黑龙江鸡西中考数学试卷及答案(wo
2021年黑龙江省牡丹江鸡西地区朝鲜族学校中考数学真题解析版.docx
2021年黑龙江省牡丹江市、鸡西市朝鲜族学校联合体中考数学试卷一、选择题(每小题3分,共30分。
)1.下列运算正确的是()A.- 3 - 2= - 1B. 3X ( - A)2= - A3 3C. x3*x5=x15D. Va,Vab=tz Vb2.下列图形中,既是轴对称图形,又是中心对称图形的是()3.由若干个完全相同的小立方块搭成的几何体的左视图和俯视图如图所示,则搭成该几何体所用的小立方块的个数可能是()左视图俯视图A. 4个B. 5个C. 7个D. 8个4.从小到大的一组数据-1, 1, 2, x, 6, 8的中位数为2,则这组数据的众数和平均数分别是()A. 2, 4B. 2, 3C. 1, 4D. 1, 35.关于x的一元二次方程顷-3) x2+m2x=9x+5化为一般形式后不含一次项,则m的值为()A. 0B. ±3C. 3D. - 36.如图,在平面直角坐标系中,矩形的顶点A在双曲线 >=-旦(x<0)上,点C,x 。
在y轴的正半轴上,点E在上,CE=2BE,连接DE并延长,交x轴于点F,连接CF,则的面积为()2 27.若关于x的分式方程丝立=3的解是非负数,则。
的取值范围是()x-2A. b乂4B. DW6 且力夭4C. b<6且力尹4D. b<68.如图,在△ABC中,ZACB=90°,点。
在AB的延长线上,连接CZ),若AB=2BD,tanZBCD=-2,则匹的值为()2 29.大课间,12人跳绳队为尊重每个队员的意愿,准备把队员分成跳大绳组或跳小绳组,大绳组3人一组,小绳组2人一组,在全队同学能同时参加活动且符合小组规定人数的前提下,则不同的分组方法有()A. 1种B. 2种C. 3种D. 4种10.如图,矩形ABCD的边CD上有一点E, ZDAE=22.5° , EF±AB,垂足为F,将绕着点F顺时针旋转,使得点A的对应点M落在EF上,点E恰好落在点B处,连接BE.下列结论:®BM±AE;②四边形EFBC是正方形;③NEBM=30°;④S四边形BCEM:S^BFM=(2行+1): 1.其中结论正确的序号是()二、填空题:(每小题3分,共30分。
鸡西省中考数学试卷真题
鸡西省中考数学试卷真题一、选择题1. (3a - 4b)²的展开式是:A) 9a² - 24ab + 16b²B) 9a² + 24ab + 16b²C) 9a² - 16ab - 24b²D) 9a² + 16ab - 24b²2. 已知三角形ABC中,∠A=90°,边长a=4,边长c=5,则sinB的值是:A) 3/5B) 4/5C) 1/3D) 2/33. 若log5x = 2,则x的值为:A) 1/25B) 5C) 25D) 1004. 甲、乙两种商品的原价比是2:3,现在乙商品打7折,若甲商品降价10%,则两种商品的价格相同,那么甲商品的现价是原价的几成?A) 72%B) 75%C) 80%D) 88%5. 已知直角三角形中,斜边为10,一直角边为6,则另一直角边的长度为多少?A) 4√7B) 5√2C) 6√2D) 6√3二、填空题6. 设m是一个正整数,若:(5m - 2) ÷ 8 = 3 + 1/8,则m的值是____。
7. 已知函数y = 3x² - 4x - 5,若x = 2,则y的值是____。
8. 若16 ÷ (a ÷ 4) = 8,则a的值是____。
三、解答题9. 一辆汽车从A地到B地的距离为180km,A、B两地之间的路程分为AB两段,第一段路程为x(km),第二段路程为(x-10)(km)。
已知汽车先以每小时60km的速度行驶第一段路程,然后以每小时50km的速度行驶第二段路程。
如果汽车总共行驶了4小时,求第一段路程的长度x。
10. 求下列方程的解:2(x - 3) + 5 = 3x - 11完成以上数学题后,请完成以下评价题:四、评价题1. 选择这套数学试卷的难易程度:A) 非常简单B) 稍微有难度C) 适中D) 较难2. 您觉得这套数学试卷的命题是否合理?A) 是B) 否3. 您对本次数学试卷的满意程度如何?A) 非常满意B) 比较满意C) 一般满意D) 不满意4. 请针对本次数学试卷提出您的宝贵建议:答题完毕。
鸡西市重点中学2024届中考联考数学试题含解析
鸡西市重点中学2024届中考联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.(2011•黑河)已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,现有下列结论:①b 2﹣4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,则其中结论正确的个数是( )A 、2个B 、3个C 、4个D 、5个2.﹣2018的绝对值是( )A .±2018B .﹣2018C .﹣12018D .2018 3.计算:()()223311a a a ---的结果是( ) A .()21a x - B .31a -. C .11a - D .31a + 4.如图,线段AB 两个端点的坐标分别为A(4,4),B(6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( )A .(2,2),(3,2)B .(2,4),(3,1)C .(2,2),(3,1)D .(3,1),(2,2)5.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )A.2人B.16人C.20人D.40人6.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx -k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=2AE2;④S△ABC=4S△ADF.其中正确的个数有()A.1 B.2 C.3 D.48.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+319.在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C .D .10.一元二次方程x 2+kx ﹣3=0的一个根是x=1,则另一个根是( )A .3B .﹣1C .﹣3D .﹣2二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:24xy x -=____12.分解因式:3x 2-6x+3=__.13.如图,在直角三角形ABC 中,∠ACB=90°,CA=4,点P 是半圆弧AC 的中点,连接BP ,线段即把图形APCB (指半圆和三角形ABC 组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.14.化简:18=_____. 15.如图,已知点E 是菱形ABCD 的AD 边上的一点,连接BE 、CE ,M 、N 分别是BE 、CE 的中点,连接MN ,若∠A=60°,AB=4,则四边形BCNM 的面积为_____.16.已知二次函数f(x)=x 2-3x+1,那么f(2)=_________.三、解答题(共8题,共72分)17.(8分)如图1,在长方形ABCD 中,12AB cm =,BC 10cm =,点P 从A 出发,沿A B C D →→→的路线运动,到D 停止;点Q 从D 点出发,沿D C B A →→→路线运动,到A 点停止.若P 、Q 两点同时出发,速度分别为每秒lcm 、2cm ,a 秒时P 、Q 两点同时改变速度,分别变为每秒2cm 、54cm (P 、Q 两点速度改变后一直保持此速度,直到停止),如图2是APD ∆的面积2()s cm 和运动时间x (秒)的图象.(1)求出a 值;(2)设点P 已行的路程为1()y cm ,点Q 还剩的路程为2()y cm ,请分别求出改变速度后,12,y y 和运动时间x (秒)的关系式;(3)求P 、Q 两点都在BC 边上,x 为何值时P ,Q 两点相距3cm ?18.(8分)如图,抛物线2y a(x 1)4=-+与x 轴交于点A ,B ,与轴交于点C ,过点C 作CD ∥x 轴,交抛物线的对称轴于点D ,连结BD ,已知点A 坐标为(-1,0). 求该抛物线的解析式;求梯形COBD 的面积.19.(8分)先化简,再求值:(1+211x -)÷2221x x x ++,其中x=2+1. 20.(8分)在平面直角坐标系中,抛物线y =(x ﹣h )2+k 的对称轴是直线x =1.若抛物线与x 轴交于原点,求k 的值;当﹣1<x <0时,抛物线与x 轴有且只有一个公共点,求k 的取值范围. 21.(8分)如图,AC 是O 的直径,点B 是O 内一点,且BA BC =,连结BO 并延长线交O 于点D ,过点C 作O 的切线CE ,且BC 平分DBE ∠.()1求证:BE CE =;()2若O 的直径长8,4sin BCE 5∠=,求BE 的长.22.(10分)如图,四边形AOBC 是正方形,点C 的坐标是(2,0).正方形AOBC 的边长为 ,点A 的坐标是 .将正方形AOBC 绕点O 顺时针旋转45°,点A ,B ,C 旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P 从点O 出发,沿折线OACB 方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).23.(12分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=3,DH=1,∠OHD=80°,求∠BDE的大小.24.如图,已知AB是⊙O的弦,C是AB的中点,AB=8,AC= 25,求⊙O半径的长.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:①根据图示知,二次函数与x轴有两个交点,所以△=b2-4ac>0;故①正确;②根据图示知,该函数图象的开口向上,∴a>0;故②正确;=1,③又对称轴x=-b2a∴b<0,2a∴b<0;故本选项错误;④该函数图象交于y轴的负半轴,∴c<0;故本选项错误;⑤根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.所以①②⑤三项正确.故选B.2、D【解题分析】分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.-=.详解:﹣2018的绝对值是2018,即20182018故选D.点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.3、B【解题分析】根据分式的运算法则即可求出答案.【题目详解】解:原式=()23-31a a -=()23-11a a -() =31a - 故选;B【题目点拨】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.4、C【解题分析】 直接利用位似图形的性质得出对应点坐标乘以12得出即可. 【题目详解】解:∵线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD , ∴端点的坐标为:(2,2),(3,1).故选C .【题目点拨】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.5、C【解题分析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.【题目详解】 400×2201216102=+++人. 故选C .【题目点拨】考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.6、B【解题分析】试题分析:当x 1<x 2<0时,y 1>y 2,可判定k >0,所以﹣k <0,即可判定一次函数y=kx ﹣k 的图象经过第一、三、四象限,所以不经过第二象限,故答案选B .考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系.7、C【解题分析】①图中有3个等腰直角三角形,故结论错误;②根据ASA 证明即可,结论正确;③利用面积法证明即可,结论正确;④利用三角形的中线的性质即可证明,结论正确.【题目详解】∵CE ⊥AB ,∠ACE=45°,∴△ACE 是等腰直角三角形,∵AF=CF ,∴EF=AF=CF ,∴△AEF ,△EFC 都是等腰直角三角形,∴图中共有3个等腰直角三角形,故①错误,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC ,∴∠EAH=∠BCE ,∵AE=EC ,∠AEH=∠CEB=90°,∴△AHE ≌△CBE ,故②正确,∵S △ABC =12BC•AD=12AB•CE ,AE ,AE=CE ,∴CE 2,故③正确,∵AB=AC ,AD ⊥BC ,∴BD=DC ,∴S △ABC =2S △ADC ,∵AF=FC ,∴S △ADC =2S △ADF ,∴S △ABC =4S △ADF .故选C .【题目点拨】本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.8、C【解题分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为1 2 n(n+1)和12(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【题目详解】∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【题目点拨】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9、A【解题分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集.2(1–x)<4去括号得:2﹣2x<4移项得:2x>﹣2,系数化为1得:x>﹣1,故选A.“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.10、C【解题分析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.【考点】根与系数的关系;一元二次方程的解.二、填空题(本大题共6个小题,每小题3分,共18分)11、x(y+2)(y-2)【解题分析】原式提取x ,再利用平方差公式分解即可.【题目详解】原式=x (y 2-4)=x (y+2)(y-2),故答案为x (y+2)(y-2).【题目点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12、3(x-1)2【解题分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【题目详解】()()22236332131x x x x x -+=-+=-.故答案是:3(x-1)2.【题目点拨】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13、4【解题分析】连接OP OB 、,把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为BOP △的面积的2倍.【题目详解】解:连接OP 、OB ,∵图形BAP 的面积=△AOB 的面积+△BOP 的面积+扇形OAP 的面积,图形BCP 的面积=△BOC 的面积+扇形OCP 的面积−△BOP 的面积,又∵点P 是半圆弧AC 的中点,OA =OC ,∴扇形OAP 的面积=扇形OCP 的面积,△AOB 的面积=△BOC 的面积,∴两部分面积之差的绝对值是2 4.BOP S OP OC =⋅=点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.14、24 【解题分析】 直接利用二次根式的性质化简求出答案. 【题目详解】111284822===,故答案为24. 【题目点拨】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.15、33【解题分析】 如图,连接BD .首先证明△BCD 是等边三角形,推出S △EBC =S △DBC =34×42=43,再证明△EMN ∽△EBC ,可得EMN EBC S S ∆∆=(MN BC )2=14,推出S △EMN =3,由此即可解决问题. 【题目详解】解:如图,连接BD .∵四边形ABCD 是菱形,∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD ∥BC ,∴△BCD 是等边三角形,∴S △EBC =S △DBC 3423 ∵EM=MB ,EN=NC ,∴MN ∥BC ,MN=12BC , ∴△EMN ∽△EBC ,∴EMN EBC S S ∆∆=(MN BC )2=14, ∴S △EMN,∴S 阴故答案为【题目点拨】本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16、-1【解题分析】根据二次函数的性质将x=2代入二次函数解析式中即可.【题目详解】f(x)=x 2-3x+1∴ f(2)= 22-3⨯2+1=-1.故答案为-1.【题目点拨】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.三、解答题(共8题,共72分)17、(1)6;(2)126y x =-;259524y x =-;(3)10或15413; 【解题分析】(1)根据图象变化确定a 秒时,P 点位置,利用面积求a ;(2)P 、Q 两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒;(3)以(2)为基础可知,两个点相距3cm 分为相遇前相距或相遇后相距,因此由(2)可列方程.【题目详解】(1)由图象可知,当点P 在BC 上运动时,△APD 的面积保持不变,则a 秒时,点P 在AB 上. 110302AP ⨯=, ∴AP=6,则a=6;(2)由(1)6秒后点P 变速,则点P 已行的路程为y 1=6+2(x ﹣6)=2x ﹣6,∵Q 点路程总长为34cm ,第6秒时已经走12cm ,故点Q 还剩的路程为y 2=34﹣12﹣5595(6)424x x -=-; (3)当P 、Q 两点相遇前相距3cm 时,59524x -﹣(2x ﹣6)=3,解得x=10, 当P 、Q 两点相遇后相距3cm 时,(2x ﹣6)﹣(59524x -)=3,解得x=15413, ∴当x=10或15413时,P 、Q 两点相距3cm 【题目点拨】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系.列函数关系式时,要考虑到时间x 的连续性才能直接列出函数关系式.18、(1)2y (x 1)4=--+(2)()OCDA 133S 62+⨯==梯形 【解题分析】(1)将A 坐标代入抛物线解析式,求出a 的值,即可确定出解析式.(2)抛物线解析式令x=0求出y 的值,求出OC 的长,根据对称轴求出CD 的长,令y=0求出x 的值,确定出OB 的长,根据梯形面积公式即可求出梯形COBD 的面积.【题目详解】(1)将A (―1,0)代入2y a(x 1)4=-+中,得:0=4a+4,解得:a=-1.∴该抛物线解析式为2y (x 1)4=--+.(2)对于抛物线解析式,令x=0,得到y=2,即OC=2,∵抛物线2y (x 1)4=--+的对称轴为直线x=1,∴CD=1.∵A (-1,0),∴B (2,0),即OB=2.∴()OCDA 133S 62+⨯==梯形.19、11x x +-, 【解题分析】运用公式化简,再代入求值.【题目详解】原式=2222211(1) ()?11x xx x x-++--=222(1)•(1)(1)x xx x x+ -+=11xx+-,当+1时,原式1=+【题目点拨】考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法.20、(1)k=﹣1;(2)当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【解题分析】(1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当﹣1<x<2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.【题目详解】解:(1)∵抛物线y=(x﹣h)2+k的对称轴是直线x=1,∴h=1,把原点坐标代入y=(x﹣1)2+k,得,(2﹣1)2+k=2,解得k=﹣1;(2)∵抛物线y=(x﹣1)2+k与x轴有公共点,∴对于方程(x﹣1)2+k=2,判别式b2﹣4ac=﹣4k≥2,∴k≤2.当x=﹣1时,y=4+k;当x=2时,y=1+k,∵抛物线的对称轴为x=1,且当﹣1<x<2时,抛物线与x轴有且只有一个公共点,∴4+k>2且1+k<2,解得﹣4<k<﹣1,综上,当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【题目点拨】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.21、(1)证明见解析;(2)25BE 6=. 【解题分析】 ()1先利用等腰三角形的性质得到BD AC ⊥,利用切线的性质得CE AC ⊥,则CE ∥BD ,然后证明13∠=∠得到BE=CE ;()2作EF BC ⊥于F ,如图,在Rt △OBC 中利用正弦定义得到BC=5,所以1522BF BC ==,然后在Rt △BEF 中通过解直角三角形可求出BE 的长.【题目详解】()1证明:BA BC =,AO CO =, BD AC ∴⊥,CE 是O 的切线,CE AC ∴⊥,CE //BD ∴,12∠∠∴=.BC 平分DBE ∠,23∠∠∴=,13∠∠∴=,BE CE ∴=;()2解:作EF BC ⊥于F ,如图,O 的直径长8,CO 4∴=.4OC sin 3sin 25BC∠∠∴===, BC 5∴=,BE CE =,15BF BC 22∴==, 在Rt BEF 中,EF 4sin 3sin 1BE 5∠∠===设EF 4x =,则BE 5x =,BF 3x ∴=,即53x 2=,解得5x 6=, 25BE 5x 6∴==. 故答案为(1)证明见解析;(2)256BE =. 【题目点拨】 本题考查切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了解直角三角形.22、(1)4,()22,22;(2)旋转后的正方形与原正方形的重叠部分的面积为16216-;(3)83t =. 【解题分析】(1)连接AB ,根据△OCA 为等腰三角形可得AD=OD 的长,从而得出点A 的坐标,则得出正方形AOBC 的面积; (2)根据旋转的性质可得OA′的长,从而得出A′C ,A′E ,再求出面积即可;(3)根据P 、Q 点在不同的线段上运动情况,可分为三种列式①当点P 、Q 分别在OA 、OB 时,②当点P 在OA 上,点Q 在BC 上时,③当点P 、Q 在AC 上时,可方程得出t .【题目详解】解:(1)连接AB ,与OC 交于点D ,四边形AOBC 是正方形,∴△OCA 为等腰Rt △,∴AD=OD=12OC=22, ∴点A 的坐标为()22,22.4,(22,22.(2)如图∵ 四边形AOBC 是正方形,∴ AOB 90∠=,AOC 45∠=.∵ 将正方形AOBC 绕点O 顺时针旋转45,∴ 点A '落在x 轴上.∴OA OA 4'==.∴ 点A '的坐标为()4,0.∵ OC =∴ A C OC OA 4=-=''.∵ 四边形OACB ,OA C B '''是正方形,∴ OA C 90∠''=,ACB 90∠=.∴ CA E 90∠'=,OCB 45∠=.∴ A EC OCB 45∠∠=='.∴ A E A C 4==''. ∵2ΔOBC AOBC 11S S 4822==⨯=正方形, ()2ΔA EC 11S A C A E 42422'=⋅==-''∴ΔOBC ΔA EC OA EBS S S ''=-=四边形 (82416--=.∴旋转后的正方形与原正方形的重叠部分的面积为16.(3)设t 秒后两点相遇,3t=16,∴t=163①当点P 、Q 分别在OA 、OB 时,∵POQ 90∠=,OP=t ,OQ=2t∴ΔOPQ 不能为等腰三角形②当点P 在OA 上,点Q 在BC 上时如图2,当OQ=QP,QM为OP的垂直平分线,OP=2OM=2BQ,OP=t,BQ=2t-4,t=2(2t-4),解得:t=83.③当点P、Q在AC上时,ΔOPQ不能为等腰三角形综上所述,当8t3时ΔOPQ是等腰三角形【题目点拨】此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.23、(1)详见解析;(2)∠BDE=20°.【解题分析】(1)根据已知条件易证BC∥DF,根据平行线的性质可得∠F=∠PBC;再利用同角的补角相等证得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出结论;(2)连接OD,先证明四边形DHBC是平行四边形,根据平行四边形的性质可得BC=DH=1,在Rt△ABC中,用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根据三角形外角的性质可得∠OAD=12∠DOC=20°,最后根据圆周角定理及平行线的性质即可求解.【题目详解】(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF 是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB ,∴∠PBC=∠PCB ,∴PC=PB ;(2)如图2,连接OD ,∵AC 是⊙O 的直径,∴∠ADC=90°,∵BG ⊥AD ,∴∠AGB=90°,∴∠ADC=∠AGB ,∴BG ∥DC ,∵BC ∥DE ,∴四边形DHBC 是平行四边形,∴BC=DH=1,在Rt △ABC 中,3tan ∠ACB=3AB BC ∴∠ACB=60°,∴BC=12AC=OD , ∴DH=OD ,在等腰△DOH 中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE 交AC 于N ,∵BC ∥DE ,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=12∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.【题目点拨】本题考查了圆内接四边形的性质、圆周角定理、平行四边形的判定与性质、等腰三角形的性质等知识点,解决第(2)问,作出辅助线,求得∠ODH=20°是解决本题的关键.24、5【解题分析】试题分析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,在△ACD中,利用勾股定理求得CD=2,在△OAD中,由OA2=OD2+AD2,代入相关数量求解即可得.试题解析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,在△ACD中,CD2+AD2=AC2,CD=2,在△OAD中,OA2=OD2+AD2,r2=(r-2)2+16,解得r=5,∴☉O的半径为5.。
2010-2023历年初中毕业升学考试(黑龙江鸡西卷)数学(带解析)
2010-2023历年初中毕业升学考试(黑龙江鸡西卷)数学(带解析)第1卷一.参考题库(共12题)1.先化简:并任选一个你喜欢的数a代入求值.2.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.3. 已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF 绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3.这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,,,又有怎样的数量关系?请写出你的猜想,不需证明.4.如图,Rt△ABC中,∠ACB=90°,直线EF∥BD,交AB于点E,交AC于点G,交AD于点F,若,则= .5.已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为.6.如图,△ABC中,CD⊥AB于D,一定能确定△ABC为直角三角形的条件的个数是()①∠1=∠②③∠+∠2=90°④=3:4:5 ⑤A.1B.2C.3D.47.如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,则这段弯路的半径是 m.8.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法得△OCP≌△ODP的根据是()A.SASB.ASAC.AASD.SSS9.五一期间,某商场推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了折优惠.10.为了加快3G网络建设,电信运营企业将根据各自发展规划,今明两年预计完成3G投资2800亿元左右,请将2800亿元用科学记数法表示为元.11.甲乙两车同时从A地前往B地.甲车先到达B地,停留半小时后按原路返回.乙车的行驶速度为每小时60千米.下图是两车离出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)请直接写出A、B两地的距离与甲车从A到B的行驶速度.(2)求甲车返回途中y与x的函数关系式,并写出自变量x的取值范围.(3)两车相遇后多长时间乙车到达B地?12.下列图形中既是轴对称图形又是中心对称图形的是()第1卷参考答案一.参考题库1.参考答案:,12.参考答案:32 m或20+m或m3.参考答案:见解析4.参考答案:5.参考答案:1,3,5或2,3,46.参考答案:C7.参考答案:2508.参考答案:D9.参考答案:九10.参考答案:11.参考答案:(1)450千米(2),(3)1.5 小时12.参考答案:B。
黑龙江省牡丹江、鸡西地区2020年数学中考试题及答案
牡丹江、鸡西地区2020年数学中考试题一、选择题(每小题 3分,共 36分)1.下列图形中,既是轴对称图形又是中心对称图形的有( )A. 1个B. 2个C. 3个D. 4个2.下列运算正确的是( ) A. (a +b )(a -2b )=a 2-2b 2 B. 2211()24a a -=-C. -2(3a -1)=-6a +1D. (a +3)(a -3)=a 2-93.如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是( )A. B. C. D.4.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( ) A.13B.49C.35D.235.一组数据4,4,x ,8,8有唯一的众数,则这组数据的平均数是( ) A.285B.325或5 C.285或325 D. 56.如图,在△ABC 中,sinB=13, tanC=2,AB=3,则AC 的长为( )A.2B.5 C.5 D. 27.如图,点,,A B S 在圆上,若弦AB 2倍,则ASB ∠的度数是( ).A. 22.5°B. 30°C. 45°D. 60°8.若21ab=⎧⎨=⎩是二元一次方程组3522ax byax by⎧+=⎪⎨⎪-=⎩的解,则x+2y的算术平方根为()A. 3 B. 3,-3 C. 3 D. 3,-39.如图,在菱形OABC中,点B在x轴上,点A的坐标为(2,23),将菱形绕点O旋转,当点A落在x 轴上时,点C的对应点的坐标为()A. (22)3--,或(23,2)- B. (2,23)C. (2,23)- D. (22)3--,或(2,23)10.若关于x的分式方程21mx x=-有正整数解,则整数m的值是()A. 3B. 5C. 3或5D. 3或411.如图,A,B是双曲线kyx=上的两个点,过点A作AC⊥x轴,交OB于点D,垂足为C,若△ODC的面积为1,D为OB的中点,则k的值为()A.34B. 2C. 4D. 812.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为12x=,且经过点(2,0). 下列说法:①abc<0;②-2b+c=0;③4a+2b+c<0;④若15()2y-,,25()2y,是抛物线上的两点,则y1<y2;⑤14b>m(am+b) (其中m ≠12).其中说法正确的是( )A. ①②④⑤B. ①②④C. ①④⑤D. ③④⑤二、填空题(每小题3分,共24分)13.一周时间有604800秒,604800用科学记数法表示为______.14.如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件____,使四边形ABCD 是平行四边形(填一个即可).15.在函数21y x =-中,自变量x 的取值范围是_______. 16.“元旦”期间,某商店单价为130元的书包按八折出售可获利30%,则该书包的进价是____元. 17.将抛物线y =(x -1)2-5关于y 轴对称,再向右平移3个单位长度后顶点的坐标是_____.18.如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……按此规律排列下去,第9个图形中圆的个数是___个.19.5O 中,弦AB 垂直于弦CD ,垂足为P ,AB=CD=4,则S △ACP =______.20.正方形ABCD 中,点E 在边AD 上,点F 在边CD 上,若∠BEF=∠EBC ,AB=3AE ,则下列结论:①DF=FC ;②AE+DF=EF ;③∠BFE=∠BFC ;④∠ABE+∠CBF=45°;⑤∠DEF+∠CBF=∠BFC ;⑥ DF:DE:EF=3:4:5;⑦ BF:EF=35.其中结论正确的序号有_____.三、解答题(共60分)21.先化简,再求值:2221699332x x xx x x x++--÷-+其中x=1-2tan45°.22.已知抛物线y=a(x-2)2+c经过点A(-2,0)和点C(0,94),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出顶点D的坐标;(2)如图,点E,F分别在线段AB,BD上(点E不与点A,B重合),且∠DEF=∠DAB,DE=EF,直接写出线段BE的长.23.等腰三角形ABC中,AB=AC=4,∠BAC=45º,以AC为腰作等腰直角三角形ACD,∠CAD为90º,请画出图形,并直接写出点B到CD的距离.24.为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.25.A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车速度是_____千米/时,在图中括号内填入正确的数;(2)求图象中线段MN所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C市路程之和是460千米.26.∆ABC中,点D在直线AB上.点E在平面内,点F在BC的延长线上,∠E=∠BDC,AE=CD,∠EAB+∠DCF=180º.(1)如图①,求证AD+BC=BE ;(2)如图②、图③,请分别写出线段AD ,BC ,BE 之间的数量关系,不需要证明; (3)若BE ⊥BC ,tan ∠BCD=34,CD=10,则AD=______. 27.某商场准备购进A 、B 两种型号电脑,每台A 型号电脑进价比每台B 型号电脑多500元,用40 000元购进A 型号电脑的数量与用30 000元购进B 型号电脑的数量相同,请解答下列问题: (1)A ,B 型号电脑每台进价各是多少元?(2)若每台A 型号电脑售价为2 500元,每台B 型号电脑售价为1 800元,商场决定同时购进A ,B 两种型号电脑20台,且全部售出,请写出所获的利润y (单位:元)与A 型号电脑x (单位:台)的函数关系式,若商场用不超过36 000元购进A ,B 两种型号电脑,A 型号电脑至少购进10台,则有几种购买方案?(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A ,B 两种型号电脑捐赠给某个福利院,请直接写出捐赠A ,B 型号电脑总数最多是多少台.28.如图,在平面直角坐标系中,四边形OABC 的边OC 在x 轴上,OA 在y 轴上.O 为坐标原点,AB//OC ,线段OA ,AB 的长分别是方程x 2-9x +20=0的两个根(OA<AB ), tan ∠OCB=43.(1)求点B ,C 的坐标;(2)P 为OA 上一点,Q 为OC 上一点,OQ=5,将∆POQ 翻折,使点O 落在AB 上的点O '处,双曲线k y x=的一个分支过点O '.求k 的值;(3)在(2)的条件下,M 为坐标轴上一点,在平面内是否存在点N ,使以O ',Q ,M ,N 为顶点四边形为矩形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.参考答案1.B2.D3.A4.B5.C6.B7.C8.C9.D10.D11.D12.A13.56.04810⨯14.AD=BC(答案不唯一)15.12 x>16.8017.(2,-5)18.9219.12或32或9220.①②③④⑤⑥⑦.21.解:2221699 332x x xx x x x++--÷-+=21(3)23(3)(3)(3)x xx x x x x+-⨯-++-=12 33x x---=12+33x x --=33x -,当x=1-2tan45°=-1时,原式=34.22.(1)将点A(-2,0),C(0,94)代入y = a(x - 2)2 + c,得:160944a ca c+=⎧⎪⎨+=⎪⎩,解得:3163ac⎧=-⎪⎨⎪=⎩.∴抛物线的解析式为y=316-(x-2)2+3 .∴顶点D的坐标为(2,3).(2)∵A,B两点为抛物线与x轴两交点,D为坐标顶点,∴DA=DB,故∠DAB=∠DBA,∵DE=EF,∴∠EDF=∠EFD.∵∠EFD=∠FEB+∠EBD,∠DEF=∠DAB,∴∠EDF=∠FEB+∠DEF,∴∠BDE=∠BED,故BD=BE.∵A(-2,0),D(2,3),∴利用对称性可得B(6,0),经计算BD=5,故BE=5.23.本题有两种情况:(1)如图,∵ACD △是等腰直角三角形,90CAD ∠=︒, ∴45ACD ∠=︒, ∵45BAC ∠=︒, ∴//AB CD ,∴点B 到CD 的距离等于点A 到CD 的距离, 过点A 作AE CD ⊥, ∵4AB AC ==, ∴222AE ==, ∴点B 到CD 的距离为22; (2)如图:∵ACD △是等腰直角三角形,90CAD ∠=︒, ∴45ACD ∠=︒, ∵45BAC ∠=︒, ∴90AEC ∠=︒,∴点B 到CD 的距离即BE 的长, ∵4AB AC ==,∴222AE ==, ∴422BE AB AE =-=-,即点B 到CD 的距离为422-. 24.(1)本次接受问卷调查的学生有:3636%100÷=(名), 故答案为100;(2)喜爱C 的有:10082036630----=(人), 补全的条形统计图如右图所示;(3)扇形统计图中B 类节目对应扇形的圆心角的度数为:2036072100︒︒⨯=, 故答案为72︒; (4)82000160100⨯=(人), 答:该校最喜爱新闻节目的学生有160人.25.(1)由图象可知甲车在8t =时行驶到C 市,此时行驶的路程为480km ,故速度为48060km/h 8=, ∴乙车的行驶速度为:602080km/h +=, ∴乙车由C 市到A 市需行驶4806h 80=, ∴图中括号内的数为4610+=, 故答案为:60,10;(2)设线段MN 所在直线的解析式为 y = kt + b ( k ≠ 0 ) .把点M (4,0),N (10,480)代入y = kt + b ,得:4010480k b k b +=⎧⎨+=⎩,解得:80320k b =⎧⎨=-⎩,∴线段MN 所在直线的函数解析式为y = 80t -320.(3)若在乙车出发之前,即4t <时,则48060460t -=,解得13t =; 若乙车出发了且甲车未到C 市时,即48t <<时,则()48060804460t t -+-=,解得17t =(舍); 若乙车出发了且甲车已到C 市时,即8t >时,则()60480804460t t -+-=,解得9t =; 综上,甲车出发13小时或9小时时,两车距C 市的路程之和是460千米. 26.(1)证明:∵∠EAB+∠DCF=1800,∠BCD+∠DCF=1800,∴∠EAB=∠BCD ,∵∠E=∠BDC ,AE=CD ,∴△EAB ≌△DCB ,∴BE=BD , AB=BC ,∴AD+BC=AD+AB=BD=BE.(2)图②结论:BC -AD = BE ,证明如下:∵∠EAB+∠DCF=1800,∠BCD+∠DCF=1800,∴∠EAB=∠BCD ,∵∠E=∠BDC ,AE=CD ,∴△EAB ≌△DCB ,∴BE=BD , AB=BC ,∴BA -AD=BC -AD= BE ,即BC -AD=BE图③结论:AD -BC = BE.证明如下:∵∠EAB+∠DCF=1800,∠BCD+∠DCF=1800,∴∠EAB=∠BCD ,∵∠E=∠BDC ,AE=CD ,∴△EAB ≌△DCB ,∴BE=BD , AB=BC ,∴AD -AB=AD -BC= BD=BE ,即AD -AB=BE(3)如图②所示,作DG BC ⊥于G由(2)知△EAB ≌△DCB ,∴EBA ABC ∠=∠∵BE BC ⊥∴45EBA ABC ︒∠=∠=在Rt DCG 中,CD=10,3tan 4DG BCD GC ∠==,∴6,8,14DG GC BC === 在Rt BDG 中,6BG DG ==,62BD =∴1462AD AB BD BC BD =-=-=-如图③所示,作DH BC ⊥于H由(2)知△EAB ≌△DCB ,∴DBC EBA ∴DBE CBA HBD ∠=∠=∠∵BE BC ⊥∴45HBD DBE ︒∠=∠=在Rt DCH 中,CD=10,3tan 4DH BCD HC ∠==,∴6,8DH HC == 在Rt BDH 中,6BH DH ==,62BD = ∴8662262AD AB BD BC BD =+=+=-+=+综上所述:AD 的长度为14-2或 227.(1)设每台A 型号电脑进价为a 元.,则每台B 型号电脑进价为()500a -元, 由题意,得4000030000500a a =-,解得:a =2000, 经检验a =2000是原方程的解,且符合题意,2000-500=1500(元).答:每台A 型号电脑进价为2000元,每台B 型号电脑进价为1500元. (2)由题意,得 y =(2500-2000)x +(1800-1500)(20-x )=200x +6000,∵()20001500203600010x x x +-≤⎧⎪⎨≥⎪⎩,解得1012x ≤≤, ∵x 是整数,∴x =10,11,12,∴有三种方案.(3)∵利润2006000y x =+,随x 的增大而增大,∴当12x =时可获得最大利润,最大利润为2001260008400⨯+=(元),若要使捐赠A ,B 型号电脑总数尽可能多,则优先购买B 型号电脑,可购买5台, 所以捐赠A ,B 型号电脑总数最多5台.28.(1)解方程:x 2-9x +20=0,得x 1=4, x 2=5,∵OA <AB ,∴OA =4, AB =5,过点B 作BD ⊥OC 于点D ,∵tan ∠OCB =43,BD =OA =4,OD =AB =5, ∴CD =3,∴OC =8,∴点B 的坐标为(5,4),点C 的坐标为(8,0);(2)∵AB //OC , OQ =AB =5,∠AOQ =90º,∴四边形AOQB 为矩形,∴BQ =OA =4,由翻折,得OQ =O Q '=5,∴O B '=,∴A O '=2,∴O '(2, 4),∴248k =⨯=;(3)存在.①以O ',Q 为边时,点M 的坐标为50,2M ⎛⎫ ⎪⎝⎭或10,03M ⎛⎫- ⎪⎝⎭或150,4M ⎛⎫- ⎪⎝⎭,当点M 的坐标为50,2M ⎛⎫ ⎪⎝⎭时,点N 的坐标为13(3)2N -,;当点M 的坐标为10,03M ⎛⎫- ⎪⎝⎭时,点N 的坐标为21(4)3N --,;当点M 的坐标为150,4M ⎛⎫-⎪⎝⎭时,点N 的坐标为31(3)4N -,; ②以O ',Q 为对角线时,点M 的坐标为()2,0M ,此时点N 的坐标为4(5)N ,4,综上所述,点N 的坐标为:13(3)2N -,,21(4)3N --,,31(3)4N -,,4(5)N ,4.。
2024年黑龙江鸡西中考数学试题及答案
2024年黑龙江鸡西中考数学试题及答案考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、选择题(每小题3分,共30分)1. 下列计算正确的是( )A. 326a a a ⋅=B. ()527a a =C. ()339328a b a b -=-D.()()22a b a b a b -++=-【答案】C【解析】【分析】本题主要考查同底数幂的乘法,幂的乘方与积的乘方,平方差公式,运用相关运算法则求出各选项的结果后再进行判断即可.【详解】解:A 、3256a a a a ⋅=≠,故选项A 计算错误,此选项不符合题意;B 、()52107a a a =≠,故选项B 计算错误,此选项不符合题意;C 、()339328a b a b -=-,此选项计算正确,符合题意;D 、 ()()()()22a b a b b a b a b a -++=-+=-,故选项D 计算错误,此选项不符合题意;故选:C .2. 下列图形既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题主要考查了轴对称图形和中心对称图形,根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 选项不合题意;B、既是轴对称图形又是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不合题意;D、是轴对称图形,不是中心对称图形,故D选项不合题意.故选:B.3. 由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】根据三视图的知识,主视图是由4个小正方形组成,而左视图是由4个小正方形组成,故这个几何体的底层最少有3个小正方体,第2层最少有1个小正方体.【详解】解:根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选B.【点睛】本题考查了由三视图判断几何体,意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.4. 一组数据2,3,3,4,则这组数据的方差为()A. 1B. 0.8C. 0.6D. 0.5【答案】D【解析】【分析】本题主要考查了方差的计算,解题的关键是方差的计算公式的识记.根据方差的计算公式,先算出数据的平均数,然后代入公式计算即可得到结果.【详解】平均数为:()233443+++÷=方差为:()()()()222221233333434S ⎡⎤=⨯-+-+-+-⎣⎦()110014=⨯+++0.5=故选:D .5. 关于x 的一元二次方程()22420m x x -++=有两个实数根,则m 的取值范围是( )A. 4m ≤ B. 4m ≥ C. 4m ≥-且2m ≠ D. 4m ≤且2m ≠【答案】D【解析】【分析】本题考查了一元二次方程根的判别式.根据一元二次方程20(0)ax bx c a ++=≠的根的判别式24b ac ∆=-的意义得到20m -≠且0∆≥,即244(2)20m -⨯-⨯≥,然后解不等式组即可得到m 的取值范围.【详解】解: 关于x 的一元二次方程()22420m x x -++=有实数根,20m ∴-≠且0∆≥,即244(2)20m -⨯-⨯≥,解得:4m ≤,m ∴取值范围是4m ≤且2m ≠.故选:D .6. 已知关于x 的分式方程2333x x kx -=--无解,则k 的值为( )A. 2k =或1k =- B. 2k =- C. 2k =或1k = D. 1k =-【答案】A【解析】【分析】本题考查了解分式方程无解的情况,理解分式方程无解的意义是解题的关键.先将分式方程去分母,化为整式方程,再分两种情况分别求解即可.【详解】解:去分母得,2(3)3kx x --=-,整理得,(2)9k x -=-,的当2k =时,方程无解,当2k ≠时,令3x =,解得1k =-,所以关于x 的分式方程2333x x kx -=--无解时,2k =或1k =-.故选:A .7. 国家“双减”政策实施后,某班开展了主题为“书香满校园”的读书活动.班级决定为在活动中表现突出的同学购买笔记本和碳素笔进行奖励(两种奖品都买),其中笔记本每本3元,碳素笔每支2元,共花费28元,则共有几种购买方案( )A. 5B. 4C. 3D. 2【答案】B【解析】【分析】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.设购买x 支笔记本,y 个碳素笔,利用总价=单价⨯数量,即可得出关于x ,y 的二元一次方程,再结合x ,y 均为正整数,即可得出购买方案的个数.【详解】解:设购买x 支笔记本,y 个碳素笔,依题意得:3228x y +=,3142y x ∴=-.又x ,y 均为正整数,∴211x y =⎧⎨=⎩或48x y =⎧⎨=⎩或65x y =⎧⎨=⎩或82x y =⎧⎨=⎩,∴共有4种不同的购买方案.故选:B .8. 如图,双曲线()120y x x=>经过A 、B 两点,连接OA 、AB ,过点B 作BD y ⊥轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则AEB △的面积是( )A. 4.5B. 3.5C. 3D. 2.5【答案】A【解析】【分析】本题考查了反比例函数,相似三角形的判定与性质等知识,过点A 作AF BD ⊥,垂足为F ,设12,A a a ⎛⎫ ⎪⎝⎭,证明AFE ODE ∽,有AF AE EF OD OE DE ==,根据E 为AO 的中点,可得AF OD =,EF DE =,进而有1122EF DE DF a ===,162A AF OD y a ===,可得6B y OD a==,2B x a =,则有32BE BD DE a =-=,问题随之得解.【详解】如图,过点A 作AF BD ⊥,垂足为F ,设12,A a a ⎛⎫ ⎪⎝⎭,0a >,∵BD y ⊥轴,AF BD ⊥,∴AF y ∥轴,DF a =,∴AFE ODE ∽,∴AF AE EF OD OE DE==,∵E 为AO 的中点,∴AE OE =,∴1AF AE EF OD OE DE===,∴AF OD =,EF DE =∴1122EF DE DF a ===,162A AF OD y a ===,∵B OD y =,∴6B y OD a==,∴2B x a =,∴2B BD x a ==,∴32BE BD DE a =-=,∴11639 4.52222ABE S AF BE a a =⨯⨯=⨯⨯== ,故选:A .9. 如图,菱形ABCD 中,点O 是BD 的中点,AM BC ⊥,垂足为M ,AM 交BD 于点N ,2OM =,8BD =,则MN 的长为( )【答案】C【解析】【分析】本题主要考查了解三角形,菱形的性质、直角三角形斜边中线等于斜边一半.先由菱形性质可得对角线AC 与BD 交于点O ,由直角三角形斜边中线等于斜边一半可得2OA OC OM ===,进而由菱形对角线求出边长,由sin sin MAC OBC ∠=∠=sin MC AC MAC =∠=,tan MN BM OBC =∠=.【详解】解:连接AC ,如图,∵菱形ABCD 中,AC 与BD 互相垂直平分,又∵点O 是BD 的中点,∴A 、O 、C 三点在同一直线上,∴OA OC =,∵2OM =,AM BC ⊥,∴2OA OC OM ===,∵8BD =,∴142OB OD BD ===,∴BC ===,21tan 42OC OBC OB ===∠,∵90ACM MAC ∠+∠=︒,90ACM OBC ∠+∠=︒,∴MAC OBC∠=∠∴sin sin OC MAC OBC BC ∠=∠===,∴sin MC AC MAC =∠=,∴BM BC MC =-=-=,∴1tan 2MN BM OBC =∠==故选:C .10. 如图,在正方形ABCD 中,点H 在AD 边上(不与点A 、D 重合),90BHF ∠=︒,HF 交正方形外角的平分线DF 于点F ,连接AC 交BH 于点M ,连接BF 交AC 于点G ,交CD 于点N ,连接BD .则下列结论:①45HBF ∠=︒;②点G 是BF 的中点;③若点H 是AD 的中点,则sin NBC ∠=BN =;⑤若12AH D H =,则112BND AHM S S =△△,其中正确的结论是( )A. ①②③④B. ①③⑤C. ①②④⑤D. ①②③④⑤【答案】A【解析】【分析】连接DG,可得BD AB=AC 垂直平分BD ,先证明点B 、H 、D 、F 四点共圆,即可判断①;根据AC 垂直平分BD ,结合互余可证明DG FG =,即有DG FG BG ==,则可判断②正确;证明ABM DBN ∽,即有BN BD BM AB ==,可判断④;根据相似有212ABM DBN S AB S BD ⎛⎫== ⎪⎝⎭ ,根据12AH D H =可得3AH AD =,再证明AHM CBM ∽,可得13AHM ABM S HM S BM == ,即可判断⑤;根据点H 是AD 的中点,设2AD =,即求出BH ==,同理可证明AHM CBM ∽,可得23BM BH ==,即可得BN ==,进而可判断③.【详解】连接DG ,如图,∵四边形ABCD 是正方形,∴45BDC BAC ADB ∠=∠=∠=︒,BD AB =90BAD ADC ∠=∠=︒,AC 垂直平分BD ,∴90CDP ∠=︒,∵DF 平分CDP ∠,∴1452CDF CDP CDB ∠=∠=︒=∠,∴90BDF CDF CDB ∠=∠+∠=︒,∵90BHF BDF ∠=︒=∠,∴点B 、H 、D 、F四点共圆,∴45HFB HDB ∠=∠=︒,DHF DBF ∠=∠,∴18045HBF HFB FHB ∠=︒-∠-∠=︒,故①正确,∵AC 垂直平分BD ,∴BG DG =,∴BDG DBG ∠=∠,∵90BDF ∠=︒,∴90BDG GDF DBG DFG ∠+∠=︒=∠+∠,∴GDF DFG ∠=∠,∴DG FG =,∴DG FG BG ==,∴点G 是BF 的中点,故②正确,∵90BHF BAH ∠=︒=∠,∴90AHB DHF AHB ABH ∠+∠=︒=∠+∠,∴DHF ABH ∠=∠,∵DHF DBF ∠=∠,∴ABH DBF ∠=∠,又∵45BAC DBC ∠=∠=︒,∴ABM DBN ∽,∴BNBDBM AB ==,∴BN =,故④正确,∴212ABM DBN S AB S BD⎛⎫== ⎪⎝⎭ ,若12AH D H =,则()1122AH HD AD AH ==-,∴3AH AD =,∴13=AH AD ,即13H HA ABC AD ==,∵AD BC ∥,∴AHM CBM ∽,∴13HMAHBM BC ==,∴13AHM ABM S HM S BM == ,∴3ABM AHM S S = ,∵12ABM DBN S S = ,∴26BND ABM AHM S S S == △,故⑤错误,如图,③若点H 是AD 的中点,设2AD =,即2AB BC AD ===,∴112AH AD ==,∴BH ==,同理可证明AHM CBM ∽,∴12HM AH BM BC ==,∴32HM BM BH BM BM+==,∴23BM BH ==,∵BN =,∴BN ==,∵2BC =,∴在Rt BNC △中,23NC ==,sin NC NBC BN ∠==,故③正确,则正确的有:①②③④,故选:A .【点睛】本题是一道几何综合题,主要考查了正方形的性质,相似三角形的判定与性质,正弦,圆周角定理以及勾股定理等知识,证明点B 、H 、D 、F 四点共圆,ABM DBN ∽,是解答本题的关键.二、填空题(每小题3分,共30分)11. 国家统计局公布数据显示,2023年我国粮食总产量是13908亿斤,将13908亿用科学记数法表示为________.【答案】121.390810⨯【解析】【分析】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.【详解】1 亿81.010=⨯,13908亿48121.39081010 1.390810=⨯⨯=⨯故答案为:121.390810⨯12. 在函数y =中,自变量x 的取值范围是________.【答案】3x ≥##3x≤【解析】【分析】本题主要考查函数自变量取值范围,分别根据二次根式有意义的条件和分式有意义的条件列出不等式求解即可.【详解】解:根据题意得,30x -≥,且20x +≠,解得,3x ≥,故答案为:3x ≥.13. 已知菱形ABCD 中对角线AC BD 、相交于点O ,添加条件_________________可使菱形ABCD 成为正方形.【答案】AC BD =或AB BC⊥【解析】【分析】本题主要考查的是菱形和正方形的判定,熟练掌握菱形的判定定理是解题的关键,依据正方形的判定定理进行判断即可.【详解】解:根据对角线相等的菱形是正方形,可添加:AC BD =;根据有一个角是直角的菱形是正方形,可添加的:AB BC ⊥;故添加的条件为:AC BD =或AB BC ⊥.14. 七年一班要从2名男生和3名女生中选择两名学生参加朗诵比赛,恰好选择1名男生和1名女生的概率是________.【答案】35【解析】【分析】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画树状图,共有12种等可能的结果,其中选取的2名学生恰好是1名男生、1名女生的结果有6种,再由概率公式求解即可.【详解】解:画树状图如下:由图可知,共有20种等可能的结果,其中选取的2名学生恰好是1名男生、1名女生的结果有12种,∴选取的2名学生恰好是1名男生、1名女生的概率为:123205=,故答案为:35.15. 关于x 的不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,则a 的取值范围是________.【答案】102a -≤<【解析】【分析】本题考查解一元一次不等式(组),一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.先解出不等式组中每个不等式的解集,然后根据不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,即可得到关于a 的不等式组,然后求解即可.【详解】解:由420-≥x ,得:2x ≤,由102x a ->,得:2x a >, 不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,∴这3个整数解是0,1,2,120a ∴-≤<,解得102a -≤<,故答案为:102a -≤<.16. 如图,ABC 内接于O ,AD 是直径,若25B ∠=︒,则CAD ∠________︒.【答案】65【解析】【分析】本题考查了圆周角定理,直角三角形的两个锐角互余,连接CD ,根据直径所对的圆周角是直角得出=90ACD ∠︒,根据同弧所对的圆周角相等得出25D B ∠=∠=︒,进而根据直角三角形的两个锐角互余,即可求解.【详解】解:如图所示,连接CD ,∵ABC 内接于O ,AD 是直径,∴=90ACD ∠︒,∵ AC AC =,25B ∠=︒,∴25D B ∠=∠=︒∴902565CAD ∠=︒-︒=︒,故答案为:65.17. 若圆锥的底面半径为3,侧面积为36π,则这个圆锥侧面展开图的圆心角是________︒.【答案】90【解析】【分析】此题主要考查了圆锥的侧面积公式以及与展开图扇形面积关系,求出圆锥的母线长是解决问题的关键.根据圆锥的侧面积公式πS rl =求出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数.【详解】根据圆锥侧面积公式:πS rl =,可得π336πl ⨯⨯=解得:12l =,2π1236π360n ⨯∴=,解得90n =,∴侧面展开图的圆心角是90︒.故答案为:90.18. 如图,在Rt ABC △中,90ACB ∠=︒,1tan 2BAC ∠=,2BC =,1AD =,线段AD 绕点A 旋转,点P 为CD 的中点,则BP 的最大值是________.【答案】12+【解析】【分析】本题考查了解直角三角形,三角形中位线定理,旋转的性质,解题的关键是找出BP 取最大值时B 、P 、M 三点的位置关系.取AC 的中点M ,连接PM 、BM ,利用解三角形求出BM ==,利用三角形中位线定理推出1122PM AD ==,当AD 在AC 下方时,如果B 、P 、M 三点共线,则BP 有最大值.【详解】解:取AC 的中点M ,连接PM 、BM .∵90ACB ∠=︒,1tan 2BAC ∠=,2BC =,∴124tan 2BC AC BAC ==÷=∠,∴122AM CM AC ===,∴BM ===,∵P 、M 分别是CD AC 、的中点,∴1122PM AD ==.如图,当AD 在AC 下方时,如果B 、P 、M 三点共线,则BP 有最大值,最大值为12BM MP +=,故答案为:12+.19. 矩形ABCD 中,3AB =,4BC =,将AB 沿过点A 的一条直线折叠,折痕交直线BC 于点P (点P 不与点B 重合),点B 的对称点落在矩形对角线所在的直线上,则PC 长为________.【答案】52或72或10【解析】【分析】本题考查了矩形与折叠问题,解直角三角形,先根据点B 的对称点落在矩形对角线所在的直线上的不同位置分三种情况,画出对应的图形,再根据矩形性质,利用解直角三角形求出PC 即可.【详解】解:①点B 的对称点落在矩形对角线BD 上,如图1,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,由折叠性质可知:BB AP '⊥,∴BAP BPA BPA CBD∠+∠=∠+∠∴=BAP CBD∠∠∴3tan =tan =4CD BAP CBD BC ∠∠=,∴39tan 642BP AB BAP =∠=⨯=∴97822PC BC BP =-=-=;②点B 的对称点B '落在矩形对角线AC 上,如图2,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,90B Ð=°,∴5AC ===,∴4cos 5BC ACB AC ∠==,由折叠性质可知:=90ABP AB P '∠=∠︒,3AB AB '==,∴532B C AC AB ''=-=-=∴452cos 52B C PC ACB '==÷=∠;③点B 的对称点B '落在矩形对角线CA 延长线上,如图3,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,90B Ð=°,∴5AC ===,∴4cos 5BC ACB AC ∠==,由折叠性质可知:=90ABP AB P '∠=∠︒,3AB AB '==,∴538B C AC AB ''=+=+=∴4810cos 5B C PC ACB '==÷=∠;综上所述:则PC 长为52或72或10.故答案为:52或72或10.20. 如图,在平面直角坐标系中,正方形OMNP 顶点M 的坐标为()3,0,OAB 是等边三角形,点B 坐标是()1,0,OAB 在正方形OMNP 内部紧靠正方形OMNP 的边(方向为O M N P O M →→→→→→ )做无滑动滚动,第一次滚动后,点A 的对应点记为1A ,1A 的坐标是()2,0;第二次滚动后,1A 的对应点记为2A ,2A 的坐标是()2,0;第三次滚动后,2A 的对应点记为3A ,3A 的坐标是132⎛⎫ ⎪ ⎪⎝⎭;如此下去,……,则2024A 的坐标是________.【答案】()1,3【解析】【分析】本题考查了点的坐标变化规律,正方形性质,等边三角形性质,根据三角形的运动方式,依次求出点A 的对应点1A ,2A , ,12A 的坐标,发现规律即可解决问题.【详解】解: 正方形OMNP 顶点M 的坐标为()3,0,3OM MN NP OP ∴====,OAB 是等边三角形,点B 坐标是()1,0,∴,由题知,1A 的坐标是()2,0;2A 的坐标是()2,0;3A 的坐标是132⎛⎫ ⎪ ⎪⎝⎭;继续滚动有,4A 的坐标是()3,2;5A 的坐标是()3,2;6A 的坐标是5,32⎛ ⎝;7A 的坐标是()1,3;8A 的坐标是()1,3;9A 的坐标是52⎫⎪⎪⎭;10A 的坐标是()0,1;11A 的坐标是()0,1;12A 的坐标是12⎛ ⎝;13A 的坐标是()2,0; 不断循环,循环规律为以1A ,2A , ,12A ,12个为一组,2024121688÷= ,∴2024A 的坐标与8A 的坐标一样为()1,3,故答案为:()1,3.三、解答题(满分60分)21. 先化简,再求值:22222111m m m m m m ⎛⎫-+÷- ⎪-+⎝⎭,其中cos 60m =︒.【答案】1m -+,12【解析】【分析】本题主要考查分式的化简求值及特殊三角函数值,先对分式进行化简,然后利用特殊三角函数值进行代值求解即可.【详解】解:原式()()()()21111m m m m m m-+=⋅+--1m =-+,当1cos 602m =︒=时原式12=.22. 如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,3B -,()5,2C -.(1)画出ABC 关于y 轴对称的111A B C △,并写出点1B 的坐标;(2)画出ABC 绕点A 逆时针旋转90︒后得到的22AB C ,并写出点2B 的坐标;(3)在(2)的条件下,求点B 旋转到点2B 的过程中所经过的路径长(结果保留π)【答案】(1)作图见解析,()12,3B(2)作图见解析,()23,0B -(3【解析】【分析】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.(1)根据题意画出即可;关于y 轴对称点的坐标横坐标互为相反数,纵坐标不变;(2)根据网格结构找出点B 、C 以点A 为旋转中心逆时针旋转90︒后的对应点,然后顺次连接即可;(3)先求出AB =,再由旋转角等于90︒,利用弧长公式即可求出.【小问1详解】解:如图,111A B C △为所求;点1B 的坐标为()2,3,小问2详解】如图,22AB C 为所求;()23,0B -,【小问3详解】AB ==,点B 旋转到点2B=.23. 如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,其中()1,0B ,()0,3C .(1)求抛物线的解析式.(2)在第二象限的抛物线上是否存在一点P ,使得APC △的面积最大.若存在,请直接写出点P 坐标和APC △的面积最大值;若不存在,请说明理由.【答案】(1)223y x x =--+(2)存在,点P 的坐标是315,24P ⎛⎫- ⎪⎝⎭,APC △的面积最大值是278【解析】【分析】本题主要考查二次函数的图象与性质以及与几何综合:【(1)将B ,C 两点坐标代入函数解析式,求出b ,c 的值即可;(2)过点P 作PE x ⊥轴于点E ,设()2,23P x x x --+,且点P 在第二象限,根据APC APE AOC PCOE S S S S =+- 梯形可得二次函数关系式,再利用二次函数的性质即可求解.【小问1详解】解:将()1,0B ,()0,3C 代入2y x bx c =-++得,103b c c -++=⎧⎨=⎩解得:23b c =-⎧⎨=⎩223y x x ∴=--+【小问2详解】解:对于223y x x =--+,令0,y =则2230,x x --+=解得,123,1x x =-=,∴()3,0A -,∴3,OA =∵()0,3C ,∴3OC =,过点P 作PE x ⊥轴于点E ,如图,设()2,23P x x x --+,且点P 在第二象限,∴,3,OE x AE x =-=+∴APC APE AOCPCOE S S S S =+- 梯形()111222AE PE OC PE OE OA OC =⨯++⨯-⨯()()()()2211132332333222x x x x x x =+--++--+--⨯⨯23327228x ⎛⎫=-++ ⎪⎝⎭∵302-<,∴S 有最大值,∴当32x =-时,S 有最大值,最大值为278,此时点P 的坐标为315,24⎛⎫- ⎪⎝⎭24. 为贯彻落实教育部办公厅关于“保障学生每天校内、校外各一小时体育活动时间”的要求,某学校要求学生每天坚持体育锻炼.学校从全体男生中随机抽取了部分学生,调查他们的立定跳远成绩,整理如下不完整的频数分布表和统计图,结合下图解答下列问题:组别分组(cm )频数A50100x <≤3B 100150x <≤m C150200x <≤20D200250x <≤14E 250300x <≤5(1)频数分布表中m = ,扇形统计图中n = .(2)本次调查立定跳远成绩的中位数落在 组别.(3)该校有600名男生,若立定跳远成绩大于200cm 为合格,请估计该校立定跳远成绩合格的男生有多少人?【答案】(1)8,40(2)C (3)估计该校立定跳远成绩合格的男生有228人【解析】【分析】本题主要考查了扇形统计图和频数表、中位数,用样本估计总体,(1)用A 组的频数除以所占的百分比,即可求出调查的总人数;用总人数减去其它组的人数,即可求得B 组的人数,用C 组的人数除以总人数即可求解;(2)根据中位数的求法,即可求解;(3)用总人数乘以样本中立定跳远成绩合格的男生人数所占,即可求解.【小问1详解】解:被抽取的学生数为:36%50÷=(人)故503201458m =----=(人),%205040%n =÷=,即40n =,故答案为:8,40;【小问2详解】解:把这组数据从小到大排列,第25和第26个数据的平均数为这组数据的中位数,382526+<< ,5142526+<<,∴把这组数据从小到大排列,第25和第26个数据都在C 组,故本次调查立定跳远成绩的中位数落在C 组,答案为:C ;【小问3详解】解:14560022850+⨯=(人)答:该校立定跳远成绩合格的男生有228人.25. 甲、乙两货车分别从相距225km 的A 、B 两地同时出发,甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,乙货车沿同一条公路从B 地驶往A 地,但乙货车到达配货站时接到紧急任务立即原路原速返回B 地,结果比甲货车晚半小时到达B 地.如图是甲、乙两货车距A 地的距离()km y 与行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)甲货车到达配货站之前的速度是 km/h ,乙货车的速度是 km/h ;(2)求甲货车在配货站卸货后驶往B 地的过程中,甲货车距A 地的距离()km y 与行驶时间()h x 之间的函数解析式;(3)直接写出甲、乙两货车在行驶的过程中,出发多长时间甲、乙两货车与配货站的距离相等.【答案】(1)30,40(2)EF 的函数解析式是()802154 5.5y x x =-≤≤(3)经过1.5h 或45h 14或5h 甲、乙两货车与配货站的距离相等【解析】【分析】本题考查一次函数的应用,待定系数法求一次函数解析式的运用,认真分析函数图象,读懂函数图象表示的意义是解题关键.(1)由图象可知甲货车到达配货站路程为105km ,所用时间为3.5h ,乙货车到达配货站路程为120km ,到达后返回,所用时间为6h ,根据速度=距离÷时间即可得;(2)甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,由图象结合已知条件可知(4,105)E 和点(5.5,225)F ,再利用待定系数法求出y 与x 的关系式即可得答案;(3)分两车到达配货站之前和乙货车到达配货站时接到紧急任务立即原路原速返回B 地后、甲货车卸货,半小时后继续驶往B 地,三种情况与配货站的距离相等,分别列方程求出x 的值即可得答案.【小问1详解】解:由图象可知甲货车到达配货站路程为105km ,所用时间为3.5h ,所以甲货车到达配货站之前的速度是105 3.5=30÷(km/h )∴乙货车到达配货站路程为225105=120(km)-,到达配货站时接到紧急任务立即原路原速返回B 地,总路程为240km ,总时间是6h ,∴乙货车速度240640km /h =÷=,故答案为:30;40【小问2详解】甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,由图象可知(4,105)E 和点(5.5,225)F 设(4 5.5)EF y kx b x =+≤≤∴41055.5225k b k b +=⎧⎨+=⎩解得:21580b k =-⎧⎨=⎩,∴甲货车距A 地的距离()km y 与行驶时间()h x 之间的函数解析式()802154 5.5y x x =-≤≤【小问3详解】设甲货车出发h x ,甲、乙两货车与配货站的距离相等,①两车到达配货站之前:1053012040x x -=-,解得:32x =,②乙货车到达配货站时开始返回,甲货车未到达配货站:1053040120x x -=-,解得:4514x =,③甲货车在配货站卸货后驶往B 地时:0802151054012x x =---,解得:5x =,答:经过1.5h 或45h 14或5h 甲、乙两货车与配货站的距离相等.26. 已知ABC 是等腰三角形,AB AC =,12MAN BAC ∠=∠,MAN ∠在BAC ∠的内部,点M 、N 在BC 上,点M 在点N 的左侧,探究线段BM NC MN 、、之间的数量关系.(1)如图①,当90BAC ∠=︒时,探究如下:由90BAC ∠=︒,AB AC =可知,将ACN △绕点A 顺时针旋转90︒,得到ABP ,则CN BP =且90PBM ∠=︒,连接PM ,易证AMP AMN △≌△,可得MP MN =,在Rt PBM △中,222BM BP MP +=,则有222BM NC MN +=.(2)当60BAC ∠=︒时,如图②:当120BAC ∠=︒时,如图③,分别写出线段BM NC MN 、、之间的数量关系,并选择图②或图③进行证明.【答案】图②的结论是:222BM NC BM NC MN ++⋅=;图③的结论是:222BM NC BM NC MN +-⋅=;证明见解析【解析】【分析】本题主要考查等边三角形的性质,全等三角形的判定与性质,30度角所对的直角边等于斜边的一半,勾股定理等知识 ,选②,以点B 为顶点在ABC 外作60ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,构造全等三角形,得出AN AQ =,CAN QAB ∠=∠,再证明AQM ANM △≌△,得到MN QM =;在Rt QHM △中由勾股定理得222QH HM QM +=,即22212BM BQ QM ⎫⎛⎫++=⎪ ⎪⎪⎝⎭⎭,整理可得结论;选③方法同②【详解】解:图②的结论是:222BM NC BM NC MN ++⋅=证明:∵,60,AB AC BAC =∠=︒∴ABC 是等边三角形,∴60ABC ACB ∠=∠=︒,以点B 为顶点在ABC 外作60ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,AB AC = ,C ABQ ∠=∠,CN BQ=ACN ABQ∴△≌△AN AQ ∴=,CAN QAB∠=∠又30CAN BAM ∠+∠=︒30BAM QAB ∴∠+∠=︒即QAM MAN∠=∠又AM AM = ,AQM ANM ∴△≌△,MN QM ∴=;∵60,60,ABQ ABC ∠=︒∠=︒∴60QBH ∠=︒,∴30,BQH ∠=︒12B BH Q ∴=,QH BQ =∴12HM BM BH BM BQ =+=+,在Rt QHM △中,可得:222QH HM QM +=即22212BM BQ QM ⎫⎛⎫++=⎪ ⎪⎪⎝⎭⎭整理得222BM BQ B Q M M B Q ⋅++=222NC B M N N B M M C ∴=⋅++图③的结论是:222BM NC BM NC MN +-⋅=证明:以点B 顶点在ABC 外作30ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,为AB AC = ,C ABQ ∠=∠,CN BQ=ACN ABQ∴△≌△AN AQ ∴=,CAN QAB∠=∠又60CAN BAM ∠+∠=︒60BAM QAB ∴∠+∠=︒即QAM MAN∠=∠又AM AM = ,AQM ANM ∴△≌△,MN QM∴=在Rt BQH 中,60QBH ∠=︒,30BQH ∠=︒12B BH Q ∴=,QH BQ =12HM BM BH BM BQ =-=-,在Rt QHM △中,可得:222QH HM QM +=即22212BQ BM BQ QM ⎫⎛⎫+-=⎪ ⎪⎪⎝⎭⎭整理得222BM BQ B Q M M B Q ⋅+-=222NC B M N N B M M C ∴=⋅+-27. 为了增强学生的体质,某学校倡导学生在大课间开展踢毽子活动,需购买甲、乙两种品牌毽子.已知购买甲种品牌毽子10个和乙种品牌毽子5个共需200元;购买甲种品牌毽子15个和乙种品牌毽子10个共需325元.(1)购买一个甲种品牌毽子和一个乙种品牌毽子各需要多少元?(2)若购买甲乙两种品牌毽子共花费1000元,甲种品牌毽子数量不低于乙种品牌毽子数量的5倍且不超过乙种品牌毽子数量的16倍,则有几种购买方案?(3)若商家每售出一个甲种品牌毽子利润是5元,每售出一个乙种品牌毽子利润是4元,在(2)条件下,学校如何购买毽子商家获得利润最大?最大利润是多少元?【答案】(1)购买一个甲种品牌毽子需15元,购买一个乙种品牌毽子需10元的(2)共有3种购买方案(3)学校购买甲种品牌毽子60个,购买乙种品牌毽子10个,商家获得利润最大,最大利润是340元【解析】【分析】本题考查了二元一次方程组、一元一次不等式组以及一次函数的应用,(1)设购买一个甲种品牌毽子需a 元,购买一个乙种品牌毽子需b 元,根据题意列出二元一次方程组,问题得解;(2)设购买甲种品牌毽子x 个,购买乙种品牌毽子31002x ⎛⎫-⎪⎝⎭个,根据题意列出一元一次不等式组,解不等式组即可求解;(3)设商家获得总利润为y 元,即有一次函数3541002y x x ⎛⎫=+-⎪⎝⎭,根据一次函数的性质即可求解.【小问1详解】解:设购买一个甲种品牌毽子需a 元,购买一个乙种品牌毽子需b 元.由题意得:1052001510325a b a b +=⎧⎨+=⎩,解得:1510a b =⎧⎨=⎩,答:购买一个甲种品牌毽子需15元,购买一个乙种品牌毽子需10元;【小问2详解】解:设购买甲种品牌毽子x 个,购买乙种品牌毽子1000153100102x x -⎛⎫=- ⎪⎝⎭个.由题意得:3510023161002x x x x ⎧⎛⎫≥- ⎪⎪⎪⎝⎭⎨⎛⎫⎪≤- ⎪⎪⎝⎭⎩,解得:14586417x ≤≤,x 和31002x ⎛⎫- ⎪⎝⎭均为正整数,60x ∴=,62,64,3100102x -=,7,4,∴共有3种购买方案.【小问3详解】设商家获得总利润为y 元,3541002y x x ⎛⎫=+- ⎪⎝⎭,400y x =-+,10k =-< ,y ∴随x 的增大而减小,∴当60x =时,340y =最大,答:学校购买甲种品牌毽子60个,购买乙种品牌毽子10个,商家获得利润最大,最大利润是340元.28. 如图,在平面直角坐标系中,等边三角形OAB 的边OB 在x 轴上,点A 在第一象限,OA 的长度是一元二次方程2560x x --=的根,动点P 从点O 出发以每秒2个单位长度的速度沿折线OA AB -运动,动点Q 从点O 出发以每秒3个单位长度的速度沿折线OB BA -运动,P 、Q 两点同时出发,相遇时停止运动.设运动时间为t 秒(0 3.6t <<),OPQ △的面积为S .(1)求点A 的坐标;(2)求S 与t 的函数关系式;(3)在(2)的条件下,当S =时,点M 在y 轴上,坐标平面内是否存在点N ,使得以点O 、P 、M 、N 为顶点的四边形是菱形.若存在,直接写出点N 的坐标;若不存在,说明理由.【答案】(1)点A的坐标为(A (2)()())2202233 3.6t S t t ⎧<≤⎪⎪⎪=+<≤⎨⎪⎪+<<⎪⎩ (3)存在,(12,4N +,()22,4N -,(32,N -,4N ⎛⎝【解析】【分析】(1)运用因式分解法解方程求出OA 的长,根据等边三角形的性质得出6,60OA OB AC OAB AOB ABO ===∠=∠=∠=︒,过点A 作AC x ⊥轴,垂足为C ,求出AC 的长即可;(2)分02t <≤,23t <≤和3 3.6t <<三种情况,运用三角形面积公式求解即可;(3)当2=时求出2t =,得4OP =,分OP 为边和对角线两种情况可得点N 的坐标;当2+=和+=O 、P 、M 、N 为顶点的四边形是菱形【小问1详解】解:2560x x --=,解得16x =,21x =-OA 的长度是2560x x --=的根,6OA ∴=∵OAB 是等边三角形,∴6,60OA OB AC OAB AOB ABO ===∠=∠=∠=︒,过点A 作AC x ⊥轴,垂足为C ,在Rt AOC 中,60,AOC ∠=︒∴30,OAC ∠=︒116322OC OA ∴==⨯=,∴AC ===∴点A 的坐标为(A 【小问2详解】解:当02t <≤时.过P 作PD x ⊥轴,垂足为点D ,∴2OP t =,3OQ t =,30OPD ∴∠=︒∴,OD t =∴PD ===,211322S OQ PD t ∴=⨯⨯=⨯=;当23t <≤时,过Q 作QE OA ⊥,垂足为点E∵60,A ∠=︒∴30,AQE ∠=︒又123,AQ t =-∴13622AE AQ t ==-,QE ==又2OP t =,2122S t ⎛⎫∴=⨯⨯=+ ⎪ ⎪⎝⎭。
黑龙江鸡西中考数学试卷及答案
黑龙江鸡西中考数学试卷一、细心填一填(本大题共有12小题,15空,每空2分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)1.3的相反数是_________,-2的绝对值是___________. 2.4的算术平方根是__________,-8的立方根是___________.3.据中新社报道:2010年我国粮食产量将达到540 000 000 000千克,这个粮食产量用科学记数法可表示为______________________千克.4.分解因式:x 2-4=_________________. 5.函数y =12x +中,自变量x 的取值范围是___________________; 函数yx 的取值范围是___________________.6.如图,已知a ∥b ,∠1=40︒,则∠2=_________︒.7.一n 边形的内角和等于1080︒,那么这个正n 边形的边数n =_________.8.为发展农业经济,致富奔小康,养鸡专业户王大伯2004年养了2000只鸡. 上市前,他随机抽取了10根据统计知识,估计王大伯这批鸡的总重量约为_____________千克. 9.如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30︒,则⊙O 的直径 为__________cm.10.有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm , ∠D =120︒,则该零件另一腰AB 的长是___________cm.11.两个完全相同的长方体的长、宽、高分别为5cm 、4cm 、3cm , 把它们叠放在一起组成一个新的长方体,在这些长方体中,表 面积最大是__________cm 2.12.一串有黑有白,其排列有一定规律的珠子,被盒子遮住了一部分 (如图),则这串珠子被盒子遮住的部分有_________粒.二、精心选一选(本大题共8小题,每题3分,共24分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)13.如图,a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论正确的是 ( ) A.ab <0 B. a -b >0 C. abc <0 D. c (a -b )<014 )A B C D 15.下列各式中,与分式x y x--的值相等的是( )A .x x y+ B .x x y-- C .x x y-+ D .x x y-16.已知一次函数y =kx +b 的图像如图所示,则当x <0时,y 的取值范围是( )(第6题)bac21AB C D(第10题)B AC O (第13题)A. y >0B. y <0C. -2<y <0D. y <-217.下面的平面图形中,是正方体的平面展开图的是( )18.下列图形中,既是轴对称,又是中心对称图形的是( )19.下列调查方式合适的是( ) A .为了了解炮弹的杀伤力,采用普查的方式 B .为了了解全国中学生的睡眠状况,采用普查方式 C .为了了解人们保护水资源的意识,采用抽样调查的方式D .对栽人航天器“神州五号”零部件的检查,采用抽样调查的方式20.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏. 游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸就不得奖. 参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻). 某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A .14B .15C .16D .320三、认真答一答(本大题共7小题,满分58分. 只要你认真思考, 仔细运算, 一定会解答正确的!) 21.(本题共有3小题,每小题5分,共15分)(1)计算:(-2)3+12(2004)0tan60︒.(2)解不等式: 12(x -2)<3-x .(3)解方程组:{4,2 5.x y x y -=+=22.(本题满分6分)在如图的12×24的方格形纸中(每个小方格的边长都是1个单位)有一ΔABC . 现先把ΔABC分别向A.B.C.D.右、向上平移8个单位和3个单位得到ΔA 1B 1C 1;再以点O 为旋转中心把ΔA 1B 1C 1按顺时针方向旋转90º得到ΔA 2B 2C 2. 请在所给的方格形纸中作出ΔA 1B 1C 1和 ΔA 2B 2C 2.23.(本题满分8分)如图,给出四个等式:①AE =AD ;②AB =AC ;③OB =OC ;④∠B =∠C . 现选取其中的三个,以两个作为已知条件,另一个作为结论.(1)请你写出一个正确的命题,并加以证明; (2)请你至少写出三个这样的正确命题.24.(本题满分6分)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销量y (件)之 间的关系如下表:若日销量y (件)是销售价x (元)的一次函数.(1)求出日销量y (件)与销售价x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定位多少元?此时每日的销售利润是多少?AB CDE O25.(本题满分6分)如图,有两个可以自由转动的均匀转盘A 、B ,转盘A 被均匀地分成4等分,每份分别标上1,2,3,4四个数字;转盘B 被均匀地分成6等份,每份分别标上1,2,3,4,5,6六个数字. 有人为甲、乙两人设计了一个游戏,其规则如下:(1)同时自由转动转盘A 、B ;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字作成积. 如果得到的积是偶数,那么甲胜;如果得到的积是奇数,则乙胜(如果转盘A 指针指向3,转盘B 指针指向5,3×5=15,按规则乙胜).你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并 说明理由.26.(本题满分8分)如图是某段河床横断面的示意图. 查阅该河段的水文资料,得到下表中的数据:(1)请你以上表中的各对数据(x ,y尝试在下面所给的坐标系中画出y 关于x 的函数图像;(2)①填写下表: ②根据所填表中数据呈现的规律,猜想出用x 表示y 的二次函数关系式:___________; (3)当水面宽度为36m 时,一艘吃水深度(船底部到水面的距离)为1.8m 的货船能 否在这个河段安全通过?为什么?AB27.(本题满分9分)某生活小区的居民筹集资金1600元,计划在一块上、下底分别为10cm,20cm的梯形空地上种植花木(如图).(1)他们在ΔAMD和ΔBMC地带上种植太阳花,单价为8元/cm2,当ΔAMD地带种满花后(图中阴影部分)共花了160元,请计算种满ΔBMC地带所需的费用;(2)若其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/cm2和10元/cm2,应选择种那种花木,刚好用完所筹集资金?(3)若梯形ABCD为等腰梯形,面积不变(如图),请你设计一种花坛图案,即在梯形内找到一点P,使得ΔAPB≌ΔDPC,且SΔAPD=SΔBPC,,并说出你的理由.四、动脑想一想(本大题共有2小题,共18分. 只要你认真探索,仔细思考,你一定会获得成功的!)28.(本题满分8分)如图,在平面直角坐标系中,直线l的解析式为y,关于x的一元二次方程2x2-2(m+2)x+2m+5=0(m>0)有两个相等的实数根.(1)试求出m的值,并求出经过点A(0,-m)和点D(m,0)的直线解析式;(2)在线段AD上顺次取两B、C,使AB=CD-1,试判断ΔOBC的形状;(3)设直线l与直线AD交于点P,图中是否存在与ΔOAB相似的三角形?如果存在,请直接写出来;如果不存在,请说明理由.29.(本题满分10分)如图,正方形ABCD的边长为12,划分成12×12个小正方形. 将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)图甲C 图乙CD×(n -1)的正方形. 如此摆放下去,最后直到纸片盖住 正方形ABCD 的右下角为止. 请你认真观察思考后回答下 列问题:(1)由于正方形纸片边长n 的取值不同,完成摆放时所使用正方形纸 片的张数也不同,请填写下表:(2)设正方形ABCD 被纸片盖住的面积(重合部分只计一次)为S 1,未被盖住的面积为S 2.①当n =2时,求S 1∶S 2的值;②是否存在使得S 1=S 2的n 值?若存在,请求出这样的n 值;若不存在,请说明理由.参考答案一、细心填一填(本大题共有12小题,15空,每空2分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)1.-3,2 2. 2,-2 3. 5.4×1011 4. (x +2)(x -2) 5. x ≠-2, x ≥3 6. 140 7. 8 8. 5000 9. 3.6 11. 176 12. 27二、精心选一选(本大题共8小题,每题3分,共24分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 13. C 14. B 15. D 16. D 17. C 18. A 19. C 20. C三、认真答一答(本大题共7小题,满分58分. 只要你认真思考, 仔细运算, 一定会解答正确的!)21. (1)-9;(2)x <83;(3){3,1.x y ==-22.ΔA 1B 1C 1和ΔA 2B 2C 2如图所示.23.(1)如果AE=AD ,AB=AC ,那么∠B =∠C .证明:在ΔABE 和ΔACD 中,∵AE=AD ,∠A =∠A ,AB=AC ,∴ΔABE ≌ΔACD ,∴∠B =∠C . (2)①如果AE=AD ,AB=AC ,那么OB=OC . ②如果AE=AD ,∠B =∠C ,那么AB=AC . ③如果OB=OC ,∠B =∠C ,那么AE=AD .24.(1)y =-x +40;(2)当销售价定为25元/件时日销售利润最大,为225元. 25.这个游戏不公平.把游戏中由A 、B 两个转盘中所指的两个数字的“积”改成“和”,游戏就公平了. 因为在A 盘和B盘中指针所指的两个数字作和共有24种情况,而A盘中每个数字与B盘中的数字作和得到偶数和奇数的结果都是3,这样这24个和中,偶数和奇数的种数都是12,所以甲和乙获胜的可能性是一样的,这对他们就公平了.26.(1)如图所示;(2)①;②y=1 200x2;(3)当水面宽度为36m,即x=18m时,y=1.62m<1.8m,所以这艘货船不能安全通过该河段.27.(1)∵梯形ABCD中,AD∥BC,∴∠MAD=∠MCB,∠MDA=∠MBC,∴ΔMAD∽ΔMCB,∴SΔMAD∶SΔMBC=1∶4.∵种植ΔMAD地带花费160元,∴SΔMAD=160÷8=20(m2),∴SΔMBC=80(m2),∴种植ΔMBC地带花费640元.(2)设ΔMAD的高为h1,ΔMBC的高为h2,梯形ABCD的高为h,则SΔMAD=12×10 h1=20,∴h1=4;SΔMBC=12×10 h2=80,∴h2=8,∴h=h1+h2=12,∴S梯形ABCD=12×(AD+BC)h=180,∴SΔMAB+ SΔMCD=180-(20+80)=80(m2).∵160+640+80×12=1760(元),160+640+80×10=1600,∴应种植茉莉花刚好用完所筹集的资金.(3)点P在AD、BC的中垂线上. 此时,P A=PD,PB=PC.∵AB=DC,∴ΔAPB≌ΔDPC.设ΔAPD的高为x,则ΔBPC的高为(12-x),∴SΔAPD=12×10 x=5x, SΔBPC=12×20(12-x)=10(12-x),由SΔAPD= SΔBPC,即5x=10(12-x),可得x=8.∴当点P在AD、BC的中垂线上,且与AD的距离为8cm时,SΔAPD= SΔBPC.28.(1)由题意得Δ=[-2(m+2)]2-4×2×(2m+5)=0,∴m=.∵m>0,∴m∴点A(0,、D0). 设经过A、D两点的直线解析式为y=kx+b,则0,bb==+⎧⎪⎨⎪⎩解得1,kb==⎧⎨⎩∴y=x(2)作OE⊥AD于E,由(1)得OA=OD AD=∴OE=AE=ED=12AD=∵AB=CD-1,∴BE=EC=1,∴OB=OC.在RtΔOBE中,tan∠OBE=OEBE=ΔOBC为等边三角形.(3)存在,ΔODC、ΔOPC、ΔOP A.29.(1)依此为11,10,9,8,7AB CDP(2)S1=n2+(12-n)[n2-(n-1)2]= -n2+25n-12.①当n=2时,S1=34,S2=110,∴S1∶S2=17∶55;②若S1=S2,则有-n2+25n-12=12×122,即n2-25n+84=0,解得n1=4, n2=21(舍去)。
2023年黑龙江鸡西中考数学真题及答案
2023年黑龙江鸡西中考数学真题及答案考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、选择题(每小题3分,共30分)1.下列运算正确的是()A.22(2)4a a -=- B.222()a b a b -=-C.()()2224m m m -+--=- D.()257a a =2.下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少为()A.4B.5C.6D.74.已知一组数据1,0,3,5,,2,3x --的平均数是1,则这组数据的众数是()A.3-B.5C.3-和5D.1和35.如图,在长为100m ,宽为50m 的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是23600m ,则小路的宽是()A.5mB.70mC.5m 或70mD.10m 6.已知关于x 的分式方程122m x x x +=--的解是非负数,则m 的取值范围是()A.2m ≤B.2m ≥C.2m ≤且2m ≠-D.2m <且2m ≠-7.某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A ,B ,C 三种图书,A 种每本30元,B 种每本25元,C 种每本20元,其中A 种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有()A.5种 B.6种 C.7种 D.8种8.如图,ABC 是等腰三角形,AB 过原点O ,底边BC x ∥轴,双曲线k y x=过,A B 两点,过点C 作CD y ∥轴交双曲线于点D ,若12BCD S = ,则k 的值是()A.6-B.12-C.92- D.9-9.如图,在平面直角坐标中,矩形ABCD 的边5,:1:4AD OA OD ==,将矩形ABCD 沿直线OE 折叠到如图所示的位置,线段1OD 恰好经过点B ,点C 落在y 轴的点1C 位置,点E 的坐标是()A.()1,2B.()1,2-C.)1,2-D.()12-10.如图,在正方形ABCD 中,点,E F 分别是,AB BC 上的动点,且AF D E ⊥,垂足为G ,将ABF △沿AF 翻折,得到,AMF AM △交DE 于点P ,对角线BD 交AF 于点H ,连接,,,HM CM DM BM ,下列结论正确的是:①AF DE =;②BM DE ∥;③若CM FM ⊥,则四边形BHMF 是菱形;④当点E 运动到AB 的中点,tan BHF ∠=;⑤2EP DH AG BH ⋅=⋅.()A.①②③④⑤B.①②③⑤C.①②③D.①②⑤二、填空题(每小题3分,共30分)11.据交通运输部信息显示:2023年“五一”假期第一天,全国营运性客运量约5699万人次,将5699万用科学记数法表示为__________.12.函数中,自变量x 的取值范围是____________.13.如图,在矩形ABCD 中对角线AC ,BD 交于点O ,请添加一个条件______________,使矩形ABCD 是正方形(填一个即可)14.一个不透明的袋子中装有3个红球和2个白球,这些小球除标号外完全相同,随机摸出两个小球,恰好是一红一白的概率是__________.15.关于x 的不等式组501x x m +>⎧⎨-≤⎩有3个整数解,则实数m 的取值范围是__________.16.如图,AB 是O 的直径,PA 切O 于点A ,PO 交O 于点C ,连接BC ,若28B ∠=︒,则P ∠=__________︒.17.已知圆锥的母线长13cm ,侧面积265cm π,则这个圆锥的高是__________cm .18.在Rt ACB △中,30,2BAC CB ∠=︒=,点E 是斜边AB 的中点,把Rt ABC △绕点A 顺时针旋转,得Rt AFD △,点C ,点B 旋转后的对应点分别是点D ,点F ,连接CF ,,EF CE ,在旋转的过程中,CEF △面积的最大值是__________.19.矩形ABCD 中,3,9AB AD ==,将矩形ABCD 沿过点A 的直线折叠,使点B 落在点E 处,若ADE V 是直角三角形,则点E 到直线BC 的距离是__________.20.如图,在平面直角坐标系中,ABC 的顶点A 在直线13:3l y x =上,顶点B 在x 轴上,AB 垂直x 轴,且OB =,顶点C 在直线2:l y =上,2BC l ⊥;过点A 作直线2l 的垂线,垂足为1C ,交x 轴于1B ,过点1B 作11A B 垂直x 轴,交1l 于点1A ,连接11A C ,得到第一个111A B C △;过点1A 作直线2l 的垂线,垂足为2C ,交x 轴于2B ,过点2B 作22A B 垂直x 轴,交1l 于点2A ,连接22A C ,得到第二个222A B C △;如此下去,……,则202320232023A B C 的面积是__________.三、解答题(满分60分)21.先化简,再求值:2222111m m m m m -+⎛⎫-÷ ⎪+-⎝⎭,其中tan 601m =︒-.22.如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分别是()()2,1,1,2A B --,()3,3C -.(1)将ABC 向上平移4个单位,再向右平移1个单位,得到111A B C △,请画出111A B C △.(2)请画出ABC 关于y 轴对称的222A B C △.(3)将222A B C △着原点O 顺时针旋转90︒,得到333A B C △,求线段22A C 在旋转过程中扫过的面积(结果保留π).23.如图,抛物线23y ax bx =++与x 轴交于()()3,0,1,0A B -两点,交y 轴于点C .(1)求抛物线的解析式.(2)拋物线上是否存在一点P ,使得12PBC ABC S S =,若存在,请直接写出点P 的坐标;若不存在,请说明理由.24.某中学开展主题为“垃圾分类,绿色生活”的宜传活动、为了解学生对垃圾分类知识的掌握情况,该校团委在校园内随机抽取了部分学生进行问卷调在,将他们的得分按A :优秀,B :良好,C :合格,D :不合格四个等级进行统计,并绘制了如下不完整的条形统计图和扇形统计图.(1)这次学校抽查的学生人数是__________人;(2)将条形图补充完整;(3)扇形统计图中C 组对应的扇形圆心角度数是__________︒;(4)如果该校共有2200人,请估计该校不合格的人数.25.已知甲,乙两地相距480km ,一辆出租车从甲地出发往返于甲乙两地,一辆货车沿同一条公路从乙地前往甲地,两车同时出发,货车途经服务区时,停下来装完货物后,发现此时与出租车相距120km ,货车继续出发2h 3后与出租车相遇.出租车到达乙地后立即按原路返回,结果比货车早15分钟到达甲地.如图是两车距各自出发地的距离()km y 与货车行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)图中a 的值是__________;(2)求货车装完货物后驶往甲地的过程中,距其出发地的距离()km y 与行驶时间()h x 之间的函数关系式;(3)直接写出在出租车返回的行驶过程中,货车出发多长时间与出租车相距12km .26.如图①,ABC 和ADE V 是等边三角形,连接DC ,点F ,G ,H 分别是,DE DC 和BC 的中点,连接,FG FH.易证:FH =.若ABC 和ADE V 都是等腰直角三角形,且90BAC DAE ∠=∠=︒,如图②:若ABC 和ADE V 都是等腰三角形,且120BAC DAE ∠=∠=︒,如图③:其他条件不变,判断FH 和FG 之间的数量关系,写出你的猜想,并利用图②或图③进行证明.27.2023年5月30日上午9点31分,神舟十六号载人飞船在酒泉发射中心发射升空,某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A ,B 两款文化衫,每件A 款文化衫比每件B 款文化衫多10元,用500元购进A 款和用400元购进B 款的文化衫的数量相同.(1)求A 款文化衫和B 款文化衫每件各多少元?(2)已知毕业班的同学一共有300人,学校计划用不多于14800元,不少于14750元购买文化衫,求有几种购买方案?(3)在实际购买时,由于数量较多,商家让利销售,A 款七折优惠,B 款每件让利m 元,采购人员发现(2)中的所有购买方案所需资金恰好相同,试求m 值.28.如图,在平面直角坐标系中,菱形AOCB 的边OC 在x 轴上,60AOC ∠=︒,OC 的长是一元二次方程24120x x --=的根,过点C 作x 轴的垂线,交对角线OB 于点D ,直线AD 分别交x 轴和y 轴于点F 和点E ,动点M 从点O 以每秒1个单位长度的速度沿OD 向终点D 运动,动点N 从点F 以每秒2个单位长度的速度沿FE 向终点E 运动.两点同时出发,设运动时间为t 秒.(1)求直线AD 的解析式.(2)连接MN ,求MDN △的面积S 与运动时间t 的函数关系式.(3)点N Q .使得以A ,C ,N ,Q 为项点的四边形是矩形.若存在,直接写出点Q 的坐标,若不存在,说明理由.参考答案一、选择题(每小题3分,共30分)【1题答案】【答案】C【2题答案】【答案】A【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】A【6题答案】【答案】C【7题答案】【答案】B【8题答案】【答案】C【9题答案】【答案】D【10题答案】【答案】B二、填空题(每小题3分,共30分)【11题答案】【答案】75.69910⨯【12题答案】【答案】3x ≥-【13题答案】【答案】AB BC =或AC BD⊥【14题答案】【答案】35##0.6【15题答案】【答案】32m -≤<-##23m ->≥-【16题答案】【答案】34【17题答案】【答案】12【18题答案】【答案】4+4【19题答案】【答案】6或3+或3-【20题答案】【答案】2三、解答题(满分60分)【21题答案】【答案】1m m +,原式33=【22题答案】【答案】(1)见解析(2)见解析(3)134π【23题答案】【答案】(1)223y x x =--+(2)存在,点P 的坐标为()2,3-或()3,12-【24题答案】【答案】(1)40(2)见解析(3)90(4)220人【25题答案】【答案】(1)120(2)60y x=(3)12517h 或13117h 【26题答案】【答案】图②中FH =,图③中FH FG =,证明见解析【27题答案】【答案】(1)A 款文化衫每件50元,则B 款文化衫每件40元,(2)一共有六种购买方案(3)5m =【28题答案】【答案】(1)3y x =-+(2)223902392t t t S t t t -+≤≤⎪⎪=⎨⎪-+-<≤⎪⎩;(3)存在,点Q 的坐标是333,22⎛⎫ ⎪ ⎪⎝⎭或(.。
黑龙江省鸡西市中考数学试卷
黑龙江省鸡西市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)﹣3的相反数是()A . 3B . ﹣3C . -D .2. (2分)下列运算正确的是()A . (ab)2=ab2B . 3a+2a2=5a2C . 2(a+b)=2a+bD . a•a=a23. (2分)数据2500000用科学记数法表示为()A . 25×105B . 2.5×105C . 2.5×106D . 2.5×1074. (2分) (2018九上·温州开学考) 某校艺术节举行歌唱比赛,八年级的10名学生参赛成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是()A . 平均数是90B . 中位数是90C . 众数是90D . 方差是195. (2分) (2019八下·瑞安期末) 二次根式在实数范围内有意义,则x应满足的条件是()A . x≥1B . x>1C . x>﹣1D . x≥﹣16. (2分) (2018七上·宜昌期末) 如图是由5个大小相同的小正方体摆成的立体图形,它的俯视图是()A .B .C .D .7. (2分)直线y=x-1不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分)顺次连接四边形四边中点所组成的四边形是()A . 矩形B . 菱形C . 正方形D . 平行四边形9. (2分)(2018·浦东模拟) 已知在Rt△ABC中,∠C=90°,AB=7,BC=5,那么下列式子中正确的是()A .B .C .D .10. (2分)如果二次函数y=ax2+bx+c(其中a、b、c为常数,a≠0)的部分图象如图所示,它的对称轴过点(-1,0),那么关于x的方程ax2+bx+c=0的一个正根可能是()A . 0.5B . 1.5C . 2.5D . 3.5二、填空题 (共6题;共15分)11. (1分)(2017·泰安模拟) 分解因式:m3﹣4m2+4m=________.12. (10分) (2018七上·定安期末) 已知:如图,∠1=∠2,∠A=∠F,试说明∠C=∠D.解:∵ (已知)________(________)∴ ________(等量代换)∴ ________(________)∴ ________(两直线平行,同位角相等)∵(已知)∴ ________(________)∴ ________(两直线平行,内错角相等)∴ (________)13. (1分) (2019九下·镇原期中) △ABC中,BC=8,AB,AC的中点分别为D,E,则DE=________.14. (1分)(2019·抚顺) 不等式组的解集是________.15. (1分)(2018·龙岗模拟) 将一次函数的图象向下平移3个单位长度,相应的函数表达式为________.16. (1分)用计算器探索规律:请先用计算器计算982 , 9982 , 99982 , 999982 ,由此猜想________.三、解答题 (共4题;共30分)17. (5分)计算:cos30°﹣sin60°+2sin45°•tan45°.18. (5分) (2017八上·安定期末) 先化简,再求值:,其中x=2.19. (5分)(2019·长春模拟) (感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是.(只填结果)20. (15分) (2019八下·北京期中) 如图,直线与反比例函数的图象交于点,与y轴交于点B.(1)求的值;(2)已知=过(2,6)点,求当时x的取值范围.(3)设点P的坐标为且,过点P作平行于x轴的直线与直线和反比例函数的图象分别交于点C,D,当C,D间距离小于或等于4时,直接写出n的取值范围.四、实践应用题 (共4题;共43分)21. (13分)(2014·福州) 设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A 级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了________名学生,α=________%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为________度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?22. (15分)(2017·河北模拟) 在“六城”同创活动中,为努力把我市建成“国家园林城市”,绿化公司计划购买A,B,C三种绿化树共800株,用20辆货车一次运回,对我市城区新建道路进行绿化.按计划,20辆货车都要装运,每辆货车只能装运同一种绿化树,且必须装满.根据下表提供的信息,解答以下问题:绿化树品种A B C每辆货车运载量(株)404832每株树苗的价格(元)205030(1)设装运A种绿化树的车辆数为x,装运B种绿化树的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种绿化树的车辆数都不多于8辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若在“六城”同创活动中要求“厉行节约”办实事,则应采用(2)中的哪种安排方案?为什么?23. (10分)(2017·诸城模拟) 如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为45°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度为(即tan∠PCD= ).(1)求该建筑物的高度(即AB的长).(2)求此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)24. (5分)如图,从正三角形出发,利用旋转,作一个飞鸟图.请你也利用正三角形用旋转设计一个图案.五、推理论证题 (共1题;共10分)25. (10分)(2018·宜宾模拟) 如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC 于点C,使∠BED=∠C.(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC=8,,求AD的长.六、拓展探索题 (共1题;共10分)26. (10分) (2019八下·哈尔滨期中) 已知:矩形ABCD,点O为对角线AC中点,点E为矩形外部一点,连接OE,BE,OE=OC.(1)如图1,求证:∠OEB+∠EBC=∠CAD;(2)如图2,设BE交AC于点F,AB=BC,FO=FE,求证:BE= OA;参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共15分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共4题;共30分) 17-1、18-1、19-1、20-1、20-2、20-3、四、实践应用题 (共4题;共43分) 21-1、21-2、21-3、21-4、22-1、22-2、22-3、23-1、23-2、24-1、五、推理论证题 (共1题;共10分) 25-1、25-2、六、拓展探索题 (共1题;共10分) 26-1、26-2、。
2020年黑龙江省鸡西市中考数学试卷(农垦、森工用)(附答案详解)
2020年黑龙江省鸡西市中考数学试卷(农垦、森工用)一、选择题(本大题共9小题,共27.0分)1.(2020·全国·月考试卷)下列各运算中,计算正确的是()A. a2+2a2=3a4B. x8−x2=x6C. (x−y)2=x2−xy+y2D. (−3x2)3=−27x62.(2021·湖南省怀化市·模拟题)下列图标中是中心对称图形的是()A. B. C. D.3.(2020·黑龙江省鹤岗市·历年真题)如图,由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则所需的小正方体的个数最少是()A. 2B. 3C. 4D. 54.(2020·黑龙江省鹤岗市·历年真题)一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则数据x是()A. 1B. 2C. 0或1D. 1或25.(2021·全国·单元测试)已知2+√3是关于x的一元二次方程x2−4x+m=0的一个实数根,则实数m的值是()A. 0B. 1C. −3D. −16.(2021·山西省太原市·同步练习)已知关于x的分式方程xx−3−4=k3−x的解为非正数,则k的取值范围是()A. k≤−12B. k≥−12C. k>−12D. k<−127.(2021·安徽省·单元测试)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 968.(2021·山东省·其他类型)学校计划用200元钱购买A、B两种奖品,A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A. 2种B. 3种C. 4种D. 5种9.(2021·广东省深圳市·模拟题)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=√2BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:①∠ECF=45°;②△AEG的周长为(1+√2)a;2③BE2+DG2=EG2;a2;④△EAF的面积的最大值是18a时,G是线段AD的中点.⑤当BE=13其中正确的结论是()A. ①②③B. ②④⑤C. ①③④D. ①④⑤二、填空题(本大题共10小题,共30.0分)10.(2020·黑龙江省鹤岗市·历年真题)2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日,某市党员“学习强国”客户端注册人数约1180000,将数据1180000用科学记数法表示为______.11.(2021·重庆市·期中考试)在函数y=1中,自变量x的取值范围是______.√2x−312.(2020·安徽省蚌埠市·单元测试)如图,Rt△ABC和Rt△EDF中,BC//DF,在不添加任何辅助线的情况下,请你添加一个条件______,使Rt△ABC和Rt△EDF全等.13.(2020·黑龙江省鹤岗市·历年真题)一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除了标号外都相同,从中随机摸出一个小球,是偶数的概率为______.14.(2021·四川省·模拟题)若关于x的一元一次不等式组{x−1>02x−a>0的解是x>1,则a 的取值范围是______.15.(2020·黑龙江省鹤岗市·历年真题)如图,AD是△ABC的外接圆⊙O的直径,若∠BCA=50°,则∠ADB=______°.16.(2021·浙江省杭州市·模拟题)小明在手工制作课上,用面积为150πcm2,半径为15cm的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为______cm.17.(2021·广西壮族自治区·其他类型)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为______.18.(2021·安徽省淮南市·模拟题)在矩形ABCD中,AB=1,BC=a,点E在边BC上,a,连接AE,将△ABE沿AE折叠.若点B的对应点B′落在矩形ABCD的且BE=35边上,则折痕的长为______.19.(2020·黑龙江省鹤岗市·历年真题)如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1).过B点作直线EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x轴的垂线交MA于点A1.以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作直线E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2,…,则点B2020的坐标______.三、解答题(本大题共8小题,共60.0分)20.(2021·福建省龙岩市·模拟题)先化简,再求值:(1−aa2+a )÷a2−1a2+2a+1,其中a=sin30°.21.(2020·黑龙江省鹤岗市·历年真题)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC的三个顶点A(5,2)、B(5,5)、C(1,1)均在格点上.(1)将△ABC向下平移5个单位得到△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕点C1逆时针旋转90°后得到的△A2B2C1,并写出点A2的坐标;(3)在(2)的条件下,求△A1B1C1在旋转过程中扫过的面积(结果保留π).22.(2021·重庆市市辖区·期末考试)如图,已知二次函数y=−x2+(a+1)x−a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6.(1)求a的值;(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由.23.(2020·黑龙江省鹤岗市·历年真题)某公司工会组织全体员工参加跳绳比赛,工会主席统计了公司50名员工一分钟跳绳成绩,列出的频数分布直方图如图所示,(每个小组包括左端点,不包括右端点).求:(1)该公司员工一分钟跳绳的平均次数至少是多少.(2)该公司一名员工说:“我的跳绳成绩是我公司的中位数”请你给出该员工跳绳成绩的所在范围.(3)若该公司决定给每分钟跳绳不低于140个的员工购买纪念品,每个纪念品300元,则公司应拿出多少钱购买纪念品.24.(2020·黑龙江省鸡西市·历年真题)为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间;(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)25.(2020·黑龙江省鹤岗市·历年真题)以Rt△ABC的两边AB、AC为边,向外作正方形ABDE和正方形ACFG,连接EG,过点A作AM⊥BC于M,延长MA交EG于点N.(1)如图①,若∠BAC=90°,AB=AC,易证:EN=GN;(2)如图②,∠BAC=90°;如图③,∠BAC≠90°,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.26.(2021·广东省·其他类型)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m 元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.27.(2020·黑龙江省鸡西市·历年真题)如图,在平面直角坐标系中,矩形ABCD的边AB长是x2−3x−18=0的根,连接BD,∠DBC=30°,并过点C作CN⊥BD,垂足为N,动点P从B点以每秒2个单位长度的速度沿BD方向匀速运动到D点为止;点M沿线段DA以每秒√3个单位长度的速度由点D向点A匀速运动,到点A为止,点P与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=______;(2)连接PM和MN,求△PMN的面积s与运动时间t的函数关系式;(3)在整个运动过程中,当△PMN是以PN为腰的等腰三角形时,直接写出点P的坐标.答案和解析1.【答案】D【知识点】幂的乘方与积的乘方、合并同类项、完全平方公式【解析】【分析】本题考查了合并同类项法则,完全平方公式,幂的乘方和积的乘方等知识点,能正确求出每个式子的值是解此题的关键.根据合并同类项法则,完全平方公式,幂的乘方和积的乘方分别求出每个式子的值,再判断即可.【解答】解:A.结果是3a2,故本选项不符合题意;B.x8和−x2不能合并,故本选项不符合题意;C.结果是x2−2xy+y2,故本选项不符合题意;D.结果是−27x6,故本选项符合题意;故选D.2.【答案】B【知识点】中心对称图形【解析】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.是中心对称图形,故本选项符号题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】C【知识点】由三视图判断几何体【解析】解:左视图与主视图相同,可判断出底面最少有2个,第二层最少有1个小正方体,第三层最少有1个小正方体,则这个几何体的小立方块的个数最少是2+1+1=4个.故选:C.左视图底面有2个小正方体,主视图底面有2个小正方体,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.4.【答案】D【知识点】众数【解析】解:∵一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,∴数据x是1或2.故选:D.根据众数的定义得出正整数x的值即可.本题主要考查了众数的定义,根据众数是一组数据中出现次数最多的数得出x的值是解题的关键.5.【答案】B【知识点】一元二次方程的解【解析】解:根据题意,得(2+√3)2−4×(2+√3)+m=0,解得m=1,故选:B.把x=2+√3代入方程就得到一个关于m的方程,就可以求出m的值.本题主要考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.6.【答案】A【知识点】分式方程的一般解法、分式方程的解【解析】解:方程xx−3−4=k3−x两边同时乘以(x−3)得:x−4(x−3)=−k,∴x−4x+12=−k,∴−3x=−k−12,∴x=k3+4,∵解为非正数,∴k3+4≤0,∴k≤−12.故选:A.表示出分式方程的解,由解为非正数得出关于k的不等式,解出k的范围即可.本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.7.【答案】C【知识点】菱形的性质、直角三角形斜边上的中线【解析】【分析】本题主要考查了菱形的性质,直角三角形的性质,菱形的面积公式,关键是根据直角三角形的性质求得BD.根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积=12AC⋅BD=12×12×8=48.故选C.8.【答案】B【知识点】二元一次方程的应用、二元一次方程的解【解析】【分析】本题考查了二元一次方程的应用,关键是读懂题意,根据题意列出二元一次方程,然后根据解为非负整数确定出x ,y 的值.设购买了A 种奖品x 个,B 种奖品y 个,根据学校计划用200元钱购买A 、B 两种奖品,其中A 种每个15元,B 种每个25元,钱全部用完可列出方程,再根据x ,y 为非负整数可求出解.【解答】解:设购买了A 种奖品x 个,B 种奖品y 个,根据题意得:15x +25y =200,化简整理得:3x +5y =40,得y =8−35x ,∵x ,y 为非负整数,∴{x =0y =8,{x =5y =5,{x =10y =2, ∴有3种购买方案:方案1:购买了A 种奖品0个,B 种奖品8个;方案2:购买了A 种奖品5个,B 种奖品5个;方案3:购买了A 种奖品10个,B 种奖品2个.故选:B . 9.【答案】D【知识点】二次函数的最值、二次函数的性质、勾股定理、全等三角形的判定与性质、正方形的性质【解析】【分析】本题考查正方形的性质,全等三角形的判定和性质,二次函数的性质、最值,勾股定理等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考选择题中的压轴题.①在BC 上截取BH =BE ,连接EH.证明△FAE≌△EHC(SAS)即可解决问题;②③延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH(SAS)即可解决问题;④设BE=x,则AE=a−x,AF=√2x,构建二次函数,利用二次函数的性质解决最值问题;⑤当BE=13a时,设DG=x,则EG=x+13a,利用勾股定理构建方程可得x=a2即可解决问题.【解答】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=√2BE,∵AF=√2BE,∴AF=EH,∵∠DAM=∠EHB=45°,∠BAD=90°,∴∠FAE=∠EHC=135°,∵BA=BC,BE=BH,∴AE=HC,∴△FAE≌△EHC(SAS),∴EF=EC,∠AEF=∠ECH,∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,∴∠ECF=∠EFC=45°,故①正确,如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,∵CG=CG,CE=CH,∴△GCE≌△GCH(SAS),∴EG=GH,∵GH=DG+DH,DH=BE,∴EG=BE+DG,故③错误,∴△AEG的周长=AE+EG+AG=AE+AH=AD+DH+AE=AE+EB+AD= AB+AD=2a,故②错误,设BE=x,则AE=a−x,AF=√2x,∴S△AEF=12⋅(a−x)×x=−12x2+12ax=−12(x2−ax+14a2−14a2)=−12(x−1 2a)2+18a2,∵−12<0,∴x=12a时,△AEF的面积的最大值为18a2.故④正确,当BE=13a时,设DG=x,则EG=x+13a,在Rt△AEG中,则有(x+13a)2=(a−x)2+(23a)2,解得x=a2,∴AG=GD,故⑤正确,故选:D.10.【答案】1.18×106【知识点】科学记数法-绝对值较大的数【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.【解答】解:1180000=1.18×106,故答案为:1.18×106.11.【答案】x>1.5【知识点】分式有意义的条件、函数自变量的取值范围、二次根式有意义的条件【解析】【分析】本题考查函数自变量的取值范围,根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得2x−3⩾0且√2x−3≠0则2x−3>0,解得x>1.5.故答案为:x>1.5.12.【答案】AB=ED(答案不唯一)【知识点】全等三角形的判定、条件开放型问题【解析】解:∵Rt△ABC和Rt△EDF中,∴∠BAC=∠DEF=90°,∵BC//DF,∴∠DFE=∠BCA,∴添加AB=ED,在Rt△ABC和Rt△EDF中{∠DFE=∠BCA ∠DEF=∠BAC ED=AB,∴Rt△ABC≌Rt△EDF(AAS),故答案为:AB=ED(答案不唯一).根据全等三角形的判定解答即可.此题考查全等三角形的判定,关键是根据全等三角形的判定方法解答.13.【答案】25【知识点】概率公式【解析】解:∵盒子中共装有5个小球,其中标号为偶数的有2、4这2个小球,∴从中随机摸出一个小球,是偶数的概率为2,5故答案为:2.5直接利用概率公式计算可得.本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.14.【答案】a≤2【知识点】一元一次不等式组的解法【解析】解:解不等式x−1>0,得:x>1,,解不等式2x−a>0,得:x>a2∵不等式组的解集为x>1,∴a≤1,2解得a≤2,故答案为:a≤2.分别求出每一个不等式的解集,根据口诀:同大取大可得答案.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.【答案】50【知识点】三角形的外接圆与外心【解析】解:∵AD是△ABC的外接圆⊙O的直径,∴点A,B,C,D在⊙O上,∵∠BCA=50°,∴∠ADB=∠BCA=50°,故答案为:50.根据圆周角定理即可得到结论.本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键.16.【答案】10【知识点】圆锥的计算、扇形面积的计算l⋅R,【解析】解:∵S=12∴1⋅l⋅15=150π,解得l=20π,2设圆锥的底面半径为r,∴2π⋅r=20π,∴r=10(cm).故答案为:10.l⋅R(l为弧长,R为扇形的半径)计算出扇形的弧长,然后先根据扇形的面积公式:S=12根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,利用圆的周长公式计算出圆锥的底面半径.本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周l⋅R(l为弧长,R 长,扇形的半径等于圆锥的母线长;也考查了扇形的面积公式:S=12为扇形的半径).17.【答案】√3【知识点】平移的基本性质、菱形的性质、平行四边形的判定与性质、轴对称-最短路线问题、含30°角的直角三角形、解直角三角形【解析】【分析】本题考查了轴对称−最短路线问题,菱形的性质,平行四边形的判定和性质,解直角三角形,平移的性质,正确地理解题意是解题的关键.根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到EG=AB=1,EG//AB,推出四边形EGCD是平行四边形,得到ED=GC,于是得到EC+GC的最小值=EC+ED 的最小值,根据平移的性质得到点E在过点A且平行于BD的定直线l上,作点D关于直线l的对称点M,连接CM交直线l于E,解直角三角形即可得到结论.【解答】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△EGF,∴EG=AB=1,EG//AB,∵四边形ABCD是菱形,∴AB=CD,AB//CD,∴∠BAD=120°,∴EG=CD,EG//CD,∴四边形EGCD是平行四边形,∴ED=GC,∴EC+GC的最小值=EC+ED的最小值,∵点E在过点A且平行于BD的定直线l上,∴作点D关于直线l的对称点M,连接CM交直线l于E,则CM的长度即为EC+GC的最小值,∵∠EAD=∠ADB=30°,AD=1,∴∠ADM=60°,DH=MH=12AD=12,∴DM=1,∴DM=CD,∵∠CDM=∠MDG+∠CDB=90°+30°=120°,∴∠M=∠DCM=30°,∴CM=2×√32CD=√3.故答案为:√3.18.【答案】√2或√305【知识点】翻折变换(折叠问题)、矩形的性质【解析】解:分两种情况:①当点B′落在AD边上时,如图1所示:∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵将△ABE沿AE折叠.点B的对应点B′落在矩形ABCD的AD边上,∴∠BAE=∠B′AE=12∠BAD=45°,∴△ABE是等腰直角三角形,∴AB=BE=1,AE=√2AB=√2;②当点B′落在CD边上时,如图2所示:∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°,AD=BC=a,∵将△ABE沿AE折叠.点B的对应点B′落在矩形ABCD的CD边上,∴∠B=∠AB′E=90°,AB′=AB=1,BE′=BE=35a,∴CE=BC−BE=a−35a=25a,B′D=√AB′2−AD2=√1−a2,在△ADB′和△B′CE中,∠B′AD=∠EB′C=90°−∠AB′D,∠D=∠C=90°,∴△ADB′∽△B′CE,∴B′DEC =AB′B′E,即√1−a225a=135a,解得:a=√53,或a=0(舍去),∴BE =35a =√55, ∴AE =√AB 2+BE 2=√12+(√55)2=√305; 综上所述,折痕的长为√2或√305; 故答案为:√2或√305. 分两种情况:①当点B′落在AD 边上时,证出△ABE 是等腰直角三角形,得出AE =√2AB =√2;②当点B′落在CD 边上时,证明△ADB′∽△B′CE ,得出B′D EC =AB′B′E ,求出BE =35a =√55,由勾股定理求出AE 即可.本题考查了翻折变换的性质、矩形的性质、等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握翻折变换的性质和矩形的性质是解题的关键. 19.【答案】(2×3n −1,3n )【知识点】一次函数图象上点的坐标特征、一次函数的性质、平面直角坐标系中点的坐标、相似三角形的判定与性质【解析】解:∵点B 坐标为(1,1),∴OA =AB =BC =CO =CO 1=1,∵A 1(2,3),∴A 1O 1=A 1B 1=B 1C 1=C 1O 2=3,∴B 1(5,3),∴A 2(8,9),∴A 2O 2=A 2B 2=B 2C 2=C 2O 3=9,∴B 2(17,9),同理可得B 4(53,27),B 5(161,81),…由上可知,B n (2×3n −1,3n ),∴当n =2020时,B n (2×32020−1,32020).故答案为:(2×3n −1,3n ).由B 坐标为(1,1)根据题意求得A 1的坐标,进而得B 1的坐标,继续求得B 2,B 3,B 4,B 5的坐标,根据这5点的坐标得出规律,再按规律得结果.本题主要考查了一次函数的图象与性质,正方形的性质,等腰直角三角形的性质,规律变化,关键是求出前几个点的坐标得出规律.20.【答案】解:当a=sin30°时,所以a=12原式=a 2a2+a ⋅(a+1)2(a+1)(a−1)=a2a(a+1)⋅(a+1)2(a+1)(a−1)=aa−1=−1.【知识点】特殊角的三角函数值、分式的化简求值【解析】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.根据分式的运算法则即可求出答案,21.【答案】解:(1)如图所示,△A1B1C1即为所求,点A1的坐标为(5,−3);(2)如图所示,△A2B2C1即为所求,点A2的坐标为(0,0);(3)如图,△A1B1C1在旋转过程中扫过的面积为:90×π×(4√2)2360+12×3×4=8π+6.【知识点】作图-平移变换、扇形面积的计算、作图-旋转变换【解析】(1)依据△ABC向下平移5个单位,即可得到△A1B1C1,进而写出点A1的坐标;(2)依据△A1B1C1绕点C1逆时针旋转90°,即可得到的△A2B2C1,进而写出点A2的坐标;(3)依据扇形面积公式和三角形面积公式,即可得到△A1B1C1在旋转过程中扫过的面积.本题考查了利用平移变换和旋转变换作图、扇形面积的计算等,利用平移变换作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.22.【答案】解:(1)∵y=−x2+(a+1)x−a,令x=0,则y=−a,∴C(0,−a),令y=0,即−x2+(a+1)x−a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵S△ABC=6∴12(1−a)(−a)=6解得:a=−3,(a=4舍去);(2)∵a=−3,∴C(0,3),∵S△ABP=S△ABC.∴P点的纵坐标为±3,把y=3代入y=−x2−2x+3得−x2−2x+3=3,解得x=0或x=−2,把y=−3代入y=−x2−2x+3得−x2−2x+3=−3,解得x=−1+√7或x=−1−√7,∴P点的坐标为(−2,3)或(−1+√7,−3)或(−1−√7,−3).【知识点】二次函数与一元二次方程、二次函数的性质、二次函数图象上点的坐标特征【解析】本题考查了抛物线与x轴的交点,二次函数图象上点的坐标特征,二次函数的性质,求得交点坐标是解题的关键.(1)由y=−x2+(a+1)x−a,令y=0,即−x2+(a+1)x−a=0,可求出A、B坐标结合三角形的面积,解出a=−3;(2)根据题意P的纵坐标为±3,分别代入解析式即可求得横坐标,从而求得P的坐标.23.【答案】解:(1)该公司员工一分钟跳绳的平均数为:x−=60×4+80×13+100×19+120×7+140×5+160×24+13+19+7+5+2=100.8,答:该公司员工一分钟跳绳的平均次数至少是100.8个;(2)把50个数据从小到大排列后,处在中间位置的两个数都在100~120这个范围;(3)300×(5+2)=2100(元),答:公司应拿出2100元钱购买纪念品.【知识点】中位数、频数(率)分布直方图【解析】(1)要求平均次数至少是多少,可每组都取最小值计算平均数即可;(2)找出中位数所在的成绩范围,(3)样本中获奖的有7人,求出费用即可.考查频数分布直方图的意义和制作方法,理解频数、频率、总数之间的关系是正确计算的前提.24.【答案】解:(1)设ME 的函数解析式为y =kx +b(k ≠0),由ME 经过(0,50),(3,200)可得:{b =503k +b =200,解得{k =50b =50, ∴ME 的解析式为y =50x +50;(2)设BC 的函数解析式为y =mx +n ,由BC 经过(4,0),(6,200)可得:{4m +n =06m +n =200,解得{m =100n =−400, ∴BC 的函数解析式为y =100x −400;设FG 的函数解析式为y =px +q ,由FG 经过(5,200),(9,0)可得:{5p +q =2009p +q =0,解得{p =−50q =450, ∴FG 的函数解析式为y =−50x +450,解方程组{y =100x −400y =−50x +450得{x =173y =5003, 同理可得x =7ℎ,答:货车返回时与快递车图中相遇的时间173ℎ,7h ;(3)(9−7)×50=100(km),答:两车最后一次相遇时离武汉的距离为100km .【知识点】一次函数的应用【解析】(1)利用待定系数法求一次函数解析式即可;(2)利用待定系数法分别求出BC 与FG 的解析式,再联立解答即可;(3)根据题意列式计算即可.本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,相遇问题,读懂题目信息,理解两车的运动过程是解题的关键.25.【答案】解:(1)证明:∵∠BAC=90°,AB=AC,∴∠ACB=45°,∵AM⊥BC,∴∠MAC=45°,∴∠EAN=∠MAC=45°,同理∠NAG=45°,∴∠EAN=∠NAG,∵四边形ABDE和四边形ACFG为正方形,∴AE=AB=AC=AG,∴EN=GN.(2)如图1,∠BAC=90°时,(1)中结论成立.理由:过点E作EP⊥AN交AN的延长线于P,过点G作GQ⊥AM于Q,∵四边形ABDE是正方形,∴AB=AE,∠BAE=90°,∴∠EAP+∠BAM=180°−90°=90°,∵AM⊥BC,∴∠ABM+∠BAM=90°,∴∠ABM=∠EAP,在△ABM和△EAP中,{∠ABM=∠EAP∠AMB=∠P=90°AB=AE,∴△ABM≌△EAP(AAS),∴EP=AM,同理可得:GQ=AM,∴EP=GQ,在△EPN和△GQN中,{∠P=∠NQG∠ENP=∠GNQ EP=GQ,∴△EPN≌△GQN(AAS),∴EN=NG.如图2,∠BAC≠90°时,(1)中结论成立.理由:过点E作EP⊥AN交AN的延长线于P,过点G作GQ⊥AM于Q,∵四边形ABDE是正方形,∴AB=AE,∠BAE=90°,∴∠EAP+∠BAM=180°−90°=90°,∵AM⊥BC,∴∠ABM+∠BAM=90°,∴∠ABM=∠EAP,在△ABM和△EAP中,{∠ABM=∠EAP∠AMB=∠P=90°AB=AE,∴△ABM≌△EAP(AAS),∴EP=AM,同理可得:GQ=AM,∴EP=GQ,在△EPN和△GQN中,{∠P=∠NQG∠ENP=∠GNQ EP=GQ,∴△EPN≌△GQN(AAS),∴EN =NG .【知识点】四边形综合、正方形的性质、全等三角形的判定与性质【解析】(1)由等腰直角三角形的性质得出∠MAC =45°,证得∠EAN =∠NAG ,由等腰三角形的性质得出结论;(2)如图1,2,证明方法相同,利用“AAS ”证明△ABM 和△EAP 全等,根据全等三角形对应边相等可得EP =AM ,同理可证GQ =AM ,从而得到EP =GQ ,再利用“AAS ”证明△EPN 和△GQN 全等,根据全等三角形对应边相等可得EN =NG .本题是四边形综合题,考查了正方形的性质,全等三角形的判定及性质,等腰三角形的性质,等腰直角三角形的性质等知识;正确作出辅助线,构造全等三角形,运用全等三角形的性质是解题的关键.26.【答案】解:(1)依题意,得:{10m +5n =1706m +10n =200, 解得:{m =10n =14. 答:m 的值为10,n 的值为14.(2)设购买甲种蔬菜x 千克,则购买乙种蔬菜(100−x)千克,依题意,得:{10x +14(100−x)≥116010x +14(100−x)≤1168, 解得:58≤x ≤60.∵x 为正整数,∴x =58,59,60,∴有3种购买方案,方案1:购买甲种蔬菜58千克,乙种蔬菜42千克;方案2:购买甲种蔬菜59千克,乙种蔬菜41千克;方案3:购买甲种蔬菜60千克,乙种蔬菜40千克.(3)设超市获得的利润为y 元,则y =(16−10)x +(18−14)(100−x)=2x +400. ∵k =2>0,∴y 随x 的增大而增大,∴当x =60时,y 取得最大值,最大值为2×60+400=520.依题意,得:(16−10−2a)×60+(18−14−a)×40≥(10×60+14×40)×20%, 解得:a ≤1.8.答:a 的最大值为1.8.【知识点】一元一次不等式组的应用、二元一次方程组的应用、一次函数的应用【解析】(1)根据“该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元”,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)设购买甲种蔬菜x千克,则购买乙种蔬菜(100−x)千克,根据总价=单价×数量结合投入资金不少于1160元又不多于1168元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出各购买方案;(3)设超市获得的利润为y元,根据总利润=每千克的利润×销售数量可得出y关于x的函数关系式,利用一次函数的性质可得出获得利润最多的方案,由总利润=每千克的利润×销售数量结合捐款后的利润率不低于20%,即可得出关于a的一元一次不等式,解之取其最大值即可得出结论.本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的性质以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用一次函数的性质,找出利润最大的购物方案.27.【答案】解:(1)3√3;(2)如图,过点M作MH⊥BD于H,∵AD//BC,∴∠ADB=∠DBC=30°,∴MH=12MD=√32t,∵∠DBC=30°,CN⊥BD,∴BN=√3CN=9,当0<t<92时,△PMN的面积s=12×(9−2t)×√32t=−√32t2+9√34t;当t=92时,点P与点N重合,s=0,当92<t≤6时,△PMN的面积s=12×(2t−9)×√32t=√32t2−9√34t;(3)如图,过点P作PE⊥BC于E,。
鸡西市中考数学试卷
鸡西市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各组中互为相反数的是()A . –2.5与B . 和2C . –2与D . 与2. (2分)(2020·扶沟模拟) 如图,是一个由5个大小相同的小正方体组成的立体图形,它的左视图是()A .B .C .D .3. (2分)(2020·哈尔滨模拟) 下列运算正确的是()A .B .C .D .4. (2分) (2017八下·无锡期中) 下列说法正确的是()A . 为了了解某中学800名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50名学生的视力B . 若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C . 了解无锡市每天的流动人口数,采用抽查方式D . “掷一枚硬币,正面朝上”是必然事件5. (2分) (2019九下·温州竞赛) 地球上陆地豹面积约为150 C00 000km2 .把“150 000 000”用科学记数法表示示为()A . 1.5×108B . 1.5×107C . 1.5×109D . 1.5×1066. (2分) (2018九上·东台月考) Rt△ABC中,∠C=90°,a=4,b=3,则cosA的值是()A .B .C .D .7. (2分)下列等式正确的是()A .B .C .D . =48. (2分) (2019九上·大同期中) 在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()A . 2个B . 3个C . 4个D . 5个9. (2分)如图,⊙O的直径AB=10,E在⊙O内,且OE=4,则过E点所有弦中,长度为整数的条数为()A . 4B . 6C . 8D . 1010. (2分) (2016九上·朝阳期末) 小阳在如图所示的扇形舞台上沿O-M-N匀速行走,他从点O出发,沿箭头所示的方向经过点M再走到点N,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t(单位:秒),他与摄像机的距离为y(单位:米),表示y与t的函数关系的图象大致如图②,则这个固定位置可能是图①中的()A . 点QB . 点PC . 点MD . 点N二、填空题 (共8题;共8分)11. (1分)(2018·平房模拟) 函数的自变量的取值范围是________.12. (1分)(2018·丹棱模拟) 分解因式: ________.13. (1分)(2017·武汉) 计算2×3+(﹣4)的结果为________.14. (1分) (2017八下·汇川期中) 如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是________.15. (1分)(2019·大庆) 归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为________.16. (1分)如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是________ 米.17. (1分)如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以它的对角线OB1为一边作正方形OB1B2C1 ,以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2 ,再以正方形OB2B3C2的对角线OB3为一边作正方形OB3B4C3 ,…,依次进行下去,则点B6的坐标是________18. (1分) (2019九上·泗阳期末) 二次函数y=x2﹣3x+c的图象与x轴有且只有一个交点,c=________.三、解答题 (共8题;共78分)19. (5分)(2017·泸州) 计算:(﹣3)2+20170﹣×sin45°.20. (5分)(2017·平顶山模拟) 如图,一艘海警船在A处发现北偏东30°方向相距12海里的B处有一艘可疑货船,该艘货船以每小时10海里的速度向正东航行,海警船立即以每小时14海里的速度追赶,到C处相遇,求海警船用多长时间追上了货船?21. (11分)建湖县为了了解2016年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向(A.读普通高中; B.读职业高中;C.直接进入社会就业; D.其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问:(1)我县共调查了________名初中毕业生;(2)将两幅统计图中不完整的部分补充完整;(3)若我县2016年初三毕业生共有5500人,请估计我县今年的初三毕业生中读普通高中的学生人数.22. (7分) (2016八下·万州期末) 如图,直线y=x﹣1与反比例函数y= 的图象交于A,B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).(1)反比例函数的解析式为________,直线y=x﹣1在双曲线y= 上方时x的取值范围是________;(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF 的面积.23. (10分) (2018九上·扬州期末) 如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若AB=4+ ,BC=2 ,求⊙O的半径.24. (10分) (2019七下·兴化期末) 有一个边长为m+3的正方形,先将这个正方形两邻边长分别增加1和减少1,得到的长方形①的面积为S1.(1)试探究该正方形的面积S与S1的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由;(2)再将这个正方形两邻边长分别增加4和减少2,得到的长方形②的面积为S2.①试比较S1 , S2的大小;②当m为正整数时,若某个图形的面积介于S1 , S2之间(不包括S1 , S2)且面积为整数,这样的整数值有且只有16个,求m的值.25. (15分) (2020八上·德江期末) 如图,已知为等腰直角三角形,,点为内一点,,为延长线上一点,(1)求证:(2)求(3)点在上,,求证:26. (15分)(2017·莱芜) 抛物线y=ax2+bx+c过A(2,3),B(4,3),C(6,﹣5)三点.(1)求抛物线的表达式;(2)如图①,抛物线上一点D在线段AC的上方,DE⊥AB交AC于点E,若满足 = ,求点D的坐标;(3)如图②,F为抛物线顶点,过A作直线l⊥AB,若点P在直线l上运动,点Q在x轴上运动,是否存在这样的点P、Q,使得以B,P,Q为顶点的三角形与△ABF相似,若存在,求P,Q的坐标,并求此时△BPQ的面积;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共78分)19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
黑龙江省鸡西市2024年中考数学试卷(含答案)
二○一一年鸡西市初中毕业学业考试数 学 试 卷考生留意:1.考试时间120分钟2.全卷共三道大题,总分120分3.运用答题卡的考生,请将答案填写在答题卡的指定位置 题号 一 二三 总 分 核分人 21 22 23 2425 26 27 28 得分一、单项选择题(每题3分,满分30分)1.下列各式:①a 0=1 ②a 2·a 3=a 5 ③ 2–2= –41④ –(3-5)+(–2)4÷8×(–1)=0 ⑤x 2+x 2=2x 2, 其中正确的是 ( ) A ①②③ B ①③⑤ C ②③④ D ②④⑤ 2.下列图形中既是..轴对称图形又是..中心对称图形的是 ( )3.向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止1分钟,然后接着注水,直至注满.则能反映注水量与注水时间函数关系的图象是 ( )4.下图是一个由多个相同小正方体积累而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是 ( )得分 评卷人本考场试卷序号(由监考老师填写)A B C DA B C DA B C D5.若A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)是反比例函数y=x3图象上的点,且x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系正确的是 ( ) A y 3>y 1>y 2 B y 1>y 2>y 3 C y 2>y 1>y 3 D y 3>y 2>y 16.某工厂为了选拔1名车工参与直径为5㎜精密零件的加工技术竞赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为 甲x 、乙x ,方差依次为2甲s 、2乙s ,则下列关系中完全正确的是 ( ) 甲 5.05 5.02 5 4.96 4.97 乙55.0154.975.02A 甲x <乙x , 2甲s <2乙sB 甲x =乙x , 2甲s <2乙sC 甲x =乙x , 2甲s >2乙sD 甲x >乙x , 2甲s >2乙s7.分式方程=--11x x )2)(1(+-x x m有增根,则m 的值为( ) A 0和3 B 1 C 1和-2 D 38.如图,A 、B 、C 、D 是⊙O 上的四个点,AB=AC ,AD 交BC 于点E ,AE=3,ED=4,则AB 的长为 ( ) A 3 B 23 C21 D 359.已知二次函数y=ax 2+bx+c(a≠0)的图象如图所示,现有下列结论: ① b 2-4ac >0 ② a >0 ③ b >0 ④ c >0 ⑤9a+3b+c <0,则其 中结论正确的个数是 ( ) A 2个 B 3个 C 4个 D 5个 10.如图,在Rt △ABC 中,AB=CB ,BO ⊥AC ,把△ABC 折叠,使AB落在AC 上,点B 与AC 上的点E 重合,绽开后,折痕AD 交BO 于点F ,连结DE 、EF.下列结论:①tan ∠ADB=2 ②图中有4对全 等三角形 ③若将△DEF 沿EF 折叠,则点D 不肯定落在AC 上 ④BD=BF ⑤S 四边形DFOE =S △AOF ,上述结论中正确的个数是( ) A 1个 B 2个 C 3个 D 4个二、填空题(每题3分,满分30分)11.2010年10月31日,上海世博会闭幕.累计参观者突破7308万人次,创建了世博会历史上新的纪录.用科学记数法表示为 人次. (结果保留两个有效数字) 12.函数y=32-+x x 中,自变量x 的取值范围是 . 13.如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的得分 评卷人第8题图第10题图 第9题图第20题图两侧,AB ∥DE ,BF=CE ,请添加一个适当的条件: , 使得AC=DF.14.因式分解:-3x 2+6xy -3y 2= .15.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各两个,将全部棋子反面朝上放在棋盘中,任取一个不是..士、象、帅的概率是 . 16.将一个半径为6㎝,母线长为15㎝的圆锥形纸筒沿一条母线 剪开并展平,所得的侧面绽开图的圆心角是 度.17.一元二次方程a 2-4a -7=0的解为 .18.某班级为筹备运动会,打算用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用完的条件下,有 种购买方案. 19.已知三角形相邻两边长分别为20㎝和30㎝,第三边上的高为10㎝,则此三角形的面积为 ㎝².20.如图,△ABC 是边长为1的等边三角形.取BC 边中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的面积记作S 2.照此规律作下去,则S 2024= . 三、解答题(满分60分)21.(本小题满分5分)先化简,再求值:(1-11+a )÷122++a a a ,其中a =sin60°.22.(本小题满分6分)如图,每个小方格都是边长为1个单位长度的小正方形. (1)将△ABC 向右平移3个单位长度,画出平移后的△A 1B 1C 1. (2)将△ABC 绕点O 旋转180°,画出旋转后的△A 2B 2C 2. (3)画出一条直线将△AC 1A 2的面积分成相等的两部分.得分 评卷人得分 评卷人第22题图23.(本小题满分6分)已知:二次函数y=43x²+bx+c ,其图象对称轴为直线x=1,且经过点(2,–49).(1)求此二次函数的解析式.(2)设该图象与x 轴交于B 、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积.注:二次函数y=a x 2+bx+c (a ≠0)的对称轴是直线x=-ab 2.24.(本小题满分7分)为增加学生体质,教化行政部门规定学生每天在校参与户外体育活动的平均时间不少于1小时.某区为了解学生参与户外体育活动的状况,对部分学生参与户外体育活动的时间进行了抽样调查,并将调查结果绘制成如下的统计图表(不完整).请你依据图中供应的信息解答下列问题:得分 评卷人得分 评卷人时间(小时)人数 0.5 60 1.0 a 1.5 40 2.01.5小时(20%) 1.0小时(40%)0.5小时 ( )2.0小时( b ) (1)求a 、b 的值.(2)求表示参与户外体育活动时间为0.5小时的扇形圆心角的度数.(3)该区0.8万名学生参与户外体育活动 时间达标的约有多少人?总计第24题图25.(本小题满分8分)某单位打算印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂干脆按印刷数量收取印刷费.甲乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1) 请你干脆写出甲厂的制版费及y 甲与x 的函数解析式,并求出其证书印刷单价. (2) 当印制证书8千个时,应选择哪个印刷厂节约费用,节约费用多少元?(3) 假如甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?26.(本小题满分8分)在正方形ABCD 的边AB 上任取一点E ,作EF ⊥AB 交BD 于点F ,取FD 的中点G ,得分 评卷人得分 评卷人连结EG、CG,如图(1),易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请干脆写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.第26题图图(1)图(2)图(3)得分评卷人27.(本小题满分10分)建华小区打算新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预料投资金额超过10万元而不超过11万元,则共有几种建立方案?(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元. 在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的修理,其余收入接着兴建新车位,恰好用完,请干脆写出该小区选择的是哪种建立方案?得分评卷人28.(本小题满分10分)已知直线y=3x+43与x轴,y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.(1)试确定直线BC的解析式.(2)若动点P从A点动身沿AC向点C运动(不与A、C重合),同时动点Q从C点动身沿CBA向点A运动(不与C、A重合) ,动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t 秒,求S与t的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请干脆写出N点的坐标;若不存在,请说明理由.A二○一一年鸡西市初中毕业学业考试数学试题参考答案及评分说明一、单项选择题(每题3分,满分30分)1 2 3 4 5 6 7 8 9 10D B D A A C D C B C二、填空题(每题3分,满分30分) 11.7.3×10712.x ≥-2且x≠313.AB=DE 或∠A=∠D 等 14. -3(x -y)2 15.1611 16. 14417. a 1=2+11 ,a 2=2-11 18.219.(1002+503)或(1002-503)(答案不全或含错解,本题不得分)20. 83•201041⎪⎭⎫(表示为402321⎪⎭⎫⎝⎛•3亦可)三、解答题(满分60分) 21.(本小题满分5分)解:原式(11++a a -11+a )·a a 2)1(+ = 1+a a ·aa 2)1(+=a +1 ------------------ (3分)把a =sin60°=23代入 --------------------------------------------------- (1分)原式123+=223+----------------------------------------------------------------(1分) 22.(本小题满分6分)(1)平移正确给2分;(2)旋转正确给2分;(3)面积等分正确给2分(答案不唯一).23.(本小题满分6分)O A B C A 1 B 1 C 1 A 2 B 2 C 2解:(1) 由已知条件得21324392244b bc ⎧-=⎪⨯⎪⎨⎪⨯++=-⎪⎩ -------------------------------------------- (2分) 解得 b=-23, c=-49 ∴此二次函数的解析式为 y=43x 2-23x -49 ----------------------------- (1分) (2) ∵43x 2-23x -49=0 ∴x 1=-1,x 2=3∴-1,0),C (3,0)∴BC=4 ---------------------------------------------------------------- (1分) ∵E 点在x 轴下方,且△EBC 面积最大∴E 点是抛物线的顶点,其坐标为(1,—3)---------------------------------- (1分) EBC 的面积=21×4×3=6 ------------------------------------------------------ (1分)24.(本小题满分7分)解:(1)a=80 , b= 10%--------------------------------------------------------------------- (2分)(220060×100%×360°=108°------------------------------------------------------- (2分) (3) 80+40+200×10%=140------------------------------------------------------------ (1分) 200140×100%×8000=5600-------------------------------------------------------- (2分) 25.(本小题满分8分) 解:(1)制版费1千元, y 甲=21x+1 ,证书单价0.5元. ----------------------------(3分) (2)把x=6代入y 甲=21x+1中得y=4 当x ≥2时由图像可设 y 乙与x 的函数关系式为 y 乙=kx+b ,由已知得2k+b=36k+b = 4解得⎪⎪⎩⎪⎪⎨⎧==4125k b ---------------------------------------------------------------(2分)得y 乙=2541 x 当x=8时,y 甲=21×8+1=5, y 乙=41×8+25=29 ----------------------------(1分) 5-29=0.5(千元) 即,当印制8千张证书时,选择乙厂,节约费用500元.------------------------(1分)(3)设甲厂每个证书的印刷费用应降低a 元8000a=500所以a=0.0625答:甲厂每个证书印刷费最少降低0.0625元.---------------------------------------(1分)26.(本小题满分8分)解(1)EG=CG EG ⊥CG------------------------------------------------------------(2分)(2)EG=CG EG ⊥CG------------------------------------------------------------(2分)证明:延长FE 交DC 延长线于M ,连MG∵∠AEM=90°,∠EBC=90°,∠BCM=90°∴四边形BEMC 是矩形.∴BE=CM ,∠EMC=90°又∵BE=EF∴EF=CM∵∠EMC=90°,FG=DG∴MG=21FD=FG ∵BC=EM ,BC=CD∴EM=CD∵EF=CM∴FM=DM∴∠F=45°又FG=DG∵∠CMG=21∠EMC=45° ∴∠F=∠GMC∴△GFE ≌△GMC∴EG=CG ,∠FGE=∠MGC------------------------------------------------------------------------(2分) ∵∠FMC=90° ,MF=MD , FG=DG∴MG ⊥FD∴∠FGE+∠EGM=90°∴∠MGC+∠EGM=90°即∠EGC=90°∴EG ⊥CG------------------------------------------------------------------------------------------- (2分)27.(本小题满分10分)解:(1)解:设新建一个地上停车位需x 万元,新建一个地下停车位需y 万元,由题意得⎩⎨⎧=+=+1.1235.0y x y x 解得⎩⎨⎧==4.01.0y x 答:新建一个地上停车位需0.1万元,新建一个地下停车位需0.4万元----------------(4分) ﹙2﹚设新建m 个地上停车位,则10<0.1m +0.4(50-m) ≤11解得 30≤m <3100, 因为m 为整数,所以m =30或m =31或m =32或m =33,对应的50-m =20或50-m =19或50-m =18或50-m =17 所以,有四种建立方案。
黑龙江鸡西地区四校2021年中考数学试题含答案解析
黑龙江鸡西地区四校2021年中考数学试题含答案解析一、单选题1、下列运算正确的是()A.a•a3=a3B.(2a)3=6a3C.a6÷a3=a2D.(a2)3﹣(﹣a3)2=0【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a4,不符合题意;B、原式=8a3,不符合题意;C、原式=a3,不符合题意;D、原式=0,符合题意,故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.2、如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图象判定则可.【解答】解:从上面看下来,上面一行是横放3个正方体,左下角一个正方体.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3、在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A.60 B.50 C.40 D.15【分析】根据中位数的定义求解可得.【解答】解:由条形图知,50个数据的中位数为第25、26个数据的平均数,即中位数为==40,故选:C.【点评】本题主要考查众数,熟练掌握众数的定义是解题的关键.4、已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【分析】直接利用关于x轴上点的坐标特点得出m的值,进而得出答案.【解答】解:∵点P(m+2,2m﹣4)在x轴上,∴2m﹣4=0,解得:m=2,∴m+2=4,则点P的坐标是:(4,0).故选:A.【点评】此题主要考查了点的坐标,正确得出m的值是解题关键.5、﹣的绝对值是()A.﹣5 B.C.5 D.﹣【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣|=,故选:B.【点评】本题考查了绝对值的定义,解题的关键是掌握绝对值的性质.6、某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故选:D.【点评】本题考查了概率,熟练掌握概率公式是解题的关键.7、某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分时间t 人数学生类型0≤t<10 10≤t<2020≤t<3030≤t<40t≥40性别男7 31 25 30 4女8 29 26 32 8 学段初中25 36 44 11高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5﹣25.5之间,正确;②这200名学生参加公益劳动时间的中位数在20﹣30之间,正确;③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间,正确;④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间,错误.故选:C.【点评】本题考查了中位数与平均数,正确理解中位数与平均数的意义是解题的关键.8、式子在实数范围内有意义,则x的取值范围是()A.x>0 B.x≥﹣1 C.x≥1 D.x≤1【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣1≥0,解得x≥1,故选:C.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式组是解题关键.9、《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+x+x=34685【分析】设他第一天读x个字,根据题意列出方程解答即可.【解答】解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.【点评】此题考查由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10、计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a4【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.二、填空题1、计算:20190+()﹣1= 4 .【分析】分别计算负整数指数幂、零指数幂,然后再进行实数的运算即可.【解答】解:原式=1+3=4.故答案为:4.【点评】此题考查了实数的运算,解答本题关键是掌握负整数指数幂及零指数幂的运算法则,难度一般.2、分式的值为0,则x的值是 1 .【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.【点评】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.3、一组数据1,7,8,5,4的中位数是a,则a的值是 5 .【分析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】解:先把原数据按从小到大排列:1,4,5,7,8,正中间的数5,所以这组数据的中位数a的值是5.故答案为:5.【点评】本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数.4、分解因式:ab2﹣a=a(b+1)(b﹣1).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.【分析】连接CO并延长交⊙O于E,连接BE,于是得到∠E=∠A=30°,∠EBC=90°,解直角三角形即可得到结论.【解答】解:连接CO并延长交⊙O于E,连接BE,则∠E=∠A=30°,∠EBC=90°,∵⊙O的半径为2,∴CE=4,∴BC=CE=2,∵CD⊥AB,∠CBA=45°,∴CD=BC=,故答案为:.【点评】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.三、解答题(难度:中等)1、已知△ABC和点A',如图.(1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF∽△D'E'F'.【分析】(1)分别作A'C'=2AC、A'B'=2AB、B'C'=2BC得△A'B'C'即可所求.(2)根据中位线定理易得∴△DEF∽△ABC,△D'E'F'∽△A'B'C',故△DEF∽△D'E'F'【解答】解:(1)作线段A'C'=2AC、A'B'=2AB、B'C'=2BC,得△A'B'C'即可所求.证明:∵A'C'=2AC、A'B'=2AB、B'C'=2BC,∴△ABC∽△A′B′C′,∴(2)证明:∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴DE=,,,∴△DEF∽△ABC同理:△D'E'F'∽△A'B'C',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.【点评】本题考查了相似三角形的判定和性质及三角形的中位线定理,解答本题的关键是掌握相似三角形的判定方法,本题用到的是三边法.2、已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若PA=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.【分析】(1)y=(x﹣1)2﹣4向左评移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)易求点A(3,0),b=4,联立方程﹣x+4=(x﹣1)2﹣4,可得B(﹣,);设P(t,﹣t+4),Q(t,t2﹣2t﹣3),①当AP=AQ时,则有﹣4+t=t2﹣2t﹣3,求得t=;②当AP=PQ时,PQ=t2+t+7,PA=(3﹣t),则有t2+t+7=(3﹣t),求得t=﹣;(3)设经过M与N的直线解析式为y=k(x﹣m)+m2,∴,则可知△=k2﹣4km+4m2=(k﹣2m)2=0,求得k=2m,求出直线ME的解析式为y=2mx﹣m2,直线NE的解析式为y=2nx﹣n2,则可求E(,mn),再由面积[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,可得(m﹣n)3=8,即可求解;【解答】解:(1)y=(x﹣1)2﹣4向左评移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)y=(x﹣1)2﹣4与x轴正半轴的交点A(3,0),∵直线y=﹣x+b经过点A,∴b=4,∴y=﹣x+4,y=﹣x+4与y=(x﹣1)2﹣4的交点为﹣x+4=(x﹣1)2﹣4的解,∴x=3或x=﹣,∴B(﹣,),设P(t,﹣t+4),且﹣<t<3,∵PQ∥y轴,∴Q(t,t2﹣2t﹣3),①当AP=AQ时,|4﹣t|=|t2﹣2t﹣3|,则有﹣4+t=t2﹣2t﹣3,∴t=,∴P点横坐标为;②当AP=PQ时,PQ=﹣t2+t+7,PA=(3﹣t),∴﹣t2+t+7=(3﹣t),∴t=﹣;∴P点横坐标为﹣;(3)设经过M与N的直线解析式为y=k(x﹣m)+m2,∴,则有x2﹣kx+km﹣m2=0,△=k2﹣4km+4m2=(k﹣2m)2=0,∴k=2m,直线ME的解析式为y=2mx﹣m2,直线NE的解析式为y=2nx﹣n2,∴E(,mn),∴[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,∴(m﹣n)3﹣=4,∴(m﹣n)3=8,∴m﹣n=2;【点评】本题考查二次函数的图象及性质;是二次函数的综合题,熟练掌握直线与二次函数的交点求法,借助三角形面积列出等量关系是解决m与n的关系的关键.3、如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45°,再由D走到E处测量,DE∥AC,ED=500米,测得仰角为53°,求隧道BC长.(sin53°≈,cos53°≈,tan53°≈).【分析】作EM⊥AC于M,解直角三角形即可得到结论.【解答】解:在Rt△ABD中,AB=AD=600,作EM⊥AC于M,则AM﹣DE=500,∴BM=100,在Rt△CEM中,tan53°===,∴CM=800,∴BC=CM﹣BM=800﹣100=700(米)答:隧道BC长为700米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟知锐角三角函数的定义是解答此题的关键.4、某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?【分析】(1)设购买篮球x个,购买足球y个,根据总价=单价×购买数量结合购买篮球、足球共60个\购买这两类球的总金额为4600元,列出方程组,求解即可;(2)设购买了a个篮球,则购买(60﹣a)个足球,根据购买篮球的总金额不超过购买足球的总金额,列不等式求出x的最大整数解即可.【解答】解:(1)设购买篮球x个,购买足球y个,依题意得:.解得.答:购买篮球20个,购买足球40个;(2)设购买了a个篮球,依题意得:70a≤80(60﹣a)解得a≤32.答:最多可购买32个篮球.【点评】此题考查了一元一次不等式的应用和二元一次方程组的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.5、如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83AD/cm0.00 0.78 1.54 2.30 3.01 4.00 5.11 6.00在PC,PD,AD的长度这三个量中,确定AD的长度是自变量,PD的长度和PC的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 1.59(答案不唯一)cm.【分析】(1)按照变量的定义,根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值约为1.59,故答案为1.59(答案不唯一).【点评】本题考查的是动点的函数图象,此类问题主要是通过描点画出函数图象,根据函数关系,在图象上查出相应的近似数值.6、解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=9,即x=3,把x=3代入①得:y=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7、如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F.【分析】根据平行线的性质可得∠ACE=∠D,又∠A=∠1,利用三角形内角和定理及等式的性质即可得出∠E =∠F.【解答】解:∵CE∥DF,∴∠ACE=∠D,∵∠A=∠1,∴180°﹣∠ACE﹣∠A=180°﹣∠D﹣∠1,又∵∠E=180°﹣∠ACE﹣∠A,∠F=180°﹣∠D﹣∠1,∴∠E=∠F.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形内角和定理.8、有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【分析】(1)根据有理数的加减法可以解答本题;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.【点评】本题考查有理数的混合运算,解答本题得关键是明确有理数混合运算的计算方法.。
2020年黑龙江省鸡西市中考数学试卷附答案
A. ①②③
B. ②④⑤
C. ①③④
D. ①④⑤
二、填空题(本大题共 10 小题,共 30.0 分) 10. 2019 年 1 月 1 日,“学习强国”平台全国上线,截至 2019 年 3 月 17 日,某市党
员“学习强国”客户端注册人数约 1180000,将数据 1180000 用科学记数法表示为
接 OH,若 OA=6,OH=4,则菱形 ABCD 的面积为( )
A. 72
B. 24
C. 48
D. 96
8. 学校计划用 200 元钱购买 A、B 两种奖品,A 种每个 15 元,B 种每个 25 元,在钱
全部用完的情况下,有多少种购买方案( )
A. 2 种
B. 3 种
C. 4 种
D. 5 种
9. 如图,正方形 ABCD 的边长为 a,点 E 在边 AB 上运动(不与
锥侧面,则这个圆锥的底面半径为______cm. 17. 如图,在边长为 1 的菱形 ABCD 中,∠ABC=60°,将△ABD 沿射线 BD 方向平移,
得到△EFG,连接 EC、GC.求 EC+GC 的最小值为______.
第 2 页,共 22 页
18. 在矩形 ABCD 中,AB=1,BC=a,点 E 在边 BC 上,且 BE= a,连接 AE,将△ABE
5. 已知 2+ 是关于 x 的一元二次方程 x2-4x+m=0 的一个实数根,则实数 m 的值是(
)
A. 0
B. 1
C. -3
D. -1
6. 已知关于 x 的分式方程 -4= 的解为非正数,则 k 的取值范围是( )
A. k≤-12
B. k≥-12
C. k>-12
黑龙江省鸡西市中考数学试卷(农垦、森工用)
黑龙江省鸡西市中考数学试卷(农垦、森工用)一、填空题(每题3分,满分30分)1.(3分)在的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示.2.(3分)函数y=中,自变量x的取值范围是.3.(3分)如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的3个红球、3个黄球、2个绿球,任意摸出一球,摸到红球的概率是.5.(3分)不等式组的解集是x>﹣1,则a的取值范围是.6.(3分)原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为.7.(3分)如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是.8.(3分)圆锥底面半径为3cm,母线长3cm则圆锥的侧面积为cm2.9.(3分)△ABC中,AB=12,AC=,∠B=30°,则△ABC的面积是.10.(3分)观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;….则第2017个图形中有个三角形.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.(x﹣2)2=x2﹣4 B.(3a2)3=9a6C.x6÷x2=x3D.x3•x2=x512.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(3分)几个相同的小正方体所搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数最多是()俯视图左视图A.5个 B.7个 C.8个 D.9个14.(3分)一组从小到大排列的数据:a,3,4,4,6(a为正整数),唯一的众数是4,则该组数据的平均数是()A.3.6 B.3.8 C.3.6或3.8 D.4.215.(3分)如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C. D.16.(3分)若关于x 的分式方程的解为非负数,则a 的取值范围是( ) A .a ≥1 B .a >1 C .a ≥1且a ≠4D .a >1且a ≠4 17.(3分)在平行四边形ABCD 中,∠A 的平分线把BC 边分成长度是3和4的两部分,则平行四边形ABCD 周长是( )A .22B .20C .22或20D .1818.(3分)如图,是反比例函数y 1=和一次函数y 2=mx +n 的图象,若y 1<y 2,则相应的x 的取值范围是( )A .1<x <6B .x <1C .x <6D .x >119.(3分)某企业决定投资不超过20万元建造A 、B 两种类型的温室大棚.经测算,投资A 种类型的大棚6万元/个、B 种类型的大棚7万元/个,那么建造方案有( )A .2种B .3种C .4种D .5种20.(3分)如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE=FD ,连接BE 、CF 、BD ,CF 与BD 交于点G ,连接AG 交BE 于点H ,连接DH ,下列结论正确的个数是( )①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE ④S △HDG :S △HBG =tan ∠DAG ⑤线段DH 的最小值是2﹣2.A .2B .3C .4D .5三、解答题(满分60分)21.(5分)先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.22.(6分)如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣1,3),B(﹣3,1),C(﹣1,1).请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出B1的坐标.(2)画出△A1B1C1绕点C1顺时针旋转90°后得到的△A2B2C1,并求出点A1走过的路径长.23.(6分)如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C、D两点.连接BD、AD.(1)求m的值.=4S△ABD,求点P的坐标.(2)抛物线上有一点P,满足S△ABP24.(7分)某校在艺术节选拔节目过程中,从备选的“街舞”、“爵士”、“民族”、“拉丁”四种类型舞蹈中,选择一种学生最喜爱的舞蹈,为此,随机调查了本校的部分学生,并将调查结果绘制成如下统计图表(每位学生只选择一种类型),根据统计图表的信息,解答下列问题:(1)本次抽样调查的学生人数及a、b的值.(2)将条形统计图补充完整.(3)若该校共有1500名学生,试估计全校喜欢“拉丁舞蹈”的学生人数.25.(8分)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:(1)小亮在家停留了分钟.(2)求小亮骑单车从家出发去图书馆时距家的路程y(米)与出发时间x(分钟)之间的函数关系式.(3)若小亮和姐姐到图书馆的实际时间为m分钟,原计划步行到达图书馆的时间为n分钟,则n﹣m=分钟.26.(8分)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.27.(10分)由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B 型口罩共需29元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)药店准备购进这两种型号的口罩共50个,其中A型口罩数量不少于35个,且不多于B型口罩的3倍,有哪几种购买方案,哪种方案最省钱?28.(10分)如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x 轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.黑龙江省鸡西市中考数学试卷(农垦、森工用)参考答案与试题解析一、填空题(每题3分,满分30分)1.(3分)(2017•黑龙江)在的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示 3.2×109.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:3200000000=3.2×109.故答案为:3.2×109.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.2.(3分)(2017•黑龙江)函数y=中,自变量x的取值范围是x>1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0可求出自变量x的取值范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)(2017•黑龙江)如图,BC∥EF,AC∥DF,添加一个条件AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可),使得△ABC≌△DEF.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF或AC=DF根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,同理,BC=EF或AC=DF也可证△ABC≌△DEF.故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.(3分)(2017•黑龙江)在一个不透明的袋子中装有除颜色外完全相同的3个红球、3个黄球、2个绿球,任意摸出一球,摸到红球的概率是.【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,用红球的个数除以总个数,求出恰好摸到红球的概率是多少即可.【解答】解:∵袋子中共有8个球,其中红球有3个,∴任意摸出一球,摸到红球的概率是,故答案为:.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3分)(2017•黑龙江)不等式组的解集是x>﹣1,则a的取值范围是a≤﹣.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,结合不等式组的解集即可确定a的范围.【解答】解:解不等式x+1>0,得:x>﹣1,解不等式a﹣x<0,得:x>3a,∵不等式组的解集为x>﹣1,则3a≤﹣1,∴a≤﹣,故答案为:a≤﹣.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(3分)(2017•黑龙江)原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为10%.【分析】先设平均每次降价的百分率为x,得出第一次降价后的售价是原来的(1﹣x),第二次降价后的售价是原来的(1﹣x)2,再根据题意列出方程解答即可.【解答】解:设这两次的百分率是x,根据题意列方程得100×(1﹣x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.故答案为:10%.【点评】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.(3分)(2017•黑龙江)如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是5.【分析】连接AC、AE,由正方形的性质可知A、C关于直线BD对称,则AE的长即为PC+PE的最小值,再根据勾股定理求出AE的长即可.【解答】解:连接AC、AE,∵四边形ABCD是正方形,∴A、C关于直线BD对称,∴AE的长即为PC+PE的最小值,∵CD=4,CE=1,∴DE=3,在Rt△ADE中,∵AE===5,∴PC+PE的最小值为5.故答案为:5.【点评】本题考查的是轴对称﹣最短路线问题及正方形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.(3分)(2017•黑龙江)圆锥底面半径为3cm,母线长3cm则圆锥的侧面积为9πcm2.【分析】根据题意可求出圆锥底面周长,然后利用扇形面积公式即可求出圆锥的侧面积.【解答】解:圆锥的底面周长为:2π×3=6π,∴圆锥侧面展开图的弧长为:6π,∵圆锥的母线长3,∴圆锥侧面展开图的半径为:3∴圆锥侧面积为:×3×6π=9π;故答案为:9π;【点评】本题考查圆锥的计算,解题的关键是熟练运用圆锥的相关计算公式,本题属于基础题型.9.(3分)(2017•黑龙江)△ABC中,AB=12,AC=,∠B=30°,则△ABC的面积是21或15.【分析】过A作AD⊥BC于D(或延长线于D),根据含30度角的直角三角形的性质得到AD的长,再根据勾股定理得到BD,CD的长,再分两种情况:如图1,当AD在△ABC内部时、如图2,当AD在△ABC外部时,进行讨论即可求解.【解答】解:①如图1,作AD⊥BC,垂足为点D,在Rt△ABD中,∵AB=12、∠B=30°,∴AD=AB=6,BD=ABcosB=12×=6,在Rt△ACD中,CD===,∴BC=BD+CD=6+=7,则S=×BC×AD=×7×6=21;△ABC②如图2,作AD⊥BC,交BC延长线于点D,由①知,AD=6、BD=6、CD=,则BC=BD﹣CD=5,=×BC×AD=×5×6=15,∴S△ABC故答案为:21或15.【点评】本题主要考查了解直角三角形,勾股定理,本题关键是得到BC和AD 的长,同时注意分类思想的运用.10.(3分)(2017•黑龙江)观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;….则第2017个图形中有8065个三角形.【分析】结合图形数出前三个图形中三角形的个数,发现规律:后一个图形中三角形的个数总比前一个三角形的个数多4.【解答】解:第1个图形中一共有1个三角形,第2个图形中一共有1+4=5个三角形,第3个图形中一共有1+4+4=9个三角形,…第n个图形中三角形的个数是1+4(n﹣1)=4n﹣3,当n=2017时,4n﹣3=8065,故答案为:8065.【点评】此题考查图形的变化规律,由特殊到一般的归纳方法,找出规律:后一个图形中三角形的个数总比前一个三角形的个数多4解决问题.二、选择题(每题3分,满分30分)11.(3分)(2017•黑龙江)下列各运算中,计算正确的是()A.(x﹣2)2=x2﹣4 B.(3a2)3=9a6C.x6÷x2=x3D.x3•x2=x5【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=x2﹣4x+4,故A错误;(B)原式=27a6,故B错误;(C)原式=x4,故C错误;故选(D)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.(3分)(2017•黑龙江)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.(3分)(2017•黑龙江)几个相同的小正方体所搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数最多是()俯视图左视图A.5个 B.7个 C.8个 D.9个【分析】根据俯视图知几何体的底层有4个小正方形组成,而左视图是由3个小正方形组成,故这个几何体的后排最有1个小正方体,前排最多有2×3=6个小正方体,即可解答.【解答】解:由俯视图及左视图知,构成该几何体的小正方形体个数最多的情况如下:故选:B.【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.14.(3分)(2017•黑龙江)一组从小到大排列的数据:a,3,4,4,6(a为正整数),唯一的众数是4,则该组数据的平均数是()A.3.6 B.3.8 C.3.6或3.8 D.4.2【分析】根据众数的定义得出正整数a的值,再根据平均数的定义求解可得.【解答】解:∵数据:a,3,4,4,6(a为正整数),唯一的众数是4,∴a=1或2,当a=1时,平均数为=3.6;当a=2时,平均数为=3.8;故选:C.【点评】本题主要考查了众数与平均数的定义,根据众数是一组数据中出现次数最多的数得出a的值是解题的关键.15.(3分)(2017•黑龙江)如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C. D.【分析】根据特殊点的实际意义即可求出答案.【解答】解:先注甲池水未达连接地方时,乙水池中的水面高度没变化;当甲池中水到达连接的地方,乙水池中水面上升比较快;当两水池水面持平时,乙水池的水面持续增长较慢,最后两池水面持平后继续快速上升,故选:D.【点评】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.16.(3分)(2017•黑龙江)若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出a的范围即可.【解答】解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由题意得:≥0且≠2,解得:a≥1且a≠4,故选:C.【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.17.(3分)(2017•黑龙江)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22 B.20 C.22或20 D.18【分析】根据AE平分∠BAD及AD∥BC可得出AB=BE,BC=BE+EC,从而根据AB、AD的长可求出平行四边形的周长.【解答】解:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,①当BE=3,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2(3+3+4)=20.②当BE=4,EC=3时,平行四边形ABCD的周长为:2(AB+AD)=2(4+4+3)=22.故选:C.【点评】本题考查平行四边形的性质、等腰三角形的判定;根据题意判断出AB=BE 是解答本题的关键.18.(3分)(2017•黑龙江)如图,是反比例函数y1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是()A .1<x <6B .x <1C .x <6D .x >1【分析】观察图象得到:当1<x <6时,一次函数y 2的图象都在反比例函数y 1的图象的上方,即满足y 1<y 2.【解答】解:由图形可知:若y 1<y 2,则相应的x 的取值范围是:1<x <6; 故选A .【点评】本题考查了反比例函数与一次函数的交点问题,利用数形结合的思想解决此类问题.19.(3分)(2017•黑龙江)某企业决定投资不超过20万元建造A 、B 两种类型的温室大棚.经测算,投资A 种类型的大棚6万元/个、B 种类型的大棚7万元/个,那么建造方案有( ) A .2种 B .3种 C .4种 D .5种【分析】直接根据题意假设出未知数,进而得出不等式进而分析得出答案. 【解答】解:设建造A 种类型的温室大棚x 个,建造B 种类型的温室大棚y 个,根据题意可得: 6x +7y ≤20,当x=1,y=2符合题意; 当x=2,y=1符合题意; 当x=3,y=0符合题意; 故建造方案有3种. 故选:B .【点评】此题主要考查了二元一次方程的应用,正确表示出建造两种大棚的费用是解题关键.20.(3分)(2017•黑龙江)如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE=FD ,连接BE 、CF 、BD ,CF 与BD 交于点G ,连接AG 交BE 于点H ,连接DH ,下列结论正确的个数是( )①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE ④S △HDG :S △HBG =tan ∠DAG ⑤线段DH 的最小值是2﹣2.A .2B .3C .4D .5【分析】首先证明△ABE ≌△DCF ,△ADG ≌△CDG (SAS ),△AGB ≌△CGB ,利用全等三角形的性质,等高模型、三边关系一一判断即可. 【解答】解:∵四边形ABCD 是正方形,∴AB=CD ,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°, 在△ABE 和△DCF 中,,∴△ABE ≌△DCF (SAS ), ∴∠ABE=∠DCF , 在△ADG 和△CDG 中,,∴△ADG ≌△CDG (SAS ), ∴∠DAG=∠DCF , ∴∠ABE=∠DAG , ∵∠DAG +∠BAH=90°, ∴∠BAE +∠BAH=90°, ∴∠AHB=90°,∴AG ⊥BE ,故③正确, 同法可证:△AGB ≌△CGB , ∵DF ∥CB , ∴△CBG ∽△FDG ,∴△ABG ∽△FDG ,故①正确,∵S △HDG :S △HBG =DG :BG=DF :BC=DF :CD=tan ∠FCD ,又∵∠DAG=∠FCD ,∴S △HDG :S △HBG =tan ∠FCD ,tan ∠DAG ,故④正确 取AB 的中点O ,连接OD 、OH , ∵正方形的边长为4, ∴AO=OH=×4=2,由勾股定理得,OD==2,由三角形的三边关系得,O 、D 、H 三点共线时,DH 最小,DH 最小=2﹣2.无法证明DH 平分∠EHG ,故②错误, 故①③④⑤正确, 故选C .【点评】本题考查了正方形的性质,全等三角形的判定与性质,三角形的三边关系,勾股定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,难点在于⑤作辅助线并确定出DH 最小时的情况.三、解答题(满分60分)21.(5分)(2017•黑龙江)先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.【分析】先化简分式,然后根据分式有意义的条件即可求出m 的值,从而可求出原式的值. 【解答】解:原式=(﹣)×=×﹣×=﹣=,∵m≠±2,0,∴当m=3时,原式=3【点评】本题考查分式的化简求值,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(6分)(2017•黑龙江)如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣1,3),B(﹣3,1),C(﹣1,1).请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出B1的坐标.(2)画出△A1B1C1绕点C1顺时针旋转90°后得到的△A2B2C1,并求出点A1走过的路径长.【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据弧长公式列式计算即可得解.【解答】解:(1)如图,B1(3,1);(2)如图,A1走过的路径长:×2×π×2=π【点评】本题考查了利用轴对称变换作图,利用旋转变换作图,以及弧长的计算,熟练掌握网格结构,准确找出对应顶点的位置是解题的关键.23.(6分)(2017•黑龙江)如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B 两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C、D两点.连接BD、AD.(1)求m的值.=4S△ABD,求点P的坐标.(2)抛物线上有一点P,满足S△ABP【分析】(1)利用待定系数法即可解决问题;(2)利用方程组首先求出点D坐标.由面积关系,推出点P的纵坐标,再利用待定系数法求出点P的坐标即可;【解答】解:(1)∵抛物线y=﹣x2+mx+3过(3,0),∴0=﹣9+3m+3,∴m=2(2)由,得,,∴D (,﹣), ∵S △ABP =4S △ABD ,∴AB ×|y P |=4×AB ×, ∴|y P |=9,y P =±9,当y=9时,﹣x 2+2x +3=9,无实数解, 当y=﹣9时,﹣x 2+2x +3=﹣9,x 1=1+,x 2=1﹣,∴P (1+,﹣9)或P (1﹣,﹣9).【点评】本题考查抛物线与x 轴的交点、二次函数的图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,学会利用方程组确定两个函数的交点坐标,属于中考常考题型.24.(7分)(2017•黑龙江)某校在艺术节选拔节目过程中,从备选的“街舞”、“爵士”、“民族”、“拉丁”四种类型舞蹈中,选择一种学生最喜爱的舞蹈,为此,随机调查了本校的部分学生,并将调查结果绘制成如下统计图表(每位学生只选择一种类型),根据统计图表的信息,解答下列问题:(1)本次抽样调查的学生人数及a 、b 的值. (2)将条形统计图补充完整.(3)若该校共有1500名学生,试估计全校喜欢“拉丁舞蹈”的学生人数.【分析】(1)由“拉丁”的人数及所占百分比可得总人数,由条形统计图可直接得a、b的值;(2)由(1)中各种类型舞蹈的人数即可补全条形图;(3)用样本中“拉丁舞蹈”的百分比乘以总人数可得.【解答】解:(1)总人数:60÷30%=200(人),a=50÷200=25%,b=(200﹣50﹣60﹣30)÷200=30%;(2)如图所示:(3)1500×30%=450(人).答:约有450人喜欢“拉丁舞蹈”.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.25.(8分)(2017•黑龙江)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:(1)小亮在家停留了2分钟.(2)求小亮骑单车从家出发去图书馆时距家的路程y(米)与出发时间x(分钟)之间的函数关系式.(3)若小亮和姐姐到图书馆的实际时间为m分钟,原计划步行到达图书馆的时间为n分钟,则n﹣m=30分钟.【分析】(1)根据路程与速度、时间的关系,首先求出C、B两点的坐标,即可解决问题;(2)根据C、D两点坐标,利用待定系数法即可解决问题;(3)求出原计划步行到达图书馆的时间为n,即可解决问题.【解答】解:(1)步行速度:300÷6=50m/min,单车速度:3×50=150m/min,单车时间:3000÷150=20min,30﹣20=10,∴C(10,0),∴A到B是时间==2min,∴B(8,0),∴BC=2,∴小亮在家停留了2分钟.故答案为2.(2)设y=kx+b,过C、D(30,3000),∴,解得,∴y=150x﹣1500(10≤x≤30)(3)原计划步行到达图书馆的时间为n分钟,n==60n﹣m=60﹣30=30分钟,故答案为30.【点评】本题考查一次函数的应用、路程、速度、时间之间的关系等知识,解题的关键是理解题意,读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.26.(8分)(2017•黑龙江)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.【分析】图2:根据四边形ABCD是正方形,得到AO=OC,BO=OD,AC⊥BD,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,等量代换得到AO=BO,OC′=OD′,∠AOC′=∠BOD′,根据全等三角形的性质得到AC′=BD′,∠OAC′=∠OBD′,于是得到结论;图3:根据四边形ABCD是菱形,得到AC⊥BD,AO=CO,BO=DO,求得OB=OA,OD=OC,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,求得OD′=OC′,∠AOC′=∠BOD′,根据相似三角形的性质得到BD′=AC′,于是得到结论.【解答】解:图2结论:AC′=BD′,AC′⊥BD′,理由:∵四边形ABCD是正方形,∴AO=OC,BO=OD,AC⊥BD,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴AO=BO,OC′=OD′,∠AOC′=∠BOD′,在△AOC′与△BOD′中,,∴△AOC′≌△BOD′,∴AC′=BD′,∠OAC′=∠OBD′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′;图3结论:BD′=AC′,AC′⊥BD’理由:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∵∠ABC=60°,∴∠ABO=30°,∴OB=OA,OD=OC,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴OD′=OC′,∠AOC′=∠BOD′,∴=,∴△AOC′∽△BOD′,∴==,∠OAC′=∠OBD′,∴BD′=AC′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′.【点评】本题考查了正方形的性质,菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.27.(10分)(2017•黑龙江)由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A型口罩和3个B型口罩共需26元;3个A 型口罩和2个B型口罩共需29元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)药店准备购进这两种型号的口罩共50个,其中A型口罩数量不少于35个,且不多于B型口罩的3倍,有哪几种购买方案,哪种方案最省钱?【分析】(1)设一个A型口罩的售价是a元,一个B型口罩的售价是b元,根据:“1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B型口罩共需29元”列方程组求解即可;(2)设A型口罩x个,根据“A型口罩数量不少于35个,且不多于B型口罩的3倍”确定x的取值范围,然后得到有关总费用和A型口罩之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一个A型口罩的售价是a元,一个B型口罩的售价是b元,依题意有:,解得:.答:一个A型口罩的售价是5元,一个B型口罩的售价是7元.(2)设A型口罩x个,依题意有:,解得35≤x≤37.5,∵x为整数,∴x=35,36,37.方案如下:。
2019年黑龙江省鸡西市中考数学试题及参考答案(word解析版)
黑龙江省鸡西市2019年初中毕业学业统一考试数学试题(考试时间120分钟,总分120分)一、填空题(每题3分,满分30分)1.中国政府提出的“一带一路”倡议,近两年来为沿线国家创造了约180000个就业岗位.将数据180000用科学记数法表示为.2.在函数y=中,自变量x的取值范围是.3.如图,在四边形ABCD中,AD=BC,在不添加任何辅助线的情况下,请你添加一个条件,使四边形ABCD是平行四边形.4.在不透明的甲、乙两个盒子中装有除颜色外完全相同的小球,甲盒中有2个白球、1个黄球,乙盒中有1个白球、1个黄球,分别从每个盒中随机摸出1个球,则摸出的2个球都是黄球的概率是.5.若关于x的一元一次不等式组的解集为x>1,则m的取值范围是.6.如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB的度数为.7.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.8.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△PAB=S△PCD,则PC+PD 的最小值为.9.一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为BC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,则CD 的长为.10.如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3;再以对角线OA3为边作第四个正方形,连接A2A4,得到△A2A3A4……记△AA1A2、△A1A2A3、△A2A3A4的面积分别为S1、S2、S3,如此下去,则S2019=.二、选择题(每题3分,满分30分)11.下列各运算中,计算正确的是()A.a2+2a2=3a4B.b10÷b2=b5C.(m﹣n)2=m2﹣n2D.(﹣2x2)3=﹣8x612.下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是()A.B.C.D.13.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()A.6 B.5 C.4 D.314.某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是()A.平均数B.中位数C.方差D.极差15.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4 B.5 C.6 D.716.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y =上,顶点B在反比例函数y=上,点C在x轴的正半轴上,则平行四边形OABC的面积是()A.B.C.4 D.617.已知关于x的分式方程=1的解是非正数,则m的取值范围是()A.m≤3 B.m<3 C.m>﹣3 D.m≥﹣318.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=3:2,过点B作BE∥AC,过点C作CE∥DB,BE、CE交于点E,连接DE,则tan∠EDC=()A.B.C.D.19.某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种20.如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC 的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC 是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是()A.1 B.2 C.3 D.4三、解答题(满分60分)21.(5分)先化简,再求值:(﹣)÷,期中x=2sin30°+1.22.(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).23.(6分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(3,0)、点B(﹣1,0),与y轴交于点C.(1)求拋物线的解析式;(2)过点D(0,3)作直线MN∥x轴,点P在直线NN上且S△PAC=S△DBC,直接写出点P的坐标.24.(7分)“世界读书日”前夕,某校开展了“读书助我成长”的阅读活动.为了了解该校学生在此次活动中课外阅读书籍的数量情况,随机抽取了部分学生进行调查,将收集到的数据进行整理,绘制出两幅不完整的统计图,请根据统计图信息解决下列问题:(1)求本次调查中共抽取的学生人数;(2)补全条形统计图;(3)在扇形统计图中,阅读2本书籍的人数所在扇形的圆心角度数是;(4)若该校有1200名学生,估计该校在这次活动中阅读书籍的数量不低于3本的学生有多少人?25.(8分)小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明,小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程y(米)与小强所用时间t(分钟)之间的函数图象如图所示.(1)求函数图象中a的值;(2)求小强的速度;(3)求线段AB的函数解析式,并写出自变量的取值范围.26.(8分)如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点F,BH⊥AB于点B,点M是BC的中点,连接FM并延长交BH于点H.(1)如图①所示,若∠ABC=30°,求证:DF+BH=BD;(2)如图②所示,若∠ABC=45°,如图③所示,若∠ABC=60°(点M与点D重合),猜想线段DF、BH与BD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10分)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?28.(10分)如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,AB、BC的长分别是一元二次方程x2﹣7x+12=0的两个根(BC>AB),OA=2OB,边CD交y轴于点E,动点P以每秒1个单位长度的速度,从点E出发沿折线段ED﹣DA向点A运动,运动的时间为t(0≤t<6)秒,设△BOP与矩形AOED重叠部分的面积为S.(1)求点D的坐标;(2)求S关于t的函数关系式,并写出自变量的取值范围;(3)在点P的运动过程中,是否存在点P,使△BEP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案与解析一、填空题(每题3分,满分30分)1.中国政府提出的“一带一路”倡议,近两年来为沿线国家创造了约180000个就业岗位.将数据180000用科学记数法表示为.【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:将180000用科学记数法表示为1.8×105,故答案是:1.8×105.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.在函数y=中,自变量x的取值范围是.【知识考点】函数自变量的取值范围.【思路分析】根据二次根式有意义的条件是被开方数大于或等于0即可求解.【解题过程】解:在函数y=中,有x﹣2≥0,解得x≥2,故其自变量x的取值范围是x≥2.故答案为x≥2.【总结归纳】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3.如图,在四边形ABCD中,AD=BC,在不添加任何辅助线的情况下,请你添加一个条件,使四边形ABCD是平行四边形.【知识考点】平行四边形的判定.【思路分析】可再添加一个条件AD∥BC,根据两组对边分别相等的四边形是平行四边形,四边形ABCD是平行四边形.【解题过程】解:根据平行四边形的判定,可再添加一个条件:AD∥BC.故答案为:AD∥BC(答案不唯一).【总结归纳】此题主要考查平行四边形的判定.是一个开放条件的题目,熟练掌握判定定理是解题的关键.4.在不透明的甲、乙两个盒子中装有除颜色外完全相同的小球,甲盒中有2个白球、1个黄球,乙盒中有1个白球、1个黄球,分别从每个盒中随机摸出1个球,则摸出的2个球都是黄球的概率是.【知识考点】列表法与树状图法.【思路分析】先画出树状图展示所有6种等可能的结果数,再找出2个球都是黄球所占结果数,然后根据概率公式求解.【解题过程】解:画树状图为:共有6种等可能的结果数,其中2个球都是黄球占1种,∴摸出的2个球都是黄球的概率=;故答案为:.【总结归纳】本题考查了列表法与树状图法:运用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.5.若关于x的一元一次不等式组的解集为x>1,则m的取值范围是.【知识考点】解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解题过程】解:解不等式x﹣m>0,得:x>m,解不等式2x+1>3,得:x>1,∵不等式组的解集为x>1,∴m≤1,故答案为:m≤1.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB的度数为.【知识考点】垂径定理;圆心角、弧、弦的关系;圆周角定理.【思路分析】利用圆周角与圆心角的关系即可求解.【解题过程】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.【总结归纳】此题考查了圆周角与圆心角定理,熟练掌握圆周角与圆心角的关系是解题关键.7.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.【知识考点】圆锥的计算.【思路分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可.【解题过程】解:∵圆锥的底面圆的周长是45cm,∴圆锥的侧面扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.【总结归纳】本题考查了圆锥的计算,解题的关键是根据圆锥的侧面展开扇形的弧长等于圆锥的底面周长来求出弧长.8.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△PAB=S△PCD,则PC+PD 的最小值为.【知识考点】三角形的面积;矩形的性质;轴对称﹣最短路线问题.【思路分析】由于S△PAB=S△PCD,这两个三角形等底同高,可得点P在线段AD的垂直平分线上,根据最短路径问题,可得PC+PD=AC此时最小,有勾股定理可求结果.【解题过程】解:∵ABCD为矩形,∴AB=DC又∵S△PAB=S△PCD∴点P到AB的距离与到CD的距离相等,即点P线段AD垂直平分线MN上,连接AC,交MN与点P,此时PC+PD的值最小,且PC+PD=AC=故答案为:2【总结归纳】本题主要考查最短路径问题,勾股定理等知识点.9.一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为BC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,则CD 的长为.【知识考点】勾股定理;翻折变换(折叠问题).【思路分析】依据沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,分两种情况讨论:∠DEB=90°或∠BDE=90°,分别依据勾股定理或者相似三角形的性质,即可得到CD的长.【解题过程】解:分两种情况:①若∠DEB=90°,则∠AED=90°=∠C,CD=ED,连接AD,则Rt△ACD≌Rt△AED(HL),∴AE=AC=6,BE=10﹣6=4,设CD=DE=x,则BD=8﹣x,∵Rt△BDE中,DE2+BE2=BD2,∴x2+42=(8﹣x)2,解得x=3,∴CD=3;②若∠BDE=90°,则∠CDE=∠DEF=∠C=90°,CD=DE,∴四边形CDEF是正方形,∴∠AFE=∠EDB=90°,∠AEF=∠B,∴△AEF∽△EBD,∴=,设CD=x,则EF=DF=x,AF=6﹣x,BD=8﹣x,∴=,解得x=,∴CD=,综上所述,CD的长为3或,故答案为:3或.【总结归纳】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.10.如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3;再以对角线OA3为边作第四个正方形,连接A2A4,得到△A2A3A4……记△AA1A2、△A1A2A3、△A2A3A4的面积分别为S1、S2、S3,如此下去,则S2019=.【知识考点】规律型:图形的变化类;三角形的面积.【思路分析】首先求出S1、S2、S3,然后猜测命题中隐含的数学规律,即可解决问题.【解题过程】解:∵四边形OAA1B1是正方形,∴OA=AA1=A1B1=1,∴S1==,∵∠OAA1=90°,∴AO12=12+12=,∴OA2=A2A3=2,∴S2==1,同理可求:S3==2,S4=4…,∴S n=2n﹣2,∴S2019=22017,故答案为:22017.【总结归纳】本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到a n的规律是解题的关键.二、选择题(每题3分,满分30分)11.下列各运算中,计算正确的是()A.a2+2a2=3a4B.b10÷b2=b5C.(m﹣n)2=m2﹣n2D.(﹣2x2)3=﹣8x6【知识考点】合并同类项;幂的乘方与积的乘方;同底数幂的除法;完全平方公式.【思路分析】直接利用同底数幂的乘除运算法则以及完全平方公式、合并同类项法则分别化简得出答案.【解题过程】解:A、a2+2a2=3a2,故此选项错误;B、b10÷b2=b8,故此选项错误;C、(m﹣n)2=m2﹣2mn+n2,故此选项错误;D、(﹣2x2)3=﹣8x6,故此选项正确;故选:D.【总结归纳】此题主要考查了同底数幂的乘除运算以及完全平方公式、合并同类项,正确掌握相关运算法则是解题关键.12.下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是()A.B.C.D.【知识考点】中心对称图形.【思路分析】根据中心对称图形的概念求解即可.【解题过程】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.【总结归纳】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()A.6 B.5 C.4 D.3【知识考点】由三视图判断几何体.【思路分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解题过程】解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个.故选:B.【总结归纳】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.14.某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是()A.平均数B.中位数C.方差D.极差【知识考点】算术平均数;中位数;极差;方差.【思路分析】根据中位数的定义解答可得.【解题过程】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最低成绩写得更低了,计算结果不受影响的是中位数,故选:B.【总结归纳】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.15.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4 B.5 C.6 D.7【知识考点】一元二次方程的应用.【思路分析】设这种植物每个支干长出x个小分支,根据主干、支干和小分支的总数是43,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解题过程】解:设这种植物每个支干长出x个小分支,依题意,得:1+x+x2=43,解得:x1=﹣7(舍去),x2=6.故选:C.【总结归纳】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y =上,顶点B在反比例函数y=上,点C在x轴的正半轴上,则平行四边形OABC的面积是()A.B.C.4 D.6【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;平行四边形的性质.【思路分析】根据平行四边形的性质和反比例函数系数k的几何意义即可求得.【解题过程】解:如图作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),根据系数k的几何意义,S矩形BDOE=5,S△AOE=,∴四边形OABC的面积=5﹣﹣=4,故选:C.【总结归纳】本题考查了反比例函数的比例系数k的几何意义、平行四边形的性质等,有一定的综合性17.已知关于x的分式方程=1的解是非正数,则m的取值范围是()A.m≤3 B.m<3 C.m>﹣3 D.m≥﹣3【知识考点】分式方程的解;解一元一次不等式.【思路分析】根据解分式方程的方法可以求得m的取值范围,本题得以解决.【解题过程】解:=1,方程两边同乘以x﹣3,得2x﹣m=x﹣3,移项及合并同类项,得x=m﹣3,∵分式方程=1的解是非正数,x﹣3≠0,∴,解得,m≤3,故选:A.【总结归纳】本题考查分式方程的解、解一元一次不等式,解答本题的关键是明确解分式方程的方法.18.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=3:2,过点B作BE∥AC,过点C作CE∥DB,BE、CE交于点E,连接DE,则tan∠EDC=()A.B.C.D.【知识考点】菱形的判定与性质;矩形的性质;解直角三角形.【思路分析】如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.根据邻边相等的平行四边形是菱形即可判断四边形OBEC是菱形,则OE与BC垂直平分,易得EF=OG,CF=QE=AB.所以由锐角三角函数定义作答即可.【解题过程】解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=3:2,∴设AB=3x,BC=2x.如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,∴四边形BOCE是平行四边形,∵四边形ABCD是矩形,∴OB=OC,∴四边形BOCE是菱形.∴OE与BC垂直平分,∴EF=AD==x,OE∥AB,∴四边形AOEB是平行四边形,∴OE=AB,∴CF=OE=AB=x.∴tan∠EDC===.故选:A.【总结归纳】本题考查矩形的性质、菱形的判定与性质以及解直角三角形,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种【知识考点】二元一次方程的应用.【思路分析】设一等奖个数x个,二等奖个数y个,根据题意,得6x+4y=34,根据方程可得三种方案;【解题过程】解:设一等奖个数x个,二等奖个数y个,根据题意,得6x+4y=34,使方程成立的解有,,,∴方案一共有3种;故选:B.【总结归纳】本题考查二元一次方程的应用;熟练掌握二元一次方程的解法是解题的关键.20.如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC 的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC 是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是()A.1 B.2 C.3 D.4【知识考点】等腰直角三角形;平行四边形的性质;正方形的判定与性质;相似三角形的判定与性质.【思路分析】①先证明△ABF≌△ECF,得AB=EC,再得四边形ABEC为平行四边形,进而由∠BAC=90°,得四边形ABCD是正方形,便可判断正误;②由△OCF∽△OAD,得OC:OA=1:2,进而得OC:BE的值,便可判断正误;③根据BC=AB,DE=2AB进行推理说明便可;④由△OCF与△OAD的面积关系和△OCF与△AOF的面积关系,便可得四边形OCEF的面积与△AOD的面积关系.【解题过程】解:①∵∠BAC=90°,AB=AC,∴BF=CF,∵四边形ABCD是平行四边形,∴AB∥DE,∴∠BAF=∠CEF,∵∠AFB=∠CFE,∴△ABF≌△ECF(AAS),∴AB=CE,∴四边形ABEC是平行四边形,∵∠BAC=90°,AB=AC,∴四边形ABEC是正方形,故此题结论正确;②∵OC∥AD,∴△OCF∽△OAD,∴OC:OA=CF:AD=CF:BC=1:2,∴OC:AC=1:3,∵AC=BE,∴OC:BE=1:3,故此小题结论正确;③∵AB=CD=EC,∴DE=2AB,∵AB=AC,∠BAC=90°,∴AB=BC,∴DE=2×,故此小题结论正确;④∵△OCF∽△OAD,∴,∴,∵OC:AC=1:3,∴3S△OCF=S△ACF,∵S△ACF=S△CEF,∴,∴,故此小题结论正确.故选:D.【总结归纳】本题是平行四边形的综合题,主要考查了平行四边形的性质与判定,正方形的性质与判定,全等三角形的性质与判定,相似三角形的性质与判定,等腰三角形的性质,第一小题关键是证明三角形全等,第二小题证明三角形的相似,第三小题证明BC与AB的关系,DE与AB 的关系,第四小题关键是用△OCF的面积为桥梁.三、解答题(满分60分)21.(5分)先化简,再求值:(﹣)÷,期中x=2sin30°+1.【知识考点】分式的化简求值;T5:特殊角的三角函数值.【思路分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值化简代入计算可得.【解题过程】解:原式=[﹣]•(x+1)=•(x+1)=,当x=2sin30°+1=2×+1=1+1=2时,原式=1.【总结归纳】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.22.(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).【知识考点】扇形面积的计算;作图﹣轴对称变换;作图﹣旋转变换.【思路分析】(1)根据题意,可以画出相应的图形,并写出点A1的坐标;(2)根据题意,可以画出相应的图形,并写出点A2的坐标;(3)根据题意可以求得OA的长,从而可以求得线段OA在旋转过程中扫过的面积.【解题过程】解:(1)如图所示,点A1的坐标是(﹣4,1);(2)如右图所示,点A2的坐标是(1,﹣4);(3)∵点A(4,1),∴OA=,∴线段OA在旋转过程中扫过的面积是:=.【总结归纳】本题考查简单作图、扇形面积的计算、轴对称、旋转变换,解答本题的关键是明确题意,利用数形结合的思想解答.23.(6分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(3,0)、点B(﹣1,0),与y轴交于点C.(1)求拋物线的解析式;(2)过点D(0,3)作直线MN∥x轴,点P在直线NN上且S△PAC=S△DBC,直接写出点P的坐标.【知识考点】一次函数图象上点的坐标特征;待定系数法求二次函数解析式;抛物线与x轴的交点.【思路分析】(1)将点A(3,0)、点B(﹣1,0)代入y=x2+bx+c即可;(2)S△DBC=6×1=3=S△PAC,设P(x,3),直线CP与x轴交点为Q,则有AQ=1,可求Q(2,0)或Q(4,0),得:直线CQ为y=x﹣3或y=x﹣3,当y=3时,x=4或x=8;【解题过程】解:(1)将点A(3,0)、点B(﹣1,0)代入y=x2+bx+c,可得b=﹣2,c=﹣3,∴y=x2﹣2x﹣3;(2)∵C(0,﹣3),∴S△DBC=6×1=3,∴S△PAC=3,设P(x,3),直线CP与x轴交点为Q,则S△PAC=6×AQ,∴AQ=1,∴Q(2,0)或Q(4,0),∴直线CQ为y=x﹣3或y=x﹣3,当y=3时,x=4或x=8,∴P(4,3)或P(8,3);【总结归纳】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,灵活转化三角形面积是解题的关键.24.(7分)“世界读书日”前夕,某校开展了“读书助我成长”的阅读活动.为了了解该校学生在此次活动中课外阅读书籍的数量情况,随机抽取了部分学生进行调查,将收集到的数据进行整理,绘制出两幅不完整的统计图,请根据统计图信息解决下列问题:(1)求本次调查中共抽取的学生人数;(2)补全条形统计图;(3)在扇形统计图中,阅读2本书籍的人数所在扇形的圆心角度数是;(4)若该校有1200名学生,估计该校在这次活动中阅读书籍的数量不低于3本的学生有多少人?【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)由1本的人数及其所占百分比可得答案;(2)求出2本和3本的人数即可补全条形图;(3)用360°乘以2本人数所占比例;(4)利用样本估计总体思想求解可得.【解题过程】解:(1)本次调查中共抽取的学生人数为15÷30%=50(人);(2)3本人数为50×40%=20(人),则2本人数为50﹣(15+20+5)=10(人),补全图形如下:(3)在扇形统计图中,阅读2本书籍的人数所在扇形的圆心角度数是360°×=72°,故答案为:72°;(4)估计该校在这次活动中阅读书籍的数量不低于3本的学生有1200×=600(人).【总结归纳】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(8分)小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明,小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程y(米)与小强所用时间t(分钟)之间的函数图象如图所示.(1)求函数图象中a的值;(2)求小强的速度;(3)求线段AB的函数解析式,并写出自变量的取值范围.。
【中考真题】2022年黑龙江省牡丹江、鸡西地区朝鲜族学校中考数学试卷(附答案)
2022年黑龙江省牡丹江、鸡西地区朝鲜族学校中考数学真题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为( ) A .31.610⨯吨B .41.610⨯吨C .51.610⨯吨D .61.610⨯吨2.下列图形中是轴对称图形但不是中心对称图形的是( )A .B .C .D .3.左下图是一些完全相同的小正方体搭成的几何体的三视图 .这个几何体只能是( )A .B .C .D .4.一组数据13,10,10,11,16的中位数和平均数分别是( ) A .11,13B .11,12C .13,12D .10,125.下列方程没有实数根的是( ) A .2410x x += B .23830x x +-= C .2230x x -+=D .()()2312x x --=6.若二次函数2y ax =的图象经过点P (-2,4),则该图象必经过点( ) A .(2,4) B .(-2,-4)C .(-4,2)D .(4,-2)7.函数y x 的取值范围是【 】 A .x≥1且x≠3 B .x≥1 C .x≠3 D .x >1且x≠38.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A 型血的人数是()A.16人B.14人C.4人D.6人9.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.12B.712C.58D.3410.小明去爬山,在山脚看山顶角度为30°,小明在坡比为5∶12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.(600-米B.250)米C.(350+米D.二、填空题11.分解因式:2x2x-=___.12.若两个连续的整数a、b满足a b<,则1ab的值为__________ .13.已知圆锥的高是12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为________14.在九张质地都相同的卡片上分别写有数字﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是___.15.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为____________.16.如图,在∶O中,弦AB垂直平分半径OC,垂足为D,若∶O的半径为2,则弦AB的长为______.17.在Rt∶ABC中,∶C=90°,AD平分∶CAB,AC=6,BC=8,CD=_______.18.如图所示,以O 为端点画六条射线后OA ,OB ,OC ,OD ,OE ,O 后F ,再从射线OA 上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线___上.19.某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务 .设乙车间每天生产x 个,可列方程为___________ .20.下列图形是将等边三角形按一定规律排列,则第5个图形中所以等边三角形的个数是__________.三、解答题21.先化简,再求值:23224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,在﹣2,0,1,2四个数中选一个合适的代入求值.22.如图,在边长为1个单位长度的小正方形组成的网格中,∶ABC 与∶DEF 关于点O 成中心对称,∶ABC 与∶DEF 的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O 的位置;(2)将∶ABC 先向右平移4个单位长度,再向下平移2个单位长度,得到∶A 1B 1C 1,请画出∶A 1B 1C 1;(3)在网格中画出格点M ,使A 1M 平分∶B 1A 1C 1 23.如图,已知抛物线()()12y x x a a=-+(a >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线过点M (﹣2,﹣2),求实数a 的值; (2)在(1)的条件下,解答下列问题; ∶求出∶BCE 的面积;∶在抛物线的对称轴上找一点H ,使CH +EH 的值最小,直接写出点H 的坐标. 24.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图: 男、女观众对“课战”题材电视剧的喜爱情况统计图男观众对“谍战”题材电视剧的喜爱情况统计图请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?25.2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了___小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?26.在菱形ABCD 和正三角形BGF 中,60ABC ∠=︒,P 是DF 的中点,连接PG 、PC .(1)如图1,当点G 在BC 边上时,写出PG 与PC 的数量关系 .(不必证明) (2)如图2,当点F 在AB 的延长线上时,线段PC 、PG 有怎样的数量关系,写出你的猜想,并给予证明;(3)如图3,当点F 在CB 的延长线上时,线段PC 、PG 又有怎样的数量关系,写出你的猜想(不必证明).27.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?28.如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.参考答案:1.C【解析】【分析】科学记数法的表示形式为10na⨯的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:16万吨=160000吨=5⨯吨.1.610故选:C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为10na⨯的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.B【解析】【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】解:A、此图形不是中心对称图形,也不是轴对称图形,选项错误;B、此图形不是中心对称图形,是轴对称图形,选项正确;C、此图形是中心对称图形,也是轴对称图形,选项错误;D、此图形是中心对称图形,不是轴对称图形,选项错误.故选B.【点睛】本题考查轴对称图形和中心对称图形.3.A【解析】【详解】试题分析:根据几何体的主视图可判断C不合题意;根据左视图可得B、D不合题意,因此选项A正确,故选A.考点:几何体的三视图4.B【解析】【分析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】解:把这组数据按从小到大的顺序排列是:10,10,11,13,16,∶这组数据的中位数是11,平均数=1310101116125++++=.故选:B.【点睛】本题考查了中位数的定义和平均数的求法,解题的关键是牢记定义,此题比较简单,易于掌握.5.C【解析】【分析】通过题目可知这几个方程都是一元二次方程,因此可以通过24b ac∆=-来确定有没有实数根,即可求解【详解】解:A、∶=2441(10)560-⨯⨯-=>,有两个不相等的实数根;B、∶=2843(3)1000-⨯⨯-=>,故有两个不相等的实数根;C、∶=2(2)41380<--⨯⨯=-,故没有实数根;D、∶=2-5-41-6=490()()>⨯⨯,故有两个不相等的实数根故选C6.A【解析】 【详解】根据点在曲线上,点的坐标满足方程的关系,将P (-2,4)代入2y ax =,得()2421a a =-⇒=,∶二次函数解析式为2yx .∶所给四点中,只有(2,4)满足2y x .故选A .7.A 【解析】 【详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0x 10x 1{{x 1x 30x 3-≥≥⇒⇒≥-≠≠且x 3≠.故选A . 考点:函数自变量的取值范围,二次根式和分式有意义的条件. 8.A 【解析】 【详解】根据频数、频率和总量的关系:频数=总量×频率,得本班A 型血的人数是: 40×0.4 =16(人).故选A . 9.C 【解析】 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案. 【详解】 画树状图得:∶共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∶抽取的两个球数字之和大于6的概率是:105=168. 故选C .【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.B【解析】【详解】解:如答图,∶BE :AE=5:12,∶可设BE=5k ,AE=12k ,∶AB=1300米,∶在Rt∶ABE 中,由勾股定理,得AE 2+BE 2=AB 2,即()()2221251300k k +=,解得k=100.∶AE=1200米,BE=500米.设EC=x 米,∶∶DBF=60°,米.又∶∶DAC=30°,.),解得x=600﹣750.250(米).∶山高CD 为(250)米.故选B .【点睛】本题考查解直角三角形的应用(仰角俯角和坡度坡角问题);勾股定理;锐角三角函数定义;特殊角的三角函数值;待定系数法的应用.11.()x x 2-.【解析】【分析】直接提取公因式x 即可【详解】解:()2x 2x x x 2-=-.故答案为: ()x x 2-12.112【解析】【分析】a ,b ,进而求得1ab的值. 【详解】∶9<13<16,即34,∶a b <,∶3a =,4b =, ∶1113412ab ==⨯, 故答案为:112【点睛】本题考查了估算无理数的大小,属于基础题,熟练掌握“夹逼法”的应用是解答本题的关键.13.26+10π##10π+26【解析】【详解】解∶∶圆锥的底面半径是5,高是12,根据勾股定理得:圆锥的母线长为13,∶这个圆锥的侧面展开图的周长=2×13+2π×5=26+10π.故答案为26+10π.【点睛】本题考查了圆锥的相关计算,应熟知圆锥的侧面展开图是扇形,扇形的半径是圆锥的母线长,扇形的弧长是圆锥底面圆的周长.14.59【解析】【详解】试题分析:根据概率的求法,找准两点:∶全部等可能情况的总数;∶符合条件的情况数目;二者的比值就是其发生的概率.因此,∶数的总个数有9个,绝对值不大于2的数有﹣2,﹣1,0,1,2共5个,∶任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是59. 15.224y x x =+或22(1)2y x =+-(答出这两种形式中任意一种均得分)【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】由“左加右减”的原则可知,将二次函数y=2x 2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,即y=2(x+1)2﹣2.故答案为y=2(x+1)2﹣2.考点:二次函数图象与几何变换.16.【解析】【详解】解:如图,连接OA,由AB垂直平分OC,得到OD=12OC=1,∶OC∶AB,∶D为AB的中点.∶AB=2AD===故答案为:17.3.【解析】【详解】试题分析:如图,过点D作DE∶AB于E,∶∶C=90°,AC=6,BC=8,10==,∶AD平分∶CAB,∶CD=DE,∶S△ABC=12AC•CD+12AB•DE=12AC•BC,即12×6•CD+12×10•CD=12×6×8,解得CD=3.考点:1.角平分线的性质,2.勾股定理18.OC【解析】【详解】解∶∶1在射线OA 上,2在射线OB 上,3在射线OC 上,4在射线OD 上,5在射线OE 上,6在射线OF 上,7在射线OA 上,…∶每六个一循环.∶2013÷6=335…3,∶所描的第2013个点在射线和3所在射线一样.∶所描的第2013个点在射线OC 上.故答案为:OC19.40050010x x =+ 【解析】【分析】设乙车间每天生产x 个,根据甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务可列出方程.【详解】解:设乙车间每天生产x 个,则40050010x x =+. 故答案为:40050010x x =+. 【点睛】本题考查理解题意的能力,关键设出生产个数,以时间作为等量关系列分式方程. 20.485【解析】【详解】解: 由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.故答案为:48521.28x+,10.【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=1代入计算即可求出值.【详解】原式=(()() ()()2 322422x x x x xx x x+---⋅-+=()()()()() 242222x x x xx x x+-+⋅-+=2(x+4)=2x+8当x=1时,原式=10.【点睛】本题主要考查了分式的化简和代入求值,关键是代入的时候要根据分式有意义的条件选择合适的值代入.22.作图见解析.【解析】【详解】试题分析:(1)连接对应点B、F,对应点C、E,其交点即为旋转中心的位置;(2)利用网格结构找出平移后的点的位置,然后顺次连接即可;(3)根据网格结构的特点作出即可.试题解析:(1)如图所示,点O即为所求.(2)如图所示,∶A1B1C1为所求;(3)如图所示,点M即为所求.考点:1.作图—旋转变换;2.作图—平移变换.23.(1)a =4;(2)∶6;∶(﹣1,32-) 【解析】【详解】解:(1)将M (﹣2,﹣2)代入抛物线解析式得:()()12222a a ---+=-, 解得:a =4.(2)∶由(1)抛物线解析式()()1244y x x =-+, 当y =0时,得:()()12404x x -+=,解得:122,4x x ==-. ∶点B 在点C 的左侧,∶B (﹣4,0),C (2,0).当x =0时,得:y =﹣2,∶E (0,﹣2).∶S △BCE =12×6×2=6. ∶∶()()()2211119242144244y x x x x x =-+=+-=+-, ∶抛物线对称轴为直线x =﹣1.连接BE ,与对称轴交于点H ,即为所求.设直线BE 解析式为y =kx +b ,将B (﹣4,0)与E (0,﹣2)代入得:402k b b -+=⎧⎨=-⎩,解得:122k b ⎧=-⎪⎨⎪=-⎩. ∶直线BE 解析式为122y x =--. 将x =﹣1代入得:13222y =-=-,∶H (﹣1,32-). 24.(1)60%(2)300人,图见解析(3)600人【解析】【分析】(1)先求出接受调查的女观众的总人数,再由图可知表示“不喜欢”的女观众有90人,然后用90除以总人数即可;(2)用男观众中喜欢“谍战”题材电视剧的人数直接除以60%即可解答;(3)利用样本估计总体的方法,用总人数乘以男观众喜欢看“谍战”题材电视剧的百分比即可.(1) 解:90100%60%904020⨯=++ . 答:女观众中“不喜欢”所占的百分比是60%;解:()()90180110%300+÷-=(人) .答:这次调查的男观众有300人 .300-90-180=30人,补全条形统计图,如图所示,(3) 解:1801000600300⨯=(人) . 答:喜欢看“谍战”题材电视剧的男观众约有600人 .【点睛】本题考查了条形统计图和扇形统计图以及用样本估计总体的思想,解题的关键是弄清题意,读懂统计图.25.(1)1.9(2)270(3)按图象所表示的走法符合约定,理由见解析【解析】【分析】(1)由于线段AB 与x 轴平行,故自3时到4.9时这段时间内甲组停留在途中,所以停留的时间为1.9时.(2)观察图象可知点B 的纵坐标就是甲组的汽车在排除故障时距出发点的路程的千米数,从而求得直线EF 和直线BD 的解析式,即可求出B 点的坐标.(3)由图象可知:甲、乙两组第一次相遇后在B 和D 相距最远,在两点处时, y y -甲乙,分别同25比较即可.4.9-3=1.9小时;故答案为:1.9(2)设直线EF的解析式为y乙=kx+b,∶点E(1.25,0)、点F(7.25,480)均在直线EF上,∶1.250{7.25480k bk b+=+=,解得80{100kb==-.∶直线EF的解析式是y乙=80x﹣100.∶点C在直线EF上,且点C的横坐标为6,∶点C的纵坐标为80×6﹣100=380.∶点C的坐标是(6,380).设直线BD的解析式为y甲=mx+n;∶点C(6,380)、点D(7,480)在直线BD上,∶6380{7480m nm n+=+=,解得80{100kb==-.∶BD的解析式是y甲=100x﹣220.∶B点在直线BD上且点B的横坐标为4.9,代入y甲得B(4.9,270),∶甲组在排除故障时,距出发点的路程是270千米.(3)符合约定.理由如下:由图象可知:甲、乙两组第一次相遇后在B和D相距最远,在点B处有y乙﹣y甲=80×4.9﹣100﹣(100×4.9﹣220)=22千米<25千米,在点D有y甲﹣y乙=100×7﹣220﹣(80×7﹣100)=20千米<25千米,∶按图象所表示的走法符合约定.26.(1)PG=(2)PG,证明见解析(3)PG【解析】【分析】(1)延长GP 交DC 于点E ,利用()PED PGF SAS △≌△,得出PE PG =,DE FG =,得到CE CG =,CP 是EG 的中垂线,在Rt CPG 中,60PCG ∠=︒,利用正切函数即可求解; (2)延长GP 交DA 于点E ,连接EC ,GC ,先证明()DPE FPG ASA △≌△,再证明()CDE CBG SAS △≌△,利用在Rt CPG 中,60PCG ∠=︒,即可求解;(3)延长GP 到H ,使PH PG =,连接CH ,CG ,DH ,作FE ∶DC ,先证GFP HDP △≌△,再证HDC GBC ≌△△,利用在Rt CPG 中,60PCG ∠=︒,即可求解. (1)解:如图1,延长GP 交DC 于点E ,∶P 是DF 的中点,∶PD=PF ,∶BGF 是正三角形,∶60BGF ∠=︒,∶60ABC ∠=︒,∶BGF ABC ∠=∠,∶AB GF ,∶四边形ABCD 是菱形,∶AB CD ,∶CD GF ∥,∶CDP PFG ∠=∠,在PED 和PGF 中,DPE FPG DP PFCDP PFG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∶()PED PGF SAS △≌△,∶PE PG =,DE FG =,∶BGF 是正三角形,∶FG BG =,∶四边形ABCD 是菱形,∶CD CB =,CE CG ∴=,CP ∴是EG 的中垂线,在Rt CPG 中,60PCG ∠=︒,tan tan 60PG PCG PC PC ∴=∠⋅=︒⋅= .(2)解:PG =,理由如下:如图2,延长GP 交DA 于点E ,连接EC ,GC ,60ABC ∠=︒,BGF 正三角形,∶GF BC AD ,EDP GFP ∴∠=∠,在DPE 和FPG 中,EDP GFP DP FPDPE FPG ∠=∠⎧⎪=⎨⎪∠=∠⎩()DPE FPG ASA ∴△≌△PE PG ∴=,DE FG BG ==,60CDE CBG ∠=∠=︒,CD CB =,在CDE △和CBG 中,60CD CB CDE CBG CD CB =⎧⎪∠=∠=︒⎨⎪=⎩()CDE CBG SAS ∴△≌△CE CG ∴=,DCE BCG ∠=∠,120ECG DCB ∴∠=∠=︒,PE PG =,CP PG ∴⊥,1602PCG ECG ∠=∠=︒PG ∴= .(3)解:猜想:PG = .证明:如图3,延长GP 到H ,使PH PG =,连接CH ,CG ,DH ,作FE DC ,P 是线段DF 的中点,FP DP ∴=,GPF HPD ∠=∠,GFP HDP ∴△≌△,GF HD ∴=,GFP HDP ∠=∠,120GFP PFE ∠+∠=︒,PFE PDC ∠=∠,120CDH HDP PDC ∴∠=∠+∠=︒,四边形ABCD 是菱形,CD CB ∴=,60ADC ABC ∠=∠=︒,点A 、B 、G 又在一条直线上,120GBC ∴∠=︒,四边形BEFG 是菱形,GF GB ∴=,HD GB ∴=,HDC GBC ∴△≌△,CH CG ∴=,DCH BCG ∠=∠,120DCH HCB BCG HCB ∴∠+∠=∠+∠=︒,即120HCG ∠=︒CH CG =,PH PG =,PG PC ∴⊥,60GCP HCP ∠=∠=︒,PG ∴= .【点睛】本题主要考查了等边三角形的性质、菱形的性质、全等三角形的判定和性质、解直角三角形.27.(1)m =10;(2)11种;(3)购进甲种运动鞋95双,购进乙种运动鞋105双,可获得最大利润【解析】【分析】(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可. (2)设购进甲种运动鞋x 双,表示出乙种运动鞋(200﹣x )双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答.(3)设总利润为W ,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【详解】解:(1)依题意得,30002400m m 20=-, 去分母得,3000(m ﹣20)=2400m ,解得m =100.经检验,m =100是原分式方程的解.∶m =100.(2)设购进甲种运动鞋x 双,则乙种运动鞋(200﹣x )双,根据题意得,()()()()240100x 16080(200x)21700{240100x 16080(200x)22300-+--≥-+--≤①②, 解不等式∶得,x ≥95,解不等式∶得,x ≤105,∶不等式组的解集是95≤x ≤105.∶x 是正整数,105﹣95+1=11,∶共有11种方案.(3)设总利润为W,则W=(140﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),∶当50<a<60时,60﹣a>0,W随x的增大而增大,∶当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.∶当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样.∶当60<a<70时,60﹣a<0,W随x的增大而减小,∶当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.28.(1)C(0,6).(2)y=34-x+6.(3)P1(4,3),P2(325455-,)P3(32655,),P4(256422525-,).【解析】【详解】试题分析:(1)通过解方程x2﹣14x+48=0可以求得OC=6,OA=8.则C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.试题解析:(1)解方程x2-14x+48=0得x1=6,x2=8∶OA,OC(OA>OC)的长分别是一元二次方程x2-14x+48=0的两个实数根∶OC=6,OA=8∶C(0,6)(2)设直线MN的解析式是y=kx+b(k≠0)由(1)知,OA=8,则A(8,0)∶点A、C都在直线MN上∶解得,∶直线MN的解析式为y=-x+6(3)∶A(8,0),C(0,6)∶根据题意知B(8,6)∶点P在直线MN y=-x+6上∶设P(a,--a+6)当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:∶当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);∶当PC=BC时,a2+(-a+6-6)2=64解得,a=±,则P2(-,),P3(,)∶当PB=BC时,(a-8)2+(-a+6-6)2=64解得,a=,则-a+6=-∶P4(,)综上所述,符合条件的点P有:P1(4,3),P2(-,),P3(,),P4(,-)考点:一次函数综合题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二○一○年黑龙江鸡西市初中毕业学业考试 (题word 无答)数 学 试 卷考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、填空题(每小题3分,满分30分)1.上海世博会场地是当今世界最大的太阳能应用场所,装有460000亿瓦的太阳能光伏并网发电装置, 460000亿瓦用科学记数法表示为 亿瓦.2.函数12y x =-中,自变量x 的取值范围是 .3.如图,点B 在∠DAC 的平分线AE 上,请添加一个适当的条件: ,使△ABD ≌△ABC.(只填一个即可4.如图,⊙A 、⊙B 、⊙C 两两不相交,且半径都是2cm,则图中 三个扇形(即阴影部分)面积之和是 cm 2. 5.一组数据3,4,9,x,它的平均数比它唯一的众数大1,则x= .6.观察下表,请推测第5个图形有 根火柴棍.7.如图, 利用四边形的不稳定性改变矩形ABCD 的形状,得到A 1BCD 1,若A 1BCD 1的面积是矩形ABCD 面积的一半,则∠A 1BC 的度数是 . 8.已知关于x 的分式方程2122a x x -=++的解为负数,那么字母a 的取值范围是 . 9.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T 恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为 元.A C D BE 6题图ADCD 1A 1B7题图10.将腰长为6cm,底边长为5cm 的等腰三角形废料加工成菱形工件,菱形的一个内角恰好是这个菱形的其它顶点均在三角形的边上,则这个菱形的边长是 cm .二、选择题(每小题3分,满分30分)11.下列计算中,正确的是 ( )A.235236a b a = B.()2224a a -=- C.527 ()=a aD.221x x-=12.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是 ( ) 13.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子( )A.1颗 B.2颗 C.3颗 D.4颗 14.如图,二次函数22y x x =--的图象与x 轴交于点A 、O,在抛物线上有一点P,满足3AOP S ∆=,则点P的坐标是 ( )A.(-3,-3)B.(1,-3)C. (-3,-3) 或(-3,1)D. (-3,-3) 或(1,-3) 15.如图,⊙O 的直径AB=10cm,弦CD ⊥AB,垂足为P.若O P ︰O B =3︰5,则CD 的长为( )A.6cmB.4cmC.8cmD.10 cm16.如图,均匀地向此容器注水,直到把容器注满.在注水的过程中,下列图象能大致反映水面高度h随时间t变化规律的是 ( )17.用12个大小相同的小正方体搭成的几何体如图所示,标有正确小正方体个数的俯视图是( )A DC B A B CD 3 3 2 1 1 2 3 3 2 1 1 2 3 3 2 1 1 2 3 1 2 3 1 2 B C D A 16题图 C 15题图B AyO x14题图18.如图,反比例函数与正比例函数的图象相交于A 、B过点A 作AC ⊥x 轴于点C.若△ABC 的面积是4,反比例函数的解析式为 )A.2y x =B.4y x =C.8y x =D.16y x =19.若关于x 的一元二次方程为2350(0)ax bx a --=≠,那么46a b -的值是 ( )A.4B.5C.8D.1020.在锐角△ABC 中,∠BAC=60°,BD 、CE 为高,F 是BC 的中点, 连接DE 、EF 、FD.则以下结论中一定正确的个数有 ( )①EF=FD ②AD :AB=AE :AC ③△DEF 是等边三角形 ④BE+CD=BC ⑤当∠ABC=45°时,BE=A.2个B.3个C.4个D.5个 三、解答题(满分60分)21.(本小题满分5分)化简求值:22a b ab b a a a ⎛⎫--÷- ⎪⎝⎭,其中a =2010,b =2009.22.(本小题满分6分)△ABC 在如图所示的平面直角坐标系中. ⑴ 画出△ABC 关于原点对称的△A 1B 1C 1. ⑵ 画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2. ⑶ 请直接写出△AB 2A 1 的形状.--- EDFAB C20题图23. (本小题满分6分)综合实践活动课上,老师让同学们在一张足够大的纸板上裁出符合如下要求的梯形, 即“梯形ABCD ,AD ∥BC ,AD=2分米,CD= 2分米”.请你计算裁得的梯形ABCD中BC 边的长度.24. (本小题满分7分)去年,某校开展了主题为“健康上网,绿色上网”的系列活动.经过一年的努力,取得了一定的成效.为了解具体情况,学校随机抽样调查了初二某班全体学生每周上网所用时间,同时也调查了使用网络的学生上网的最主要目的,并用得到的数据绘制了下面两幅统计图.请你根据图中提供的信息,回答下列问题: ⑴在这次调查中,初二该班共有学生多少人?⑵如果该校初二有660名学生,请你估计每周上网时间超过4小时的初二学生大约有多少人?⑶请将图2空缺部分补充完整, 并计算这个班级使用网络的学生中,每周利用网络查找学习资料的学生有多少人?4%14% 40% % 看新闻其它上网目的图2 (注:每组数据只含最大值,不含最小值.)图125.(本小题满分8分)运动会前夕,小明和小亮相约晨练跑步.小明比小亮早1分钟离开家门,3分钟后迎面遇到从家跑来的小亮.两人沿滨江路并行跑了2分钟后,决定进行长跑比赛,比赛时小明的速度始终是180米/分,小亮的速度始终是220米/分.下图是两人之间的距离y(米)与小明离开家的时间x(分钟)之间的函数图象,根据图象回答下列问题:⑴请直接写出小明和小亮比赛前的速度.⑵请在图中的( )内填上正确的值,并求两人比赛过程中y与x之间的函数关系式.(不用写自变量x的取值范围)⑶若小亮从家出门跑了14分钟后,按原路以比赛时的速度返回,则再经过多少分钟两人相遇?(26. (本小题满分8分)平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C 作CE ⊥MN 于点E,过点B 作BF ⊥MN 于点F.当点E 与点A 重合时(如图1),易证:AF+BF=2CE.当三角板绕点A 顺时针旋转至图2、图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF 、BF 、CE 之间又有怎样的数量关系,请直接写出你的猜想,不需证明.图1 E图2 B 图327. (本小题满分10分)在“老年节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加.旅行前,旅行社承诺每车保证有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,甲种客车载客量为40人/辆,乙种客车载客量为30人/辆.⑴请帮助旅行社设计租车方案.⑵若甲种客车租金为350元/辆,乙种客车租金为280元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?⑶旅行社在充分考虑团内老人的年龄结构特点后,为更好的照顾游客,决定同时租45座和30座的大小两种客车.大客车上至少配两名随团医生,小客车上至少配一名随团医生,为此旅行社又请了4名医生.出发时,旅行社先安排游客坐满大客车,再依次坐满小客车,最后一辆小客车即使坐不满也至少要有20座上座率,请直接写出旅行社的租车方案.28. (本小题满分10分)如图,矩形OABC在平面直角坐标系中,若OA、OC的长满足(220OA OC-+-=.⑴求B、C两点的坐标.⑵把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BB′的解析式.⑶在直线BB′上是否存在点P,使△ADP为直角三角形?若存在,请直接写出P 点坐标;若不存在,请说明理由.2001年鸡西市初中毕业学业考试数学试卷数学试卷参考答案与评分标准一、选择题,每小题3分,共27分 1.4.6×105 2.x ≠23.∠C =∠D 或∠CBA =∠DBA 或∠CBE =∠DBE 或AC =AD (只填一个即可) 4.2π 5.4 6.45 7.30° 8.a >0且a ≠2 9.200或210 10.3或3011说明:第8题和第9题只写一个答案,答对者给2分 二、选择题,每小题3分,共33分11.D 12.A 13.B 14.D 15.C 16.A 17.A 18.B 19.B 20.C 三、解答题,满分60分21.解:原式=a -b a ÷a 2-2ab -b 2a……………………1分=a -b a ÷(a -b )2a …………………………1分=a -b a ×a (a -b )2 …………………………1分=1a -b ……………………………………1分 代入求值得1 ……………………………1分22.(1)解:(2)△AB 2A 1 的形状是等腰直角三角形23.如图AE 和DF 为梯形ABCD 的高,EF =AD =2分米应分以下三种情况(1)如图1,利用勾股定理可求出BE =1,CF =2…………………………………1分 ∴BC =BE +EF +FC =5分米……………………………………1分(2)如图2,利用勾股定理可求出BE =1,CF =2…………………………………1分 ∴BC =EF -BE +FC =3分米……………………………………1分(3)如图3,利用勾股定理可求出BE =1,CF =2,可得到C 与E 重合…………………………………1分∴BC =1分米……………………………………1分24、(1)5+25+18+5+2=55(人)………………………………2分 (2)5+255 ×660=84(人)………………………………2分(3)1-4%-14%-40%=42%………………………………1分 (55-5) ×42%=21(人)………………………………2分 25、y( 4% 14% 40%42 %看新闻其它上网目的图2(1)小明的速度是100米/分,小亮的速度是120米/分 ………………………………2分(2)()里填 80 ………………………………1分设解析式为y =kx +b ,图象过(5,0)和(7,80)0=5k +b ,80=7k +b 解得k =40,b =-200 ………………………………1分 -2b +c =0 ∴y =40x -200 ………………………………1分(3)14-(3-1)-(5-3)=10 (分钟) ………………………………1分 10×(220-180)÷(220+180)= 1 (分钟) ………………………………1分26、图2成立 …………………………………………………………………………1分 过点C 作CD ⊥BF ,交FB 的延长线于点D ………………………………1分证出△AEC ≌△BDC ,∴CE =CD ,AE =BD ……………………………………2分证出四边形CEFD 是正方形,∴CE =EF =DF ……………………………………1分∴AF +BF =AE +EF +DF -BD ,AF +BF =2CE ……………………………………1分图3不成立 ……………………………………1分应为AF -BF =2CE ……………………………………2分27、(1)解:设租甲种客车x 辆,设租乙种客车(7-x )辆有40x +30×(7-x )≥253+7且x ≤7 ……………………………………1分 得5≤x ≤7 ……………………………………………………1分 ∵ x 为整数∴ x 可取5、6或7 故有如下三种租车方案:方案(一)甲种客车7辆;方案(二)甲种客车6辆,乙种客车1辆;方案(三)甲种客车5辆,乙种客车2辆 ………………………………3分(2)设租金为y 元,则图2 B 图3y=350x+280×(7-x)=70x+1960 ……………………………………………………1分∵70>0∴y随x的增大而增大故最省钱方案是方案(三)……………………………………………………1分此时最少租金2310元……………………………………………………1分(3)方案(一)租大客车4辆,小客车3辆;方案(二)租大客车2辆,小客车6辆;………2分28、(1) 依题意,OA=2,OC=2 3 (1)分∵四边形OABC是矩形∴BC=OA=2故B(2 3 ,2),C(2 3 ,0) (1)分(2) 计算出B′( 3 ,-1) (2)分设直线BB′的解析式为y=kx+b,过B(2 3 ,2)和有B′( 3 ,-1)2=2 3 k+b -1= 3 k+b 解得,k= 3 b=-4 (1)分∴y= 3 x-4 ………………………………………………1分(3)存在,P1(3 3 ,5);P2(533,1)……………………………………4分说明:本试卷所在题目,若由其它方法得出正确结论,可参照本评分标准酌情给分。