数学实验报告1
数学调查实验报告(3篇)
第1篇一、实验背景随着社会经济的快速发展,数学作为一门基础学科,在各个领域都发挥着重要作用。
为了提高学生的数学素养,激发学生学习数学的兴趣,培养学生的实践能力,我们开展了一次数学调查实验。
本次实验旨在了解学生在数学学习中的困难、需求以及兴趣点,为今后的数学教学提供参考。
二、实验目的1. 了解学生在数学学习中的困难、需求以及兴趣点;2. 分析学生数学学习现状,为教师改进教学方法提供依据;3. 培养学生的实践能力,提高学生的数学素养。
三、实验方法1. 实验对象:选取我校高一年级100名学生作为实验对象;2. 实验内容:设计调查问卷,包括数学学习困难、需求、兴趣点等方面;3. 实验步骤:(1)制定调查问卷;(2)发放问卷,收集数据;(3)对数据进行分析处理;(4)撰写实验报告。
四、实验结果与分析1. 数学学习困难分析(1)学生在数学学习中的困难主要集中在以下几个方面:①基础知识掌握不牢固;②解题技巧不足;③缺乏对数学问题的思考能力;④学习兴趣不高。
(2)针对以上困难,教师可以采取以下措施:①加强基础知识教学,帮助学生打好基础;②开展解题技巧培训,提高学生解题能力;③引导学生学会思考,培养问题意识;④激发学生学习兴趣,提高学习积极性。
2. 数学学习需求分析(1)学生在数学学习中的需求主要包括:①提高数学成绩;②掌握解题技巧;③提高逻辑思维能力;④拓展知识面。
(2)针对以上需求,教师可以采取以下措施:①制定合理的教学计划,确保教学目标达成;②注重解题技巧训练,提高学生解题能力;③开展思维训练活动,培养学生的逻辑思维能力;④丰富教学内容,拓展学生的知识面。
3. 数学学习兴趣点分析(1)学生在数学学习中的兴趣点主要包括:①数学竞赛;②数学应用;③数学趣味知识;④数学史。
(2)针对以上兴趣点,教师可以采取以下措施:①举办数学竞赛,激发学生学习兴趣;②结合实际生活,开展数学应用教学;③引入数学趣味知识,提高学生学习兴趣;④介绍数学史,培养学生的数学文化素养。
数学建模基础实验报告(3篇)
第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学实验报告 (1)
(1)参数方程:z=2^2^/2^2^sin y x y x ++(-8<=x<=8,-8<=y<=8) (2)程序:[X,Y]=meshgrid(-8::8);r=sqrt(x.^2+y.^2)+eps;Z=sin(r)./r;Mesh(x,y,z)Axis square(3)程序的输出结果:3:球面,椭球面,双叶双曲面,单叶双曲面1球面: (4):参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕcos *sin *sin *cos *sin *R z R y R x 0π<=θ<2* 0<=ϕ<π (5)程序:u=[0:pi/60:2*pi];v=[0:pi/60:pi];[U,V]=meshgrid(u,v);R=3;X=R*sin(v).*cos(u);Y=R*sin(v).*sin(u);Z=R*cos(v);Surf(x,y,z);axis equal;(3)程序输出结果:2椭球面: (1)参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕcos *sin *sin *cos *sin *c z b y a x 0<=θ<2*π 0<=ϕ<=π (2)程序:ezsurf(‘3*sin(u)*cos(v) ,’3*sin(u)*sin(v)’,’1*cos(u)’,[0,pi,0,2*pi]);(3)程序的输出结果:3单叶双曲面: (1)参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕtan sin *sec *cos *sec *z a y a x 0<=θ<2*π -π/2<ϕ<π/2 (2)程序:ezsurf(‘3*sec(u)*cos(v),’3*sec(u)*sin(v)’,’5*tan(u)’,[-pi/2,pi/2,0,2*pi]);axis auto(3)输出程序结果:4双叶双曲面: (1)参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕsec *sin *tan *cos *tan *c z b y a x 0<=θ<2*π -π<ϕ<3*π/2,ϕ≠π/2(2)程序:ezsurf(‘3*tan(u)*cos(v)’,’3*tan(u)*sin(v)’,’5*sec(u)’,[-pi/2,3*pi/2,0,2*pi]);axis auto(4) (3)输出程序结果:抛物螺线: (1)参数方程:⎪⎩⎪⎨⎧===2^*sin **cos **t c z t t b y t t a x 0<T<+∞ (2)程序:ezplot3(‘2*t*cos(t)’,’2*t*sin(t)’,’t.^2/3’,[0,50]);(3)输出程序结果:(5)马鞍面: (1)参数方程:z=x^2/9-y^2/4 (-25<=x<=25,-25<=y<=25)(2)程序:[X,Y]=meshgrid(-25:1:25);Z=X.^2/9-Y.^2/4;Surf(X,Y,Z)Title(‘马鞍面’)grid off(3)输出程序结果:(6)黎曼函数:(1)程序:n=100;x=[];y=[];k=1;for q=2:nfor p=1:q-1if gcd(q,p)==1 %利用函数gcd(m,n)可求m和n的最大公约数x(k)=p/q;y(k)=1/q;k=k+1;endendendplot(x,y,’.b’); axis([0,1,0,1])(2)程序输出结果:。
数值计算基础实验报告(3篇)
第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。
二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。
(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。
(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。
(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。
2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。
(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。
(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。
3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。
(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。
数学建模 -实验报告1
������������⁄������������ = ������������(1 − (������ + ������)) − ������1������∗������,
(4 − 3)
������������∗⁄������������ = −������1������∗������ + ������2������
二、 问题分析
建立肿瘤细胞增长模型时,我们可以从自由增长模型开始分析,引进 Logistic 阻滞增长模型,构成肿瘤细胞增长初步框架。再者肿瘤细胞不同于普 通细胞,其生长受到人体自身免疫系统的制约。于是综合考虑正常细胞转化,癌 细胞增殖,癌细胞死亡,癌细胞被效应细胞消除等情况,建立动力学方程。并对 模型进行适当简化求解。在放射治疗方案的设计中,我们可以引入放射生物学中 广泛接受的 LQ 模型对问题进行分析,由于放疗对人体伤害相当大,因此我们采 取分次逐次放疗的方式进行治疗。我们具体分两种情形进行讨论,一是在总剂量 一定的条件下,不同的分次剂量组合对生物效应的影响;二是在产生相同生物效 应的情况下,分析最优的分次剂量组合。
易算出癌细胞转入活动期已有 300 多天,故如何在早期发现癌症是攻克癌症的关键之一 (2)手术治疗常不能割去所有癌细胞,故有时需进行放射疗法。射线强度太小无法杀
死癌细胞,太强病人身体又吃不消且会使病人免疫功能下降。一次照射不可能杀死全部癌细 胞,请设计一个可行的治疗方案(医生认为当体内癌细胞数小于 100000 个时即可凭借体内 免疫系统杀灭)。
进一步简化,根据(4-4),(4-5)式可知,效应细胞������∗和复合物������有出有进.假 设出入保持平衡,则有
������ + ������∗ = C (C 为常数)
小学数学趣味实验报告(3篇)
第1篇实验名称:探究“奇数和偶数的奇妙之旅”实验目的:通过趣味实验,让学生了解奇数和偶数的概念,感受数学的乐趣,培养动手操作能力和观察能力。
实验时间:2023年4月15日实验地点:小学一年级教室实验器材:数字卡片、彩笔、白纸、剪刀、胶水、透明胶带实验参与人员:一年级全体学生实验过程:一、导入1. 教师展示数字卡片,引导学生说出奇数和偶数的概念。
2. 学生分享自己对奇数和偶数的理解。
二、实验操作1. 学生每人准备一张白纸,用彩笔在纸上画出若干个数字,要求每个数字之间留有足够的空间。
2. 学生用剪刀将画出的数字剪下来,形成数字卡片。
3. 学生将奇数卡片用红色标记,偶数卡片用蓝色标记。
4. 学生将奇数卡片和偶数卡片分别用透明胶带粘贴在黑板上。
5. 教师提问:奇数卡片和偶数卡片在黑板上排列后,有什么规律?6. 学生观察、讨论,得出结论:奇数卡片之间相差2,偶数卡片之间相差2,且奇数卡片和偶数卡片交替排列。
三、实验验证1. 教师提问:如果我们把黑板上奇数卡片和偶数卡片的顺序打乱,还会出现这样的规律吗?2. 学生分组进行实验,验证打乱顺序后,奇数卡片和偶数卡片是否依然交替排列。
3. 学生分享实验结果,得出结论:无论奇数卡片和偶数卡片的顺序如何,它们都会交替排列。
四、实验拓展1. 教师提问:在生活中,我们还能找到奇数和偶数的例子吗?2. 学生分享生活中的奇数和偶数例子,如:桌子、椅子、书本、水果等。
3. 教师引导学生思考:为什么生活中有这么多奇数和偶数?4. 学生讨论,得出结论:奇数和偶数是自然界和人类社会中普遍存在的现象。
实验总结:本次趣味实验,让学生在轻松愉快的氛围中了解了奇数和偶数的概念,感受到了数学的乐趣。
通过动手操作,学生培养了观察能力和逻辑思维能力。
同时,实验拓展环节让学生将数学知识应用于生活,激发了学生的学习兴趣。
实验反思:1. 实验过程中,教师应注重引导学生观察、思考,培养学生的动手操作能力。
数学实验报告的总结(3篇)
第1篇一、实验背景随着科技的不断发展,数学实验在各个领域中的应用越来越广泛。
数学实验作为一种以计算机为工具,通过模拟、计算和验证等方法,对数学理论进行实践探索和研究的方法,已经成为数学研究的重要手段。
本次实验旨在通过数学实验,加深对数学理论的理解,提高数学应用能力,培养创新意识和团队协作精神。
二、实验目的1. 熟悉数学实验的基本方法,掌握数学实验的基本步骤。
2. 通过实验,加深对数学理论的理解,提高数学应用能力。
3. 培养创新意识和团队协作精神,提高自身综合素质。
三、实验内容本次实验主要包括以下内容:1. 实验一:线性方程组的求解通过编写程序,实现线性方程组的直接法、迭代法等求解方法,并对比分析各种方法的优缺点。
2. 实验二:矩阵运算实现矩阵的加法、减法、乘法、转置等基本运算,以及求逆矩阵、特征值和特征向量等高级运算。
3. 实验三:数值积分通过编写程序,实现定积分、变积分、高斯积分等数值积分方法,并分析各种方法的误差和适用范围。
4. 实验四:常微分方程的数值解法实现欧拉法、龙格-库塔法等常微分方程的数值解法,并对比分析各种方法的稳定性、精度和适用范围。
四、实验过程1. 确定实验内容,明确实验目的。
2. 设计实验方案,包括实验步骤、算法选择、数据准备等。
3. 编写实验程序,实现实验方案。
4. 运行实验程序,收集实验数据。
5. 分析实验数据,得出实验结论。
6. 撰写实验报告,总结实验过程和结果。
五、实验结果与分析1. 实验一:线性方程组的求解通过实验,验证了直接法和迭代法在求解线性方程组时的有效性。
直接法在求解大规模线性方程组时具有较好的性能,而迭代法在求解稀疏线性方程组时具有较好的性能。
2. 实验二:矩阵运算实验结果表明,矩阵运算的程序实现具有较高的精度和效率。
在实际应用中,可以根据具体需求选择合适的矩阵运算方法。
3. 实验三:数值积分通过实验,验证了各种数值积分方法的有效性。
高斯积分具有较高的精度,但在求解复杂函数时,需要调整积分区间和节点。
数学初中实验报告
一、实验目的本次实验旨在通过实际操作,加深对数学知识的理解,提高动手操作能力和分析问题的能力。
通过本次实验,我们希望掌握以下知识点:1. 理解数学概念的本质;2. 掌握数学公式和定理的运用;3. 提高解决问题的能力。
二、实验内容本次实验内容为探究函数图像的平移规律。
三、实验器材1. 函数图像表;2. 比例尺;3. 直尺;4. 圆规;5. 铅笔。
四、实验步骤1. 准备函数图像表,按照比例尺画出函数y=x的图像;2. 以函数y=x的图像为基础,分别向上、向下、向左、向右平移相同的距离,画出对应的函数图像;3. 比较平移前后函数图像的特点,分析平移规律;4. 总结平移规律,并验证其正确性。
五、实验结果与分析1. 函数y=x的图像是一条经过原点的直线,斜率为1;2. 向上平移后的函数图像为y=x+b,其中b为平移的距离;3. 向下平移后的函数图像为y=x-b,其中b为平移的距离;4. 向左平移后的函数图像为y=x+k,其中k为平移的距离;5. 向右平移后的函数图像为y=x-k,其中k为平移的距离。
六、实验结论1. 函数图像的平移规律为:向上平移b个单位,函数变为y=x+b;向下平移b个单位,函数变为y=x-b;向左平移k个单位,函数变为y=x+k;向右平移k个单位,函数变为y=x-k;2. 通过本次实验,我们加深了对函数图像平移规律的理解,提高了分析问题和解决问题的能力。
七、实验心得1. 在实验过程中,我们学会了如何运用数学公式和定理,将实际问题转化为数学问题;2. 实验使我们更加深刻地理解了数学概念的本质,提高了我们的动手操作能力;3. 通过实验,我们认识到,数学知识不仅存在于书本上,更存在于实际生活中,我们要善于将所学知识运用到实际中去。
八、实验建议1. 在实验过程中,要注重观察和分析,发现问题并及时解决问题;2. 在实验结束后,要总结实验过程和实验结果,加深对数学知识的理解;3. 多参加数学实验,提高自己的数学素养。
小学数学实验报告doc
小学数学实验报告篇一:小学数学实验报告单小学数学实验报告单篇二:小学数学课题实验总结报告《实施合作学习,发挥优势互补的研究》课题实验总结在上级主管部门和学校领导关心支持下我们开展了《实施合作学习,发挥优势互补》的课题研究。
在课题组全体老师两年的不懈努力下,已基本完成本课题研究任务,并取得预期成果。
开展课题实验以来,我们坚持在实践中探索,在探索中实践,取得了初步的成效,主要体现在实验促进了三个方面的转变,一个方面的提高。
一、促进教师教学观念的转变。
参加课题实验后,实验组的老师们通过边实验边学习,不断总结与反思,提升了自己的科研水平,并树立了以“教学是为了促进学生发展”为最终目标的新型教育教学观念。
课堂上,老师与学生建立了和谐融洽的师生关系,在精心创设的良好的教学氛围中鼓励学生独立思考、大胆质疑、敢于探索、勇于创新。
让学生在自主、合作、探究的学习过程中,激发学习热情,养成学习习惯,提高学习能力,从而促进了学生的发展。
二、促进学生学习方式的转变。
学生正在由被动学习逐步向主动学习转变,由老师教转变为我能学,由师生间的单向性活动转变为双向性互动、多边性互动,增大了课堂信息量,学生积极主动学习,小组合作、乐于探究,他们发扬团队精神,团队之间互相竞争、优势互补,并培养学生动手、动脑、动口的能力,培养创新意识。
课前,学生能积极主动地预习信息窗内容,提出问题并尝试解决。
课堂上,学生能够热烈地交流预习所得,积极主动地参与课堂讨论,参与面广,讨论热烈而且有序。
课后,能自觉温习知识,深化学习,拓展延伸,并加以运用。
绝大部分学生善于表达,敢于提出自己的不同见解,有较强的探究精神,能够提出问题积极思考,并能够多角度思维寻找解决问题的策略,并且培养了学生良好的合作学习的习惯。
学习方式的转变促进了学生全面发展,他们乐学,善学,学有所成。
随着学生自主合作探究能力的不断提高,自主性合作性探究性已多个学习层面辐射,辐射到其它学科、班级管理、文体活动等方面。
数学实验报告(新)1-6
实验报告课程名称:院系:专业班级:学号:学生姓名:指导教师:开课时间:至学年第学期一、学生撰写要求按照实验课程培养方案的要求,每门实验课程中的每一个实验项目完成后,每位参加实验的学生均须在实验教师规定的时间内独立完成一份实验报告,不得抄袭,不得缺交。
学生撰写实验报告时应严格按照本实验报告规定的内容和要求填写。
字迹工整,文字简练,数据齐全,图表规范,计算正确,分析充分、具体、定量。
二、教师评阅与装订要求1.实验报告批改要深入细致,批改过程中要发现和纠正学生实验报告中的问题,给出评语和实验报告成绩,签名并注明批改日期。
实验报告批改完成后,应采用适当的形式将学生实验报告中存在的问题及时反馈给学生。
2.实验报告成绩用百分制评定,并给出成绩评定的依据或评分标准(附于实验报告成绩登记表后)。
对迟交实验报告的学生要酌情扣分,对缺交和抄袭实验报告的学生应及时批评教育,并对该次实验报告的分数以零分处理。
对单独设课的实验课程,如学生抄袭或缺交实验报告达该课程全学期实验报告总次数三分之一以上,不得同意其参加本课程的考核。
3.各实验项目的实验报告成绩登记在实验报告成绩登记表中。
本学期实验项目全部完成后,给定实验报告综合成绩。
4.实验报告综合成绩应按课程教学大纲规定比例(一般为10-15%)计入实验课总评成绩;实验总评成绩原则上应包括考勤、实验报告、考核(操作、理论)等多方面成绩;5.实验教师每学期负责对拟存档的学生实验报告按课程、学生收齐并装订,按如下顺序装订成册:实验报告封面、实验报告成绩登记表、实验报告成绩评定依据、实验报告(按教学进度表规定的实验项目顺序排序)。
装订时统一靠左侧按“两钉三等分”原则装订。
数学实验基础 实验报告(1)常微分方程
实验一 常微分方程1. 分别用Euler 法和ode45解下列常微分方程并与解析解比较: (1) ,(0)1,13y x y y x '=+=<<Euler 法:function [t,y]=euler(Fun,tspan,y0,h) t=tspan(1):h:tspan(2); y(1)=y0;for i=1:length(t)-1y(i+1)=y(i)+h.*feval(Fun,t(i),y(i)); end t=t'; y=y';function f=Fun(x,y) % 常微分方程的右端函数 f=x+y;>> [x,y]=euler('Fun',[0,3],1,0.1)>> [x,y] ans =0 1.0000 0.1000 1.1000 0.2000 1.2200 0.3000 1.3620 0.4000 1.5282 0.5000 1.7210 0.6000 1.9431 0.7000 2.1974 0.8000 2.4872 0.9000 2.8159 1.0000 3.1875 1.1000 3.6062 1.2000 4.0769 1.3000 4.6045 1.4000 5.1950 1.5000 5.8545 1.6000 6.5899 1.7000 7.4089 1.8000 8.3198 1.9000 9.3318 2.0000 10.4550 2.1000 11.7005 2.2000 13.0805 2.3000 14.6086 2.4000 16.2995 2.5000 18.1694 2.6000 20.2364 2.7000 22.5200 2.8000 25.0420 2.9000 27.8262 3.0000 30.8988ode45:>> [x,y]=ode45('Fun',[0,3],1) ans =0 1.0000 0.0502 1.0528 0.1005 1.1109 0.1507 1.17460.2010 1.2442 0.2760 1.3596 0.3510 1.4899 0.4260 1.63610.5010 1.7996 0.5760 1.9817 0.6510 2.1838 0.7260 2.4074实验一 常微分方程0.8010 2.6544 0.8760 2.9264 0.9510 3.2254 1.0260 3.55351.1010 3.9131 1.1760 4.3065 1.2510 4.7364 1.3260 5.20561.4010 5.7172 1.4760 6.2744 1.5510 6.8810 1.6260 7.54061.7010 8.2574 1.7760 9.0359 1.8510 9.8808 1.9260 10.79742.0010 11.7912 2.0760 12.8683 2.1510 14.0351 2.2260 15.29862.3010 16.6664 2.3760 18.1466 2.4510 19.7478 2.5260 21.47962.6010 23.3522 2.6760 25.3764 2.7510 27.5641 2.8260 29.92812.9010 32.4820 2.9257 33.3694 2.9505 34.2796 2.9752 35.21343.0000 36.1711解析解:>> y=dsolve('Dy=x+y','y(0)=1','x') y =2*exp(x) - x - 1(2) 20.01()2sin(),(0)0,(0)1,05y y y t y y t ''''-+===<< Euler 法:实验一常微分方程function f=Fun(t,y)% 常微分方程的右端函数f=[y(2);0.01*y(2)^2-2*y(1)+sin(t)];>> [t,y]=euler('Fun',[0,5],[0,1],0.2)ode45:>> [t,y]=ode45('Fun',[0,5],[0,1])t =0 0.0001 0.0001 0.0002 0.0002 0.0005 0.0007 0.0010 0.0012 0.00250.0037 0.0050 0.0062 0.0125 0.0188 0.0251 0.0313 0.0627 0.0941 0.12550.1569 0.2819 0.4069 0.5319 0.6569 0.7819 0.9069 1.0319 1.1569 1.28191.4069 1.5319 1.6569 1.7819 1.90692.0319 2.1569 2.2819 2.4069 2.53192.6569 2.7819 2.90693.0319 3.1569 3.2819 3.4069 3.5319 3.6569 3.78193.90694.0319 4.1569 4.2819 4.4069 4.5319 4.6569 4.7427 4.8285 4.91425.0000y =0 1.0000 0.0001 1.0000 0.0001 1.0000 0.0002 1.0000 0.0002 1.00000.0005 1.0000 0.0007 1.0000 0.0010 1.0000 0.0012 1.0000 0.0025 1.00000.0037 1.0000 0.0050 1.0000 0.0062 1.0000 0.0125 1.0000 0.0188 1.00000.0251 0.9999 0.0313 0.9998 0.0627 0.9987 0.0941 0.9965 0.1253 0.99340.1564 0.9893 0.2786 0.9632 0.3966 0.9220 0.5085 0.8662 0.6126 0.79670.7072 0.7146 0.7908 0.6210 0.8620 0.5176 0.9198 0.4058 0.9632 0.28760.9915 0.1647 1.0043 0.0392 1.0013 -0.0869 0.9826 -0.2117 0.9485 -0.33310.8996 -0.4490 0.8365 -0.5578 0.7605 -0.6577 0.6725 -0.7471 0.5742 -0.8246实验一 常微分方程0.4669 -0.8889 0.3525 -0.9393 0.2327 -0.9748 0.1095 -0.9950 -0.0154 -0.9996-0.1398 -0.9887 -0.2619 -0.9624 -0.3798 -0.9212 -0.4916 -0.8657 -0.5957 -0.7970-0.6904 -0.7161 -0.7742 -0.6242 -0.8460 -0.5228 -0.9046 -0.4134 -0.9491 -0.2978-0.9789 -0.1777 -0.9934 -0.0549 -0.9945 0.0300 -0.9883 0.1146 -0.9748 0.1985-0.9543 0.28092. 求一通过原点的曲线,它在(,)x y 处的切线斜率等于22,0 1.57.x y x +<<若x 上限增为1.58,1.60会发生什么?function f=Fun(x,y) % 常微分方程的右端函数 f=2*x+y.^2;>> [x,y]=ode45('Fun',[0,1.57],0) x =0 0.0393 0.0785 0.1178 0.1570 0.1963 0.2355 0.2748 0.3140 0.3533 0.3925 0.4318 0.4710 0.5103 0.5495 0.5888 0.6280 0.6673 0.7065 0.7458 0.7850 0.8243 0.8635 0.9028 0.9420 0.9813 1.0205 1.0598 1.0990 1.1383 1.1775 1.2168 1.2560 1.2953 1.3345 1.3738 1.4130 1.4248 1.4367 1.4485 1.4604 1.4722 1.4840 1.4959 1.5077 1.5140 1.5203 1.5265 1.5328 1.5376 1.5424 1.5472 1.5519 1.5543 1.5567 1.5591 1.5614 1.5631 1.5647 1.5664 1.5681 1.5685 1.5690 1.5695 1.5700 y =实验一 常微分方程0 0.0015 0.0062 0.0139 0.0247 0.0386 0.0556 0.0758 0.09920.1259 0.1559 0.1895 0.2266 0.2675 0.3124 0.3615 0.4152 0.4738 0.5378 0.6076 0.6841 0.7679 0.8601 0.9620 1.0751 1.2014 1.3434 1.5045 1.6892 1.9037 2.1557 2.4577 2.8282 3.3003 3.9056 4.7317 5.9549 6.4431 7.0116 7.6832 8.4902 9.4821 10.7170 12.3090 14.4551 15.9220 17.7080 19.9390 22.8164 25.6450 29.2282 33.9673 40.5910 44.9434 50.3088 57.1229 66.1087 74.3108 84.7123 98.4901 117.7875 124.9206 132.9699 142.1268 152.641500.20.40.60.81 1.2 1.4 1.6若x 上限增为1.58,1.60,则超出运算的范围,发生溢出。
数学实验报告
数学实验报告在我们的日常生活中,数学就像一个无处不在的小精灵,总是在不经意间跳出来,给我们带来惊喜或者挑战。
这次,我就和数学来了一场奇妙的“实验之旅”。
实验名称:探索三角形内角和的奥秘实验目的:验证三角形内角和是否为 180 度实验材料:纸、笔、量角器实验过程:首先,我在纸上随意画了几个不同形状、大小的三角形,有锐角三角形、直角三角形还有钝角三角形。
我拿起量角器,小心翼翼地测量着第一个锐角三角形的三个内角。
哎呀,这可真是个精细活儿,眼睛都快要看花了。
第一个角是 50 度,第二个角是 70 度,第三个角一量,是 60 度。
我赶紧把这三个度数加起来:50 + 70 + 60 = 180 度,心里一阵小激动,难道这就是传说中的三角形内角和?接着,我又测量了一个直角三角形。
这个直角可太明显啦,一量就是 90 度。
剩下的两个锐角,一个是 30 度,另一个是 60 度。
加起来算算,90 + 30 + 60 = 180 度,太棒啦,又对上啦!最后,我测量了那个看起来有点“凶巴巴”的钝角三角形。
钝角可不好量,费了好大劲儿才量准,是 120 度。
剩下的两个角分别是 25 度和35 度。
120 + 25 + 35 = 180 度,耶!经过对这几个三角形内角的测量和计算,我发现不管三角形的形状和大小怎么变,它们的内角和好像总是 180 度。
为了进一步验证这个结论,我还尝试了把三角形的三个角剪下来,拼在一起。
嘿,您还别说,这三个角真的拼成了一个平角,也就是 180 度。
通过这次实验,我可以肯定地说:三角形的内角和就是 180 度!这就像是数学世界里的一个神奇密码,被我成功破解啦。
在这次实验中,我也遇到了一些小麻烦。
比如说,测量角度的时候,稍微手抖一下,度数就可能量错。
还有啊,剪角的时候,一不小心就把纸剪破了,真是让我有点小郁闷。
不过,这些小挫折可没有打败我,反而让我更加小心谨慎,也让我明白了做数学实验一定要有耐心和细心。
数学实验报告线性代数
数学实验报告(线性代数) 数学实验报告(线性代数)一、实验目的本次实验旨在通过对线性代数基本概念的探究,熟悉并掌握矩阵运算、向量空间、特征值与特征向量等核心概念,培养我们的数学思维与解决实际问题的能力。
二、实验内容1.矩阵运算我们首先通过Excel或其他数学软件,进行矩阵的加减法、乘法、转置等基本运算,并计算矩阵的行列式、逆矩阵等。
通过这些运算,我们深入理解矩阵这一基本概念以及其在线性代数中的重要性。
2.向量空间我们对向量空间进行深入的研究,包括向量的加减法、数乘等基本运算,以及向量空间的各种性质,如封闭性、结合律、分配律等。
通过具体的计算和证明,我们对向量空间有了更深入的理解。
3.特征值与特征向量在本次实验中,我们通过计算矩阵的特征多项式,找到矩阵的特征值,并求出相应的特征向量。
我们通过这种方法,理解了特征值和特征向量的物理意义,也掌握了求解特征值和特征向量的基本方法。
三、实验过程记录实验开始时间:XXXX年XX月XX日实验地点:数学实验室参与人员:小组成员1、小组成员2、小组成员3实验具体过程:1.矩阵运算:我们利用Excel软件进行矩阵的加减法、乘法等基本运算,通过具体的计算,我们发现矩阵的乘法并不满足交换律,而且矩阵的乘积的行列式并不等于原来两个矩阵行列式的乘积。
这让我们更深入的理解了矩阵乘法的规则和其意义。
2.向量空间:我们首先对向量的加减法、数乘等基本运算进行计算,以深入理解向量空间的基本性质。
接着我们对向量空间的封闭性、结合律、分配律等进行了证明。
通过这一系列的操作,我们明白了向量空间是一个具有丰富性质的数学结构。
3.特征值与特征向量:首先我们计算了矩阵的特征多项式,然后用求根公式求出了特征值。
接着我们根据定义求出了相应的特征向量。
在这个过程中,我们明白了特征值和特征向量的物理意义,也掌握了求解特征值和特征向量的基本方法。
实验结束时间:XXXX年XX月XX日四、实验总结及感想通过这次实验,我们更深入地理解了线性代数的基本概念和性质。
高等数学数学实验报告(两篇)2024
引言概述:高等数学数学实验报告(二)旨在对高等数学的相关实验进行探究与研究。
本次实验报告共分为五个大点,每个大点讨论了不同的实验内容。
在每个大点下,我们进一步细分了五到九个小点,对实验过程、数据收集、数据分析等进行了详细描述。
通过本次实验,我们可以更好地理解高等数学的概念和应用。
正文内容:一、微分方程实验1.利用欧拉法求解微分方程a.介绍欧拉法的原理和步骤b.详细阐述欧拉法在实际问题中的应用c.给出具体的实例,展示欧拉法的计算步骤2.应用微分方程建立模型求解实际问题a.介绍微分方程模型的建立方法b.给出一个具体的实际问题,使用微分方程建立模型c.详细阐述模型求解步骤和结果分析3.使用MATLAB求解微分方程a.MATLAB求解微分方程的基本语法和函数b.给出一个具体的微分方程问题,在MATLAB中进行求解c.分析结果的准确性和稳定性二、级数实验1.了解级数的概念和性质a.简要介绍级数的定义和基本概念b.阐述级数收敛和发散的判别法c.讨论级数的性质和重要定理2.使用级数展开函数a.介绍级数展开函数的原理和步骤b.给出一个函数,使用级数展开进行近似计算c.分析级数近似计算的精确度和效果3.级数的收敛性与运算a.讨论级数收敛性的判别法b.介绍级数的运算性质和求和法则c.给出具体的例题,进行级数的运算和求和三、多元函数极值与最值实验1.多元函数的极值点求解a.介绍多元函数的极值点的定义和求解方法b.给出一个多元函数的实例,详细阐述求解过程c.分析极值点对应的函数值和意义2.多元函数的条件极值与最值a.讨论多元函数的条件极值的判定法b.给出一个具体的多元函数,求解其条件极值和最值c.分析条件极值和最值对应的函数值和意义3.利用MATLAB进行多元函数极值与最值的计算a.MATLAB求解多元函数极值与最值的基本语法和函数b.给出一个多元函数的具体问题,在MATLAB中进行求解c.分析结果的准确性和可行性四、曲线积分与曲面积分实验1.曲线积分的计算方法与应用a.介绍曲线积分的定义和计算方法b.给出一个具体的曲线积分问题,详细阐述计算过程c.分析曲线积分结果的几何意义2.曲线积分的应用举例a.讨论曲线积分在实际问题中的应用b.给出一个实际问题,使用曲线积分进行求解c.分析曲线积分结果的实际意义和应用价值3.曲面积分的计算方法与应用a.介绍曲面积分的定义和计算方法b.给出一个具体的曲面积分问题,详细阐述计算过程c.分析曲面积分结果的几何意义五、空间解析几何实验1.空间曲线的参数方程表示与性质a.介绍空间曲线的参数方程表示和性质b.给出一个具体的空间曲线,转化为参数方程表示c.分析参数方程对应的几何意义和性质2.平面与空间直线的位置关系a.讨论平面与空间直线的位置关系的判定方法b.给出一个具体的平面与空间直线的问题,判定其位置关系c.分析位置关系对应的几何意义和应用实例3.空间直线与平面的夹角和距离计算a.介绍空间直线与平面的夹角和距离的计算方法b.给出一个具体的空间直线和平面,计算其夹角和距离c.分析夹角和距离计算结果的几何意义总结:通过本次高等数学数学实验报告(二),我们深入了解了微分方程、级数、多元函数极值与最值、曲线积分、曲面积分以及空间解析几何的相关概念和应用。
方程的数学实验报告(3篇)
第1篇一、实验目的本次实验旨在通过对方程进行数学实验,加深对一元一次方程、一元二次方程、二元一次方程组等方程的理解,提高解决实际问题的能力。
二、实验内容1. 一元一次方程(1)实验步骤:①随机生成一组一元一次方程;②利用公式法或代入法求解方程;③验证解的正确性。
(2)实验结果:实验过程中,随机生成了10组一元一次方程,其中5组采用公式法求解,5组采用代入法求解。
经过验证,所有方程的解均正确。
2. 一元二次方程(1)实验步骤:①随机生成一组一元二次方程;②利用配方法、公式法或因式分解法求解方程;③验证解的正确性。
(2)实验结果:实验过程中,随机生成了10组一元二次方程,其中4组采用配方法求解,3组采用公式法求解,3组采用因式分解法求解。
经过验证,所有方程的解均正确。
3. 二元一次方程组(1)实验步骤:①随机生成一组二元一次方程组;②利用代入法、消元法或矩阵法求解方程组;③验证解的正确性。
(2)实验结果:实验过程中,随机生成了10组二元一次方程组,其中5组采用代入法求解,3组采用消元法求解,2组采用矩阵法求解。
经过验证,所有方程组的解均正确。
三、实验总结1. 通过本次实验,我们对一元一次方程、一元二次方程和二元一次方程组有了更深入的理解,掌握了解题方法。
2. 实验结果表明,采用不同的方法求解方程,可以得到相同的解。
在实际应用中,可以根据方程的特点选择合适的求解方法。
3. 在实验过程中,我们发现了一些规律:(1)一元一次方程的解为实数;(2)一元二次方程的解可能为实数或复数;(3)二元一次方程组的解可能为唯一解、无解或无数解。
四、实验拓展1. 对不同类型的方程,尝试使用计算机编程进行求解,提高实验效率。
2. 研究方程在实际问题中的应用,如经济、工程等领域。
3. 探讨方程在数学建模中的应用,提高解决实际问题的能力。
五、实验反思本次实验过程中,我们对方程的求解方法进行了深入研究,取得了一定的成果。
但在实验过程中,也存在一些不足之处:1. 实验数据量较小,可能无法全面反映各种方程的求解规律。
算术逻辑运算实验报告
算术逻辑运算实验报告算术逻辑运算实验报告一、引言算术逻辑运算是数学中的重要分支,它研究数字和符号之间的关系以及它们之间的运算规则。
在日常生活中,我们经常进行算术逻辑运算,比如加减乘除、逻辑与或非等。
本实验旨在通过一系列实验,探索算术逻辑运算的规律和特点。
二、实验一:加法与减法1. 实验目的通过加法和减法实验,观察数字之间的相互关系,并分析运算规律。
2. 实验步骤首先,我们随机选择两个数字进行加法运算,记录结果。
然后,再选择两个数字进行减法运算,同样记录结果。
3. 实验结果与分析我们发现,在加法运算中,两个正数相加的结果仍然是正数,而两个负数相加的结果仍然是负数。
而正数与负数相加,则会根据绝对值的大小决定结果的正负性。
在减法运算中,两个正数相减的结果可能是正数或零,而两个负数相减的结果可能是负数或零。
正数与负数相减,则会根据绝对值的大小决定结果的正负性。
三、实验二:乘法与除法1. 实验目的通过乘法和除法实验,观察数字之间的相互关系,并分析运算规律。
2. 实验步骤我们选择两个数字进行乘法运算,记录结果。
然后,再选择两个数字进行除法运算,同样记录结果。
3. 实验结果与分析我们发现,在乘法运算中,两个正数相乘的结果仍然是正数,而两个负数相乘的结果则变为正数。
正数与负数相乘,则会根据负数的个数决定结果的正负性。
在除法运算中,两个正数相除的结果仍然是正数,而两个负数相除的结果则变为正数。
正数与负数相除,则会根据负数的个数决定结果的正负性。
四、实验三:逻辑与与逻辑或1. 实验目的通过逻辑与和逻辑或实验,观察逻辑运算的结果,并分析运算规律。
2. 实验步骤我们随机选择两个命题进行逻辑与运算,记录结果。
然后,再选择两个命题进行逻辑或运算,同样记录结果。
3. 实验结果与分析逻辑与运算的结果只有在两个命题都为真时才为真,否则为假。
逻辑或运算的结果只有在两个命题都为假时才为假,否则为真。
五、实验四:逻辑非1. 实验目的通过逻辑非实验,观察逻辑运算的结果,并分析运算规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学实验报告
实验一
1.题目:某车间有甲,乙,丙三台车床可用于加工三种零件,这
三台车床可用于工作的最多时间分别为700,800和900,
需要加工的三种零件的数量分别为300,400和500.不同
车床加工不同的零件所用时间和费用如表所示,在完成
任务的前提下,如何分配加工任务才能使加工费最少?
工时数分配表
车床加工单位零件所需时数加工单位零件所需费用可用于工
名称零件1 零件2 零件3 零件1 零件2 零件3 作的时数
甲0.6 0.5 0.5 7 8 8 700 乙0.4 0.7 0.5 8 7 8 800 丙0.8 0.6 0.6 7 9 8 900
2.分析问题:
此题考察用Matlab软件求线性规划问题。
这是一个优约
束的优化问题,其模型包括:甲生产零件1,零件2,零
件3的个数分别为x1,x2,x3;以乙生产零件1,零件2,零
件3的个数分别为x4,x5,x6;丙生产零件1,零件2,零件
3的个数分别为x7,x8,x9.
目标函数为:
W=7x1+8x2+8x3+8x4+7x5+8x6+7x7+9x8+8x9
约束条件为:
X1+x4+x7=300
X2+x5+x8=400
X3+x6+x9=500
0.6x1+0.5x2+0.5x3<=700
0.4x4+0.7x5+0.5x6<=800
0.8x7+0.6x8+0.6x9<=900
以及非负性约束x1,x2,x3,x4,x5,x6,x7,x8,x9都大于等于
零。
3.建立模型:
Min W=7x1+8x2+8x3+8x4+7x5+8x6+7x7+9x8+8x9;
X1+x4+x7=300
X2+x5+x8=400
X3+x6+x9=500
0.6x1+0.5x2+0.5x3≤700
0.4x4+0.7x5+0.5x6≤800
0.8x7+0.6x8+0.6x9≤900
X1,x2,x3,x4,x5,x6,x7,x8,x9≥0
4.编写程序:
c=[7,8,8,8,7,8,7,9,8]
A=[0.6,0.5,0.5,0,0,0,0,0,0;0,0,0,0.4,0.7,0.5,0,0,0;0,0,0,0,0,0,0.8,0.6,0.6,] b=[700;800;900]
aeq=[1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1]
beq=[300;400;500]
vlb=[0,0,0,0,0,0,0,0,0]
vub=[]
[x,minz]=linprog(c,A,b,aeq,beq,vlb,vub)
5.运行结果:
c =
7 8 8 8 7 8 7 9 8
A =
0.6000 0.5000 0.5000 0 0 0 0 0 0
0 0 0 0.4000 0.7000 0.5000 0 0 0
0 0 0 0 0 0 0.8000 0.6000 0.6000
b =
700
800
900
aeq =
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 beq =
300
400
500
vlb =
0 0 0 0 0 0 0 0 0 vub =
[]
Optimization terminated successfully.
x =
103.7917
0.0000
149.9740
0.0000
400.0000
151.1015
196.2083
0.0000
198.9245
minz =
8.9000e+003
6.结果分析:
由于此实际问题的结果必为整数,所以对于软件得出的结果还需进一步优化。
即需将结果取整数,再进一步确定最优解,即软件本身存在一些缺陷。
实验二
1.题目:
设有三种证券S1,S2,S3,期望收益率分别为10%,15%和40%,风险分别为10%,5%和20%。
假定投资总风险用最大一种投资股票的风险来度量,且同期银行存款利率为=5%,无风险,为投资者建议一种投资策略(投资比例),使其尽可能获得最大收益。
2.问题分析:
条件假设:假设投资三种证券S1,S12,S3和银行存储资金分别为x1,x2,x3,x4.总投资金额为M.并设这几种之间是相互独立的,且在投资的同一时期内收益率与风险都为定值,不受意外因素的影响。
3.建立模型:
设三种证券的风险为qi,投资三种证券的风险度分别为qi*Xi/M,i=1,2,3,为使投资者获得最大的收益,可建立如下模型:
Ma x∑ri*Xi(i=1, (4)
X1+X2+X3+X4=M
Xi≥0,i=1,2,3,4.
4.编写程序:
a=0;
while(1.1-a)>1
c=[-0.1,-0.15,-0.4,-0.05];
aeq=[1,1,1,1];
beq=[1];
A=[0.1,0,0,0;0,0.05,0,0;0,0,0.2,0];
b=[a;a;a];
vlb=[0,0,0,0];
vub=[];
[x,val]=linprog(c,A,b,aeq,beq,vlb,vub);
a %风险度
x=x'
Q=-val %风险度a对应的收益率
plot(a,Q,'.')
axis([0,0.1,0,0.5])
hold on
a=a+0.001;
end
xlabel('a'),ylabel('Q')
5.运行结果:
图:风险与收益
6.结果分析:
1)风险越大,收益也越大。
但当风险到一定程度时所获得的收益却增长很慢,此时应该考虑风险带来的危害。
2)当投资越分散时,投资者所承担的风险越小。
3)对于风险喜好型的人来说,应选择a=0.03~0.04之间来投资。
对于不同人有不同的投资方案来选择适合自己
的。
4)图中曲线表示当风险给定使所能获得的最大收益率。
实验小结:利用数学实验可以解决很多实际问题,但前提需要将问题理想化,将其进行条件假设,忽略一
些因素的影响。
还有一些实际问题有时需要取整所得的结果,还需进一步的将其优化。
建立一定的模型方便解决一类问题。
数学实验的思想就是对于实际问题,首先应大胆设想,猜想,联系,扩展,进行问题假设,建模(忽略一些次要因素,抓住主要矛盾),编写程序,进行大胆尝试。
在解决某一个实际问题之后,还应将其推广,而不是就题论题,说题解题。
由此及彼,有点到面,进行思维的突破,敢于大胆猜想,才能有所突破。