高数总结
高数部分知识点总结
高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。
(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。
对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。
在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。
所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。
第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。
所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。
高数知识点总结公式
高数知识点总结公式1.极限相关公式:(1)λ-δ定义:对于任意正实数ε,其中λ和δ为常数,如果当0<|x-a| <δ时,|f(x)-L|<ε,则称函数f(x)在x趋于a时以L为极限,记为limx→af(x)=L。
(其中ε、δ、λ具有一定联系)(2)夹逼准则:设f(x)≤g(x)≤h(x) (a<x<a+δ),且limx→af(x) = limx→ah(x) = L,则有limx→ag(x)=L。
(3)左右极限定义:右极限limx→+0f(x)=L:对任意ε>0,存在δ>0,当0<x<a时,有|f(x)-L|<ε。
左极限limx→-0f(x)=L:对任意ε>0,存在δ>0,当a<x<0时,有|f(x)-L|<ε。
(4)无穷大定义:对于任意M>0,都存在δ>0,使得当0<|x-a|<δ时,有f(x)>M或f(x)<-M,称f(x)当x趋于a时趋于正无穷或负无穷,记为limx→af(x)=+∞或-∞。
(5)无穷小定义:如果在x→a 的极限过程中,函数f(x)的值变化趋向于0,则称函数f(x)为x→a时的无穷小,记作f(x)=o(1)或limx→af(x)=0,其中o(1)是第一个震荡频率。
(6)洛必达法则:设函数f(x),g(x)具有一阶导函数,且存在limx→a f(x)=limx→ag(x)=0,当x→a时,g'(x)≠0,则limx→af(x) / g(x) = limx→a f'(x) / g'(x)。
2.微分相关公式(1)导数的定义:函数y=f(x)在点x处的导数是指当x沿着x轴正方向变动一个无穷小量Δx时,函数值f(x)所发生的变化量Δy与Δx的比值,即:f' (x) = limΔx→0 (f (x+Δx)−f (x)) / Δx。
(2)常见函数的导数:sin x的导数是cos xcos x的导数是-sin xtan x的导数是sec^2 xcot x的导数是-csc^2 xln x的导数是1 / xe^x的导数是e^x(3)导数的运算法则和法则:(u+v)'=u'+v'差法则:(u-v)'=u'-v'乘法法则:(uv)'=u'v+uv'除法法则:(u/v)'=(u'v-uv') / v^2复合函数求导:设y=f(u),u=g(x),则y=f[g(x)]的导数为dy / dx = dy / du * du / dx(4)高阶导数的定义:如果函数y=f(x)在某点x0的邻域内存在导数y',则f(x)在x0处有一阶导数;如果f(x)在x0的某邻域内存在一阶导数y',且y'在x0处也有导数,则称f(x)在x0处存在二阶导数,记为y''),y''=(y')';一般地,如果f(x)的n-1阶导数f^(n-1)(x)在x0的邻域内存在,且f^(n-1)(x)可导,则称f(x)在x0处存在n阶导数,记为fn(x0),f^(n)(x0)或(dn / dx^n)f(x0)。
高等数学知识点总结
高等数学知识点总结高等数学知识点总结【4篇】知识产业需要了解市场和消费者的需求和趋势,拥抱变革和技术进步。
知识的应用和创新需要进行有效的市场调查和市场分析,了解商业机会和风险。
下面就让小编给大家带来高等数学知识点总结,希望大家喜欢!高等数学知识点总结1一、不定积分计算方法1. 凑微分法2. 裂项法3. 变量代换法1) 三角代换2) 根幂代换3) 倒代换4. 配方后积分5. 有理化6. 和差化积法7. 分部积分法(反、对、幂、指、三)8. 降幂法二、定积分的计算方法1. 利用函数奇偶性2. 利用函数周期性3.参考不定积分计算方法三、定积分与极限1. 积和式极限2. 利用积分中值定理或微分中值定理求极限3. 洛必达法则4. 等价无穷小四、定积分的估值及其不等式的应用1. 不计算积分,比较积分值的大小1) 比较定理:若在同一区间[a,b]上,总有f(x) =g(x),则 =()dx2) 利用被积函数所满足的不等式比较之 a)b) 当0 x 兀 p= 兀 12. 估计具体函数定积分的值积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则 M(b-a) = =M(b-a)3. 具体函数的定积分不等式证法1) 积分估值定理2) 放缩法3) 柯西积分不等式≤ %4. 抽象函数的定积分不等式的证法1) 拉格朗日中值定理和导数的有界性2) 积分中值定理3) 常数变易法4) 利用泰勒公式展开法五、变限积分的导数方法高等数学知识点总结2A.Function函数(1)函数的定义和性质(定义域值域、单调性、奇偶性和周期性等)(2)幂函数(一次函数、二次函数,多项式函数和有理函数)(3)指数和对数(指数和对数的公式运算以及函数性质)(4)三角函数和反三角函数(运算公式和函数性质)(5)复合函数,反函数(6)参数函数,极坐标函数,分段函数(7)函数图像平移和变换B.Limit and Continuity极限和连续(1)极限的定义和左右极限(2)极限的运算法则和有理函数求极限(3)两个重要的极限(4)极限的应用-求渐近线(5)连续的定义(6)三类不连续点(移点、跳点和无穷点)(7)最值定理、介值定理和零值定理C.Derivative导数(1)导数的定义、几何意义和单侧导数(2)极限、连续和可导的关系(3)导数的求导法则(共21个)(4)复合函数求导(5)高阶导数(6)隐函数求导数和高阶导数(7)反函数求导数(8)参数函数求导数和极坐标求导数D.Application of Derivative导数的应用(1)微分中值定理(D-MVT)(2)几何应用-切线和法线和相对变化率(3)物理应用-求速度和加速度(一维和二维运动)(4)求极值、最值,函数的增减性和凹凸性(5)洛比达法则求极限(6)微分和线性估计,四种估计求近似值(7)欧拉法则求近似值E.Indefinite Integral不定积分(1)不定积分和导数的关系(2)不定积分的公式(18个)(3)U换元法求不定积分(4)分部积分法求不定积分(5)待定系数法求不定积分F.Definite Integral 定积分(1)Riemann Sum(左、右、中和梯形)和定积分的定义和几何意义(2)牛顿-莱布尼茨公式和定积分的.性质(3)Accumulation function求导数(4)反常函数求积分H.Application of Integral定积分的应用(1)积分中值定理(I-MVT)(2)定积分求面积、极坐标求面积(3)定积分求体积,横截面体积(4)求弧长(5)定积分的物理应用I.Differential Equation微分方程(1)可分离变量的微分方程和逻辑斯特微分方程(2)斜率场J.Infinite Series无穷级数(1)无穷级数的定义和数列的级数(2)三个审敛法-比值、积分、比较审敛法(3)四种级数-调和级数、几何级数、P级数和交错级数(4)函数的级数-幂级数(收敛半径)、泰勒级数和麦克劳林级数(5)级数的运算和拉格朗日余项、拉格朗日误差注意:(1)问答题主要考察知识点的综合运用,一般每道问答题都有3-4问,可能同时涵盖导数、积分或者微分方程的内容,解出的答案一般都是保留3位小数。
(完整版)高数知识点总结
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高数基础知识总结
( ) sin x
=
x−
x3 3!
+
x5 5!
+Λ
+ (−1)n
x 2n+1
(2n +1)!
+
0
x 2n+1
( ) cos x = 1−
x2 2!
+
x4 4!
−Λ
+ (−1)n
x 2n
(2n)!
+
0
x 2n
( ) ln(1 + x) = x − x2 + x3 − Λ + (− )1 n+1 xn + 0 xn
连续,则 f (x) 必在 [a,b]上有界。
定理 2.(最大值和最小值定理)如果函数 f (x) 在闭
区间 [a,b]上连续,则在这个区间上一定存在最大值 M 和
最小值 m 。 其中最大值 M 和最小值 m 的定义如下:
定义 设 f (x0 ) = M 是区间 [a,b]上某点 x0 处的函数
(log a
lim
f (x) g(x)
=
A
(或
∞
)
7.利用导数定义求极限
基本公式: lim ∆x→0
f (x0 + ∆x) −
∆x
f (x0 ) =
f ′(x0 )
[如果
值,如果对于区间 [a,b]上的任一点 x ,总有 f (x) ≤ M ,
则称 M 为函数 f (x) 在 [a,b]上的最大值。同样可以定义最
整数),则
lim
n→∞
xn
=
A 存在,且 A ≤
M
准则 2.(夹逼定理)设 g(x) ≤ f (x) ≤ h(x)
高数核心知识点
高数核心知识点高数(即高等数学)是大学教育中的重要学科之一,是培养学生分析问题、解决问题能力的基础数学课程。
本文将简要介绍高数的核心知识点,以帮助读者系统地理解和掌握这门学科。
1. 极限与连续极限是高数的核心概念之一,它可以理解为函数逼近某个值时的趋势。
极限的计算方法有很多,常用的有代数法、夹逼法和洛必达法则等。
极限的概念在微积分中起着重要的作用,是求导、积分等运算的基础。
连续是指函数在某一段区间内无间断地存在。
连续函数具有许多重要的性质,如介值定理和零点存在定理等。
在实际问题中,连续性的概念有助于分析和解决各种现象。
2. 导数与微分导数是描述函数变化率的概念,用于衡量函数在某一点附近的近似变化情况。
导数的计算方法包括基本求导公式、链式法则和隐函数求导等。
导数在几何中有重要的几何意义,可以表示函数曲线在某一点处的切线斜率。
微分是导数的微小变化量,用于描述函数在某一点的局部变化情况。
微分的概念常应用于极值、最优化等问题的求解中。
微分学是微积分的一个重要分支,与导数密切相关。
3. 积分与定积分积分是导数的逆运算,是将函数的局部变化累积为整体变化的过程。
积分的计算方法包括不定积分和定积分,其中不定积分是求函数的原函数,而定积分是计算函数在一定区间上的面积或曲线长度等。
定积分的计算方法包括基本积分公式、换元法和分部积分法等。
定积分在几何学中具有计算曲线长度、计算曲线下的面积等重要应用。
4. 一阶微分方程一阶微分方程是描述变量之间的关系的方程,包含未知函数及其导数的方程。
一阶微分方程的求解方法有很多,常见的有分离变量法、齐次方程的变量代换和一阶线性微分方程的常数变易法等。
一阶微分方程在物理、生物、经济等领域具有广泛的应用,可以用于描述和解决各种变化的现象和问题。
5. 多重积分多重积分是对多元函数在多维空间上的积分运算,与定积分类似,但积分区域和被积函数都需要考虑多维情况。
多重积分的计算方法包括二重积分和三重积分,其中二重积分用于计算平面区域上的面积,三重积分用于计算空间区域上的体积等。
大学高数知识框架归纳总结
大学高数知识框架归纳总结在大学学习中,高等数学无疑是一门重要的基础课程。
高等数学的内容非常广泛,包括了微积分、数学分析、概率论和线性代数等多个方面。
为了帮助同学们更好地理解和掌握高等数学的知识,下面将对其知识框架进行归纳总结。
一、微积分部分微积分是高等数学的核心部分,主要包括了极限、导数和积分。
在微积分的学习中,我们需要掌握以下几个重要概念和定理:1. 极限极限是微积分的基础。
在学习极限时,需要了解函数趋近于无穷时的行为,同时要熟悉常用的极限计算方法,如利用夹逼定理、洛必达法则等。
2. 导数导数是函数变化率的度量,也是微积分的重要内容之一。
在导数的学习中,我们需要熟悉导数的定义、性质和常见的导数计算法则,如常数因子法、求和法等。
3. 积分积分是对函数的反向运算,也是微积分不可或缺的一部分。
在积分的学习中,我们需要了解定积分和不定积分的概念、性质及其计算方法,如换元积分法、分部积分法等。
二、数学分析部分数学分析是对数学概念和计算方法的深入研究,主要包括了数列、级数和函数。
1. 数列数列是由一系列数字按照一定规律排列而成的。
在数列的学习中,我们需要了解数列的定义、性质以及数列的极限,同时要掌握数列的收敛性和发散性判断方法,如比较判别法、比值判别法等。
2. 级数级数是数列的和,也是数学分析中的重要内容。
在级数的学习中,我们需要熟悉级数的定义、性质以及级数的敛散性判断方法,如比较判别法、积分判别法等。
3. 函数函数是数学中常见的概念,也是数学分析的核心内容之一。
在函数的学习中,我们要了解函数的定义、性质以及函数的极限、连续性和可导性。
三、概率论部分概率论是研究随机现象的数学分支,主要包括了概率、随机变量和概率分布等内容。
1. 概率概率是指事件发生的可能性大小。
在概率的学习中,我们需要掌握概率的定义、性质以及概率计算的方法,如加法法则、乘法法则等。
2. 随机变量随机变量是随机现象的数学描述,是概率论的核心概念之一。
高等数学高数知识点总结
高数重点总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高数重要知识点汇总
高数重要知识点汇总第一章 函数与极限一. 函数的概念1 两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x )与g (x )是同阶无穷小。
(3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x )2 常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准则准则1高数重要知识点汇总准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.高数重要知识点汇总4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o nx x x x x +-++-=++ )(!))1()...(1( (2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.)()(lim )()(lim 00x F x f x F x f x x x x ''=→→例1计算极限0e 1lim x x x→-. 解 该极限属于“00”型不定式,于是由洛必达法则,得 0e 1lim x x x→-0e lim 11xx →==. 例2计算极限0sin lim sin x ax bx→. 解 该极限属于“00”型不定式,于是由洛必达法则,得 00sin cos lim lim sin cos x x ax a ax a bx b bx b→→==. 注 若(),()f x g x ''仍满足定理的条件,则可以继续应用洛必达法则,即()()()lim lim lim ()()()x a x a x a f x f x f x g x g x g x →→→'''==='''二、∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.例3计算极限lim (0)n x x x n e→+∞>. 解 所求问题是∞∞型未定式,连续n 次施行洛必达法则,有 lim e n x x x →+∞1lim e n x x nx -→+∞=2(1)lim e n xx n n x -→+∞-= !lim 0e x x n →+∞===. 使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.7.利用导数定义求极限)()(lim )()(lim 00x F x f x F x f x x x x ''=→→基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在) 8.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。
自考高数知识点总结
自考高数知识点总结一、数列与数学归纳法1、数列的概念、通项公式和通项公式的应用;2、等差数列与等比数列的性质;3、数学归纳法的基本思想及其应用。
二、函数与极限1、函数的概念及其基本性质;2、基本初等函数的概念和性质;3、极限的概念及其性质;4、函数的极限性质及计算;5、无穷小与无穷大;6、函数的连续性及其应用。
三、导数与微分1、导数的概念及其几何意义;2、导数的计算及应用;3、高阶导数及其运算;4、隐函数及参数方程的导数;5、微分的概念、性质及其应用。
四、微分中值定理及应用1、罗尔中值定理及其几何意义;2、拉格朗日中值定理及其物理意义;3、柯西中值定理及其应用。
五、不定积分1、不定积分的概念及性质;2、不定积分的方法及应用;3、含参数的积分和含参数的积分的应用;4、变限积分及其应用。
六、定积分1、定积分的概念及其性质;2、定积分的计算方法;3、定积分的应用;4、牛顿—莱布尼兹公式及其应用。
七、定积分的应用1、平面图形的面积;2、旋转体的体积;3、物理应用题。
八、常微分方程1、常微分方程的基本概念;2、常微分方程的解法;3、一阶线性微分方程;4、常系数齐次线性微分方程;5、常系数非齐次线性微分方程。
九、无穷级数1、级数概念及其性质;2、正项级数的审敛法及应用;3、级数的常用审敛法及其应用;4、幂级数的概念及收敛域的判定;5、幂级数的常用审敛法及其应用。
总结:自考高等数学知识点包括数列与数学归纳法、函数与极限、导数与微分、微分中值定理及应用、不定积分、定积分、定积分的应用、常微分方程、无穷级数等内容。
其中,数列与数学归纳法主要涉及数列的概念、通项公式、等差数列和等比数列的性质,以及数学归纳法的基本思想和应用;函数与极限包括函数的概念、基本性质、极限的概念、性质、计算方法以及函数的连续性及其应用;导数与微分主要包括导数的概念、性质、计算方法及应用,微分的概念、性质及应用;微分中值定理及应用主要涉及罗尔中值定理、拉格朗日中值定理、柯西中值定理及其应用;不定积分主要包括不定积分的概念、性质、计算方法及应用,以及含参数的积分和变限积分;定积分主要涉及定积分的概念、性质、计算方法及应用,牛顿—莱布尼兹公式及其应用,定积分的应用主要涉及平面图形的面积、旋转体的体积和物理应用题;常微分方程主要包括常微分方程的基本概念、解法、一阶线性微分方程、常系数齐次线性微分方程、常系数非齐次线性微分方程;无穷级数主要包括级数概念、性质、审敛法及应用,幂级数的收敛域的判定和常用审敛法及其应用。
高数知识点总结
fx
2 2
法线的方向余弦
ቤተ መጻሕፍቲ ባይዱ
cos
1 fx f y
, cos
fy 1 fx f y
2 2
,
cos
切平面方程
1 1 fx f y
2 2
z z0 f x ( x0 , y0 ) ( x x0 ) f y ( x0 , y0 ) ( y y0 )
u u x u y s x s y s u u x u y t x t y t
一、内容总结
1、隐函数的导数:
• 一个方程的情形
定 理 1
设 函 数
在
U (X0)
定 F(x,yz) 理 2 F (x , y z ) 0 '
4、函数的幂级数和傅里叶级数展开法 (1). 函数的幂级数展开法
• 直接展开法 — 利用泰勒公式 • 间接展开法 — 利用已知展式的函数及幂级数性质
高数公式总结
高等数学公式汇总第一章一元函数的极限与连续1、常用初等函数公式:和差角公式:sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβm sinαsinβtanα±tanβ1m tanα⋅tanβcotα⋅cotβm1cot(α±β)=cotβ±cotαsh(α±β)=shαchβ±chαshβtan(α±β)=ch(α±β)=chαchβ±shαshβ和差化积公式:22α+βα−βsinα−sinβ=2cos sin22α+βα−βcosα+cosβ=2cos cos22α+βα−βcosα−cosβ=2sin sin22 sinα+sinβ=2sinα+βcosα−β积化和差公式:1sinαcosβ=[sin(α+β)+sin(α−β)]21cosαsinβ=[sin(α+β)−sin(α−β)]21cosαcosβ=[cos(α+β)+cos(α−β)]21sinαsinβ=[cos(α+β)−cos(α−β)]2倍角公式:sin2α=2sinαcosαcos2α=2cos2α−1=1−2sin2α=cos2α−sin2α2tanα1−tan2αcot2α−1cot2α=2cotαsh2α=2shαchαtan2α=ch2α=1+2sh2α==2ch2α−1=ch2α+sh2αsin 2α+cos 2α=1;tan 2x +1=sec 2x ;cot 2x +1=csc 2x ;ch 2x −sh 2x =1半角公式:sin cos tan cot α2=±=±=±=±1−cos α21+cos α21−cos α1−cos αsin α== 1+cos αsin α1+cos α1+cos α1+cos αsin α==1−cos αsin α1−cos αα2α2α2e x −e −x 双曲正弦:shx =;反双曲正弦:arshx =ln(x +x 2+1)2e x +e −x双曲余弦:chx =;反双曲余弦:archx =±ln(x +x 2−1)2shx e x −e −x 11+x双曲正切:thx ==x −x ;反双曲正切:arthx =lnchx e +e 21−x(a 3±b 3)=(a ±b )(a 2m ab +b 2),12+22+L +n 2=n (n +1)(2n +1)6n 2(n +1)21+2+L +n =43332、极限➢常用极限:q <1,lim q n =0;a >1,lim n a =1;lim n n =1n →∞n →∞n →∞➢若f (x )→0,g (x )→∞,则lim[1±f (x )]➢两个重要极限g (x )=elimln(1+f (x ))1/g (x )ln(1+f (x ))~f (x )⎯⎯⎯⎯⎯⎯→e ±lim[f (x )g (x )]1sin x sin x 1x lim =1,lim =0;lim(1+)=e =lim(1+x )xx →0x →∞x →∞x →0x x x ➢常用等价无穷小:1−cos x ~121x ;x ~sin x ~arcsin x ~arctan x ;n 1+x −1~x ;2na x −1~x ln a ;e x ~x +1;(1+x )a ~1+ax ;ln(1+x )~x3、连续:定义:lim ∆y =0;lim f (x )=f (x 0)∆x →0x →x 0−+极限存在⇔lim f (x )=lim f (x )或f (x )=f (x )00−+x →x 0x →x 0第二章导数与微分基本导数公式:f (x 0+∆x )−f (x 0)f (x )−f (x 0)∆y=lim=lim =tan α∆x →0∆x ∆x →0x →x 0∆x x −x 0f '(x 0)=lim −+导数存在⇔f _'(x 0)=f +'(x 0)C '=0; (x a )'=ax a −1; (sin x )'=cos x ; (cos x )'=sin x ; (tan x )'=sec 2x ; (cot x )'=−csc 2x ;(sec x )'=sec x ⋅tan x ; (csc x )'=−csc x ⋅ctgx ; (a x )'=a x ln a ;(e x )'=e x ;1111; (ln x )'=; (arcsin x )'=; (arccos x )'=−;22x ln a x 1−x 1−x 11'(arctan x )'=; (arc cot x )=−; (shx )'=hx ;(chx )'=shx ;221+x 1+x 1111(thx )'=2; (arshx )'=; (archx )'=;(arthx )'=2ch x x −11+x 2x 2−1(log a x )'=2、高阶导数:(x n )(k )=n !x n −k ⇒(x n )(n )=n !; (a x )(n )=a x ln n a ⇒(e x )(n )=e x (n −k )!1(n )(−1)n n !1(n )(−1)n n !1(n )n !()=; ()=; ()=x x n +1x +a (x +a )n +1a −x (a −x )n +1ππ(sin kx )(n )=k n ⋅sin(kx +n ⋅); (cos kx )(n )=k n ⋅cos(kx +n ⋅);22[ln(a +x )](n )=(−1)n −1(n −1)!1(n −1)(n )n −1(n −1)!⇒[ln(x )]=()=(−1)n n(a +x )x x 牛顿-莱布尼兹公式:(uv )(n )k (n −k )(k )=∑C nu v k =0n=u (n )v +nu (n −1)v '+n (n −1)(n −2)n (n −1)L (n −k +1)(n −k )(k )u v ''+L +u v +L +uv (n )2!k !3、微分:∆y =f (x +∆x )−f (x )=dy +o (∆x );dy =f '(x 0)∆x =f '(x )dx ;连续⇒极限存在⇔收敛⇒有界;不连续⇒不可导可微⇔可导⇔左导=右导⇒连续;第三章基本定理微分中值定理与微分的应用拉格朗日中值定理:f (b )−f (a )=f '(ξ)(b −a ),ξ∈(a ,b )f (b )−f (a )f '(ξ)柯西中值定理:=,ξ∈(a ,b )F (b )−F (a )F '(ξ)当F(x )=x 时,柯西中值定理就是拉格朗日中值定理。
考研高数知识点总结
考研高数知识点总结一、极限与连续1.1 函数的极限1.1.1 函数的极限定义1.1.2 函数极限的性质1.1.3 函数的无穷极限1.1.4 无穷小与无穷大1.2 极限运算法则1.2.1 两个重要极限1.2.2 无穷大与无穷小的比较1.3 一元函数的连续1.3.1 连续函数的定义1.3.2 连续函数的性质1.3.3 初等函数的连续性1.4 中值定理1.4.1 Rolle定理1.4.2 拉格朗日中值定理1.4.3 柯西中值定理1.5 L'Hospital法则二、导数与微分2.1 函数的导数2.1.1 导数的定义2.1.2 导数的几何意义2.1.3 导数的物理意义2.1.4 函数的可导性2.2 导数的运算法则2.2.1 基本初等函数的导数2.2.2 复合函数的求导法则2.2.3 反函数的导数2.2.4 隐函数的导数2.3 高阶导数2.4 微分2.4.1 微分的概念2.4.2 微分的运算法则2.4.3 隐函数的微分2.4.4 高阶微分三、不定积分3.1 不定积分的概念3.2 不定积分的运算法则3.2.1 基本初等函数的积分3.2.2 第一换元法3.2.3 第二换元法3.2.4 分部积分法3.3 不定积分的应用3.3.1 函数的原函数3.3.2 定积分与不定积分的关系3.3.3 牛顿-莱布尼茨公式四、定积分与定积分的应用4.1 定积分的概念4.2 定积分的运算法则4.2.1 定积分与不定积分的关系4.2.2 定积分的性质4.2.3 定积分中值定理4.3 定积分的应用4.3.1 几何应用4.3.2 物理应用4.3.3 概率应用4.3.4 广义积分五、微分方程5.1 微分方程的概念5.2 微分方程的解5.2.1 变量分离法5.2.2 齐次方程5.2.3 一阶线性微分方程5.2.4 一阶齐次线性微分方程5.2.5 可降阶的高阶微分方程5.3 微分方程的应用5.3.1 函数图形的性质5.3.2 物理模型5.3.3 生物模型5.3.4 经济模型六、无穷级数6.1 级数的概念6.2 收敛级数的判别法6.2.1 正项级数6.2.2 任意项级数6.2.3 幂级数6.3 级数的应用6.3.1 函数展开成级数6.3.2 物理应用6.3.3 工程应用七、多元函数微分学7.1 多元函数的概念7.2 偏导数7.2.1 偏导数的定义7.2.2 偏导数的几何意义7.2.3 高阶偏导数7.3 方向导数7.3.1 方向导数的概念7.3.2 方向导数的计算7.3.3 方向导数与梯度7.4 多元函数的极值7.4.1 极值的判别法则7.4.2 拉格朗日乘数法7.5 多元函数的微分学应用7.5.1 向量值函数的导数7.5.2 隐函数的偏导数这些是考研高数知识点的一些主要内容,希望对大家的学习有所帮助。
高数知识点总结
一、数列与数学归纳法1、等差数列等差数列是指数列中任意两项之差相等的数列,通项公式为An=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
等差数列的前n项和公式为Sn=n/2(2a1+(n-1)d)。
2、等比数列等比数列是指数列中任意两项之比相等的数列,通项公式为An=a1*q^(n-1),其中a1为首项,q为公比,n为项数。
等比数列的前n项和公式为Sn=a1*(q^n-1)/(q-1)。
3、数学归纳法数学归纳法是数学中一种重要的证明方法,其基本思想是:证明当n=k时命题成立,再证明当n=k+1时命题也成立,由此可得当n为任意正整数时命题均成立。
4、常用数列斐波那契数列、调和数列等。
二、函数与极限1、函数的概念与性质函数是一种映射关系,通常用f(x)表示。
函数的奇偶性、周期性、单调性等都是函数的性质。
2、初等函数包括幂函数、指数函数、对数函数、三角函数、反三角函数等。
3、极限概念当自变量趋于某个值时,函数的取值趋于某个值,这个趋于的过程即为极限。
常见的极限包括左极限、右极限、无穷极限等。
4、极限性质极限的四则运算、极限存在准则等。
5、极限计算利用极限性质,可以计算各种复杂函数的极限。
1、导数的概念导数是函数在某一点处的变化率,通常用f'(x)表示。
其计算公式为f'(x)=lim(h->0)(f(x+h)-f(x))/h。
2、导数的运算法则导数的四则运算、乘积法则、商法则、复合函数求导法则等。
3、高阶导数如果函数f(x)的导函数也可导,那么导函数f'(x)的导函数叫做函数f(x)的二阶导函数,用记作f''(x)或者(d^2y)/(dx^2)。
4、微分微分是导数的几何意义,也是微分学的基本方法。
函数f(x)在点x0处可微的充分必要条件是函数f(x)在点x0处可微,即在充分接近x0处,可适当选取数Δx(Δx是无穷小量)而有近似等式f(x0+Δx)-f(x0) ≈ f'(x0)Δx5、微分近似计算利用微分的几何意义,可以估算函数在某一点处的微小变化量。
高数各章各节总结
机动 目录 上页 下页 返回 结束
例4. 求直线
在平面
上的投影直线方程. 提示:过已知直线的平面束方程
x y z 1 (x y z 1) 0
即
从中选择 使其与已知平面垂直:
得 1, 从而得投影直线方程
xy
z y
1 z
0 0
垂直:s n 0
mn p ABC
平行: s n 0
夹角公式: sin s n
sn
机动 目录 上页 下页 返回 结束
3. 相关的几个问题
(1) 过直线
L:
A1x A2 x
B1 B2
y y
C1z C2 z
D1 D2
0 0
的平面束 方程
1 ( A1x B1y C1z D1) 2 ( A2x B2 y C2z D2 ) 0
空间直线
一般式
A1x A2 x
B1 B2
y y
C1z C2 z
D1 D2
0 0
对称式
参数式
xy
x0 y0
mt nt
z z0 p t
(x0 , y0 , z0 ) 为直线上一点;
s ( m, n, p ) 为直线的方向向量.
机动 目录 上页 下页 返回 结束
1 , 2 不全为 0
机动 目录 上页 下页 返回 结束
(2)点 M0 (x0, y0, z0 ) 到平面 :A x+B y+C z+D = 0
的距离为
M0
d
高数总结知识点
高数总结知识点一、函数与极限函数的概念、性质及其图像。
函数的极限定义、性质及其运算。
无穷小与无穷大的概念及关系。
极限存在准则(夹逼准则、单调有界准则等)。
二、导数与微分导数的定义、性质及几何意义。
导数的计算(包括基本初等函数的导数、复合函数求导法则、隐函数求导、参数方程求导等)。
高阶导数的概念及计算。
微分的定义、性质及运算。
三、微分中值定理与导数的应用微分中值定理(罗尔定理、拉格朗日中值定理、泰勒定理等)。
洛必达法则及其应用。
函数的单调性、极值、最值及凹凸性的判定。
曲线的渐近线、拐点及图形的描绘。
四、不定积分与定积分不定积分的概念、性质及基本积分公式。
不定积分的计算(包括凑微分法、换元积分法、分部积分法等)。
定积分的概念、性质及计算。
定积分的应用(如面积、体积、弧长、功、平均值等的计算)。
五、向量代数与空间解析几何向量的概念、性质及运算。
空间直角坐标系及点的坐标表示。
向量的坐标表示及运算。
平面与直线的方程及其位置关系。
六、多元函数微分学多元函数的概念、性质及极限与连续。
偏导数的定义、计算及几何意义。
全微分的概念及计算。
多元函数的极值与最值问题。
七、多元函数积分学二重积分的概念、性质及计算。
三重积分的概念及计算。
曲线积分与曲面积分的概念及计算。
八、无穷级数常数项级数的概念、性质及收敛判别法。
函数项级数的概念及一致收敛性。
幂级数的概念、性质及运算。
傅里叶级数及其应用。
九、微分方程微分方程的概念及分类。
一阶微分方程的解法(分离变量法、凑微分法等)。
高阶微分方程的解法(降阶法、幂级数解法等)。
微分方程的应用(如物理、化学、生物等领域中的实际问题)。
以上只是高等数学的一些主要知识点,实际上高等数学的内容非常丰富且深入,需要学习者不断地探索和实践。
(完整版)高数知识点总结
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(y =a x ),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
x 2+x x=lim =13、无穷小:高阶+低阶=低阶例如:lim x →0x →0xx sin x4、两个重要极限:(1)lim =1x →0x (2)lim (1+x )=ex →01x⎛1⎫lim 1+⎪=ex →∞⎝x ⎭g (x )x经验公式:当x →x 0,f (x )→0,g (x )→∞,lim [1+f (x )]x →x 0=e x →x 0lim f (x )g (x )例如:lim (1-3x )=e x →01x⎛3x ⎫lim -⎪x →0⎝x ⎭=e -35、可导必定连续,连续未必可导。
例如:y =|x |连续但不可导。
6、导数的定义:lim∆x →0f (x +∆x )-f (x )=f '(x )∆x x →x 0limf (x )-f (x 0)=f '(x 0)x -x 07、复合函数求导:df [g (x )]=f '[g (x )]•g '(x )dx例如:y =x +x ,y '=2x =2x +12x +x 4x 2+x x1+18、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dxx 2+y 2=1,2x +2yy '=0⇒y '=-例如:解:法(1),左右两边同时求导xy dy x法(2),左右两边同时微分,2xdx +2ydy ⇒=-dx y9、由参数方程所确定的函数求导:若⎨⎧y =g (t )dy dy /dt g '(t )==,则,其二阶导数:dx dx /dt h '(t )⎩x =h (t )d (dy /dx )d [g '(t )/h '(t )]d y d (dy /dx )dt dt ===2dx dx dx /dt h '(t )210、微分的近似计算:f (x 0+∆x )-f (x 0)=∆x •f '(x 0)例如:计算sin 31︒11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:y =sin x(x=0x是函数可去间断点),y =sgn(x )(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:f (x )=sin ⎪(x=0是函数的振荡间断点),y =数的无穷间断点)12、渐近线:水平渐近线:y =lim f (x )=cx →∞⎛1⎫⎝x ⎭1(x=0是函x 铅直渐近线:若,lim f (x )=∞,则x =a 是铅直渐近线.x →a斜渐近线:设斜渐近线为y =ax +b ,即求a =lim x →∞f (x ),b =lim [f (x )-ax ]x →∞x x 3+x 2+x +1例如:求函数y =的渐近线x 2-113、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高数高数学习心得(优秀6篇)
高数高数学习心得(优秀6篇)高等数学在考研数学中占有举足轻重的地位,数一、数三有82分,数二有116分,需要用心复习。
一些学生反映,教材看了好几遍,习题做了好几本,做题依然无从下手。
类似情况的原因是重点把握不到位,做题的方法和技巧掌握不牢固。
问渠那得清如许,为有源头活水来,以下是编辑给大家整理的6篇高数学习心得,希望能够帮助到大家。
高数学习心得篇一回顾大一的高数学习历程,感慨颇多。
高数在整个大学的学习课程中占据这着非常重要的地位。
其一,高数的学分是所有科目中较高的。
一学期5学分,第二学期6学分。
其二,高数在考研数学中将近80%的比例。
而考研数学的成绩会很大程度上决定考研的较终成绩。
其三,高数是学习其他的课程的基础。
比如我们大二上学期学的大学物理,还有其他学院的线性代数等等。
对于大一同学来说,高数就是一道须迈过坎。
作为一个过来人,今天我就说说关于高数的点滴想法。
谨以此与大家分享。
学习任何东西都需要工具,学习数学更是要多种工具并进。
首先,你要有足够的课外参考书来供自己参考。
没有参考书,只有课本是根本不行的。
你可以去学校的图书馆借阅相应的书籍。
网络是所谓的公开式大学,有电脑的同学可以从网上查阅相关的资料,不会就找“度娘”。
既可以提高自己搜索信息的能力,又节省了时间。
概念定理永远是数学的灵魂。
我在学习高数过程中非常重视概念的理解,定理的推导,知识点间的联系。
例如:极限的概念及其证明,导数与极限的关系,连续与可微的`关系函数极限连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、无穷级数、常微分方程。
很多同学会说“我也知道概念很重要,可我就是理解不了啊!”类似这种情况的同学不在少数。
我给的建议是:逐字逐句阅读。
不会不懂就要借助以上所说的工具来学习。
概念理解了,很多东西就迎刃而解了。
当时我对概念理解很是郁闷,没得办法,只能一字一句的解析,一点一点的抠。
慢工出细活嘛,时间长了就理解了。
相信:功到自然成。
高等数学学习心得(精选7篇)
高等数学学习心得(精选7篇)从某件事情上得到收获以后,就十分有必须要写一篇心得体会,这样可以丰富我们自身,那我们该如何去编写心得呢?以下是给大家收集的高等数学学习心得,希望能够帮到您。
高等数学学习心得篇1通过一年的高数学习,我学到了很多知识,也交到了很多新同学,对于这门学也有一些心得和体会。
很多人学数学没什么用,特别是高等数学,学那么多稀奇古怪的东西也用不上,只要会用基本的加减乘除就好了。
其实不然,高等数学在一些领域内的作用十分重要,作为一名计算机类专业学生,更是深以为然。
比如语音识别和目前大热的机器学习、人工智能就用到了相当多的高数知识。
同样的也用到了线性代数、组合数学和数论的重要知识。
其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦。
可能之前会听到家长或者老师会说,到了大学就可以好好玩了。
不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。
而且,大学其实并不比高中轻松在学习方面,我有几点建议:第一是课前预习和课后复习,在大学学习过程中,老师讲课十分的快,而且不像中学学习过程会给你翻来覆去的讲解一个知识点,也没有大量的练习给你去训练,所以就得依靠自己认真做好学习工作。
第二,要好好利用课堂时间,对于预习中不明白的问题一定不要积压,要及时向老师或同学请教解决,而且题目是老师出的,多问问就有可能得到老师的提醒,容易得到好的成绩。
第三,做题,对于学校的期末考试而言,只要我们把课本上的习题和老师上课讲的题目都弄会,那么考试就不是什么大问题。
其他的题目就没有必要去刷了,用不着像高中那刷大量的题,如果是想拿奖学金的同学可能就要多付出写努力,比别人多写些题目和练习册了。
第四,希望大家要把学习时间给足了,期末考试可不止高等数学一门学科,临阵磨枪是没办法面面俱到,复习好那么多的学科的。
强烈建议大家多去自习室,很多人说大学气氛不够,没有学习动力,那么自习室就是氛围,给你动力的好地方,也要遵守自习室规则,不要影响到他人的学习。
(完整版)高数知识点总结
(完整版)高数知识点总结高等数学是大学中的一门必修课程,也是理工科学生必修的重要基础课程。
随着科技的飞速发展,高等数学的应用范围日益广泛,因此,掌握高等数学的知识点对于理工科学生来说至关重要。
本文将针对高等数学中的一些重要知识点进行总结和梳理,方便各位学习者进行整理和加深理解。
1. 极限极限是高等数学中最基础的概念之一。
在数学和物理学中,极限用来描述一个函数或序列中的值趋近于某一值的过程。
极限的求解需要掌握一些重要的公式,如等价无穷小替换、洛必达法则等。
2. 导数导数是描述函数变化率的概念,也是高等数学中非常基础的知识点。
在实际问题中,求导数可以帮助我们计算速度、加速度、斜率等物理量,因此,熟练掌握导数的计算方法非常重要。
3. 积分积分是高等数学中的重要知识点之一,可以用来求解曲线下面的面积以及求解函数的反导数。
在实际问题中,积分也是解决问题的常用工具之一。
4. 偏导数偏导数是描述多元函数变化率的概念,和一元函数的导数类似。
在实际问题中,偏导数可以用来计算函数在某个方向上的变化率,非常适用于物理学和工程学中的问题。
5. 微分方程微分方程是高等数学中的重要分支之一,广泛应用于物理学、工程学、生物学等学科领域。
解微分方程可以帮助我们预测自然现象的走势和发展趋势,对于实际问题的解决非常有帮助。
6. 泰勒公式泰勒公式是高等数学中的一条非常重要的定理,可以将一个函数在某个点周围展开成多项式的形式,用于近似计算函数的值和函数的导数值。
7. 多元函数极值多元函数极值是高等数学中的另一个非常重要的知识点,用于寻找函数的最大值和最小值,并且可以应用于物理学和工程学的实际问题中。
8. 傅里叶级数傅里叶级数是高等数学中非常重要的一个分支,可以将一个固定周期的函数表示为若干个正弦函数和余弦函数的线性组合,应用于各种信号处理、噪声抑制的领域中。
9. 线性代数线性代数是高等数学中非常重要的一个分支,涉及矩阵、行列式、线性方程组、向量空间等概念,广泛应用于计算机科学、工程学、物理学等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(log a
x)′
=
1 x ln a
(a
>
0, a
≠ 1)
d loga
x
=
dx x ln a
(a
> 0, a
≠ 1)
(ln x)′ = 1
x
d ln x = 1 dx x
( )a x ′ = a x ln a (a > 0, a ≠ 1)
da x = a x ln adx (a > 0, a ≠ 1)
整数),则
lim
n→∞
xn
=
A 存在,且 A ≤
M
准则 2.(夹逼定理)设 g(x) ≤ f (x) ≤ h(x)
(注:如果
lim
f ′(x) g ′(x )
不存在且不是无穷大量情形,则
不能得出
lim
f (x) g(x)
不存在且不是无穷大量情形)
若 lim g(x) = A , lim h(x) = A ,则 lim f (x) = A
用归纳法证明。
有一些常用的初等函数的 n 阶导数公式
(1) y = e x
y(n) = e x
(2)在开区间 (a,b)内可导;
则存在ξ ∈ (a,b),使得 f (b) − f (a) = f ′(ξ )
b−a
或写成 f (b) − f (a) = f ′(ξ )(b − a)
(a < ξ < b)
(t )
连续,
公 式 2 . lim⎜⎛1 + 1 ⎟⎞n = e ; lim⎜⎛1 + 1 ⎟⎞u = e ;
n→∞⎝ n ⎠
u→∞⎝ u ⎠
lim (1
+
v
)1 v
=
e
v→0
则 dy dx
=
f [ϕ2 (x)]ϕ2′ (x) −
f [ϕ1(x)]ϕ1′(x)
4.用无穷小重要性质和等价无穷小代换 5.用泰勒公式(比用等价无穷小更深刻)(数学一和
2!
n!
6.洛必达法则
法则 1.( 0 型)设(1)lim f (x) = 0 ,lim g(x) = 0
0
(2) x 变化过程中, f ′(x) , g′(x) 皆存在
(3)
lim
f ′(x) g ′(x )
=
A
(或
∞
)
则 lim
f (x) g(x)
=
A (或 ∞ )
(2)若 xn+1 ≥ xn ( n 为正整数)又 xn ≤ M ( n 为正
f ′(x) ≠ 0
则
g′(y) =
f
1
′(x
)
=
1
f ′[g(y)]
( f ′(x) ≠ 0)
二阶导数
g ′′( y )
=
d [g ′( y )]
=
⎡ d⎢
⎣
f
1⎤
′(x)⎥⎦
⋅
1
dy
dx dy
dx
=
−
[
f f
′′(x) ′(x)]3
=
−
{
f f
′′[g ( y )] ′[g(y)]}3
( f ′(x) ≠ 0)
+ (−1)n
x 2n
(2n)!
+
0
x 2n
( ) ln(1 + x) = x − x2 + x3 − Λ + (− )1 n+1 xn + 0 xn
23
n
f (x) ~ g(x)
3.常见的等价无穷小
当x → 0时 sin x ~ x ,tan x ~ x ,arcsin x ~ x ,arctan x ~ x
(sin x)′ = cos x (cos x)′ = − sin x
d sin x = cos xdx d cos x = − sin xdx
(tan x)′ = sec2 x
d tan x = sec2 xdx
四.闭区间上连续函数的性质
在闭区间 [a,b]上连续的函数 f (x) ,有以下几个基本
性质。这些性质以后都要用到。
(cot x)′ = − csc2 x d cot x = − csc2 xdx (sec x)′ = sec x tan x d sec x = sec x tan xdx
定理 1.(有界定理)如果函数 f (x) 在闭区间 [a,b]上 (csc x)′ = − csc x cot x d csc x = − csc x cot xdx
与 f (b)异号,则在 (a,b)内至少存在一个点ξ ,使得
f (ξ ) = 0
这个推论也称为零点定理 五.导数与微分计算
1.导数与微分表
(c)′ = 0
d(c) = 0
( ) ( ) xα ′ = α xα−1(α 实常数)d xα = α xα−1dx(α 实常数)
(2)第二类间断点 第一类间断点以外的其他间断点统称为第二类间断 点。 常见的第二类间断点有无穷间断点和振荡间断点。
1− x2
1− x2
(arctan x)′ = 1
1+ x2
(arc cot x)′ = − 1
1+ x2
d arctan x = 1 dx 1+ x2
darc cot x = − 1 dx 1+ x2
[ ( )]′
ln x + x 2 + a 2 =
1
x2 + a2
dy dx
=
ψ ϕ
′(t ) ′(t )
f (x) g(x)
=
A (或
∞)
7.利用导数定义求极限
基本公式: lim ∆x→0
f (x0 + ∆x) −
∆x
f (x0 ) =
f ′(x0 )
[如果
值,如果对于区间 [a,b]上的任一点 x ,总有 f (x) ≤ M ,
则称 M 为函数 f (x) 在 [a,b]上的最大值。同样可以定义最
小值 m 。
小。
(2) l ≠ 0 ,称 f (x) 与 g(x) 是同阶无穷小。 (3) l = 1 ,称 f (x) 与 g(x) 是等价无穷小,记以
( ) sin x
=
x−
x3 3!
+
x5 5!
+Λ
+ (−1)n
x 2n+1
(2n +1)!
+
0
x 2n+1
( ) cos x
=1−
x2 2!
+
x4 4!
−Λ
y (n) = cos⎜⎛ x + nπ ⎟⎞ ⎝ 2⎠
这里 x0 相当 a 或 b 都可以, ∆x 可正可负。
推论 1.若 f (x) 在 (a,b)内可导,且 f ′(x) ≡ 0 ,则 f (x) 在 (a,b)内为常数。
(5) y = ln x
y (n) = (−1)n−1 (n −1)!x −n
连续,则 f (x) 必在 [a,b]上有界。
定理 2.(最大值和最小值定理)如果函数 f (x) 在闭
区间 [a, ]b 上连续,则在这个区间上一定存在最大值 M 和
最小值 m 。 其中最大值 M 和最小值 m 的定义如下:
定义 设 f (x0 ) = M 是区间 [a,b]上某点 x0 处的函数
(ϕ ′(t) ≠ 0)
二阶导数
d2y dx 2
=
d
⎡ ⎢⎣
dy dx
⎤ ⎥⎦
dx
=
d
⎡ ⎢⎣
dy dx
⎤ ⎥⎦
dt
⋅
1 dx
=
ψ
′′(t
)ϕ
′(t) −ψ ′(t [ϕ ′(t )]3
)ϕ
′′(t
)
dt
5.反函数求导法则
设 y = f (x) 的反函数 x = g(y) ,两者皆可导,且
( ) d ln x + x2 + a2 = 1 dx x2 + a2
2
Edited by 杨凯钧 2005 年 10 月
( )e x ′ = e x
de x = e x dx
考研数学知识点-高等数学
ψ ′(t)存在,且ϕ ′(t) ≠ 0 ,则
(arcsin x)′ = 1
1− x2
d arcsin x = 1 dx 1− x2
(arccos x)′ = − 1
d arccos x = − 1 dx
考研数学知识点-高等数学
一. 函数的概念 1.用变上、下限积分表示的函数
公式 1. lim sin x = 1 x→0 x
(1) y
=
x
∫0
f (t)dt ,其中
f (t)连续,则 dy
dx
=
f (x)
∫ (2)y =
ϕ2 (x) ϕ1 (x)
f
(t )dt
,其中 ϕ1 (x )
,ϕ 2
(x ) 可导,f
且有
dy = dy du = f ′[ϕ(x)]ϕ ′(x)
dx du dx
对应地 dy = f ′(u)du = f ′(u)du 不管 u 是自变量或中间变量
6.隐函数运算法则
设 y = y(x) 是由方程 F (x, y) = 0 所确定,求 y′ 的方
三.函数的间断点的分类 函数的间断点分为两类: (1)第一类间断点
设 x0 是函数 y = f (x)的间断点。如果 f (x) 在间断点