)×0.95,0.9x +100>0.95x +25,即-0.05x >-75,解得x <1500.∴当x <1500时,可选择乙商场. 综上所述,顾客对于商场的选择可参考如下:(1)当0<x ≤500或x =1500时,可任意选择甲、乙两商场;(2)当500<x <1500时,可选择乙商场;(3)当x >1500时,可选择甲商场.拓展与变式5 某大型超市为了促进商场的销售,推出了会员制度.共有两种会员卡,其中普通卡每年需交纳会员费100元,所购买商品均可享受9.5折优惠;贵宾卡每年需交纳会员费300元,所购买的商品均可享受9折优惠.小明家一年在该超市购买商品共消费5000元,应选择 卡合算.拓展与变式6 端午节是中华民族古老的传统节日.甲、乙两家超市在端午节当天对一种原来售价相同的粽子分别推出了不同的优惠方案.甲超市方案:购买该种粽子超过200元后,超出200元的部分按95%收费;乙超市方案:购买该种粽子超过300元后,超出300元的部分按90%收费.设某位顾客购买了x 元的该种粽子.(1)补充表格,填写在横线上:(2)列式计算说明,如果顾客在端午节当天购买该种粽子超过300元,那么到哪家超市花费更少?y 甲()()100010000.90.91000y x =+-⨯=+甲y 乙()()5005000.950.9525y x x =+-⨯=+乙y 甲y 乙y 甲y 乙y 甲y 乙【反思】方案选择问题需要分类讨论,需把各种情况进行比较,从而找出最优解.专题突破1.在一次“人与自然”知识竞赛中,竞赛题共25道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于60分才能得奖,那么要得奖至少应选对的题数为().A. 18B. 19C. 20D. 212.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔的数量为().A. 20支B. 14支C. 13支D. 10支3.某市举办以“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共500棵,已知甲树每棵800元,乙树每棵1200元.若购买甲树的金额不少于购买乙树的金额,问:至少应购买甲树多少棵?4.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8人,则有一间宿舍不满也不空,问:宿舍间数和学生人数分别是多少?5.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种? 请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1 500元,那么应选择以上哪种购买方案?。
考点07 一元一次不等式(组)及其应用-备战2023届中考数学一轮复习考点梳理(解析版)
考点07 一元一次不等式(组)及其应用中考数学中,一元一次不等式(组)的解法及应用时有考察,其中,不等式基本性质和一元一次不等式(组)解法的考察通常是以选择题或填空题的形式出题,还通常难度不大。
而对其简单应用,常会和其他考点(如二元一次方程组、二次函数等)结合考察,此时难度上升,需要小心应对。
对于一元一次不等式中含参数问题,虽然难度系数上升,但是考察几率并不大,复习的时候只需要兼顾即可!一、不等式的基本性质二、一元一次不等式(组)的解法三、求不等式(组)中参数的值或范围四、不等式(组)的应用考向一:不等式的基本性质【易错警示】1.若a >b ,则下列不等式中,错误的是( )A .3a >3bB .﹣<﹣C .4a ﹣3>4b ﹣3D .ac 2>bc 2【分析】根据不等式的性质进行一一判断.【解答】解:A 、在不等式a >b 的两边同时乘以3,不等式仍成立,即3a >3b ,故本选项正确;B 、在不等式a >b 的两边同时除以﹣3,不等号方向改变,即﹣<﹣,故本选项正确;C 、在不等式a >b 的两边同时先乘以4、再减去3,不等式仍成立,4a ﹣3>4b ﹣3,故本选项正确;D 、当c =0时,该不等式不成立,故本选项错误.故选:D .2.已知x <y ,下列式子不成立的是( )A .x +1<y +1B .x <y +100C .﹣2022x <﹣2022yD .【分析】根据不等式的性质判断即可.【解答】解:A 、在不等式x =y 的两边同时加上1得x +1<y +1,原变形成立,故此选项不符合题意;B 、在不等式x <y 的两边同时加上100得x +100<y +100,原变形成立,故此选项不符合题意;C 、在不等式x <y的两边同时乘以﹣2022得﹣2022x >﹣2022y ,原变形不成立,故此选项符合题意;D 、在不等式x <y 的两边同时除以2022得x <y ,原变形成立,故此选项不符合题意;故选:C .3.若x>y,且(a+3)x<(a+3)y,求a的取值范围 a<﹣3 .【分析】根据题意,在不等式x>y的两边同时乘以(a+3)后不等号改变方向,根据不等式的性质3,得出a+3<0,解此不等式即可求解.【解答】解:∵x>y,且(a+3)x<(a+3)y,∴a+3<0,则a<﹣3.故答案为:a<﹣3.4.已知3x﹣y=1,且x≤3,则y的取值范围是 y≤8 .【分析】根据3x﹣y=1求出x=,根据x≤3得出≤3,再根据不等式的性质求出不等式的解集即可.【解答】解:∵3x﹣y=1,∴3x=1+y,∴x=,∵x≤3,∴≤3,∴1+y≤9,∴y≤8,即y的取值范围是y≤8,故答案为:y≤8.5.已知a,b,c为三个非负实数,且满足,若W=3a+2b+5c,则W的最大值为 130 .【分析】将方程组两个方程相加,得到3a+5c=130﹣4b,整体替换可得W=130﹣2b,再由b的取值范围即可求解.【解答】解:,①+②,得3a+4b+5c=130,可得出a=10﹣,c=20﹣,∵a,b,c为三个非负实数,∴a =10﹣≥0,c =20﹣≥0,∴0≤b ≤20,∴W =3a +2b +5c =2b +130﹣4b =130﹣2b ,∴当b =0时,W =130﹣2b 的最大值为130,故答案为:130.考向二:一元一次不等式(组)的解法1. 一元一次不等式的解法2. 一元一次不等式(组)的解法①按照一元一次不等式的解法解出每个不等式的解集②依据数轴取各不等式解集的公共部分一元一次不等式组解法及解集的四种情况无解大大小小则无解1.不等式3(2﹣x)>x+2的解在数轴上表示正确的是( )A.B.C.D.【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【解答】解:∵3(2﹣x)>x+2,∴6﹣3x>x+2,﹣3x﹣x>2﹣6,﹣4x>﹣4,x<1,故选:C.2.在平面直角坐标系中,点A(a,2)在第二象限内,则a的取值可以是( )A.1B.﹣C.0D.4或﹣4【分析】根据第二象限内点的坐标特点列出关于a的不等式,求出a的取值范围即可.【解答】解:∵点A(a,2)是第二象限内的点,∴a<0,四个选项中符合题意的数是,故选:B.3.关于x的方程ax=2x﹣7的解为负数,则a的取值范围是 a>2 .【分析】先解方程得到x=,根据题意得到<0,所以2﹣a<0,然后解不等式即可.【解答】解:解方程ax=2x﹣7的得x=,∵方程ax=2x﹣7的解为负数,∴<0,∴2﹣a<0,解得a>2,即a的取值范围为a>2.故答案为:a>2.4.已知x>2是关于x的不等式x﹣3m+1>0的解集,那么m的值为 1 .【分析】先把m看作常数,求出不等式的解集,再根据不等式解集为x>2,建立关于m的方程,求解即可.【解答】解:x﹣3m+1>0x>3m﹣1,∵x>2 是关于x的不等式x﹣3m+1>0 的解集,∴3m﹣1=2,解得:m=1,故答案为:1.5.若关于的不等式﹣ax>bx﹣b(ab≠0)的解集为x>,则关于x的不等式3bx<ax﹣b的解集是 x>﹣1 .【分析】根据已知不等式的解集,即可确定的值以及a+b的符号,进而求得a=2b,进一步求得b<0,从而解不等式即可.【解答】解:移项,得:(a+b)x<b,根据题意得:a+b<0且=,即3b=a+b,则a=2b,又a+b<0,即3b<0,则b<0,则关于x的不等式3bx<ax﹣b化为:3bx<2bx﹣b,解得x>﹣1.故答案为:x>﹣1.6.解下列不等式,并将解集在数轴上表示出来.(1)﹣x+19≥2(x+5);(2).【分析】(1)先去括号,再移项、合并同类项,把x的系数化为1,再把不等式的解集在数轴上表示出来即可;(2)不等式两边都乘12去分母后,去括号,移项合并,将x系数化为1,求出解集,表示在数轴上即可.【解答】解:(1)﹣x+19≥2(x+5),去括号,得)﹣x+19≥2x+10,移项,得﹣x﹣2x≥10﹣19,合并同类项,得﹣3x≥﹣9,系数化为1,得x≤3.将解集在数轴上表示为:(2),去分母,得3(x+4)﹣12<4(4x﹣13),去括号,得3x+12﹣12<16x﹣52,移项,得3x﹣16x<﹣52﹣12+12,合并同类项,得﹣13x<﹣52,系数化为1,得x>4.解集在数轴上表示为:7.关于x的方程5x﹣2k=6+4k﹣x的解是负数,求字母k的值.【分析】解方程得出x=k+1,根据方程的解为负数得出关于k的不等式,解之可得.【解答】解:解方程5x﹣2k=6+4k﹣x得x=k+1,∵方程的解是负数,∴k+1<0,∴k<﹣1.8.不等式组的解集在数轴上表示为( )A.B.C.D.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:,解不等式①,得:x≥1,解不等式②,得:x≥2,故原不等式组的解集是x≥2,其解集在数轴上表示如下:,故选:C.9.对于任意实数x,我们用{x}表示不小于x的最小整数.如:{2.7}=3,{2022}=2022,{﹣3.14}=﹣3,若{2x+3}=﹣2,则x的取值范围是( )A.B.C.D.【分析】根据{x}表示不小于x的最小整数,可得﹣3<2x+3≤﹣2,然后进行计算即可解答.【解答】解:∵{2x+3}=﹣2,∴﹣3<2x+3≤﹣2,∴﹣6<2x≤﹣5,∴﹣3<x≤﹣,故选:D.10.不等式组的解集是 x<3 .【分析】先求出每个一元一次不等式的解集,再求出它们的公共部分即为不等式组的解集.【解答】解:,解①得:x≤8,解②得:x<3,∴不等式组的解集为x<3.故答案为:x<3.11.解不等式(组),并把解集在数轴上表示出来:(1)2(x﹣1)+2<3x;(2).【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)∵2(x﹣1)+2<3x,∴2x﹣2+2<3x,∴2x﹣3x<2﹣2,∴﹣x<0,则x>0,将解集表示在数轴上如下:(2)解不等式3x﹣(x﹣2)≥6,得:x≥2,解不等式x+1>,得:x<4,则不等式组的解集为2≤x<4,将不等式组的解集表示在数轴上如下:考向三:求不等式组中参数的值或范围方法步骤总结:①解出不等式(组)的解集——用含参数的表达式表示;②根据题目要求,借助数轴,确定参数表达式的范围,必在两个相邻整数之间;③由空心、实心判断参数两边边界哪边可以取“=”,哪边不能取“=”。
一元一次不等式组应用实例及答案
一元一次不等式组应用实例及答案本文介绍了一元一次不等式组的应用实例及其答案。
一元一次不等式组是用来解决不等式问题的数学工具。
它由多个一元一次不等式组成,其中每个不等式都含有一个未知数,并且未知数的指数为1。
应用实例下面是一些应用实例,展示了如何使用一元一次不等式组解决实际问题。
实例1:商店促销某商店打折销售苹果和橙子,苹果每个1元,橙子每个2元。
现有100元购物券,问最多可以购买多少个苹果和橙子?解析:设购买苹果的个数为x,购买橙子的个数为y。
根据题意,我们可以列出以下两个一元一次不等式:- 苹果总价为x元:1 * x ≤ 100- 橙子总价为2y元:2 * y ≤ 100接下来,我们可以求解这个不等式组,找到满足约束条件的x和y的取值范围。
实例2:生产计划某工厂有两个生产部门A和B,每天生产产品的数量不等。
已知部门A每天最多生产50个产品,部门B每天最多生产30个产品。
同时,工厂每天总共生产的产品数量不得超过80个。
问部门A和部门B每天生产的产品数量应如何分配,使得生产数量最大化?解析:设部门A每天生产的产品数量为x,部门B每天生产的产品数量为y。
根据题意,我们可以列出以下三个一元一次不等式:- 部门A每天最多生产50个产品:x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80通过求解这个不等式组,我们可以找到生产数量最大化时部门A和部门B每天生产的产品数量的合理分配方案。
答案实例1的答案:- 苹果总价不得超过100元:1 * x ≤ 100,解得x ≤ 100- 橙子总价不得超过100元:2 * y ≤ 100,解得y ≤ 50根据题意,购买苹果和橙子的个数必须是整数,所以最多可以购买的苹果个数为100个,最多可以购买的橙子个数为50个。
实例2的答案:- 部门A每天最多生产50个产品:x ≤ 50,解得x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30,解得y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80,解得x + y ≤ 80通过求解这个不等式组,我们可以得到合理的生产方案,例如部门A每天生产50个产品,部门B每天生产30个产品,总产量为80个产品。
一元一次不等式的应用
一元一次不等式的应用一元一次不等式是数学中的基础内容,它在实际生活中有着广泛的应用。
本文将从几个不同的角度探讨一元一次不等式的应用,并且给出相应的例子来说明。
1. 经济学中的应用一元一次不等式在经济学中有着重要的应用。
假设某公司生产一种产品,每个单位的成本为C元,而售价为P元。
为了保证公司盈利,必须满足售价高于成本的条件,即P > C。
这个条件可以用一元一次不等式来表示:P - C > 0。
若我们已知成本为10元,可以通过解不等式P - 10 > 0,得到售价的最小值为10元。
2. 几何学中的应用一元一次不等式在几何学中也有着广泛的应用。
考虑一个简单的情境,如果一个长方形的长度为x,宽度为y,而周长必须小于20个单位长度。
我们可以得到不等式2x + 2y < 20。
这个不等式的解集表示了周长小于20的长方形的所有可能的长度和宽度组合。
3. 物理学中的应用一元一次不等式在物理学中也是常见的。
例如,假设一个物体的质量为m千克,加速度为a米/秒²,而所施加的力必须满足F > ma。
这个不等式表示物体所受的力必须大于等于质量乘以加速度的乘积。
如果已知质量为5千克,加速度为2米/秒²,我们可以用一元一次不等式F - 10 > 0来表示所施加的力必须大于10牛顿。
4. 生活中的实际应用一元一次不等式在生活中也有许多实际的应用。
例如,考虑一个不定期活动的打折促销,商品打折幅度为d%。
假设某物品原价为P元,我们希望知道打折后的价格必须小于等于或等于某个特定的值,即P - dP ≤ 500。
这个不等式表示了商品打折后的价格必须小于等于500元。
总结:通过以上几个例子,我们可以看到一元一次不等式在不同领域中的广泛应用。
经济学、几何学、物理学以及生活中的实际问题中都可以运用到一元一次不等式来进行分析和解决。
通过解不等式,我们可以得到满足特定条件的变量的取值范围,从而帮助我们做出合理的决策。
一元一次不等式组的实际应用
品,按原价销售;若一次性购买超过 5 件,按原价的八折进行销售.小明现有 29 元,则最多可
购买该商品
件.
12、甲乙两队进行篮球对抗赛,比赛规定每队胜一场得 3 分,平一场得 1 分,负一场得 0
分.甲队与乙队一共比赛了 10 场,甲队保持了不败记录,得分不低于 24 分,甲队至少胜了
பைடு நூலகம்
场.
13、某次数学测验中有 18 道选择题,评分办法:答对一道得 6 分,答错一道扣 2 分,不答得 0
33 0 的。
16、解:设打 x 折,根据题意1200x 800 5% 得解得 x≥7.所以最低可打七折. 800
17、解:∵每次钉入木块的钉子长度是前一次的 1 .已知这个铁钉被敲击 3 次后全部进入木块(木 3
块足够厚),且第一次敲击后铁钉进入木块的长度是 acm,根据题意得:敲击 2 次后铁钉进入木
9x 3x
(50 (50
x)4 360 解得:30≤x≤32,∵x x)10 290
为整数,∴x=30,31,32,∴有
3
种生产方案:方案
1,A 产品 30 件,B 产品 20 件;方案 2,A 产品 31 件,B 产品 19 件;方案 3,A 产品 32 件, B 产品 18 件.答案为:3
案是:6.
6、解析:设有 x 名儿童,则有牛奶(5x+18)盒,则若每人分 6 盒,则最后一个人分得的数量是
精心整理
精心整理
(5x+18)-6(x-1).根据题意得:
24 24
x x
3 6
解得:18<x≤21.则这个儿童福利院的儿童最少有
19
人,最多有 21 人.故答案是:19,21.
一元一次不等式(组)应用题及练习(含答案)
类型一例1.*校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,则正好坐满;假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游"(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】此题的关键语句是:"假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人〞.理解这句话,有两层不等关系.(1)租用36座客车*辆的座位数小于租用42座客车(*-1)辆的座位数.(2)租用36座客车*辆的座位数大于租用42座客车(*-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车*辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意*应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,假设每人分4个,则剩下9个橘子;假设每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李〔药品、器械〕,租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车*辆,请你设计所有可能的租车方案;(2) 假设甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.*市局部地区遭受了罕见的旱灾,"旱灾无情人有情〞.*单位给*乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.〔1〕求饮用水和蔬菜各有多少件?〔2〕现方案租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.〔3〕在〔2〕的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:〔1〕设饮用水有*件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.〔2〕设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960〔元〕;②3×400+5×360=3000〔元〕;③4×400+4×360=3040〔元〕.所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积〔单位:亩〕种植B类蔬菜面积〔单位:亩〕总收入〔单位:元〕甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵ *种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积〔两类蔬菜的种植面积均为整数〕,求该种植户所有租地方案.2、*公司为了更好得节约能源,决定购置一批节省能源的10台新机器。
一元一次不等式的实际应用
一元一次不等式的实际应用一元一次不等式是初中数学中的重要内容,它是解决实际问题的基础。
在生活中,我们经常会遇到一些与一元一次不等式相关的问题,比如购物打折、工资收入等等。
下面,我们将从这些实际问题入手,探讨一元一次不等式的实际应用。
一、购物打折在购物时,商家常常会推出打折活动,比如“买一送一”、“满100元减20元”等等。
这些活动都可以用一元一次不等式来表示。
例如,某商场推出了“满200元减50元”的活动,那么我们可以用以下不等式来表示:x≥200,其中x表示购物金额。
这个不等式的意思是,只有当购物金额不小于200元时,才能享受减50元的优惠。
如果购物金额小于200元,就不能享受优惠。
二、工资收入在工作中,我们的收入往往与工作时间和工作量有关。
如果我们知道了每小时的工资和工作时间,就可以用一元一次不等式来计算收入。
例如,某人每小时的工资为10元,他一天工作8小时,那么他一天的收入可以用以下不等式来表示:y≥80,其中y表示一天的收入。
这个不等式的意思是,他一天的收入不会小于80元。
如果他加班或者工作时间更长,他的收入会更高。
三、运动健身运动健身是现代人追求健康生活的一种方式。
在运动时,我们需要控制自己的心率和呼吸频率,以达到最佳的锻炼效果。
这个过程可以用一元一次不等式来表示。
例如,某人的最大心率为220减去他的年龄,他希望在锻炼时保持心率在最大心率的70%到85%之间,那么他的心率应该满足以下不等式:126≤x≤153,其中x表示他的心率。
这个不等式的意思是,他的心率应该在126到153之间,才能达到最佳的锻炼效果。
四、旅游出行旅游出行是人们放松身心、开阔眼界的一种方式。
在旅游时,我们需要控制自己的预算,以避免超支。
这个过程也可以用一元一次不等式来表示。
例如,某人计划去旅游,他的预算为1000元,他希望在旅游中尽可能多地体验当地的美食和文化,那么他的花费应该满足以下不等式:x≤1000,其中x表示他的花费。
一元一次不等式的应用
{
由不等式① 由不等式①得 由不等式② 由不等式②得
x<16- - 3
2 x>15— 3
2
因此,不等式组的解集为 因此 不等式组的解集为 2 2 15—<x<16—
3
根据题意, 的值应是整数, 根据题意,x的值应是整数,所以 x=16 每个小组原先每天生产16 16件产 答:每个小组原先每天生产16件产 品
2:列一元一次不等式组解实际问题的一 般步骤: 般步骤: 审题; 设未知数, (1) 审题; (2)设未知数,找 不等量关系;( ;(3 不等量关系;(3)根据不等量关系列不 等式( 解不等式组;( ;(5 等式(组)(4)解不等式组;(5)检验并 作答。 作答。
作业: 作业:
课本p54 课本p54 习题8.3 2题 习题8.3 2题 3题
迁移练习
一堆玩具分给若干个小朋友, 一堆玩具分给若干个小朋友, 若每人分2 则剩余3 若每人分2件,则剩余3件; 若前面每人分3 若前面每人分3件,则最后一 个人得到的玩具数不足2 个人得到的玩具数不足2 求小朋友的人数与玩具数。 件.求小朋友的人数与玩具数。
小结与收获
1:经过本节课的学习,你有那些 经过本节课的学习, 收获? 收获?
练习2 练习
一本英语书共98页 一本英语书共98页,张 98 力读了一周( 还没读完, 力读了一周(7天)还没读完, 而李永不到一周就已读完。 而李永不到一周就已读完。 李永平均每天比张力多读3 李永平均每天比张力多读3页, 张力平均每天读多少页( 张力平均每天读多少页(答 案取整数)? 案取整数)?
要点归纳
对于具有多种不等关系的问题, 对于具有多种不等关系的问题, 可通过不等式组解决。 可通过不等式组解决。解一元一次不 等式组时, 等式组时,一般先求出其中各个不等 式的解集, 式的解集,再求出这些解集的公共部 分。利用数轴可以直观地表示不等式 组的解集, 组的解集,再结合实际问题求出符合 实际问题的解。 实际问题的解。
微专题六 一元一次不等式(组)的解法及其应用
B品牌运动服/件
30
累计采购款/元
10 200
(1)A,B两种品牌运动服的进货单价各是多少元?
解:(1)设 A,B 两种品牌运动服的进货单价分别为 x 元和 y 元.
根据题意,得
+ = ,
= ,
解得
= ,
+ = ,
∴A,B 两种品牌运动服的进货单价分别为 240 元和 180 元.
①有哪几种购买方案?
②若每包儿童口罩8元,每包成人口罩25元,哪种方案总费用最少?
解:(2)①设购买儿童口罩 m 包,则购买成人口罩(5-m)包.
+ (-) ≥ ,
根据题意,得
解得 2≤m≤3.
+ (-) ≤ ,
∵m 为整数,∴m=2 或 m=3.∴共有两种购买方案:
-
解不等式 x-4<
,得 x<2,
则不等式组的解集为-3≤x<2,
∴不等式组的所有负整数解为-3,-2,-1.
一元一次不等式的应用
6.某商城的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行
销售.已知这两种服装过去两次的进货情况如表所示:
进货批次
第一次
A品牌运动服/件
故此商场至少需购进6件A种商品.
一元一次不等式组的应用
8.小明网购了一本课外书,同学们想知道书的价格,小明让他们猜.甲说:“至少25元”.乙说:“至多
22元,”丙说:“至多20元,”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为(
)
B
A.20<x<22
B.22<x<25
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
有 3 个整数解,则 a 的取值范围为
( A)
A.1<a≤2
B.1<a<2
C.1≤a<2
D.1≤a≤2
6 . (2019 · 鄂 州 第 12 题 3 分 ) 若 关 于 x , y 的 二 元 一 次 方 程 组
x-3y=4m+3,
x+5y=5
的解满足 x+y≤0,则 m
的取值范围是__mm≤≤--22__.
③学校购买篮球和足球共 40 个.
(1)
若④购买篮球的个数不少于足球个数的23,则最少可购买篮球
116 6
个;
【分层分析】(1)设购买篮球 x 个,则由题干③可得购买足球((440 0--x)
个,由题干④可列不等式为
2 xx≥≥3((4400--xx)),解此不等式得
x) xx≥≥1166.
(2)若⑤购买篮球的费用不超过购买足球的费用,则最多可购买篮球115
(2)若此不等式组的解集为-4≤x<1,则 a 的值为--22; 【分层分析】(2)由题意得1a.-25168=0--m4 m,即 a=--22;
重难点 2:一元一次不等式的应用
(一题多设问)某校为举行体育比赛活动,准备购买若干个足球和篮
球作为奖品,已知①篮球的单价为 100 元/个,②足球的单价为 60 元/个,
第四节 一元一次不等式 (组)及其应用
【考情分析】湖北近 3 年主要考查:1.一元一次不等式(组)的解法及解集 表示,考查形式有:①求不等式(组)的解集;②求不等式(组)的解集并在 数轴上表示;③求不等式组的整数解;④确定不等式组中字母参数的取 值范围.2.一元一次不等式的应用,考查形式有:①利用不等式判断哪种 方案合算;②与方程(组)、函数结合确定方案问题,设题背景有购买问题、 销售费用问题,以解答题为主
一元一次不等式组的应用
一元一次不等式组的应用一元一次不等式组是数学中的重要知识点,也是我们日常生活中经常会遇到的问题。
它可以帮助我们解决许多实际问题,如生活中的购物、物品生产等方面。
下面我们就来具体了解一下一元一次不等式组的应用。
首先,让我们来看一个实际例子。
假设小明去商店买水果,他带了40元钱,他知道苹果和橙子的价格分别是每斤5元和每斤4元。
他想知道自己最多能买多少斤水果,以确保自己不会超出预算。
这个问题可以用一元一次不等式组来解决。
首先,我们设苹果的购买量为x斤,橙子的购买量为y斤。
根据题意,我们可以得到两个不等式:5x + 4y ≤ 40和x ≥ 0,y ≥ 0。
其中,5x + 4y ≤ 40表示所花费的钱不能超过40元,x ≥ 0和y ≥ 0表示水果的购买量必须是非负数。
接下来,我们来解决这个不等式组。
首先我们可以将不等式5x +4y ≤ 40转化为等式5x + 4y = 40。
根据一元一次方程的知识,我们可以求出一组解,即x = 8,y = 0。
这表示小明最多只能买8斤苹果而没有橙子,因为再多买的话就会超出预算了。
这个例子告诉我们,一元一次不等式组可以帮助我们在实际生活中解决预算等问题。
通过设定合理的不等式和约束条件,我们可以得出最理想的解决方案。
除了购物问题,一元一次不等式组还可以应用在许多其他方面。
比如,在物品生产方面,我们可以根据生产成本和销售价格来确定最适宜的生产量,以保证利润最大化。
在时间管理方面,我们可以根据工作时间和休息时间的约束条件,来平衡工作和生活的安排,以达到工作效率的最大化和身心健康的保持。
综上所述,一元一次不等式组是一个非常实用的数学工具,在我们的日常生活中应用广泛。
通过解决实际问题,它可以帮助我们做出理性的决策,提高生活质量和工作效率。
因此,掌握一元一次不等式组的应用是非常有指导意义和实际价值的。
希望大家能够认真学习并灵活运用这一知识点,为自己的生活和工作带来更多的便利和效益。
第21讲 一元一次不等式(组)的应用
第21讲 一元一次不等式(组)的应用教学目的1.进一步巩固一元一次不等式和一元一次不等式组的解法及它们的解集的意义,并会简单运用•2.会列不等式或不等式组解决一些典型的实际问题•典题精析【例1】当x 取何有理数时,代数式3221--x 的值不大于1? 【解法指导】从题目中找出不等关系来,并依此列出不等式,解此不等式即可求出本题所求“不大于”,即是小于或等于,类似的还有“不超过”、“不多于”、“顶多为”,另外,“不少于”、“不低于”、“至少为”等,即为“大于或等于”•解:依题意得12123x --≤ 去分母,得 3-2(x -2)≤6 去括号,得 3-2x +4≤6 合并同类项,得 -2x≤6-3-4 即 -2x≤-1 系数化为1,得 12x ≥ ∴ 当x 取值不小于12时,3221--x 的值不大于1• 变式练习01.如果2(1)3x --的值是非正数,则x 的取值范围是( ) A .x≤-1 B .x≥-1 C .x≥1 D .x≤102.当x 取何值时,代数式2x -5的值:⑴大于0? ⑵等于0? ⑶不大于-3?03.若代数式1132x x +--的值不小于16x -的值,求正整数x 的值• 【例2】(乐山)某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午他又买了20斤,价格为每斤y 元•他以每斤2x y +元的价格卖完后,结果发现自己赔了钱,其原因是( ) A .x <y B .x >y C .x≤y D .x≥y【解法指导】若要比较两个有理数a 和b 的大小,有一种方法就是判断a -b 的值的正负:若a -b =0,则a =b ;若a -b <0,则a <b ,反之亦然•用这种方法比较两数大小,称之为作差比较法•本题实质就是比较30x +20y 与502x y +⋅的大小的问题,所谓“赔了钱”,就是进价3020502x y x y ++<⋅,也就是30205002x y x y ++-⋅<变形可得x >y ,故选B• 变式练习01.如果2213x x --比23-大,则x 的取值范围是( ) A .x >1 B .x <1 C .x≤1 D .x≠102.试比较两个代数式322x x x +-与31x -的大小•03.若代数式2321x x -+比231x x +-大,求x 的取值范围•【例3】某校餐厅计划购买12张餐桌和一批餐椅,从甲、乙两商场了解到统一餐桌每张均为200元,餐椅报价每把均为50元•甲商场称:每购买一张餐桌赠餐椅;乙商场称:所有的餐桌、餐椅均按报价的八五折销售,那么什么情况下到甲商场购买更优惠?什么情况下到乙商场购买更优惠?【解法指导】餐椅的购买数量是个变量,到哪个商场购买更优惠,取决于餐椅的数量多少•把餐椅数量设为x 把,到甲、乙两商场购买所需费用分别设为y 甲、y 乙,它们分别用含x 的式子表示,再比较y 甲、y 乙的大小即可,在求y 甲是,应注意x 减去12后,在乘以50,即y 甲=200×12+50(x -12);同理y 乙=(200×12+50x)×85%•解:设学校计划购买x 把餐椅,到甲、乙两商场购买所需费用分别为y 甲元、y 乙元•根据题意,得:y 甲=200×12+50(x -12),即y 甲=1800+50x ,y 乙=(200×12+50x)×85%,即8520402y x =+乙•①当y 甲<y 乙时,8518005020402x x +<+,解这个不等式,得x <32•即当购买的餐椅少于32把时,到甲商场购买更优惠•②当y 甲>y 乙时,8518005020402x x +>+, 解这个不等式,得x >32•即当购买的餐椅多于32把时,到乙商场购买更优惠 ③当y 甲=y 乙时,8518005020402x x +=+,解这个不等式,得x =32• 即当购买的餐椅等于32把时,到两家商场购买均可•变式练习01.某电信公司对电话缴费采取两种方式,一种是每月缴纳月租费15元,每通话1分钟0.20元;另一种是不交月租费,但每通话1分钟收话费0.30元•请问,用那种缴费方式比较合适?02.某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元•经协商,甲旅行社表示可以给予每位游客七五折优惠;乙旅行社表示可以免去一位游客的旅游费用,其余游客八折优惠,该单位选择哪一家旅行社支付的旅游费用较少? 03.(潍坊)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱•供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂朱琳机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取,工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需要成本费2.4元•⑴若需要这种规格的纸箱x 个,请用含x 的代数式表示购买纸箱的费用y 1(元)和蔬菜加工厂自己加工制作纸箱的费用y 2(元);⑵假设你是决策者,你认为应该选择哪种方案?并说明理由•【例4】(潍坊)为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化•绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的32,则种植草皮的最小面积是多少? 【解法指导】应用题中,要充分挖掘题目中所蕴含的不等关系,一个也不能遗漏,否则就会出错•注意到题中表示不等关系的关键词语“不少于”,这是列不等式的依据•显然,本题中有三个不等式关系:①种植草皮与种植树木的面积都不少于10亩;②种植草皮面积不少于种植树木面积的32,根据这三个不等关系可以求出种植草皮的面积的范围解:设种植草皮的面积为x 亩,则种植树木的面积为(30-x)亩,则有1030103(30)2xxxx-⎧⎪⎪⎨⎪⎪-⎩≥≥≥,解得18≤x≤20•故x的最小值为18答:种植草皮的最小面积为18亩•变式练习01.2007年某厂制定某种产品的年度生产计划,现有如下数据供参考:⑴生产此产品的现有工人为400人;⑵每名工人的年工时约计2200小时;⑶预测2008年的销售量在10万箱到17万箱之间;⑷每箱需用工4小时,需用料10千克;⑸目前村料1000吨,2007年还需用料1400吨,到2007年底可补充原料2000吨•试根据以上数据确定2008年可能生产的产量,并根据产量确定工人人数•02.某公司在下一年度计划生产出一种新型环保冰箱,下面是公司各部门提出的数据信息;人事部:明年生产工人不多于80人,每人每年工作时间2400h计算;营销部:预测明年年销量至少为10000台;技术部:生产1台电冰箱平均用12个工时,每台机器需要安装5个某种主要部件;供应部:今年年终库存主要部件1000件,明年能采购到这种主要部件80000件•根据上述信息,下一年度生产新型冰箱数量应该在什么范围内?【例5】“六一”儿童节前夕,某消防官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物•如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班虽然分得有福娃,但不足4套•问:该小学有多少个班级?奥运福娃共有多少套?【解法指导】抓住题中的关键词“虽然分有福娃,但不足4套”来建立不等式组,这是本题的关键所在•解:设该小学有x个班,则奥运福娃共有(10x+5)套,根据题意,得10513(1)410513(1)x xx x+<-+⎧⎨+>-⎩①②解①得x>143,解②得x<6•因为x只能取正整数,所以x=5,此时10x+5=55答:该小学有5个班级,奥运福娃共有55套•变式练习01.幼儿园有玩具若干份,分给小朋友,如果每个小朋友分3件,难么还剩59件;如果每个小朋友分5件,那么最后一个小朋友还少几件,这个幼儿园有多少玩具?有多少个小朋友?02.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们•若每名学生送3本,则还余8本;若前面每名学生送5本,则最后一名学生得到的课外读物不足3本•设该校买了m本课外读物,有x名学生获奖,请你解答下列问题•⑴用含x的代数式表示m;⑵求出该校的获奖人数及所买的课外读物的本数•【例6】某工厂现有甲种原料360千克,乙种原料290千克,现计划用这两种原料生产A、B两种产品共50件,已知生产一件A产品需要甲种原料9千克,乙种原料3千克;生产一件B产品,需要甲种原料4千克,乙种原料10千克,则工厂安排A、B两种产品的生产件数,有哪几种方案?请你设计出来•【解法指导】此为典型的材料供应类设计方案的应用题,题中的不等关系不很明显,但经过认真分析,结合生活实际仍可挖掘出题中所蕴含的不等关系,即生产所使用的甲种原料总量不得超过360千克,乙原料总量不得超过290千克,据此可以列出两个一元一次不等式,从而组成一元一次不等式组•此类题的不等关系不十分显眼,发掘不等关系是解决此类题之关键所在•解:设安排生产A 种产品x 件,则生产B 种产品(50-x)件•根据题意,得36029094(50)310(50)x x x x +-⎧⎨+-⎩≤≤,解这个不等式组,得30≤x≤32• 因为x 需要取整数,所以x 可以取30、31、32,对应50-x 应取20、19、18•故可设计三种方案:A 种产品30件,B 种产品20件;A 种产品31件,B 种产品19件;A 种产品32件,B 种产品18件•变式练习01.近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称“蒜你狠”、“豆你玩”•以绿豆为例,5月上旬某市绿豆的市场价已达16元/千克•市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格•经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克•为了既能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克)•问调进绿豆的吨数应在什么范围内为宜?02.(深圳)迎接亚运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A 、B 两种园艺找些共50个摆放在迎宾大道两侧•已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆•⑴某校九年级⑴班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;⑵若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明⑴中哪种发案成本最低?最低成本是多少元?03.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.⑴该校初三年级共有多少人参加春游?⑵请你帮该校设计一种最省钱...的租车方案• 【例7】如果关于x 的不等式组0607x n x m -<-⎧⎨⎩≥的整数解仅为1,2,3,那么适合这个不等式组的整数对(m ,n)共有( )对A .49B .42C .36D .13【解法指导】本题属于“由不等式的解集中包含的整数解来确定字母系数的值”这类题,此类题首先根据不等式组的解集包含哪些整数来确定每个边界点的范围,据此求出符合条件的字母系数的值• 解:由此不等式组得到其解集是76x m n <≤ ∵此解集中仅含有整数1,2,3• ∴107m <≤,即70m <≤,且436n <≤ 即2418n <≤ 故m =1,2,3,4,5,6,7,n =19,20,21,22,23,24故符合此不等式组的整数对(m ,n)共有6×7=42对,即本题选B变式练习01.已知:关于x 的不等式组302x a b x -≥⎧⎪⎨<⎪⎩的整数杰有且仅有4个:-1,0,1,2,那么适合这个不等式组的所有可能的整数对(a ,b)共有多少个?巩固提高01.用不等式表示:⑴x与2的和小于5________________;⑵a与b的差是非负数_________________•02.若x<y,则x-y______y-2;5-x_______5-y;a2x_______a2y;-x3_____-y5;x(a2+1)______ y(a2+1)03.不等式组12305xx+>-⎧⎨⎩≤的解集是___________,其整数解是__________.04.关于x的不等式组320x ax->⎧⎨->⎩的整数解共有6个,则a的取值范围是.05.已知:三角形的两边为3和4,则第三边a的取值范围是_________________.06.若不等式(a-5)x>1的解集是x>1a-5,则a的取值范围是__________________.07.如果不等式组737x xx n+<-⎧⎨>⎩的解集是x>7,则n的取值范围是()A.n≥7B.n≤ C.n=7 D.n<708.若abcd>0,a+b+c+d>0,则a、b、c、d中负数的个数至少有()A.1个B.2个C.3个D.4个09.如果2(1)3x--是非正数,则x的取值范围是()A.x≤1B.x≥1C.x≥1 D.x≤110.已知:关于x的不等式组152x ax->-⎧⎨⎩≥无解,则a的取值范围是()A.a>3 B.a≥3C.0<a<3 D.a≤311.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超过300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超过200元后,超出部分按原价8.5折优惠,设顾客预计累计购物x元(x>300).⑴请用含x的代数式分别表示顾客在两家超市购物所需费用;⑵试比较顾客到哪家超市购物更优惠?说明你的理由.12.七⑵班共有50名学生,老师安排每人制作一件A型或B型的陶艺品,学校现有甲种制作材料36kg,乙种制作材料29kg,制作A、B两种型号的陶艺品用料情况如下表:⑴设制作B型陶艺品x件,求x的取值范围;⑵请你根据学校现有的材料分别写出七⑵班制作A型和B型陶艺品的件数•13.某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李•⑴设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;⑵如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,那么请你帮助选择哪一种租车方案更节省费用•14.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132000元•已知甲、乙、丙三种电冰箱的出厂价格分别为1200元/台、1600元/台、2000元/台•⑴至少购进乙种电冰箱多少台?⑵若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?15.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆•经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李•⑴请你帮助学校设计所有可行的租车方案;⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省•培优升级检测01.如果不等式组809x bx a-<-⎧⎨⎩≥的整数解仅为1,2,3,那么适合这三个不等式组的整数a、b的有序数对(a,b)共有()对•A.17 B.64 C.72 D.8102.设a、b、c的平均数为M,a与b的平均数为N,N与C的平均数为P,若a>b>c,则M与P的大小关系是()A.M=P B.M>P C.M<P D.不确定的03.a1、a2、…、a2004都是正数,如果M=(a1+a2+…+a2003)(a2+a2+…+a2004),N=(a1+a2+…+a2004)( a-2+a2+…+a2003),那么M、N的大小关系是()A.M>N B.M=N C.MN D.不确定的04.设23ama+=+,12ana+=+,1apa=+,若a<-3,则()A.m<n<p B.n<p<m C.p<n<m D.p<m<n05.已知:a、b、c、d都是整数,且a<2b,b<3c,c<4d,d<50,那么a的最大值是()A.1157 B.1167 C.1191 D.119906.已知关于x的不等式组4132x xx a+⎧>+⎪⎨⎪+<⎩的解集为x<2,那么a的取值范围是________________•07.正六边形轨道ABCDEF的周长为7.2米,甲、乙两只机器鼠分别冲A、C两点同时出发,均按A→B→C→D→E→F→A→…方向沿轨道奔跑,甲的速度为9.2厘米/秒,乙的速度为8厘米/秒,那么出发后经过_______秒钟时,甲、乙两只机器鼠第一次出现在同一条边上.08.为了保护环境,某企业决定购买10台污水处理设备•现有A、B两种型号的设备,其中每台的价格、月处理污水及年消耗费如下表.经计算,该企业购买设备的资金不高于105万元,请你设计,该企业购买方案有_______种.09.大、中、小三个正整数,大数与中数之和等于2003,中数减小数之差等于1000,那么这三个正整数的和为_____________.10.已知不等式ax+3≥0的正整数解为1,2,3,则a的取值范围是______•11.小慧上宝塔观光,他发现:若上了7阶楼梯时,剩下的楼阶梯数是已上的阶数的3倍多,若再多上15阶楼梯时,已上阶数是剩下的楼梯阶数的3倍多,那么,此宝塔的楼梯一共有多少阶•12.若正整数x<y<z,k为整数,且111kx y z++=,试求x、y、z的值•13.已知:a1+2a3≥3a2,a2+2a4≥3a3,a3+2a5≥3a4,…,a8+2a10≥3a9,a9+2a1≥3a10,a10+2a2≥3a1,且有a1+a2+a3+…+a10=100,求a1,a2,a3,…,a9,a10的值•。
一元一次不等式组应用题及答案
一元一次不等式组应用题及答案一元一次不等式应用题解决实际问题的步骤:1.审题,找出不等关系;2.设未知数;3.列出不等式;4.求出不等式的解集;5.找出符合题意的值;6.作答。
一.分配问题:1.一定数量的花生要分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,花生有多少颗?2.一定数量的书要分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?5.用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
1)如果有x间宿舍,那么可以列出关于x的不等式组:4x ≤ n - 196y。
n2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.XXX家到学校2.1千米,现在需要在18分钟内走完这段路。
已知XXX步行速度为90米/分,跑步速度为210米/分,问XXX至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?2.用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。
一元一次不等式(组)的应用
(2) 预计在该线路上 A型和 B型公交车每辆年均载客量分别为 60万人次和100万人
次.若该公司购买A型和B型公交车的总费用不超过1 200万元,且确保这10辆公交 车在该线路的年均载客总和不少于 680万人次,则该公司有哪几种购车方案?哪种 购车方案总费用最少?最少总费用是多少?
不等 关系:
总费用不超过1 200万 总和不少于680万人次
(某个数量介于某个范围之中)
某数量
2、普通不等式组
(两个量分别满足两个不等关系)
Hale Waihona Puke 类型之一:列一元一次不等式解应用题 1.晨光文具店用进货款1 620元购进A品牌的文具盒40个, B品牌的文具盒60个.其中A品牌文具盒的进货价比B品牌文 具盒的进货价多3元.
(1)求A,B两种文具盒的进货单价;
(2)已知A品牌文具盒的售价为23元/个,若使这批文具盒全 部售完后利润不低于500元,B品牌文具盒的销售单价最少是 多少? 语言文字
(1)购买 A 型公交车每辆需 100 万元,购买 B 型公交车每辆需 150 万元 (2) 设 购 买 A 型 公 交 车 a 辆 , 则 B 型 公 交 车 (10 - a) 辆 , 由 题 意 得
100a+150(10-a)≤1200 ,解得 6≤a≤8, 60a+100(10-a)≥680
数学符号
不等关系:
利润不低于500元
解: (1)设A品牌文具盒的进价为x元/个,依题意得: 40x+60(x-3)=1620,解得:x=18,x-3=15. 答:A品牌文具盒的进价为18元/个,B品牌文具盒的进价为15元/个 (2)设B品牌文具盒的销售单价为y元,依题意得: (23-18)×40+60(y-15)≥500,解得:y≥20. 答:B品牌文具盒的销售单价最少为20元
一元一次不等式的实际问题
一元一次不等式的实际问题一元一次不等式是数学中常见的一种形式,可以用来描述现实生活中的很多实际问题。
在本文中,我们将探讨一元一次不等式的应用,介绍一些实际问题,并给出相应的解决方法。
1. 简单的一元一次不等式问题首先,我们来看一个简单的一元一次不等式问题。
假设某人的年收入为x万元,他的生活开销为y万元。
已知他的年收入在5万至10万元之间,生活开销不能超过年收入的30%。
我们可以用以下不等式来描述这个问题:5 ≤ x ≤ 10y ≤ 0.3x其中,第一个不等式表示年收入的范围,第二个不等式表示生活开销不能超过年收入的30%。
解决这个问题的方法是找到满足这两个不等式的解集。
根据第一个不等式,x的取值范围是[5, 10],根据第二个不等式,y的取值范围是[0, 0.3x]。
因此,满足两个不等式的解集可以表示为:5 ≤ x ≤ 100 ≤ y ≤ 0.3x这个解集表示了满足条件的年收入和生活开销的取值范围。
2. 一元一次不等式在实际问题中的应用一元一次不等式可以应用于很多实际问题中,例如经济学、物理学、工程学等领域。
下面我们来看一些具体的例子。
例子1:生产成本与产量的关系假设某个工厂的生产成本和产量之间存在如下关系:生产成本每增加一单位,产量将减少2单位。
已知当生产成本为1000万元时,产量为5000单位。
我们可以用以下不等式来描述这个问题:x ≥ 1000y ≤ 5000 - 2(x - 1000)其中,x表示生产成本(单位:万元),y表示产量(单位:单位)。
解决这个问题的方法是找到满足不等式的生产成本和产量的取值范围。
根据第一个不等式,生产成本的取值范围是[x ≥ 1000],根据第二个不等式,产量的取值范围是[y ≤ 5000 - 2(x - 1000)]。
因此,满足两个不等式的解集可以表示为:x ≥ 1000y ≤ 5000 - 2(x - 1000)这个解集表示了满足条件的生产成本和产量的取值范围。
中考数学点对点-一元一次不等式(组)及其应用(解析版)
专题13 一元一次不等式(组)及其应用专题知识点概述1.不等式的定义:用不等号“<”“>”“≤”“≥”表示不相等关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
一个含有未知数的不等式的所有解,组成这个不等式的解集。
3.一元一次不等式的定义:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
4.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
5.不等式的性质:性质1:不等式的两边都加上(或减去)同一个数,不等号的方向不变。
性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
6.一元一次不等式的解法的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.7.一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
8.求不等式组解集的规律:不等式解集在数轴上的表示方法:含≥或≤,用实心圆点,含>或<用空心圆圈。
不等式组的解集有四种情况:若a>b,(1)当x ax b>⎧⎨>⎩时,•则不等式的公共解集为x>a;(2)x ax b<⎧⎨>⎩时,不等式的公共解集为b<x<a;(3)x ax b<⎧⎨<⎩时,不等式的公共解集为x<b;(4)当x ax b>⎧⎨<⎩时,不等式组无解.9.中考出现一元一次不等式(组)试题类型总结:类型一:一元一次不等式的解集问题。
类型二:一元一次不等式组无解的情况。
类型三:明确一元一次不等式组的解集求范围。
类型四:一元一次不等式组有解求未知数的范围。
类型五:一元一次不等式组有整数解求范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
做一做:
2、什么情况下,购买B类年票最合算?
解: 设某游客一年中进入该公园x次,根据题意列不等式组得: 50+2x<100
x>6.25 所以,不等式组的解集是 6.25 < x<25 答:某游客一年中进入该公园7至25次之间(不含25), 购买购买B类年票最合算。 3、根据上面的结果,你能说出在什么情况下购买A类年 票和B类年票费用支出相等吗? 某游客一年中进入该公园25次时,购买A类年票和B类 年票费用支出相等。
3、仔细观察下图,认真阅读对话:
根据对话的内容,试求出饼干和牛奶 的标价各是多少元?
某公园出售的一次性使用门票,每张10元,为吸引 更多游客, 新近推出购买“个人年票”的售票方法(从购买日起,可供持 票者使用一年),年票分A、B两类;A类年票每张100元,持 票者每次进入公园无需再购买门票;B类年票每张50元,持票 者进入公园时需再购买2元的门票。你知道某游客一年中进入该 公园至少超过多少次时,购买A类年票最合算吗? 解: 设某游客一年中进入该公园x次,根据题意列不等式组得: 10x>100 50+2x > 100 x>10 x>25
答:审、设、找、列、解、答。
练一练:1、某校组织“优秀学生”进行夏令营活
动,乘车时,小明发现,如果每辆汽车坐4人,则 有20人没有座位;如果每辆坐8人,则有一辆汽车 不空也不满。求参加夏令营活动的“优秀学生”人 数和汽车的辆数。
解:设有汽车x辆,则参加夏令营活动的“优秀学生”
有(4x+20)人 ,根据题意列不等式组得:
知识回顾
x 2 1、不等式组 的解集是 x 8
2 x 73( x 1) 2、不等式组 4 2 的解集是 x 3 1 x 3 3
。
。
想一想:
一群男学生住若干间宿舍,每间住4人,剩19人无 房住;每间住6人,有一间宿舍住不满,可能有多少间宿 舍,多少名男学生? a、如果设有x间宿舍,则男学生有 (4x+19)人。 b、有一间宿舍住不满是什么意思?
动脑筋: 某公园出售的一次性使用门票,每张10元,为吸引 更多
游客,新近推出购买“个人年票”的售票方法(从购买日起,可 供持票者使用一年),年票分A、B两类;A类年票每张100元, 持票者每次进入公园无需再购买门票;B类年票每张50元,持 票者进入公园时需再购买2元的门票。你知道某游客一年中进入 该公园至少超过多少次时,购买A类年票最合算吗?
解得:
{
50+2x < 10x x<25
2、甲乙两人计划在10天内生产500件产品(每天生 产量相同),按原来的生产速度,不能完成任务, 如果每个小组每天比原来多生产2件产品,就能提前 完成任务,每个小组原先每天生产多少件产品? (每天生产的产品是整数) 解:设每个小组原先每天生产x件产品,根据题意 列不等式组得: 2×10x<500
解得:
{
所以,不等式组的解集是 x>25 答:某游客一年中进入该公园至少超过25次时,购买A 类年票最合算。
做一做:
1、什么情况下,购买每次10元的门票最合算?
解: 设某游客一年中进入该公园x次,根据题意列不等式组得: 10x<100 10x < 50+2x x<10
解得:
Байду номын сангаас
{
x<6.25
所以,不等式组的解集是 x<6.25 答:某游客一年中进入该公园不超过6次时,购买每次 10元的门票最合算。
2×10(x+2)>500 x<25 解得: x>23 所以,不等式组的解是 23< x<25 因为,每天生产的产品是整数,所以,x=24 答:每个小组原先每天生产24件产品。
{
{
列一元一次不等式组解应用题的一般步 骤是: (1):审题,分析题目中已知什么,求 什么,明确各数量之间的关系 (2):设适当的未知数 (3):找出题目中的所有不等关系 (4):列不等式组 (5):求出不等式组的解集 (6):写出符合题意的答案
解得:
{
4x+19-6(x-1) < 6 x<12.5 x>9.5
因为,宿舍间数是正整数,所以,x=10或11或12 当x=10时,4x+19=4×10+19=59(人) 当x=11时,4x+19=4×11+19=63(人) 当x=12时,4x+19=4×12+19=67(人)
答: 宿舍有10或11或12间,男学生有59或63或67人。
住的人数在0人到6人之间(不包括0和6) 即:0<最后一间宿舍住的人数<6 c、每间住6人,有一间宿舍住不满,有 (x-1) 间住 满了,住满了的住了 6(x-1) 人;未住满的一间 住了 [4x+19 -6(x-1)]人。 d、你能列出不等式组并解出来吗?
一群男学生住若干间宿舍,每间住4人,剩19人无房住;每间 住6人,有一间宿舍住不满,可能有多少间宿舍,多少名男学生? 解: 设有x间宿舍,则男学生有(4x+19)人, 根据题意列不等式组得: 4x+19-6(x-1)>0
0 8x (4 x 20) 8
解得:
5 x7
因为,汽车的辆数是正整数,所以x=6. 当x=6时,4x+20=44(人) 答:有汽车6辆;参加夏令营活动的“优秀学生”有44人。
练一练: 2.某工人在生产中,经过第一次改进技 术,每天所做的零件的个数比原来多10个, 因而他在8天内做完的零件就超过200个, 后来,又经过第二次技术的改进,每天又多 做37个零件,这样他只做4天,所做的零件 的个数就超过前8天的个数,问这位工人原 先每天可做零件多少个?
分析:1、游客购买门票,有 3 种选择方式。 2、设游客选择了某种门票,一年中进入该公园x 次,其门票费支出是多少? 一次性使用门票: 10x元 A类门票: 100元 B类门票: (50+2x)元 3、要使购买A类年票最合算,各种门票费支出应 当满足什么关系?
一次性使用门票费大于A类门票费(10x>100) B类门票费大于A类门票费(50+2x>100)