华东师大版七年级数学下册期中试题
最新华东师大版七年级数学下册期中考试试题
华东师大版七年级数学下册期中试题一、选择题(每小题3分,共30分)1.下列由等式的性质进行的变形,错误的是()A.如果a=b,那么a+2=b+2 B.如果a=b,那么a﹣2=b﹣2C.如果a=2,那么a2=2a D.如果a2=2a,那么a=22.若方程3x+6=12的解也是方程6x+3a=24的解,则a的值为()A.B.4 C.12 D.23.关于x的方程3x﹣2m=1的解为正数,则m的取值范围是()A.m<﹣B.m>﹣C.m>D.m<4.已知a,b满足方程组,则a+b的值为()A.﹣4 B.4 C.﹣2 D.25.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣36.不等式4﹣x≤2(3﹣x)的正整数解有()A.1个B.2个C.3个D.无数个7.不等式组的解集在数轴上表示为()A.B.C.D.8.如果不等式组有解,那么m的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤8 9.若﹣2a m b4与5a n+2b2m+n是同类项,则mn的值是()A.2 B.0 C.﹣1 D.110.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.196二、填空题(每小题3分,共15分)11.将方程4x+3y=6变形成用y的代数式表示x,则x=.12.关于x的方程(k﹣4)x|k|﹣3+1=0是一元一次方程,则k的值是.13.若x≥﹣5的最小值为a,x≤5的最大值是b,则a+b=.14.关于x,y的二元一次方程组的解满足x+y>2,则a的范围为.15.某人在解方程=﹣1去分母时,方程右边的﹣1忘记乘以6,算得方程的解为x=2,则a的值为.三、解答题(55分)16.(5分)解方程:3(2x﹣1)﹣2(1﹣x)=0.17.(5分)解不等式﹣1<,小兵的解答过程是这样的.解:去分母,得x+5﹣1<3x+2①.移项,得x﹣3x<2﹣5+1②.合并同类项,得﹣2x<﹣2③.系数化为1,得x<1④.(1)请问:小兵同学的解答是否正确?如果错误,请指出错误步骤的标号,简述原因?(2)给出正确的解答过程.18.(6分)用加减消元法解方程组:.19.(6分)已知关于x的方程a﹣5x=﹣6与方程3x﹣6=4x﹣5有相同的解,求a的值.20.(7分)如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20.求图2中第Ⅱ部分的面积.21.(8分)小明在解方程=﹣1,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m的值和原方程正确的解.22.(8分)阅读以下例题:解方程:|3x|=1,解:①当3x≥0时,原方程可化为一元一次方程3x=1,解这个方程得x =;②当3x<0时,原方程可化为一元一次方程﹣3x=1,解这个方程得x=﹣.所以原方程的解是x=或x=﹣.(1)仿照例题解方程:|2x+1|=3.(2)探究:当b为何值时,方程|x﹣2|=b+1满足:①无解;②只有一个解;③有两个解.23.(10分)某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)华东师大版七年级数学下册期中试题一、选择题(每小题3分,共30分)1.方程3x﹣1=5的解是()A.x=B.x=C.x=18 D.x=2 2.下列方程变形中属于移项的是()A.由2x=﹣1得x=﹣B.由=2得x=4C.由5x+b=0得5x=﹣b D.由4﹣3x=0得﹣3x+4=0 3.由,可以得到用x表示y的式子是()A.y=B.y=C.y=﹣2 D.y=2﹣4.解方程2x=3x时,两边都除以x,得2=3,其错误原因是()A.方程本身是错的B.方程无解C.两边都除以了0 D.2x小于3x5.下列说法正确的是()A.方程4+x=8和不等式4+x>8的解是一样的B.x=2不是不等式4x>5的解C.x=2是不等式4x>15的一个解D.不等式x﹣2<6的两边都减去3,则此不等式仍成立6.把方程的分母化成整数后,可得方程()A.﹣1=B.﹣1=C.﹣10=D.﹣1=7.不等式≤﹣1的解集表示在数轴上是()A.B.C.D.8.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x﹣1)=139.如图,射线OC的端点O在直线AB上,∠AOC的度数比∠BOC的2倍多10度.设∠AOC和∠BOC的度数分别为x,y,则下列正确的方程组为()A.B.C.D.10.小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,则这个数阵的形式可能是()A.B.C.D.二、填空题(每小题3分,共15分)11.若2x﹣3与1互为相反数,则x=.12.在公式S=n(a+b)中,已知S=5,n=2,a=3,那么b的值是.13.一个两位数,两个数位上的数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是.14.对有理数a,b规定运算“*”的意义为a*b=a+2b,比如:5*7=5+2×7,则方程3x*=2﹣x的解为.15.如图,足球的表面是有一些黑颜色五边形和白颜色六边形的皮块缝合而成的,共计有32块,请观察图形,根据黑块五边形和白块六边形的边数之间的关系计算黑颜色五边形和白颜色六边形的皮块数分别是.三、解答题(本大题共8小题,共75分)16.(10分)解下列方程:(1)3x ﹣2(x﹣1)=4 (2).17.(10分)按要求解下列方程组:(1)用代入法解方程组:;(2)用加减法解方程组:.18.(7分)解下列不等式,并把解集在数轴上表示出来:<﹣1.19.(8分)把一些图书分给某班学生阅读,如果每人分3本则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?20.(10分)已知关于x,y的方程组与有相同的解,求a,b 的值.21.(10分)求不等式组的整数解.22.(10分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B 型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?23.(10分)我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.请根据上边规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程6x=m+2是差解方程,求m的值.。
华东师大版2023-2024学年七年级下学期期中数学试题
华东师大版2023-2024学年七年级下学期期中数学试题一、单选题1.下列方程中,属于一元一次方程的是( )A .2x-1=0.B .1-x=y.C .34x =.D .1-x 2=0 2.下列各式中,运算正确的是( )A .325a a a +=B .()()235a a a -⋅-= C .()325a a = D .325a a a ⋅= 3.23a a 等于( )A .23aB .5aC .6aD .8a4.已知方程31ax y x +=-是关于x ,y 的二元一次方程,则a 满足的条件是( ) A .0a ≠ B .1a ≠- C .3a ≠ D .3a ≠- 5.如图,点A 在反比例函数4(0)y x x=>的图象上,过点A 作AB x ⊥轴,垂x 足为点B ,点C 在y 轴上,则ABC V 的面积为( )A .3B .2C .1.5D .16.如图,在平行四边形ABCD 中,AB =6cm ,AD =8cm ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( ).A .12cmB .14cmC .16cmD .28cm 7.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的部分关系如图所示.下列四种说法:其中正确的个数是( )①每分钟的进水量为5升.②每分钟的出水量为3.75升.③从计时开始8分钟时,容器内的水量为25升.④容器从进水开始到水全部放完的时间是20分钟.A .1个B .2个C .3个D .4个8.已知方程组5354x y ax y +=⎧⎨+=⎩与5125x by x y +=⎧⎨-=⎩有相同的解,则a ,b 的值为( ) A .12a b =⎧⎨=⎩ B .46a b =-⎧⎨=-⎩ C .62a b =-⎧⎨=⎩ D .142a b =⎧⎨=⎩9.我国明代数学读本《算法统宗》中有一道题,其题意为客人一起分银子,若每人分7两,则还剩4两;若每人分9两,则还差8两.问客人有几人?设客人共有x 人,则可列方程为( )A .7498x x +=-B .7498x x -=+C .4879x x +-=D .4879x x -+= 10.我国古代数学著作《算法统宗》中有这样一道题:以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.绳长,井深各几何?意思是:用绳子测水井的深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成4等份,井外余绳1尺,问绳长、井深各是多少尺?设井深x 尺,绳长y 尺,则所列方程组正确的是( )A .143114y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .143114y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩C .3441y x y x +=⎧⎨+=⎩D .3441y x y x-=⎧⎨+=⎩二、填空题11.将方程41x y -=变形成用含y 的代数式表示x ,则x =.12.已知方程185x y -=,用含y 的代数式表示x ,那么. 13.若210x y -++=,则2x y -的值为.14.如果4m 、m 、6-2m 这三个数在数轴上所对应的点从左到右依次排列,那么 m 的取值范围.三、解答题15.解方程或方程组(1)213x +=(2)5234x x -=+()(3)321123x x -+-=(4)8423x y xy +=⎧⎪⎨+=⎪⎩(5)1225224x y z x y z x y++=⎧⎪++=⎨⎪=⎩16.解方程组:(1)6210x y x y +=⎧⎨+=⎩(2)23846x y x y +=⎧⎨-=-⎩17.解下列不等式(组). (1)2132134x x +-≤+; (2)267924152x x x x +>-⎧⎪⎨+-≤⎪⎩①②.18.m 等于什么数时,式子13m -与35m +的值相等?19.用“※”定义一种新运算:规定22a b ab ab b =+-※,如:2313213312=?创-=1※.(1)若21(4)0m n ++-=,求m n ※的值;(2)若()1312x -=※,求x 的值.20.学校准备购进一批甲、乙两种办公桌若干张.若学校购进20张甲种办公桌和15张乙种办公桌共花费17000元,购买10张甲种办公桌比购买5张乙种办公桌多花费1000元.(1)求甲、乙两种办公桌每张各多少元;(2)若学校购买甲、乙两种办公桌共40张,甲种办公桌数量不多于乙种办公桌数量的3倍,且总费用不超过18400元,那么有几种购买方案?21.已知m 是一个非零常数,且关于x ,y 的方程组2524x m y x y m-=⎧⎨+=⎩有解,求x y 的值. 22.随着某中学的规模逐渐扩大,学生人数越来越多,学校打算购买校车20辆,现有A 和B 两种型号校车,如果购买A 型号校车6辆,B 型号14辆,需要资金580万元;如果购买A 型号校车12辆,B 型号校车8辆,需要资金760万元.已知每种型号校车的座位数如表所示:经预算,学校准备购买设备的资金不高于500万元.(每种型号至少购买1辆)(1)每辆A 型校车和B 型校车各多少万元?(2)请问学校有几种购买方案?且哪种方案的座位数最多,是多少?23.某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买1个篮球和5个足球共需费用570元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球和足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?。
华师大版七年级下学期数学《期中测试题》含答案解析
华东师大版七年级下学期期中测试卷一、选择题(每小题3分,共18分)1.下列运动属于平移的是()A. 小朋友荡秋千B. 自行车在行进中车轮的运动C. 地球绕着太阳转D. 小华乘手扶电梯从一楼到二楼2.二元一次方程组524x yx y+=⎧⎨-=⎩的解为( )A.14xy=⎧⎨=⎩B.23xy=⎧⎨=⎩C.32xy=⎧⎨=⎩D.41xy=⎧⎨=⎩3.如图,直线a、b被直线c所截,a∥b,∠2=48°,则∠1的度数为()A. 48°B. 58°C. 132°D. 122°4.下列各式从左到右的变形,是因式分解的是()A.296(3)(3)6x x x x-+=+-+xB. 2(5)(2)310x x x x+-=+-C. 22816(4)x x x-+=-D. 221(2)1x x x x++=++5.已知三角形的两边分别为3和6,则此三角形的第三条边的长可能是()A. 3 B. 5 C. 9 D. 10 6.甲、乙两种商品,若购买甲1件、乙2件共需130元,购甲2件、乙1件共需200元,则购甲、乙两种商品各一件共需()A. 130元B. 100元C. 120元D. 110元二、填空题(每空3分,共30分)7.计算:23-=____________.8.计算:3(43)x x - =____.9.将0.0000007用科学记数法表示为____.10.一个凸多边形的内角和为720°,则这个多边形的边数是__________________11.若 21x y =⎧⎨=⎩ 是关于x ,y 的二元一次方程 310x my +=的解,则m =____. 12.若多项式29x mx ++是一个完全平方式,则m =______.13.计算:451()33-⨯ =____.14.若代数式224x x --的值为0,则代数式2241x x -+的值为______.15.如图,在△ABC 中,∠B =80°,∠C =40°,AD ⊥BC 于点D ,AE 平分∠BAC ,则∠DAE =____°16.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.三、解答题(本大题共102分)17.计算或化简:(1)20162011()(2)2π---+- (2) (3)(31)x x +-18.因式分解:(1)249a - (2)3222x x y xy -+19.解方程组:(1) 5211x y x y +=⎧⎨+=⎩ (2)211342x y y x -=⎧⎪⎨+-=⎪⎩20.(1)已知314748232m m m +++⋅÷=,求m 得值.(2)先化简再求值:()()()222222x y x y x y y ---+-,其中2x =,1y =-.21.已知关于x ,y 的二元一次方程组 3421x y k x y +=⎧⎨+=-⎩ 的解互为相反数,求k 的值. 22.如图,CE AF ⊥,垂足为E ,CE 与BF 交于点D ,50F ∠=︒,30C ∠=︒,求EDF ∠和DBA ∠的度数.23.用二元一次方程组解决问题:某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为5元/辆,现在停车场内停有50辆中、小型汽车,这些车共缴纳停车费390元,中、小型汽车各有多少辆?24.如图,在△ABC 中,已知∠BDC=∠EFD ,∠AED =∠ACB .(1)试判断∠DEF 与∠B 的大小关系,并说明理由;(2)若D 、E 、F 分别是AB 、AC 、CD 边上的中点,S △DEF =4,求S △ABC .25.如图,四边形ABCD 内角∠DCB 与外角∠ABE 的平分线相交于点F.(1)若BF ∥CD ,∠ABC=80°,求∠DCB 的度数;(2)已知四边形ABCD 中,∠A=105º,∠D=125º,求∠F 的度数;(3)猜想∠F 、∠A 、∠D 之间的数量关系,并说明理由.26.用若干块如左图所示的正方形或长方形纸片拼成图(1)和图(2)(1)如图(1),若AD=7,AB=8,求a 与b 的值;(2)如图(1),若长方形ABCD 的面积为35,其中阴影部分的面积为20,求长方形ABCD 的周长;图(1)(3)如图(2),若AD的长度为5,AB的长度为n.图(2)①当m=________,n=_________时,a,b的值有无数组;②当m________,n_________时,a,b的值不存在.答案与解析一、选择题(每小题3分,共18分)1.下列运动属于平移的是()A. 小朋友荡秋千B. 自行车在行进中车轮的运动C. 地球绕着太阳转D. 小华乘手扶电梯从一楼到二楼【答案】D【解析】【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A、荡秋千不符合平移的性质,不属于平移,故本选项错误;B、自行车在行进中车轮的运动不符合平移的性质,不属于平移,故本选项错误;C、地球绕着太阳转不符合平移的性质,不属于平移,故本选项错误;D、小华乘手扶电梯从一楼到二楼符合平移的性质,属于平移,故本选项正确.故选D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.2.二元一次方程组524x yx y+=⎧⎨-=⎩的解为( )A.14xy=⎧⎨=⎩B.23xy=⎧⎨=⎩C.32xy=⎧⎨=⎩D.41xy=⎧⎨=⎩【答案】C 【解析】解:524x yx y+=⎧⎨-=⎩①②,两式相加得:3x=9,解得:x=3.把x=3代入①得:y=2.故选C.3.如图,直线a、b被直线c所截,a∥b,∠2=48°,则∠1度数为()A. 48°B. 58°C. 132°D. 122°【答案】C【解析】【分析】 由a ∥b ,∠2=48°,根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义,即可求得∠1的度数.【详解】解:∵a ∥b ,∠2=48°,∴∠3=∠2=48°,∵∠1+∠3=180°,∴∠1=132°.故选C .【点睛】此题考查了平行线的性质与邻补角的定义.此题难度不大,解题的关键是注意掌握两直线平行,同位角相等定理的应用.4.下列各式从左到右的变形,是因式分解的是( )A. 296(3)(3)6x x x x -+=+-+xB. 2(5)(2)310x x x x +-=+-C. 22816(4)x x x -+=-D. 221(2)1x x x x ++=++【答案】C【解析】【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A 、(x +3)(x -3)+6x 不是几个因式积的形式,故不是因式分解,故本选项错误;B 、x 2+3x -10不是几个因式积的形式,故不是因式分解,故本选项错误;C、方程右边是几个因式积的形式,故是因式分解,故本选项正确;D、x(x+2)+1不是几个因式积的形式,故不是因式分解,故本选项错误.故选C.【点睛】本题考查的是分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.5.已知三角形的两边分别为3和6,则此三角形的第三条边的长可能是()A. 3B. 5C. 9D. 10【答案】B【解析】【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【详解】解:根据三角形的三边关系,得第三边大于:6-3=3,小于:3+6=9.则此三角形的第三边可能是:5.故选B.【点睛】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.6.甲、乙两种商品,若购买甲1件、乙2件共需130元,购甲2件、乙1件共需200元,则购甲、乙两种商品各一件共需()A. 130元B. 100元C. 120元D. 110元【答案】D【解析】【分析】设甲商品为x元/件,乙商品为y元/件,根据总价=单价×数量依据题意,即可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】解:设甲商品为x元/件,乙商品为y元/件,根据题意得:2130 2200 x yx y+⎧⎨+⎩==,解得:9020 xy=⎧⎨=⎩,甲、乙两种商品各一件共需20+90=110元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题(每空3分,共30分)7.计算:23-=____________. 【答案】19; 【解析】 试题解析:22113=39-= 故答案为19. 8.计算:3(43)x x - =____.【答案】12x 2-9x【解析】【分析】单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【详解】解:原式=12x 2-9x .故答案为12x 2-9x .【点睛】本题考查了单项式乘多项式.单项式与多项式相乘时,应注意以下几个问题:①单项式与多项式相乘实质上是转化为单项式乘以单项式;②用单项式去乘多项式中的每一项时,不能漏乘;③注意确定积的符号.9.将0.0000007用科学记数法表示为____.【答案】7×10-7 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000007=7×10-7, 故答案为7×10-7. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.一个凸多边形的内角和为720°,则这个多边形的边数是__________________【解析】【分析】设这个多边形的边数是n ,根据多边形的内角和公式:()n 2180-⨯,列方程计算即可.【详解】解:设这个多边形的边数是n根据多边形内角和公式可得()n 2180720,-⨯=解得n 6=.故答案为:6.【点睛】此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键. 11.若 21x y =⎧⎨=⎩ 是关于x ,y 的二元一次方程 310x my +=的解,则m =____. 【答案】4【解析】【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m 的一元一次方程,可以求出m 的值.【详解】解:把x =2,y =1代入二元一次方程 310x my +=得2×3+m =10, 解得m =4,故答案为4.【点睛】解题关键是把方程解代入原方程,使原方程转化为以系数k 为未知数的方程.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值. 12.若多项式29x mx ++是一个完全平方式,则m =______.【答案】-6或6【解析】【分析】首末两项是x 和3这两个数的平方,那么中间一项为加上或减去x 和3积的2倍.【详解】解:∵x 2+mx+9=x 2+mx+32,∴mx=±2×3×x , 解得m=6或-6.故答案为-6或6.【点睛】本题考查完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.13.计算:451()33-⨯ =____.【答案】3【解析】【分析】根据同底数幂的运算法则和积的乘方的运算法则计算可得. 【详解】解:原式=441333⎛⎫-⨯ ⎪⎝⎭⨯ =41333⎛⎫-⨯ ⎪⎭⨯⎝ =1×3=3,故答案为3.【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是掌握同底数幂的乘法和幂的乘方与积的乘方的运算法则.14.若代数式224x x --的值为0,则代数式2241x x -+的值为______.【答案】9.【解析】【分析】根据题意求出x 2-2x 的值,原式变形后代入计算即可求出值.【详解】解:∵x 2-2x-4=0,∴x 2-2x=4.∴2x 2-4x=2(x 2-2x )=8.∴原式=8+1=9.故答案为9.【点睛】本题考查代数式求值,熟练掌握运算法则是解题的关键.15.如图,在△ABC 中,∠B =80°,∠C =40°,AD ⊥BC 于点D ,AE 平分∠BAC ,则∠DAE =____°【答案】20【解析】【分析】根据∠B =60°,∠C =40°可得∠BAC 的度数,AE 平分∠BAC ,得到∠BAE 和∠CAE 的度数,利用外角的性质可得∠AED 的度数,再根据垂直定义,得到直角三角形,在直角△ABD 中,可以求得∠DAE 的度数.【详解】解:∵∠C =40°,∠B =80°,∴∠BAC =180°-40°-80°=60°,∵AE 平分∠BAC ,∴∠BAE =∠CAE =30°,∴∠AED =∠EAC +∠C =70°,∵AD ⊥BC 于D ,∴∠ADC =90°,∴∠DAE =90°-∠AED =90°-70°=20°,故答案为20.【点睛】本题主要考查角平分线的定义和垂直的定义,外角性质,三角形内角和定理,综合利用各定理及性质是解答此题的关键.16.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____. 【答案】14或19【解析】【分析】 由1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a 1+2)2、(a 2+2)2、…、(a n +2)2有x 个9,y 个4,列不定方程解答即可确定正确的答案.【详解】解:设有x 个1,y 个0,则对应(a 1+2)2、(a 2+2)2、…、(a n +2)2中有x 个9,y 个4,∵()()()()2222123222281n a a a a ++++++⋯++=,∴9x +4y =81 ∴499y x =-, ∵x ,y 均为正整数,∴y 是9的倍数,∴59x y =⎧⎨=⎩,118x y =⎧⎨=⎩, ∴这列数的个数n =x +y 为14或19,故答案为14或19.【点睛】本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,得到不定方程然后求整数解即可.三、解答题(本大题共102分)17.计算或化简:(1)20162011()(2)2π---+- (2) (3)(31)x x +-【答案】(1)4- ;(2)2383x x +-.【解析】【分析】(1)先计算1的整数指数幂、负整数指数幂、零指数幂,再计算加减可得;(2)首先去括号,合并同类项,将代数式化为最简式.【详解】解:(1)原式=-1-4+1=-4; (2)原式=2393x x x -+-=2383x x +-【点睛】此题主要考查了整式的乘法、有理数的混合运算,要熟练掌握,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简.18.因式分解:(1)249a - (2)3222x x y xy -+【答案】(1).(2a+3)(2a-3);(2).x(x-y)2.【解析】【分析】 (1)根据平方差公式分解因式,可得答案;(2)有公因式先提公因式,然后套用完全平方公式分解因式,可得答案.【详解】解:(1)原式=(2a+3)(2a-3);(2)原式=x(x2-2xy+y2)=x(x-y)2.【点睛】本题考查了因式分解,一提,二套,三检查,分解要彻底.19.解方程组:(1)5211x yx y+=⎧⎨+=⎩(2)211342x yyx-=⎧⎪⎨+-=⎪⎩【答案】(1)61xy=⎧⎨=-⎩;(2)23xy=⎧⎨=⎩;【解析】【分析】(1)通过观察发现y的系数相同,所以考虑加减消元,首先②-①即可消去未知数y,求出x的值,再把x 的值代入①或②均可得到y的值;(2)首先把方程组化简,得到2x-3y=6与3x-y=2,观察发现y的系数成倍数关系,所以考虑加减消元,把3x-y=2乘以3变为9x-3y=6,再与2x-3y=6相减即可消去未知数y,求出x的值,再把x的值代入3x-y=2可得到y的值.【详解】解:(1)5211x yx y+=⎧⎨+=⎩①②,由②-①得x=6,把x=6代入①得y=-1,故原方程组的解为:61 xy=⎧⎨=-⎩.(2)211342x yyx-=⎧⎪⎨+-=⎪⎩,整理得:21 69x yx y-=⎧⎨-=⎩①②由由②-①得4x=8,解得:x=2,把x=2代入①解得:y=3,故原方程组的解为:23x y =⎧⎨=⎩【点睛】此题主要考查了二元一次方程组的解法,解题的关键是消元,消元的方法有两种:①加减法消元,②代入法消元.当系数成倍数关系式一般用加减法消元,系数为1时,一般用代入法消元. 20.(1)已知314748232m m m +++⋅÷=,求m 得值.(2)先化简再求值:()()()222222x y x y x y y ---+-,其中2x =,1y =-.【答案】(1)3;(2)-4xy+6y 2,14.【解析】【分析】(1)已知等式左边逆用幂的乘方运算法则,以及同底数幂的乘除法则变形,右边利用幂的乘方运算法则变形,根据幂相等且底数相等,得到指数相等求出m 的值即可;(2)原式利用完全平方公式,以及平方差公式化简,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:(1)314748232m m m +++⋅÷=∵32642m m ++= ,13382m m ++= ,∴2633314747224822m m m m m m ++++++⋅÷=÷⋅ 263347222m m m m +++--+==已知等式整理得:252322m +== ,即m+2=5,解得:m=3;(2)()()()222222x y x y x y y ---+-=x 2-4xy+4y 2-x 2+4y 2-2y 2= -4xy+6y 2,当x=2,y=-1时,原式=8+6=14.故答案为(1)3;(2)-4xy+6y 2,14.【点睛】本题考查整式的混合运算-化简求值,熟练掌握运算法则是解题的关键.21.已知关于x ,y 的二元一次方程组 3421x y k x y +=⎧⎨+=-⎩的解互为相反数,求k 的值. 【答案】1k =-【解析】【分析】先把两方程相减即可用k 表示出x +y 的值,再根据相反数的定义即可得出关于k 的方程,求出k 的值即可;【详解】解:3421x y k x y +=⎧⎨+=-⎩①②, 由①-②得2x +2y =k +1,∴x +y =12k +, ∵x ,y 互为相反数,∴102k +=,解得k =-1 【点睛】本题考查的是解二元一次方程组及二元一次方程组的整数解,先把k 当作已知表示出x +y 的值是解答此题的关键.22.如图,CE AF ⊥,垂足为E ,CE 与BF 交于点D ,50F ∠=︒,30C ∠=︒,求EDF ∠和DBA ∠的度数.【答案】∠EDF=40°,∠DBA=70°.【解析】【分析】根据垂直得出∠FED=90°,根据直角三角形的性质求出∠EDF 即可;求出∠CDB ,根据三角形外角性质求出∠DBA 即可.【详解】解:∵CE ⊥AF ,∴∠FED=90°,∵∠F=50°,∴∠EDF=90°-∠F=90°-50°=40°,∴∠CDB=∠EDF=40°,∵∠C=30°,∴∠DBA=∠C+∠CDB=30°+40°=70°.故答案为∠EDF=40°,∠DBA=70°.【点睛】本题考查直角三角形的性质,垂直定义,三角形外角性质,主要利用了直角三角形两锐角互余的性质,三角形的外角性质,熟记性质并准确识图是解题的关键.23.用二元一次方程组解决问题:某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为5元/辆,现在停车场内停有50辆中、小型汽车,这些车共缴纳停车费390元,中、小型汽车各有多少辆?【答案】中型汽车20辆,小型汽车30辆.【解析】【分析】先设中型车有x 辆,小型车有y 辆,再根据题中两个等量关系,列出二元一次方程组进行求解.【详解】解:设中型车有x 辆,小型车有y 辆,根据题意得:50125390x y x y +=⎧⎨+=⎩, 解得2030x y =⎧⎨=⎩ 答:中型车有20辆,小型车有30辆.【点睛】本题主要考查了二元一次方程组,解决问题的关键是找出等量关系列出方程.本题也可以运用一元一次方程进行解答.24.如图,在△ABC 中,已知∠BDC=∠EFD ,∠AED =∠ACB .(1)试判断∠DEF 与∠B 的大小关系,并说明理由;(2)若D 、E 、F 分别是AB 、AC 、CD 边上的中点,S △DEF =4,求S △ABC .【答案】(1)∠DEF=∠B ; (2)S △ABC =32.【解析】【分析】(1)由∠BDC =∠DFE ,根据平行线判定得AB ∥EF ,则∠ADE =∠DEF ,而∠DEF =∠B ,所以∠ADE =∠B ,由∠AED =∠ACB 可判断DE ∥BC ,然后根据平行线的性质得到∠ADE =∠B ;故∠DEF =∠B(2)D 、E 、F 分别是AB 、AC 、CD 边上的中点,根据三角形面积公式得到S △EDC =2S △DEF ,S △ADC =2S △DEC ,S △ABC =2S △ADC ,可得S △ABC =8S △DEF 进行计算即可.【详解】(1)结论:∠DEF =∠B证明:∵∠BDC=∠DFE,∴AB∥EF,∴∠ADE=∠DEF,∵∠DEF=∠B,∴∠AED=∠C,∴DE∥BC,∴∠ADE=∠B,∴∠DEF=∠B;(2)解:∵F为CD的中点,∴S△DEC =2S△DEF,同理可得:S△ADC =2S△DEC,S△ABC =2S△ADC,∵S△DEF=4∴S△ABC=8S△DEF=8×4=32,【点睛】本题考查了行线的判定与性质:平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系;应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.也考查了三角形面积公式.25.如图,四边形ABCD的内角∠DCB与外角∠ABE的平分线相交于点F.(1)若BF∥CD,∠ABC=80°,求∠DCB的度数;(2)已知四边形ABCD中,∠A=105º,∠D=125º,求∠F的度数;(3)猜想∠F、∠A、∠D之间的数量关系,并说明理由.【答案】(1)50°;(2)25°;(3)∠F=12(∠A+∠D-180)°.【解析】【分析】(1)由∠ABC=80°,可知∠ABE=100°,根据BF平分∠ABE,BF∥CD可得∠BCD=50°.(2)由三角形外角性质可知∠F=∠FBE-∠FCE,而BF平分∠ABE、CF平分∠BCD,故∠F=1 2(∠ABE-∠FCE),由补角性质和四边形内角和可得∠ABE=360°-∠A-∠B-∠BCD,将已知代入即可求解;(3)同(2)可得∠F=12(∠A+∠D-180°)【详解】解:(1)∵∠ABC=80°,∴∠ABE=180°-∠ABC=100°,∵BF平分∠ABE,∴∠EBF=12∠ABE=50°,∵BF∥CD∴∠BCD=∠EBF=50°;(2)∵∠FBE是△EBC的外角,∴∠F=∠EBF-∠ECF∵BF平分∠ABE、CF平分∠BCD,∴∠EBF=12∠ABE=,∠ECF=12∠BCD,∵∠ABE=180°-∠ABC,∴∠F=12(180°-∠ABC)-12∠BCD=12[180°-(∠ABC+∠BCD)],∵在四边形ABCD中,∠ABC+∠BCD=360°-∠A-∠D,∴∠F=12[180°-(360°-∠A-∠D)],∴∠F=12(∠A+∠D-180°),∵∠A=105º,∠D=125º,∴∠F=12(105º +125º -180°)=25°,(3)结论:∠F=12(∠A+∠D-180°)理由如下:∵∠FBE是△EBC的外角,∴∠F=∠EBF-∠ECF∵BF平分∠ABE、CF平分∠BCD,∴∠EBF=12∠ABE=,∠ECF=12∠BCD,∵∠ABE=180°-∠ABC,∴∠F=12(180°-∠ABC)-12∠BCD=12[180°-(∠ABC+∠BCD)],∵在四边形ABCD中,∠ABC+∠BCD=360°-∠A-∠D,∴∠F=12[180°-(360°-∠A-∠D)],∴∠F=12(∠A+∠D-180°),【点睛】本题考查了三角形的外角性质的应用和角平分线的定义,能正确运用性质进行推理和计算是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.(3)中得出∠F=12(180°-∠ABC)-12∠BCD是解题的关键.26.用若干块如左图所示的正方形或长方形纸片拼成图(1)和图(2)(1)如图(1),若AD=7,AB=8,求a与b的值;(2)如图(1),若长方形ABCD的面积为35,其中阴影部分的面积为20,求长方形ABCD的周长;图(1)(3)如图(2),若AD的长度为5,AB的长度为n.图(2)①当m=________,n=_________时,a,b的值有无数组;②当m________,n_________时,a,b的值不存在.【答案】(1) a=3,b=2;(2) C=24;(3)① m=4,n=10;② m=4,n≠10.【解析】【分析】(1)根据图(1)长方形ABCD的边长组成列方程即可解答;(2)由图(1)中空白部分面积=大长方形面积-阴影部分面积=5个小长方形面积,可得ab=3,再结合完全平方公式可得(a+b)2=16,即可得a+b=4,而长方形ABCD的周长=2(3a+3b),由此即可解答;(3)由长方形的长和宽可列出关于a、b的方程组,解关于a、b即可解答.【详解】解:(1)由图得2728a b a b +=⎧⎨+=⎩, 解得:32a b =⎧⎨=⎩, (2)由图可得:5个小长方形面积=长方形ABCD 的面积-阴影部分的面积,∴53520ab =-,∴ab =3,∵阴影部分的面积为20,∴()22220a b+=, ∴()216a b +=,∴a +b =4,方形ABCD 的周长=2[(2a +b )+(2b +a )]=6(a +b )=6×4=24. (3)由图(2)得:252a b a mb n +=⎧⎨+=⎩,①,②, 由①得a=5-2b ,③将③代入②得2(5-2b )+mb=n ,∴(m-4)b=n-10,∴当40100m n -=⎧⎨-=⎩ 时,a ,b 的解有无数组; 即m=4,n=10时,a ,b 的值有无数组;当40100m n -=⎧⎨-≠⎩时,方程组无解, 即m=4,n≠10时,a ,b 的值不存在.故答案为①m=4,n=10;②m=4,n≠10【点睛】此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找到合适的等量关系,列出方程组.解决本题需仔细观察图形,发现大长方形的边长与a 、b 之间的关系是关键.讨论方程组的解情况是本题的难点.。
华东师大版七年级数学下册期中考试及答案【完美版】
华东师大版七年级数学下册期中考试及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c2.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.803.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,D.21==,m n==m n==,B.10m n,C.124.下列图形具有稳定性的是()A.B.C.D.5.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3) 6.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A .118°B .119°C .120°D .121°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,P 为BC 上一点,PR ⊥AB,垂足为R,PS ⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP ∥AR;③△BRP ≌△CSP.其中正确的是( )A .①②B .②③C .①③D .①②③ 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是__________°.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭的值为________. 4.若()2320m n -++=,则m+2n 的值是________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________. 三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x-1)=15 (2)21232x x -+-=-2.若不等式组0122x a x x +≥⎧⎨->-⎩①有解;②无解.请分别探讨a 的取值范围.3.如图,A (4,3)是反比例函数y=k x在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,截取AB=OA (B 在A 右侧),连接OB ,交反比例函数y=k x 的图象于点P .(1)求反比例函数y=k x的表达式; (2)求点B 的坐标;(3)求△OAP的面积.4.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、A5、B6、C7、C8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a 4<<2、105°3、0.4、-15、16、5三、解答题(本大题共6小题,共72分)1、(1)x 3=;(2)x 5=.2、①a >-1②a ≤-13、(1)反比例函数解析式为y=12x ;(2)点B 的坐标为(9,3);(3)△OAP 的面积=5.4、(1)略(2) ∠AEB=15°(3) 略5、(1)50;72;(2)详见解析;(3)330.6、(1) 钢笔的单价为21元,毛笔的单价为25元;(2)①见解析;②签字笔的单价可能为2元或6元.。
华东师大版七年级下册数学期中测试卷(含答案)
七年级下册数学期中检测题(时间120分钟,满分150分)班级: 姓名: 得分:一、选择题(每小题3分,共36分)1.已知下列方程:①x x 12=-②12.0=x ③33-=x x④x x 342=-⑤x=0 ⑥6=y -x .其中一元一次方程有()A.2个B.3个C.4个D. 5个2.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-33.若n m >,则下列不等式中成立的是()A.n a m a -<-B.bn am <C. 22nb ma >D. b n a m +<+4.不等式组⎩⎪⎨⎪⎧x +2>0,2x -1≤0的所有整数解是( ) A .-1,0 B .-2,-1 C .0,1 D .-2,-1,05.不等式组⎩⎪⎨⎪⎧-x <3,2x -1≤3的解集在数轴上表示正确的是( )6.已知⎩⎪⎨⎪⎧x =1,y =2和⎩⎪⎨⎪⎧x =2,y =5是方程ax +by =2的两组解,则( ) A .a =6,b =-2 B .a =-6,b =-2C .a =6,b =2D .a =-6,b =27.若关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =3m -1,x -y =5的解满足x +y =3,则m 的值为( ) A .-2 B .2 C .-1 D .18.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )A .0.8x -10=90B .0.08x -10=90C .90-0.8x =10D .x -0.8x -10=909.已知a 2+3a =1,则代数式2a 2+6a -1的值为( )A .0B .1C .2D .310.某种肥皂售价为每块2元,凡购买两块以上(含两块),商场推出两种优惠销售方法,第一种:“一块按原价,其余按原价的七折优惠”;第二种:“全部按原价的八折优惠”.你在购买相同数量的肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少要购买肥皂( )A .5块B .4块C .3块D .2块11.一元一次方程0.2x−10.5−3x−0.40.02=1可化为( ) A .0.2x−15−3x−0.42=1B .2x−15−3x−42=1 C .2x−105−300x−402=1 D .2x−105−300x−402=1012.已知方程组的解x 为正数,y 为非负数,给出下列结论: ①﹣3<a ≤1;②当时,x=y ;③当a =﹣2时,方程组的解也是方程x+y=5+a的解;④若x≤1,则y≥2.其中正确的是( )A .①②B .②③C .③④D .②③④二、填空题(每小题3分,共30分)13.若关于x 、y 的方程x m-1-2y 3+n=5是二元一次方程,则m =,n =14.方程732=-y x 用含x 的代数式表示y 为.15.若方程2x -m =1和方程3x =2(x -1)的解相同,则m 的值为____.16.若⎩⎪⎨⎪⎧x =1,y =2是方程组⎩⎪⎨⎪⎧ax +by =4,bx -ay =7的解,则a +b 的值为____. 17.已知关于x 的方程x +2k =4(x +k)+1的解是负数,则k 的取值范围是 ___.18.方程组⎩⎪⎨⎪⎧ax +2y =2,2x +3y =0的解是⎩⎪⎨⎪⎧x =3,y =b ,则关于x 的不等式bx +2a ≥0的非负整数解是___.19.幼儿园分给“豆豆班”小朋友们零食,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则老师准备了零食____袋.20.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则列出的方程组为_. 21.定义运算“*”,规定x*y=ax 2+by ,其中a 、b 为常数,且1*2=5,2*1=6,则2*3= .22.如图,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2017次相遇在边____上.三、解答题(共68分)23.(10分)解下列方程(组):(1)x 6-30-x 4=5; (2)⎩⎪⎨⎪⎧2x +3y =1,3x +2y =4.24.(10分)解下列不等式(组),并把解集在数轴上表示出来:(1)1-2-x 3<x +12; (2)⎩⎪⎨⎪⎧3x -7<2,2x +3≥1.25.(8分)方程组⎩⎪⎨⎪⎧3x -2y =7,5x +2y =1的解满足方程2x -ky =10,求k 的值.26. (8分)若不等式组⎩⎪⎨⎪⎧x <1,x >m -1恰有两个整数解,求m 的取值范围.26.(8分)4月23日是世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元?27.(8分)若关于x 的方程2x -m =3(x -1)的解也是不等式组⎩⎪⎨⎪⎧2x -1>3x -2,x -12-1≤x的解,求m 的取值范围.28.(10分)阅读下列材料:求不等式(2x −1)(x +3)>0的解集。
2022年华东师大版七年级数学下册期中试卷(参考答案)
2022年华东师大版七年级数学下册期中试卷(参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是()A.15B.15C.5 D.-52.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.443,82,153,244,…,其中第6个数为()A 37B3535D235.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是()A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°6.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .7.点()1,3M m m ++在y 轴上,则点M 的坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,28.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.已知三条不同的射线OA 、OB 、OC 有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB ,其中能确定OC 平分∠AOB 的有( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.3.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围是_________________.4.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是________. 5.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是________. 5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程(1)35(2)2x x --= (2)212134x x +--=2.已知实数x 、y 满足2x+3y=1.(1)用含有x 的代数式表示y ;(2)若实数y 满足y >1,求x 的取值范围;(3)若实数x 、y 满足x >﹣1,y ≥﹣12,且2x ﹣3y=k ,求k 的取值范围.3.如图,四边形ABCD 中,AD ∥BC ,点E 在CD 上,EA ,EB 分别平分∠DAB 和∠CBA ,设AD =x ,BC =y 且(x ﹣3)2+|y ﹣4|=0.求AB 的长.4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.5.育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是 ______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、D5、A6、A7、D8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、10.3、-2≤m <34、55、24.6、2或-8三、解答题(本大题共6小题,共72分)1、(1)4x =;(2)25x = 2、(1)y=123x-;(2)x <﹣1;(3)﹣5<k ≤4.3、74、(1)与∠D 相等的角为∠DCG ,∠ECF ,∠B (2)155°(3)25°或155°5、(1)40% , 144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
华东师大版七年级数学下册期中试卷及参考答案
华东师大版七年级数学下册期中试卷及参考答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4D .﹣2 6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .l 1B .l 2C .l 3D .l 410.若x ﹣m 与x+3的乘积中不含x 的一次项,则m 的值为( )A .3B .1C .0D .﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是________. 2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.已知直线AB∥x轴,点A的坐标为(1,2),并且线段AB=3,则点B的坐标为________.5364的平方根为________.6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.(1)解方程组:425x yx y-=⎧⎨+=⎩(2)解不等式:2132x x->-2.已知关于x的不等式21122m mxx->-.(1)当m=1时,求该不等式的非负整数解;(2)m取何值时,该不等式有解,并求出其解集.3.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为小时;(3)乙从出发起,经过小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少别瓶?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、B5、B6、C7、C8、D9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、a≥22、20°.3、15°4、(4,2)或(﹣2,2).5、±26、±3三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)x>125.2、(1)0,1;(2)当m≠-1时,不等式有解;当m> -1时,原不等式的解集为x<2;当m< -1时,原不等式的解集为x>2.3、(1)10;(2)1;(3)3;(4)不一样,理由略;4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变,理由略5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、A饮料生产了30瓶,B饮料生产了70瓶.。
华师大版数学七年级下学期《期中考试试题》附答案
故选C.
3.若x>y,则下列不等式不一定成立的是()
A.x+1>y+1B. 2x>2y
C. > D.x2>y2
[答案]D
[解析]
A选项:两边都加1,不等号的方向不变,故A不符合题意;
B选项:两边都乘以2,不等号的方向不变,故B不符合题意;
C选项:两边都除以2,不等号的方向不变,故C不符合题意;
[答案]
[解析]
[分析]
原式利用题中的新定义计算即可得到结果.
[详解]根据题意得: ,
①+②得:a=-1,b=2,
则x*y=-x+2y,
∴2*(-3)=-2+2×(-3)=-8.
故答案 -8
[点睛]此题考查了解二元一次方程组,以及有理数的混合运算,弄清题中的新定义计算即可得到结果.
三、解答题((9大题共 86分,解答过程写在答题卡相应位置上)
17.解方程
(1) (2)
[答案](1) ;(2)
[解析]
[分析]
(1)方程去括号,移项合并,将x系数化为1,即可求出解;
(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.
[详解](1)解:
,
;
(2)解:
,
,
.
[点睛]此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.
合并同类项,得2x=6,
系数化为1,得x=3,
把x=3代入6x=3+5a中,
得6×3=3+5a,
∴a=3.
故选C.
[点睛]本题考查了同解方程.解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号.因为两方程解相同,把求得x的值代入方程,即可求得常数项的值.
华东师大版七年级数学下册期中试卷(及参考答案)
华东师大版七年级数学下册期中试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d 大小顺序为( ) A .a<b<c<d B .a<b<d<c C .b<a<c<d D .a<d<b<c2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,P 为BC 上一点,PR ⊥AB,垂足为R,PS ⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP ∥AR;③△BRP ≌△CSP.其中正确的是( )A .①②B .②③C .①③D .①②③ 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是.2.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.若|a|=5,b=﹣2,且ab>0,则a+b=________.4.若关于x、y的二元一次方程组34355x y mx y-=+⎧⎨+=⎩的解满足0x y+≤,则m的取值范围是________.5.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______________.6.已知13aa+=,则221+=aa__________;三、解答题(本大题共6小题,共72分)1.解方程组:2313424()3(2)17x yx y x y⎧-=⎪⎨⎪--+=⎩2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.4.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、A4、D5、B6、D7、B8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、203、-74、2m≤-5、±46、7三、解答题(本大题共6小题,共72分)1、1.52 xy=-⎧⎨=-⎩2、3 53、(1)略;(2)112.5°.4、(1)证明略;(2)证明略.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)玲玲到离家最远的地方需要12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)玲玲在返回的途中最快,速度为:15千米/时;(4)10千米/时.。
最新华东师大版七年级数学下册期中考试试题
华东师大版七年级数学下册期中试题一、选择题(每小题3分,共30分)1.下列由等式的性质进行的变形,错误的是()A.如果a=b,那么a+2=b+2 B.如果a=b,那么a﹣2=b﹣2C.如果a=2,那么a2=2a D.如果a2=2a,那么a=22.若方程3x+6=12的解也是方程6x+3a=24的解,则a的值为()A.B.4 C.12 D.23.关于x的方程3x﹣2m=1的解为正数,则m的取值范围是()A.m<﹣B.m>﹣C.m>D.m<4.已知a,b满足方程组,则a+b的值为()A.﹣4 B.4 C.﹣2 D.25.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣36.不等式4﹣x≤2(3﹣x)的正整数解有()A.1个B.2个C.3个D.无数个7.不等式组的解集在数轴上表示为()A.B.C.D.8.如果不等式组有解,那么m的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤8 9.若﹣2a m b4与5a n+2b2m+n是同类项,则mn的值是()A.2 B.0 C.﹣1 D.110.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.196二、填空题(每小题3分,共15分)11.将方程4x+3y=6变形成用y的代数式表示x,则x=.12.关于x的方程(k﹣4)x|k|﹣3+1=0是一元一次方程,则k的值是.13.若x≥﹣5的最小值为a,x≤5的最大值是b,则a+b=.14.关于x,y的二元一次方程组的解满足x+y>2,则a的范围为.15.某人在解方程=﹣1去分母时,方程右边的﹣1忘记乘以6,算得方程的解为x=2,则a的值为.三、解答题(55分)16.(5分)解方程:3(2x﹣1)﹣2(1﹣x)=0.17.(5分)解不等式﹣1<,小兵的解答过程是这样的.解:去分母,得x+5﹣1<3x+2①.移项,得x﹣3x<2﹣5+1②.合并同类项,得﹣2x<﹣2③.系数化为1,得x<1④.(1)请问:小兵同学的解答是否正确?如果错误,请指出错误步骤的标号,简述原因?(2)给出正确的解答过程.18.(6分)用加减消元法解方程组:.19.(6分)已知关于x的方程a﹣5x=﹣6与方程3x﹣6=4x﹣5有相同的解,求a的值.20.(7分)如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20.求图2中第Ⅱ部分的面积.21.(8分)小明在解方程=﹣1,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m的值和原方程正确的解.22.(8分)阅读以下例题:解方程:|3x|=1,解:①当3x≥0时,原方程可化为一元一次方程3x=1,解这个方程得x =;②当3x<0时,原方程可化为一元一次方程﹣3x=1,解这个方程得x=﹣.所以原方程的解是x=或x=﹣.(1)仿照例题解方程:|2x+1|=3.(2)探究:当b为何值时,方程|x﹣2|=b+1满足:①无解;②只有一个解;③有两个解.23.(10分)某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)。
2022年华东师大版七年级数学下册期中试卷(A4打印版)
2022年华东师大版七年级数学下册期中试卷(A4打印版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A .12 B .7+7 C .12或7+7 D .以上都不对2.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°3.①如图1,AB ∥CD,则∠A +∠E +∠C=180°;②如图2,AB ∥CD,则∠E =∠A +∠C;③如图3,AB ∥CD,则∠A +∠E -∠1=180° ; ④如图4,AB ∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A .、1个B .2个C .3个D .4个4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.如图所示,点P 到直线l 的距离是( )A.线段PA的长度 B.线段PB的长度C.线段PC的长度 D.线段PD的长度6.实数a,b在数轴上对应点的位置如图所示,化简|a|+2的结果是a b()( )A.﹣2a-b B.2a﹣b C.﹣b D.b7.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3 B.-2 C.-1 D.18.在数轴上,a所表示的点总在b所表示的点的右边,且|a|=6,|b|=3,则a -b的值为()A.-3 B.-9 C.-3或-9 D.3或9 9.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A.B. C. D.10.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围是_________________.4.已知15x x+=,则221x x +=________________. 5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.解不等式组,并将解集在数轴上表示出来.273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①②2.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 13分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.3.在△ABC 中,AB=AC ,点D 是射线CB 上的一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE .(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).CD=,4.某学校要对如图所示的一块地进行绿化,已知4mAD=,3m ⊥,13mAD DCBC=,求这块地的面积.AB=,12m5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、B5、B6、A7、A8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、40°3、-2≤m<34、235、两6、5三、解答题(本大题共6小题,共72分)1、原不等式组的解集为﹣4<x≤2,在数轴上表示见解析.2、(1)a=5,b=2,c=3 ;(2)±4.3、(1)90°;(2)①α+β=180°;②α=β.4、224cm.5、(1)20%;(2)6006、(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.。
【华东师大版】七年级数学下期中试题含答案
一、选择题1.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠ 2.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5) 3.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置4.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上5.下列命题中,①81的平方根是9;±2;③−0.003没有立方根;④−64的立方根为±4; )A .1B .2C .3D .46.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12- B .12C .2-D .27.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .48.1-的值在( ) A .5~6之间B .6~7之间C .7~8之间D .8~9之间 9.用反证法证明“若⊙O 的半径为r ,点P 到圆心O 的距离d<r ,则点P 在⊙O 的内部”,第一步应假设( )A .d r ≥B .点P 在⊙O 的内部C .点P 在⊙O 上D .点P 在⊙O 上或⊙O 外部 10.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个11.如图,下列不能判定DF ∥AC 的条件是( )A .∠A =∠BDFB .∠2=∠4C .∠1=∠3D .∠A +∠ADF =180° 12.下列各命题中,原命题成立,而它逆命题不成立的是( )A .平行四边形的两组对边分别平行B .矩形的对角线相等C .四边相等的四边形是菱形D .直角三角形中,斜边的平方等于两直角边的平方和二、填空题13.已知点()3,2P -,//MP x 轴,6MP =,则点M 的坐标为______.14.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__ 15.已知103x ,小数部分是y ,求x ﹣y 的相反数_____.16.计算:2(3)216--17.一个正数的两个平方根分别是21a -与2a -+,则这个正数是______.18.用反证法证明“三角形中至少有一个内角不大于60°,应先假设这个三角形中____________________.19.命题“若a 2>b 2则a >b ”是_____命题(填“真”或“假”),它的逆命题是_____. 20.运动会上裁判员测量跳远成绩时,先在距离踏板最近的跳远落地点上插上作为标记的小旗,再以小旗的位置为赤字的零点,将尺子拉直,并与踏板边缘所在直线垂直,把尺子上垂足点表示的数作为跳远成绩.这实质上是数学知识____________在生活中的应用.三、解答题21.观察图形回答问题:(1)所给坐标分别代表图中的哪个点?(﹣3,1): ;(1,2): ;(2)图形上的一些点之间具有特殊的位置关系,请按如下要求找出这样的点,并说明所找点的坐标之间有何关系:①连接点 与点 的直线平行于x 轴,这两点的坐标的共同特点是 ; ②连接点 与点 的直线是第一、三象限的角平分线,这两点的坐标的共同特点是 .22.对于平面直角坐标系 xOy 中的点P (a ,b ),若点P ' 的坐标为,b a ka b k ⎛⎫++ ⎪⎝⎭(其中k 为常数,且0k ≠),则称点P '为点P 的“k 之雅礼点”.例如:P (1,4)的“2之雅礼点”为41,2142P ⎛⎫'+⨯+ ⎪⎝⎭,即P '(3,6). (1)①点P (-1,-3)的“3之雅礼点” P '的坐标为____________;②若点P 的“k 之雅礼点” P '的坐标为(2,2),请写出一个符合条件的点P 的坐标____________;(2)若点P 在x 轴的正半轴上,点P 的“k 之雅礼点”为P '点,且OPP '△为等腰直角三角形,则k 的值为____________;(3)在(2)的条件下,若关于x 的方程2kx mx mn +=+有无数个解,求m n 、的值. 23.计算:31891224-++-+. 24.计算题.(1)12(7)6(22)-+----(2)2312272⨯- (3)316(2)(4)÷-⨯-(4)13248243⎛⎫-⨯-+- ⎪⎝⎭ 25.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,C EFG ∠=∠,CED GHD ∠=∠,试判断AED ∠与D ∠之间的数量关系,并说明理由.26.如图,//AD BC,∠1=∠C,∠B=60°,DE平分∠ADC交BC于点E,试说明//AB DE.请完善解答过程,并在括号内填写相应的理论依据.解:∵//AD BC,(已知)∴∠1=∠ =60°.()∵∠1=∠C,(已知)∴∠C=∠B=60°.(等量代换)∵//AD BC,(已知)∴∠C+∠ =180°.()∴∠ =180°-∠C=180°-60°=120°.(等式的性质)∵DE平分∠ADC,(已知)∴∠ADE=12∠ADC=12×120°=60°.()∴∠1=∠ADE.(等量代换)∴//AB DE.()【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行于坐标轴的坐标特点进行解答即可.【详解】解://AB x轴,5b∴=,1a≠-.故答案为C.【点睛】本题主要考查了坐标与图形,即平行于x轴的直线上的点纵坐标相同,平行于y轴的直线上的点横坐标相同.2.A解析:A【分析】首先确定点的横纵坐标的正负号,再根据距坐标轴的距离确定点的坐标.【详解】解:∵点P位于第二象限,∴点的横坐标为负数,纵坐标为正数,∵点距离x轴5个单位长度,距离y轴3个单位长度,∴点的坐标为(﹣3,5).故选:A.【点睛】此题主要考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.C解析:C【分析】根据有序数对的意义对各选项分析判断后利用排除法求解.【详解】解:A、(3,4)与(4,3)表示的位置不相同,故本选项错误;B、a=b时,(a,b)与(b,a)表示的位置相同,故本选项错误;C、(3,5)与(5,3)是表示不同位置的两个有序数对正确,故本选项正确;D、有序数对(4,4)与(4,4)表示两个相同的位置,故本选项错误.故选:C.【点睛】本题考查了坐标确定位置,主要利用了有序数对的意义,比较简单.4.B解析:B【分析】根据点的坐标特点判断即可.【详解】在平面直角坐标系中,点P(-5,0)在x轴上,故选B.【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.5.A解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;⑤正错误.故选:A .【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.6.C解析:C【分析】根据新定义的运算得到关于a 的方程,求解即可.【详解】解:因为211a =-※, 所以132112a a ⨯-=-, 解得 2a =-.故选:C【点睛】本题考查了新定义的运算与一元一次方程,根据新定义运算得到一元一次方程是解题关键.7.D解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数; 0.3•,无限循环小数,是有理数,不是无理数;, 3π,2-, 2.121112*********...是无理数,共4个, 故选:D .【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.B解析:B【分析】的取值即可得到答案.【详解】<<,由题意得78∴<<,6171介于6~7之间.故选B.【点睛】9.D解析:D【分析】用反证法证明,即是假设命题的结论不成立,以命题的否定方面作为条件进行推理,得出和已知条件、公理、定义和定理等相矛盾或自相矛盾的结论,从而肯定命题的结论成立.【详解】解:命题“若⊙O的半径为r,点P到圆心的距离d大于r则点P在⊙O的外部”的结论为:点P在⊙O的外部.若用反证法证明该命题,则首先应假设命题的结论不成立,即点P在⊙O上或点P在⊙O 内.故选:D.【点睛】本题考查了反证法,否定命题判断的相反判断,从而肯定原来判断的正确性,这种证明法称为反证法.10.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.11.B解析:B【分析】根据选项中角的关系,结合平行线的判定,进行判断.【详解】解:A.∠A=∠BDF,由同位角相等,两直线平行,可判断DF∥AC;B.∠2=∠4,不能判断DF∥AC;C.∠1=∠3由内错角相等,两直线平行,可判断DF∥AC;D.∠A+∠ADF=180°,由同旁内角互补,两直线平行,可判断DF∥AC;故选:B.【点睛】此题考查平行线的判定,熟练掌握内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.12.B解析:B【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项.【详解】解:A、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C、四边相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意;故选:B.【点睛】本题主要考查的是命题和定理的知识,正确的写出它的逆命题是解题的关键.二、填空题13.(9﹣2)或(﹣3﹣2)【分析】根据平行线的性质可得点M的纵坐标与点P的纵坐标相同是﹣2再根据MP=6即可求出点M的坐标【详解】解:∵点P(3−2)MP//x轴∴点M的横坐标与点P的横坐标相同是﹣2解析:(9,﹣2)或 (﹣3,﹣2)【分析】根据平行线的性质可得点M的纵坐标与点P的纵坐标相同,是﹣2,再根据MP=6,即可求出点M的坐标.【详解】解:∵点P(3,−2), MP//x 轴,∴点M 的横坐标与点P 的横坐标相同,是﹣2,又∵MP =6,∴点M 的横坐标为为3+6=9,或3−6=−3,∴点M 的坐标为 (9,﹣2)或 (﹣3,﹣2).故答案为:(9,﹣2)或 (﹣3,﹣2).【点睛】本题考查了点坐标的问题,掌握平行线的性质、点坐标的性质是解题的关键.14.(6-4)【分析】直接利用平移中点的变化规律求解即可平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】设点P 的坐标为()由题意得:求得所以点P 的坐标为()故答案为:()【点睛】本题解析:(6,-4)【分析】直接利用平移中,点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】设点P 的坐标为(x ,y ),由题意,得:42x -=,13y +=-,求得6x =,4y =-,所以点P 的坐标为(6,4-).故答案为:(6,4-).【点睛】本题考查了坐标与图形变化-平移,用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.15.【分析】先判断在那两个整数之间用小于的整数与10相加得出整数部分再用10+减去整数部分即可求出小数部分【详解】解:∵∴的整数部分是1∴10+的整数部分是10+1=11即x =11∴10+的小数部分是112【分析】10相加,得出整数部分,再用10+减去整数部分即可求出小数部分.【详解】解:∵12<, ∴1,∴1010+1=11,即x =11,∴101011﹣1,即y 1,∴x ﹣y =111)=111=12∴x ﹣y 的相反数为﹣(1212.12.【点睛】在1~2之间.16.1【分析】先计算乘方算术平方根然后计算乘法和减法即可得到答案【详解】解:【点睛】本题考查了算术平方根乘方有理数的加减乘除混合运算解题的关键是掌握运算法则进行计算解析:1【分析】先计算乘方、算术平方根,然后计算乘法和减法,即可得到答案.【详解】解:2(3)2--924=-⨯98=-1=.【点睛】本题考查了算术平方根、乘方、有理数的加减乘除混合运算,解题的关键是掌握运算法则进行计算.17.9【分析】根据一个正数的两个平方根互为相反数可得关于a 的方程解方程即可求出a 进一步即可求出答案【详解】解:因为一个正数的两个平方根分别是与所以+()=0解得:a=﹣1所以这个正数是故答案为:9【点睛解析:9【分析】根据一个正数的两个平方根互为相反数可得关于a 的方程,解方程即可求出a ,进一步即可求出答案.【详解】解:因为一个正数的两个平方根分别是21a -与2a -+,所以21a -+(2a -+)=0,解得:a =﹣1,所以这个正数是()22119⨯--=⎡⎤⎣⎦.故答案为:9.【点睛】本题考查了平方根的定义,属于基础题型,掌握解答的方法是解题的关键. 18.三角形的三个内角都大于60°【分析】根据反证法的步骤先假设结论不成立即否定命题即可【详解】根据反证法的步骤第一步应假设结论的反面成立即三角形的三个内角都大于60°故答案为:三角形的三个内角都大于60解析:三角形的三个内角都大于60°【分析】根据反证法的步骤,先假设结论不成立,即否定命题即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即三角形的三个内角都大于60°.故答案为:三角形的三个内角都大于60°.【点睛】本题考查了反证法的知识,掌握反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立是解题的关键.19.假若a>b则a2>b2【分析】a2大于b2则a不一定大于b所以该命题是假命题它的逆命题是若a>b则a2>b2【详解】①当a=-2b=1时满足a2>b2但不满足a>b所以是假命题;②命题若a2>b2则解析:假若a>b则a2>b2【分析】a2大于b2则a不一定大于b,所以该命题是假命题,它的逆命题是“若a>b则a2>b2”.【详解】①当a=-2,b=1时,满足a2>b2,但不满足a>b,所以是假命题;②命题“若a2>b2则a>b”的逆命题是若“a>b则a2>b2”;故答案为:假;若a>b则a2>b2.【点睛】本题主要考查判断命题真假、逆命题的概念以及平方的计算,熟记相关概念取特殊值代入是解题关键.20.垂线段最短【分析】根据题干跳远落点视为一个点直尺垂直踏板边缘可理解为作垂线然后用数学语言描述出来即可【详解】根据题意可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用注意在书写答案解析:垂线段最短【分析】根据题干,跳远落点视为一个点,直尺垂直踏板边缘可理解为作垂线,然后用数学语言描述出来即可.【详解】根据题意,可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用,注意在书写答案时,尽量用“数学化”的语言来描述.三、解答题21.(1)C ,F ;(2)C ,D (或E ,F 或G ,H ),纵坐标相等,横坐标不相等;(3)O ,H ,横坐标与纵坐标相等【分析】(1)根据点的坐标的定义结合图形即可求解;(2)①根据图形即可求解(答案不唯一);②观察图形即可求解.【详解】解:(1)由图形可知,(﹣3,1)表示点C ;(1,2)表示点F ;故答案为:C ;F ;(2)①连接点C 与点D 的直线平行于x 轴(或连接点E 与点F 的直线平行于x 轴或连接点G 与点H 的直线平行于x 轴),这两点的坐标的共同特点是纵坐标相等,横坐标不相等.故答案为:C ,D (或E ,F 或G ,H ),纵坐标相等,横坐标不相等;②连接点O 与点H 的直线是第一、三象限的角平分线,这两点的坐标的共同特点是横坐标与纵坐标相等.故答案为:O ,H ,横坐标与纵坐标相等.【点睛】本题考查了坐标与图形性质,点的坐标,平行于 x 轴的直线上任意两点的坐标特征,第一、三象限角平分线上点的坐标特征,利用数形结合是解题的关键.22.(1)①(-2,-6);②(1,1)(答案不唯一);(2)±1;(3)m=1,n=-2或m=-1,n=2【分析】(1)①根据“k 之雅礼点”的定义即可求出结论;②设点P (a ,b ),由题意可得,b a ka b k ⎛⎫++ ⎪⎝⎭=(2,2),利用赋值法令k=1,a=1,求出b 的值即可写出一个符合题意的坐标;(2)由题意可设点P (a ,0),a >0,则点P 的“k 之雅礼点” P '的坐标为(),a ka ,根据等腰直角三角形的定义可得ka = a ,从而求出k 的值;(3)根据k 的值分类讨论,根据一元一次方程解的情况即可得出结论.【详解】解:(1)①由题意可得点P (-1,-3)的“3之雅礼点” P '的坐标为31,1333-⎛⎫-+-⨯- ⎪⎝⎭ 即P '(-2,-6)故答案为:(-2,-6);②设点P (a ,b ),由题意可得点P 的“k 之雅礼点” P '的坐标,b a ka b k ⎛⎫++ ⎪⎝⎭=(2,2)即22b a k ka b ⎧+=⎪⎨⎪+=⎩ 可令k=1则a +b=2当a=1时,b=1∴点P 的坐标可以为(1,1)故答案为:(1,1)(答案不唯一);(2)由题意可设点P (a ,0),a >0则点P 的“k 之雅礼点” P '的坐标为(),a ka∴OP=a ,P P '=ka由P '与P 的横坐标相同,OPP '△为等腰直角三角形∴∠OP P '=90°,且OP=P P ' ∴ka = a解得k=±1故答案为±1;(3)当k=-1时,2x mx mn -+=+则()12m x mn -+=+∵该方程有无数个解∴1020m mn -+=⎧⎨+=⎩解得:12m n =⎧⎨=-⎩; 当k=1时,2x mx mn +=+则()12m x mn +=+∵该方程有无数个解∴1020m mn +=⎧⎨+=⎩解得:12m n =-=⎧⎨⎩; 综上:m=1,n=-2或m=-1,n=2【点睛】此题考查的是新定义类问题,掌握新定义、等腰直角三角形的性质和根据一元一次方程解的情况求参数是解决此题的关键.23.1+【分析】先根据开方的意义,绝对值的意义进行化简,最后计算即可求解.【详解】解:原式123122=-+++⨯1=+ 【点睛】本题考查了实数的混合运算,理解开方的意义,能正确去绝对值是解题关键. 24.(1)-3(2)-1(3)2(4)-20【分析】(1)先去括号在进行加减运算.(2)先进行平方和开方,在进行乘法和减法的运算.(3)先进行开方和平方,在由左至右进行除法和乘法的运算.(4)首先去括号内的绝对值,在进行括号内的分式加减,最后相乘.【详解】(1)12(7)6(22)-+---- =127622---+=3-(2)2122⨯ 1=432⨯- =1-(33(2)(4)-⨯-=4(8)(4)÷-⨯-1=(-)(4)2⨯- =2(4)13248()243-⨯-+- 1248()43=-⨯-+ 54812=-⨯ 20=-【点睛】考察有理数的混合运算,掌握运算法则的顺序是解答本题的关键.25.∠AED+∠D=180°,理由见解析【分析】根据平行线的判定定理得出CE ∥FG ,根据平行线的性质得出∠C=∠FGD ,求出∠FGD=∠EFG,根据平行线的判定得出AB∥CD,再根据平行线的性质得出即可.【详解】解:∠AED+∠D=180°,理由是:∵∠CED=∠GHD,∴CE∥FG,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°.【点睛】本题考查了平行线的性质和判定定理,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.26.B;两直线平行,同位角相等;ADC;两直线平行,同旁内角互补;ADC;角平分线性质;内错角相等,两直线平行.【分析】利用平行线的性质和判定,角平分线的性质去进行填空.【详解】解∵//AD BC,(已知)∴∠1=∠B=60°.(两直线平行,同位角相等)∵∠1=∠C,(已知)∴∠C=∠B=60°.(等量代换)∵//AD BC,(已知)∴∠C+∠ADC=180°.(两直线平行,同旁内角互补)∴∠ADC=180°-∠C=180°-60°=120°.(等式的性质)∵DE平分∠ADC,(已知)∴∠ADE=12∠ADC=12×120°=60°.(角平分线性质)∴∠1=∠ADE.(等量代换)∴//AB DE.(内错角相等,两直线平行)【点睛】本题考查平行线的性质和判定,解题的关键是掌握平行线的性质和判定定理.。
华师大版数学七年级下学期《期中考试试卷》附答案
A. B. C. D.
[答案]B
[解析]
[分析]
A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.
B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.
C:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.
14.不等式 的解集是_______________.
15.方程组 的解是__________________.
16.数轴上100个点所表示的数分别为 、 、 …、 ,且当 为奇数时, ,当 为偶数时, ,① ______;②若 ,则 ______.
三、解答题:本题共9小题,共86分.解答应写出文字说明或演算步骤.
A 1组B.2组C.3组D.4组
[答案]C
[解析]
[分析]
先变形得出x=10-3y,再取正整数解即可.
[详解]x+3y=10,
x=10-3y,
当y=1时,x=7;
当y=2时,x=4,
当y=3时,x=1;
所以共有3组解.
故选C.
[点睛]考查了解二元一次方程,能求出符合的所有正整数解是解此题的关键.
10.定义:对于任意数 ,符号 表示不大于 的最大整数,例如: , , .若 ,则 的取值范围是().
A. 8、2B. 8、-2C. 2、2D. 2、-2
6.已知 ,下列不等式中错误的是().
A. B. C. D.
7.在解方程 过程中,变形正确的是().
A. B.
C. D.
8.方程组 的解是 ,则方程组 的解是()
A. B. C. D.
华东师大版七年级数学下册期中测试题(含答案)
华东师大版七年级数学下册期中测试题(含答案)一、选择题(每小题3分;共30分)1.下列等式变形正确的是 A .110-=-=-y x y x 则若 B .若 则C .D .210332==-x x 则 2.解一元一次方程()111123x x +=-时,去分母正确的是 A .3(x +1)=1-2x B .2(x +1)=1-3x C .2(x +1)=6-3xD .3(x +1)=6-2x3.二元一次方程42=-y x 的一个解是 A .B .32x y =-⎧⎨=-⎩ C .20x y =⎧⎨=⎩D .31x y =⎧⎨=-⎩ 4.已知a <b ,下列式子不一定成立的是A .a -1<b -1B .ma >mbC .a +1b +1D .-2a >-2b5.不等式3(1)24x x ->-的解集在数轴上表示正确的是A B C D6.用加减消元法解二元一次方程组3421x y x y +=⎧⎨-=⎩,①,②时,下列方法中无法消元....的是 A . ①×2-② B .②×(-3)-① C . ①×(-2)+② D .①-②×3 7.若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的值为A .3B .57C .54 D .53 8.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出五钱,还差45钱;若每人出七钱,还差3钱.问合伙人数、羊价各是多少?此问题中羊价为A .160钱B .155钱C .150钱D .145钱9.若关于x 的不等式3x +a ≤2只有2个正整数解,则a 的取值范围为 A .-7<a <-4 B .-7<a ≤-4 C .-7≤a <-4D .-7≤a ≤-410.数学小组定义一种新运算“⊗”:1-++=⊗ab b a b a , 例如:101323232=-⨯++=⊗.如果52=⊗x ,则x 的值是 A .1-B .1C .34 D .2二、填空题(每小题3分;共15分)11.一元一次方程3121=-x 的解是x = . 12.若关于x ,y 的二元一次方程组22x y x y m+=⎧⎨+=⎩的解为11x y =⎧⎨=⎩,则m 的值为 .13.若关于x 的不等式组⎪⎩⎪⎨⎧≥->-024021x a x 无解,则a 的取值范围为 .14.星期天,小刚组织同学们一起去看科幻电影《流浪地球》,票价每张45元,20张以上(不含20张)打八折,他们一共花了900元,则他们一共去的人数为 .15.给定整数,我们规定,若,则bd 的值为 .三、解答题(8+9+9+9+9+10+10+11=75分)16.解方程:221123x x x ---=+.17.解二元一次方程组:⎩⎨⎧=+=+.93822y x ,y x18.解不等式组:⎪⎩⎪⎨⎧<-+<-.583,13)12(4x x x x19.若等式()021422=-+-y x 中的x 、y 满足方程组⎩⎨⎧=+=+1411my nx ny mx ;(其中m 、n 为常数)试确定关于k 的不等式0≤-mk n 中k 的最小整数解.①② ①②20.李明同学喜欢自行车和长跑两项运动,在某次训练中,他骑自行车的平均速度为每分钟米,跑步的平均速度为每分钟米,自行车路段和长跑路段共米,用时分钟.求自行车路段和长跑路段的长度.21.本地某快递公司规定:寄件不超过1千克的部分按起步价计费;寄件超过1千克部分的按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准:目的地起步价超过1千克的部分(元/千克)上海a b北京a+3b+4实际收费:目的地质量(千克) 费用(元)上海 2 9北京 3 22求a、b的值.22.某地自2019年12月1日起推行垃圾分类,广大市民对垃圾桶的需求剧增.为满足市场需求,某超市花了7900元购进大小不同的两种垃圾桶共800个,其中,大桶和小桶的进价及售价如表所示.大桶小桶进价(元/个) 18 5售价(元/个) 20 8(1)该超市购进大桶和小桶各多少个?(2)当小桶售出了300个后,商家决定将剩下的小桶的售价降低1元销售,并把其中一定数量的小桶作为赠品,在顾客购买大桶时,买一赠一(买一个大桶送一个小桶),送完即止.请问:超市要使这批垃圾桶全部售完后获得的利润不少于1550元,那么小桶作为赠品最多送出多少个?23.阅读分析:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知x、y满足3x-y=5……①,2x+3y=7……②,求x-4y和7x+5y的值.本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得x-4y=-2,由①+②2可得7x+5y=19.这样的解題思想就是通常所说的“整体思想”。
(最新)【华东师大版】七年级下册期中数学考试卷及答案
第二学期期中考试卷七年级数学一、选择题(每小题3分,共30分)1、下列各式:①x-1;②x ≤0;③a-b=0;④x-2>1.其中不等式有( )A 、1个B 、2个C 、3个D 、4个2、二元一次方程x-2y=1有无数个解,则下列四组值中,不是该方程的解的是( )A 、⎩⎨⎧==11y xB 、⎪⎩⎪⎨⎧-==210y xC 、⎩⎨⎧==01y xD 、⎩⎨⎧-=-=11y x3、“x 的3倍与x 的相反数的差不小于1”,用不等式表示为( )A 、2x-x ≥1B 、2x-(-x) ≥1C 、2x-x>1D 、2x-(-x)>14、若关于x 的一元一次方程12332=---kx k x 的解是x=-1,则k 的值是( )A 、72 B 、1C 、113-D 、05、下列说法中不一定成立的是( ) A 、若a>b ,则a+c>b+CB 、若a+c>b+c ,则a>bC 、若a>b ,则ac ²>bc ²D 、若ac ²>bc ²,则a >b6、甲仓库存煤200t ,乙仓库存煤70t ,若甲仓库每天运出15t 煤,乙仓库每天运进25t 煤,几天后乙仓库存煤比甲仓库多1倍?设x 天后乙仓库比甲仓库多1倍,则有( ) A 、2×15x=25xB 、70+25x-15x=200×2C 、2(200-15x)=70+25xD 、200-15x=2(70-25x)7、关于x 的不等式x-b>0,恰有两个负整数解,则b 的取值范围是( )A 、-3<b<-2B 、-3<b ≤-2C 、-3≤b ≤-2D 、-3≤b<-28、为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费了35元。
已知毽子单价3元,跳绳单价5元,且购买的毽子个数比跳绳的个数多1,则购买毽子和跳绳的个数分别为( )A 、4,5B 、5,4C 、9,10D 、10,99、若x<y ,则下列不等式中不一定成立的是( )A 、x+1>y+1B 、2x>2yC 、22y x > D 、x ²>y ²10、若不等式组⎩⎨⎧>+<-a x x 1112恰有两个整数解,则a 的取值范围是( )A 、-1≤a<0B 、-1<a ≤0C 、-1≤a ≤0D 、-1<a<0二、填空题。
2022年华东师大版七年级数学下册期中考试题及参考答案
2022年华东师大版七年级数学下册期中考试题及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 5.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A.B.C.D.8.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°10.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b二、填空题(本大题共6小题,每小题3分,共18分)的立方根是________.1.272.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是__________°.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.若()2320m n -++=,则m+2n 的值是________. 5.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是________. 5.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要______cm .三、解答题(本大题共6小题,共72分)1.解方程(1)37322x x +=- (2)31322322510x x x +-+-=-2.马虎同学在解方程13123x m m ---=时,不小心把等式左边m 前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m 2﹣2m+1的值.3.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状. 4.如图,∠1=70°,∠2 =70°. 说明:AB∥CD.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2) 由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、D5、B6、D7、B8、B9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、105°3、135°4、-15、24.6、10三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)811 x2、0.3、(1)见解析(2)成立(3)△DEF为等边三角形4、略.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1) 5元(2) 0.5元/千克; y=12x+5(0≤x≤30);(3)他一共带了45千克土豆.。
【华东师大版】七年级数学下期中试卷带答案
9.如图,若 ,则下列结论正确的是()
A. B. C. D.
10.下列命题中,属于真命题的是()
A.相等的角是对顶角B.一个角的补角大于这个角
C.绝对值最小的数是0D.如果 ,那么a=b
11.如图,下列条件中,不能判断直线a∥b的是( )
A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°
4.C
解析:C
【分析】
由于线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(4,7),比较它们的坐标发现横坐标增加5,纵坐标增加3,利用此规律即可求出点B(-4,-1)的对应点D的坐标.
【详解】
∵线段CD是由线段AB平移得到的,
而点A(-1,4)的对应点为C(4,7),
∴由A平移到C点的横坐标增加5,纵坐标增加3,
12.(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()
A.40°B.50°C.60°D.70°
二、填空题
13.在平面直角坐标系内,把点A(5,-2)向右平移3个单位,再向下平移2个单位,得到的点B的坐标为______.
14.在平面直角坐标系中,点P(m,1﹣m)在第一象限,则m的取值范围是_____.
三、解答题
21.如图,在平面直角坐标系中有一个△ABC.
(1)将△ABC向右平移3个单位得到△A1B1C1,画出△A1B1C1.
(2)写出△A1B1C1,三个顶点的坐标.
22.如图,已知火车站的坐标为 ,文化宫的坐标为 .
(1)请你根据题目条件,画出平面直角坐标系;
(2)写出体育馆、市场、超市、宾馆的坐标;
一、选择题
1.B
华东师大版七年级数学下册期中考试试题
华东师大版七年级数学下册期中考试试题(总分值:100分 时刻:120分钟)班级 姓名 成绩1.填空题 (每题3分,共18分)(1)方程2|x-3|=0的解是x= .(2)当x= 时,1157x x +-与互为相反数. (3)当x= 时,x-2的4倍等于x-2的相反数.(4)已知有理数x 、y 知足条件:4|2|(8)0,x y x y --++-=那么2xy= .(5)假设522363212334m n m n x y x y ++---与的和仍是单项式,那么m= ,n= .(6)已知121x y ⎧=⎪⎨⎪=-⎩是方程组3521ax y x by -=⎧⎨+=⎩的解,那么a-b= . (每题4分,共20分)(7)方程3x+a=2的解是5,那么a 的值是 ( ) 17 C.13(8)第二十届电视剧飞天奖有a 部作品参赛,比上一届增加40﹪还多2部,设上一届参赛的作品有b 部,那么b 是 ( )2.140%a A ++ (1+40%)+2 2.140%a C -+ (1+40%)-2 (9)方程|2x+3|=9的解是 ( )B.-6C.3或-6 或6(10)解是12x y =⎧⎨=⎩的方程组是 ( ) 1.328x y A x y --=⎧⎨+=⎩ 1.327x y B x y -=-⎧⎨+=-⎩ 3.20x y C x y =-⎧⎨-=⎩ 23.57x y D x y -=-⎧⎨+=⎩ (11)某商店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个赔本20%,在这次生意中,这家商店 ( )A.不赔不赚B.赚了8元C.赔了8元D.赚了32元(每题8分,共32分)5(12)532x x --= 0.50.1(13)10.6y y --=431(14)7632x y x y +=⎧⎨-=-⎩3(1)4(4)(15)5(1)3(5)x y y x -=-⎧⎨-=+⎩4.解答题(每题10分,共30分)(16)22|23|(35)0,().x x y x y -+-+=+已知求的值(17)国家规定个人发表文章,出版图书取得稿费的纳税方法是:①稿费不高于800元的不纳税 ②稿费高于800元又不高于4000元的应缴超过800元那一部份稿费的14%的税③稿费高于4000元的应缴纳全数稿费的11%的税.此刻明白王教师取得一笔稿费,并缴纳个人所得税420元,问王教师这笔稿费有多少元?(18)中学生足球赛共赛15轮,每队均赛15场,胜一场计2分,平一场计1分,负一场计0分,某中学足球队所胜场数是所负场数的2倍,结果共得19分,问那个足球队共平几场?答案1.(1)3 (2)-6 (3)2(4)30 (5)1;-12(6)4 2.(7)A (8)C (9)C(10)D (11)B3.(12)x=9. (13)y=5(14)⎧=-⎨=⎩23x y (15)⎧=⎨=⎩57x y 4.(16) ⎧=+=⎨=⎩21.5,()1219.5x x y y .(17)3800元.(18)3场.。
华师大版七年级下册数学期中测试卷
华师大版七年级(下)数学期中测试卷(满分150分, 时间120分钟)班级__________学号__________ 姓名__________ 得分__________一、选择题(本题共10小题,每题4分,共40分)1.下列方程中是一元一次方程的是( ) A. 012=-x B. 12=x C. 12=+y x D. 213=-x 2. 不等式50x --≤的解集在数轴上表示正确的是( )3、若()62=-x m 是关于x 的一元一次方程,则m 的取值为( ) A 、不等于2的数 B 、任何数 C 、2 D 、1或24、已知长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米.设长江、黄河的长分别是x 千米,y 千米,则下列方程组中正确的是 ( )A 、836561284x y x y -=⎧⎨-=⎩ B 、836651284y x y x -=⎧⎨-=⎩ C 、836651284x y y x -=⎧⎨-=⎩ D 、836561284y x x y -=⎧⎨-=⎩ 5.已知⎩⎨⎧==21y x 和⎩⎨⎧=-=01y x 是方程1=-by ax 的解,则a 、b 的值为 ( ) A 、1,1-=-=b a B 、1,1=-=b a C 、1,0-==b a D 、0,1=-=b a6、下列不等式中,解集是x >1的不等式是( )A 、3x >-3B 、34>+xC 、2x +3>5D 、-2x +3>57、如果ax >a 的解是x <1,那么a 必须满足 ( ) A 、 a <0 B 、a >1 C 、a >-1 D 、a <-18、如果0>>a b ,那么( )A .b a 11->-B .ba 11< C .b a 11-<- D .a b ->- 9、 某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A 、不赔不赚 B 、赚了9元 C 、赚了18元 D 、赔了18元10、 已知关于x 的方程2x=8与x+2=-k 的解相同,则代数式2||32k k - 的值是 ( )A 、-49B 、94C 、-94D 、94± 二、填空题(本题共6小题,每题4分,共24分)11、已知2x -3y =6,用含x 的代数式表示y =_____________.12、当a = 时,代数式12a -与2a -的值相等.13、已知(a -3)x |a|-2+6=0是关于x 的一元一次方程,则a=___ _14、已知关于x 的方程3k -5x=-9的解是非负数,则k 的取值范围是______________.15、若不等式a ≤X <2只有3个整数解,则a 的取值范围是 .16、对非负实数x “四舍五入”到个位的值记为(x ).即当n 为非负整数时,若n -12≤x <n +12,则(x )=n .如(0.46)=0,(3.67)=4.给出下列关于(x )的结论:①(1.493)=1;②(2x )=2(x );③若(12x -1)=4,则实数x 的取值范围是9≤x <11;④当x ≥0时,m 为非负整数时,有(m +2017x )=m +(2017x );⑤(x +y )=(x )+(y ).其中正确的结论有________________.(填序号)三、解答题(共8个小题,共86分)17、(本小题10分)(1)412+x -1=312-x - 12110+x (2)、 32522642730x y z x y z x y z ++=⎧⎪--=⎨⎪+-=⎩18、(10分)解不等式组21141x x ->-⎧⎨-≥⎩,①,②,并将它的解集在数轴上表示出来,并写出它所有的整数解.19、(10分)已知关于x ,y 的方程组3,26x y x y a-=⎧⎨+=⎩的解满足不等式x +y <3,求实数a 的取值范围.20、(10分)一个星期天,小明和小文同解一个二元一次方程组{ax+by=16bx+ay=1 ① ②小明把方程①抄错,求得的解为{x=1y=3-,小文把方程②抄错,求得的解为{x=3y=2,求原方程组的解。
2022年华东师大版七年级数学下册期中试卷及答案【完整版】
2022年华东师大版七年级数学下册期中试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.超市出售的某种品牌的面粉袋上,标有质量为(25±0.2)kg 的字样,从中任意拿出两袋,它们的质量最多相差-( )A .0.2 kgB .0.3 kgC .0.4 kgD .50.4 kg2.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③3.若整数x 满足19x ≤45+2,则x 的值是( )A .8B .9C .10D .114.一5的绝对值是( )A .5B .15C .15-D .-55.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x -=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如果23a b -=22()2a b a b a a b+-⋅-的值为( ) A 3 B .23C .33D .37.在同一平面内,设a 、b 、c 是三条互相平行的直线,已知a 与b 的距离为4cm ,b 与c 的距离为1cm ,则a 与c 的距离为( )A .1cmB .3cmC .5cm 或3cmD .1cm 或3cm8.实数a 、b 在数轴上的位置如图所示,则化简|a-b|﹣a 的结果为( )A .-2a+bB .bC .﹣2a ﹣bD .﹣b9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)5.若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是________. 5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.若实数a 、b 满足a 2b 40++-=,则2a b=_______. 三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x y x y +=⎧⎨-=⎩ (2)143()2()4x y x y x y ⎧-=-⎪⎨⎪+--=⎩2.马虎同学在解方程13123x m m ---=时,不小心把等式左边m 前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m 2﹣2m+1的值.3.如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.4.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,﹣2).(1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、A5、B6、A7、C8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、83、<4、a>﹣15、40°6、1三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、0.3、(1)证明见解析;(2)75.4、(1)直线AB的解析式为y=2x﹣2,(2)点C的坐标是(2,2).5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学七年级(下) 期中测试卷
(满分:100分 时间:120分钟)
班级 姓名 成绩
1.填空题 (每小题3分,共18分)
(1)方程2|x-3|=0的解是x= .
(2)当x= 时,
1157x x +-与互为相反数. (3)当x= 时,x-2的4倍等于x-2的相反数.
(4)已知有理数x 、y 满足条件:4|2|(8)0,x y x y --++-=则2xy= .
(5)若522363212334
m n m n x y x y ++---与的和仍是单项式,则m= ,n= . (6)已知121
x y ⎧=⎪⎨⎪=-⎩是方程组3521ax y x by -=⎧⎨+=⎩的解,则a-b= . 2.选择题(每小题4分,共20分)
(7)方程3x+a=2的解是5,则a 的值是 ( )
A.-13
B.- 17
C.13
D.17
(8)第二十届电视剧飞天奖有a 部作品参赛,比上一届增加40﹪还多2部,设上一届
参赛的作品有b 部,则b 是 ( )
2.
140%
a A ++ C.a(1+40%)+2 2.140%a C -+ D.a(1+40%)-2 (9)方程|2x+3|=9的解是 ( )
A.3
B.-6
C.3或-6
D.-3或6
(10)解是12
x y =⎧⎨=⎩的方程组是 ( )
1.328x y A x y --=⎧⎨+=⎩ 1.327
x y B x y -=-⎧⎨+=-⎩ 3.20x y C x y =-⎧⎨-=⎩ 23.57x y D x y -=-⎧⎨+=⎩
(11)某商店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%,
在这次买卖中,这家商店 ( )
A.不赔不赚
B.赚了8元
C.赔了8元
D.赚了32元
3.解方程组(每小题8分,共32分)
5(12)532x x --= 0.50.1(13)10.6
y y --=
431(14)7632
x y x y +=⎧⎨-=-⎩
3(1)4(4)(15)5(1)3(5)
x y y x -=-⎧⎨-=+⎩
4.解答题(每小题10分,共30分)
(16)22|23|(35)0,().x x y x y -+-+=+已知求的值
(17)国家规定个人发表文章,出版图书获得稿费的纳税办法是:①稿费不高于800
元的不纳税 ②稿费高于800元又不高于4000元的应缴超过800元那一部份稿费的14%的税③稿费高于4000元的应缴纳全部稿费的11%的税.现在知道王老师获得一笔稿费,并缴纳个人所得税420元,问王老师这笔稿费有多少元?
(18)中学生足球赛共赛15轮,每队均赛15场,胜一场计2分,平一场计1分,
负一场计0分,某中学足球队所胜场数是所负场数的2倍,结果共得19分,问这个足球队共平几场?
答案
1.(1)3 (2)-6 (3)2 (4)30 (5)1;-1
2
(6)4 2.(7)A (8)C (9)C
(10)D (11)B
3.(12)x=9. (13)y=5
(14)⎧=-⎨=⎩2
3x y (15)⎧=⎨=⎩5
7x y
4.(16) ⎧=+=⎨=⎩21.5
,()1219.5x x y y .
(17)3800元.
(18)3场.。