中考数学真题解析102网格专题(含答案)

合集下载

2024年安徽省中考真题数学试卷含答案解析

2024年安徽省中考真题数学试卷含答案解析

安徽省2024年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A .70.94410⨯B .69.4410⨯C .79.4410⨯D .694.410⨯【答案】B【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10n a ⨯(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410==⨯,故选:B .3.某几何体的三视图如图所示,则该几何体为()A .B .C .D .【答案】D【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项.故选:D .4.下列计算正确的是()A .356a a a +=B .632a a a ÷=C .()22a a -=Da=5.若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为()A .2πB .3πC .4πD .6π6.已知反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()A .3-B .1-C .1D .3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可7.如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是()A B C .2D .8.已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是()A .12a -<<B .112b <<C .2241a b -<+<D .1420a b -<+<【答案】C∴442a -<<-,021b <<,∴4421a b -<+<-,选项D 错误,不符合题意;故选:C9.在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A .ABC AED ∠=∠B .BAF EAF ∠=∠C .BCF EDF ∠=∠D .ABD AEC∠=∠【答案】D【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD=又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =,AFB AFE ∠=∠又∵点F 为CD 的中点,∴CF DF =,∵BC DE =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,∴BF EF =,CFB DFE ∠=∠,∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意;故选:D.10.如图,在RtABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为()A .B .C .D .∵90ABC ∠=︒,AB =∴22AC AB BC =+=∵BD 是边AC 上的高.二、填空题11.若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12.,祖冲之给出圆周率的一种分数形式的近似值为227(填“>”或“<”).13.不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.由树状图可得,共有12种等结果,其中恰为∴恰为2个红球的概率为21126=,故答案为:1.14.如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为.∵MN EF ⊥,∴CC FE '∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=︒,∴343290∠+∠=∠+∠=︒,∵四边形ABCD 是正方形,四边形∴90A B C D ∠=∠=∠=∠=∴567690∠+∠=∠+∠=︒,∴57∠=∠,三、解答题15.解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16.如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.(2)连接1BB ,1CC ,∵点B 与1B ,点C 与1C 分别关于点∴1DB DB =,1DC DC =,∴四边形11BC B C 是平行四边形,∴122104S CC B ==⨯⨯⨯= (3)∵根据网格信息可得出5AB =∴ABC 是等腰三角形,∴AE 也是线段BC 的垂直平分线,∵B ,C 的坐标分别为,()2,8,(10,4∴点21084,22E ++⎛⎫ ⎪⎝⎭,即()6,6E .(答案不唯一)17.乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩,答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18.数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-L L一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.19.科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20.如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解21.综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1求图1中a 的值.【数据分析与运用】任务2A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.Y的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且22.如图1,ABCDAM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.23.已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.。

天津市2019年中考数学真题试题(含解析)(1)

天津市2019年中考数学真题试题(含解析)(1)

2019年天津市初中毕业生学生考试试卷数学试卷满分120分,考试时间100分钟。

第I 卷一、选择题目(本大题12小题,每小题3分,共36分)1.计算(-3)×9的结果等于A. -27B. -6C. 27D. 6 【答案】A【解析】有理数的乘法运算:=-3×9=-27,故选A. 2.︒60sin 2的值等于A. 1B. 2C. 3D. 2 【答案】B【解析】锐角三角函数计算,︒60sin 2=2×23=3,故选A. 3.据2019年3月21日《天津日报》报道:“伟大的变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次,将4230000用科学记数法表示为A. 0.423×107B.4.23×106C.42.3×105D.423×104【答案】B【解析】科学记数法表示为4.23×106,故选B.4.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看做是轴对称图形的是【答案】A【解析】美、丽、校、园四个汉子中,“美”可以看做轴对称图形。

故选A 5.右图是一个由6个相同的正方体组成的立体图形,它的主视图是【答案】B【解析】图中的立体图形主视图为,故选B.6.估计33的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间 【答案】D 【解析】因为,所以,故选D.7.计算1212+++a a a 的结果是 A. 2 B. 22+a C. 1 D.14+a a【答案】A 【解析】21221212=++=+++a a a a a ,故选A. 8.如图,四边形ABCD 为菱形,A 、B 两点的坐标分别是(2,0),(0,1),点C 、D 在坐标轴上,则菱形ABCD 的周长等于A.5B.34C.54D. 20【答案】C【解析】由勾股定理可得,由菱形性质可得, 所以周长等于故选C. 9.方程组⎩⎨⎧=-=+1126723y x y x ,的解是A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x【答案】D【解析】用加减消元法,⎩⎨⎧=-=+②①1126723y x y x①+②=1172623+=-++y x y x189=x 2=x代入2=x 到①中,726=+y 则21=y ,故选D. 10.若点A (-3,1y ),B (-2,2y ),C (1,3y )都在反比函数xy 12-=的图象上,则321,,y y y 的关系 A. 312y y y << B.213y y y << C.321y y y << D.123y y y << 【答案】B【解析】将A (-3,1y ),B (-2,2y ),C (1,3y )代入反比函数xy 12-=中,得:12-112,6212,4312321=-==--==--=y y y ,所以213y y y <<,故选B. 11.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是A.AC=ADB.AB ⊥EBC. BC=DED.∠A=∠EBC【答案】D【解析】由旋转性质可知,AC=CD ,AC ≠AD ,∴A 错 由旋转性质可知,BC=EC ,BC ≠DE ,∴C 错由旋转性质可知,∠ACB=∠DCE ,∵∠ACB=∠ACD+∠DCB ,∠DCE=∠ECB+∠DCB ∴∠ACD=∠ECB ,∵AC=CD ,BC=CE ,∴∠A=∠CDA=21(180°-∠ECB ),∠EBC=∠CEB=21(180°-∠ECB ), ∴D 正确,由于由题意无法得到∠ABE=90°,∴B 选项错误. 故选D 。

2023年中考数学《网格作图》真题及答案解析

2023年中考数学《网格作图》真题及答案解析

2023中考真题抢先练:数学网格作图1.(2023达州18题)如图,网格中每个小正方形的边长均为1,△ABC 的顶点均在小正方形的格点上.(1)将△ABC 向下平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1;(2)将△ABC 绕点C 顺时针旋转90度得到△A 2B 2C 2,画出△A 2B 2C 2;(3)在(2)的运动过程中请计算出△ABC 扫过的面积.第1题图【推荐区域:安徽陕西】【参考答案】解:(1)如解图,△A 1B 1C 1即为所求;(2)如解图,△A 2B 2C 2即为所求;第1题解图(3)由图可得,△ABC 为等腰直角三角形,∴51222=+==BC AB ,AC =101322=+,∴25552121=´´=×=D BC AB S ABC ,∴△A 1B 1C 1在旋转过程中扫过的面积为2ABCACA S S D +扇形290360p ´=+52=52π+52.反比例与一次函数性质综合题2.(2023自贡24题)如图,点A (2,4)在反比例函数xm y =1图象上,一次函数b kx y +=2的图象经过点A ,分别交x 轴,y 轴于点B ,C ,且△OAC 与△OBC 的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出y 1≥y 2时,x 的取值范围.第2题图【推荐区域:安徽江西甘肃】【参考答案】解:(1)将A (2,4)代入x m y =1中得24m =,解得m =8,∴xy 81=,∵C (0,b ),∴12OAC S OC D =·2=b ,∵△OAC 与△OBC 的面积比为2:1,∴b OB OC S OBC 2121=´=D ,解得OB =1,∴B (-1,0)或(1,0),①将A (2,4),B (-1,0)代入b kx y +=2中,得îíì+-=+=,,b k b k 024解得ïîïíì==,,3434b k ∴34342+=x y ;②将A (2,4),B (1,0)代入b kx y +=2中,得îíì+=+=,,b k b k 024解得îíì-==,,44b k ∴442-=x y ;综上可知,一次函数的解析式为34342+=x y 或442-=x y ;(2)当34342+=x y 时,x ≤-3或0<x ≤2;当442-=x y 时,x ≤-1或0<x ≤2.解直角三角形的实际应用3.(2023达州19题)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱,如图所示,秋千链子的长度为3m ,当摆角∠BOC 恰为26°时,座板离地面的高度BM 为0.9m ,当摆动至最高位置时,摆角∠AOC 为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m ;参考数据:sin 26°=0.44,cos 26°≈0.9,tan 26°≈0.49,sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.2)第3题图【推荐区域:安徽江西河南甘肃】【参考答案】解:如解图,过点B 作BD ⊥ON 于点D ,过点A 作AE ⊥ON 于点E ,作AF ⊥MN于点F,第3题解图∴四边形BDNM,AENF均为矩形,∴BM=DN=0.9,AF=EN,在Rt△OBD中,OD=OB·cos26°=3cos26°,∴ON=OD+DN=3cos26°+0.9,在Rt△OAE中,OE=OA·cos50°=3cos50°,∴EN=ON-OE=3cos26°+0.9-3cos50°,∴AF=3cos26°+0.9-3cos50°≈3×0.9+0.9-3×0.64=1.68≈1.7(m),答:座板距地面的最大高度为1.7m.4.(2023重庆A卷24题)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A—D—C—B;②A—E—B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B的南偏西60°方向.( 1.41≈1.73)(1)求AD的长度;(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?第4题图【推荐区域:安徽江西河南甘肃】【参考答案】解:(1)如解图,过点D作DF⊥AB于点F.第4题解图由题意可知,AB∥CD,BC⊥AB,∴四边形BCDF是矩形,且BC=10,CD=14.∴DF=BC=10,在Rt△ADF中,∠DAF=45°,∴AD≈14(千米),答:AD的长度约为14千米;(2)由题意可知,EA⊥AB,∠ABE=90°-60°=30°,∵AF=DF=10,BF=CD=14,∴AB=AF+BF=10+14=24,∴在Rt△ABE中,AE AB BE=2AE线路①:AD+CD+BC≈38.1(千米),线路②:AE+BE41.52(千米),∵38.1<41.52,∴小明应选择线路①.二次函数的实际应用5.(2023南充23题)某工厂计划从A ,B 两种产品中选择一种生产并销售,每日产销x 件,已知A 产品成本价m 元/件(m 为常数,且4≤m ≤6),售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B 产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y 元,y (元)与每日产销x (件)满足关系式201.080x y +=.(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润;(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.[利润=(售价一成本)×产销数量一专利费]【推荐区域:安徽河北云南江西】【参考答案】解:(1)根据题意,得30)8(1--=x m w ,0≤x ≤500.)01.080()1220(22x x w +--=80801.02-+-=x x ,0≤x ≤300;(2)∵8-m >0,∴1w 随x 的增大而增大,又0≤x ≤500,∴当x =500时,1w 的值最大,39705001+-=m w 最大.1520)400(01.080801.0222+--=-+-=x x x w .∵-0.01<0,对称轴为直线x =400,当0≤x ≤300时,2w 随x 的增大而增大,∴当x =300时,2w 最大=-0.01×(300-400)2+1 520=1 420(元).(3)①若最大1w =最大2w ,即-500m +3970=1420,解得m =5.1;②若最大1w >最大2w ,即-500m +3970>1 420,解得m <5.1;③若最大1w <最大2w ,即-500m +3 970<1420,解得m >5.1.又∵4≤m ≤6,∴综上可得,为获得最大日利润:当m =5.1时,选择A ,B 产品产销均可;当4≤m <5.1时,选择A 种产晶产销;当5.1<m ≤6时,选择B 种产品产销.二次函数性质综合题6.(2023遂宁25题)在平面直角坐标系中,O 为坐标原点,抛物线c bx x y ++=241经过点O (0,0),对称轴过点B (2,0),直线l 过点C (2,-2)且垂直于y 轴.过点B 的直线1l 交抛物线于点M ,N ,交直线l 于点Q ,其中点M ,Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ ,PO ,其中PO 交1l 于点E ,设△OQE 的面积为1S ,△PQE 的面积为2S ,求12S S 的最大值.第6题图【推荐区域:安徽陕西】【参考答案】解:(1)由题意得0b 2124c =ìïïí-=ï´ïî,,解得01c b =ìí=-î,,∴抛物线的解析式为y =214x -x ;(2)如解图,过点M ,Q 作MD ⊥x 轴,QH ⊥x 轴分别于点D ,H ,第6题解图∴DM ∥HQ ,∴△BDM ∽△BHQ ,∴BM BQ =DM HQ ,∴38=2DM ,∴DM =34,∴点M 的纵坐标为-34,代入y =34x 2-x 中,解得x M =1或x M =3,∵点M 在抛物线对称轴的左侧,∴x M =1,∴点M (1,-34),设直线BM 的解析式为y =kx +b 1,将点M (1,-34)和点B (2,0)代入,得113=402k b k b ì-+ïíï=+î,,解得13=432k b ìïïíï=-ïî,,∴直线BM 的解析式为y =2343-x ,联立2143342y x x y x ì=-ïïíï=-ïî,,解得134x y =ìïí=-ïî,或63x y =ìí=î,,∵点N 在对称轴的右侧,∴点N (6,3);(3)由题意可知,点Q 的坐标为(0,-2),设点P (m ,14m 2-m ),由题意得直线y OP =(14m -1)x ,直线l 1的解析式为y BQ =x -2,联立1(1)42y m x y x ì=-ïíï=-î,,∴点E 的横坐标为x E =88m -,∴S 1=21OQ ·x E =21×2×m -88=m-88,S 2=21OQ ·(P E x x -)=21×2(m -m-88)=m m m ---8882,∴22188888S m m m S m ---=-=1812-+-m m =1)4812+--m (,∵81-<0,∴当m =4时,12S S 有最大值,最大值为1,∴12S S 的最大值为1.。

中考数学专题复习(三)网格作图题(含答案)

中考数学专题复习(三)网格作图题(含答案)

专题复习(三)网格作图题1.拟)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点),按要求画出四边形AB1C1D1和四边形AB2C2D2.(1)以A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB1C1D1;(2)以A为位似中心,将四边形ABCD作位似变换,且放大到原来的两倍,得到四边形AB2C2D2.解:(1)如图,四边形AB1C1D1为所作.(2)如图,四边形AB2C2D2为所作.2.二模)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,写出B1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,写出B2点的坐标.解:(1)如图所示,△A1B1C1即为△ABC关于x轴对称的图形,B1点的坐标是(1,0).(2)如图所示,△A2B2C2即为△ABC绕原点O按逆时针旋转90°的三角形,B2点的坐标是(0,1).3.模)如图,已知A(2,3),B(1,1),C(4,1)是平面直角坐标系中的三点.(1)请画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移3个单位得到的△A2B2C2;(3)若△ABC中有一点P坐标为(x,y),请直接写出经过以上变换后△A2B2C2中点P的对应点P2的坐标.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)根据题意,可得P的对应点P2的坐标为(-x,y-3).4.拟)如图,在9×7的小正方形网格中,△ABC的顶点A,B,C在网格的格点上.将△ABC向左平移3个单位,再向上平移3个单位得到△A′B′C′.再将△ABC按一定规律依次旋转:第1次,将△ABC绕点B顺时针旋转90°得到△A1BC1;第2次,将△A1BC1绕点A1顺时针旋转90°得到△A1B1C2;第3次,将△A1B1C2绕点C2顺时针旋转90°得到△A2B2C2;第4次,将△A2B2C2绕点B2顺时针旋转90°得到△A3B2C3,依次旋转下去.(1)在网格中画出△A′B′C′和△A2B2C2;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.解:(1)△A′B′C′和△A2B2C2的图象如图所示.(2)通过画图可知,△ABC至少在第8次旋转后得到△A′B′C′.5.如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称;(3)在(1)、(2)中所得到的△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.解:(1)如图所示,△A1B1C1,即为所求.(2)如图所示,△A2B2C2,即为所求.(3)如图所示,△A1B1C1与△A2B2C2成轴对称,直线a,b即为所求.6.级二模)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A ,B ,C 在小正方形的顶点上.将△ABC 向下平移2个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点C 1顺时针旋转90°得到△A 2B 2C 1.(1)在网格中画出△A 1B 1C 1和△A 2B 2C 1;(2)计算线段AC 在变换到A 2C 1的过程中扫过区域的面积.(重叠部分不重复计算)解:(1)如图,△A 1B 1C 1和△A 2B 2C 1为所作.(2)线段AC 在变换到A 2C 1的过程中扫过区域的面积S =2×2+90·π·(22)2360=4+2π.7.如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;(2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.解:(1)如图所示.(2)如图所示.(3)找出A 关于x 轴的对称点A′(1,-1),连接BA′,与x 轴交点即为P.如图所示,点P 坐标为(2,0).8.模拟)如图,已知△ABC 的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).(1)经过平移,可使△ABC 的顶点A 与坐标原点O 重合,请直接写出此时点C 的对应点C 1坐标;(不必画出平移后的三角形)(2)将△ABC 绕点B 逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;(3)以点A 为位似中心放大△ABC ,得到△AB 2C 2,使放大前后的面积之比为1∶4,请你在网格内画出△AB 2C 2.解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).(3)如图所示,△AB2C2即为所示.。

2024年吉林省中考真题数学试卷含答案解析

2024年吉林省中考真题数学试卷含答案解析

2024年吉林省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若()3-⨯ 的运算结果为正数,则W 内的数字可以为( )A .2B .1C .0D .1-【答案】D【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-⨯=-,()313-⨯=-,()300-⨯=,()()313-⨯-=,四个算式的运算结果中,只有3是正数,故选:D .2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是( )A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .主视图、左视图与俯视图都相同【答案】A 【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案.【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段,故选:A .4.下列方程中,有两个相等实数根的是( )A .()221x -=-B .()220x -=C .()221x -=D .()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A .()4,2--B .()4,2-C .()2,4D .()4,2【答案】C【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===︒,∠,由旋转的性质可得42OA OA A B AB '''====,,90OA B ''∠=︒,据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2,∴42OA OC ==,,∵四边形OABC 是矩形,∴290AB OC ABC ===︒,∠,∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',∴42OA OA A B AB '''====,,90OA B ''∠=︒,∴A B y ''⊥轴,∴点B '的坐标为()2,4,故选:C .6.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒【答案】C 【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒-︒=︒,故选:C .二、填空题7.当分式11x +的值为正数时,写出一个满足条件的x 的值为 .8.因式分解:a 2﹣3a=.【答案】a (a ﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).9.不等式组2030x x ->⎧⎨-<⎩的解集为 .【答案】23x <</32x >>【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:2030x x ->⎧⎨-<⎩①②解不等式①得:2x >,解不等式②得:3x <,∴原不等式组的解集为23x <<,故答案为:23x <<.10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .【答案】两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.正六边形的每个内角等于°.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC 的值为 .13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为 .【答案】()22220.5x x +=+【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键.设AC 的长度为x 尺,则0.5AB AB x '==+,在Rt AB C '△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x '==+,∵AB B C '⊥,由勾股定理得:222AC B C AB ''+=,∴()22220.5x x +=+,故答案为:()22220.5x x +=+.14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为 2m (结果保留π).三、解答题15.先化简,再求值:()()2111a a a +-++,其中a =16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有∴幸运游客小明与小亮恰好抽中同一个项目的概率17.如图,在ABCD Y 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE BC =.【答案】证明见解析【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAE OBC OCB E ==∠∠,∠∠,∵点O 是AB 的中点,∴OA OB =,∴()AAS AOE BOC △≌△,∴AE BC =.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.【答案】白色琴键52个,黑色琴键36个【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个,由题意得:()1688x x ++=,解得:36x =,∴黑色琴键由:361652+=(个),答:白色琴键52个,黑色琴键36个.19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.【答案】(1)见解析(2)见解析【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;(2)如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.【详解】(1)解:如图所示,取格点E、F,作直线EF,则直线EF即为所求;,的中点;易证明四边形ABCD是矩形,且E、F分别为AB CD、,作直线GH,则直线GH即为所求;(2)解:如图所示,取格点G H⊥.易证明四边形OGTH是正方形,点E为正方形OGTH的中心,则OE GH20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21.中华人民共和国20192023根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少元?(1)20192023-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,②201920232020年全国居民人均可支配收入最低.【答案】(1)8485元(2)35128元(3)①【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【详解】(1)解:39218307338485-=元,答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.(2)解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元,∴20192023-年全国居民人均可支配收入的中位数为35128元;(3)解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)在Rt GAD 中,45EAD ∠=∴873tan DG AG DG EAD===∠在Rt GAC △中,37EAC ∠=∴tan 873CG AG EAC =⋅∠=∴873654.75CD DG CG =-=-23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:以对称轴为基准向两边各取相同的长度/mm x 16.519.823.126.429.7凳面的宽度/mm y 115.5132148.5165181.5【分析数据】如图③,小组根据表中x ,y 的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少?【答案】(1)在同一条直线上,函数解析式为:533y x =+(2)36mm【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【详解】(1),解:设函数解析式为:()0y kx b k =+≠,∵当16.5,115.5x y ==,23.1,148.5x y ==,∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩,解得:533k b =⎧⎨=⎩,∴函数解析式为:533y x =+,经检验其余点均在直线533y x =+上,∴函数解析式为533y x =+,这些点在同一条直线上;(2)解:把213y =代入533y x =+得:533213x +=,解得:36x =,∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S = ______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.25.如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P从点A /s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE V与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.∵90C ∠=︒,30B ∠=∴60BAC ∠=︒,∵AD 平分BAC ∠,∴30PAQ BAD ∠=∠=∵PQ AB ∥,∴30APQ BAD ∠=∠=∴PAQ APQ =∠∠,∵PQE V 为等边三角形,∴QE QP =,由(1)得QA QP =∴QE QA =,即22AE AQ t ==∵30PAQ ∠=︒,∴1322PG AP ==∵PQE V 是等边三角形,∴QE PQ AQ ===∴12S QE PG =⋅=∵PQE V 是等边三角形,∴60E ∠=︒,而CE AE AC =-∴tan CF CE =⋅∠∴1S CE CF =⋅∵30DAC ∠=︒DCA ∠=由上知3DC =,∴23AD =,∴此时323PD t =-26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.则10m -≤≤,综上:10m -≤≤或12m ≤≤.【详解】(1)解:∵20x =-<,∴将2x =-,1y =代入3y kx =+,得:231k -+=,解得:1k =,∵20,30x x =>=>,∴将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩,解得:12a b =⎧⎨=-⎩;(2)解:Ⅰ,∵1,1,2k a b ===-,∴一次函数解析式为:3y x =+,二次函数解析式为:223y x x =-+当0x >时,223y x x =-+,对称为直线1x =,开口向上,∴1x ≥时,y 随着x 的增大而增大;当0x ≤时,3y x =+,10k =>,∴0x ≤时,y 随着x 的增大而增大,综上,x 的取值范围:0x ≤或1x ≥;Ⅱ,∵230ax bx t ++-=,∴23ax bx t ++=,在04x <<时无解,∴问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,∵对于223y x x =-+,当1x =时,2y =∴顶点为()1,2,如图:∴当2t =时,抛物线223y x x =-+与直线y ∴当2t <时,抛物线223y x x =-+与直线y 当4x =,168311y =-+=,∴当11t =时,抛物线223y x x =-+与直线∴当11t ≥时,抛物线223y x x =-+与直线y ∴当2t <或11t ≥时,抛物线223y x x =-+与直线即:当2t <或11t ≥时,关于x 的方程2ax +Ⅲ:∵,1P Q x m x m ==-+,由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,∴12m ≤≤;②当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,∴10m -≤≤,综上:10m -≤≤或12m ≤≤.。

精品解析:2022年吉林省长春市中考数学真题(解析版)

精品解析:2022年吉林省长春市中考数学真题(解析版)
5.如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A,变幅索的底端记为点B, 垂直地面,垂足为点D, ,垂足为点C.设 ,下列关系式正确的是()
A. B. C. D.
【答案】D
【解析】
【分析】根据正弦三角函数的定义判断即可.
【详解】∵BC⊥AC,
∴△ABC是直角三角形,
【解析】
【分析】由圆内接四边形的性质得 ,再由圆周定理可得 .
【详解】解:∵四边形ABCD内接于圆O,




故选:C
【点睛】本题主要考查了圆内接四边形的性质和圆周角定理,熟练掌握相关性质和定理是解答本题的关键
7.如图,在 中,根据尺规作图痕迹,下列说法不一定正确的是()
A. B.
C. D.
【答案】B
【详解】 关于x的方程 有两个相等的实数根,

解得 ,
故答案为: .
【点睛】本题考查了一元二次方程根的判别式,即一元二次方程有两个不相等的实数根时, ;有两个相等的实数根时, ;没有实数根时, ;熟练掌握知识点是解题的关键.
11.《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x间房,可求得x的值为________.
【详解】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,如图,
∵六边形MNGHPO是正六边形,
∴∠GNM=∠NMO=120°,
∴∠FNM=∠FNM=60°,
∴△FMN是等边三角形,
同理可证明△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形,

2023年江西省中考数学真题卷(含答案与解析)

2023年江西省中考数学真题卷(含答案与解析)

江西省2023年初中学业水平考试数学试题卷说明:1.全卷满分120分,考试时间120分钟。

2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效。

一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 下列各数中,正整数是( )A. 3B. 2.1C. 0D. 2-2. 下列图形中,是中心对称图形的是( )A. B. C.D.3.有意义,则a 的值可以是( )A 1- B. 0 C. 2 D. 64. 计算()322m的结果为( ) A. 68m B. 66mC. 62mD. 52m 5. 如图,平面镜MN 放置在水平地面CD 上,墙面PD CD ⊥于点D ,一束光线AO 照射到镜面MN 上,反射光线为OB ,点B 在PD 上,若35AOC ∠=︒,则OBD ∠的度数为( ).A. 35︒B. 45︒C. 55︒D. 65︒6. 如图,点A ,B ,C ,D 均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为( )A. 3个B. 4个C. 5个D. 6个二、填空题(本大题共6小题,每小题3分,共18分)7. 单项式5ab -的系数为______.8. 我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为_______.9. 计算:(a+1)2﹣a 2=_____.10. 将含30︒角的直角三角板和直尺按如图所示的方式放置,已60α∠=︒,点B ,C 表示的刻度分别为1cm,3cm ,则线段AB 的长为_______cm .11. 《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,ABC ∠和AQP ∠均为直角,AP 与BC 相交于点D .测得40cm 20cm 12m AB BD AQ ===,,,则树高PQ =______m .12. 如图,在ABCD Y 中,602B BC AB ∠=︒=,,将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP ,连接PC ,PD .当PCD 为直角三角形时,旋转角α度数为_______.三、解答题(本大题共5小题,每小题6分,共30分)13. (10tan 453+︒-(2)如图,AB AD =,AC 平分BAD ∠.求证:ABC ADC △△≌.14. 如图是44⨯的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角ABC ,使点C 在格点上;(2)在图2中的线段AB 上作点Q ,使PQ 最短.15. 化简2111x x x x x x -⎛⎫+⋅ ⎪+-⎝⎭.下面是甲、乙两同学的部分运算过程:的解:原式()()()()()()21111111x x x x x x x x x x ⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦……解:原式221111x x x x x x x x--=⋅+⋅+- ……(1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.16. 为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.17. 如图,已知直线y x b =+与反比例函数(0)k y x x =>的图象交于点(2,3)A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数(0)k y x x=>的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC 的面积.四、解答题(本大题共3小题,每小题8分,共24分)18. 今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?19. 如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点B ,A ,D ,E 均在同一直线上,AB AC AD ==,测得55 1.8m 2m B BC DE ∠=︒==,,.(结果保小数点后一位)(1)连接CD ,求证:DC BC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:sin 550.82cos550.57tan 55 1.43︒≈︒≈︒≈,,)20. 如图,在ABC 中,464AB C =∠=︒,,以AB 为直径的O 与AC 相交于点D ,E 为 ABD 上一点,且40ADE ∠=︒.(1)求 BE的长; (2)若76EAD ∠=︒,求证:CB 为O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21. 为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表 视力 人数 百分比 0.6及以下8 4% 0.7 16 8%0.828 14% 0.9 3417% 1.0 m34% 1.1及以上 46n 合计 200 100%高中学生视力情况统计图(1)m =_______,n =_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由:②约定:视力未达到1.0为视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.22. 课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完的成证明过程.己知:在ABCD Y 中,对角线BD AC ⊥,垂足为O .求证:ABCD Y 是菱形.(2)知识应用:如图2,在ABCD Y 中,对角线AC 和BD 相交于点O ,586AD AC BD ===,,.①求证:ABCD Y 菱形;②延长BC 至点E ,连接OE 交CD 于点F ,若12E ACD ∠=∠,求OF EF的值. 六、解答题(本大题共12分)23 综合与实践 问题提出:某兴趣小组开展综合实践活动:在Rt ABC △中,90C ∠=︒,D 为AC上一点,CD =,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF 设点P 的运动时间为s t ,正方形DPEF 的而积为S ,探究S 与t 的关系是.(1)初步感知:如图1,当点P 由点C 运动到点B 时,①当1t =时,S =_______.②S 关于t 的函数解析式为_______.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.(3)延伸探究:若存在3个时刻123,,t t t (123t t t <<)对应的正方形DPEF 的面积均相等.①12t t +=_______;②当314t t =时,求正方形DPEF 的面积.参考答案一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 下列各数中,正整数是( )A. 3B. 2.1C. 0D. 2-【答案】A【解析】【分析】根据有理数的分类即可求解.【详解】解:3是正整数,2.1是小数,不是整数,0不是正数,2-不是正数,故选:A .【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.2. 下列图形中,是中心对称图形的是( )A. B. C.D.【答案】B【解析】【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】解:选项A 、C 、D 均不能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以不是中心对称图形;选项B 能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以是中心对称图形; 故选:B .【点睛】本题主要考查了中心对称图形,关键是找出对称中心.3. 有意义,则a 的值可以是( )A. 1-B. 0C. 2D. 6 【答案】D【解析】【分析】根据二次根式有意义的条件即可求解.有意义,∴40a -≥,解得:4a ≥,则a 的值可以是6故选:D .【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.4. 计算()322m 的结果为( ) A. 68mB. 66mC. 62mD. 52m 【答案】A【解析】【分析】根据积的乘方计算法则求解即可.【详解】解:()32628m m =,故选A . 【点睛】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键.5. 如图,平面镜MN 放置在水平地面CD 上,墙面PD CD ⊥于点D ,一束光线AO 照射到镜面MN 上,反射光线为OB ,点B 在PD 上,若35AOC ∠=︒,则OBD ∠的度数为( )A. 35︒B. 45︒C. 55︒D. 65︒【答案】C【解析】 【分析】根据题意可得AOC BOD ∠=∠,进而根据直角三角形的两个锐角互余即可求解.【详解】解:依题意,AOC BOD ∠=∠,35AOC ∠=︒∴35BOD ∠=︒,∵PD CD ⊥,∴9055OBD BOD ∠=︒-∠=︒,故选:C .【点睛】本题考查了直角三角形中两个锐角互余,入射角等于反射角,熟练掌握以上知识是解题的关键. 6. 如图,点A ,B ,C ,D 均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为( )A. 3个B. 4个C. 5个D. 6个【答案】D【解析】 【分析】根据不共线三点确定一个圆可得,直线上任意2个点加上点P 可以画出一个圆,据此列举所有可能即可求解.【详解】解:依题意,,A B ;,A C ;,A D ;,B C ;,B D ,,C D 加上点P 可以画出一个圆,∴共有6个,故选:D .【点睛】本题考查了确定圆的条件,熟练掌握不共线三点确定一个圆是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7. 单项式5ab -的系数为______.【答案】5-【解析】【分析】根据单项式系数的定义:单项式中的数字因数,得出结果即可.【详解】解:单项式5ab -的系数是5-.故答案是:5-.【点睛】本题考查单项式的系数,解题的关键是掌握单项式系数的定义.8. 我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为_______.【答案】71.810⨯【解析】【分析】根据科学记数法的表示形式进行解答即可.【详解】解:718000000=1.810⨯,故答案为:71.810⨯.【点睛】本题考查科学记数法,熟练掌握科学记数法的表示形式为10n a ⨯(110a ≤<,a 为整数)的形式,n 的绝对值与小数点移动的位数相同是解题的关键.9. 计算:(a+1)2﹣a 2=_____.【答案】2a+1【解析】详解】【分析】原式利用完全平方公式展开,然后合并同类项即可得到结果. 【详解】(a+1)2﹣a 2=a 2+2a+1﹣a 2 【=2a+1,故答案为2a+1.【点睛】本题考查了整式的混合运算,熟练掌握完全平方公式以及合并同类项的法则是解题的关键.10. 将含30︒角的直角三角板和直尺按如图所示的方式放置,已60α∠=︒,点B ,C 表示的刻度分别为1cm,3cm ,则线段AB 的长为_______cm .【答案】2【解析】【分析】根据平行线的性质得出60ACB ∠=︒,进而可得ABC 是等边三角形,根据等边三角形的性质即可求解.【详解】解:∵直尺的两边平行,∴60ACB α∠=∠=︒,又60A ∠=︒,∴ABC 是等边三角形,∵点B ,C 表示的刻度分别为1cm,3cm ,∴2cm BC =,∴2cm AB BC ==∴线段AB 的长为2cm ,故答案为:2.【点睛】本题考查了平行线的性质,等边三角形的性质与判定,得出60ACB ∠=︒是解题的关键. 11. 《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,ABC ∠和AQP ∠均为直角,AP 与BC 相交于点D .测得40cm 20cm 12m AB BD AQ ===,,,则树高PQ =______m .【答案】6【解析】【分析】根据题意可得ABD AQP ∽,然后相似三角形的性质,即可求解.【详解】解:∵ABC ∠和AQP ∠均为直角∴BD PQ ∥,∴ABD AQP ∽, ∴BD AB PQ AQ= ∵40cm 20cm 12m AB BD AQ ===,,, ∴2m 120640AQ BD PQ AB ⨯⨯===, 故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.12. 如图,在ABCD Y 中,602B BC AB ∠=︒=,,将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP ,连接PC ,PD .当PCD 为直角三角形时,旋转角α的度数为_______.【答案】90︒或270︒或180︒【解析】【分析】连接AC ,根据已知条件可得90BAC ∠=︒,进而分类讨论即可求解.【详解】解:连接AC ,取BC 的中点E ,连接AE ,如图所示,∵在ABCD Y 中,602B BC AB ∠=︒=,, ∴12BE CE BC AB ===, ∴ABE 是等边三角形,∴60BAE AEB ∠=∠=︒,AE BE =,∴AE EC = ∴1302EAC ECA AEB ∠=∠=∠=︒, ∴90BAC ∠=︒∴AC CD ⊥,如图所示,当点P 在AC 上时,此时90BAP BAC ∠=∠=︒,则旋转角α的度数为90︒,当点P 在CA 的延长线上时,如图所示,则36090270α=︒-︒=︒当P 在BA 延长线上时,则旋转角α的度数为180︒,如图所示,∵PA PB CD ==,PB CD ∥,∴四边形PACD 是平行四边形,∵AC AB ⊥∴四边形PACD 是矩形,∴90PDC ∠=︒的即PDC △直角三角形,综上所述,旋转角α的度数为90︒或270︒或180︒故答案为:90︒或270︒或180︒.【点睛】本题考查了平行四边形的性质与判定,等边三角形的性质与判定,矩形的性质与判定,旋转的性质,熟练掌握旋转的性质是解题的关键.三、解答题(本大题共5小题,每小题6分,共30分)13. (10tan 453+︒-(2)如图,AB AD =,AC 平分BAD ∠.求证:ABC ADC △△≌.【答案】(1)2;(2)证明见解析【解析】【分析】(1)先计算立方根,特殊角三角函数值和零指数幂,再计算加减法即可;(2)先由角平分线的定义得到BAC DAC ∠=∠,再利用SAS 证明ABC ADC △△≌即可.【详解】解:(1)原式211=+-2=;(2)∵AC 平分BAD ∠,∴BAC DAC ∠=∠,在ABC 和ADC △中,AB AD BAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC ADC △△≌.是【点睛】本题主要考查了实数的运算,零指数幂,特殊角三角函数值,全等三角形的判定,角平分线的定义等等,灵活运用所学知识是解题的关键.14. 如图是44⨯的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角ABC ,使点C 在格点上;(2)在图2中的线段AB 上作点Q ,使PQ 最短.【答案】(1)作图见解析(2)作图见解析【解析】【分析】(1)如图,取格点K ,使90AKB ∠=︒,在K 的左上方的格点C 满足条件,再画三角形即可; (2)利用小正方形的性质取格点M ,连接PM 交AB 于Q ,从而可得答案.【小问1详解】解:如图,ABC 即为所求作的三角形;【小问2详解】如图,Q 即为所求作的点;【点睛】本题考查的是复杂作图,同时考查了三角形的外角的性质,正方形的性质,垂线段最短,熟记基本几何图形的性质再灵活应用是解本题的关键.15. 化简2111x x xx x x-⎛⎫+⋅⎪+-⎝⎭.下面是甲、乙两同学的部分运算过程:解:原式()()()()()()21111111x x x x xx x x x x⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦……解:原式2211 11x x x xx x x x--=⋅+⋅+-……(1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)①等式基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.【答案】(1)②,③(2)见解析【解析】【分析】(1)根据所给的解题过程即可得到答案;(2)甲同学的解法:先根据分式的基本性质把小括号内的分式先同分,然后根据分式的加法计算法则求解,最后根据分式的乘法计算法则求解即可;乙同学的解法:根据乘法分配律去括号,然后计算分式的乘法,最后合并同类项即可.【小问1详解】解:根据解题过程可知,甲同学解法的依据是分式的基本性质,乙同学解法的依据是乘法分配律,故答案为:②,③;【小问2详解】解:甲同学的解法:原式()()()()()()2111 1111x x x x xx x x x x ⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦()()()()221111x x xx xx xx x=⋅+++---+的()()()()211112x x x x x x =⋅+-+- 2x =; 乙同学的解法: 原式221111x x x x x x x x--=⋅+⋅+- ()()()()111111x x x x x x x x x x=⋅+⋅+-+--+ 11x x =-++2x =.【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.16. 为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员. (1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”) (2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.【答案】(1)随机 (2)16【解析】【分析】(1)由确定事件与随机事件的概念可得答案;(2)先画树状图得到所有可能的情况数与符合条件的情况数,再利用概率公式计算即可.【小问1详解】解:“甲、乙同学都被选为宣传员”是随机事件;【小问2详解】画树状图为:共有12种等可能的结果,其中选中的两名同学恰好是甲,丁的结果数为2,所以选中的两名同学恰好是甲,丁的概率21126==.【点睛】本题考查的是事件的含义,利用画树状图求解随机事件的概率,熟记事件的概念与分类以及画树状图的方法是解本题的关键.17. 如图,已知直线y x b =+与反比例函数(0)k y x x =>的图象交于点(2,3)A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数(0)k y x x=>的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC 的面积.【答案】(1)直线AB 的表达式为1y x =+,反比例函数的表达式为6y x=(2)6【解析】【分析】(1)利用待定系数法求函数解析式即可;(2)由一次函数解析式求得点B 的坐标,再根据BC x ∥轴,可得点C 的纵坐标为1,再利用反比例函数表达式求得点C 坐标,即可求得结果.【小问1详解】解:∵直线y x b =+与反比例函数(0)k y x x =>的图象交于点(2,3)A , ∴236k =⨯=,23b +=,即1b =,∴直线AB 的表达式为1y x =+,反比例函数的表达式为6y x =. 【小问2详解】解:∵直线1y x =+的图象与y 轴交于点B ,∴当0x =时,1y =,∴()0,1B ,∵BC x ∥轴,直线BC 与反比例函数(0)k y x x =>的图象交于点C , ∴点C 的纵坐标为1, ∴61x=,即6x =,∴()6,1C ,∴6BC =, ∴12662ABC S =⨯⨯= . 【点睛】本题考查用待定系数法求一次函数和反比例函数解析式、一次函数与反比例函数的交点、一次函数与y 轴的交点,熟练掌握用待定系数法求函数解析式是解题的关键.四、解答题(本大题共3小题,每小题8分,共24分)18. 今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?【答案】(1)该班的学生人数为45人(2)至少购买了甲树苗80棵【解析】【分析】(1)设该班的学生人数为x 人,根据两种方案下树苗的总数不变列出方程求解即可;(2)根据(1)所求求出树苗的总数为155棵,设购买了甲树苗m 棵,则购买了乙树苗()155m -棵树苗,再根据总费用不超过5400元列出不等式求解即可.【小问1详解】解:设该班的学生人数为x 人,由题意得,320425x x +=-,解得45x =,∴该班的学生人数为45人;【小问2详解】解:由(1)得一共购买了34520155⨯+=棵树苗,设购买了甲树苗m 棵,则购买了乙树苗()155m -棵树苗,由题意得,()30401555400m m +-≤,解得80m ≥,∴m 得最小值为80,∴至少购买了甲树苗80棵,答:至少购买了甲树苗80棵.【点睛】本题主要考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意找到等量关系列出方程,找到不等关系列出不等式是解题的关键.19. 如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点B ,A ,D ,E 均在同一直线上,AB AC AD ==,测得55 1.8m 2m B BC DE ∠=︒==,,.(结果保小数点后一位)(1)连接CD ,求证:DC BC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:sin 550.82cos550.57tan 55 1.43︒≈︒≈︒≈,,)【答案】(1)见解析(2)雕塑的高约为4.2米 【解析】【分析】(1)根据等边对等角得出,B ACB ACD ADC ∠=∠∠=∠,根据三角形内角和定理得出()2180B ADC ∠+∠=︒,进而得出90BCD ∠=︒,即可得证;(2)过点E 作EF BC ⊥,交BC 的延长线于点F ,在Rt BDC 中,得出 1.8cos cos55BC AD B ==︒,则1.82cos55BE AD DE =+=+︒,在Rt EBF △中,根据sin EF BE B =⋅,即可求解. 【小问1详解】 解:∵AB AC AD ==,∴,B ACB ACD ADC ∠=∠∠=∠∵180B ADC BCD ∠+∠+∠=︒即()2180B ADC ∠+∠=︒∴90B ADC ∠+∠=︒即90BCD ∠=︒∴DC BC ⊥;【小问2详解】如图所示,过点E 作EF BC ⊥,交BC 的延长线于点F ,在Rt BDC 中,55 1.8m 2m B BC DE ∠=︒==,, ∴cos BC B AD=, ∴ 1.8cos cos55BC AD B ==︒ ∴ 1.82cos55BE AD DE =+=+︒在Rt EBF △中,sin EF B BE =, ∴sin EF BE B =⋅1.82sin 55cos55⎛⎫=+⨯︒ ⎪︒⎝⎭ 1.820.820.57⎛⎫≈+⨯ ⎪⎝⎭ 4.2≈(米). 答:雕塑的高约为4.2米.【点睛】本题考查了等腰三角形的性质,三角形内角和定理的应用,解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.20. 如图,在ABC 中,464AB C =∠=︒,,以AB 为直径的O 与AC 相交于点D ,E 为 ABD 上一点,且40ADE ∠=︒.(1)求 BE的长; (2)若76EAD ∠=︒,求证:CB 为O 的切线.【答案】(1)109π (2)证明见解析【解析】【分析】(1)如图所示,连接OE ,先求出2OE OB OA ===,再由圆周角定理得到280AOE ADE ==︒∠∠,进而求出100∠=︒BOE ,再根据弧长公式进行求解即可;(2)如图所示,连接BD ,先由三角形内角和定理得到64AED ∠=︒,则由圆周角定理可得64ABD AED ==︒∠∠,再由AB 是O 的直径,得到90ADB ∠=︒,进而求出26BAC ∠=︒,进一步推出90ABC ∠=︒,由此即可证明BC 是O 的切线.【小问1详解】解:如图所示,连接OE ,∵AB 是O 的直径,且4AB =,∴2OE OB OA ===,∵E 为 ABD 上一点,且40ADE ∠=︒,∴280AOE ADE ==︒∠∠,∴180100BOE AOE ∠=︒-=︒∠,∴ BE 的长1002101809ππ⨯⨯==;【小问2详解】证明:如图所示,连接BD ,∵76EAD ∠=︒,40ADE ∠=︒,∴18064AED EAD ADE =︒--=︒∠∠∠,∴64ABD AED ==︒∠∠,∵AB 是O 的直径,∴90ADB ∠=︒,∴9026BAC ABD =︒-=︒∠∠,∵64C ∠=︒,∴18090ABC C BAC =︒--=︒∠∠∠,即AB BC ⊥,∵OB 是O 的半径,∴BC 是O 的切线.【点睛】本题主要考查了切线的判定,求弧长,圆周角定理,三角形内角和定理等等,正确作出辅助线是解题的关键.五、解答题(本大题共2小题,每小题9分,共18分)21. 为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表 视力人数 百分比 0.6及以下8 4% 0.716 8% 0.828 14% 0.9 3417% 1.0 m 34%1.1及以上46 n 合计 200 100%高中学生视力情况统计图(1)m =_______,n =_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由:②约定:视力未达到1.0为视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.【答案】(1)68;23%;(2)320;(3)①小胡的说法合理,选择中位数,理由见解析;②14300人,合理化建议见解析,合理即可.【解析】【分析】(1)由总人数乘以视力为1.0的百分比可得m 的值,再由视力1.1及以上的人数除以总人数可得n 的值;(2)由条形统计图中各数据之和可得答案;(3)①选择视力的中位数进行比较即可得到小胡说法合理;②由中学生总人数乘以样本中视力不良的百分比即可,根据自身体会提出合理化建议即可.【小问1详解】解:由题意可得:初中样本总人数为:200人, ∴34%20068m =⨯=(人),4620023%n =÷=;【小问2详解】由题意可得:144460826555320+++++=,∴被调查的高中学生视力情况的样本容量为320;【小问3详解】①小胡说:“初中学生的视力水平比高中学生的好.”小胡的说法合理;初中学生视力的中位数为第100个与第101个数据的平均数,落在视力为1.0这一组,而高中学生视力的中位数为第160个与第161个数据的平均数,落在视力为0.9的这一组,而1.0>0.9,∴小胡的说法合理. ②由题意可得:8162834144460822600014300200320+++++++⨯=+(人), ∴该区有26000名中学生,估计该区有14300名中学生视力不良;合理化建议为:学校可以多开展用眼知识的普及,规定时刻做眼保健操.【点睛】本题考查的是从频数分布表与频数分布直方图中获取信息,中位数的含义,利用样本估计总体,理解题意,确定合适的统计量解决问题是解本题的关键.22. 课本再现 思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.己知:在ABCD Y 中,对角线BD AC ⊥,垂足为O .求证:ABCD Y 是菱形.(2)知识应用:如图2,在ABCD Y 中,对角线AC 和BD 相交于点O ,586AD AC BD ===,,.①求证:ABCD Y 是菱形;②延长BC 至点E ,连接OE 交CD 于点F ,若12E ACD ∠=∠,求OF EF的值. 【答案】(1)见解析(2)①见解析;②58【解析】 【分析】(1)根据平行四边形的性质证明AOB COB ≌得出AB CB =,同理可得DOA ODC ≌,则DA DC =, AB CD =,进而根据四边相等的四边形是菱形,即可得证;(2)①勾股定理的逆定理证明AOD △是直角三角形,且90AOD ∠=︒,得出AC BD ⊥,即可得证; ②根据菱形的性质结合已知条件得出E COE ∠=∠,则142OC OE AC ===,过点O 作OG CD ∥交BC 于点G ,根据平行线分线段成比例求得1522CG CB ==,然后根据平行线分线段成比例即可求解. 【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AO CO =, AB DC =,∵BD AC ⊥∴90AOB COB ∠=∠=︒,在,AOB COB 中,AO CO AOB COB BO BO =⎧⎪∠=∠⎨⎪=⎩∴AOB COB ≌∴AB CB =,同理可得DOA ODC ≌,则DA DC =,又∵AB CD =∴AB BC CD DA ===∴四边形ABCD 是菱形;【小问2详解】①证明:∵四边形ABCD 是平行四边形,586AD AC BD ===,,. ∴113,422DO BO BD AO CO AC ====== 在AOD △中,225AD =,22223425AO OD +=+=,∴222AD AO OD =+,∴AOD △是直角三角形,且90AOD ∠=︒,∴AC BD ⊥,∴四边形ABCD 是菱形;②∵四边形ABCD 是菱形;∴ACB ACD ∠=∠ ∵12E ACD ∠=∠, ∴12E ACB ∠=∠, ∵ACB E COE ∠=∠+∠,∴E COE ∠=∠, ∴142OC OE AC ===, 如图所示,过点O 作OG CD ∥交BC 于点G ,∴1BG BO GC OD==, ∴115222CG BC AD ===, ∴55248OF GC EF CE ===. 【点睛】本题考查了菱形的性质与判定,勾股定理以及勾股定理的逆定理,等腰三角形的性质与判定,平行线分线段成比例,熟练掌握菱形的性质与判定是解题的关键.六、解答题(本大题共12分)23. 综合与实践问题提出:某兴趣小组开展综合实践活动:在Rt ABC △中,90C ∠=︒,D 为AC 上一点,CD =,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF 设点P 的运动时间为s t ,正方形DPEF 的而积为S ,探究S 与t 的关系(1)初步感知:如图1,当点P 由点C 运动到点B 时,①当1t =时,S =_______.②S 关于t 的函数解析式为_______.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.(3)延伸探究:若存在3个时刻123,,t t t (123t t t <<)对应的正方形DPEF 的面积均相等.①12t t +=_______;②当314t t =时,求正方形DPEF 的面积.【答案】(1)①3;②24S t =+(2)()281828S t t t =-+≤≤,6AB =(3)①4;②349【解析】【分析】(1)①先求出1CP =,再利用勾股定理求出DP =,最后根据正方形面积公式求解即可;②仿照(1)①先求出CP t =,进而求出222DP t =+,则222S DP t ==+;(2)先由函数图象可得当点P 运动到B 点时,26S DP ==,由此求出当2t =时,6S =,可设S 关于t 的函数解析式为()242S a t =-+,利用待定系数法求出2818S t t =-+,进而求出当281818S t t =-+=时,求得t 的值即可得答案;(3)①根据题意可得可知函数()242S t =-+可以看作是由函数22S t =+向右平移四个单位得到的,设()()()1221P m n Q m n m m >,,,是函数22S t =+上的两点,则()14m n +,,()24m n +,是函数()242S t =-+上的两点,由此可得121212044m m m m m m +=<<+<+,,则2144m m ++=,根据题意可以看作21321244m m t t m t ==+=+,,,则124t t +=;②由(3)①可得134t t =+,再由314t t =,得到143t =,继而得答案. 【小问1详解】 解:∵动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,∴当1t =时,点P 在BC 上,且1CP =,∵90C ∠=︒,CD =,∴DP ==∴23S DP ==,故答案为:3;②∵动点P 以每秒1个单位的速度从C 点出发,在BC 匀速运动,。

(中考精品卷)湖南省永州市中考数学真题(解析版)

(中考精品卷)湖南省永州市中考数学真题(解析版)

永州市2022年初中学业水平考试数学试卷温馨提示:1、本试卷包括试题卷和答题卡.考生作答时,选择题和非选择题均须作答在答题卡上,在本试卷上作答无效.考生在答题卡上按答题卡中注意事项的要求答题.2、考试结束后,将本试卷和答题卡一并交回.3、本试题卷共6页,如有缺页,请申明.4、本试题卷共三道大题,26个小题.满分150分,考试时量120分钟.一、选择题(本大题共10个小题,每小题4分,共40分.每个小题只有一个正确选项,请将正确的选项填涂到答题卡上)1. 如图,数轴上点E对应的实数是( )A. 2-B. 1-C. 1D. 2【答案】A【解析】【分析】根据数轴上点E所在位置,判断出点E所对应的值即可;【详解】解:根据数轴上点E所在位置可知,点E在-1到-3之间,符合题意的只有-2;故选:A.【点睛】本题主要考查数轴上的点的位置问题,根据数轴上点所在位置对点的数值进行判断是解题的关键.2. 下列多边形具有稳定性的是( )A. B. C.D.【答案】D【解析】【分析】利用三角形具有稳定性直接得出答案.【详解】解:三角形具有稳定性,四边形、五边形、六边形都具有不稳定性,故选D .【点睛】本题考查三角形的特性,牢记三角形具有稳定性是解题的关键.3. 剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有( )① ② ③ ④A. ①②③B. ①②④C. ①③④D. ②③④ 【答案】A【解析】【分析】根据中心对称图形的定义判断即可;【详解】解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;∴是中心对称图形的是:①②③;故选:A .【点睛】本题主要考查中心对称图形的定义,掌握中心对称图形的定义是解题的关键. 4. 水州市大力发展“绿色养殖”,单生猪养殖2021年共出栏7791000头,同比增长29.33%,成为湖南省生猪产业发展高地和标杆、将数7791000用科学记数法表示为( )A. 3779110⨯B. 577.9110⨯C. 67.79110⨯D. 70.779110⨯【答案】C【解析】【分析】根据科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,确定a 、n 的值即可.【详解】解:由题意知:7791000=67.79110⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,正确确定a 的值以及n 的值是解题的关键.5. 下列各式正确的是( )= B. 020= C. 321a a -= D. ()224--=【答案】D【解析】【分析】利用二次根式性质化简、零指数幂、合并同类项、有理数减法运算即可判断。

中考数学专题训练网格问题含答案

中考数学专题训练网格问题含答案

2018中考数学专题训练:网格专题1. (2018宁夏)一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是【B 】A. B.62.8 C. D.2. (2018湖北)如图,△ABC在平面直角坐标系中的第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是【 B。

】A.(-3,2) B.(2,-3) C.(1,-2) D.(3,-1)3. (2018湖北)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是【 B 】A. B.C. D.4. (2018聊城)如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是【 B 】A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°5. (2018浙江)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为▲ .(﹣1,1),(﹣2,﹣2)。

6. (2018泰州)如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是▲ .2 7. (2018广东)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)(1)点A关于点O中心对称的点的坐标为;(2)点A1的坐标为;(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为.【答案】解:(1)(﹣3,﹣2)。

中考数学题型训练网格作图

中考数学题型训练网格作图

中考题型训练——网格作图1.(07.云南)(6分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)作出格点△ABC关于直线DE对称的△A1B1C1; (2)作出△A1B1C1绕点B1顺时针方向旋转90°后的△A2B1C2;(3)求△A2B1C2的周长;(第1题)(第2题)2.(06.云南)(7分)在如图的方格纸中,每个小正方形的边长都是1, △ABC与△A1B1C1构成的图形是中心对称图形. (1)画出此中心对称图形的对称中心O; (2)画出将△A1B1C1沿直线DE方向向上平移5格得到的△A2B2C2;(3)要使△A2B2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(不要求证明)3.(05.云南)(7分)如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(3)将补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,再向上平移一格,画出这个直角梯形(不要求写作法)(第3题)(第4题)4.(07.安徽) △ABC和点S在平面直角坐标系中的位置如图所示:(1)将△ABC向右平移4个单位得到△A1B1C1,则点A1 、B1的坐标分别为和.(2)将△ABC绕点S按顺时针方向旋转90°,画出旋转后的图形.5.(07.江苏)如图,网格中每一个小正方形的边长为1个单位长度.(1)请在所给的网格内画出以线段AB,BC为边的菱形ABCD;(2)填空:菱形ABCD的面积等于 .(第5题)(第6题)6.(07.福州)如图的方格纸中,每个小正方形的边长都为1个单位的正方形,在建立平面直角坐标系后, △ABC的顶点均在格点上,点C的坐标为(4,-1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.7.(07.哈尔滨)△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于y轴对称的△A1B1C;(2)将△ABC向下平移3个单位长度,画出平移后的△A2B2C2.(第7题)(第8题)8.(07.辽宁)如图, 在平面直角坐标系中,图○1与图○2关于点P成中心对称.(1)画出对称中心P,并写出点P的坐标;(2)将图形○2向下平移4个单位,画出平移后的图形○3,并判断图形○3与图形○1的位置关系.(直接写出结果)9.(07.安徽)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);(2)求线段BC的对应线段B′C′所在直线的表达式.(第9题)(第10题)10.(07.长沙)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作: (1)作出关于直线AB的轴对称图形;(2)将你画出的部分连同原图形绕点O逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让图案变得更加美丽.11.(07.海南)在如图的方格纸中,△ABC的顶点坐标分别为A(-2,5)、B(-4,1)和C(-1,3).(1)作出△ABC关于x轴对称的△A1B1C1,并写出点A、B、C的对称点A1、B1、C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点A、B、C的对称点A2、B2、C2的坐标;(3)试判断:△A1B1C1与△A2B2C2是否关于y轴对称(只需写出判断结果)(第11题)(第12题)12.(07.青海)如图所示,图○1和图○2中的每个小正方形的边长都为1个单位长度.(1)将图○1中的格点△ABC(顶点都在网格线交点的三角形叫格点三角形)向在平移2个单位长度得到△A1B1C1,请你在图中画出△A1B1C1;(2)在图○2中画一个与格点△ABC相似的格点△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.13.(07.广西)如图,在正方形网格中,△ABC的三个顶点A、B、C均在格点上,将△ABC 向右平移5格,得到△A1B1C1,再将△A1B1C1绕点B1按顺时针方向旋转90°,得到△A2B2C2.(1)请在网格中画出△A1B1C1和△A2B2C2(不要求写画法)(2)画出△A1B1C1和△A2B2C2后,填空:∠C1B1C2= 度, ∠A2= 度.(第13题)14.(06.成都)如图,在平面直角坐标系中,点B的坐标为(-1,-1).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1并写出点B1的坐标;(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3.(第14题)15.(06.广东)如图,图中的小正方形是边长为1的正方形,△ABC与是关于O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与的位似比;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比为1.5;。

2024年天津市中考真题数学试卷含答案解析

2024年天津市中考真题数学试卷含答案解析

2024年天津市中考 数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算()33--的结果是( )A .6B .3C .0D .-6【答案】A【详解】试题解析:根据有理数减法法则计算,减去一个数等于加上这个数的相反数得:3-(-3)=3+3=6.故选A .2.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .【答案】B【分析】本题主要考查了简单组合体的三视图,根据主视图是指从正前方向看到的图形求解即可.【详解】解:由此从正面看,下面第一层是三个正方形,第二层是一个正方形(且在最右边),故选:B .3.估算 的值在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间【答案】C4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .【答案】C【分析】本题考查轴对称图形,掌握轴对称图形的定义:如果一个图形沿某一条直线对折,对折后的两部分是完全重合的,那么就称这样的图形为轴对称图形是解题的关键.【详解】解:A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选C .5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( )A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯61- 的值等于( )A .0B .1C 1D 17.计算3311x x x ---的结果等于( )A .3B .xC .1x x -D .231x -8.若点()()()123,1,,1,,5A x B x C x -都在反比例函数5y x=的图象上,则123,,x x x 的大小关系是( )A .123x x x <<B .132x x x <<C .321x x x <<D .213x x x <<∴10x <,∴132x x x <<.故选:B .9.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳子长y 尺,则可以列出的方程组为( )A . 4.50.51y x x y -=⎧⎨-=⎩B . 4.50.51y x x y -=⎧⎨+=⎩C . 4.51x y x y +=⎧⎨-=⎩D . 4.51x y y x +=⎧⎨-=⎩【答案】A【分析】本题考查的是二元一次方程组的应用.用一根绳子去量一根木条,绳子剩余4.5尺可知:绳子比木条长5尺得: 4.5y x -=;绳子对折再量木条,木条剩余1尺可知:绳子对折后比木条短1尺得:0.51x y -=;从而可得答案.【详解】解:由题意可得方程组为:4.50.51y x x y -=⎧⎨-=⎩,故选:A.10.如图,Rt ABC △中,90,40C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧,交AB于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC ∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为( )A .60B .65C .70D .75【答案】B11.如图,ABC 中,30B ∠= ,将ABC 绕点C 顺时针旋转60 得到DEC ,点,A B 的对应点分别为,D E ,延长BA 交DE 于点F ,下列结论一定正确的是( )A .ACB ACD ∠=∠B .AC DE ∥C .AB EF =D .BF CE⊥【答案】D【分析】本题考查了旋转性质以及两个锐角互余的三角形是直角三角形,平行线的判定,正确掌握相关性质内容是解题的关键.先根据旋转性质得60BCE ACD ∠=∠=︒,结合30B ∠= ,即可得证BF CE ⊥,再根据同旁内角互补证明两直线平行,来分析AC DE ∥不一定成立;根据图形性质以及角的运算或线段的运算得出A 和C 选项是错误的.【详解】解:记BF 与CE 相交于一点H ,如图所示:∵ABC 中,将ABC 绕点C 顺时针旋转60 得到DEC ,∴60BCE ACD ∠=∠=︒∵30B ∠=︒∴在BHC 中,18090BHC BCE B ∠=︒-∠-∠=︒∴BF CE⊥故D 选项是正确的,符合题意;设ACH x ∠=︒∴60ACB x ∠=︒-︒,∵30B ∠=︒∴()180306090EDC BAC x x ∠=∠=︒-︒-︒-︒=︒+︒∴9060150EDC ACD x x ∠+∠=︒+︒+︒=︒+︒∵x ︒不一定等于30︒∴EDC ACD ∠+∠不一定等于180︒∴AC DE ∥不一定成立,故B 选项不正确,不符合题意;∵6060ACB x ACD x ∠=︒-︒∠=︒︒,,不一定等于0︒∴ACB ACD ∠=∠不一定成立,故A 选项不正确,不符合题意;∵将ABC 绕点C 顺时针旋转60 得到DEC ,∴AB ED EF FD ==+∴BA EF>故C 选项不正确,不符合题意;故选:D12.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =-≤≤.有下列结论:①小球从抛出到落地需要6s ;②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度.其中,正确结论的个数是( )A .0B .1C .2D .3【答案】C【分析】本题考查二次函数的图像和性质,令0= 解方程即可判断①;配方成顶点式即可判断②;把2t =和5t =代入计算即可判断③.【详解】解:令0= ,则23050t t -=,解得:10t =,26t =,∴小球从抛出到落地需要6s ,故①正确;∵()223055345t t x =-=--+ ,∴最大高度为45m ,∴小球运动中的高度可以是30m ,故②正确;当2t =时,23025240=⨯-⨯= ;当5t =时,23055525=⨯-⨯= ;∴小球运动2s 时的高度大于运动5s 时的高度,故③错误;故选C .二、填空题13.不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为 .14.计算86x x ÷的结果为 .【答案】2x 【分析】本题考查同底数幂的除法,掌握同底数幂的除法,底数不变,指数相减是解题的关键.【详解】解:862x x x ÷=,故答案为:2x .15.计算)11的结果为 .【答案】10【分析】利用平方差公式计算后再加减即可.【详解】解:原式11110=-=.故答案为:10.【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则及平方差公式是解题的关键.16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第一、第三象限,则k 的值可以是 (写出一个即可).【答案】1(答案不唯一)【分析】根据正比例函数图象所经过的象限确定k 的符号.【详解】解: 正比例函数y kx =(k 是常数,0k ≠)的图象经过第一、三象限,0k ∴>.∴k 的值可以为1,故答案为:1(答案不唯一).【点睛】本题主要考查正比例函数图象在坐标平面内的位置与k 的关系.解答本题注意理解:直线y kx =所在的位置与k 的符号有直接的关系.0k >时,直线必经过一、三象限.0k <时,直线必经过二、四象限.17.如图,正方形ABCD 的边长为,AC BD 相交于点O ,点E 在CA 的延长线上,5OE =,连接DE .(1)线段AE 的长为 ;(2)若F 为DE 的中点,则线段AF 的长为 .∵F 为DE 的中点,A 为GD 的中点,∴AF 为DGE △的中位线,在Rt EAH △中,EAH DAC ∠=∠AH EH∴= 222AH EH AE +=,三、解答题18.如图,在每个小正方形的边长为1的网格中,点,,A F G 均在格点上.(1)线段AG 的长为 ;(2)点E 在水平网格线上,过点,,A E F 作圆,经过圆与水平网格线的交点作切线,分别与,AE AF 的延长线相交于点,,B C ABC △中,点M 在边BC 上,点N 在边AB 上,点P 在边AC上.请用无刻度的直尺,在如图所示的网格中,画出点,,M N P ,使MNP △的周长最短,并简要说明点,,M N P 的位置是如何找到的(不要求证明) .19.解不等式组213317x x x +≤⎧⎨-≥-⎩①②请结合题意填空,完成本题的解答.(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.【答案】(1)1x ≤(2)3x ≥-(3)见解析(4)31x -≤≤【分析】本题考查的是解一元一次不等式,解一元一次不等式组;(1)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案;(2)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案;(3)根据前两问的结果,在数轴上表示不等式的解集;(4)根据数轴上的解集取公共部分即可.【详解】(1)解:解不等式①得1x ≤,故答案为:1x ≤;(2)解:解不等式②得3x ≥-,故答案为:3x ≥-;(3)解:在数轴上表示如下:(4)解:由数轴可得原不等式组的解集为31x -≤≤,故答案为:31x -≤≤.20.为了解某校八年级学生每周参加科学教育的时间(单位:h ),随机调查了该校八年级a 名学生,根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a的值为______,图①中m的值为______,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为______和______;(2)求统计的这组学生每周参加科学教育的时间数据的平均数;(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9h的人数约为多少?【答案】(1)50,34,8,8(2)8.36(3)150人【分析】本题考查条形统计图、扇形统计图,用样本估计总体,众数、中位数、平均数,解答本题的关键是明确题意,利用数形结合的思想解答.(1)根据6h的人数和百分比可以求得本次接受调查的学生人数,再由总人数和8h的人数即可求出m;根据条形统计图中的数据,可以得到这50个样本数据的众数、中位数;(2)根据平均数的定义进行解答即可;(3)在所抽取的样本中,每周参加科学教育的时间是9h的学生占30%,用八年级共有学生数乘以30%即可得到答案.÷=(人),【详解】(1)解:36%50m=÷⨯=,%1750100%34%∴=,34m在这组数据中,8出现了17次,次数最多,∴众数是8,将这组数据从小到大依次排列,处于最中间的第25,26名学生的分数都是8,+÷=,∴中位数是(88)2821.已知AOB 中,30,ABO AB ∠=︒为O 的弦,直线MN 与O 相切于点C .(1)如图①,若AB MN ∥,直径CE 与AB 相交于点D ,求AOB ∠和BCE ∠的大小;(2)如图②,若,OB MN CG AB ⊥∥,垂足为,G CG 与OB 相交于点,3F OA =,求线段OF 的长.∴△AOB 中,A ABO ∠+∠又30ABO ∠=︒,1802AOB ABO ∴∠=︒-∠ 直线MN 与O 相切于点∵ 直线 MN 与 O ∴90OCM ∠=︒∵OC MN∴90OCM COB ∠=∠=22.综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图②,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45︒,测得桥塔底部A 的俯角(CDA ∠)为6︒,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31︒.(1)求线段CD 的长(结果取整数);(2)求桥塔AB 的高度(结果取整数).参考数据:tan310.6,tan60.1︒≈︒≈.23.已知张华的家、画社、文化广场依次在同一条直线上,画社离家0.6km ,文化广场离家1.5km .张华从家出发,先匀速骑行了4min 到画社,在画社停留了15min ,之后匀速骑行了6min 到文化广场,在文化广场停留6min 后,再匀速步行了20min 返回家.下面图中x 表示时间,y 表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(1)①填表:张华离开家的时间/min141330张华离家的距离/km 0.6②填空:张华从文化广场返回家的速度为______km /min ;③当025x ≤≤时,请直接写出张华离家的距离y 关于时间x 的函数解析式;(2)当张华离开家8min 时,他的爸爸也从家出发匀速步行了20min 直接到达了文化广场,那么从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是多少?(直接写出结果即可)【答案】(1)①0.15,0.6,1.5;②0.075;③当04x ≤≤时,0.15y x =;当419x <≤时,0.6y =;当1925x <≤时,0.15 2.25y x =-(2)1.05km【分析】本题考查了从函数图象获取信息,求函数的解析式,列一元一次方程解决实际问题,准确理解题意,熟练掌握知识点是解题的关键.(1)①根据图象作答即可;②根据图象,由张华从文化广场返回家的距离除以时间求解即可;③分段求解,04x ≤≤,可得出0.15y x =,当419x <≤时,0.6y =;当1925x <≤时,设次数的函数解析式为:y kx b =+,把()19,0.6,()25,1.5代入y kx b =+,用待定系数法求解即可.(2)先求出张华爸爸的速度,设张华爸爸距家km y ',则0.0750.6y x '=-,当两人相遇书时有600.1.005 2..2575x x --=,列一元一次方程求解即可进一步得出答案.【详解】(1)解:①画社离家0.6km ,张华从家出发,先匀速骑行了4min 到画社,∴张华的骑行速度为()0.640.15km /min ÷=,∴张华离家1min 时,张华离家0.1510.15km ⨯=,张华离家13min 时,还在画社,故此时张华离家还是0.6km ,张华离家30min 时,在文化广场,故此时张华离家还是1.5km .故答案为:0.15,0.6,1.5.②()1.5 5.1 3.10.075km /min ÷-=,故答案为:0.075.③当04x ≤≤时,张华的匀速骑行速度为()0.640.15km /min ÷=,∴0.15y x =;当419x <≤时,0.6y =;当1925x <≤时,设次数的函数解析式为:y kx b =+,把()19,0.6,()25,1.5代入y kx b =+,可得出:190.625 1.5k b k b +=⎧⎨+=⎩,解得:0.152.25k b =⎧⎨=-⎩,∴0.15 2.25y x =-,综上:当04x ≤≤时,0.15y x =,当419x <≤时,0.6y =,当1925x <≤时,0.15 2.25y x =-.(2)张华爸爸的速度为:()1.5200.075km /min ÷=,设张华爸爸距家km y ',则()0.07580.0750.6y x x =-=-',当两人从画社到文化广场的途中()0.6 1.5y <<两人相遇时,有600.1.005 2..2575x x --=,解得:22x =,∴()0.07580.0750.60.075220.6 1.05km y x x =-=-=⨯-=',故从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是1.05km .24.将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠== .(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围;②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).∵四边形OABC 是平行四边形,2,OC =∴23OC AB OA B AOC ====∠=∠,CB ,∵CH OA⊥∴30OCH ∠=︒此时AB与C O''的交点为E与A重合,OP 如图:当C'与点B重合时,此时AB与C O''的交点为E与B重合,OP=∴t的取值范围为35 22t<<;②如图:过点C作CH OA⊥由(1)得出()13C ,,60COA ∠=︒∴tan 60MP OP ︒=,3MP t =∴3MP t=当213t ≤<时,111222S O P OP MP t '==⨯=⨯()()1122S O P MC MP OP CM =+⨯''=+∴30>,S 随着t 的增大而增大∴在32t =时3333332222S =⨯-=-∵由①得出EO A ' 是等边三角形,EN AO⊥∴()11323222AN AO t t ==-=-',∴tan 3EAO '∠=,3EN AN=∴332EN t ⎛⎫=- ⎪⎝⎭()31333222S t AO BC MP t =--⨯+⨯=-''∴30-<,S 随着t 的增大而减小∴在51124t ≤≤时,则把51124t t ==,分别代入得出57333S =-⨯+=,113S =-⨯+25.已知抛物线()20y ax bx c a b c a =++>,,为常数,的顶点为P ,且20a b +=,对称轴与x 轴相交于点D ,点(),1M m 在抛物线上,1m O >,为坐标原点.(1)当11a c ==-,时,求该抛物线顶点P 的坐标;(2)当OM OP ==a 的值;(3)若N 是抛物线上的点,且点N 在第四象限,90MDN DM DN ∠=︒=,,点E 在线段MN上,点F 在线段DN 上,NE NF +=,当DE MF +a 的值.则901MHO HM ∠=︒=,在Rt MOH 中,由2HM 221312m ⎛⎫∴+= ⎪ ⎪⎝⎭.解得123322m m ==-,(舍)90DNK NDK MDH ∠∠∠=︒-=NDK DMH ∴≌△△.∴1DK MH ==,NK DH ==∴点N 的坐标为()2,1m -.在Rt DMN △中,DMN DNM ∠=∠。

2011中考数学真题解析102 网格专题(含答案)

2011中考数学真题解析102 网格专题(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编网格专题一、选择题1. (2011•台湾20,4分)如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为421平方公分,则此方格纸的面积为多少平方公分( )A 、11B 、12C 、13D 、14考点:一元二次方程的应用。

专题:网格型。

分析:可设方格纸的边长是x ,灰色三角形的面积等于方格纸的面积减去周围三个直角三角形的面积,列出方程可求解. 解答:解:方格纸的边长是x ,21x 2﹣21•x•21x ﹣21•21x•43x ﹣21•x•41x=421x 2=12.所以方格纸的面积是12, 故选B .点评:本题考查识图能力,关键看到灰色三角形的面积等于正方形方格纸的面积减去周围三个三角形的面积得解.2. (2011湖北潜江,7,3分)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点.作△ABC 的外接圆⊙O ,则弧AC 的长等于( )A .π43 B .π45 C .π23 D .π25考点:弧长的计算;勾股定理;勾股定理的逆定理;圆周角定理。

专题:网格型。

分析:求弧AC 的长,关键是求弧所对的圆心角,弧所在圆的半径,连接OC ,由图形可知OA ⊥OC ,即∠AOC =90°,由勾股定理求OA ,利用弧长公式求解. 解答:解:连接OC ,由图形可知OA ⊥OC , 即∠AOC =90°,由勾股定理,得OA =2212+=5,∴弧AC 的长=180590⨯⨯π=25π.故选D .点评:本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=180r n ∙∙π.3. (2011•西宁)如图,△DEF 经过怎样的平移得到△ABC ( )A 、把△DEF 向左平移4个单位,再向下平移2个单位B 、把△DEF 向右平移4个单位,再向下平移2个单位C 、把△DEF 向右平移4个单位,再向上平移2个单位D 、把△DEF 向左平移4个单位,再向上平移2个单位考点:平移的性质。

(中考精品卷)内蒙古包头市中考数学真题(解析版)

(中考精品卷)内蒙古包头市中考数学真题(解析版)

2022年初中学业水平考试试卷数学注意事项:1.本试卷共6页,满分120分.考试时间为120分钟.2.答题前,考生务必先将自己的考生号、姓名、座位号等信息填写在试卷和答题卡的指定位置.请认真核对条形码上的相关信息后,将条形码粘贴在答题卡的指定位置上.3.答题时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项,请将答题卡上对应题自的答案标号涂黑.1. 若42222m ⨯=,则m 的值为( )A. 8B. 6C. 5D. 2【答案】B【解析】【分析】根据同底数幂的乘法运算计算4242622222m +⨯===,即可求解.【详解】4242622222m +⨯=== , 6m ∴=,故选:B .【点睛】本题考查了同底数幂的乘法运算,即m nm n a a a +⋅=(m 、n 为正整数),熟练掌握运算法则是解题的关键.2. 若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( )A. 8-B. 5-C. 1-D. 16 【答案】C【解析】【分析】根据a ,b 互为相反数,可得0a b +=,c 的倒数是4,可得14c = ,代入即可求解.【详解】∵a ,b 互为相反数,∴0a b +=,∵c 的倒数是4,∴14c =, ∴334a b c +-()34a b c =+-130414=⨯-⨯=-, 故选:C 【点睛】本题考查了代数式的求值问题,利用已知求得0a b +=,14c =是解题的关键. 3. 若m n >,则下列不等式中正确的是( )A. 22m n -<-B. 1122m n ->-C. 0n m ->D. 1212m n -<-【答案】D【解析】【分析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.【详解】解:A 、∵m >n ,∴22m n ->-,故本选项不合题意;B 、∵m >n ,∴1122m n -<-,故本选项不合题意; C 、∵m >n ,∴0m n ->,故本选项不合题意;D 、∵m >n ,∴1212m n -<-,故本选项符合题意;故选:D .【点睛】本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.4. 几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为( )A. 3B. 4C. 6D. 9【答案】B【解析】 【分析】根据该几何体的俯视图以及该位置小正方体的个数,可以画出左视图,从而求出左视图的面积;【详解】由俯视图以及该位置小正方体的个数,左视图共有两列,第一列两个小正方体,第二列两个小正方体,可以画出左视图如图,所以这个几何体的左视图的面积为4故选:B【点睛】本题考查了物体的三视图,解题饿到关键是根据俯视图,以及该位置小正方体的个数,正确作出左视图.5. 2022年2月20日北京冬奥会大幕落下,中国队在冰上、雪上项目中,共斩获9金4银2铜,创造中国队冬奥会历史最好成绩某校为普及冬奥知识,开展了校内冬奥知识竞赛活动,并评出一等奖3人.现欲从小明等3名一等奖获得者中任选2名参加全市冬奥知识竞赛,则小明被选到的概率为()A. 16B.13C. 12D.23【答案】D【解析】【分析】根据题意,列出树状图,即可得出答案.【详解】记小明为A,其他2名一等奖为B C、,列树状图如下:故有6种等可能性结果,其中小明被选中得有4种,故明被选到的概率为4263P==.故选:D.【点睛】此题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.6. 若12,x x 是方程2230x x --=的两个实数根,则212x x ⋅的值为( )A. 3或9-B. 3-或9C. 3或6-D. 3-或6【答案】A【解析】【分析】结合根与系数的关系以及解出方程2230x x --=进行分类讨论即可得出答案.【详解】解:∵2230x x --=, ∴12331x x -⋅==-, ()()130x x +-=,则两根为:3或-1,当23x =时,212212239x x x x x x ==--⋅=g g ,当21x =-时,2121222··33x x x x x x ⋅==-=,故选:A .【点睛】此题考查了根与系数的关系以及解二元一次方程,正确解出方程进行分类讨论是解题的关键.7. 如图,,AB CD 是O 的两条直径,E 是劣弧 BC的中点,连接BC ,DE .若22ABC ∠=︒,则CDE ∠的度数为( )A. 22︒B. 32︒C. 34︒D. 44︒【答案】C【解析】 【分析】连接OE ,由题意易得22OCB ABC ∠=∠=︒,则有136COB ∠=︒,然后可得68COE ∠=︒,进而根据圆周角定理可求解.【详解】解:连接OE ,如图所示:∵OB =OC ,22ABC ∠=︒,∴22OCB ABC ∠=∠=︒,∴136COB ∠=︒,∵E 是劣弧 BC中点, ∴1682COE COB ∠=∠=︒, ∴1342CDE COE ∠=∠=︒; 故选C .【点睛】本题主要考查圆周角定理及垂径定理,熟练掌握圆周角定理及垂径定理是解题的关键.8. 在一次函数()50y ax b a =-+≠中,y 的值随x 值的增大而增大,且0ab >,则点(,)A a b 在( )A. 第四象限B. 第三象限C. 第二象限D. 第一象限【答案】B【解析】【分析】根据一次函数的性质求出a 的范围,再根据每个象限点的坐标特征判断A 点所处的象限即可.【详解】∵在一次函数()50y ax b a =-+≠中,y 的值随x 值的增大而增大,∴50a ->,即0a <,又∵0ab >,∴0b <,∴点(,)A a b 在第三象限,故选:B【点睛】本题考查了一次函数的性质和各个象限坐标特点,能熟记一次函数的性质是解此题的关键.9. 如图,在边长为1的小正方形组成的网格中,A ,B ,C ,D 四个点均在格点上,AC 与BD 相交于点E ,连接,AB CD ,则ABE △与CDE △的周长比为( )的A. 1:4B. 4:1C. 1:2D. 2:1【答案】D【解析】 【分析】运用网格图中隐藏的条件证明四边形DCBM 为平行四边形,接着证明ABE CDE ∽,最后利相似三角形周长的比等于相似比即可求出.【详解】如图:由题意可知,3DM =,3BC =,∴DM BC =,而DM BC ∥,∴四边形DCBM 为平行四边形,∴AB DC ∥,∴BAE DCE ∠=∠,ABE CDE ∠=∠,∴ABE CDE ∽,∴21ABE CDE C AB C CD ====△△. 故选:D .【点睛】本题考查了平行四边形的判定与性质、相似三角形的判定与性质及勾股定理,熟练掌握相关知识并正确计算是解题关键.10. 已知实数a ,b 满足1b a -=,则代数式2267a b a +-+的最小值等于( )A. 5B. 4C. 3D. 2 【答案】A【解析】【分析】由已知得b =a +1,代入代数式即得a 2-4a +9变形为(a -2)2+5,再根据二次函数性质求解.【详解】解:∵b -a =1,∴b =a +1,∴a 2+2b -6a+7=a 2+2(a +1)-6a +7=a 2-4a +9=(a -2)2+5,∵(a -2)2≥0,∴当a =2时,代数式a 2+2b -6a +7有最小值,最小值为5,故选:A .【点睛】本题考查二次函数的最值,通过变形将代数式化成(a -2)2+5是解题的关键. 11. 如图,在Rt ABC 中,90,30,2ACB A BC ∠=︒∠=︒=,将ABC 绕点C 顺时针旋转得到A B C ''V ,其中点A '与点A 是对应点,点B '与点B 是对应点.若点B '恰好落在AB 边上,则点A 到直线A C '的距离等于( )A. B. C. 3 D. 2【答案】C【解析】【分析】如图,过A 作AQ A C ¢^于,Q 求解4,AB AC == 结合旋转:证明60,,90,B A B C BC B C A CB ¢¢¢¢¢Ð=Ð=°=Ð=° 可得BB C '△为等边三角形,求解60,A CA ¢Ð=° 再应用锐角三角函数可得答案.【详解】解:如图,过A 作AQ A C ¢^于,Q由90,30,2ACB A BC ∠=︒∠=︒=,4,AB AC \==结合旋转:60,,90,B A B C BC B C A CB ¢¢¢¢¢\Ð=Ð=°=Ð=°BB C ¢\V 为等边三角形,60,30,BCB ACB ¢¢\Ð=°Ð=°60,A CA ¢\Ð=°sin 60 3.AQ AC \=°==g ∴A 到A C '的距离为3.故选C【点睛】本题考查的是旋转的性质,含30°的直角三角形的性质,勾股定理的应用,等边三角形的判定与性质,锐角三角函数的应用,作出适当的辅助线构建直角三角形是解本题的关键.12. 如图,在矩形ABCD 中,AD AB >,点E ,F 分别在,AD BC 边上,,EF AB AE AB =∥,AF 与BE 相交于点O ,连接OC ,若2BF CF =,则OC 与EF 之间的数量关系正确的是( )A. 2OC = 2EF = C. 2OC = D. OC EF =【答案】A【解析】【分析】过点O 作OM ⊥BC 于点M ,先证明四边形ABFE 是正方形,得出MF CF OM ==,再利用勾股定理得出OC =,即可得出答案.【详解】过点O 作OM ⊥BC 于点M ,90OMC ∴∠=︒,四边形ABCD 是矩形,90ABC BAD ∴∠=∠=︒,,EF AB AE AB = ∥,90ABC BAD AEF ∴∠=∠=︒=∠,∴四边形ABFE 是正方形,45,AFB OB OF ∴∠=︒=,12MF BF OM ∴==, 2BF CF = ,MF CF OM ∴==,由勾股定理得OC ===,2OC ∴=,故选:A .【点睛】本题考查了矩形的性质,正方形的判定和性质,平行线的性质,勾股定理,熟练掌握知识点是解题的关键.二、填空题:本大题共有7小题,每小题3分,共21分.请将答案填在答题卡上对应的横线上.13. 1x+在实数范围内有意义,则x 的取值范围是___________. 【答案】1x ≥-且0x ≠【解析】【分析】根据二次根式与分式有意义的条件求解即可.【详解】解:由题意得:x +1≥0,且x ≠0,解得:1x ≥-且0x ≠,故答案为:1x ≥-且0x ≠.【点睛】本题考查二次根式与分式有意义的条件,熟练掌握二次根式有意义的条件:被开方数为非负数;分式有意义的条件:分母不等于零是解题的关键.14. 计算:222a b ab a b a b-+=--___________. 【答案】-a b ##b a -+【解析】【分析】分母相同,分子直接相加,根据完全平方公式的逆用即可得.【详解】解:原式=2222()a b ab a b a b a b a b+--==---, 故答案为:-a b .【点睛】本题考查了分式的加法,解题的关键是掌握完全平方公式.15. 某校欲招聘一名教师,对甲、乙两名候选人进行了三项素质测试,各项测试成绩满分均为100分,根据最终成绩择优录用,他们的各项测试成绩如下表所示: 候选人 通识知识 专业知识 实践能力甲80 90 85 乙 80 85 90根据实际需要,学校将通识知识、专业知识和实践能力三项测试得分按2:5:3的比例确定每人的最终成绩,此时被录用的是___________.(填“甲”或“乙”) 【答案】甲【解析】【分析】分别计算甲和乙的加权平均数,进行比较,即可得到答案.【详解】甲的成绩为25380908586.5101010⨯+⨯+⨯=(分), 乙的成绩为25380859085.5101010⨯+⨯+⨯=(分), 86.585.5> ,∴被录用的是甲,故答案为:甲.【点睛】本题考查了加权平均数,如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里12k f f f n ++= ),那么,根据平均数的定义,这n 个数的平均数可以表示为1122k k x f x f x f x n++= ,这样求得的平均数x 叫做加权平均数,其中12,,,k f f f 叫做权,理解加权平均数的概念,掌握其公式是解题的关键.16. 如图,已知O 的半径为2,AB 是O 的弦.若AB =,则劣弧 AB 的长为___________.【答案】π【解析】【分析】根据条件可证AOB ∆为直角三角形,得到90AOB ∠=︒,之后利用弧长公式即可得到答案.【详解】解:由题知AB =2OA OB ==,222AB OA OB ∴=+,90AOB ∠=︒∴,∴ 劣弧 AB 902180ππ⨯==. 故答案为:π.【点睛】本题主要考查勾股定理,弧长的公式,掌握弧长的公式是解题的关键. 17. 若一个多项式加上2328xy y +-,结果得2235xy y +-,则这个多项式为___________.【答案】23y xy -+【解析】【分析】设这个多项式为A ,由题意得:22(328)235A xy y xy y ++-=+-,求解即可.【详解】设这个多项式为A ,由题意得:22(328)235A xy y xy y ++-=+-, 22222(235)(328)2353283A xy y xy y xy y xy y y xy ∴=+--+-=+---+=-+, 故答案为:23y xy -+.【点睛】本题考查了整式的加减,准确理解题意,列出方程是解题的关键.18. 如图,在Rt ABC 中,90ACB ∠=︒,3AC BC ==,D 为AB 边上一点,且BD BC =,连接CD ,以点D 为圆心,DC 的长为半径作弧,交BC 于点E (异于点C ),连接DE ,则BE 的长为___________.【答案】3-##3-+【解析】【分析】过点D 作DF ⊥BC 于点F ,根据题意得出DC DE =,根据等腰三角形性质得出CF EF =,根据90ACB ∠=︒,3AC BC ==,得出AB =,设CF x =,则3BF x =-,证明DF AC ,得出BF BD CF AD=,列出关于x 的方程,解方程得出x 的值,即可得出3BE =-. 【详解】解:过点D 作DF ⊥BC 于点F ,如图所示:根据作图可知,DC DE =,∵DF ⊥BC ,∴CF EF =,∵90ACB ∠=︒,3AC BC ==,∴AB ===∵3BD BC ==,∴3AD =,设CF x =,则3BF x =-,∵90ACB ∠=︒,∴AC BC ⊥,∵DF BC ⊥,∴DF AC , ∴BF BD CF AD=,即3x x -=,解得:x =,∴226CE x ===-,∴3363BE CE =-=-+=.故答案为:3.【点睛】本题主要考查了等腰三角形的性质和判定,勾股定理,平行线分线段成比例定理,平行线的判定,作出辅助线,根据题意求出CF 的长,是解题的关键.19. 如图,反比例函数(0)k y k x=>在第一象限的图象上有(1,6)A ,(3,)B b 两点,直线AB 与x 轴相交于点C ,D 是线段OA 上一点.若AD BC AB DO ⋅=⋅,连接CD ,记,ADC DOC 的面积分别为12,S S ,则12S S -的值为___________.【答案】4【解析】【分析】如图,连结BD ,证明,DAB OAC V V ∽ 再求解反比例函数为:6y x=,()3,2,B 直线AB 为:28,y x =-+ 再求解()4,0,C 14612,2AOC S =´´=V 再利用相似三角形的性质可得答案.【详解】解:如图,连结BD ,AD BC AB DO ⋅=⋅,,AD AB DO BC \= ,AD AB AO AC\= 而,DAB OAC Ð=Ð ,DAB OAC \V V ∽()1,6A Q 在反比例函数图象k y x=上, 6,k \= 即反比例函数为:6y x=, ()3,B b Q 在反比例函数图象6y x =上, 2,b ∴= 即()3,2,B设直线AB 为:,y mx n =+6,32m n m n ì+=ï\í+=ïî 解得:2,8m n ì=-ïí=ïî ∴直线AB 为:28,y x =-+∴ 当0y =时,4,x =()4,0,C \14612,2AOC S \=´´=V ,DAB OAC QV V ∽24,9ADBA B AOC A S y y S y æö-ç÷\==ç÷èøV V 2,3AB AD AC AO == 1221128,124,33S S \=´==´= 12 4.S S \-=故答案:4【点睛】本题考查的是反比例函数的图象与性质,相似三角形的判定与,证明为23AB AD AC AO ==是解本题的关键. 三、解答题:本大题共有6小题,共3分.请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.20. 2022年3月28日是第27个全国中小学生安全教育日.某校为调查本校学生对安全知识的了解情况,从全校学生中随机抽取若干名学生进行测试,测试后发现所有测试的学生成绩均不低于50分将全部测试成绩x (单位:分)进行整理后分为五组(5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤),并绘制成如下的频数直方图(如图).请根据所给信息,解答下列问题:(1)在这次调查中,一共抽取了___________名学生;(2)若测试成绩达到80分及以上为优秀,请你估计全校960名学生对安全知识的了解情况为优秀的学生人数;(3)为了进一步做好学生安全教育工作,根据调查结果,请你为学校提一条合理化建议.【答案】(1)40 (2)480人(3)加强安全知识教育,普及安全知识;通过多种形式(课外活动、知识竞赛等),提高安全意识;结合校内、校外具体活动(应急演练、参观体验、紧急救援等),提高避险能力【解析】分析】(1)根据频数分布直方图进行求解即可; (2)由总人数乘以测试成绩达到80分及以上为优秀的比例即可求解;(3)根据题意提出合理化建议即可.【小问1详解】由频数分布直方图可得,一共抽取:461012840++++=(人)故答案为:40;【小问2详解】【12896048040+⨯=(人), 所以优秀的学生人数约为480人;【小问3详解】加强安全知识教育,普及安全知识;通过多种形式(课外活动、知识竞赛等),提高安全意识;结合校内、校外具体活动(应急演练、参观体验、紧急救援等),提高避险能力.【点睛】本题考查了频数直方图,用样本估计总体,准确理解题意,熟练掌握知识点是解题的关键.21. 如图,AB 是底部B 不可到达的一座建筑物,A 为建筑物的最高点,测角仪器的高1.5DH CG ==米.某数学兴趣小组为测量建筑物AB 的高度,先在H 处用测角仪器测得建筑物顶端A 处的仰角ADE ∠为α,再向前走5米到达G 处,又测得建筑物顶端A 处的仰角ACE ∠为45︒,已知7tan ,9AB BH α=⊥,H ,G ,B 三点在同一水平线上,求建筑物AB 的高度.【答案】19米【解析】【分析】设AE x =米.在Rt AEC 中,得到CE AE x ==.在Rt AED △中,得到5DC =,5DE x =+.根据7tan 9α=,列方程求解. 【详解】解:如图.根据题意,90,AED ADE α∠=︒∠=,45,5, 1.5ACE DC HG EB CG DH ∠=︒=====.设AE x =米.在Rt AEC 中,∵90,45AEC ACE ∠=︒∠=︒,∴CE AE x ==.在Rt AED △中,∵5DC =,∴5DE x =+. ∵7tan ,tan 9AE ADE DE α∠==, ∴759x x =+, ∴9735x x =+,∴17.5x =,即17.5AE =.∵ 1.5EB =,∴17.5 1.519AB AE EB =+=+=(米).答:建筑物AB 的高度为19米.【点睛】本题考查了解三角形的应用问题,锐角三角函数的应用,解题的关键是找出直角三角形,熟练利用正切函数的定理求解.22. 由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x 天(x 取整数)时,日销售量y (单位:千克)与x 之间的函数关系式为12010,203201016,x x y x x ≤≤⎧=⎨-+<≤⎩()()草莓价格m (单位:元/千克)与x 之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当412x ≤≤时,草莓价格m 与x 之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?【答案】(1)40千克(2)28m x =-+ (3)第10天的销售金额多【解析】【分析】(1)把x =14代入20320y x =-+求出y 值即可;(2)用待定系数法求解,设m 与x 之间的函数关系式为m kx b =+,把(4,24),(12,16)代入,求出k ,b 值即可求解;(3)把x =8,x =10分别代入y =12x ,求出y ,再把x =8,x =10分别代入(2)问所求解析式求出m 值,然后分别求出my 值,比较即可求解.【小问1详解】解:∵当1016x <≤时,20320y x =-+,∴当14x =时,201432040y =-⨯+=(千克).∴第14天小颖家草莓的日销售量是40千克.【小问2详解】解:当412x ≤≤时,设草莓价格m 与x 之间函数关系式为m kx b =+,∵点()()4,24,12,16在m kx b =+的图像上,∴424,1216.k b k b +=⎧⎨+=⎩解得1,28.k b =-⎧⎨=⎩∴函数关系式为28m x =-+.【小问3详解】解:∵当010x ≤≤时,12y x =,∴当8x =时,12896y =⨯=,当10x =时,1210120y =⨯=.∵当412x ≤≤时,28m x =-+,∴当8x =时,82820m =-+=,当10x =时,102818m =-+=.∴第8天的销售金额为:96201920⨯=(元),第10天的销售金额为:120182160⨯=(元).∵21601920>,∴第10天的销售金额多.【点睛】本题考查一次函数的应用,待定系数法求一次函数解析式,函数图像,能从函数图像获取有用作息,用待定系数法求出函数解析式是解题的关键.23. 如图,AB 为O 的切线,C 为切点,D 是O 上一点,过点D 作DF AB ⊥,垂足的为F ,DF 交O 于点E ,连接EO 并延长交O 于点G ,连接,,CG OC OD ,已知2DOE CGE ∠=∠.(1)若O 的半径为5,求CG 的长;(2)试探究DE 与EF 之间的数量关系,写出并证明你的结论.(请用两种证法解答)【答案】(1)(2)2DE EF =,证明见解析【解析】【分析】(1)由题意得,2COE CGE ∠=∠,根据2DOE CGE ∠=∠得COE DOE ∠=∠,根据切线的性质得OC AB ⊥,即90OCB ∠=︒,根据题意得90DFB ∠=︒,则90OCB DFB ∠=∠=︒,即可得OC DF ∥,根据角之间的关系和边之间的关系得ODE 是等边三角形,即可得∴60DOE ∠=︒,则30CGE ∠=︒,根据题意得,10GE =,90GCE ∠=︒,在Rt GCE 中,根据锐角三角形函数即可得; (2)方法一:根据题意和边、角之间得关系得,OCE △为等边三角形,可得30ECF ∠=︒,在Rt CEF 中,根据直角三角形的性质得12EF CE =,即2DE EF =;方法二:连接CE ,过点O 作OH DF ⊥,垂足为H ,根据题意得,90OCB DFC ∠=∠=︒,即四边形OCFH 是矩形,所以CF OH =, 根据等边三角形的性质得DE OE =,根据边之间的关系得CE =OD ,根据HL 得Rt CFE Rt OHE ≌,即可得EF EH =,所以DH EH EF ==,即可得2DE EF =.【小问1详解】解:如图所示,连接CE .∵ CECE =, ∴2COE CGE ∠=∠,∵2DOE CGE ∠=∠,∴COE DOE ∠=∠,∵AB 为O 的切线,C 为切点,∴OC AB ⊥,∴90OCB ∠=︒,∵DF AB ⊥,垂足为F ,∴90DFB ∠=︒,∴90OCB DFB ∠=∠=︒,∴OC DF ∥,∴COE OED ∠=∠,∴DOE OED ∠=∠,∴OD DE =.∵OD OE =,∴ODE 是等边三角形,∴60DOE ∠=︒,∴30CGE ∠=︒.∵O 的半径为5,∴10GE =,∵GE 是O 的直径,∴90GCE ∠=︒,∴在Rt GCE 中,cos 10cos30GC GE CGE =⋅∠=⨯︒=.【小问2详解】2DE EF =,证明如下证明:方法一:如图所示,∵60COE DOE ∠=∠=︒,∴ CEDE =, ∴CE DE =.∵OC OE =,∴OCE △为等边三角形,∴60OCE ∠=︒.∵90OCB ∠=︒,∴30ECF ∠=︒.∴在Rt CEF 中,12EF CE =, ∴12EF DE =, 即2DE EF =;方法二:如图所示,连接CE ,过点O 作OH DF ⊥,垂足为H ,∴90OHF ∠=︒,∵90OCB DFC ∠=∠=︒,∴四边形OCFH 是矩形,∴CF OH =,∵ODE 是等边三角形,∴DE OE =,∵OH DF ⊥,∴DH EH =,∵COE DOE ∠=∠,∴ CEDE =, ∴CE DE =,∴CE OE =,∴CE =OD ,∵CF OH =,在Rt CFE △和Rt OHE △中,CE OD CF OE =⎧⎨=⎩∴Rt CFE Rt OHE ≌(HL ),∴EF EH =,∴DH EH EF ==,∴2DE EF =.【点睛】本题考查了圆的综合,平行线的判定与性质,锐角三角函数,等边三角形的判定与性质,矩形的判定与性质,全等三角形的判定与性质,解题的关键是掌握这些知识点. 24. 如图,在平行四边形ABCD 中,AC 是一条对角线,且5AB AC ==,6BC =,E ,F 是AD 边上两点,点F 在点E 的右侧,AE DF =,连接CE ,CE 的延长线与BA 的延长线相交于点G .(1)如图1,M 是BC 边上一点,连接AM ,MF ,MF 与CE 相交于点N . ①若32AE =,求AG 的长; ②在满足①的条件下,若EN NC =,求证:AM BC ⊥;(2)如图2,连接GF ,H 是GF 上一点,连接EH .若EHG EFG CEF ∠=∠+∠,且2HF GH =,求EF 的长.【答案】(1)①53;②证明见解析 (2)2【解析】【分析】(1)①解:根据平行四边形ABCD 的性质可证AGE DCE △∽△,得到AG AE DC DE=,再根据5AB AC ==,6BC =,32AE =,结合平行四边形的性质求出DE 的长,代入比例式即可求出AG 的长;②先根据ASA 证明ENF CNM △≌△可得EF CM =,再根据32AE =,AE DF =求出3EF =,进一步证明BM MC =,最后利用等腰三角形的三线合一可证明结论. (2)如图,连接CF ,先根据SAS 证明AEC DFC △≌△,再结合EHG EFG CEF ∠=∠+∠,说明EH CF ∥,利用平行线分线段成比例定理可得12GE EC =,接着证明AGE DCE △∽△,可得到12AE DE =,设AE x =,则2DE x =,根据6AD AE DE =+=构建方程求出x ,最后利用EF AD AE DF =--可得结论.【小问1详解】①解:如图,∵四边形ABCD 是平行四边形,5AB AC ==,6BC =,∴AB CD ,AD BC ∥,5DC AB ==,6AD BC ==,∴GAE CDE ∠=∠,AGE DCE ∠=∠,∴AGE DCE △∽△, ∴AG AE DC DE=, ∴AG DE DC AE = , ∵32AE =, ∴39622DE AD AE =-=-=, ∴93522AG =⨯, ∴53AG =, ∴AG 的长为53.②证明:∵AD BC ∥,∴EFN CMN ∠=∠,∵EN NC =,在ENF △和CNM 中,EFN CMN EN CNENF CNM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ENF CNM ASA △≌△,∴EF CM =, ∵32AE =,AE DF =, ∴32DF =, ∴3EF AD AE DF =--=,∴3CM =,∵6BC =,∴3BM BC CM =-=,∴BM MC =,∵AB AC =,∴AM BC ⊥.【小问2详解】如图,连接CF ,∵AB AC =,AB DC =,∴AC DC =,∴CAD CDA ∠=∠,∵AE DF =,在AEC △和DFC △中,AC DC CAD CDA AE DF =⎧⎪∠=∠⎨⎪=⎩∴()AEC DFC SAS △≌△,∴CE CF =,∴CFE CEF ∠=∠∵EHG EFG CEF ∠=∠+∠,∴EHG EFG CEF EFG CFE CFG ∠=∠+∠=∠+∠=∠,∴EH CF ∥,∴GH GE HF EC=, ∵2HF GH =, ∴12GE EC =, ∵AB CD ,∴GAE CDE ∠=∠,AGE DCE ∠=∠,∴AGE DCE △∽△, ∴AE GE DE CE =, ∴12AE DE =, ∴2DE AE =,设AE x =,则2DE x =,∵6AD =,∴26AD AE DE x x =+=+=,∴2x =,即2AE =,∴2DF =,∴2EF AD AE DF =--=.∴EF 的长为2.【点睛】本题考查了平行四边形的性质,相似三角形的判定及性质,全等三角形的判定及性质,等腰三角形的三线合一,平行线的判定及性质,平行线分线段成比例定理等知识.灵活运用相似三角形和全等三角形的判定及性质是解答本题的关键.25. 如图,在平面直角坐标系中,抛物线2(0)y ax c a =+≠与x 轴交于A ,B 两点,点B 的坐标是(2,0),顶点C 的坐标是(0,4),M 是抛物线上一动点,且位于第一象限,直线AM 与y 轴交于点G .(1)求该抛物线的解析式;(2)如图1,N 是抛物线上一点,且位于第二象限,连接OM ,记AOG MOG ,的面积分别为12,S S .当122S S =,且直线CN AM ∥时,求证:点N 与点M 关于y 轴对称;(3)如图2,直线BM 与y 轴交于点H ,是否存在点M ,使得27OH OG -=.若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)24y x =-+(2)见解析(3)存在,115,24M ⎛⎫ ⎪⎝⎭【解析】【分析】(1)利用待定系数法求解抛物线的解析式即可;(2)如图.过点M 作MD y ⊥轴,垂足为D .当AOG 与MOG 都以OG 为底时,可得2OA MD =.再求解(2,0)A -,(1,3)M ,直线AM 解析式为2y x =+.直线CN 的解析式为4y x =+,可得 (1,3)N -.从而可得答案; (3)过点M 作ME x ⊥轴,垂足为E .设()24M m m -+,,则24OE m ME m ==-+,.由tan tan MBE HBO ∠=∠, 可得()()22422242m EM BO OH m m BE m -+⋅===+=+-.同理可得()()22422422m EM AO OG m m AE m -+⋅===-=-+.再利用27OH OG -=,建立方程方程即可.【小问1详解】解:∵抛物线2y ax c =+与x 轴交于点(2,0)B ,顶点为(0,4)C ,∴404a c c +=⎧⎨=⎩,.解得14a c =-⎧⎨=⎩,. ∴该抛物线的解析式为24y x =-+.【小问2详解】的证明:如图.过点M 作MD y ⊥轴,垂足为D .当AOG 与MOG 都以OG 为底时,∵122S S =,∴2OA MD =.当0y =时,则240x -+=,解得122,2x x =-=.∵(2,0)B ,∴(2,0)A -,∴21OA MD ==,.设点M 的坐标为()24m m -+,, ∵点M 在第一象限,∴1m =,∴243m -+=,∴(1,3)M .设直线AM 的解析式为11y k x b =+,∴1111203k b k b -+=⎧⎨+=⎩,.解得1112k b =⎧⎨=⎩,. ∴直线AM 的解析式为2y x =+.设直线CN 的解析式为22y k x b =+,∵直线CN AM ∥,∴211k k ==,∴2y x b =+,∵(0,4)C ,∴24b =.∴直线CN 的解析式为4y x =+,将其代入24y x =-+中,得244x x +=-+,∴20x x +=,解得1201x x ==-,.∵点N 在第二象限,∴点N 的横坐标为1-,∴3y =,∴(1,3)N -.∵(1,3)M ,∴点N 与点M 关于y 轴对称.【小问3详解】如图.存在点M ,使得27OH OG -=.理由如下:过点M 作ME x ⊥轴,垂足为E .∵()24M m m -+,, ∴24OE m ME m ==-+,.∵(2,0)B ,∴2OB =,∴2BE m =-.在Rt BEM 和Rt BOH 中,∵tan tan MBE HBO ∠=∠,∴EM OH BE BO=, ∴()()22422242m EM BO OH m m BE m-+⋅===+=+-. ∵2OA =,∴2AE m =+,在Rt AOG 和Rt AEM 中,∵tan tan GAO MAE ∠=∠, ∴OG EM AO AE=, ∴()()22422422m EM AO OG m m AE m -+⋅===-=-+. ∵27OH OG -=,∴()()224427m m +--=,∴12m =. 当12m =时,21544m -+=, ∴115,24M ⎛⎫ ⎪⎝⎭. ∴存在点115,24M ⎛⎫ ⎪⎝⎭,使得27OH OG -=. 【点睛】本题考查的是利用待定系数法求解抛物线的解析式,一次函数的解析式,二次函数的性质,二次函数与一次函数的交点坐标问题,锐角三角函数的应用,作出适当的辅助线构建直角三角形是解本题的关键。

2023年真题安徽省中考数学试题含答案解析

2023年真题安徽省中考数学试题含答案解析

2023年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每题4分,满分40分)1.旳绝对值是()A. B.8 C. D.【答案】B【详解】数轴上表达数-8旳点到原点旳距离是8,因此-8旳绝对值是8,故选B.【点睛】本题考察了绝对值旳概念,熟记绝对值旳概念是解题旳关键.2.2023年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表达()A. B. C. D.【答案】C【解析】【分析】科学记数法旳表达形式为a×10n旳形式,其中1≤|a|<10,n为整数.确定n旳值时,要看把原数变成a时,小数点移动了多少位,n旳绝对值与小数点移动旳位数相似.当原数绝对值>1时,n是正数;当原数旳绝对值<1时,n是负数.【详解】635.2亿=,小数点向左移10位得到6.352,因此635.2亿用科学记数法表达为:6.352×108,故选C.【点睛】本题考察科学记数法旳表达措施.科学记数法旳表达形式为a×10n旳形式,其中1≤|a|<10,n 为整数,表达时关键要对旳确定a旳值以及n旳值.3.下列运算对旳旳是()A. B. C. D.【答案】D【解析】【分析】根据幂旳乘方、同底数幂乘法、同底数幂除法、积旳乘方旳运算法则逐项进行计算即可得. 【详解】A.,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,对旳,故选D.【点睛】本题考察了有关幂旳运算,纯熟掌握幂旳乘方,同底数幂旳乘法、除法,积旳乘方旳运算法则是解题旳关键.4. 一种由圆柱和圆锥构成旳几何体如图水平放置,其主(正)视图为()A. (A) B. (B) C. (C) D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到旳图形,认真观测实物,可得这个几何体旳主视图为长方形上面一种三角形,据此即可得.【详解】观测实物,可知这个几何体旳主视图为长方体上面一种三角形,只有A选项符合题意,故选A.【详解】本题考察了几何体旳主视图,明确几何体旳主视图是从几何体旳正面看得到旳图形是解题旳关键.5.下列分解因式对旳旳是()A. B.C. D.【答案】C【解析】【分析】根据因式分解旳环节:先提公因式,再用公式法分解即可求得答案.注意分解要彻底. 【详解】A.,故A选项错误;B.,故B选项错误;C. ,故C选项对旳;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考察了提公因式法,公式法分解因式.注意因式分解旳环节:先提公因式,再用公式法分解.注意分解要彻底.6. 据省记录局公布,2023年本省有效发明专利数比2023年增长22.1%假定2023年旳平均增长率保持不变,2023年和2023年本省有效发明专利分别为a万件和b万件,则()A. B.C.D.【答案】B 【解析】【分析】根据题意可知2023年本省有效发明专利数为(1+22.1%)a 万件,2023年本省有效发明专利数为(1+22.1%)•(1+22.1%)a ,由此即可得.【详解】由题意得:2023年本省有效发明专利数为(1+22.1%)a 万件,2023年本省有效发明专利数为(1+22.1%)•(1+22.1%)a 万件,即b=(1+22.1%)2a万件, 故选B.【点睛】本题考察了增长率问题,弄清题意,找到各量之间旳数量关系是解题旳关键.7. 若有关旳一元二次方程x(x+1)+ax=0有两个相等旳实数根,则实数a 旳值为( ) A. B . 1 C. D.【答案】A【解析】【分析】整顿成一般式后,根据方程有两个相等旳实数根,可得△=0,得到有关a 旳方程,解方程即可得.【详解】x(x+1)+ax=0,x 2+(a+1)x =0,由方程有两个相等旳实数根,可得△=(a+1)2-4×1×0=0,解得:a 1=a 2=-1,故选A.【点睛】本题考察一元二次方程根旳状况与鉴别式△旳关系:(1)△>0⇔方程有两个不相等旳实数根;(2)△=0⇔方程有两个相等旳实数根;(3)△<0⇔方程没有实数根.8.为考察两名实习工人旳工作状况,质检部将他们工作第一周每天生产合格产品旳个数整顿成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8类于以上数据,说法对旳旳是()A. 甲、乙旳众数相似 B. 甲、乙旳中位数相似C. 甲旳平均数不不小于乙旳平均数 D. 甲旳方差不不小于乙旳方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差旳定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,因此众数为7,排序后最中间旳数是7,因此中位数是7,,=4,乙:数据8出现了2次,次数最多,因此众数为8,排序后最中间旳数是4,因此中位数是4,,=6.4,因此只有D选项对旳,故选D.【点睛】本题考察了众数、中位数、平均数、方差,纯熟掌握有关定义及求解措施是解题旳关键.9. □ABCD中,E、F是对角线BD上不一样旳两点,下列条件中,不能得出四边形AECF一定为平行四边形旳是()A. BE=DF B. AE=CFC. AF//CE D.∠BAE=∠DCF【答案】B【解析】【分析】根据平行线旳鉴定措施结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考察了平行四边形旳性质与鉴定,纯熟掌握平行四边形旳鉴定定理与性质定理是解题旳关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD旳边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重叠为止,记点C平移旳距离为x,正方形ABCD旳边位于之间分旳长度和为y,则y有关x旳函数图象大体为( )A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种状况结合等腰直角三角形旳性质即可得到对应旳函数解析式,由此即可判断.【详解】由正方形旳性质,已知正方形ABCD旳边长为,易得正方形旳对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考察了动点问题旳函数图象,波及到正方形旳性质,等腰直角三角形旳性质,勾股定理等,结合图形对旳分类是解题旳关键.二、填空题(本大共4小题,每题5分,满分30分)11.不等式旳解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项旳环节进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考察理解一元一次不等式,纯熟掌握解一元一次不等式旳基本环节及注意事项是解题旳关键.12. 如图,菱形ABOC旳AB,AC分别与⊙O相切于点D、E,若点D是AB旳中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再运用四边形旳内角和即可求得∠DOE旳度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考察了切线旳性质,菱形旳性质,解直角三角形旳应用等,纯熟掌握有关旳性质是解题旳关键.13.如图,正比例函数y=kx与反比例函数y=旳图象有一种交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其通过点B,得到直线l,则直线l对应旳函数体现式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B旳坐标,继而求出y=kx旳解析式,再根据直线y=kx平移后通过点B,可设平移后旳解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后通过点B,∴设平移后旳解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后旳解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考察了一次函数与反比例函数旳综合应用,波及到待定系数法,一次函数图象旳平移等,求出k旳值是解题旳关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD旳内部,点E在边BC上,满足△PBE∽△DBC,若△APD 是等腰三角形,则PE旳长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种状况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE旳长为1.2或3,故答案为:1.2或3.【点睛】本题考察了相似三角形旳性质,等腰三角形旳性质,矩形旳性质等,确定出点P在线段BD上是解题旳关键.三、解答题15.计算:【答案】7【解析】【分析】先分别进行0次幂旳计算、二次根式旳乘法运算,然后再按运算次序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考察了实数旳运算,纯熟掌握实数旳运算法则、0次幂旳运算法则是解题旳关键. 16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩余旳鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩余旳鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考察了一元一次方程旳应用,弄清题意,找出等量关系列方程进行求解是关键.17.如图,在由边长为1个单位长度旳小正方形构成旳10×10网格中,已知点O,A,B均为网格线旳交点. (1)在给定旳网格中,以点O为位似中心,将线段AB放大为本来旳2倍,得到线段(点A,B旳对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)认为顶点旳四边形旳面积是 个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样旳措施得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图旳措施找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1A2是正方形,AA1=,因此四边形AA1B1A2旳在面积为:=20,故答案为:20.【点睛】本题考察了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到要点旳对应点是作图旳关键.18.观测如下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,处理下列问题:(1)写出第6个等式:;(2)写出你猜测旳第n个等式:(用含n旳等式表达),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观测到旳规律写出第6个等式即可;(2)根据观测到旳规律写出第n个等式,然后根据分式旳运算对等式旳左边进行化简即可得证.【详解】(1)观测可知第6个等式为:,故答案为:;(2)猜测:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考察了规律题,通过观测、归纳、抽象出等式旳规律与序号旳关系是解题旳关键.19.为了测量竖直旗杆AB旳高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆旳F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A旳仰角为39.3°,平面镜E旳俯角为45°,FD=1.8米,问旗杆AB旳高度约为多少米? (成果保留整数)(参照数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB旳值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考察理解直角三角形旳应用,相似三角形旳鉴定与性质,得到是解题旳关键.20.如图,⊙O为锐角△ABC旳外接圆,半径为5.(1)用尺规作图作出∠BAC旳平分线,并标出它与劣弧BC旳交点E(保留作图痕迹,不写作法);(2)若(1)中旳点E到弦BC旳距离为3,求弦CE旳长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以不小于这两点距离旳二分之一为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC旳长,在Rt△EFC中,由勾股定理即可求得CE旳长.【详解】(1)如图所示,射线AE就是所求作旳角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考察了尺规作图——作角平分线,垂径定理等,纯熟掌握角平分线旳作图措施、推导得出OE⊥BC是解题旳关键.21.“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手旳比赛成绩(得分均为整数)进行整顿,并分别绘制成扇形记录图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形记录图中“69.5~79.5”这一组人数占总参赛人数旳比例为;(2)赛前规定,成绩由高到低前60%旳参赛选手获奖.某参赛选手旳比赛成绩为78分,试判断他能否获奖,并阐明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女旳概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形记录图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占旳比例,用1减去其他分数段旳比例即可得到分数段69.5~79.5所占旳比例;(2)观测可知79.5~99.5这一分数段旳人数占了60%,据此即可判断出该选手与否获奖;(3)画树状图得到所有也许旳状况,再找出符合条件旳状况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占比例为:(8+4)÷50×100%=24%,因此“69.5~79.5”这一组人数占总人数旳比例为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由记录图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,因此他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等也许成果,其中恰好选中1男1女旳8成果共有种,故P==.【点睛】本题考察了直方图、扇形图、概率,结合记录图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后记录,盆景旳平均每盆利润是160元,花卉旳平均每盆利润是19元,调研发现:①盆景每增长1盆,盆景旳平均每盆利润减少2元;每减少1盆,盆景旳平均每盆利润增长2元;②花卉旳平均每盆利润一直不变.小明计划第二期培植盆景与花卉共100盆,设培植旳盆景比第一期增长x 盆,第二期盆景与花卉售完后旳利润分别为W1,W2(单位:元)(1)用含x 旳代数式分别表达W1,W 2;(2)当x 取何值时,第二期培植旳盆景与花卉售完后获得旳总利润W 最大,最大总利润是多少?【答案】(1)W 1=-2x²+60x+8000,W 2=-19x+950;(2)当x=10时,W 总最大为9160元.【解析】【分析】(1)第二期培植旳盆景比第一期增长x 盆,则第二期培植盆景(50+x)盆,花卉(50-x )盆,根据盆景每增长1盆,盆景旳平均每盆利润减少2元;每减少1盆,盆景旳平均每盆利润增长2元,②花卉旳平均每盆利润一直不变,即可得到利润W 1,W 2与x旳关系式;(2)由W总=W 1+W 2可得有关x 旳二次函数,运用二次函数旳性质即可得. 【详解】(1)第二期培植旳盆景比第一期增长x 盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x )盆,由题意得W 1=(50+x )(160-2x)=-2x²+60x+8000,W 2=19(50-x)=-19x+950;(2)W 总=W1+W 2=-2x²+60x+8000+(-19x +950)=-2x²+41x+8950, ∵-2<0,=10.25,故当x=10时,W 总最大,W总最大=-2×10²+41×10+8950=9160. 【点睛】本题考察了二次函数旳应用,弄清题意,找准数量关系列出函数解析式是解题旳关键.23. 如图1,R t△ABC 中,∠ACB=90°,点D 为边AC 上一点,DE ⊥AB 于点E ,点M为B D中点,CM 旳延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC =50°,求∠E MF 旳大小;(3)如图2,若△DAE ≌△CEM ,点N为CM 旳中点,求证:AN ∥EM .【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,运用直角三角形斜边中线等于斜边二分之一进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角旳定义即可求得∠EMF旳度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考察了三角形全等旳性质、直角三角形斜边中线旳性质、等腰三角形旳鉴定与性质、三角形外角旳性质等,综合性较强,对旳添加辅助线、灵活应用有关知识是解题旳关键.。

2024年江西省中考真题数学试卷含答案解析

2024年江西省中考真题数学试卷含答案解析

2024年江西省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.实数5-的相反数是( )A .5B .5-C .15D .15-【答案】A【分析】本题主要考查了相反数的判断,根据相反数的定义解答即可.【详解】5-的相反数是5.故选:A .2.“长征是宣言书,长征是宣传队,长征是播种机”,二万五千里长征是中国历史上的伟大壮举,也是人类史上的奇迹,将25000用科学记数法可表示为( )A .60.2510⨯B .52.510⨯C .42.510⨯D .32510⨯3.如图所示的几何体,其主视图为( )A .B .C .D .【答案】B 【分析】根据从正面看得到的图形是主视图,可得答案.本题主要考查常见几何体的三视图,解题的关键是熟练掌握主视图是从物体正面看到的图形.【详解】解:从正面看到的是两个长方形,上面一个小的,下面一个大的,4.将常温中的温度计插入一杯60℃的热水(恒温)中,温度计的读数()y ℃与时间()min x 的关系用图象可近似表示为( )A .B .C .D .【答案】C【分析】本题考查了函数图象,根据温度计上升到一定的温度后不变,可得答案;注意温度计的温度升高到60℃时温度不变.【详解】解:将常温中的温度计插入一杯60℃(恒温)的热水中,注意温度计的温度升高到60℃时温度不变,故C 选项图象符合条件,故选:C .5.如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是( )A .五月份空气质量为优的天数是16天B .这组数据的众数是15天C .这组数据的中位数是15天D .这组数据的平均数是15天【点睛】本题考查了折线统计图、一组数据的中位数、众数、平均数等知识,掌握以上基础知识是解本题的关键.6.如图是43⨯的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A .1种B .2种C .3种D .4种【答案】B 【分析】此题主要考查了几何体的展开图,关键是掌握正方体展开图的特点.依据正方体的展开图的结构特征进行判断,即可得出结论.【详解】解:如图所示:共有2种方法,故选:B .二、填空题7.计算:()21-= .【答案】1【分析】根据乘方运算法则进行计算即可.【详解】解:()()()21111-=-⨯-=.故答案为:1.【点睛】本题主要考查了有理数的乘方运算,熟练掌握乘方运算法则,是解题的关键.8.因式分解:22a a +=.【答案】(2)a a +【详解】根据分解因式提取公因式法,将方程a 2+2a 提取公因式为a (a+2).故a 2+2a=a (a+2).故答案是a (a+2).9.在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .【答案】()3,4【分析】本题考查了坐标与图形变化-平移.利用点平移的坐标规律,把A 点的横坐标加2,纵坐标加3即可得到点B 的坐标.【详解】解:∵点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,∴点B 的坐标为()12,13++,即()3,4.故答案为:()3,4.10.观察a ,2a ,3a ,4a ,…,根据这些式子的变化规律,可得第100个式子为 .【答案】100a 【分析】此题考查了单项式规律探究.分别找出系数和次数的规律,据此判断出第n 个式子是多少即可.【详解】解:∵a ,2a ,3a ,4a ,…,∴第n 个单项式的系数是1;∵第1个、第2个、第3个、第4个单项式的次数分别是1、2、3、4,…,∴第n 个式子是n a .∴第100个式子是100a .故答案为:100a .11.将图1所示的七巧板,拼成图2所示的四边形ABCD ,连接AC ,则tan CAB ∠= .12.如图,AB 是O 的直径,2AB =,点C 在线段AB 上运动,过点C 的弦DE AB ⊥,将 DBE沿DE 翻折交直线AB 于点F ,当DE 的长为正整数时,线段FB 的长为 .∵1122DC DE ∴==, 2232OC OD DC ∴=-=,232BC OB OC -∴=-=,223BF BC ∴==-;同理可得232BC+=,223BF BC∴==+,综上,可得线段FB的长为23-或23+三、解答题13.(1)计算:0π5+-;(2)化简:888xx x---.14.如图,AC为菱形ABCD的对角线,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹)(1)如图1,过点B 作AC 的垂线;(2)如图2,点E 为线段AB 的中点,过点B 作AC 的平行线.【答案】(1)作图见解析;(2)作图见解析.【分析】(1)作直线BD ,由菱形的性质可得BD AC ⊥,即BD 为AC 的垂线;(2)连接CE 并延长,与DA 的延长线相交于点M ,作直线BM ,因为点E 为线段AB 的中点,所以AE BE =,因为AM BC ∥,所以EAM EBC ∠=∠,EMA ECB ∠=∠,故可得AEM BEC ≌△△,得到ME CE =,所以四边形ACBM 为平行四边形,即BM AC ∥;本题考查了菱形的性质,平行四边形的判定,掌握菱形的性质及平行四边形的判定方法是解题的关键.【详解】(1)解:如图,BD 即为AC 所求;(2)解:如图,BM 即为所求.15.某校一年级开设人数相同的A ,B ,C 三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.(1)“学生甲分到A 班”的概率是______;(2)请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.共有9个等可能的结果,甲、乙两位新生分到同一个班的有∴甲、乙两位新生分到同一个班的概率为16.如图,AOB 是等腰直角三角形,90∠=︒ABO ,双曲线()0,0k y k x x=>>经过点B ,过点()4,0A 作x 轴的垂线交双曲线于点C ,连接BC .(1)点B 的坐标为______;(2)求BC 所在直线的解析式.∵AOB 是等腰直角三角形,∠ABO ∴4OA =,∴2BD OD AD ===,∴()2,2B ,故答案为:()2,2;17.如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC ∠=∠=︒.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求 AC 的长.【答案】(1)见解析(2)2π【分析】本题考查了直径所对的圆周角为直角,等边三角形的判定和性质,弧长公式,熟知相关性质和计算公式是解题的关键.(1)根据直径所对的圆周角为直角结合已知条件,可得30CAB ∠=︒,即可得90ABD Ð=°,进而可证得结论;(2)连接OC ,证明OBC △为等边三角形,求得120AOC ∠=︒,利用弧长公式即可解答.【详解】(1)证明: AB 是半圆O 的直径,90ACB ∴∠=︒,60D ABC ∠=∠=︒ ,9030CAB ABC ∴∠=︒-∠=︒,18090ABD CAB D ∴∠=︒-∠-∠=︒,BD ∴是半圆O 的切线;(2)解:如图,连接OC ,,60OC OB CBA =∠=︒ ,OCB ∴ 为等边三角形,60COB ∴∠=︒,3OC CB ==,180120AOC COB ∴∠=︒-∠=︒,18.如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【分析】本题主要考查了一元一次方程及不等式的应用,解题的关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.(1)首先设这层书架上数学书有x 本,则语文书有(90)x -本,根据题意可得等量关系:x 本数学书的厚度(90)x +-本语文书的厚度84=,根据等量关系列出方程求解即可;(2)设数学书还可以摆m 本,根据题意列出不等式求解即可.【详解】(1)解:设书架上数学书有x 本,由题意得:0.8 1.2(90)84x x +-=,解得:60x =,9030x -=.∴书架上有数学书60本,语文书30本.(2)设数学书还可以摆m 本,根据题意得:1.2100.884m ⨯+≤,解得:90m ≤,∴数学书最多还可以摆90本.19.图1是世界第一“大碗”——景德镇昌南里文化艺术中心主体建筑,其造型灵感来自于宋代湖田窑影青斗笠碗,寓意“万瓷之母”,如图2,“大碗”的主视图由“大碗”主体ABCD 和矩形碗底BEFC 组成,已知AD EF ∥,AM ,DN 是太阳光线,AM MN ⊥,DN MN ⊥,点M ,E ,F ,N 在同一条直线上,经测量20.0m ME FN ==,40.0m EF =, 2.4m BE =,152ABE ∠=︒.(结果精确到0.1m )(1)求“大碗”的口径AD 的长;(2)求“大碗”的高度AM 的长.(参考数据:sin620.88︒≈,cos620.47︒≈,tan62 1.88︒≈)∵矩形碗底BEFC ,∴EH AD ⊥,∴四边形AMEH 是矩形,∵152ABE ∠=︒,∴180ABH ABE ∠=︒-∠20.追本溯源:题(1)来自于课本中的习题,请你完成解答,提炼方法并完成题(2).(1)如图1,在ABC 中,BD 平分ABC ∠,交AC 于点D ,过点D 作BC 的平行线,交AB 于点E ,请判断BDE 的形状,并说明理由.方法应用:(2)如图2,在ABCD Y 中,BE 平分ABC ∠,交边AD 于点E ,过点A 作AF BE ⊥交DC 的延长线于点F ,交BC 于点G .①图中一定是等腰三角形的有( )A .3个B .4个C .5个D .6个②已知3AB =,5BC =,求CF 的长.【答案】(1)BDE 是等腰三角形;理由见解析;(2)①B ;②2CF =.【分析】本题考查了平行四边形的性质和等腰三角形的判定和性质等知识,熟练掌握平行四边形的性质和等腰三角形的判定是解题的关键;(1)利用角平分线的定义得到ABD CBD ∠=∠,利用平行线的性质得到BDE CBD ∠=∠,推出BDE ABD ∠=∠,再等角对等边即可证明BDE 是等腰三角形;(2)①同(1)利用等腰三角形的判定和性质可以得到四个等腰三角形;②由①得DA DF =,利用平行四边形的性质即可求解.【详解】解:(1)BDE 是等腰三角形;理由如下:∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ∥,∴BDE CBD ∠=∠,∴BDE ABD ∠=∠,∴EB ED =,∴BDE 是等腰三角形;(2)①∵ABCD Y 中,∴AE BC ∥,AB CD ∥,同(1)ABE CBE AEB ∠=∠=∠,∴AB AE =,∵AF BE ⊥,∴BAF EAF ∠=∠,∵AE BC ∥,AB CD ∥,∴BGA EAF ∠=∠,BAF F ∠=∠,∵BGA CGF ∠=∠,∴BGA BAG ∠=∠,DAF F ∠=∠,CGF F ∠=∠,∴AB AG =,DA DF =,CG CF =,即ABE 、ABG 、ADF △、CGF △是等腰三角形;共有四个,故选:B .②∵ABCD Y 中,3AB =,5BC =,∴3AB CD ==,5BC AD ==,由①得DA DF =,∴532CF DF CD =-=-=.21.近年来,我国肥胖人群的规模快速增长,目前,国际上常用身体质量指数(Body Mass Index ,缩写BMI )来衡量人体胖瘦程度,其计算公式是22)kg (()m BMI =体重单位:身高单位:.中国人的BMI 数值标准为:18.5BMI <为偏瘦;18.524BMI ≤<为正常;2428BMI ≤<为偏胖;28BMI ≥为肥胖.某数学兴趣小组对本校七年级学生的胖瘦程度进行统计调查,从该校所有七年级学生中随机抽出10名男生、10名女生,测得他们的身高和体重值,并计算出相应的BMI 数值,再参照BMI 数值标准分成四组:A .1620BMI ≤<;B .2024BMI ≤<;C .2428BMI ≤<;D .2832BMI ≤<.将所得数据进行收集、整理、描述.收集数据七年级10名男生数据统计表编号12345678910身高(m ) 1.56 1.50 1.66 1.58 1.50 1.70 1.51 1.42 1.59 1.72体重(kg )52.549.545.640.355.256.148.542.867.290.5BMI 21.6s 16.516.124.519.421.321.226.630.6七年级10名女生数据统计表编号12345678910身高(m ) 1.46 1.62 1.55 1.65 1.58 1.67 1.55 1.46 1.53 1.62体重(kg )46.449.061.556.552.975.550.347.652.446.8BMI 21.818.725.620.821.227.120.922.322.417.8整理、描述数据七年级20名学生BMI 频数分布表组别BMI 男生频数女生频数A 1620BMI ≤<32B 2024BMI ≤<46C 2428BMI ≤<t 2D 2832BMI ≤<10应用数据(1)s=______,t=______α=______;(2)已知该校七年级有男生260人,女生240人.①估计该校七年级男生偏胖的人数;②估计该校七年级学生24BMI≥的人数(3)根据以上统计数据,针对该校七年级学生的胖瘦程度,请你提出一条合理化建议.22.如图,一小球从斜坡O点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x012m 4567…y 07261528152n 72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.23.综合与实践如图,在Rt ABC △中,点D 是斜边AB 上的动点(点D 与点A 不重合),连接CD ,以CD 为直角边在CD 的右侧构造Rt CDE △,90DCE ∠=︒,连接BE ,CE CB m CD CA==.特例感知m=时,BE与AD之间的位置关系是______,数量关系是______;(1)如图1,当1类比迁移m≠时,猜想BE与AD之间的位置关系和数量关系,并证明猜想.(2)如图2,当1拓展应用(3)在(1)的条件下,点F与点C关于DE对称,连接DF,EF,BF,如图3.已知=,四边形CDFE的面积为y.6AC=,设AD x①求y与x的函数表达式,并求出y的最小值;②当2BF=时,请直接写出AD的长度.此时32DH x =-,同理可得:2y CD =∴y 与x 的函数表达式为当32x =时,y 的最小值为②如图,∵AD BE ⊥,正方形∴DBE DFE ∠=∠=∠∴,,,,D C E B F 在O 上,且∴90CBF ∠=︒,综上:当2BF=时,AD为2【点睛】本题考查的是全等三角形的判定与性质,正方形的判定与性质,勾股定理的应用,相似三角形的判定与性质,直角三角形斜边上的中线的性质,圆周角定理的应用,本题难度大,作出合适的辅助线是解本题的关键。

2023年吉林省长春市中考数学真题(原卷与解析)

2023年吉林省长春市中考数学真题(原卷与解析)

2023年长春市初中学业水平考试数学本试卷包括三道大题,共24道小题,共6页.全卷满分20分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将自己的姓名,准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(本大题共8小题,每小题3分,共24分)1.实数a 、b 、c 、d 伍数轴上对应点位置如图所示,这四个数中绝对值最小的是()A.aB.bC.cD.d2.长春龙嘉国际机场T3A 航站楼设计创意为“鹤舞长春”,如图所示,航站楼的造型如仙鹤飞翔,蕴含了对吉春大地未来发展的美好愿景.本期工程按照满足2030年旅客吞吐量38000000人次目标设计的,其中38000000这个数用科学记数法表示为()A.80.3810⨯ B.63810⨯ C.83810⨯ D.73.810⨯3.下列运算正确的是()A.32a a a -= B.23a a a ⋅= C.()325a a = D.623a a a ÷=4.下图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是()A.面①B.面②C.面⑤D.面⑥5.如图,工人师傅设计了一种测零件内径AB 的卡钳,卡钳交叉点O 为AA '、BB '的中点,只要量出A B ''的长度,就可以道该零件内径AB 的长度.依据的数学基本事实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.两余直线被一组平行线所截,所的对应线段成比例D.两点之间线段最短6.学校开放日即将来临,负责布置的林老师打算从学校图书馆的顶楼拉出一条彩旗绳AB 到地面,如图所示.已彩旗绳与地面形成25︒角(即25BAC ∠=︒)、彩旗绳固定在地面的位置与图书馆相距32米(即32AC =米),则彩旗绳AB 的长度为()A.32sin 25︒米B.32cos 25︒米C.32sin 25︒米D.32cos 25︒米7.如图,用直尺和圆规作MAN ∠的角平分线,根据作图痕迹,下列结论不一定正确的是()A.AD AE =B.AD DF =C.DF EF =D.AF D E⊥8.如图,在平面直角坐标系中,点A 、B 在函数(0,0)k y k x x=>>的图象上,分别以A 、B 为圆心,1为半径作圆,当A 与x 轴相切、B 与y 轴相切时,连结AB ,AB =,则k 的值为()A.3B.C.4D.6二、填空题(本大题共6小题,每小题3分,共8分)9.分解因式:21a -=____.10.若关于x 的方程220x x m -+=有两个不相等的实数根,则m 的取值范围是_________.11.2023长春马拉松于5月21日在南岭体育场鸣枪开跑,某同学参加了7.5公里健康跑项目,他从起点开始以平均每分钟x 公里的速度跑了10分钟,此时他离健康跑终点的路程为__________公里.(用含x 的代数式表示)12.如图,ABC 和A B C ''' 是以点O 为位似中心的位似图形,点A 在线段OA '上.若12OA AA '=::,则ABC 和A B C ''' 的周长之比为__________.13.如图,将正五边形纸片ABCDE 折叠,使点B 与点E 重合,折痕为AM ,展开后,再将纸片折叠,使边AB 落在线段AM 上,点B 的对应点为点B ',折痕为AF ,则AFB '∠的大小为__________度.14.2023年5月8日,C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A 、B 的水平距离为80米时,两条水柱在物线的顶点H 处相遇,此时相遇点H 距地面20米,喷水口A 、B 距地面均为4米.若两辆消防车同时后退10米,两条水柱的形状及喷水口A '、B '到地面的距离均保持不变,则此时两条水柱相遇点H '距地面__________米.三、解答题(本大题共10小题,共78分)15.先化简.再求值:2(1)(1)a a a ++-,其中33a =.16.班级联欢会上有一个抽奖活动,每位同学均参加一次抽奖,活动规则下:将三个完全相同的不透明纸杯倒置放在桌面上,每个杯子内放入一个彩蛋,彩蛋颜色分别为红色、红色、绿色.参加活动的同学先从中随机选中一个杯子,记录杯内彩蛋颜色后再将杯子倒置于桌面,重新打乱杯子的摆放位置,再从中随机选中一个杯子,记录杯内彩蛋颜色.若两次选中的彩蛋颜色不同则获一等奖,颜色相同则获二等奖.用画树状图(或列表)的方法,求某同学获一等奖的概率.17.随着中国网民规模突破10亿、博物馆美育不断向线上拓展.敦煌研究院顺势推出数字敦煌文化大使“伽瑶”,受到广大敦煌文化爱好者的好评.某工厂计划制作3000个“伽瑶”玩偶摆件,为了尽快完成任务,实际平均每天完成的数量是原计划的1.5倍,结果提前5天完成任务.问原计划平均每天制作多少个摆件?18.将两个完全相同的含有30︒角的直角三角板在同一平面内按如图所示位置摆放.点A ,E ,B ,D 依次在同一直线上,连结AF 、CD .(1)求证:四边形AFDC 是平行四边形;(2)己知6cm BC =,当四边形AFDC 是菱形时.AD 的长为__________cm .19.近年来,肥胖经成为影响人们身体健康的重要因素.目前,国际上常用身体质量指数(Body Mass Indcx ,缩写BMI )来衡量人体胖瘦程度以及是否健康,其计算公式是22kg BMI=m 体重(单位:)身高(位置:)例如:某人身高1.60m ,体重60kg ,则他的260BMI 23.41.60=≈.中国成人的BMI 数值标准为:BMI<18.5为偏瘦;18.5BMI 24≤<为正常;24BMI 28≤<为偏胖;BMI 28≥为肥胖.某公司为了解员工的健康情况,随机抽取了一部分员工的体检数据,通过计算得到他们的BMI 值并绘制了如下两幅不完整的统计图.根据以上信息回答下列问题:(1)补全条形统计图;(2)请估计该公司200名员工中属于偏胖和肥胖的总人数;(3)基于上述统计结果,公司建议每个人制定健身计划.员工小张身高1.70m ,BMI 值为27,他想通过健身减重使自己的BMI 值达到正常,则他的体重至少需要减掉_________kg .(结果精确到1kg )20.图①、图②、图③均是55 的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作ABC ,点C 在格点上.(1)在图①中,ABC 的面积为92;(2)在图②中,ABC 的面积为5(3)在图③中,ABC 是面积为52的钝角三角形.21.甲、乙两个相约登山,他们同时从入口处出发,甲步行登山到山顶,乙先步行15分钟到缆车站,再乘坐缆车到达山顶.甲、乙距山脚的垂直高度y (米)与甲登山的时间x (分钟)之间的函数图象如图所示.(1)当1540x ≤≤时,求乙距山脚的垂直高度y 与x 之间的函数关系式;(2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.22.【感知】如图①,点A 、B 、P 均在O 上,90AOB ∠=︒,则锐角APB ∠的大小为__________度.【探究】小明遇到这样一个问题:如图②,O 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.ABC 是等边三角形.BA BC ∴=,(SAS)PBC EBA ∴ ≌请你补全余下的证明过程.【应用】如图③,O 是ABC 的外接圆,90ABC AB BC ∠=︒=,,点P 在O 上,且点P 与点B 在AC的两侧,连结PA 、PB 、PC .若2PB PA =,则PB PC的值为__________.23.如图①.在矩形ABCD .35AB AD ==,,点E 在边BC 上,且2BE =.动点P 从点E 出发,沿折线EB BA AD --以每秒1个单位长度的速度运动,作90PEQ ∠=︒,EQ 交边AD 或边DC 于点Q ,连续PQ .当点Q 与点C 重合时,点P 停止运动.设点P 的运动时间为t 秒.(0t >)(1)当点P 和点B 重合时,线段PQ 的长为__________;(2)当点Q 和点D 重合时,求tan PQE ∠;(3)当点P 在边AD 上运动时,POE △的形状始终是等腰直角三角形.如图②.请说明理由;(4)作点E 关直线PQ 的对称点F ,连接PF 、QF ,当四边形EPFQ 和矩形ABCD 重叠部分图形为轴对称四边形时,直接写出t 的取值范围.24.在平面直角坐标系中,点O 为坐标原点,抛物线22y x bx =-++(b 是常数)经过点(2,2).点A 的坐标为(,0)m ,点B 在该抛物线上,横坐标为1m -.其中0m <.(1)求该抛物线对应的函数表达式及顶点坐标;(2)当点B 在x 轴上时,求点A 的坐标;(3)该抛物线与x 轴的左交点为P ,当抛物线在点P 和点B 之间的部分(包括P 、B 两点)的最高点与最低点的纵坐标之差为2m -时,求m 的值.(4)当点B 在x 轴上方时,过点B 作BC y ⊥轴于点C ,连结AC 、BO .若四边形AOBC 的边和抛物线有两个交点(不包括四边形AOBC 的顶点),设这两个交点分别为点E 、点F ,线段BO 的中点为D .当以点C 、E 、O 、D (或以点C 、F 、O 、D )为顶点的四边形的面积是四边形AOBC 面积的一半时,直接写出所有满足条件的m 的值.2023年长春市初中学业水平考试数学一、选择题(本大题共8小题,每小题3分,共24分)1.【答案】B 【解析】解:由图可知,3a >,01b <<,01c <<,23d <<,比较四个数的绝对值排除a 和d ,根据绝对值的意义观察图形可知,c 离原点的距离大于b 离原点的距离,<b c ∴,∴这四个数中绝对值最小的是b .故选:B .2.【答案】D【解析】解:738000000 3.810=⨯,故选:D .3.【答案】B【解析】A 选项,3a 与2a 不能合并,故该选项不正确,不符合题意;B 选项,23a a a ⋅=,故该选项正确,符合题意;C 选项,()326a a =,故该选项不正确,不符合题意;D 选项,624a a a ÷=,故该选项不正确,不符合题意;故选:B .4.【答案】C【解析】解:依题意,多面体的底面是面③,则多面体的上面是面⑤,故选:C .5.【答案】A【解析】解:O 为AA '、BB '的中点,OA OA ∴'=,OB OB '=,AOB A OB ''∠=∠ (对顶角相等),∴在AOB 与A OB ''△中,OA OA AOB A OB OB OB =⎧⎪∠=∠⎨⎪=''⎩',()SAS AOB A OB ''∴△≌△,AB A B ''∴=,故选:A .6.【答案】D【解析】解: AC 表示的是地面,BC 表示是图书馆,AC BC ∴⊥,ABC ∴ 为直角三角形,32cos 25cos 25AC AB ∴==︒︒(米).故选:D .7.【答案】B【解析】解:根据作图可得,AD AE DF EF ==,故A ,C 正确;∴,A F 在DE 的垂直平分线上,∴AF D E ⊥,故D 选项正确,而DF EF =不一定成立,故B 选项错误,故选:B .8.【答案】C【解析】解:如图所示,过点A B ,分别作y x ,轴的垂线,垂足分别为E D ,,AE BD ,交于点C,依题意,B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k ∴()1,1C ,则1,1AC k BC k =-=-,又∵90ACB ∠=︒,AB =,∴()()(22211k k -+-=∴13k -=(负值已舍去)解得:4k =,故选:C .二、填空题(本大题共6小题,每小题3分,共8分)9.【答案】()()11a a +-.【解析】解:()()2111a a a -=+-.故答案为:()()11a a +-10.【答案】1m <【解析】解: 关于x 的方程220x x m -+=有两个不相等的实数根,2(2)41440m m ∴∆=--⨯⨯=->解得:1m <,故答案为:1m <.11.【答案】()7.510x -【解析】根据题意可得,他离健康跑终点的路程为()7.510x -.故答案为:()7.510x -.12.【答案】1:3【解析】解:12OA AA '= ::,:1:3OA OA '∴=,设ABC 周长为1l ,设A B C ''' 周长为2l ,ABC 和A B C ''' 是以点O 为位似中心的位似图形,1213l OA l OA ∴=='.12:1:3l l ∴=.ABC ∴ 和A B C ''' 的周长之比为1:3.故答案为:1:3.13.【答案】45【解析】解:∵正五边形的每一个内角为()5218101508-⨯︒=︒,将正五边形纸片ABCDE 折叠,使点B 与点E 重合,折痕为AM ,则111085422BAM BAE ∠=∠=⨯︒=︒,∵将纸片折叠,使边AB 落在线段AM 上,点B 的对应点为点B ',折痕为AF ,∴11542722FAB BAM '∠=∠=⨯︒=︒,108AB F B '∠=∠=︒,在AFB 'V 中,1801801082745AFB B FAB ''∠=︒-∠-∠=︒-︒-︒=︒,故答案为:45.14.【答案】19【解析】解:由题意可知:()40,4A -、()40,4B 、()0,20H ,设抛物线解析式为:220y ax =+,将()40,4A -代入解析式220y ax =+,解得:1100a =-,220100x y ∴=-+,消防车同时后退10米,即抛物线220100x y =-+向左(右)平移10米,平移后的抛物线解析式为:()21020100x y +=-+,令0x =,解得:19y =,故答案为:19.三、解答题(本大题共10小题,共78分)15.【答案】31a +1+【解析】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当33a =时,原式33113=⨯+=16.【答案】49【解析】解:画树状图如下:共有9种可能,获一等奖即两次颜色不相同的可能有4种,则某同学获一等奖的概率为:49,答:某同学获一等奖的概率为49.17.【答案】原计划平均每天制作200个摆件.【解析】解:设原计划平均每天制作x 个,根据题意得,3000300051.5x x=+解得:200x =经检验,200x =是原方程的解,且符合题意,答:原计划平均每天制作200个摆件.18.【答案】(1)见解析;(2)18【解析】(1)证明:由题意可知ACB DFE △≌△,AC DF =∴,30CAB FDE ∠=∠=︒,AC DF \∥,∴四边形AFDC 地平行四边形;(2)如图,在Rt ACB △中,90ACB ∠=︒,30CAB ∠=︒,6cm BC =,212cm AB BC ∴==,60ABC ∠=︒,四边形AFDC 是菱形,AD ∴平分CDF ∠,30CDA FDA ∴∠=∠=︒,ABC CDA BCD ∠=∠+∠ ,603030BCD ABC CDA ∴∠=∠-∠=︒-︒=︒,BCD CDA ∴∠=∠,6cm BC BD ∴==,18cm AD AB BD ∴=+=,故答案为:18.19.【答案】(1)见解析(2)110人(3)9【解析】(1)抽取了735%20÷=人,属于偏胖的人数为:202738---=,补全统计图如图所示,(2)8320011020+⨯=(人)(3)设小张体重需要减掉kg x ,依题意,227241.70x -<解得:8.67x >,答:他的体重至少需要减掉9kg ,故答案为:9.20.【答案】(1)见解析(2)见解析(3)见解析【解析】(1)解:如图所示,以3AB =为底,设AB 边上的高为h ,依题意得:19·22ABC S AB h == 解得:3h =即点C 在AB 上方且到AB 距离为3个单位的线段上的格点即可,答案不唯一;(2)由网格可知,AB ==以AB =为底,设AB 边上的高为h ,依题意得:1·52ABC S AB h ==解得:h =将AB 绕A 或B 旋转90︒,过线段的另一个端点作AB 的平行线,与网格格点的交点即为点C ,答案不唯一,(3)如图所示,作5BD AB ==,过点D 作CD AB ∥,交于格点C ,由网格可知,22215BD AB ==+=,10AD =,∴ABD △是直角三角形,且AB BD⊥∵CD AB∥∴15·22ABC S AB BD == .21.【答案】(1)12180y x =-(2)180【解析】(1)解:设乙距山脚的垂直高度y 与x 之间的函数关系式为y kx b =+,将()15,0,()40,300代入得,15040300k b k b +=⎧⎨+=⎩,解得:12180k b =⎧⎨=-⎩,∴12180y x =-()1540x ≤≤;(2)设甲距山脚的垂直高度y 与x 之间的函数关系式为11y k x b =+()2560x ≤≤将点()()25,16060,300,代入得,11112516060300k b k b +=⎧⎨+=⎩解得:11460k b =⎧⎨=⎩,∴460y x =+()2560x ≤≤;联立12180460y x y x =-⎧⎨=+⎩解得:30180x y =⎧⎨=⎩∴乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度为180米22.【答案】感知:45;探究:见解析;应用:223.【解析】感知:由圆周角定理可得1245APB AOB ∠=∠=︒,故答案为:45;探究:证明:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.ABC 是等边三角形.BA BC ∴=,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,60EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等边三角形,PB PE ∴=,PB PE PA AE PA PC ∴==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE , 四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.AB CB = ,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,90EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等腰直角三角形,222PB BE PE ∴+=,222PB PE ∴=,即PE =,PE PA AE PA PC =+=+ ,PA PC ∴+=,PB =,4PA PC PA ∴+==,3PC PA ∴=,33PB PC PA ∴==,故答案为:3.23.【答案】(1)13(2)32(3)见解析(4)93502t -<≤或176t =或7t =【解析】(1)解:如图所示,连接BQ ,∵四边形ABCD 是矩形∴90BAQ ABE ∠=∠=︒∵90PEQ ∠=︒,∴四边形ABEQ 是矩形,当点P 和点B 重合时,∴3QE AB ==,2BE =在Rt QBE △中,22223213BQ BE QE =+=+=13(2)如图所示,∵90PEQ ∠=︒,90PBE ECD ∠=∠=︒,∴1290,2390∠+∠=︒∠+∠=︒,∴13∠=∠∴PBE ECD∽∵2BE =,3CD AB ==,∴2tan 3PE BE PQE DE CD ∠===;(3)如图所示,过点P 作PH BC ⊥于点H ,∵90PEQ ∠=︒,90PHE ECQ ∠=∠=︒,∴1290,2390∠+∠=︒∠+∠=︒,则四边形ABHP 是矩形,∴PH AB =3=又∵523EC BC BE =-=-=∴PH EC =,∴PHE ECQ≌∴PE QE=∴POE △是等腰直角三角形;(4)①如图所示,当点P 在BE 上时,∵3,2QE QF AQ BE ====,在Rt AQF △中,2222325AF QF AQ =-=-=,则35BF =-,∵PE t =,则2BP t =-,PF PE t ==,在Rt PBF 中,222PF PB FB =+,∴(()222352t t =-+-解得:9352t -=当9352t -<时,点F 在矩形内部,符合题意,∴93502t -<≤符合题意,②当P 点在AB 上时,当,F A 重合时符合题意,此时如图,则2PB t BE t =-=-,PE =()325AP AB PB t t =-=--=-,在Rt PBE △中,222PE PB BE =+()()222522t t -=-+,解得:176t =,③当点P 在AD 上,当,F D 重合时,此时Q 与点C 重合,则PFQE 是正方形,此时2327t =++=综上所述,93502t -<≤或176t =或7t =.24.【答案】(1)222y x x =-++;顶点坐标为()1,3(2)()3,0A (3)1m =-或2m =-或512m +=或2112m -=(4)22m =-+23m =-或12m =-【解析】(1)解:将点(2,2)代入抛物线22y x bx =-++,得,2422b =-++解得:2b =∴抛物线解析式为222y x x =-++;∵222y x x =-++()213x =--+,∴顶点坐标为()1,3,(2)解:由222y x x =-++,当0y =时,2220x x -++=,解得:1213,13x x ==+,∵抛物线上的点B 在x 轴上时,横坐标为1m -.其中0m <.∴1m 1->∴113m -=+解得:3m =-,∵点A 的坐标为(,0)m ,∴()A ;(3)①如图所示,当111m <-<+,即0m <<时,抛物线在点P 和点B 之间的部分(包括P 、B 两点)的最高点为顶点,最低点为点P ,∵顶点坐标为()1,3,()1P 则纵坐标之差为303-=依题意,32m=-解得:1m =-;②当11m -≥+m ≤时,∵()()()21,1212B m m m ---+-+,即()21,3B m m --+,依题意,()2332m m --+=-,解得:2m =-或1m =(舍去),③当111m <-<,即0m <<则232m m -+=-,解得:512m =或152m -=(舍去),④当113m -≤3m ≥,则()2032m m --+=-,解得:2112m -=(舍去)或2112m =,综上所述,1m =-或2m =-或512m =或2112m =;(4)解:如图所示,∵B 在x 轴的上方,∴13113m -<-<+∴33m <<∵以点C 、E 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,线段BO 的中点为D ∴BCD CODS S = ∵AOBC AOC BOC S S S =+ ,BOC BCD CODS S S =+ ①当E 是AC 的中点,如图所示则2AOBC CEOD S S =,∴23,22m m E ⎛⎫-+ ⎪⎝⎭代入222y x x =-++,即22322222m m m -+⎛⎫=-+⨯+ ⎪⎝⎭,解得:2m =-(舍去)或2m =-②同理当F 为AO 的中点时,如图所示,ACF CFO S S = ,BCD COD S S = ,则点C 、F 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,∴12m =解得:2m =-,③如图所示,设BOC S S = ,则12DBC S S = ,∵以点C 、E 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,线段BO 的中点为D ∴12CDF FDB AOC S S S S +=+ 即1122CDF CDF AOC S S S S S +=-+ ∴12AOC CDF S S = ,∴CF AO =,∴()2,3F m m --+,∵,B F 关于1x =对称,∴112m m -+-=,解得:12m =-,综上所述,2m =-+或2m =-或12m =-.。

2021年自贡市中考数学真题与答案解析

2021年自贡市中考数学真题与答案解析

第 1 页 共 25 页四川省自贡市初2021届毕业学生考试数学满分:150分 时间:120分钟本试卷分为第I 卷(选择题)和第II 卷(非选择题两部分)第I 卷 选择题(共48分)一.选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.自贡恐龙博物馆是世界三大恐龙博物馆之一.今年“五一黄金周”共接待游客8.87万人次,人数88700用科学记数法表示为( )A.50.88710⨯B.38.8710⨯C.48.8710⨯D.388.710⨯2.如图是一个正方体的展开图,把展开图叠成小正方体后,有“迎”字一面的向对面上的字是( )A.百B.党C.年D.喜3.下列运算正确的是( )A.22541a a -=B.23246()a b a b -=C.933a a a ÷=D.222(2)4a b a b -=-4.下列图形中,是轴对称图形且对称轴条数最多的是( )第 2 页 共 25 页5.如图,AC 是正五边形ABCDE 的对角线,∠ACD 的度数是( ) A.72° B.36° C.74° D.88°6.学校为了解“阳光体育”活动展开情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:这些学生一周参加体育锻炼时间的众数、中位数分别是( ) A.16,15 B.11,15 C.8,8.5 D.8,97.已知23120,x x --=则代数式2395x x -++的值是( )A.31B.-31C.41D.-418.如图,A (8,0),C (-2,0),以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A.(0,5)B.(5,0)C.(6,0)D.(0,6)第 3 页 共 25 页9.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,下列说法正确的是( ) A.函数解析式为13I R=B.蓄电池的电压是18VC.当10I ≤A 时, 3.6R ≥ΩD.当6R =Ω时,4I A =时10.如图,AB 为∠O 的直径,弦CD∠AB 于点F ,OE∠AC 于点E ,若OE=3,OB=5,则CD 的长度是( )A.9.6B.C. D.1011.如图,在正方形ABCD 中,AB=6,M 是AD 边上的一动点,AM :MD=1:2,将∠BMA 沿BM 对折至∠BMN ,连接DN ,则DN 的长是( )第 4 页 共 25 页A.52C.312.如图,直线22y x =-+与坐标轴交于A 、B 两点,点P 是线段AB 上的一个动点,过点P 作y 轴的平行线交直线3y x =-+于点Q ,∠OPQ 绕点O 顺时针旋转45°,边PQ 扫过区域(阴影部分)面积的最大值是( ) A.23π B.12π C.1116π D.2132π第II 卷(非选择题 共102分)二、填空题(共6个小题,每小题4分,共24分) 13.请写出一个满足不等式7x >的整数解 .14.某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%.小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是 . 15.化简:22824a a -=-- .第 5 页 共 25 页16.如图,某学校“桃李餐厅”把WIFI 密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“桃李餐厅”的网络,那么她输入的密码是 .17.如图,∠ABC 的顶点均在正方形网格格点上,只用不带尺度的直尺,作出∠ABC 角平分线BD (不写作法,保留作图痕迹)18.当自变量13x -≤≤时,函数||y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为 .三.解答题(共8个题,共78分) 19.本题满分(8分)0|7|(2-+.20.(本题满分8分)如图,在矩形ABCD中,E,F分别是AB,CD的中点.求证:DE=BF21.(本题满分8分)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,,1.73)22.(本题满分8分)随着我国科技事业的不断发展,国产无人机大量进入快递行业,现有A,B两种型号的无人机都被用来送快递,A型机比B型机平均每小时多运送20件,A型机运送700件所有时间与B型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?第6页共25页第 7 页 共 25 页23.为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩为:A (优秀)、B (优良)、C (合格)、D (不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制成了如下统计图(1)本次抽样调查的样本容量是 ,请补全条形统计图;(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率; (3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.24.函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.结合自己已有的学习经验,画出函数284xy x =-+的图象,并探究其性质. 列表如下:(1)直接写出表中a ,b 的值,并在平面直角坐标系中画出该函数的图象;第 8 页 共 25 页(2)观察函数284xy x =-+的图象,判断下列关于该函数性质的命题: ∠当22x -≤≤时,函数图象关于直线y x =对称; ∠2x =时,函数有最小值,最小值为-2 ∠11x -<<时,函数y 的值随x 的增大而减小. 其中正确的是 (请写出所有正确命题的番号) (3)结合图象,请直接写出不等式2844xx >+的解集为 .25.(本题满分12分)如图,点D 在以AB 为直径的∠O 上,过D 作∠O 的切线交AB 的延长线于点C ,AE∠CD 于点E ,交∠O 于点F ,连接AD ,FD. (1)求证:∠DAE=∠DAC ; (2)求证:DF·AC=AD·DC ; (3)若sin∠C=14,AD=,求EF 的长.第 9 页 共 25 页26.(本题满分14分)如图,抛物线(x 1)(x a)y =+-(其中1a >)与x 轴交于A 、B 两点,交y 轴于点C. (1)直接写出∠OCA 的度数和线段AB 的长(用a 表示);(2)若点D 为∠ABC 的外心,且∠BCD 与∠ACO4,求此抛物线的解析式;(3)在(2)的前提下,试探究抛物线(x 1)(x a)y =+-上是否存在一点P ,使得∠CAP=∠DBA ?若存在,求出点P 的坐标;若不存在,请说明理由.第10页共25页第 11 页 共 25 页参考答案与解析一.选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.自贡恐龙博物馆是世界三大恐龙博物馆之一.今年“五一黄金周”共接待游客8.87万人次,人数88700用科学记数法表示为( )A.50.88710⨯B.38.8710⨯C.48.8710⨯D.388.710⨯【解析】科学记数法表示为a ×10N ,其中1≤|a|<10,故答案为C2.如图是一个正方体的展开图,把展开图叠成小正方体后,有“迎”字一面的向对面上的字是( )A.百B.党C.年D.喜【解析】根据正方体展开图可得,“迎”与“党”相对,故答案为B3.下列运算正确的是( )第 12 页 共 25 页A.22541a a -=B.23246()a b a b -=C.933a a a ÷=D.222(2)4a b a b -=-【解析】A 正确答案为a 2,B 选项正确,C 选项答案为a 6,D 选项为a 2−4ab +4b 2,故答案为B4.下列图形中,是轴对称图形且对称轴条数最多的是( )【解析】A 选项,对称轴1条,B 选项和C 选项为中心对称图形,D 选项对称轴两条,故答案为D5.如图,AC 是正五边形ABCDE 的对角线,∠ACD 的度数是( )A.72°B.36°C.74°D.88°【解析】正5边形每一个内角为(n 2)180108n -︒=︒,∠AB=BC ,∠∠ACB=36°,∠∠ACD=72°,故答案为A6.学校为了解“阳光体育”活动展开情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:这些学生一周参加体育锻炼时间的众数、中位数分别是( )第 13 页 共 25 页A.16,15B.11,15C.8,8.5D.8,9【解析】众数是出现次数最多的数,故众数为8,中位数即将数据排序后,中间两个数(8和9)的平均数8.5,故答案为C7.已知23120,x x --=则代数式2395x x -++的值是( )A.31B.-31C.41D.-41【解析】2223=12393639531x x x x x x -⇒-+=-⇒-++=-,故答案为B8.如图,A (8,0),C (-2,0),以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A.(0,5)B.(5,0)C.(6,0)D.(0,6)【解析】AB=AC=10,AO=8,在Rt∠AOB 中,根据勾股定理可得OB=6,故B (0,6),故答案为D9.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,下列说法正确的是( )A.函数解析式为13I R= B.蓄电池的电压是18V C.当10I ≤A 时, 3.6R ≥Ω D.当6R =Ω时,4I A =时第 14 页 共 25 页【解析】函数解析式为36y x=故A 选项错误,蓄电池电压是49=36⨯V ,D 选项,当6R =Ω时,6I A =,故答案为C10.如图,AB 为∠O 的直径,弦CD∠AB 于点F ,OE∠AC 于点E ,若OE=3,OB=5,则CD 的长度是( )A.9.6B.C. D.10【解析】在Rt∠ACF 中,sin∠BAC=CF AC ,在Rt∠AOE 中,sin∠BAC=OE OA =35,故CD 的长度为245=4.8,故答案为A11.如图,在正方形ABCD 中,AB=6,M 是AD 边上的一动点,AM :MD=1:2,将∠BMA 沿BM 对折至∠BMN ,连接DN ,则DN 的长是( ) A.52C.3第 15 页 共 25 页【解析】过N 作直线∠AB ,交AD 于H ,交BC 于G ,由翻折性质可知∠AMB∠∠NMB ,∠∠BNM=90°,进而可得∠MNH∠∠NBG ,∠MN NB =NH BG =13,设NH=y ,则BG=3y ,MH=3y -2,在Rt∠MHN 中,MH 2+NH 2=MN 2,∠(3y −2)2+y 2=22,∠y =65,∠DH=CG=125,在Rt∠DNH 中,DH²+NH 2=DN 2,∠DN =6√55,故答案为D12.如图,直线22y x =-+与坐标轴交于A 、B 两点,点P 是线段AB 上的一个动点,过点P 作y 轴的平行线交直线3y x =-+于点Q ,∠OPQ 绕点O 顺时针旋转45°,边PQ 扫过区域(阴影部分)面积的最大值是( ) A.23π B.12π C.1116π D.2132π第 16 页 共 25 页【解析】由旋转性质可知,该阴影部分的的面积等于以OQ 为大圆半径R ,OP 为小圆半径r 且圆心角为45°的扇形环的面积,即S 阴影=S 环=πR 28−πr 28,由题意可得,R 2=x 2+(−x +3)²r 2=x 2+(−2x +2)²,且0<x <1,∠R 2−r 2=−3(x −3)2+163,当x =13时,取得最大值163,故阴影部分面积最大值为2π3,故答案选A.第II 卷(非选择题 共102分)二、填空题(共6个小题,每小题4分,共24分)13.请写出一个满足不等式7x >的整数解 .【解析】x >7−√2,故答案很多,最小整数为6,只需填6以上整数即可,答案不唯一14.某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%.小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是 .【解析】加权平均数计算方法为90×30%+80×70%=83,故答案为8315.化简:22824a a -=-- . 【解析】2(a+2)a 2−4−8a 2−4=2(a−2)(a+2)(a−2)=2a+2,故答案为2a+2 16.如图,某学校“桃李餐厅”把WIFI 密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“桃李餐厅”的网络,那么她输入的密码是 .第 17 页 共 25 页【解析】根据观察a ∗b ⊕6=ac ,bc ,c (a+b )运算的结果进行的顺序排列,故密码为244872.17.如图,∠ABC 的顶点均在正方形网格格点上,只用不带尺度的直尺,作出∠ABC 角平分线BD (不写作法,保留作图痕迹)【解析】根据网格图,可算出AB=5,所以在BC 延长线上取长度为5的格点D ,连接AD ,E 为AD 中点,利用等腰三角形三线合一的性质可推出BE 即为∠ABC 的角平分线18.当自变量13x -≤≤时,函数||y x k =-(k 为常数)的最小值为3k +,则满足条件的k第 18 页 共 25 页的值为 .【解析】当k≥3时,x=3时函数取得最小值,∠k -3=k+3,不成立,当k≤-1时,x=-1取得最小值,此时-k -1=k+3,∠k=-2满足题意,当-1<k <3时,x=k 时取得最小值,∠k+3=0,k=-3不满足题意,综上所述,k=-2三.解答题(共8个题,共78分)19.本题满分(8分)0|7|(2-+.【解析】5-7+1=-120.(本题满分8分)如图,在矩形ABCD 中,E ,F 分别是AB ,CD 的中点.求证:DE=BF【解析】证明:∠四边形ABCD 为矩形,∠DC∠AB 且DC=AB ,∠E 、F 分别为AB 、CD 的中点,∠BE=12AB ,DF=12CD ,∠DF∠BE 且DF=BE ,∠四边形EBFD 为平行四边形,∠DE=BF.21.(本题满分8分)第 19 页 共 25 页在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B 处测得办公楼底部D 处的俯角是53°,从综合楼底部A 处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,,1.73)【解析】∠在B 处测得D 处的俯角为53°,∠∠BDA=53°,在Rt∠BAD 中,tan∠BDA=BA AD ,∠AD =24tan53°,在Rt∠CAD 中,tan∠CAD=CD AD ,且∠CAD=30°,CD =√3∠10.4CD =≈米 22.(本题满分8分)随着我国科技事业的不断发展,国产无人机大量进入快递行业,现有A ,B 两种型号的无人机都被用来送快递,A 型机比B 型机平均每小时多运送20件,A 型机运送700件所有时间与B 型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?【解析】设B 型机每小时运送x 件,则A 型机每小时运送x+20件根据题意可得700x+20=500x ,解之可得x =50,经检验x =50是方程的根,也符合实际意义,∠A 型机每小时运送70件,B 型机每小时运送50件23.为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩为:A (优秀)、B (优良)、C (合格)、D (不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制成了如下统计图(1)本次抽样调查的样本容量是,请补全条形统计图;第 20 页 共 25 页(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;(3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.【解析】(1)100,补全图形如下:(2)作出树状图如下所示:随机回访两位竞赛成绩合格的同学共20种情况,其中一男一女共12种情况,所以恰好回访到一男一女的概率为1220=35(3)2000×0.35=700人,估计该校竞赛成绩“优秀”人数为700人第 21 页 共 25 页24.函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.结合自己已有的学习经验,画出函数284xy x =-+的图象,并探究其性质. 列表如下:(3)直接写出表中a ,b 的值,并在平面直角坐标系中画出该函数的图象;(4)观察函数284xy x =-+的图象,判断下列关于该函数性质的命题: ∠当22x -≤≤时,函数图象关于直线y x =对称; ∠2x =时,函数有最小值,最小值为-2 ∠11x -<<时,函数y 的值随x 的增大而减小. 其中正确的是 (请写出所有正确命题的番号) (3)结合图象,请直接写出不等式2844xx >+的解集为 .第 22 页 共 25 页【解析】(1)作出函数图象如图所示(2)∠∠ (3)将不等式284x x x >+两边同时乘以-1可得284xx x -<-+可得不等式的解集为 2x <-或02x <<25.(本题满分12分)如图,点D 在以AB 为直径的∠O 上,过D 作∠O 的切线交AB 的延长线于点C ,AE∠CD 于点E ,交∠O 于点F ,连接AD ,FD. (4)求证:∠DAE=∠DAC ; (5)求证:DF·AC=AD·DC ; (6)若sin∠C=14,AD=,求EF 的长.第 23 页 共 25 页【解析】(1)连接OD ,∠DC 为∠O 的切线,∠OD∠CD ,即∠ODC=90° ∠AE∠CD ,∠∠AED=90°,∠∠AED=∠ODC=90°,∠AE∠OD ,∠∠ODA=∠DAE 又∠OD=OA=r ,∠∠ODA=∠DAC ,∠∠DAE=∠DAC(2)证明:连接BD ,设∠DAE=α,又(1)可知∠CAD=∠DAE=α,∠AB 为∠O 的直径,∠∠ADB=90°,在Rt∠ADB 中,∠BAD+∠ABD=90°,∠∠ABD=90°-α, 又∠四边形ABDF 为∠O 的内接四边形,∠∠AFD+∠ABD=180°,∠∠AFD=90°+α ∠∠CDO=90°,∠∠ADC=90°+α在∠AFD 和∠ADC 中有∠AFD=∠ADC ,∠FAD=∠DAC ,∠∠AFD∠∠ADC ∠DFDC =AD AC,即DF·AC=AD·DC(3)设OD=x ,在Rt∠COD 中sin∠C=14,∠OC=4x ,根据勾股定理可得CD=√15x ,∠OA 、OB 、OD 均为∠O 的半径,∠OA=x ,∠OD∠AE ,∠∠COD∠∠CAE ,∠ODAE =OCCA =CDCE ,∠AE=54x ,CE =5√154x ,故DE =√154x . 由(2)可知∠AFD∠∠ADC ,∠AD AC =AF AD ,且AD =4√10,可得AF =32x在Rt∠ADE 中,AE 2+DE 2=AD 2,∠2516x 2+1516x 2=160,∠x =8∠AF =32x=4,AE =54x =10,∠EF=AE -AF=10-4=626.(本题满分14分)第 24 页 共 25 页如图,抛物线(x 1)(x a)y =+-(其中1a >)与x 轴交于A 、B 两点,交y 轴于点C. (4)直接写出∠OCA 的度数和线段AB 的长(用a 表示);(5)若点D 为∠ABC 的外心,且∠BCD 与∠ACO4,求此抛物线的解析式;(6)在(2)的前提下,试探究抛物线(x 1)(x a)y =+-上是否存在一点P ,使得∠CAP=∠DBA ?若存在,求出点P 的坐标;若不存在,请说明理由.【解析】(1)A (a ,0),C (0,-a ),可得OC=OA=a ,∠∠AOC 为等腰直角三角形,∠∠OCA=45°, AB=a+1.(2)∠D 为∠ABC 的外心,∠∠BAC 为∠D 中弧BC 所对的圆周角,∠BDC 为弧BC 所对圆心角,∠∠BDC=2∠BAC=90°,∠∠BDC 和∠AOC 均为等腰直角三角形,故∠BCD∠∠ACO ∠∠BCD 与∠ACO 的周长之比等于相似比,记∠D 半径为R ,∠Ra =√104,∠R =√104a ∠在等腰直角∠BCD 中,BC =√1+a 2,且BC =√2R ,∠R =√1+a2√2第 25 页 共 25 页∠√1+a 2√2=√104a ,解得a 2=4,又a >1,∠a=2,,故二次函数的解析式为y =x 2−x −2(3)当P 在AC 下方时,∠CBD=∠CAD=45°,且∠CAP=∠DBA ,∠∠PAO=∠CBO. tan∠CBO=2,作PF∠x 轴于F ,∠2PFAF=,设AF=m ,则PF=2m ,∠(2,2)P m m --代入二次函数可得1m =,∠(1,2)P -当P 在AC 上方时,作(1,2)-关于直线2y x =-对称点(0,1)M -,∠直线AM 的方程为112y x =-,联立112(1)(2)y x y x x ⎧=-⎪⎨⎪=+-⎩得1212,2x x ==-,∠此时P 点横坐标为12-,将12-代入抛物线可得,P 点纵坐标为54-,所以此时P 15(,)24-- 综上所述,存在P 点的坐标为(1,2)-和15(,)24--。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的边长均为 1 个单位长度),若以该三角形一边为公共边画一个新三角形与原来的直角 三角形一起组成一个等腰三角形,要求新三角形与原来的直角三角形除了有一条公共边 外,没有其它的公共点,新三角形的顶点不一定在格点上,那么符合要求的新三角形有 ()
A.4 个
B.6 个
C.7 个
D.9 个
考点:等腰三角形的判定。
x2=12.
所以方格纸的面积是 12,
故选 B.
点评:本题考查识图能力,关键看到灰色三角形的面积等于正方形方格纸的面积减去周围三
个三角形的面积得解.
2. (2011 湖北潜江,7,3 分)如图,在 6×6 的方格纸中,每个小方格都是边长为 1 的正
方形,其中 A、B、C 为格点.作△ ABC 的外接圆⊙O,则弧 AC 的长等于( )
A.2
B.3
C.4
D.5
考点:三角形的面积.
分析:根据三角形 ABC 的面积为 2,可知三角形的底边长为 4,高为 1,或者底边为 2,高
为 2,可通过在正方形网格中画图得出结果. 解答:解:C 点所有的情况如图所示:故选 C.
点评:本题考查了三角形的面积的求法,此类题应选取分类的标准,才能做到不遗不漏,难 度适中. 7. (2011 福建厦门,5,3 分)如图,在正方形网格中,将△ ABC 绕点 A 旋转后得到△ ADE, 则下列旋转方式中,符合题意的是( )
即∠ AOC=90°,
由勾股定理,得 OA= 22 12 = 5 ,
∴ 弧 AC 的长= 9选 D.
点评:本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长= n • • r . 180
3. (2011•西宁)如图,△ DEF 经过怎样的平移得到△ ABC( )
点评:此题考查三角形相似判定定理及勾股定理的应用,解题的关键是利用勾股定理求得原三角形的三边
长.
6. (2011 福建福州,10,4 分)如图,在长方形网格中,每个小长方形的长为 2,宽为 1,
A.B 两点在网格格点上,若点 C 也在网格格点上,以 A.B.C 为顶点的三角形面积为 2,
则满足条件的点 C 个数是( )
D、14
考点:一元二次方程的应用。
专题:网格型。
分析:可设方格纸的边长是 x,灰色三角形的面积等于方格纸的面积减去周围三个直角三角
形的面积,列出方程可求解.
解答:解:方格纸的边长是 x, 1 2
x2﹣ 1 •x• 1 x﹣ 1 • 1 x• 3 x﹣ 1 •x• 1 x= 21 2 2 22 4 2 4 4
(2012 年 1 月最新最细)2011 全国中考真题解析 120 考点汇编
网格专题
一、选择题 1. (2011•台湾 20,4 分)如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网
格线的交点上,若灰色三角形面积为 21 平方公分,则此方格纸的面积为多少平方公分 4
()
A、11
B、12
C、13
A. 3 4
B. 5 4
C. 3 2
D. 5 2
考点:弧长的计算;勾股定理;勾股定理的逆定理;圆周角定理。
专题:网格型。
分析:求弧 AC 的长,关键是求弧所对的圆心角,弧所在圆的半径,连接 OC,由图形可知
OA⊥OC,即∠ AOC=90°,由勾股定理求 OA,利用弧长公式求解.
解答:解:连接 OC,由图形可知 OA⊥OC,
A、顺时针旋转 90°
B、逆时针旋转 90°
C、顺时针旋转 45°
D、逆时针旋转 45°
考点:旋转的性质。
分析:此题根据给出的图形先确定出旋转中心,再确定出旋转的方向和度数即可求出答案.
解答:解:根据图形可知:将△ ABC 绕点 A 逆时针旋转 90°可得到△ ADE.
故选 B.
点评:本题主要考查旋转的性质,在解题时,一定要明确三个要素:旋转中心、旋转方向、
A、把△ DEF 向左平移 4 个单位,再向下平移 2 个单位 4 个单位,再向下平移 2 个单位
C、把△ DEF 向右平移 4 个单位,再向上平移 2 个单位
B、把△ DEF 向右平移 D、把△ DEF 向左平移
4 个单位,再向上平移 2 个单位 考点:平移的性质。 专题:常规题型。 分析:根据网格图形的特点,结合图形找出对应点的平移变换规律,然后即可选择答案. 解答:解:根据图形,△ DEF 向左平移 4 个单位,向下平移 2 个单位,即可得到△ ABC. 故选 A. 点评:本题考查了平移变换的性质以及网格图形,准确识别图形是解题的关键. 4.(2011 湖北十堰,9,3 分)如图,在网格中有一个直角三角形(网格中的每个小正方形
旋转角度.
8. (2011 甘肃兰州,4,4 分)如图,A、B、C 三点在正方形网格线的交点处,若将△ACB
绕着点 A 逆时针旋转得到△AC’B’,则 tanB’的值为( )
A. 1 2
B. 1 3
C. 1 4
D. 2 4
B’
C’
C
A
B
考点:锐角三角函数的定义;旋转的性质. 分析:过 C 点作 CD⊥AB,垂足为 D,根据旋转性质可知,∠B′=∠B,把求 tanB′的问 题,转化为在 Rt△BCD 中求 tanB. 解答:解:过 C 点作 CD⊥AB,垂足为 D.
角三角形一起组成一个等腰三角形,故 3×2=6,同时,还可以以原直角三角形斜边为
腰画出一个新三角形与原来的直角三角形一起组成一个等腰三角形,∴ 符合要求的新
三角形有 7 个,
故选 C. 点评:本题主要考查了等腰三角形的定义,同时需要认真分析,避免遗漏,难度适中. 5.(2011 广东深圳,7,3 分)如图,小正方形的边长均为 1,则下列图中的三角形(阴影部分)与△ABC
相似的是( )
A、
B、
C、
D、
考点:相似三角形的判定;勾股定理.
专题:网格型.
分析:本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.
解答:解:已知给出的三角形的各边分别为 2 、2、 10 、
只有选项 B 的各边为 1、 2 、 5 与它的各边对应成比例.
故选 B.
专题:应用题;网格型。
分析:根据题意进行分析可知:以原三角形每条边为底边分别可以画出两个新三角形与原来
的直角三角形一起组成一个等腰三角形即有 6 个,以原直角三角形斜边为腰画出一个
新三角形与原来的直角三角形一起组成一个等腰三角形,从而得出结论.
解答:解:根据题意可知:以原三角形每条边为底边分别可以画出两个新三角形与原来的直
相关文档
最新文档