2007年浙江省宁波市中考数学试题及答案
盘点出现在中考数学填空_选择_题_省略_照射下利用影长求物体高度问题为例_徐骏
18), 则
EF=DE+DF =4.4
+0.2
=4.6,
由
AF EF
=01.4,
即
AB-0.3 4.6
=01.4, 可得
AB=11.8(米 ).
作者简介 徐骏 , 男 , 1978年 12月生 , 浙江上虞人 , 中学 一级教师 , 主要从事 课堂有效 教学研究和 解题教 学研究 .有 多篇论文 (案例 )获市一 等奖 , 在省 级以上 专业 期刊 发表论 文 30余篇 .
量树的高度 .在阳光下 , 一名同学测得一根长为 1米的竹
竿的影长为 0.4米 , 同时另一名同学测量树的高度时 , 发
现树的影子不全落在地面上 , 有一部分落在教学楼的第一
图 17 图 18
分析 影子既有在地上部分 , 又有在台阶踢面上的 ,
还有在台阶踏面上的 .过点 D作 DF⊥ AB于点 F(如图
华站在沿 DE方向的坡脚下 , 影子在平地上 , 两人的影长
分别为 4m与 2m,那么 , 塔高 AB =
m.
杆的影长为 2米 ,则电线杆的高度为
米.
图 5 图 6 图 7
分析 可用两种方法解答此题 : 法 1 过点 D作 DF⊥ CD交 AE于点 F, 过点 F作 FG
⊥ AB于点
初看此题 , 貌似平凡 , 甚至平庸 , 然细细品味 , 才
觉它有深藏不露的 “精彩 ”.首先 , 一道看似平凡的
题目 , 却考查了 “直径所对的圆周角是直角 ” 、“同弧
上的圆周角相等 ”、“圆的切线及其性质 ” 等等几乎
课标要求的所有与圆相关的知识点 ;第二 , 在考查圆
的基础上 , 巧妙地与勾股定理 、三角形中位线 、相似
2007年浙江省绍兴市中考数学试卷及参考答案(真正答案)
浙江省2007年初中毕业生学业考试绍兴市试卷数 学参考公式:二次函数c bx ax y ++=2图象的顶点坐标是)44,2(2a b ac a b --, 弧长180r n l π=(n 为圆心角度数,r 为圆的半径). 方差[]222212)()()(1x x x x x x n S n -++-+-= (x 是n x x x ,,,21 的平均数).试卷Ⅰ(选择题,共40分)请将本卷的答案,用铅笔在答题卡上对应的选项位置涂黑、涂满.一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.如图是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是A .内含B .相交C .相切D .外离2.下列计算正确的是A .632=⨯B .532=+C .248=D .224=-3.下列名人中:①鲁迅; ②姚明; ③刘徽; ④杨利伟; ⑤高斯; ⑥贝多芬;⑦陈景润.其中是数学家的为A .①③⑤B .②④⑥C .③⑤⑦D .④⑤⑥4.如下图所示的四个立体图形中,正视图是四边形的个数是A. 1B. 2C. 3D. 45.拃是姆指和食指在平面上伸直时,两者端点之间的距离.则以下估计 正确的是A .课本的宽度约为4拃B .课桌的高度约为4拃C.黑板的长度约为4拃 D.字典的厚度约为4拃6.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为BC的中点,则下列式子中一定成立的是A.AC=2OE B.BC=2OEC.AD=OE D.OB=OE7.学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4) ):从图中可知,小敏画平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①② B.②③ C.③④ D.①④8.甲、乙两人各射击6次,甲所中的环数是8,5,5,a,b,c, 且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲、乙射击成绩的正确判断是A.甲射击成绩比乙稳定 B.乙射击成绩比甲稳定C.甲、乙射击成绩稳定性相同 D.甲、乙射击成绩稳定性无法比较9.如图是测量一颗玻璃球体积的过程:(1)将300ml的水倒进一个容量为500ml的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在A.20cm3以上,30cm3以下B.30cm3以上,40cm3以下C.40cm3以上,50cm3以下D.50cm3以上,60cm3以下10.如图的方格纸中,左边图形到右边图形的变换是A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称,再以AB为对称轴作轴对称C.绕AB的中点旋转1800,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格浙江省2007年初中毕业生学业考试绍兴市试卷数 学试卷Ⅱ(非选择题,共110分)请将答案或解答过程用蓝、黑色墨水的钢笔或圆珠笔写在本卷上.二、填空题(本大题有6小题,每小题5分,共30分.将答案填在题中横线上)11.写出一个图象在第一、三象限的反比例函数的解析式 .12.分解因式=-23ab a .13.如图,PA 切⊙O 于点A ,该圆的半径为3,PO=5, 则PA 的长等于 .14.一个袋中装有12个红球、10个黑球、8个白球,每个球除颜色外完全相同,从袋中任意摸出一个球,那么摸到黑球的概率是.15.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点重合,AB=2,AD=1,过定点Q(0,2)和动点P(a,0) 的直线与矩形ABCD的边有公共点,则a 的取值范围是 .16.绍兴黄酒是中国名酒之一.某黄酒厂的瓶酒车间先将散装黄酒灌装成瓶装黄酒,再将瓶装黄酒装箱出车间,该车间有灌装、装箱生产线共26条, 每条灌装、装箱生产线的生产流量分别如图1、2所示. 某日8:00~11:00,车间内的生产线全部投入生产,图3表示该时段内未装箱的瓶装黄酒存量变化情况,则灌装生产线有 条.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.计算:22)12(45sin 301-+-+︒--.18.先化简,再求值:1)111(-÷+-x x x ,其中2=x .19.如图甲,正方形被划分成16个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:(1)涂黑部分的面积是原正方形面积的一半;(2)涂黑部分成轴对称图形.如图乙是一种涂法,请在图1~3中分别设计另外三种涂法.(在所设计的图案中,若涂黑部分全等,则认为是同一种涂法,如图乙与图丙)20.某校为了解决学生停车难的问题,打算新建一个自行车车棚,图1是车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图2是车棚顶部的截面示意图,弧AB所在圆的圆心为O,半径OA为3米.∠的度数(结果精确到1度);(1)求AOB(2)学校准备用某种材料制作车棚顶部,请你算一算,需该种材料多少平方米?(不考虑接缝等因素,结果精确到1平方米).(参考数据:sin53.1o≈0.80,cos53.1o≈0.60,π取3.14)21.光明中学九(1)班的一个课外活动小组参加社会实践,他们到人民路口调查进入人民东路的车流量情况,下表是他们的调查记载表.请你根据表中数据,解答下列问题:(1)表中有一处数据被墨汁污染,写出被污染处的数:,并补全下面的车流量频数分布直方图;(2)由经验估计可知,在所调查的时段内,每增加投放1辆公交车,可减少8辆小轿车.为了使该时段内,小轿车的流量减少到只比公交车多15辆,问公交公司应增加投放多少辆公交车?22.设关于x 的一次函数11b x a y +=与22b x a y +=,则称函数)()(2211b x a n b x a m y +++=(其中1=+n m )为此两个函数的生成函数.(1)当x=1时,求函数1+=x y 与x y 2=的生成函数的值;(2)若函数11b x a y +=与22b x a y +=的图象的交点为P ,判断点P 是否在此两个函数的生成函数的图象上,并说明理由.23.课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD 中,AC平分DAB ∠, ︒=∠60DAB ,B ∠与D ∠互补,求证:AC AD AB 3=+.小敏反复探索,不得其解.她想,若将四边形ABCD 特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“D B ∠=∠”, 如图2,可证AC AD AB 3=+.(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C 点分别作AB 、AD 的垂线,垂足分别为E 、F .(请你补全证明)24.如图,在平面直角坐标系中,O 为原点,点A 、C 的坐标分别为(2,0)、(1,33).将OAC ∆绕AC 的中点旋转1800,点O落到点B 的位置.抛物线x ax y 322-=经过点A ,点D 是 该抛物线的顶点.(1) 求a 的值,点B 的坐标;(2) 若点P 是线段OA 上一点,且OAB APD ∠=∠,求点P 的坐标;(3) 若点P 是x 轴上一点,以P 、A 、D 为顶点作平行四边形,该平行四边形的另一顶点在y 轴上.写出点P 的坐标(直接写出答案即可).数学参考答案一、选择题(本大题有10小题,满分40分)1.D 2.A 3.C 4.B 5.B 6.B 7.C 8.B 9.C 10.D二、填空题(本大题有6小题,满分30分)11.如y=1x 等 12.a (a+b )(a-b ) 13.4 14.1315.-2≤a ≤2 16.14 三、解答题(本大题有8小题,满分80分)17.(本题满分8分)解:3-1-sin45°+-1)0+|2|=13-2+1+2=13+1=43 18.(本题满分8分)解:(1-1)11x x x ÷+-=111111x x x x x x x x x x --÷==+-++ 当x=2时,原式=13. 19.(本题满分8分)不同涂法的图案例举如下:20.(本题满分8分)解:(1)作OC ⊥AB ,垂足为C ,则AC=2.4,而OA=3.∴sin ∠AOC=2.43=0.8, ∴∠AOC ≈53.1°,∴∠AOB=106.2°≈106°.(2)∵弧AB 的长L=106180π⨯×3≈5.5, ∴L ×15≈83(m 2).即需该种材料约83平方米.21.(本题满分10分)解:(1)40.0%(或答40%)(2)设应增加投放x 辆公交车,则(74-8x )-(32+x )=15,∴x=3,即应增加投放3辆公交车.22.(本题满分12分)解:(1)当x=1时,y=m (x+1)+n (2x )=m (1+1)+n (2×1)=2m+2n=2(m+n ),∵m+n=1,∴y=2.(2)点P 在此两个函数的生成函数的图象上, 设点P 的坐标为(a ,b ),∵a 1×a+b 1=b ,a 2×a+b 2=b ,∴当x=a 时,y=m (a 1x+b 1)+n (a 2x+b 2)=m (a 1×a+b 1)+n (a 2×a+b 2)=mb+nb=b (m+n )=b .即点P 在此两个函数的生成函数的图象上.23.(本题满分12分)证:(1)∵∠B=∠D=90°,∠CAB=∠CAD=30°,∴AC ,AC ,∴.(2)由(1)知,.∵AC 为角平分线,CF ⊥AD ,CE ⊥AB ,∴CE=CF .而∠ABC 与∠D 互补,∠ABC 与∠CBE 也互补,∴∠D=∠CBE ,∴Rt △CDF ≌Rt △CBE ,∴DF=BE ,∴AB+AD=AB+(AF+FD )=(AB+BE ).24.(本题满分14分)解:(1)∵,∴又由条件知OABC 为平行四边形.∴y B =y C x B =2+1=3.∴点B 的坐标为(3,).(2)∵2x ,∴D (1,.又∵tan ∠tan ∠AOB=3∴∠OAD=∠AOB=60°,而∠APD=∠OAB ,∴△APD ∽△OAB , AP AD OA OB,AP=23, ∴点P 的坐标为(43,0). (3)点P 的坐标为(-1,0)或(1,0)或(3,0).。
2007年全国各地中考试题130多份标题汇总
2007年全国各地中考试题130多份标题汇总2007年安徽省初中毕业学业考试数学试卷及答案2007年安徽省芜湖市初中毕业学业考试数学试卷及参考答案2007年北京市高级中等学校招生统一考试数学试卷及参考答案2007年福建省福州市毕业会考、高级中等学校招生考试卷及答案(扫描)2007年福建省福州市初中毕业会考、高级中等学校招生考试数学试卷及答案2007年福建省龙岩市初中毕业、升学考试数学试题及参考答案2007年福建省宁德市初中毕业、升学考试数学试题及参考答案2007年福建省泉州市初中毕业、升学考试数学试题2007年福建省三明市初中毕业生学业考试数学试题及参考答案2007年福建省厦门市初中毕业和高中阶段各类学校招生数学试题及答案2007年甘肃省白银等3市旧课程数学试题2007年甘肃省白银等7市新课程中考数学试题及参考答案2007年甘肃省兰州市初中毕业生学业考试数学试卷A卷及参考答案2007年甘肃省陇南市中考数学试题及参考答案2007年广东省初中毕业生学业考试数学试题2007年广东省佛山市高中阶段学校招生考试数学试卷2007年广东省广州市初中毕业生学业考试数学试卷2007年广东省茂名市初中学业与高中阶段学校招生考试试题及答案2007年广东省梅州市初中毕业生学业考试数学试题及参考答案2007年广东省韶关市初中毕业生学业考试数学试题及参考答案2007年广东省深圳市初中毕业生学业考试数学试卷及参考答案2007年广东省中山市初中毕业生学业考试数学试卷及参考答案2007年广西省河池市中等学校招生统一考试数学试题及参考答案(课改区)2007年广西省柳州市、北海市中考数学试卷(课改实验区用)2007年广西省南宁市中等学校招生考试(课改实验区)数学试题及参考答案2007年广西省玉林市、防城港市初中毕业升学考试数学试题及参考答案2007年广西省中等学校招生河池市统一考试数学试题及答案(非课改区)2007年贵州省安顺市初中毕业生学业课改实验区数学科试题2007年贵州省毕节地区高中、中专、中师招生统一考试2007年贵州省贵阳市初中毕业生学业考试数学试卷及参考答案2007年贵州省黔东南高中、中专、中师招生统一考试数学试题2007年贵州省遵义市初中学业统一考试数学试卷2007年海南省初中毕业升学考试数学试题2007年河北省初中毕业生升学考试数学试卷及参考答案2007年河北省课程改革实验区初中毕业生学业考试试题及参考答案2007年河南省高级中等学校招生学业考试试卷2007年河南省开封市高中阶段各类学校招生考试题2007年黑龙江省哈尔滨市初中升学考试数学试卷2007年黑龙江省牡丹江市课程改革实验区初中毕业学业考试数学试题2007年湖北省恩施自治州初中毕业、升学考试数学及答案2007年湖北省黄冈市普通高中和中等职业学校招生考试数学试题2007年湖北省荆门市初中毕业生学业考试数学试卷(含答案)(扫描版)2007年湖北省荆门市初中毕业生学业考试数学试题及参考答案2007年湖北省荆州市中考数学试题2007年湖北省潜江市、仙桃市、江汉油田初中毕业生学业考试试题及答案2007年湖北省十堰市初中毕业生学业考试数学试卷2007年湖北省武汉市新课程初中毕业生学业考试数学试卷2007年湖北省咸宁市初中毕业生学业考试数学试卷2007年湖北省襄樊市初中毕业、升学统一考试非课改区数学试题及参考答案2007年湖北省孝感市初中毕业生学业考试数学及答案2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案2007年湖南省长沙市初中毕业学业考试试卷及答案2007年湖南省常德市初中毕业学业考试数学试卷2007年湖南省郴州市基教试验区初中毕业学业考试数学试卷及答案2007年湖南省怀化市初中毕业学业考试数学试卷及参考答案2007年湖南省邵阳市初中毕业学业考试试题卷2007年湖南省湘潭市初中毕业学业考试数学试卷2007年湖南省永州市初中毕业学业考试数学试卷2007年湖南省岳阳市初中毕业学业考试试卷及参考答案2007年湖南省株洲市初中毕业学业考试数学试卷2007年吉林省长春市初中毕业生学业考试数学试题及答案2007年吉林省初中毕业生学业考试数学试题及参考答案2007年江苏省常州市初中毕业、升学统一考试数学试卷及参考答案2007年江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试题2007年江苏省连云港市中考数学试题与参考答案2007年江苏省南京市初中毕业学业考试数学试题及参考答案2007年江苏省南通市初中毕业、升学考试数学试题2007年江苏省苏州市初中毕业暨升学考试试卷及参考答案2007年江苏省宿迁市中考数学试卷及参考答案2007年江苏省泰州市初中毕业、升学统一考试数学试题及答案2007年江苏省无锡市初中毕业高级中等学校招生考试数学试卷及参考答案2007年江苏省徐州市初中毕业、升学考试数学试题2007年江苏省盐城高中阶段招生统一考试数学试题(扫描版)2007年江苏省扬州市初中毕业、升学考试数学及参考答案(扫描版)2007年江苏省扬州市初中毕业、升学统一考试数学试题及参考答案2007年江苏省中考数学试卷及参考答案2007年江西省南昌市初中毕业暨中等学校招生考试数学试卷及参考答案2007年江西省中等学校招生考试数学试题及参考答案2007年辽宁省大连市初中毕业升学统一考试数学试题2007年辽宁省沈阳市中等学校招生统一考试数学试题及参考答案2007年辽宁省十二市初中毕业生学业考试数学试卷及参考答案2007年内蒙古自治区赤峰市初中毕业、升学统一考试数学试卷及参考答案2007年内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案2007年内蒙古自治区呼和浩特市中考数学试卷及参考答案2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案2007年宁夏回族自治区课改实验区初中毕业暨高中招生考试试题及答案2007年山东省滨州市中等学校招生统一考试数学试卷及参考答案2007年山东省德州市中等学校招生考试数学试题及参考答案2007年山东省东营市初中毕业暨高中阶段教育学校招生考试数学试题及答案2007年山东省济南市高中阶段学校招生考试数学试题及答案2007年山东省济宁市中等学校招生考试数学试题及参考答案2007年山东省聊城市普通高中招生统一考试数学试卷及参考答案2007年山东省临沂市初中毕业与高中招生考试考数学试卷及答案(扫描版)2007年山东省临沂市初中毕业与高中招生考试数学试题(Word版含答案)2007年山东省青岛市中考数学试卷(含答案)2007年山东省日照市中等学校统一招生考试数学试题及参考答案2007年山东省泰安市年中等学校招生考试数学试卷(课改实验区用)2007年山东省泰安市中等学校招生考试数学试卷及参考答案(非课改区)2007年山东省威海市初中升学考试数学试题及参考答案2007年山东省潍坊市初中学业水平考试数学试卷及参考答案2007年山东省烟台市初中毕业、升学统一考试数学试卷2007年山东省枣庄市中等学校招生考试数学试题及答案2007年山东省中等学校招生考试数学试题2007年山东省淄博市中等学校招生考试数学试题2007年山西省临汾市初中毕业生学业数学考试试题及参考答案2007年陕西省基础教育课程改革实验区初中毕业学业考试数学试题2007年上海市初中毕业生统一学业考试试卷及答案2007年四川省巴中市高中阶段教育招生考试2007年四川省成都市高中阶段教育学校统一招生考试试卷及参考答案2007年四川省德阳市初中毕业生学业考试数学试卷及答案2007年四川省乐山市高中阶段教育学校招生统一考试数学试题及参考答案2007年四川省泸州市初中毕业暨高中阶段学校招生统一考试数学试题及答案2007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案2007年四川省绵阳市高级中等教育学校招生统一考试数学试题(含答案)2007年四川省内江初中毕业会考暨高中阶段招生考试试卷2007年四川省内江市初中毕业会考暨高中阶段招生考试数学试卷及参考答案2007年四川省南充市高中阶段学校招生统一考试数学试卷及参考答案2007年四川省宜宾市高中阶段学校招生考试数学试卷2007年四川省资阳市高中阶段学校招生统一考试数学试题及参考答案2007年四川省自贡市初中毕业暨升学考试数学试题及参考答案2007年台湾地区中考数学第一次测验试题及参考答案2007年天津市中考数学试卷及答案2007年云南省高中(中专)招生统一考试(课改实验区)数学试题及答案2007年云南省昆明市高中(中专)招生统一考试数学试卷2007年云南省双柏县初中毕业考试数学试卷(含答案)2007年浙江省初中毕业生学业考试数学试题及参考答案2007年浙江省杭州市数学中考试题及参考答案2007年浙江省湖州市初中毕业生学业考试数学试卷及参考答案2007年浙江省嘉兴市初中毕业生学业考试数学参考答案2007年浙江省嘉兴市初中毕业生学业考试数学试卷2007年浙江省金华中考数学试题及参考答案2007年浙江省丽水市初中毕业生学业考试数学试卷及参考答案2007年浙江省宁波市中考数学试题及参考答案2007年浙江省衢州市初中毕业生学业水平考试数学试题及参考答案2007年浙江省绍兴市初中毕业生学业考试数学试卷2007年浙江省台州市初中毕业生学业考试数学试卷及参考答案2007年浙江省温州市初中毕业学业考试数学试卷2007年浙江省义乌市初中毕业生学业考试数学试题及参考答案2007年浙江省舟山市初中毕业生学业考试数学试题及参考答案2007年重庆市初中毕业生学业暨高中招生考试试卷及参考答案。
007年初中毕业学业考试数学试卷浙教版
21第2题图DCBABAB2007年初中毕业学业考试数学试卷卷Ⅰ一、选择题(本题共有10小题,每小题4分,共40分。
每小题只有一个选项是正确的,不选,多选,错选,均不得分)1.2006年12月某日我国部分城市的平均气温情况如下表(记温度零上为正,单位:℃),则其中当天平均气温最低的城市是()A.广州 B.哈尔滨 C.北京 D.上海2.如图,直线a,b被直线c所截,已知,140a b∠=︒,则2∠的度数为()A.40︒ B. 50︒ C. 140︒ D. 160︒3.已知点P(-1,a)在反比例函数2yx=的图象上,则a的值为()A.-1B.1C.-2D. 24.下列图形中,不是..轴对称图形的是()5.抛物线24y x=+与y轴的交点坐标是()A.(4,0) B.(-4,0) C.(0,-4) D. (0,4). 6.小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是()A. 18千克 B. 22千克 C. 28千克 D. 30千克7.已知两圆半径分别为3和5,圆心距为8,则这两圆的位置关系是()A 内切B 外切C 相交D 相离8.如图所示几何体的主视图是()9、如图,已知ACB∠是O的圆周角,50ACB∠=︒,则圆心角AOB∠是()A.40︒ B. 50︒ C. 80︒ D. 100︒10.如图,在ABC∆中,AB=AC=5,BC=6,点E,F是中线AD则图中阴影部分的面积是()A.6B.12C.24D.30试卷Ⅱ二、填空题(本题有6小题,每小题5分,共30分)11235...11231511211321④③②①11. 方程220x x -=的解是 . 12.计算:11m nmn m -=- ______.13. 如图,若D ,E 分别是AB ,AC 中点,现测得DE 的长为20米,则池塘的宽BC 是____米。
DA浙江省宁波市中考真题
2007年浙江省宁波市中考数学试题参考答案及评分标准一、选择题(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D B D A C C A D B C B A二、填空题(每小题3分,共21分)题号13 14 15 16 17 18 19答案 1 0,-2 253/7 7222y x x=--在下面每画出一个(与顺序无关)正确的给l分,答案不唯一,下图供参考:三、解答题(共63分)注:l.阅卷时应按步计分,每步只设整分;2.如有其它解法,只要正确,都可参照评分标准,各步相应给分20.解:原式=a2-2ab-(a2-2ab+b2) ············································································· 2分=a2-2ab-a2+2ab-b2 ································································································· 3分=-b2. ···················································································································· 5分21.解:方程两边同乘(x-2)(x+2),得x(x+2)-(x2-4)=1, ···································································································· 2分化简,得2x=-3······································································································· 4分32x=-, ············································································································· 5分经检验,32x=-是原方程的根. ·········································································· 6分22.解:(1)由已知,得MN=AB,MD=12AD=12BC.∵矩形DMNC与矩形ABCD相似,D M M NA B B C=·········································································································· 2分∴12AD2=AB2,∴由AB=4得,AD=42 ······················································································· 4分(2)矩形DMNC 与矩形ABCD 的相似比为22D M AB=············································· 6分23·解:(1) ∵OE ⊥A C ,垂足为E ,..AE =EC , ················································································································ 1 ∵AO =BO , ∴OE =12BC =5/2····································································································· 3分(2)∠A =12∠BDC =25°, ····················································································· 4分在Rt △AOE 中,sin A =OE /OA ,··············································································· 5分 ∵∠AOC =180°-50°=130° ∴弧AC 的长=130 2.5180sin 25⨯︒π≈13.4. ······································································ 6分24.解:(1)这l 0座名山“身高"的极差为3079.3-286.3=2793(m). ······························ 2分 中位数为1572.4(m).····························································································· 4分(2)这10座名山“身高”在1000m 到 2000m 之间的频数为6, ·································· 5分所以频率是0.6. ··································································································· 7分 (3)15(1532.7+2154.9+1300.2+2016.1+1491.7) ····························································· 9分 =1699.12(m), ……………………10分∴“五岳”的平均“身高”为1699.12m 25.解:连结EC ,作DF ⊥EC ,垂足为F ∵∠DCB =∠CDE =∠DEA ,∠EAB =∠CBA =90°, ∴∠DCB =∠CDE =∠DEA =120°,……………………1分 ∵DE =CD ∴∠DEC =∠DCE =30°,∴.∠CEA =∠ECB =90°,∴四边形EABC 为矩形,……………………2分 ∴DE =x m , ∴AE =6-x ,DF =12x ,EC =3x ……………………3分s =233634x x -+ (0<x <6).……………………5分(自变量不写不扣分)当x =4m 时,S最大=123 m 2. ·············································································· 8分26.解:(1)3500×3.06%×80%=85.68(元),∴到期时他实得利息收益是85.68元. ································································ 2分 (2)设他这笔存款的本金是x 元, 则x (1+2.79%×80%)=2555.8, ················································································ 4分 解得x =2500,∴这笔存款的本金是2500元. ·············································································· 6分 (3)设小明爸爸的这笔存款转存前已存了x 天,由题意得l0000×360x ×0.72%+10000×360360x ×3.06%>10000×2.79%, ········································ 8分解得x <41713, ······································································································ 9分当他这笔存款转存前已存天数不超过41天时;他应该转存;否则不需转存. ·······10分 27.解:(1)如图2,点P 即为所画点.……………………1分(答案不唯一.画图正确,无文字说明不扣分;点P 画在AC 中点不给分)(2)如图3,点P 即为所作点.……………………3分(答案不唯一.作图正确,无文字说明不扣分;无痕迹或痕迹不清晰的酌情扣分)(3)连结DB ,在△DCF 与△BCE 中, ∠DCF =∠BCE , ∠CDF =∠CBE ,∠ CF =CE . ∴△DCF ≌△BCE (AA S),……………………5分 ∴CD =CB , ∴∠CDB =∠CBD .………………………………6分 ∴∠PDB =∠PBD ,……………………………7分 ∴PD =PB , ∵P A ≠PC∴点P 是四边形ABCD 的准等距点. ····································································· 8分(4)①当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个; ································································ 9分 ②当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个; ···································································10分 ③当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;······················································· 11分 ④四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个.1分(.答案不唯一.画图正确,无文字说明不扣分;点P 画在A C 中点不给分) ··12分(第(4)小题只说出准等距点的个数,不能给满分)。
【中考12年】浙江省宁波市2002-中考数学试题分类解析 专题11 圆
宁波市2002-2013年中考数学试题分类解析专题11 圆一、选择题1. (2003年浙江宁波3分)如图,PA切⊙O于点A,割线PBC交⊙O于点B、C,已知PB=BC=3,则PA的长是【】2. (2004年浙江宁波3分)如图,PA切⊙O于A,割线PBC经过圆心O,交⊙O于B、C两点,若PA=4,PB=2,则tan∠P的值为【】【答案】B。
【考点】切线的性质,切割线定理,锐角三角函数定义。
【分析】∵PA,PB分别是⊙O的切线和割线,∴PA2=PB•PC。
∵PA=4,PB=2,∴PC=8,BC=6。
∴OB=3。
连接OA,则∠OAP=90°。
∴OA3tan PPA4∠==。
故选B。
3. (2005年浙江宁波3分)如图,圆和圆的位置关系是【】4. (2005年浙江宁波3分)边长分别为3,4,5的三角形的内切圆半径与外接圆半径的比为【】A.1∶5B.2∶5C.3∶5D.4∶55. (2006年浙江宁波大纲卷3分)已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是【】6. (2007年浙江宁波3分)已知两圆的半径分别为3和5,圆心距为4,则这两圆的位置关系是【】(A)内切 (B)外切 (C)相交 (D)相离7. (2008年浙江宁波3分)已知半径分别为5cm和8cm的两圆相交,则它们的圆心距可能是【】A.1cm B.3cm C.10cm D.15cm8. (2010年浙江宁波3分)两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是【】A、内切B、相交C、外切D、外离9. (2011年浙江宁波3分)如图,⊙O1 的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD 的中心,O1O2垂直AB于P点,O1O2 =8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1 与正方形ABCD的边只有一个公共点的情况一共出现【】【答案】B。
初中数学中考几何题中的新定义型题集锦
初中数学中考几何题中的新定义型题集锦在近年的中考试题中,在近年的中考试题中,涌现出了许多创意新颖、涌现出了许多创意新颖、涌现出了许多创意新颖、情境熟悉的几何新定义型试题,情境熟悉的几何新定义型试题,情境熟悉的几何新定义型试题,为了便为了便于同学们了解掌握这方面的信息,现从近年的中考试题中精选数例,供同学们参考与借鉴。
一、定义一种新的几何体一、定义一种新的几何体例1(2001年泰州市)我们把相似形的概念推广到空间:我们把相似形的概念推广到空间:如果两个几何体大小不一定相如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体,如图1,甲、乙是两个不同的正方体,正方体都是相似体。
都是相似体。
(1)下列几何体中,一定属于相似体的是()下列几何体中,一定属于相似体的是() A. 两个球体两个球体 B. 两个圆锥体两个圆锥体C. 两个圆柱体两个圆柱体D. 两个长方体两个长方体 (2)请猜想出相似体的主要性质:)请猜想出相似体的主要性质:①相似体的一切对应线段(或弧长)的比等于_______;②相似体表面积的比等于_______;③相似体体积的比等于_______。
(3)假定在完全正常发育的条件下,不同时期的同一个人的人体是相似体,一个小朋友上幼儿园时身高为1.1m ,体重为18kg ,到了初三,身高为1.65m ,问他的体重为多少?(不考虑不同时期人体平均密度的变化)(不考虑不同时期人体平均密度的变化)解:(1)由相似体的定义可知,应选A 。
(2)①相似比;②相似比的平方;③相似比的立方。
)①相似比;②相似比的平方;③相似比的立方。
(3)设初三时体重为x kg ,则由题意,得,则由题意,得()31.1:65.118:x =,解之,得()kg 75.60x »故到了初三时,他的体重约为60.75kg 。
二、定义一种新的规则二、定义一种新的规则例2 (2003年安徽省)如图2,这些等腰三角形与正三角形的形状有差异,我们把它与正三角形的接近程度称为“正度”,在研究“正度”时,应保证相似三角形的“正度”相等。
2007年浙江省宁波市中考数学试题含答案-
2007年浙江省宁波市中考数学试题全卷分试题卷I 、试题卷Ⅱ和答题卡、答题卷.试题卷有3个大题,27个小题.满分为l 20分.考试时间为120分钟.允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线y=ax 2+bx+c 的顶点坐标为24(,)24b ac b a a--. 试 题 卷 I一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求) 1.-12的绝对值等于( ) (A)-2 (B)2 (C) -12 (D) 122x 的取值范围是( )(A)x>1 (B)x≥l (C)x<1 (D)x≤13.下列计算中,正确的是( ) (A)a 3·a 4=a 12 (B) (a 2)3=a 5 (C)a 6÷a 2=a 3 (D) (-ab)3=-a 3b 34.据宁波市财政局统计,我市2006年财政收入已突破500亿元大关,用科学记数法可表示为( ) (A)5×l010元 (B)50×109元 (C)0.5×1011元 (D)5×1011元5.已知两圆的半径分别为3和5,圆心距为4,则这两圆的位置关系是( ) (A)内切 (B)外切 (C)相交 (D)相离6.把不等式组1020x x +≥⎧⎨->⎩的解集表示在数轴上,正确的是( )7.下列事件是随机事件的是( )(A)购买一张彩票,中奖 (B)在一个标准大气压下,加热到100℃,水沸腾(C)奥运会上,百米赛跑的成绩为5秒 (D)掷一枚普通骰子,朝上一面的点数是8 8.如图,已知□ABCD 的两条对角线AC 与BD 交于平面直角坐标 系的原点,点A的坐标为(-2,3),则点C 的坐标为( )(A)(-3,2) (B)(-2,-3) (C)(3,-2) (D)(2,-3)9.甲、乙、丙、丁四位选手各10次射击成绩的平均数都是8环,众数和方差如表,则这四人中水平发挥最稳定的是( )(A)甲 (B)乙 (C)丙 (D)丁10.如图,是一次函数y=kx+b 与反比例函数y=2x的图像,则关于x 的方程kx+b=2x的解为( ) (A)x l =1,x 2=2 (B)x l =-2,x 2=-1 (C)x l =1,x 2=-2 (D)x l =2,x 2=-111.与如图所示的三视图对应的几何体是( )12.如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( )(A)24m (B)22m (C)20 m (D)18 m二、填空题(每小题3分,共21分) 13.计算4133m m m -+++= ▲ . 14.方程x 2+2x=0的解为 ▲ 15.如图,AB 切⊙0于点B ,AB=4 cm ,AO=6 cm ,则⊙O 的半径为 ▲cm .16.一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 ▲ . 17.如图,在△ABC 中,AB=AC ,CD 平分∠ACB 交AB 于D 点,AE ∥DC交BC 的延长线于点E ,已知∠E=36°,则∠B= ▲ 度.18.如图,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 ▲ .19.面积为l 个平方单位的正三角形,称为单位正三角形.下面图中的每一个小三角形都是单位正三角形,三角形的顶点称为格点.在图1、2、3中分别画出一个平行四边形、梯形和对边都不平行的凸四边形,要求这三个图形的顶点在格点、面积都为l2个平方单位.三、解答题(第20题5分,21~23题各6分,24题10分,25题8分,26题10分,27题12分,共63分)20.化简a(a -2b)-(a -b)2.21.解方程21124x x x -=--.22.如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4.(1)求AD的长.(2)求矩形DMNC与矩形ABCD的相似比.23.如图,AB是⊙O的直径,弦BC=5,∠BOC=50°,OE⊥AC,垂足为E.(1)求OE的长.(2)求劣弧AC的长(结果精确到0.1).24.今年4月底,国家测绘局和建设部首次为我国19座名山定“身高”(单位:m).下图为其中10座名山的“身高”统计图.请你根据图中提供的信息回答下列问题:(1)这l0座名山“身高”的极差和中位数分别是多少?(2)这l0座名山“身高”在1000m到2000m之间的频率是多少?(3)这l0座名山中,泰山、华山、衡山、恒山、嵩山并称“五岳”,求“五岳”的平均“身高”.25.用长为l2 m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.设CD=DE=xm,五边形ABCDE的面积为S m2.问当x取什么值时,S最大?并求出S的最大值.26.2007年5月19日起,中国人民银行上调存款利率.储户的实得利息收益是扣除利息税后的所得利息,利息税率为20%.(1)小明于2007年5月19日把3500元的压岁钱按一年期定期存入银行,到期时他实得利息收益是多少元?(2)小明在这次利率调整前有一笔一年期定期存款,到期时按调整前的年利率2.79%计息,本金与实得利息收益的和为2555.8元,问他这笔存款的本金是多少元?(3)小明爸爸有一张在2007年5月19日前存人的10000元的一年期定期存款单,为获取更大的利息收益,想把这笔存款转存为利率调整后的一年期定期存款.问他是否应该转存?请说明理由.约定:①存款天数按整数天计算,一年按360天计算利息.②比较利息大小是指从首次存入日开始的一年时间内.获得的利息比较.如果不转存,利息按调整前的一年期定期利率计算;如果转存,转存前已存天数的利息按活期利率计算,转存后,余下天数的利息按调整后的一年期定期利率计算(转存前后本金不变).27.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图l,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形AB CD的准等距点.(4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明).2007年浙江省宁波市中考数学试题参考答案及评分标准一、选择题(每小题3分,共36分)二、填空题(每小题3分,共21分)每画出一个(与顺序无关)正确的给l 分,答案不唯一,下图供参考:三、解答题(共63分)注:l .阅卷时应按步计分,每步只设整分;2.如有其它解法,只要正确,都可参照评分标准,各步相应给分 20.解:原式=a 2-2ab-(a 2-2ab+b 2) ……………………2分 =a 2-2ab-a 2+2ab-b 2 ……………………3分 =-b 2.……………………5分21.解:方程两边同乘(x-2)(x+2),得 x(x+2)-(x 2-4)=1,……………………2分 化简,得2x=-3……………………4分 x=-3/2,……………………5分经检验,x=-3/2是原方程的根.……………………6分 22.解:(1)由已知,得MN=AB ,MD=12 AD=12BC . ∵矩形DMNC 与矩形ABCD 相似,BCDM MNAB ……………………2分∴12AD 2=AB 2,∴由AB=4得,4分(2)矩形DMNC 与矩形ABCD 的相似比为DM AB =6分 23·解:(1) ∵OE ⊥A C ,垂足为E , ..AE=EC ,……………………1 ∵A O=B0,∴OE=12BC=5/2……………………3分 (2)∠A=12∠BDC=25°,……………………4分在Rt △AOE 中,sinA=OE/OA ,……………………5分 ∵∠AOC=180°-50°=130° ∴弧AC 的长=130 2.5180sin 25⨯︒π≈13.4.……………………6分24.解:(1)这l 0座名山“身高"的极差为3079.3-286.3=2793(m). ………………2分 中位数为1572.4(m).……………………4分(2)这10座名山“身高”在1000m 到 2000m 之间的频数为6,…………… 5分 所以频率是0.6. …………7分 (3)15(1532.7+2154.9+1300.2+2016.1+1491.7) ……………………9分 =1699.12(m), ……………………10分∴“五岳"的平均“身高"为1699.12m 25.解:连结EC ,作DF ⊥EC ,垂足为F ∵∠DCB=∠CDE=∠DEA ,∠EAB=∠CBA=90°, ∴∠DCB=∠CDE=∠DEA=120°,……………………1分 ∵DE=CD ∴∠DEC=∠DCE=30°, ∴.∠CEA=∠ECB=90°,∴四边形EABC 为矩形,……………………2分 ∴DE=x m ,∴AE=6-x ,DF=12x ,……………………3分s=24x -+ (0<x<6).……………………5分(自变量不写不扣分)当x=4m 时,S 最大m 2.……………………8分26.解:(1)3500×3.06%×80%=85.68(元),∴到期时他实得利息收益是85.68元.………………………………2分 (2)设他这笔存款的本金是x 元, 则x(1+2.79%×80%)=2555.8,……………………………………4分 解得x=2500,∴这笔存款的本金是2500元.……………………………………6分 (3)设小明爸爸的这笔存款转存前已存了x 天,由题意得l0000×360x ×0.72%+10000×360360x -×3.06%>10000×2.79%,………………8分 解得x<41713,……………………9分当他这笔存款转存前已存天数不超过41天时;他应该转存;否则不需转存.……………………10分27.解:(1)如图2,点P 即为所画点.……………………1分(答案不唯一.画图正确,无文字说明不扣分;点P 画在AC 中点不给分)(2)如图3,点P 即为所作点.……………………3分(答案不唯一.作图正确,无文字说明不扣分;无痕迹或痕迹不清晰的酌情扣分)(3)连结DB ,在△DCF 与△BCE 中, ∠DCF=∠BCE , ∠CDF=∠CBE , ∠ CF=CE. ∴△DCF ≌△BCE(AAS),……………………5分 ∴CD=CB , ∴∠CDB=∠CBD.………………………………6分 ∴∠PDB=∠PBD ,……………………………7分∴PD=PB,∵PA≠PC∴点P是四边形ABCD的准等距点.…………………………………………8分(4)①当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个;…………………………………………9分②当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个;…………………………………………10分③当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;……………………………………11分④四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个.1分(.答案不唯一.画图正确,无文字说明不扣分;点P画在A C中点不给分) ……………………………………………………………………12分(第(4)小题只说出准等距点的个数,不能给满分)。
2007年中考数学试题汇编——压轴题(含答案)及详细解析
第 1 页2007年中考数学试题汇编——压轴题一、 试题部分 1-13页 二、 答案部分14-36页一、 试题部分安徽省2007年23.按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输出一个数据y ,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。
(1)若y 与x 的关系是y =x +p(100-x),请说明:当p =12时,这种变换满足上述两个要求;【解】(2)若按关系式y=a(x -h)2+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式。
(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程) 【解】2007年常德市26.如图11,已知四边形ABCD 是菱形,G 是线段CD 上的任意一点时,连接BG 交AC 于F ,过F 作FH CD ∥交BC 于H ,可以证明结论FH FG ABBG=成立(考生不必证明).(1)探究:如图12,上述条件中,若G 在CD 的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;(5分) (2)计算:若菱形ABCD 中660AB ADC == ,∠,G 在直线..CD 上,且16CG =,连接BG 交AC 所在的直线于F ,过F 作FH CD ∥交BC 所在的直线于H ,求BG 与FG 的长.(7分) (3)发现:通过上述过程,你发现G 在直线CD 上时,结论FH FG ABBG=还成立吗?(1分)郴州市2007年27.如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线AC 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重合时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S '表示矩形NFQC 的面积.(1) S 与S '相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少? (3)如图11,连结BE ,当AE 为何值时,ABE ∆是等腰三角形.图11D图122德州市二〇〇七年23.(本题满分10分)已知:如图14,在ABC △中,D 为AB 边上一点,36A ∠= ,AC BC =,2AC AB AD = .(1)试说明:ADC △和BDC △都是等腰三角形; (2)若1AB =,求AC 的值;(3)请你构造一个等腰梯形,使得该梯形连同它的两条对角线得到8个等腰三角形.(标明各角的度数)2007年龙岩市25.(14分)如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.2007年福建省宁德市26.(本题满分14分) 已知:矩形纸片ABCD 中,26AB =厘米,18.5BC =厘米,点在上,且厘米,点P 是AB 边上一动点.按如下操作:步骤一,折叠纸片,使点P 与点E 重合,展开纸片得折痕MN (如图1所示); 步骤二,过点P 作PT AB ⊥,交MN 所在的直线于点Q ,连接QE (如图2所示) (1)无论点P 在AB 边上任何位置,都有PQ QE (填“>”、“=”、“<”号); (2)如图3所示,将纸片ABCD 放在直角坐标系中,按上述步骤一、二进行操作: ①当点P 在A 点时,PT 与MN 交于点11Q Q ,点的坐标是( , );xN MQ PHGFEDCBA图11Q P NM H G F ED CB A图10图14第 页3 ②当6PA =厘米时,PT 与MN 交于点22Q Q ,点的坐标是( , );③当12PA =厘米时,在图3中画出MN PT ,(不要求写画法),并求出MN 与PT 的交点3Q 的坐标; (3)点P 在运动过程,PT 与MN 形成一系列的交点123Q Q Q ,,,…观察、猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式.2007年福建省三明市26.(本小题满分12分)如图①,②,在平面直角坐标系xOy 中,点A 的坐标为(4,0),以点A 为圆心,4为半径的圆与x 轴交于O ,B 两点,OC 为弦,60AOC ∠= ,P 是x 轴上的一动点,连结CP .(1)求OAC ∠的度数;(2分)(2)如图①,当CP 与A 相切时,求PO 的长;(3分)(3)如图②,当点P 在直径OB 上时,CP 的延长线与A 相交于点Q ,问PO 为何值时,OCQ △是等腰三角形?(7分)2007年河池市26. (本小题满分12分)如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自变量t 的取值范围,当t 为何值时,SC B图1 图3CE 图24的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,若不存在,说明理由.贵阳市2007年25.(本题满分12分)如图14,从一个直径是2的圆形铁皮中剪下一个圆心角为90 的扇形.(1)求这个扇形的面积(结果保留π).(3分)(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由.(4分) (3)当O 的半径(0)R R >为任意值时,(2)中的结论是否仍然成立?请说明理由.(5分)2007年杭州市24.(本小题满分12分)在直角梯形ABCD 中,90C ∠=︒,高6CD cm =(如图1)。
07 年中考数学同步复习检测11
浙江省2007年初中毕业生学业考试(舟山市数学试题)数学试题、参考答案一.仔细选一选(本题有10个小题。
每小题4分。
共40分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的宇母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.下列运算的结果中,是正数的是 ( )(A)(-2007)-1 (B)(-1)2007 (C)(-1)×(-2007) (D)(-2007)÷20072.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )(A)(-4,3) (B)(-3,-4) (C)(-3,4) (D)(3,-4)3.如图,用放大镜将图形放大,应该属于( )(A)相似变换 (B)平移变换 (C)对称变换 (D)旋转变换4.有一组数据如下:3,6,5,2,3,4,3,6.那么,这组数据的中位数是( )(A)3或4 (B)4 (C)3 (D)3.55.因式分解(x-1)2-9的结果是( )(A)(x+8)(x+1) (B)(x+2)(x-4) (C)(x-2)(x+4) (D)(x-10)(x+8)6.如图,正三角形ABC 内接于圆0,动点P 在圆周的劣弧AB 上,且不与A ,B 重合,则∠BPC 等于( )(A)30o (B)60o (C)90o (D)45o7.如图,在高楼前D 点测得楼顶的仰角为30o ,向高楼前进60米到C 点,又测得仰角为45o ,则该高楼的高度大约为( ).(A)82米 (B)163米 (C)52米 (D)30米8.如果函数y=ax+b(a<0,b<O)和y=kx(k>0)的图象交于点P ,那么点P 应该位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限9.右图背景中的点均为大小相同的小正方形的顶点,其中画有两个四边形,下列叙述中正确的是( )(A)这两个四边形面积和周长都不相同(B)这两个四边形面积和周长都相同(C)这两个四边形有相同的面积,但I 的周长大于Ⅱ的周长(D)这两个四边形有相同的面积,但I 的周长小于Ⅱ的周长10.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a ,b ,c ,则a ,b ,c 正好是直角三角形三边长的概率是( ) (A)1216 (B)172 (C)136 (D)112 二.认真填一填(本题有6个小题,每小题5分,共30分)要注意认真看清题目的条件和要填写的内容。
07-11年浙江杭州中考数学试题及答案
2007年杭州市数学中考试题一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在 答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1.下列运算的结果中,是正数的是() A.()12007-- B.()20071- C.()()12007-⨯- D.()20072007-÷2.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为() A.()4,3- B.()3,4-- C.()3,4- D.()3,4-3.如图,用放大镜将图形放大,应该属于() A.相似变换 B.平移变换 C.对称变换 D.旋转变换4.有一组数据如下:3,6,5,2,3,4,3,6。
那么这组 数据的中位数是()A.3或4B.4C.3D.3.5 5.因式分解()219x --的结果是()A.()()81x x ++B.()()24x x +-C.()()24x x -+D.()()108x x -+ 6.如图,正三角形ABC 内接于圆O ,动点P 在圆周的劣弧AB 上,且不与,A B 重合,则BPC ∠等于()A.30︒B.60︒7.如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为()A.82米B.163米C.52米D.70米(第6题)(第7题)(第3题)8.如果函数()0,0y ax b a b =+<<和()0y kx k =>的图象交于点P ,那么点P 应该位于() A.第一象限 B.第二象限 C.第三象限 D.第四象限9.右图背景中的点均为大小相同的小正方形的顶点,其中画有两个四边形,下列叙述中正确的是()A.这两个四边形面积和周长都不相同B. 这两个四边形面积和周长都相同C. 这两个四边形有相同的面积,但Ⅰ的周长大于Ⅱ的周长D. 这两个四边形有相同的面积,但Ⅰ的周长小于Ⅱ的周长10.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为,,a b c ,则,,a b c 正好是直角三角形三边长的概率是()A.1216 B.172 C.136 D.112二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11.两圆的半径分别为3和5,当这两圆相交时,圆心距d 的取值范围是。
2005-2011年浙江省宁波市数学中考试卷及答案(7套)
2008年浙江省台州市初级中学学业水平考试数学试题一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.3的相反数是( ) A .3-B .3C .13D .13-2.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是( )3.据统计,2008年第一季度台州市国民生产总值约为41300000000元.数据41300000000用科学记数法可表示为( )A .110.41310⨯B .114.1310⨯C .104.1310⨯D .841310⨯4.一组数据9.5,9,8.5,8,7.5的极差是( ) A .0.5 B .8.5 C .2.5 D .2 5.不等式组431x x +>⎧⎨⎩≤的解集在数轴上可表示为( )6.如图,在菱形ABCD 中,对角线AC BD ,相交于点O E ,为AB 的中点,且OE a =,则菱形ABCD 的周长为( )A .16aB .12aC .8aD .4a7.四川512大地震后,灾区急需帐篷.某企业急灾区所急,准备捐助甲、乙两种型号的帐篷共2000顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置9000人,设该企业捐助甲种帐篷x 顶、乙种帐篷y 顶,那么下面列出的方程组中正确的是( ) A .4200049000x y x y +=⎧⎨+=⎩B .4200069000x y x y +=⎧⎨+=⎩C .2000469000x y x y +=⎧⎨+=⎩D .2000649000x y x y +=⎧⎨+=⎩B .C .D . 2- A .1- 12- B .1- 2- C . 1- 12- D .1- (第6题)8.下列命题中,正确的是( )①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等 A .①②③ B .③④⑤ C .①②⑤ D .②④⑤ 9.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( )A .第3天B .第4天C .第5天D .第6天10.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图2)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行二、填空题(本题有6小题,每小题5分,共30分)11.化简:1(24)22x y y -+= .12.因式分解:24x -= .13.台州市某中学随机调查了部分九年级学生的年龄,并画出了这些学生的年龄分布统计图(如图),那么,从该校九年级中任抽一名学生,抽到学生的年龄是16岁的概率是 .14.如图,从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系 式是29.8 4.9h t t =-,那么小球运动中的最大高度h =最大 .15.如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为a b c ,,;A B N E F ,,,,五点在同一直线上,则c = (用含有a b ,的代数式表示). 16.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数(第9题)ACBA ''C '(第10题) 图2图1(第13题) a DCB Mc N EF bG H(第15题)(第14题)量关系描述图形性质和用图形描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB ⊥弦CD 于E ),设AE x =,BE y =,他用含x y ,的式子表示图中的弦CD 的长度,通过比较运动的弦CD 和与之垂直的直径AB 的大小关系,发现了一个关于正数x y ,的不等式,你也能发现这个不等式吗?写出你发现的不等式 .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(1)计算:322tan 4516-+--(2)解方程:1222x x x+=--18.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.ABO △的三个顶点A B O ,,都在格点上.(1)画出ABO △绕点O 逆时针旋转90后得到的三角形; (2)求ABO △在上述旋转过程中所扫过的面积.19.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(31)(2)A B n -,,,两点,直线AB 分别交x 轴、y 轴于D C ,两点. (1)求上述反比例函数和一次函数的解析式;(2)求ADCD的值.(第16题)(第18题)20.在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论: ① ;② ;③ ;④ ;(2)如果点C 的坐标为(13),,那么不等式11kx b k x b ++≥的解集是. 21.如图是某宾馆大厅到二楼的楼梯设计图,已知6BC =米,9AB =米,中间平台宽度DE为2米,DM EN ,为平台的两根支柱,DM EN ,垂直于AB ,垂足分别为M N ,,30EAB ∠=,45CDF ∠=.求DM 和BC 的水平距离BM .(精确到0.12 1.41≈3 1.73≈)22.八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A B C D E ,,,,五个等级.老1 (第20题)A N M BFC ED (第21题) 一次函数与方程的关系一次函数与不等式的关系师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图.学生帮父母做家务活动时间频数分布表等级帮助父母做家务时间 (小时)频数A 2.53t <≤ 2B 2 2.5t <≤ 10C 1.52t <≤ aD 1 1.5t <≤ b E0.51t <≤3(1)求a b ,的值;(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;(3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.23.CD 经过BCA ∠顶点C 的一条直线,CA CB =.E F ,分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)若直线CD 经过BCA ∠的内部,且E F ,在射线CD 上,请解决下面两个问题: ①如图1,若90BCA ∠=,90α∠=,则BE CF ;EF E A F -(填“>”,“<”或“=”);②如图2,若0180BCA <∠<,请添加一个关于α∠与BCA ∠关系的条件 ,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请提出EF BE AF ,,三条线段数量关系的合理猜想(不要求证明).24.如图,在矩形ABCD 中,9AB =,AD =P 是边BC 上的动点(点P 不与B A E DC 40%(第22题)学生帮父母做家务活动评价等级分布扇形统计图A B C E FDD AB CEF ADFC EB (图1)(图2) (图3)(第3题)点B ,点C 重合),过点P 作直线PQ BD ∥,交CD 边于Q 点,再把PQC △沿着动直线PQ 对折,点C 的对应点是R 点,设CP 的长度为x ,PQR △与矩形ABCD 重叠部分的面积为y .(1)求CQP ∠的度数;(2)当x 取何值时,点R 落在矩形ABCD 的AB 边上? (3)①求y 与x 之间的函数关系式;②当x 取何值时,重叠部分的面积等于矩形面积的727?2008年浙江省台州市初级中学学业水平考试数学参考答案一、选择题(本题有10小题,每小题4分,共40分)题号1 2 3 4 5 6 7 8 9 10 答案A B C D A C D B C B 二、填空题(本题有6小题,每小题5分,共30分) 11.x12.(2)(2)x x +-13.0.4514.4.9米1522a b +16.x y +≥2()4x y xy +≥,或222x y xy +≥2x y+等 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.解:(1)322tan 45162814-+--=+--5= (2)1222x x x+=--, 去分母,得:12(2)x x -=-整理,得:124x x -=-, 解这个方程得:3x =,经检验,3x =是原方程的解,所以原方程的解为3x =. 18.(1)画图正确(如图). (2)AOB △所扫过的面积是:D QC BPRA(第24题)BADC(备用图1)BADC(备用图2)AOB DOB S S S =+△扇形290π444π4360=⨯+=+. 19.解:(1)把3x =-,1y =代入my x=,得:3m =-.∴反比例函数的解析式为3y x =-.把2x =,y n =代入3y x =-得32n =-.把3x =-,1y =;2x =,32y =-分别代入y kx b =+得31322k b k b -+=⎧⎪⎨+=-⎪⎩, 解得1212k b ⎧=-⎪⎪⎨⎪=-⎪⎩,∴一次函数的解析式为1122y x =--.(2)过点A 作AE x ⊥轴于点E .A 点的纵坐标为1,1AE ∴=. 由一次函数的解析式为1122y x =--得C 点的坐标为102⎛⎫- ⎪⎝⎭,, 12OC ∴=. 在Rt OCD △和Rt EAD △中,Rt COD AED ∠=∠=∠,CDO ADE ∠=∠, ∴Rt Rt OCD EAD △∽△. 2AD AE CD CO ∴==. 20.解:(1)①0kx b +=;②11y kx by k x b =+⎧⎨=+⎩;③0kx b +>;④0kx b +<.(2)1x ≤.21.解:设DF x =米.45CDF ∠=,90CFD ∠=, CF DF x ∴==米,(6)BF BC CF x ∴=-=-米, (6)EN DM BF x ∴===-米,AN MBFCED (第21题)9AB =米,2DE =米,DF x =米,(7)AN AB MN BM x ∴=--=-米,在AEN △中,90ANE ∠=,30EAN ∠=,tan 30EN AN ∴=,即6)x x -=-.解这个方程得: 4.6x =≈.答:支柱DM 距BC 的水平距离约为4.6米. 22.解:(1)504020a =⨯=%,5021020315b =----=. (2)0.753 1.2515 1.7520 2.2510 2.7521.6850x ⨯+⨯+⨯+⨯+⨯==(小时);答:该班学生这一周帮助父母做家务时间的平均数约为1.68小时. (3)符合实际.设中位数为m ,根据题意,m 的取值范围是1.52m <≤,因为小明帮父母做家务的时间大于中位数.所以他帮父母做家务的时间比班级中一半以上的同学多. 23.(1)①=;=;②所填的条件是:180BCA α∠+∠=.证明:在BCE △中,180180CBE BCE BEC α∠+∠=-∠=-∠.180BCA α∠=-∠,CBE BCE BCA ∴∠+∠=∠.又ACF BCE BCA ∠+∠=∠,CBE ACF ∴∠=∠. 又BC CA =,BEC CFA ∠=∠,()BCE CAF AAS ∴△≌△. BE CF ∴=,CE AF =.又EF CF CE =-,EF BE AF ∴=-.(2)EF BE AF =+.A B C E F DD AB CE F ADFCEB (图1)(图2) (图3) (第23题)24.解:(1)如图,四边形ABCD 是矩形,AB CD AD BC ∴==,.又9AB =,AD =90C ∠=,9CD ∴=,BC =tan 3BC CDB CD ∴∠==30CDB ∴∠=. PQ BD ∥,30CQP CDB ∴∠=∠=.(2)如图1,由轴对称的性质可知,RPQ CPQ △≌△,RPQ CPQ ∴∠=∠,RP CP =.由(1)知30CQP ∠=,60RPQ CPQ ∴∠=∠=,60RPB ∴∠=,2RP BP ∴=. CP x =,PR x ∴=,33PB x =.在RPB △中,根据题意得:2(33)x x =, 解这个方程得:23x =(3)①当点R 在矩形ABCD 的内部或AB 边上时,023x <≤21133222CPQ S CP CQ x x x =⨯⨯==△, RPQ CPQ △≌△,∴当0x <≤22yx =当R 在矩形ABCD 的外部时(如图2),3x <在Rt PFB △中,60RPB ∠=,2)PF BPx ∴==,又RP CP x ==,3RF RP PF x ∴=-=-在Rt ERF △中,30EFR PFB ∠=∠=,6ER ∴=-.21182ERF S ER FR x x ∴=⨯=-+△ DQC BPR A(第24题)DQC BPA(图1)DQC BPR A(图2)FERPQ ERF y S S =-△△,∴当x <<时,218y x =+-.综上所述,y 与x之间的函数解析式是:22(018x x y x x <=⎨⎪+-<<⎩≤.②矩形面积9=⨯=,当0x <≤22y x =随自变量的增大而增大,所以y的最大值是727的值727=⨯=而>,所以,当0x <<y 的值不可能是矩形面积的727;当x <231818373x x -+-=332x =33233>所以332x = 所以332x =综上所述,当332x =时,PQR △与矩形ABCD 重叠部分的面积等于矩形面积的727.。
2007年浙江省慈溪中学初中保送生招生考试数学试卷及参考答案(1)
《动态数学思维》教案答案:类似性问题:1. C2. A3. 1<x<24. 解:(1)由图象可知乙机在甲机出发后1时才从玉树机场出发,甲机的速度为=160千米/时,乙机的速度为=200千米/时.(2)设甲机的函数关系式为s=k1t+b1.因为图象过点A(0,8)和点B(5,0),甲=t+8;所以解得故甲机的函数关系式为s甲设乙机的函数关系式为s=k2t+b2.因为图象过点C(1,0)和点D(5,8),乙=2t-2.所以解得故乙机的函数关系式为s乙(3)由解得所以两机相遇时,乙机飞行了-1=时,乙机离西宁机场为8-=(百千米)= (千米).5.解:(1)一次函数y=-x+2中,令x=0,得y=2;令y=0,得x=3.则A的坐标是(3,0),B的坐标是(0,2),∴OA=3,OB=2.作CD⊥x轴于点D,如图.∵∠BAC=90°,∴∠OAB+∠CAD=90°,又∵∠CAD+∠ACD=90°,∴∠BAO=∠ACD,又∵AB=AC,∠BOA=∠CDA=90°,∴△ABO≌△CAD,∴AD=BO=2,CD=OA=3,∴OD=OA+AD=5.∴C的坐标是(5,3).设直线BC的解析式是y=kx+b,根据题意得解得则直线BC的解析式是y=x+2.练习册答案:1. A2. D3. B4. -115. -2<x<-16. 或7. 解:(1)由题意易得点A、B坐标分别为A(0,4)、B(3,0),∴OA=4,OB=3,∴在△ABC与△BAO中,AC=BO=3,BC=AO=4,AB=BA,∴△ABC≌△BAO(SSS);(2)由(1)知△ABC≌△BAO,△BAO的面积为3×4÷2=6,∴△ABC的面积为6;(3)如答图,在第一象限,存在C1、C2两点,它们分别与点C、O关于直线AB呈轴对称.8.解:(1)120;2(2)由点(3,90)求得y2=30x.当x>0.5时,由点(0.5,0),(2,90)求得y1=60x-30.当y1=y2时,60x-30=30x,解得x=1,此时y1=y2=30,所以点P的坐标为(1,30).该点坐标的意义为:两船出发1 h后,甲船追上乙船,此时两船离B港的距离为30 km. (3)①当x≤0.5时,由点(0,30),(0.5,0)求得y1=-60x+30.依题意,得(-60x+30)+30x≤10,解得x≥,不合题意;②当x>0.5时,依题意,得-10≤30x-(60x-30)≤10,解得≤x≤.综上所述,当≤x≤时,甲、乙两船可以相互望见.。
【2013版中考12年】浙江省宁波市2002-2013年中考数学试题分类解析 专题10 四边形
宁波市2002-2013年中考数学试题分类解析专题10 四边形一、选择题1. (2002年浙江宁波3分)已知菱形的边长为6,一个内角为60°,则菱形较短的对角线长是【】(A)(B)(C)3 (D)62. (2003年浙江宁波3分)如图,八边形ABCDEFGH中,∠A=∠B=∠C=∠D=∠E=∠F=∠G=∠H=135°,AB=CD=EF=GH=1cm,BC=DE=FG=HA=2cm,则这个八边形的面积等于【】3. (2005年浙江宁波3分)若四边形的两条对角线相等,则顺次连结该四边形各边中点所得的四边形是【】A.梯形B.矩形C.菱形D.正方形4. (2006年浙江宁波大纲卷3分)如图所示,在平行四边形ABCD中,O为对角线AC、BD的交点,与△AOD 全等的是【】A.△AOM和△AON都是等边三角形B.四边形MBON和四边形MODN都是菱形C.四边形AMON与四边形AB CD是位似图形D.四边形MBCO和四边形NDCO都是等腰梯形6.(2013年浙江宁波3分)如图,梯形ABCD中,AD∥BC,AB=52,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为【】二、填空题1. (2003年浙江宁波3分)如图,BD是 ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是▲ (填上你认为正确的一个即可,不必考虑所有可能情形).2. (2009年浙江宁波3分)如图,梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,作DE∥AB交BC于点E,若AD=3,BC=10,则CD的长是▲ .【答案】7。
【考点】平行四边形的判定和性质,三角形内角和定理,等腰三角形的判定和性质。
【分析】∵DE∥AB,∴∠DEC=∠B。
∵∠B=70°,∴∠DEC=∠B=70°。
∵∠C=40°,∴∠CDE =180°-70°-40°=70°。
中考数学三角形复习试题以及答案
三角形的概念及其性质1.三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类(1)按边分类:(2)按角分类:3.三角形的内角和外角(1)三角形的内角和等于180°.(2)三角形的任一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角.4.三角形三边之间的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.5.三角形内角与对边对应关系在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边.6.三角形具有稳定性.知识点二、三角形的“四心”和中位线三角形中的四条特殊的线段是:高线、角平分线、中线、中位线.1.内心:三角形角平分线的交点,是三角形内切圆的圆心,它到各边的距离相等.2.外心:三角形三边垂直平分线的交点,是三角形外接圆的圆心,它到三个顶点的距离相等.3.重心:三角形三条中线的交点,它到每个顶点的距离等于它到对边中点距离的2倍.4.垂心:三角形三条高线的交点.5.三角形的中位线:连结三角形两边中点的线段是三角形的中位线.中位线定理:三角形的中位线平行于第三边且等于第三边的一半.要点诠释:(1)三角形的内心、重心都在三角形的内部.(2)钝角三角形的垂心、外心都在三角形的外部.(3)直角三角形的垂心为直角顶点,外心为直角三角形斜边的中点.(4)锐角三角形的垂心、外心都在三角形的内部.知识点三、全等三角形1.定义:能完全重合的两个三角形叫做全等三角形.2.性质:(1)对应边相等(2)对应角相等(3)对应角的平分线、对应边的中线和高相等(4)周长、面积相等3.判定:(1)边角边(SAS)(2)角边角(ASA)(3)角角边(AAS)(4)边边边(SSS)(5)斜边直角边(HL)(适用于直角三角形)要点诠释:判定三角形全等至少必须有一组对应边相等.知识点四、等腰三角形1.定义:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质.(2)两底角相等(等边对等角)(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)(4)等边三角形的各角都相等,且都等于60°.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.知识点五、直角三角形1.定义:有一个角是直角的三角形叫做直角三角形.2.性质:(1)直角三角形中两锐角互余;(2)直角三角形中,30°锐角所对的直角边等于斜边的一半.(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(6)直角三角形中,斜边上的中线等于斜边的一半;(7)SRt△ABC= ch= ab,其中a、b为两直角边,c为斜边,h为斜边上的高.3.判定:(1)两内角互余的三角形是直角三角形;(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,则这个三角形是直角三角形.(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.知识点六、线段垂直平分线和角平分线1.线段垂直平分线:经过线段的中点并且垂直这条线段的直线,叫做这条线段的垂直平分线.线段垂直平分线的定理:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.线段垂直平分线可以看作是与线段两个端点距离相等的所有点的集合.2.角平分线的性质:(1)角的平分线上的点到角的两边的距离相等;(2)到角的两边的距离相等的点在角的平分线上;(3)角的平分线可以看做是到角的两边距离相等的所有点的集合.四、规律方法指导1.数形结合思想本单元中所学的三角形性质、角平分线性质、全等三角形的性质、直角三角形中的勾股定理等,都是在结合图形的基础上,求线段或角的度数,证明线段或角相等.在几何学习中,应会利用几何图形解决实际问题.2.分类讨论思想在没给图形的前提下,画三角形或三角形一边上的高、三角形的垂心、外心时要考虑分类:三种情况,锐角三角形、直角三角形、钝角三角形.3. 化归与转化思想在解决利用三角形的基础知识计算、证明问题时,通过做辅助线、利用所学知识进行准确推理等转化手段,归结为另一个相对较容易解决的或者已经有解决模式的问题,已知与未知之间的转化;数与形的转化;一般与特殊的转化.4.注意观察、分析、总结应将三角形的判定及性质作为重点,对于特殊三角形的判定及性质要记住并能灵活运用,注重积累解题思路和运用数学思想和方法解决问题的能力和培养,淡化纯粹的几何证明.学会演绎推理的方法,提高逻辑推理能力和逻辑表达能力,掌握几何证明中的分析,综合,转化等数学思想.经典例题透析考点一、三角形的概念及其性质1.(1)(2010山东济宁)若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形思路点拨:三角形的内角和为180°,三个内角度数的份数和是9,每一份度数是20,则三个内角度数分别为40°、60°、80°,是锐角三角形.答案:B(2)三角形的三边分别为3,1-2a,8,则a的取值范围是( )A.-6-2思路点拨:涉及到三角形三边关系时,尽可能简化运算,注意运算的准确性.解析:根据三角形三边关系得:8-3<1-2a<8+3,解得-5举一反三:【变式1】已知a,b,c为△ABC的三条边,化简得_________.思路点拨:本题利用三角形三边关系,使问题代数化,从而化简得出结论.解析:∵a,b,c为△ABC的三条边∴a-b-c<0, b-a-c<0∴ =(b+c-a)+(a+c-b)=2c.【变式2】有五根细木棒,长度分别为1cm,3cm,5cm,7cm,9cm,现任取其中的三根木棒,组成一个三角形,问有几种可能( )A.1种B.2种C.3种D.4种解析:只有3、5、7或3、7、9或5、7、9三种.应选C.【变式3】等腰三角形中两条边长分别为3、4,则三角形的周长是_________.思路点拨:要分类讨论,给出的边长中,可能分别是腰或底.注意满足三角形三边关系.解析:(1)当腰为3时,周长=3+3+4=10;(2)当腰为4时,周长=3+4+4=11.所以答案为10或11.2.(1)(2010宁波市)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有 ( )A.5个B.4个C.3个D.2个考点:等腰三角形答案:A(2)如图在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD的度数是______.考点:直角三角形两锐角互余.解析:△ABC 中,∠C=∠ABC-∠A =90°-50°=40°又∵BD∥AC,∴∠CBD=∠C=40°.3.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A,则此三角形中( )A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形考点:三角形内角和180°.思路点拨:会灵活运和三角形内角和等于180°这一定理,即∠B+∠C=180°-∠A.解析:∵△ABC中,∠A+∠B+∠C=180°,∴∠B+∠C=180°-∠A∵∠B+∠C=3∠A,∴180°-∠A=3∠A,∴ ∠A=45°,∴选A,其它三个答案不能确定.举一反三:【变式1】下图能说明∠1>∠2的是( )考点:三角形外角性质.思路点拨:本类题目考查学生了解三角形外角大于任何一个不相邻的内角.解析:A中∠1和∠2是对顶角,∠1=∠2;B中∠1和∠2是同位角,若两直线平行则相等,不平行则不一定相等;C中∠1是三角形的一个外角,∠2是和它不相邻的内角,所以∠1>∠2.D中∠1和∠2的大小相等.故选C.总结升华:三角形内角和180°以及边角之间的关系,在习题中往往是一个隐藏的已知条件,在做题时要注意审题,并随时作为检验自己解题是否正确的标准.【变式2】如果三角形的一个内角等于其他两个内角的和,这个三角形是( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定思路点拨:理解直角三角形定义,结合三角形内角和得出结论.解析:若△ABC的三个内角∠A、∠B、∠C中,∠A+∠B=∠C又∠A+∠B+∠C=180°,所以2∠C=180°,可得∠C=90°,所以选C.【变式3】下列命题:(1)等边三角形也是等腰三角形;(2)三角形的外角等于两个内角的和;(3)三角形中最大的内角不能小于60°;(4)锐角三角形中,任意两内角之和必大于90°,其中错误的个数是( )A.0 个B.1个C.2个D.3个思路点拨:本题的解题关键是要理解定义,掌握每种三角形中角的度数的确定.解析:(2)中应强调三角形的外角等于不相邻的两个内角的和;三角形中最大的内角若小于60°,则三个角的和就小于180°,不符合三角形内角和定理,故(3)正确;(4)三角形中,任意两内角之和若不大于90°,则另一个内角就大于或等于90°,就不能是锐角三角形.所以中有(2)错,故选B.考点二、三角形的“四心”和中位线4.(1)与三角形三个顶点距离相等的点是这个三角形的( )A.二条中线的交点B. 二条高线的交点C.三条角平分线的交点D.三边中垂线的交点考点:线段垂直平分线的定理.思路点拨:三角形三边垂直平分线的交点是外心,是三角形外接圆的圆心,到三角形三个顶点距离相等.答案D若改成二边中垂线的交点也正确.(2)(2010四川眉山)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.考点:三角形中位线找规律思路点拨:图①有1个正三角形;图②有(1+4)个正三角形;图③有(1+4+4)个正三角形;图④有(1+4+4+4)个正三角形;图⑤有(1+4+4+4+4)个正三角形;….答案:175.一个三角形的内心在它的一条高线上,则这个三角形一定是( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形考点:三角形角平分线定理.思路点拨:本题考查三角形的内心是三角形角平分线的交点,若内心在一条高线上,又符合三线合一的性质.所以该三角形是等腰三角形.故选B.举一反三:【变式1】如图,已知△ABC中,∠A=58°,如果(1)O为外心;(2)O为内心;(3)O为垂心;分别求∠BOC的度数.考点:三角形外心、内心、垂心性质.解析:∠A是锐角时,(1)O为外心时,∠BOC=2∠A =116°;(2)O为内心时,∠BOC=90°+ ∠A=119°;(3)O为垂心,∠BOC=180°-∠A=122°.【变式2】如果一个三角形的内心,外心都在三角形内,则这个三角形是( )A.锐角三角形B.只有两边相等的锐角三角形C.直角三角形D.锐角三角形或直角三角形解析:三角形的内心都在三角形内部;锐角三角形外心在三角形内部;直角三角形的外心在三角形斜边的中点上、钝角三角形的外心三角形外部.故选A.【变式3】能把一个三角形分成两个面积相等的三角形的线段,是三角形的( )A.中线B.高线C.边的中垂线D.角平分线思路点拨:三角形面积相等,可利用底、高相等或相同得到.解析:三角形的一条中线分得的两个三角形底相等,高相同.应选A.6.(1)(2010广东茂名)如图,吴伯伯家有一块等边三角形的空地ABC,已知点E、F分别是边AB、AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需用篱笆的长是( )A、15米B、20米C、25米D、30米考点:三角形中位线定理.思路点拨:BE=AE=5 ,CF=FA=5,BC=2EF=10答案:C。
2007年浙江省中考数学试题及答案
2007年浙江省初中毕业生学业考试数学试卷考生须知:1.全卷共4页,有3大题,满分为150分。
考试时间为120分钟。
2.全卷答案必须做在答题纸相应的位置上,做在试题卷上无效。
3.请考生将姓名、准考证号填写在答题纸的对应位置上,并认真核对答题纸上粘帖的条形码的“姓名、准考证号”是否一致。
参考公式:二次函数y =ax 2+bx +c 的顶点坐标是)44,2(2ab ac a b -- 试卷Ⅰ说明:本卷共有1大题,10小题,每小题4分,共40分.请用2B 铅笔在“答题卷”上将你认为正确的选项对应的小方框涂黑,涂满。
一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分) 1.计算-1+2的结果是A . 1B .-1C .-2D .22.2007年5月3日,中央电视台报道了一则激动人心的新闻,我国在渤海地区发现储量规模达10.2亿吨的南堡大油田,10.2亿吨用科学计数法表示为(单位:吨)A .71.0210⨯ B .81.0210⨯ C .91.0210⨯ D .101.0210⨯ 3.如图,已知圆心角∠BOC=100°、则圆周角∠BAC 的大小是 A .50° B .100° C .130° D .200°4.下面四个几何体中,主视图、左视图、俯视图是全等图形的几何图形是 A.圆柱 B.正方体 C.三棱柱 D.圆锥5.“义乌·中国小商品城指数” 简称“义乌指数”。
下图是2007年3月19日至2007年4月23日的“义乌指数”走势图,下面关于该指数图的说法正确的是A.4月2日的指数位图中的最高指数B.4月23日的指数位图中的最低指数C.3月19至4月23日指数节节攀升D.4月9日的指数比3月26日的指数高6.某校九年级(1)班50名学生中有20名团员,他们都积极报名参加义乌市“文明劝导活动”。
根据要求,该班从团员中随机抽取1名参加,则该班团员京京被抽到的概率是A.150B.12C.25D.1207.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年浙江省宁波市中考数学试题全卷分试题卷I 、试题卷Ⅱ和答题卡、答题卷.试题卷有3个大题,27个小题.满分为l 20分.考试时间为120分钟.允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线y=ax 2+bx+c 的顶点坐标为24(,)24b ac b a a--. 试 题 卷 I一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求) 1.-12的绝对值等于( ) (A)-2 (B)2 (C) -12 (D) 122x 的取值范围是( )(A)x>1 (B)x≥l (C)x<1 (D)x≤13.下列计算中,正确的是( ) (A)a 3·a 4=a 12 (B) (a 2)3=a 5 (C)a 6÷a 2=a 3 (D) (-ab)3=-a 3b 34.据宁波市财政局统计,我市2006年财政收入已突破500亿元大关,用科学记数法可表示为( ) (A)5×l010元 (B)50×109元 (C)0.5×1011元 (D)5×1011元5.已知两圆的半径分别为3和5,圆心距为4,则这两圆的位置关系是( ) (A)内切 (B)外切 (C)相交 (D)相离6.把不等式组1020x x +≥⎧⎨->⎩的解集表示在数轴上,正确的是( )7.下列事件是随机事件的是( )(A)购买一张彩票,中奖 (B)在一个标准大气压下,加热到100℃,水沸腾(C)奥运会上,百米赛跑的成绩为5秒 (D)掷一枚普通骰子,朝上一面的点数是8 8.如图,已知□ABCD 的两条对角线AC 与BD 交于平面直角坐标 系的原点,点A的坐标为(-2,3),则点C 的坐标为( )(A)(-3,2) (B)(-2,-3) (C)(3,-2) (D)(2,-3)9.甲、乙、丙、丁四位选手各10次射击成绩的平均数都是8环,众数和方差如表,则这四人中水平发挥最稳定的是( )(A)甲 (B)乙 (C)丙 (D)丁10.如图,是一次函数y=kx+b 与反比例函数y=2x的图像,则关于x 的方程kx+b=2x的解为( ) (A)x l =1,x 2=2 (B)x l =-2,x 2=-1 (C)x l =1,x 2=-2 (D)x l =2,x 2=-111.与如图所示的三视图对应的几何体是( )12.如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( )(A)24m (B)22m (C)20 m (D)18 m二、填空题(每小题3分,共21分) 13.计算4133m m m -+++= ▲ . 14.方程x 2+2x=0的解为 ▲ 15.如图,AB 切⊙0于点B ,AB=4 cm ,AO=6 cm ,则⊙O 的半径为 ▲cm .16.一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 ▲ . 17.如图,在△ABC 中,AB=AC ,CD 平分∠ACB 交AB 于D 点,AE ∥DC交BC 的延长线于点E ,已知∠E=36°,则∠B= ▲ 度.18.如图,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 ▲ .19.面积为l 个平方单位的正三角形,称为单位正三角形.下面图中的每一个小三角形都是单位正三角形,三角形的顶点称为格点.在图1、2、3中分别画出一个平行四边形、梯形和对边都不平行的凸四边形,要求这三个图形的顶点在格点、面积都为l2个平方单位.三、解答题(第20题5分,21~23题各6分,24题10分,25题8分,26题10分,27题12分,共63分)20.化简a(a -2b)-(a -b)2.21.解方程21124x x x -=--.22.如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4.(1)求AD的长.(2)求矩形DMNC与矩形ABCD的相似比.23.如图,AB是⊙O的直径,弦BC=5,∠BOC=50°,OE⊥AC,垂足为E.(1)求OE的长.(2)求劣弧AC的长(结果精确到0.1).24.今年4月底,国家测绘局和建设部首次为我国19座名山定“身高”(单位:m).下图为其中10座名山的“身高”统计图.请你根据图中提供的信息回答下列问题:(1)这l0座名山“身高”的极差和中位数分别是多少?(2)这l0座名山“身高”在1000m到2000m之间的频率是多少?(3)这l0座名山中,泰山、华山、衡山、恒山、嵩山并称“五岳”,求“五岳”的平均“身高”.25.用长为l2 m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.设CD=DE=xm,五边形ABCDE的面积为S m2.问当x取什么值时,S最大?并求出S的最大值.26.2007年5月19日起,中国人民银行上调存款利率.储户的实得利息收益是扣除利息税后的所得利息,利息税率为20%.(1)小明于2007年5月19日把3500元的压岁钱按一年期定期存入银行,到期时他实得利息收益是多少元?(2)小明在这次利率调整前有一笔一年期定期存款,到期时按调整前的年利率2.79%计息,本金与实得利息收益的和为2555.8元,问他这笔存款的本金是多少元?(3)小明爸爸有一张在2007年5月19日前存人的10000元的一年期定期存款单,为获取更大的利息收益,想把这笔存款转存为利率调整后的一年期定期存款.问他是否应该转存?请说明理由.约定:①存款天数按整数天计算,一年按360天计算利息.②比较利息大小是指从首次存入日开始的一年时间内.获得的利息比较.如果不转存,利息按调整前的一年期定期利率计算;如果转存,转存前已存天数的利息按活期利率计算,转存后,余下天数的利息按调整后的一年期定期利率计算(转存前后本金不变).27.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图l,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形AB CD的准等距点.(4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明).2007年浙江省宁波市中考数学试题参考答案及评分标准一、选择题(每小题3分,共36分)二、填空题(每小题3分,共21分)每画出一个(与顺序无关)正确的给l 分,答案不唯一,下图供参考:三、解答题(共63分)注:l .阅卷时应按步计分,每步只设整分;2.如有其它解法,只要正确,都可参照评分标准,各步相应给分 20.解:原式=a 2-2ab-(a 2-2ab+b 2) ……………………2分 =a 2-2ab-a 2+2ab-b 2 ……………………3分 =-b 2.……………………5分21.解:方程两边同乘(x-2)(x+2),得 x(x+2)-(x 2-4)=1,……………………2分 化简,得2x=-3……………………4分 x=-3/2,……………………5分经检验,x=-3/2是原方程的根.……………………6分 22.解:(1)由已知,得MN=AB ,MD=12 AD=12BC . ∵矩形DMNC 与矩形ABCD 相似,BCDM MNAB ……………………2分∴12AD 2=AB 2,∴由AB=4得,4分(2)矩形DMNC 与矩形ABCD 的相似比为DM AB =6分 23·解:(1) ∵OE ⊥A C ,垂足为E , ..AE=EC ,……………………1 ∵A O=B0,∴OE=12BC=5/2……………………3分 (2)∠A=12∠BDC=25°,……………………4分在Rt △AOE 中,sinA=OE/OA ,……………………5分 ∵∠AOC=180°-50°=130° ∴弧AC 的长=130 2.5180sin 25⨯︒π≈13.4.……………………6分24.解:(1)这l 0座名山“身高"的极差为3079.3-286.3=2793(m). ………………2分 中位数为1572.4(m).……………………4分(2)这10座名山“身高”在1000m 到 2000m 之间的频数为6,…………… 5分 所以频率是0.6. …………7分 (3)15(1532.7+2154.9+1300.2+2016.1+1491.7) ……………………9分 =1699.12(m), ……………………10分∴“五岳"的平均“身高"为1699.12m 25.解:连结EC ,作DF ⊥EC ,垂足为F ∵∠DCB=∠CDE=∠DEA ,∠EAB=∠CBA=90°, ∴∠DCB=∠CDE=∠DEA=120°,……………………1分 ∵DE=CD ∴∠DEC=∠DCE=30°, ∴.∠CEA=∠ECB=90°,∴四边形EABC 为矩形,……………………2分 ∴DE=x m ,∴AE=6-x ,DF=12x ,……………………3分s=24x -+ (0<x<6).……………………5分(自变量不写不扣分)当x=4m 时,S 最大m 2.……………………8分26.解:(1)3500×3.06%×80%=85.68(元),∴到期时他实得利息收益是85.68元.………………………………2分 (2)设他这笔存款的本金是x 元, 则x(1+2.79%×80%)=2555.8,……………………………………4分 解得x=2500,∴这笔存款的本金是2500元.……………………………………6分 (3)设小明爸爸的这笔存款转存前已存了x 天,由题意得l0000×360x ×0.72%+10000×360360x -×3.06%>10000×2.79%,………………8分 解得x<41713,……………………9分当他这笔存款转存前已存天数不超过41天时;他应该转存;否则不需转存.……………………10分27.解:(1)如图2,点P 即为所画点.……………………1分(答案不唯一.画图正确,无文字说明不扣分;点P 画在AC 中点不给分)(2)如图3,点P 即为所作点.……………………3分(答案不唯一.作图正确,无文字说明不扣分;无痕迹或痕迹不清晰的酌情扣分)(3)连结DB ,在△DCF 与△BCE 中, ∠DCF=∠BCE , ∠CDF=∠CBE , ∠ CF=CE. ∴△DCF ≌△BCE(AAS),……………………5分 ∴CD=CB , ∴∠CDB=∠CBD.………………………………6分 ∴∠PDB=∠PBD ,……………………………7分∴PD=PB,∵PA≠PC∴点P是四边形ABCD的准等距点.…………………………………………8分(4)①当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个;…………………………………………9分②当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个;…………………………………………10分③当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;……………………………………11分④四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个.1分(.答案不唯一.画图正确,无文字说明不扣分;点P画在A C中点不给分) ……………………………………………………………………12分(第(4)小题只说出准等距点的个数,不能给满分)第- 11 –页。