列方程组解应用题5

合集下载

列方程解决应用题

列方程解决应用题

列方程解答应用题1、有两根电线,第二根电线长度是第一根的2.5倍,如果第二根剪去12米,那么两根电线的长度就相等。

第二根电线原来长多少米?2、有两筐梨,甲筐梨重35千克,乙筐梨比甲筐轻7千克,从甲筐取出多少千克梨放入乙筐,两筐梨的重量相等?3、一个长方形,长是宽的1.4倍,如果宽增加2厘米,这个长方形就变长一个正方形,这个长方形的长和宽各是多少厘米?4、书架的上层有120本书,下层有书56本,如果两层书架有各自放上同样本数的书,这时上层的本数是下层的1.5倍,两层书架都放了几本书?5、师徒两个人加工同一种零件,师傅每小时加工120个,徒弟每小时加工90个,徒弟先加工2小时后,师傅才开始工作,师傅工作几小时后两人做的零件数相等?6、甲、乙两城相距560千米,一列客车和一列货车同时从两城对开。

已知火车每小时行50千米,行了120千米后客车才出发,客车每小时行了60千米,货车开出几小时后两车相遇?7、AB两地相距9千米,甲乙两人同时从AB两地出发,同向而行,甲在前,乙在后,甲每小时行4.5千米,乙每小时行6千米。

几小时后乙追上甲?8、某厂有两个车间,第一个车间每小时生产零件25个,当第一车间完成160个零件后,第二个车间才开始生产,第二个车间生产4小时后,两个车间生产的零件数相等。

第二车间每小时生产零件多少个?9、一辆小轿车和一辆大卡车都从甲城开往乙城,大卡车每小时行50千米,小轿车比大卡车迟开2小时,小轿车开出2.5小时后两辆汽车同时达到乙城。

已知甲乙两城相距400千米,小轿车的速度是多少?10、一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。

已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?11、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1.5倍。

求两车的速度。

12、甲乙两船同时从上海出发开往青岛,甲船每小时行36.5千米,乙船每小时行43.2千米,照这样的速度,经过多少小时后甲船落后乙船120.6千米?13、甲乙两地之间的路程是132千米,A、B两车同时从两地出发相向而行。

列方程组解应用题精选习题

列方程组解应用题精选习题

A .400cm 2B .500cm 2C .600cm 2D .4000cm 22.(2014•温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x 人,女生有y 人,根据题意,列方程组正确的是(人,根据题意,列方程组正确的是( ) A .B .C .D .3.(2014•南昌)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;元;小丽买了小丽买了2支笔和3盒笔芯,盒笔芯,仅用了仅用了28元.设每支中性笔x 元和每盒笔芯y 元,根据题意列方程组正确的是(元,根据题意列方程组正确的是( )A . B .C . D .4.(2014•锦州)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,下列方程组正确的是(的是( )A .B .C . D .5.(2013•台湾)以下表示小勋到商店购买2个单价相同的布丁和10根单价相同的棒棒糖的经过.经过.小勋:“我要2个布丁和10根棒棒糖.”老板:“谢谢!这是您要的2个布丁和10根棒棒糖,总共200元!”老板:“小朋友,我钱算错了,我多算2根棒棒糖的钱,我退还你20元.”列方程组解应用题一.选择题(共10小题)1.(2005•绵阳)如图,宽为50cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为(方形的面积为( )..给我,我就有..捐款(元) 20 40 50 100 人数 10 8 人数...桶,则所列方程组是个三分球全中外,他还投中了 个分球和分球和 个罚球.两位数为两位数为 . 甲 乙进价(元/件)件) 15 35 售价(元/件)件) 20 45 元钱买门票.元钱买门票. 出满足题意的方程组方程组20.(2015秋•宁国市校级月考)车间里有90名工人,每人每天能生产螺母24个或螺栓15多少人生产螺母才能使螺栓和螺那么应分配多少人生产螺栓,多少人生产螺母才能使螺栓和螺个,若一个螺栓配两个螺母,那么应分配多少人生产螺栓,母正好配套?母正好配套?解之,得.... B . C . D .【考点】由实际问题抽象出二元一次方程组.【分析】设每支中性笔x 元和每盒笔芯y 元,根据20支笔和2盒笔芯,用了56元;买了2支笔和3盒笔芯,用了28元.列出方程组成方程组即可.元.列出方程组成方程组即可.【解答】解:设每支中性笔x 元和每盒笔芯y 元,由题意得,元,由题意得,.故选:B .【点评】此题考查实际问题抽出二元一次方程组,此题考查实际问题抽出二元一次方程组,要注意抓住题目中的一些关键性词语,要注意抓住题目中的一些关键性词语,要注意抓住题目中的一些关键性词语,找找出等量关系,列出方程组.出等量关系,列出方程组.4.(2014•锦州)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,下列方程组正确的是(的是( )A .B .C . D .【考点】由实际问题抽象出二元一次方程组.【专题】年龄问题.年龄问题.【分析】由弟弟的年龄是x 岁,哥哥的年龄是y 岁,根据“哥哥与弟弟的年龄和是18岁,”,哥哥与弟弟的年龄差不变得出18﹣y=y ﹣x ,列出方程组即可.,列出方程组即可.【解答】解:设现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,由题意得岁,由题意得.故选:D .【点评】此题考查由实际问题列方程组,注意找出题目蕴含的数量关系解决问题.此题考查由实际问题列方程组,注意找出题目蕴含的数量关系解决问题.5.(2013•台湾)以下表示小勋到商店购买2个单价相同的布丁和10根单价相同的棒棒糖的经过.经过.小勋:“我要2个布丁和10根棒棒糖.”老板:“谢谢!这是您要的2个布丁和10根棒棒糖,总共200元!”老板:“小朋友,我钱算错了,我多算2根棒棒糖的钱,我退还你20元.”根据上文,判断布丁和棒棒糖的单价相差多少元?(根据上文,判断布丁和棒棒糖的单价相差多少元?( )3.(2014•南昌)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;元;小丽买了小丽买了2支笔和3盒笔芯,盒笔芯,仅用了仅用了28元.设每支中性笔x 元和每盒笔芯y 元,根据题意列元,根据题意列方程组方程组正确的是(正确的是( )A,解得:,∴布丁和棒棒糖的单价相差:40﹣10=30元.元.故选:B .【点评】本题考查列二元一次组解实际问题的运用,本题考查列二元一次组解实际问题的运用,二元一次方程的解法的运用,二元一次方程的解法的运用,二元一次方程的解法的运用,根据单价根据单价×数量=总价建立方程是解答本题的关键.总价建立方程是解答本题的关键.6.(2013春•金平区期末)某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为(组,则列方程组为( )A .B .C .D .【考点】由实际问题抽象出二元一次方程组.【分析】根据题意中的两种分法,分别找到等量关系:根据题意中的两种分法,分别找到等量关系:①组数×每组7人=总人数﹣3人;②组数×每组8人=总人数+5人.人.【解答】解:根据组数×每组7人=总人数﹣3人,得方程7y=x ﹣3;根据组数×每组8人=总人数+5人,得方程8y=x+5.列方程组为.故选:C 【点评】此题的关键是注意每一种分法和总人数之间的关系.此题的关键是注意每一种分法和总人数之间的关系.7.(2012•长春模拟)小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的给我,我就有10颗”,如果设小刚的弹珠数为x 颗,小龙的弹珠数为y 颗,则列出的方程组正确的是(颗,则列出的方程组正确的是( )A .B .C .D .【考点】由实际问题抽象出二元一次方程组.【专题】应用题.应用题.A .20 B .30 C .40 D .50 【考点】二元一次二元一次方程组方程组的应用.【分析】设布丁的单价为x 元/个,棒棒糖y 元/个,则2个布丁和12个棒棒糖的价格为200元建立方程为:2x+12y=200.根据2个布丁和10个棒棒糖的价格为180元建立方程为:2x+10y=180,将两个方程构成方程组求出其解即可.,将两个方程构成方程组求出其解即可.【解答】解:设布丁的单价为x 元/个,棒棒糖y 元/个,由题意,得:【分析】此题中的等量关系有:此题中的等量关系有:①把小刚的珠子的一半给小龙,小龙就有10颗珠子;颗珠子;②把小龙的给小刚,小刚就有10颗.颗.【解答】解:根据把小刚的珠子的一半给小龙,小龙就有10颗珠子,可表示为y+=10,化简得2y+x=20;根据把小龙的给小刚,小刚就有10颗.可表示为x+=10,化简得3x+y=30.∴或或.故此人有三种付款方式.故此人有三种付款方式.故选C .【点评】用方程解答实际问题时需要注意所求的解要符合实际意义.用方程解答实际问题时需要注意所求的解要符合实际意义.9.(2015春•文安县期末)扬州某中学七年级一班40名同学第二次为四川灾区捐款,共捐款2000元,捐款情况如下表:元,捐款情况如下表:捐款(元) 20 40 50 100 人数人数10 8 表格中捐款40元和50元的人数不小心被墨水污染已看不清楚、若设捐款40元的有x 名同学,捐款50元的有y 名同学,根据题意,可得方程组(名同学,根据题意,可得方程组( )A .B .C .D .【考点】由实际问题抽象出二元一次方程组.【专题】图表型.图表型.【分析】两个定量:捐40元和50元的总人数,捐40元和50元的总钱数.元的总钱数.等量关系为:①某中学七年级一班有40名同学;②共捐款2000元.元.列方程组为.故选:A .【点评】此题要能够首先根据题意中的等量关系直接表示出方程,再结合答案中的系数都是整数,运用等式的性质进行整理化简.整数,运用等式的性质进行整理化简.8.(2014春•滨湖区校级期末)某人只带了2元和5元两种货币,他要买一件27元的商品,而商店不给找钱,则此人的付款方式有(而商店不给找钱,则此人的付款方式有( ) A .1种 B .2种 C .3种 D .4种【考点】二元一次方程组的应用.【分析】本题中只有一个等量关系,本题中只有一个等量关系,但有两个未知数,属于二元一次方程题,不妨设但有两个未知数,属于二元一次方程题,不妨设2元和5元的货币各是x 和y 张,那么x 张2元的+y 张5元的=27元.元.【解答】解:设2元和5元的货币各是x 和y 张,张,则:2x+5y=27,∵x 和y 是货币张数,皆为整数,是货币张数,皆为整数,.解得元钱买门票.备元钱买门票.,.【考点】由实际问题抽象出二元一次方程组.【专题】销售问题.销售问题.【分析】设每支笔x 元,每个圆规y 元,根据买3支笔和2个圆规共花19元;买5支笔和4个圆规共花35元,列方程组.元,列方程组.【解答】解:设每支笔x 元,每个圆规y 元,元,由题意得,.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,解答本题的关键是读懂题意,解答本题的关键是读懂题意,设出设出未知数,找出合适的等量关系,列方程组.未知数,找出合适的等量关系,列方程组.13.(2013秋•江西校级期末)某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x 桶,买乙种水y 桶,则所列方程组是桶,则所列方程组是 .【考点】由实际问题抽象出二元一次方程组.【分析】本题的等量关系:(1)购买甲、乙两种纯净水共用250元;(2)乙种水的桶数是甲种水桶数的75%,列出方程组.,列出方程组.【解答】解:设买甲种水x 桶,买乙种水y 桶,桶,由题意可知:由题意可知:.故答案为:.【点评】根据实际问题中的条件列方程组时,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,要注意抓住题目中的一些关键性词语,要注意抓住题目中的一些关键性词语,找出等找出等量关系,列出方程组.量关系,列出方程组.14.(2003•杭州)中国CBA 篮球赛中,八一队某主力队员在一场比赛中22投14中,得了28分,除了3个三分球全中外,他还投中了个三分球全中外,他还投中了 8 个2分球和分球和 3 个罚球.个罚球.【考点】二元一次方程组的应用.【分析】由题意可的本题存在两个等量关系,即投中3分球+投中2分球+罚球=总投中球数,2分球得分+3分球得分+罚球得分=总得分数,根据这两个等量关系可列出方程组.总得分数,根据这两个等量关系可列出方程组.【解答】解:设2分球投中了x 个,罚球罚进y 个.个.则可列方程组为,解得:x=8,y=3.故投中了8个2分球和3个罚球.个罚球.12.(2014•丹东)小明和小丽到文化用品商店帮助同学们买文具.小明和小丽到文化用品商店帮助同学们买文具.小明买了小明买了3支笔和2个圆规共花19元;小丽买了5支笔和4个圆规共花35元.设每支笔x 元,每个圆规y 元.请列出满足题意的出满足题意的方程组方程组., 甲 乙进价(元/件)件) 15 35 售价(元/件)件) 20 45 两位数为两位数为 35,..解得:.这天萝卜的单价是(,,解得.答:应分配40人生产螺栓,50人生产螺母才能使螺栓和螺母正好配套.人生产螺母才能使螺栓和螺母正好配套.【点评】解题关键是要读懂题目的意思,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,根据题目给出的条件,找出合适的等量关系,根据题目给出的条件,找出合适的等量关系,列出列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.准确的找到等量关系并用方程组表示出来是解题的关键.【专题】应用题.应用题.【分析】如果设甲商品原来的单价是x 元,乙商品原来的单价是y 元,那么根据“甲、乙两种商品原来的单价和为100元”可得出可得出方程方程为x+y=100根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x (1﹣10%)+y (1+40%)=100(1+20%).【解答】解:设甲种商品原来的单价是x 元,乙种商品原来的单价是y 元,依题意得解得:.答:甲种商品原来的单价是40元,乙种商品原来的单价是60元.元.【点评】本题考查了二元一次本题考查了二元一次方程组方程组的应用,的应用,根据实际问题中的条件列方程组时,根据实际问题中的条件列方程组时,根据实际问题中的条件列方程组时,要注意抓要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.住题目中的一些关键性词语,找出等量关系,列出方程组.20.(2015秋•宁国市校级月考)车间里有90名工人,每人每天能生产螺母24个或螺栓15个,若一个螺栓配两个螺母,那么应分配多少人生产螺栓,那么应分配多少人生产螺栓,多少人生产螺母才能使螺栓和螺多少人生产螺母才能使螺栓和螺母正好配套?母正好配套?【考点】二元一次方程组的应用.【分析】可以设x 人生产螺栓,y 人生产螺母,根据总人数90人及螺丝和螺母的配套关系可得到两个方程,解方程组即可.可得到两个方程,解方程组即可.【解答】解:设应分配x 人生产螺栓,y 人生产螺母,根据题意得:。

二元一次方程组应用题经典题有答案(5)

二元一次方程组应用题经典题有答案(5)

实际问题与二元一次方程组题型归纳(5)知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。

这类问题比较直观,画线段,用图便于理解与分析。

其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。

这类问题也比较直观,因而也画线段图帮助理解与分析。

这类问题的等量关系是:双方所走的路程之和=总路程。

(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。

注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。

2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。

打几折就是按标价的十分之几或百分之几十销售。

(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。

②利息:银行付给顾客的酬金叫做利息。

③本息和:本金与利息的和叫做本息和。

④期数:存入银行的时间叫做期数。

⑤利率:每个期数内的利息与本金的比叫做利率。

⑥利息税:利息的税款叫做利息税。

列方程解应用题50道

列方程解应用题50道

列方程解应用题50道一、行程问题(10道)1. 甲、乙两地相距300千米,一辆汽车从甲地开往乙地,平均每小时行60千米,行了x小时后,距离乙地还有70千米。

求汽车行驶的时间x。

- 解析:汽车行驶的路程为速度乘以时间,即60x千米。

总路程是300千米,此时距离乙地还有70千米,那么汽车行驶的路程就是300 - 70 = 230千米。

可列方程60x=230,解得x = 23/6小时。

2. 一辆客车和一辆货车同时从相距540千米的两地相对开出,客车每小时行65千米,货车每小时行55千米。

经过x小时两车相遇,求x的值。

- 解析:两车相对而行,它们的相对速度是两车速度之和,即65 + 55 = 120千米/小时。

经过x小时相遇,根据路程=速度×时间,可列方程(65 + 55)x=540,120x = 540,解得x = 4.5小时。

3. 小明和小亮在400米的环形跑道上跑步,小明每秒跑5米,小亮每秒跑3米,他们同时从同一点出发,同向而行,经过x秒小明第一次追上小亮,求x。

- 解析:同向而行时,小明第一次追上小亮时,小明比小亮多跑了一圈,即400米。

小明每秒比小亮多跑5 - 3 = 2米。

可列方程(5 - 3)x = 400,2x = 400,解得x = 200秒。

4. 甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,经过x小时两人还相距10千米,A、B两地相距100千米,求x。

- 解析:甲、乙两人x小时一共走了(8 + 6)x千米,此时两人还相距10千米,而A、B两地相距100千米,可列方程(8+6)x+10 = 100,14x+10 = 100,14x = 90,解得x = 45/7小时。

5. 一辆汽车以每小时45千米的速度从A地开往B地,另一辆汽车以每小时55千米的速度从B地开往A地,两车同时出发,经过x小时相遇,A、B两地相距400千米,求x。

列方程组解应用题

列方程组解应用题

列方程组解应用题一.解答题(共22小题)1.某市热带植物园的门票价格规定如下表所列、某校七年级(1)、(2)两个班学生共103人去该园参观,其中七(1)班人数不少于30人且不多于50人、经预算,若两班都以班为单位分别购票,则总共付1950元.购票人数1~50人51~100人100人以上每人门票价20元18元15元(1)若两班学生合在一起作为一个团体购票,则最多可以节省门票多少元?(2)求两班各有多少名学生?2.某品牌计算机厂商为了支援受特大雪灾的南方某县的教育事业,在2008年春季开学初特赠送该县计算机若干台,经与物流公司联系,得知用A型汽车若干辆刚好装完;用B型汽车不仅可少用1辆,而且还有一辆车差30台计算机才能装满.已知A型汽车每辆装45台,B型汽车每辆比A型汽车多装15台,求共赠送计算机多少台?3.上学期,我们学习了解一元一次方程及用一元一次方程解决实际问题.本学期,我们又学习了解二元一次方程组,试用二元一次方程组及以前解决实际问题的经验解决下列问题:某校初一(1)班45名同学为“支援灾区”共捐款900元,捐款情况如下表:捐款(元) 5 10 20 50人数 6 7表中捐款10元和20元的人数不小心被墨水污染,看不清楚,请你确定表中的数据.4.某人沿公路匀速前进,每隔4min就遇到迎面开来的一辆公共汽车,每隔6min就有一辆公共汽车从背后超过他.假定汽车速度不变,而且迎面开来相邻两车的距离和从背后开来相邻两车的距离都是1200m,求某人前进的速度和公共汽车的速度,汽车每隔几分钟开出一辆?5.甲、乙两个学校盆景园各有若干盆景,为了春节布展要进行交流.如果甲校把自已的盆景送给乙校150盆,那么两校的盆景数相等,如果乙校送给甲校10盆,则甲校的盆景数是乙校的3倍,问甲、乙两校原来各有多少盆景?6.某酒店客房部在五•一黄金周期间,准备推出团体入住五折优惠的政策,在他的接待室中有一住宿原价格表,如下表所示,普通间/间豪华间/间三人间150元300元双人间140元400元现有一50人的旅游团,打算在黄金周期间入住该酒店,组织者一计算,双人普通间和三人普通间各住若干人正好住满,且花的住宿费用比原来节约了1510元,问旅游团住了多少普通三人间和双人间.7.某电视台在黄金时段的120秒钟广告时间,正好插播长度为15秒和30秒的两种广告.15秒广告每播一次收费0.6万元,60秒广告每播一次收费1万元.若电视台从中共得到收费4.4万元,问电视台插播两种广告的次数分别是多少?8.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时,当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻按原路向B地返行,甲、乙二人在第一次相遇后3小时36分又再次相遇,则A、B两地的距离是多少?9.某班委会为奖励在学校艺术节上表现突出的同学,购买相册和胶卷.如果买5本相册和4个胶卷需要139元,如果买4本相册和5个胶卷需要140元.问相册和胶卷的单价各是多少元?10.车间里有90名工人,每人每天能生产螺母24个或螺栓15个,若一个螺栓配两个螺母,那么应分配多少人生产螺栓,多少人生产螺母才能使螺栓和螺母正好配套?11.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?现在请你设未知数列方程组来解决这个问题.12.甲、乙两同学从A地到B地,甲步行速度为每小时3千米,乙步行的速度为每小时5千米,两人骑自行车的速度都是每小时15千米,甲先步行,乙先骑自行车,两人同时出发,走了一段路程后,乙下车步行,甲走到乙放车处骑自行车,以后不断交替行进,两人最后恰好同时到达B地,求甲走完全程的平均速度.13.辽南素以“苹果之乡”著称,某汽车公司计划装运A、B、C三种苹果去外地销售,按规定每辆汽车只能装同一种苹果,且必须装满.下表所示为装运A、B、C三种苹果的重量及利润.苹果品种 A B C每辆汽车运转量(吨) 2 1 1.5每吨苹果可获利润(万元) 5 7 4(1)用10辆汽车装运B、C两种苹果13吨到甲地销售.问装运B、C两种苹果的汽车各多少辆?(2)公司计划用20辆汽车装运A、B两种苹果36吨到乙地销售(每种苹果不少于1车),则利润是多少?14.某校初一有甲、乙、丙三个班,甲班比乙班多4个女生,乙班比丙班多1个女生,如果将甲班的第一组同学调入乙班,同时将乙班的第一组同学调入丙班,将丙班的第一组同学调入甲班,则三个班的女生人数恰好相等.已知:丙班第一组有2名女生,问:甲、乙两班第一组各有多少女生?15.一个水池,底部装有一个常开的排水管,上部装有若干个粗细相同的进水管,当打开4个进水管时,需要5小时注满水池;当打开2个进水管时,需要15个小时才能注满水池,现需要在2小时将水池注满,那么至少要打开多小个进水管?16.有甲、乙两堆小球,如果第一次从甲堆拿出和乙堆同样多的小球放到乙堆,第二次从乙堆拿出和甲堆剩下的同样多的小球放到甲堆,如此挪动后,甲、乙两堆小球恰好都是16个,那么,甲、乙两堆最初各有多少个小球?17.(2013•)人参是保健佳品.某特产商店销售甲、乙两种保健人参.甲种人参每棵100元,乙种人参每棵70元王叔叔用1200元在此特产商店购买这两种人参共15棵.求王叔叔购买每种人参的棵数.18.(2013•)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?19.(2013•乌鲁木齐)在水果店里,小买了5kg苹果,3kg梨,老板少要2元,收了50元;老王买了11kg苹果,5kg梨,老板按九折收钱,收了90元,该店的苹果和梨的单价各是多少元?20.(2013•)甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程(组)求解)21.(2013•)为响应“美丽清洁乡村美化校园”的号召,红水河中学计划在学校公共场所安装温馨提示牌和垃圾箱.已知,安装5个温馨提示牌和6个垃圾箱需730元,安装7个温馨提示牌和12个垃圾箱需1310元.(1)安装1个温馨提示牌和1个垃圾箱各需多少元?(2)安装8个温馨提示牌和15个垃圾箱共需多少元?22.(2012•)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.参考答案与试题解析一.解答题(共22小题)1.某市热带植物园的门票价格规定如下表所列、某校七年级(1)、(2)两个班学生共103人去该园参观,其中七(1)班人数不少于30人且不多于50人、经预算,若两班都以班为单位分别购票,则总共付1950元.购票人数1~50人51~100人100人以上每人门票价20元18元15元(1)若两班学生合在一起作为一个团体购票,则最多可以节省门票多少元?(2)求两班各有多少名学生?考点:二元一次方程组的应用.分析:(1)若两班合在一起统一购票,显然票价是每人15元,求得总价,进一步求得节省的票价;(2)设甲、乙班分别有学生x、y名.因为甲班人数不少于30人且不多于50人,所以乙班人数不小于53人,不大于73人,则甲班的票价是每人20元,乙班的票价是每人18元.根据学生共103人和两班都以班为单位分别购票,则共付1950元,列方程组求解.解答:解:(1)最多可以节省:1950﹣103×15=405(元);(2)设七年级(1)班有x名学生,七年级(2)班有y名学生,因为甲班人数不少于30人且不多于50人,所以依题意,得,解这个方程组,得,答:七年级(1)班有48名学生,七年级(2)班有55名学生.点评:本题考查了二元一次方程组的应用,注意理解各段票价的意义,这是解决问题的关键.2.某品牌计算机厂商为了支援受特大雪灾的南方某县的教育事业,在2008年春季开学初特赠送该县计算机若干台,经与物流公司联系,得知用A型汽车若干辆刚好装完;用B型汽车不仅可少用1辆,而且还有一辆车差30台计算机才能装满.已知A型汽车每辆装45台,B型汽车每辆比A型汽车多装15台,求共赠送计算机多少台?考点:二元一次方程组的应用.分析:等量关系为:45×A型汽车的辆数=计算机总台数;60×B型汽车的辆数=总台数+30.解答:解:设赠送计算机x台,A型汽车y辆,则B型汽车(y﹣1)辆,根据题意得:解得:答:共赠送计算机270台.点评:本题考查了二元一次方程组的应用,根据题意找到两个等量关系是列方程组的关键.3.上学期,我们学习了解一元一次方程及用一元一次方程解决实际问题.本学期,我们又学习了解二元一次方程组,试用二元一次方程组及以前解决实际问题的经验解决下列问题:某校初一(1)班45名同学为“支援灾区”共捐款900元,捐款情况如下表:捐款(元) 5 10 20 50人数 6 7表中捐款10元和20元的人数不小心被墨水污染,看不清楚,请你确定表中的数据.考点:二元一次方程组的应用.专题:应用题.分析:设捐款10元的x人,捐款20元的y人,根据45人共捐款900元列出二元一次方程组求解即可;解答:解:设捐款10元的x人,捐款20元的y人,根据题意,得:解得:,答;捐款10元的12人,捐款20元的20人.点评:本题考查了二元一次方程组的应用,解题的关键是设出未知数并利用两个等量关系求解.4.某人沿公路匀速前进,每隔4min就遇到迎面开来的一辆公共汽车,每隔6min就有一辆公共汽车从背后超过他.假定汽车速度不变,而且迎面开来相邻两车的距离和从背后开来相邻两车的距离都是1200m,求某人前进的速度和公共汽车的速度,汽车每隔几分钟开出一辆?考点:二元一次方程组的应用.专题:应用题.分析:设人前进的速度为am/min,公共汽车的速度为xm/min,根据每隔4min就遇到迎面开来的一辆公共汽车迎面开来相邻两车的距离是1200m,可列一方程;根据每隔6min就有一辆公共汽车从背后超过他且从背后开来相邻两车的距离是1200m,可列第二个方程,求解可得人前进的速度和公共汽车的速度.最后根据汽车每隔几分钟开出一辆=相邻两车的距离÷汽车的速度列出代数式即可得解.解答:解:设人前进的速度为am/min,公共汽车的速度为xm/min,由题意得:,解得:,则汽车每隔几分钟发车的时间=1200÷250=4.8(min).答:人前进的速度为50m/min,公共汽车的速度为250m/min,公共汽车每隔4.8min发一班.点评:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.5.甲、乙两个学校盆景园各有若干盆景,为了春节布展要进行交流.如果甲校把自已的盆景送给乙校150盆,那么两校的盆景数相等,如果乙校送给甲校10盆,则甲校的盆景数是乙校的3倍,问甲、乙两校原来各有多少盆景?考点:二元一次方程组的应用.专题:调配问题.分析:设甲校原来有盆景x盆,乙校有盆景y盆,甲校拿出150盆后,甲有(x﹣150),乙就有(y+150);若是乙校送给甲校10盆,甲就有(x+10),乙就有(y﹣10),根据题意可得方程组求解.解答:解:设甲校原来有盆景x盆,乙校有盆景y盆,,,故甲原来有盆景40盆,乙有170盆.点评:本题考查的是一个调配问题,关键是看清调配前后的变化以及题目给出的等量关系列方程求解.6.某酒店客房部在五•一黄金周期间,准备推出团体入住五折优惠的政策,在他的接待室中有一住宿原价格表,如下表所示,普通间/间豪华间/间三人间150元300元双人间140元400元现有一50人的旅游团,打算在黄金周期间入住该酒店,组织者一计算,双人普通间和三人普通间各住若干人正好住满,且花的住宿费用比原来节约了1510元,问旅游团住了多少普通三人间和双人间.考点:二元一次方程组的应用.分析:题最后的问题是旅游团住了三人普通间和双人普通间客房各多少间,跟表中的豪华间是没有关系的.那么根据人数和钱数就可以得到两个等量关系:三人普通间的人数+双人普通间的人数=50;三人普通间的钱数+双人普通间的钱数=1510.解答:解:设三人普通房和双人普通房各住了x、y间.根据题意,得解得:答:三人间普通客房、双人间普通客房各住了8、13间.点评:本题考查了二元一次方程组的应用,解题关键是弄清题意,摒弃没用的条件,找到有用的条件,最简单的等量关系,列出方程组.7.某电视台在黄金时段的120秒钟广告时间,正好插播长度为15秒和30秒的两种广告.15秒广告每播一次收费0.6万元,30秒广告每播一次收费1万元.若电视台从中共得到收费4.4万元,问电视台插播两种广告的次数分别是多少?考点:二元一次方程组的应用.分析:根据题意可知,总收入4.4万元,播放15秒的广告的时间+播放30秒的广告的时间=2×60.根据以上条件,可列出方程组求解;解答:解:设播放15秒的广告x次,播放30秒的广告y次,根据题意得:解得:答:15秒的4次,60秒的1次.点评:本题考查了二元一次方程组的应用,解题的关键是找到俩个等量关系并列出方程.8.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时,当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻按原路向B地返行,甲、乙二人在第一次相遇后3小时36分又再次相遇,则A、B两地的距离是多少?考点:二元一次方程的应用.专题:行程问题.分析:从题意可知按原来的速度4小时可走两个来回,都提高速度后个小时可走两个来回,可列出方程求解.解答:解:设甲的速度为x千米/时,乙的速度为y千米/时,由题意可得:可得:x+y=18A、B两地的距离=2(x+y)=2×18=36答:A、B两地的距离是36千米.点评:本题考查理解题意能力,关键是看出提高速度前两个来回所用的时间,和提高速度后两个来回所用的时间,做为等量关系列出方程求解.9.某班委会为奖励在学校艺术节上表现突出的同学,购买相册和胶卷.如果买5本相册和4个胶卷需要139元,如果买4本相册和5个胶卷需要140元.问相册和胶卷的单价各是多少元?考点:二元一次方程组的应用.分析:设相册每本x元,胶卷每本y元,根据买5本相册和4个胶卷需要139元,如果买4本相册和5个胶卷需要140元列出二元一次方程组求解即可.解答:解:设相册每本x元,胶卷每本y元,根据题意得:解得:答:相册每本15元,胶卷每个16元.点评:本题考查了二元一次方程组的应用,解题的关键是根据题目中的两个等量关系列出方程组.10.车间里有90名工人,每人每天能生产螺母24个或螺栓15个,若一个螺栓配两个螺母,那么应分配多少人生产螺栓,多少人生产螺母才能使螺栓和螺母正好配套?考点:二元一次方程组的应用.分析:可以设x人生产螺栓,y人生产螺母,根据总人数90人及螺丝和螺母的配套关系可得到两个方程,解方程组即可.解答:解:设应分配x人生产螺栓,y人生产螺母,根据题意得:,解得.答:应分配40人生产螺栓,50人生产螺母才能使螺栓和螺母正好配套.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示11.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?现在请你设未知数列方程组来解决这个问题.考点:二元一次方程组的应用.专题:应用题.分析:设每块地砖的长为xcm,宽为ycm,根据题意可得,解这个方程组即可求得x、y的值,即可解题.解答:解:设每块地砖的长为xcm,宽为ycm,则根据题意,得解这个方程组,得答:每块地砖的长为45cm,宽为15cm.点评:本题考查了二元一次方程组的应用,考查了二元一次方程组的求解,本题中列出关于x、y的关系式并求解是解题的关键.12.甲、乙两同学从A地到B地,甲步行速度为每小时3千米,乙步行的速度为每小时5千米,两人骑自行车的速度都是每小时15千米,甲先步行,乙先骑自行车,两人同时出发,走了一段路程后,乙下车步行,甲走到乙放车处骑自行车,以后不断交替行进,两人最后恰好同时到达B地,求甲走完全程的平均速度.考点:二元一次方程的应用.专题:行程问题.分析:根据题意甲、乙从A地到B地,画出如上图所示,即甲步行共走的路程恰好等于乙骑车共走的路程;甲骑车共走的路程恰好等于乙步行共走的路程.故首先假设甲步行共走x千米,骑车共走y千米,则乙骑车共行x千米,步行共行y千米.再根据路程=速度×时间,且甲、乙两人行走过程中经过的时间相同,那么可列出方程,解方程可得y用x表示表达式.再根据平均速度=,在求解过程中约去x,即可甲走完全程的平均速度.解答:解:设甲步行共走x千米,骑车共走y千米,则乙骑车共行x千米,步行共行y千米.则根据题意,得,解得y=2x.故甲的平均速度为(x+y)÷(+)=(千米/时);答:甲走完全程的平均速度(千米/时).走的路程恰好等于乙步行共走的路程;再就是求解过程中能够约去未知数.13.辽南素以“苹果之乡”著称,某汽车公司计划装运A、B、C三种苹果去外地销售,按规定每辆汽车只能装同一种苹果,且必须装满.下表所示为装运A、B、C三种苹果的重量及利润.苹果品种 A B C每辆汽车运转量(吨) 2 1 1.5每吨苹果可获利润(万元) 5 7 4(1)用10辆汽车装运B、C两种苹果13吨到甲地销售.问装运B、C两种苹果的汽车各多少辆?(2)公司计划用20辆汽车装运A、B两种苹果36吨到乙地销售(每种苹果不少于1车),则利润是多少?考点:二元一次方程组的应用.专题:应用题.分析:(1)设装B苹果的车x辆,装C苹果的车y辆,根据共10辆车和13吨苹果即可求得x、y的值;(2)设装A苹果的车a辆,装B苹果的车b辆,根据共20辆车和36吨即可求得a、b的值.解答:解:(1)设装B苹果的车x辆,装C苹果的车y辆,则x+y=10,x+1.5y=13,解得x=4,y=6,∴装运B苹果的汽车4辆,C苹果的汽车6辆;(2)设装A苹果的车a辆,装B苹果的车b辆,则a+b=20,2a+b=36,解得a=16,b=4,则利润为10×16+7×4=188.故利润为188万元.答:(1)装运B苹果的汽车4辆,C苹果的汽车6辆(2)利润为188万元.点评:本题考查了二元一次不等式的应用,利润的计算,本题中解关于x、y,a、b的方程组是解题的关键.14.某校初一有甲、乙、丙三个班,甲班比乙班多4个女生,乙班比丙班多1个女生,如果将甲班的第一组同学调入乙班,同时将乙班的第一组同学调入丙班,将丙班的第一组同学调入甲班,则三个班的女生人数恰好相等.已知:丙班第一组有2名女生,问:甲、乙两班第一组各有多少女生?考点:二元一次方程组的应用.分析:可以分设三个班原有的女生数为不同的未知数,根据调整后三个班的女生数相等可得到两个方程,解方程组即可.解答:解:设丙班原有女生x人,则乙班原有女生(x+1)人,甲班原有女生(x+5)人,再设甲班第一组有女生y人,乙班第一组有女生z,依题意有:,解得.答:甲班第一组有女生5人,乙班第一组有女生4人.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.准确的找到等量关系并用方程组表示出来是解题的关键,本题有三个等量关系,但只求两个解即可,第三个做跳板,不需求值.15.一个水池,底部装有一个常开的排水管,上部装有若干个粗细相同的进水管,当打开4个进水管时,需要5小时注满水池;当打开2个进水管时,需要15个小时才能注满水池,现需要在2小时将水池注满,那么至少要打开多小个进水管?考点:二元一次方程组的应用.专题:应用题.分析:由于进水量和出水量没给出,可以设每个进水管1小时的注水量为a,排水管1小时的排水量为b,两小时注满水池需打开x个进水管,根据当打开4个进水管时,需要5小时注满水池;当打开2个进水管时,需要15个小时才能注满水池可以得到两个方程,求方程组的解即可.解答:解:设每个进水管1小时的注水量为a,排水管1小时的排水量为b,若想两小时注满水池需打开x个进水管,,由①得到4a﹣b=6a﹣3b,即a=b ③,把③代入②得:2(ax﹣a)=5(4a﹣a),即2ax=17a,解得:x=8.5,由于水管不可能半个,所以至少要9个进水管才能在两个小时注满水池.答:至少开9个进水管.点评:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.解答本题的关键在于要设进水量和出水量为未知常量.16.有甲、乙两堆小球,如果第一次从甲堆拿出和乙堆同样多的小球放到乙堆,第二次从乙堆拿出和甲堆剩下的同样多的小球放到甲堆,如此挪动后,甲、乙两堆小球恰好都是16个,那么,甲、乙两堆最初各有多少个小球?考点:二元一次方程组的应用.专题:应用题.分析:设甲原先小球数为x、乙原先小球数为y,则根据第一次从甲堆拿出和乙堆同样多的小球放到乙堆,第二次从乙堆拿出和甲堆剩下的同样多的小球放到甲堆,如此挪动后,甲、乙两堆小球恰好都是16个列出方程组,并且求x、y的值即可解题.解答:解:设甲原先小球数为x、乙原先小球数为y,则挪动2次后甲剩下的小球数为2x﹣2y=16,乙剩下的小球数为2y﹣(x﹣y)=16,解得x=20、y=12,甲堆最初有20个小球,乙堆最初有12个小球.答:甲堆最初有20个小球,乙堆最初有12个小球.点评:本题考查了二元一次方程组的应用,本题中根据x、y的关系列出方程组并且求解x、y的值是解题的关键.17.(2013•)人参是保健佳品.某特产商店销售甲、乙两种保健人参.甲种人参每棵100元,乙种人参每棵70元王叔叔用1200元在此特产商店购买这两种人参共15棵.求王叔叔购买每种人参的棵数.考点:二元一次方程组的应用.专题:压轴题.分析:设王叔叔购买了甲种人参x棵,购买了乙种人参y棵,根据条件可以建立方程x+y=15和100x+70y=1200,由这两个方程构成方程组求出其解即可.解答:解:设王叔叔购买了甲种人参x棵,购买了乙种人参y棵,由题意,得。

第8讲 列方程解应用题

第8讲 列方程解应用题
示另一个量,解方程后,再代入求出另一个未知量 的值.
1.(2012·云南)某企业为严重缺水的甲、乙两所学校捐 赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙 校件数的2倍少400件,求该企业捐给甲、乙两所学校的矿 泉水各多少件.
解:设该企业捐给乙校的矿泉水件数是x,则捐给甲校 的矿泉水件数是2x-400,依题意得方程(2x-400)+x= 2000,解得x=800,2x-400=1200.即该企业捐给甲校的 矿泉水1200件,捐给乙校的矿泉水800件
【点评】 (1)现实生活中存在大量的实际应用 问题,需要用一元二次方程的知识去解决,解决 这类问题的关键是在充分理解题意的基础上,寻 求问题中的等量关系,从而建立方程.(2)解出 方程的根要结合方程和具体实际选择合适的根, 舍去不合题意的根.
4.(2014·新疆)如图,要利用一面墙(墙长为25米)建 羊圈,用100米的围栏围成总面积为400平方米的三 个大小相同的矩形羊圈,求羊圈的边长AB,BC各为 多少米.
A.438(1+x)2=389 B.389(1+x)2=438 C.389(1+2x)=438 D.438(1+2x)=389
5.(2014·随州)某小区2012年屋顶绿化面积为2000平
方米,计划2014年屋顶绿化面积要达到2880平方米
.如果每年屋顶绿化面积的增长率相同,那么这个
增长率是 20%
(1)若每副乒乓球拍的价格为x元,请你用含x的代数 式表示该校购买这批乒乓球拍和羽毛球拍的总费用;
(2)若购买的两种球拍数一样,求x.
解:(1)(4000+25x)元 (2)购买每副乒乓球拍用去了 x 元,则购买每副羽毛球拍 用去了(x+20)元,由题意得20x00=20x0+0+2205x,解得 x1=40,x2=-40,经检验,x1,x2 都是原方程的根, 但 x>0,∴x=40.即每副乒乓球拍的价格为 40 元

列方程解应用题100道附详解

列方程解应用题100道附详解

列方程解应用题100道附详解(1) 【浓度问题】甲、乙两种酒精的质量分数分别为80%和60%,现在要配制质量分数为65%的酒精4000克,应当从这两种酒精中各取多少克?(2) 【盈亏问题】同学们聚餐,若每桌坐8个人,则有6个人没座位;若每桌坐10人,则剩下一张桌子无人坐.问共有多少名同学?(3) 【行程问题】北京和上海相距1320千米.甲乙两列直快火车同时从北京和上海相对开出,6小时后两车相遇,甲车每小时行120千米,乙车每小时行多少千米?(4) 【和倍问题】甲、乙、丙三个数的和为112,丙数比乙数多4,乙数是甲数的4倍,求这三个数.(5) 【分数应用题】为了庆祝六一儿童节,学校买来红气球和黄气球共200个,红气球的14比黄气球的15多14个.学校买来红气球和黄气球各多少个? (6) 【盈亏问题】四(2)班同学去公园租船游玩,如果每条船坐6人,则空出1人的位置;如果每条船坐7人,则空出8人的位置.问有学生多少人?共租了多少条船?(7) 【盈亏问题】甲、乙、丙三人去看同一部电影,如用甲带的钱买三张电影票,还差39元;如果用乙带的钱去买三张电影票,还差50元;如果用甲、乙、丙三个人带去的钱买三张电影票,就多26元,已知丙带了25元钱,请问:一张电影票多少元?(8)【工程问题】大、小两个水池都未注满水.若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水.已知大池容积是小池的1.5倍,问:两池中共有多少吨水?(9)【和倍问题】甲水池有水60吨,乙水池有水30吨,如果甲水池的水以每分钟3吨的速度流入乙水池,那么多少分钟后乙水池的水是甲水池的2倍?(10)【位值原理】一个六位数的左边第一位数字是1.如果把这个数字移到最右边,那么所得的六位数是原数的3倍,求原数.(11)【浓度问题】甲容器中有质量分数为10%的盐水400克,乙容器中有质量分数为15%的盐水240克,往甲、乙两容器中倒入等量的水,使两个容器中盐水的质量分数相同,每个容器应加入多少水?(12)【位值原理】一个两位数,个位数字与十位数字之和为8,将个位数字与十位数字对调后,所得的新数比原来的数大54,求原来的两位数.(13)【鸡兔同笼】一共有5只鸡和兔放在同一个笼子里,它们一共有12只脚,那么笼子里一共有几只鸡?几只兔?(14)【盈亏问题】同学们来到探险世界,由勇敢的船长带领大家去体验原始森林中的河流之旅.如果每条船坐10人,则有8人没有座位;如果每条船改坐12人,则有4人没有座位.一共有多少名同学来到探险世界?(15)【分数应用题】小华和小红共有910元存款,小华存款的25和小红存款的14相等,她们俩入各有存款多少元?(16)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8.问:第二组有多少个数?(17)【盈亏问题】一个小组去山坡植树,如果每人栽4棵,还剩12棵;如果每人栽8棵,则缺4棵,这个小组有几人?一共有多少棵树苗?(18)【差倍问题】红盒子里有32个球,蓝盒子里有57个球,以后红盒子里每次放入9个,蓝盒子里每次放入4个,几次后两盒球数相等?(19)【盈亏问题】学校给一批新入学的学生分配宿舍.如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间.求学生宿舍有多少间?住宿学生有多少人?(20)【行程问题】某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了5.5时.问:他步行了多远?(21)【盈亏问题】有一棵古树,用一根绳子绕树三圈,余8米,如果绕树五圈,则绳子余下2米.你知道树周长是几米吗?绳子有多长?(22) 【分数应用题】阅览室看书的学生中,男生比女生多10人,后来男生减少14,女生减少16,剩下的男、女生人数相等,原来一共有多少名学生在阅览室看书? (23) 【和倍问题】有甲、乙、丙三个数,乙数是甲数的5倍,丙数比乙数少4,且三个数的和是95,求这三个数.(24) 【盈亏问题】孙悟空采到一堆桃子,平均分给花果山的小猴子吃.每只小猴子分9个,有4只小猴子没有分到;第二次重分,每只小猴分7个,刚好分完.问:孙悟空采到多少个桃子?小猴子有多少只?(25) 【分数应用题】甲仓有货物52吨,从乙仓运出15到甲仓,这时乙仓比甲仓多19,求乙仓原有货物多少吨.(26) 【鸡兔同笼】绘画室中有3腿的凳子和4腿的椅子共40张,房间里恰好有40位小朋友坐在这40张凳子和椅子上.昊昊数了一下,凳子的腿、椅子的腿和小朋友的腿数,总数是225.那么绘画室中,凳子有几张?(27) 【倍数问题】某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座.若每座住宅使用红砖80立方米,灰砖30立方米,那么,红砖缺40立方米,灰砖剩40立方米.问:计划修建住宅多少座?(28) 【和倍问题】六年级有三个班,共有153人.六(1)班人数是六(3)班的1.12倍,六(2)班比六(3)班少3人,三个班各有多少人?(29)【和倍问题】甲、乙两个农场一共收获了80万吨小麦,甲农场收获的小麦比乙农场的4倍多10万吨,则甲、乙两个农场各收获了多少万吨小麦?(30)【盈亏问题】小羽带了一些钱去买香蕉,如果买4千克,则还剩下8元钱;如果买6千克,则少4元,问:香蕉每千克多少元?小羽带了多少元?(31)【行程问题】已知铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度和长度.(32)【分数应用题】有—个水池,第一次放出全部水25,第二次放出40立方米,第三次又放出剩下水的25,池里还剩水57立方米,全池蓄水多少立方米?(33)【年龄问题】今年奶奶的岁数是小亮岁数的9倍,去年奶奶的岁数是小亮岁数的10倍,小亮和奶奶在去年和今年的岁数分别是多少岁?(34)【和倍问题】甲、乙、丙三个数的和是218,已知甲数除以乙数、乙数除以丙数都是商3余2,甲、乙、丙三个数各是多少?(35)【平均数问题】一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分.求这个班男生有多少人?(36)【行程问题】小明从家出发到学校,如果每分钟走40米,则要迟到2分钟,如果每分钟走50米,则早到4分钟,小明家到学校有多远?(37)【倍数问题】布袋里有红球和黄球若干个,红球比黄球的3倍多6个,若每次取出8个红球和4个黄球,当黄球正好取完时,红球还剩30个,袋子里原有红球、黄球各多少个?(38)【工程问题】筑路队计划每天筑路720米,正好按期筑完.实际每天多筑80米,这样,比原计划提前3天完成了筑路任务.要筑的路有多长?(39)【行程问题】甲、乙二人分别从A,B两地同时出发,两人同向而行,甲26分钟赶上乙;两人相向而行,6分钟可相遇.已知乙每分钟行50米,求A,B两地的距离.(40)【鸡兔同笼】商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元.问:胶鞋有多少双?(41)【行程问题】小红从家到火车站赶乘火车,每小时行4千米,火车开时她还离车站1千米;每小时行5千米,她就早到车站12分钟.小红家离火车站多少千米?(42)【和倍问题】在一个雾霾天,狐狸,兔子和狗熊去卖口罩.狐狸说:狗熊卖1元一个,我就卖4元一个;狗熊卖2元一个,我就卖8元一个;狗熊卖3元一个,我就卖12元一个…….兔子说:“我卖的价格是狐狸的一半.”结果它们卖了相同数量的口罩,一共卖了210元,那么狐狸卖了多少元?(43)【工程问题】甲、乙两队合修一条公路.甲队单独修要15天修完,乙队单独修要20天修完,现在两队同时修了几天后,由甲队单独修了8天修完,求乙队修了几天?(44)【差倍问题】甲仓有86吨货物,乙仓有42吨货物,从甲仓运多少吨货物到乙仓,才能使乙仓的货物比甲仓的2倍还少4吨?(45)【和倍问题】甲、乙、丙、丁四人共做零件265个,如果甲多做15个,乙少做5个,丙做的个数乘以2,丁做的个数除以3,那么四个人做的零件数恰好相等,问:丙做了多少?(46)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两组中所有数的平均数是8.问:第二组有多少个数?(47)【盈亏问题】商店卖一批小收音机.如果每台卖58元,则可盈利1200元;如果每台卖55元,则可盈利600元.问:商店原有多少台收音机?进价多少元?(48)【倍数问题】学学和思思有一些大白兔奶糖,本来学学的大白兔奶糖数量是思思的6倍,后来两人又各自得到了40块,结果学学的大白兔奶糖数量是思思的2倍,那么原来他们一共有块大白兔奶糖?(49)【位值原理】一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大到4倍,个位上的数字减去2,那么,所得的两位数比原来大58,求原来的两位数.(50) 【差倍问题】某区小学生进行两次数学竞赛,第一次及格的比不及格的3倍多4人;第二次及格人数增加了5人,正好是不及格人数的6倍.问共有多少学生参加数学竞赛.(51) 【分数应用题】一个班女同学比男同学的23多4人,如果男生减少3人,女生增加4人,男、女生人数正好相等.这个班男、女生各有多少人?(52) 【倍数问题】一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩、女孩各有多少人?(53) 【行程问题】两个集镇之间的公路除了上坡就是下坡,没有平路,客车上坡的速度保持为每小时15千米,下坡则保持为每小时30千米.现知客车在两地之间往返一次,需在路上行驶6小时,求两地之间的距离(54) 【行程问题】小强从家到学校,如果每分钟走50米,上课就要迟到3分钟,如果每分钟走60米,就可以比上课时间提前2分钟到校.小强从家到学校的路程是多少米?(55) 【和倍问题】甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1.问:乙数是多少?(56) 【分数应用题】甲、乙两班各有一个图书室,共有303本书,已知甲班图书的513和乙班图书的14合在一起是95本.那么甲班图书有多少本?(57) 【盈亏问题】五年级同学去划船,如果增加一只船,正好每只船上坐7人;如果减少一只船,正好每只船上坐8人.五年级共有多少人?(58) 【和倍问题】某小学图书馆里科技书的本数是故事书的3倍,活动课上,每班借7本科技书,5本故事书,故事书借完时,科技书还剩96本,图书馆里有科技书和故事书各多少本?(59) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(60) 【平均数问题】两组学生进行跳绳比赛,平均每人跳152下.甲组有6人,平均每人跳140下,乙组平均每人跳160下.乙组有多少人?(61) 【倍数问题】教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍.问:教室里原有多少个学生?(62) 【分数应用题】小伟和小刚共有800元存款,王伟取出自己存款的45,李刚取出自己存款的34,这时两人还共有存款170元,王伟和李刚原来各有存款多少元? (63) 【分数应用题】赵师傅以每只2.80元的价格购进一批玩具狗,然后以每只3.60元的价格卖出,当卖出总数的56时,不仅收回了全部成本,还盈利24元,赵师傅一共购进多少只玩具狗?(64)【百分数应用题】某商店出售一种商品,每售出1件可获利润18元,售出40%后每件减价10元出售,全部售完,共获利3000元.问商店共售出这种商品多少件?(65)【行程问题】大毛、二毛从相距1000米的学校和图书馆同时出发相向而行,8分钟后两人相遇,已知大毛的速度是二毛的4倍,求大毛每分钟走多少米?二毛每分钟走多少米?(66)【盈亏问题】同学们来到游乐园游玩,他们乘坐观光车.如果每车坐6人,则多出6人;如果每车坐8人,则少2人.一共多少辆观光车?共有多少名同学?(67)【盈亏问题】老师给同学们分苹果,每人分10个,就多出8个,每人分11个则正好分完,那么一共有多少名学生?多少个苹果?(68)【倍数问题】六(1)班有58人,六(2)班有26人,从六(1)班调多少人到六(2)班,才能使六(2)班人数比六(1)班人数的2倍少9人?(69)【盈亏问题】幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具,幼儿园有几个班?这批玩具有多少个?(70)【分数应用题】两座粮仓,甲仓装粮食100吨,如果从乙仓中运出13放到甲仓,这时,乙仓的粮食比甲仓少19.求乙仓原有粮食多少吨?(71) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(72) 【倍数问题】甲、乙二人2时共可加工54个零件,甲加工3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?(73) 【分数应用题】甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量.(74) 【分数应用题】两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?(75) 【分数应用题】甲书架上的书是乙书架上的56,两个书架上各借出154本后,甲书架上的书是乙书架上的47,甲、乙两书架上原有书各多少本? (76) 【分数应用题】甲、乙两校共有22人参加竞赛,甲校参加人数的15比乙校参加人数的14少1人,甲、乙两校各有多少人参加?(77)【倍数问题】有6筐苹果,每筐苹果个数相等.如果从每筐拿出40个,6筐苹果剩下的总和正好是原来2筐苹果的个数相等.原来每筐苹果有多少个?(78)【浓度问题】质量分数为20%,18%和16%的三种盐水混合后得到100克18.8%的盐水.如果18%的盐水比16%的盐水多30克,三种盐水各有多少克?(79)【和倍问题】甲布袋有280个玻璃球,乙布袋有40个玻璃球,从甲布袋取多少个放入乙布袋,才能使甲布袋的玻璃球比乙布袋的2倍还多35个?(80)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(81)【百分数应用题】小华到商店买红、蓝两种笔共66支,红笔每支定价5元,蓝笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,蓝笔按定价80%付钱.如果她付的钱比按定价少付了18%,那么她买了红笔多少支?(82)【行程问题】一辆汽车从甲地到乙地.第一小时行了全程的16,第二小时行了80千米,第三小时行了剩下的25,这时距乙地还有100千米,甲、乙两地相距多少千米?(83)【倍数问题】学校体育器材室里,足球的个数是排球的2倍.体育课上,每班借8个足球,5个排球,排球借完时,足球还有48个.体育器材室原有足球、排球各多少个?(84)【倍数问题】苹果的个数是梨的3倍,如果每天吃2个苹果、1个梨,若干天后,梨正好吃完,而苹果还剩下7个,原来的苹果有多少个?(85)【差倍问题】哥哥与弟弟做题比赛,哥哥做的数学题比弟弟多18道,哥哥做的题是弟弟的4倍.两人各做了多少道数学题?(86)【和倍问题】第一个正方形的边长比第二个正方形边长的2倍多1厘米,它们的周长之和是88厘米,它们的面积之和是多少?(87)【盈亏问题】三年级给优秀学生发奖品书,如果每个学生发5册还剩32册;如果其中10个学生发4册,其余每人发8册,就恰好发完.那么优秀学生有多少人?奖品书有多少册?(88)【行程问题】学校规定上午8时到校,小明去上学,如果每分钟走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,由家到学校的路程是多少?(89)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(90)【平均数问题】一个技术工带5个普通工人完成了一项任务,每个普通工人各得120元,这位技术工人的收入比他们6人的平均收入还多20元.问这位技术工得多少元?(91)【鸡兔同笼】六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了多少道题?(92)【分数应用题】甲、乙两个仓库共有510吨货物,从甲仓运走14,从乙仓运走13后,两仓库剩下的货物正好相等,甲、乙两个仓库原有货物各多少吨?(93)【平均数问题】五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了.经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?(94)【和倍问题】西红柿和黄瓜共有180千克,西红柿的3倍比黄瓜的2倍少10千克,西红柿和黄瓜各多少千克?(95)【盈亏问题】杨老师将一叠练习本分给第一小组同学.如果每人分7本还多7本;如果每人分8本则正好分完.请算一算,第一小组有几个学生?这叠练习本一共有多少本?(96)【百分数应用题】某文体商店用2200元进了一批篮球和足球,篮球比足球多15个,商店出售足球的定价是20元,篮球的定价比足球增加20%,这批球售完后共得利润1020元,足球和篮球各有多少个?(97) 【分数应用题】师徒两人合作加工400个零件,师傅加工的15比徒弟加工的14还多8个,师徒两人各加工了多少个?(98) 【盈亏问题】王老板承接了建筑公司一项运输1200块玻璃的业务,并签了合同.合同上规定:每块玻璃运费2元;如果运输过程中有损坏,每损坏一块,除了要扣除一块的运费外,还要赔偿25元.王老板把这1200块玻璃运送到指定地点后,建筑公司按合同付给他2076元.问:运输过程中损坏了多少块玻璃?(99) 【浓度问题】在质量分数为25%的食盐水20千克中加入10%的食盐水和白开水各若干千克,加入的食盐水是白开水的2倍,得到了质量分数为20%的食盐水,求加入10%的食盐水多少千克.(100) 【分数应用题】某车间生产甲、乙两种零件,生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有45合格,两种零件合格的共有42个,两种零件个生产了多少个?列方程解应用题100道详细解答(1)解:设甲种酒精取了x克,则乙种酒精取了(4000-x)克,可得方程x×80%+(4000-x)×60=4000×65%,x=1000.4000-1000=3000(克).所以从甲种酒精中取了1000克,从乙种酒精中取了3000克.(2)解:设有x张桌子,则8x+6=10x-10,x=8,同学:8×8+6=70(名)答:共有70名同学.(3)解:设乙车每小时行x千米.(120+x)×6=1320,x=100答:乙车每小时行100千米.(4)解:设甲数为x,则x+4x+(4x+4)=112,x=12.答:甲数是12,乙数是48,丙数是52.(5)解:设红气球有x个,根据题意列方程,14x-15×(200-x)=14,x=120.200-120=80(个),所以,学校买来红气球120个,黄气球80个.(6)解:设共租了x条船,则6x-1=7x-8,解得:x=7,6×7-1=41(人).答:学生共有41人,共租了7条船.(7)解:设一张电影票x元,则甲带了3x-39元,乙带了3x-50元,列出方程:3x-39+3x-50+25=3x+26,解得:x=30.答:一张电影票30元.(8)解:设小池注满水为x吨,则大池注满水为1.5x吨.由两池共有水量,可列方程1.5x+5=x+30.解得=50.两池共有水50+30=80(吨)(9)解:设x分钟以后乙水池的水是甲水池的2倍,30+3x=2(60-3x),x=10,答:10分钟以后乙水池的水是甲水池的2倍.(10)解:设这个六位数除去最左边的第一位数字1以后,所剩下的数为x,那么原六位数是100000+x,新六位数是10x+1,则10x+1=3(100000+x),x=42857.原六位数是142857.(11)解:设每个容器中应加入水x克,则根据题意,有40010%24015% 400240x x⨯⨯=++,x=1200.答:每个容器中应加入水1200克.(12)解:设原来两位数的十位数字为x,则个位数字是(8-x).10x+(8-x)+54=10(8-x)+x,x=1.答:原来的两位数为17.(13)解:设兔是ⅹ只,那么,鸡的只数就是(5-ⅹ)只,4x+2(5-x)=12,x=1,答:鸡有4只,兔有1只.(14)解:设有x条船,则10x+8=12x+4,解得:x=2,10×2+8=28(人).答:一共有28名同学.(15)解:设小华有x元,则小红有(910-x)元,根据题意列方程,25x=14(910-x),x=350.910-350=560(元).故小华有350元,小红有560元(16)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.答:第二组有3个数.(17)解:设这个小组有x人,则4x+12=8x-4,解得:x=4,4×4+12=28(棵).答:这个小组有4人,一共有28棵树苗.(18)解:设x次后两盒球数相等.则32+9x=57+4x,解得x=5.答:5次后两盒球数相等.(19)解:设学生宿舍有x间,则12x+34=14(x-4),解得:x=45,14×(45-4)=574(人),答:学生宿舍有45间,住宿生有574人.(20)解:设他步行了x千米,则有x÷5+(60-x)÷18=5.5.解得x=15(千米)(21)解:设树的周长是x米,则3x+8=5x+2,解得:x=3,3×3+8=17(米).答:树周长3米,绳子长17米.(22)解:设女生有x人,则男生有(x+10)人,(1-16)x=(x+10)×(1-14),x=90,90+90+10=190人(23)解:设甲数为x,则乙为5x,丙为5x-4,得:x+5x+5x-4=95.解得:x=9.答:三个数分别为9,45,41.(24)解:设小猴子有x只,则9(x-4)=7x,解得:x=18,7×19=126(个).答:桃子有126个,小猴子有18只.(25)解:设乙仓原有货物x吨,则(52+15x)×(1+19)=(1-15)x,x=100.答:乙仓原有货物100吨.(26)解:设有凳子x张,椅子(40-x)张,则3x+(40-x)×4+80=225,解得:x=15答:绘画室中共有15张凳子(27)解:设计划修建住宅x座,则红砖有(80x-40)立方米,灰砖有(30x+40)立方米.根据红砖量是灰砖量的2倍,列出方程80x-40=(30x+40)×2,解得:x=6.答:计划修建住宅6座.(28)解:设六(3)班有x人,则1.12x+(x-3)+x=153,x=50.答:六(1)班有56人,六(2)班有47人,六(3)班有50人.(29)解:设乙农场收获了x万吨,甲农场收获了(4x+10)万吨,x+(4z+10)=80,x=14,甲:4×14+10=66(万吨),答:甲农场收获了66万吨,乙农场收获了14万吨.(30)解:设香蕉每千克x元,则4x+8=6x-4,解得:x=6,4×6+8=32(元).答:香蕉每千克6元,小羽带了32元.(31)解:设火车长为x米.根据火车的速度得(1000+x)÷120=(1000-x)÷80.解得x=200(米),火车速度为(1000+200)÷120=10(米/秒)(32)解:设全池蓄水量为x,那么第一次放出的水应为25x,第二次放出的水是40立方米,第三次放出的水应是剩下的水的(x-25x-40)×25,则25x+40+(x-25x-40)×25+57=x,解得:x=225.答:全池蓄水量为225立方米.(33)解:设小亮今年x岁,则10×(x-1)=9x-1,x=9,答:小亮今年9岁,去年8岁;奶奶今年81岁,去年80岁.(34)解:设丙数为x,则(3x+2)×3+2+(3x+2)+x=218,x=16.甲数为152,乙数为50,丙数为16.(35)解:设这个班有男生=人.则90.5×x+21×92=91.2(x+21),解得:x=24人.答,这个班男生有24人.(36)解:设小明到学校原计划需要x分钟,则40(x+2)=50(x-4),解得:x=28.40×(28+2)=1200(米).答:小明家到学校1200米.(37)解:设取了x次,则4x×3+6=8x+30,x=6.答:红球有78个,黄球有24个.(38)解:设原计划x天完成,则720x=(720+80)(x-3),解得:x-30,720×30=21600(米).答:要筑的路长21600米.(39)解:设甲每分钟走x米.由A,B两地距离可得(x+50)×6=(x-50)×26.解得x=80(米).答:A,B两地距离为(80+50)×6=780(米). (40)解:设有胶鞋x双,则有布鞋(46-x)双.7.5x-5.9(46-x)=10,解得:x=21.答:胶鞋有21双.(41)解:设小红出发时离火车开还有x时.由到车站的距离可列方程4x+1=5(x-0.2),解得x=2,所以距离火车站2×4+1=9千米.答:小红家离火车站9千米.(42)解:假设狗熊卖了x元,由题意知,狐狸就是4x,兔子就是2x.那么4x+2x+x=210,x=30,狐狸卖了4×30=120元.(43)解:设甲先工作了x天后乙接着做,共用了(18-x)天完成,根据题意,有(1-1 20×x)÷115=18-x,x=12.18-x=6.所以甲工作了12天,乙工作了6天.(44)解:设从甲仓运x吨货物到乙仓,则42+x=(86-x)×2-4,x=42.答:应从甲仓运42吨货物到乙仓.(45)解:设相等的零件数为x个,则x-15+x+5+0.5x+3x=265,x=50.丙做了25个.(46)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.(47)解:设商店原有x台收音机,则58x-1200=55x-600,解得:x=200.(58×200-1200)÷200=52(元).答:商店原有200台收音机,每台进价52元.(48)解:设思思原有x块,学学原有6x块,2×(x+40)=6x+40,x=10,学学:6×10=60(块),两人一共:10+60=70(块).答:原来他们一共有70块大白兔奶糖.(49)解:设两位数的个位数字是x,则十位上的数字是(x-1),原来这个两位数是10×(x-1)+x,把十位数字扩大到4倍,是4(x-1),个位上的数字减去2,是(x-2),现在的两位数为10×4(x-1)+(x-2),根据题意可列出方程:10×4(x-1)+(x-2)=10×(x-1)+x+58,解得:x=3.所以原来的两位数是23.(50)解:设第一次不及格x人,则及格(3x+4)人,3x+4+5=6(x-5),x=13,13×3+4+13=56(人).答:共有56名学生参加数学竞赛.(51)解:设男生有x人,则女生有(23x+4)人.x-3=23x+4+4,x=33,23×33+4=26(人),答:这个班男生有33人,女生有26人.(52)解:设有x个男孩.因为每个人看不到自己的帽子,根据男孩看的情况,有女孩(x-5-1)个.再根据女孩看的情况,可列方程x=[(x-5-l)-1]×2.解得x=14人(53)解:设两地之间的距离为x,则x15+x30=6,x=60.答:两地之间的距离是60千米.(54)解:设小强到学校原计划需要x分钟,则50(x+3)=60(x-2),解得:x。

列方程(组)解应用题

列方程(组)解应用题

作业1.运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?2、五.一期间,某商场搞优惠促销,决定由顾客抽奖决定折扣,某顾客购买甲、乙两种商品,分别抽到七折和九折,共付368元,这两面种商品原价之和为500元,问两种商品原价各是多少元?3、甲、乙两人各有书若干本,如果甲从乙处拿来10本,那么甲拥有的书是乙所剩书的5倍;如果乙从甲处拿来10本,那么乙所有的书与甲所剩的书相等,问甲、乙两人原来各有几本书?4、张老师去文具店给美术小组的30名学生买铅笔和橡皮,到了商店后发现,若给全组每人都买2支铅笔和1块橡皮,则要按零售价计算,共需付款30元;若给全组每人都买3支铅笔和2块橡皮,则可按批发价,共需付款40.5元.已知铅笔每支批发价比零售价低0.05元,橡皮每块批发价比零售价低0.1元,求这家文具店每支铅笔和每块橡皮的批发价是多少?5、李明与王云分别从、两地相向而行,若两人同时出发,则经过80分钟两人相遇;若李明出发60分钟后王云再出发,则经过40分钟两人相遇,问李明与王云单独走完全程各需多少小时?6.两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.7、通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟。

求通讯员到达某地的路程是多少千米?和原定的时间为多少小时?8.某班同学去18千米的北山郊游。

只有一辆汽车,需分两组,甲组先乘车、乙组步行。

车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时到达北山站。

已知车速度是60千米/时,步行速度是4千米/时,求A点距北山的距离。

列方程(组)解应用题一、列方程(组)解应用题的步骤:①弄清题意和题目中的数量关系,用字母(如x、y)表示题目中的两个未知数;②找出能够表示应用题全部含意的两个相等关系;③根据两个相等关系列出代数式,从而列出两个方程并组成方程组;④解这个二元一次方程组,求出未知数的值;⑤检查所得结果的正确性及合理性;⑥写出答案.二、设未知数的几种常见方法(1)设直接未知数:即题目里要求的未知量是什么,就把它设做方程里的未知数,并且求几个设几个.(2)设间接未知数:即设的不是所求量.有些应用题,若设直接未知数,则所列的方程比较复杂;若改设间接未知数,则能列出既简单又易解的方程.(3)少设未知数:有些应用题,要求两个或更多个未知数,但根据各未知数之间的关系,只需设一个或少数几个未知数就可以求解.(4)多设未知数:有些应用题,不仅要设直接未知数,而且要增设辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知数.三、列方程(组)解应用题的常见题型.(1)和差倍分问题:基本等量关系:较大量=较小量+多余量;总量=倍数×1倍量。

方程应用题五年级上册

方程应用题五年级上册

方程应用题五年级上册一、购物问题。

1. 妈妈去超市买水果,买了5千克苹果,每千克苹果x元,付给售货员50元,找回15元。

求每千克苹果多少钱?- 解析:根据题意,买苹果花的钱数为5x元,付出的钱数 - 花掉的钱数 = 找回的钱数。

可列出方程50 - 5x=15。

- 解方程:- 首先将5x移到等号右边,15移到等号左边,得到50 - 15 = 5x。

- 即35 = 5x,解得x = 7。

所以每千克苹果7元。

2. 小明买了3支钢笔,每支钢笔x元,又买了一个笔记本花了5元,一共花了20元。

求钢笔的单价。

- 解析:买钢笔花的钱数是3x元,买钢笔的钱数+买笔记本的钱数 = 总共花的钱数,方程为3x+5 = 20。

- 解方程:- 先把5移到等号右边,得到3x=20 - 5。

- 即3x = 15,解得x = 5。

所以钢笔的单价是5元。

3. 小红去商店买文具,一支铅笔x元,她买了8支铅笔,还买了一个12元的文具盒,总共花费36元。

求铅笔的单价。

- 解析:买铅笔的钱数是8x元,买铅笔的钱数+买文具盒的钱数 = 总花费,方程为8x+12 = 36。

- 解方程:- 先把12移到等号右边,得到8x=36 - 12。

- 即8x = 24,解得x = 3。

所以铅笔的单价是3元。

二、工程问题。

4. 一项工程,甲队单独做需要x天完成,乙队单独做需要10天完成。

两队合作3天完成这项工程的一半。

求甲队单独完成这项工程需要多少天?- 解析:把这项工程的工作量看作单位“1”,甲队每天的工作效率是(1)/(x),乙队每天的工作效率是(1)/(10)。

两队合作3天的工作量为3((1)/(x)+(1)/(10)),它等于工程的一半(1)/(2),方程为3((1)/(x)+(1)/(10))=(1)/(2)。

- 解方程:- 先展开括号得到(3)/(x)+(3)/(10)=(1)/(2)。

- 再把(3)/(10)移到等号右边,得到(3)/(x)=(1)/(2)-(3)/(10)。

初三数学专题复习7应用题 (5)

初三数学专题复习7应用题 (5)

初三数学专题复习7---应用题列方程或方程组解应用题1.为了增强居民的节约用电意识,某市拟出台居民阶梯电价政策:每户每月用电量不超过230千瓦时的部分为第一档,按每千瓦时0.49元收费;超过230千瓦时且不超过400千瓦时的部分为第二档,超过的部分按每千瓦时0.54元收费;超过400千瓦时的部分为第三档,超过的部分按每千瓦时0.79元收费.(1)将按阶梯电价计算得以下各家4(2)设一户家庭某月用电量为x千瓦时,写出该户此月应缴电费y(元)与用电量x(千瓦时)之间的函数关系式.2. 某中学库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天修的桌凳套数是甲小组的1.5倍.求甲、乙两个木工小组每天各修桌凳多少套?3.如图是一块长、宽分别为60 m、50 m的矩形草坪,草坪中有宽度均为x m的一横两纵的甬道.(1)用含x的代数式表示草坪的总面积S ;(2)当甬道总面积为矩形总面积的4.10%时,求甬道的宽.解:4. 小明从家骑自行车出发,沿一条直路到相距2400m96m/min速度从邮局沿同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象。

(1)求s2与t之间的函数关系式;(2追上爸爸?这时他们距离家还有多远?5.列方程(组)解应用题:600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5000米,用时15分钟.求自行车路段和长跑路段的长度.6.某纺织厂有纺织工人300名,为增产创收,该纺织厂又增设了制衣车间,准备将这300名纺织工人合理分配到纺织车间和制衣车间.现在知道工人每人每天平均能织布30米或制4件成衣,每件成衣用布1.5米,若使生产出的布匹刚好制成成衣,求应有多少人去生产成衣?7.已知相邻的两根电线杆AB与CD高度相同,且相距BC=50m.小王为测量电线杆的高度,在两根电线杆之间某一处E架C ABD起测角仪,如图所示,分别测得两根电线杆顶端的仰角为45°、23°,已知测角仪EF 高1.5m ,请你帮他算出电线杆的高度.(精确到0.1m ,参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.43) 显示解析8. 列方程或方程组解应用题:某石化工程公司第一工程队承包了铺设一段输油管道的工程,原计划用9天时间完成;实际施工时,每天比原计划平均多铺设50米,结果只用了7天就完成了全部任务. 求实际施工时,平均每天铺设多少米?这段输油管道有多长?9. 某街道办事处需印制主题为“做文明有礼的北京人,垃圾减量垃圾分类从我做起”的宣传单. 街道办事处附近的甲、乙两家图文社印制此种宣传单的收费标准如下: 甲图文社收费s (元)与印制数t (张)的函数关系如下表:乙图文社的收费方式为:印制2 000张以内(含2 000张),按每张0.13元收费;超过 2 000张,均按每张0.09元收费.(1)根据表中给出的对应规律,写出甲图文社收费s (元)与印制数t (张)的函数关系式; (2)由于马上要用宣传单,街道办事处同时在甲、乙两家图文社共印制了1 500张宣传单,印制费共179元,问街道办事处在甲、乙两家图文社各印制了多少张宣传单?(3)若在下周的宣传活动中,街道办事处还需要加印5 000张宣传单,在甲、乙两家图文社中选择 图文社更省钱.10.列方程解应用题:某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?11.如图,某场馆门前台阶的总高度CB 为0.9m ,为了方便残疾人行走,该场馆决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角A∠为8°,请计算从斜坡起点A到台阶最高点D的距离(即斜坡AD的长).(结果精确到0.1m,参考数据:sin8°≈0.139,cos8°≈0.990,tan8°≈0.141)12.如图,某天然气公司的主输气管道途经A小区,继续沿A小区的北偏东60︒方向往前铺设,测绘员在A处测得另一个需要安装天然气的M小区位于北偏东30︒方向,测绘员从A处出发,沿主输气管道步行2000米到达C处,此时测得M小区位于北偏西60︒方向.现要在主输气管道AC上选择一个支管道连接点N,使从N处到M小区铺设的管道最短.(1)问:MN与AC满足什么位置关系时,从N到M小区铺设的管道最短?(2)求∠AMC的度数和AN的长.初三数学专题复习7---应用题 答案1.解:(1)……2分(2)当0230x ≤≤时,0.49y x =; 当230400x <≤时,0.54-11.5y x =;当400x >时,0.79-111.5y x =.2.解:设甲组每天修桌凳x 套,则乙组每天修桌凳为1.5x 套. 解得,x=16 经检验,x=16是原方程的解,且符合实际意义.1.5x=1.5 16=24 答:甲组每天修桌凳16套,乙组每天修桌凳为24套.3.解:(1)S = 6050⨯-(60 x + 2×50 x -2×x 2 )=3000 + 2x 2 -160x .(2)由题意得:-2x 2+160x =60501000104⨯⨯, 解得 x = 2 或 x = 78.又0<x <50,所以x = 2, 答:甬道的宽是2米. 4. (1)解:设b kt s 2+=∵t=2400÷96=25分∴(25,0)与(0,2400)在直线2s 上 ∴可得k=-96,b=2400 ∴2400t 96-s 2+= …(2)解法一:设小明从家出发经过t 分钟可以追上爸爸 小明的速度是:2400÷10=240米/分根据题意:可得 96t=240(t-12)解得 t=20 ,(25-20)×96=480米 ………………………5分答:小明从家出发经过20分钟可以追上爸爸,距家还有480米。

五年级上册数学人教版实际问题与方程例 5骄焦阳初中数学

五年级上册数学人教版实际问题与方程例 5骄焦阳初中数学

五年级上册数学人教版实际问题与方程例 5骄焦阳初
中数学
好的,以下是一个可能的五年级上册数学人教版实际问题与方程的例题:
例 5:骄阳初中数学兴趣小组共有 30 人,其中男生人数比女生人数多 5 人,求男、女生各有多少人?
这个问题可以用方程来解决。

我们可以设男生人数为 x,女生人数为 y。

根据题目,我们可以建立以下方程:
1. 男生和女生的总人数是 x + y = 30(男生人数加女生人数)。

2. 男生人数比女生人数多 5 人,所以 x = y + 5。

现在我们要来解这个方程组,找出 x 和 y 的值。

解得: [{x: 17, y: 13}]
所以,男生有 17 人,女生有 13 人。

列二元一次方程组解应用题专项练习50题(有答案)ok

列二元一次方程组解应用题专项练习50题(有答案)ok

列二元一次方程组专项练习50题(有答案)1、已知某铁路桥长800m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s,求火车的速度和长度.2、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,•一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?3、用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,而1个桶身1•个桶底正好配套做1个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?4、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.•已知过去两次租用这两种货车的情况如下表:现租用该公司3辆甲种货车及30元计算,则货主应付运费多少元?5、(长沙)某工厂第一季度生产甲、乙两种机器共480台,改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?6、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?7、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。

在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?8、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。

(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?9、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:小狗和小汽车。

列方程(组)解应用题

列方程(组)解应用题

---------------------------------------------------------------最新资料推荐------------------------------------------------------列方程(组)解应用题列方程(组)解应用题 (三年中考、模拟试题汇编) 行程问题1、一列火车从北京出发到广州大约需要 15 小时,火车出发后按原来的时间匀速行驶 8 小时后到达武汉,由于 2009 年 12 月世界时速最高铁路武广高铁正式投入运营,现在从武汉到广州平均时速是原来的 2 倍还多 50 公里,所需要时间比原来缩短了 4 个小时,求从北京到武汉的平均时速和提速后武汉到广州的平均时速。

2、小明乘坐火车从某地到上海去参观世博园,已知此次行程为 2160 千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用 6小时.求小明乘坐动车组到上海需要的时间.3、九年级(1)班的学生周末乘汽车到游览区游览,游览区到学校 120 千米,一部分学生乘慢车先行,出发 1 小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车速度的 1.5 倍,求慢车的速度.4、京通公交快速通道开通后,为响应市政府绿色出行的号召,家住通州新城的小王上班由自驾车改为乘坐公交车。

已知小王家距上班地点 18 千米。

他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的 2 倍还多 9 千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 3/7。

小王用自驾车方式上班平均每小时行驶多少千米? 5、 .在1 / 92019 年春运期间,我国南方发生大范围冻雨灾害,导致某地电路出现故障,该地供电局组织电工进行抢修。

供电局距离抢修工地 15 千米,抢修车装载着所需材料先从供电局出发, 15 分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地。

五年级用方程解决问题应用题

五年级用方程解决问题应用题

五年级用方程解决问题应用题
好的,以下是一些五年级的方程解决问题应用题:
1. 小明有10个苹果,小红有5个苹果,小明给小红多少个苹果后,两人的苹果数量相等?
2. 一辆公共汽车上有40人,中途有10人下车,然后有8人上车,到达目的地时还有多少人?
3. 有一块长方形地,长20米,宽15米,要在它四周植树,四个角各植一棵,每隔5米植一棵,一共要植多少棵树?
4. 一个平行四边形的周长是36厘米,一边长为9厘米,其他三边的长分别是多少厘米?
5. 一个等腰三角形的周长是21厘米,若有一边长是9厘米,则等腰三角形其他两边长多少厘米?
6. 小明今年12岁,5年后他的年龄将是妈妈的年龄的(1/3),妈妈今年多少岁?
7. 一条裤子的单价是27元,一件上衣的单价是它的倍,一件上衣多少元?
8. 一个长方形的周长是20厘米,长是a厘米,则宽是多少厘米?
9. 一个平行四边形的面积是平方分米,高是分米,底是多少分米?
10. 一个等腰三角形的底边长13厘米,其中一腰长11厘米,这个等腰三角形的周长是多少厘米.
希望这些题目可以帮助到你!。

小学列方程解应用题60道

小学列方程解应用题60道

小学列方程解应用题60道1、食堂买了8千克黄瓜,花费了15元,找回1.4元,每千克黄瓜的价格是多少?每千克黄瓜的价格为:(15-1.4)÷8=1.7元/千克。

2、买4支钢笔比买5支圆珠笔多花了2.2元,每支圆珠笔的价钱是0.6元,每支钢笔的价钱是多少元?设每支钢笔的价格为x元,则每支圆珠笔的价格为0.6元。

由题意可得:4x=5×0.6+2.2化简得:4x=5,因此每支钢笔的价格为1.25元。

3、明明家买了一套桌椅,6张椅子配一张桌子,一共花费了1120元。

如果一张餐桌的价格为730元,那么一把椅子的价格是多少元?设一把椅子的价格为x元,则有:6x+730=1120化简得:x=65元,因此一把椅子的价格为65元。

4、有甲、乙两个书架。

已知甲书架有540本书,比乙书架的3倍少30本。

乙书架有多少本书?设乙书架上的书本数为x,则甲书架上的书本数为3x-30.由题意可得:3x-30=540化XXX:x=190,因此乙书架上有190本书。

5、甲、乙两人做零件。

甲做了240个,比乙做的2倍还多40个。

乙做了多少个?设乙做的零件数为x,则甲做的零件数为2x+40.由题意可得:2x+40=240化简得:x=100,因此乙做了100个零件。

6、XXX带500元去买足球。

买了12个足球后,还剩140元。

每个足球的价格是多少元?设每个足球的价格为x元,则有:12x+140=500化简得:x=30元,因此每个足球的价格为30元。

7、奶奶买了4袋牛奶和2个面包,付给售货员20元,找回5.2元。

每个面包的价格为5.4元,每袋牛奶的价格是多少元?设每袋牛奶的价格为x元,则有:4x+2×5.4=20-5.2化简得:4x=9.4,因此每袋牛奶的价格为2.35元。

8、大瓜去买大米和面粉,每千克大米2.6元,每千克面粉2.3元,他买了20千克面粉和若干千克大米,共付款61.6元。

买了多少千克大米?设大瓜买了x千克大米,则有:2.6x+2.3×20=61.6化XXX:x=14千克,因此大瓜买了14千克大米。

列方程(组)、不等式(组)解应用题

列方程(组)、不等式(组)解应用题

列方程(组)、不等式(组)解应用题1、某城市按以下规定收取每月的水费:用水量不超过6吨,按每吨1.2元收费;如果超过6吨,未超过部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?2、江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克,求粗加工的该种山货质量.3、植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?4、整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?5、一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍.根据这些信息,请你推测这群学生共有多少人?6、A 、B 两地相距40km ,甲骑自行车从A 地出发1小时后,乙也从A 地出发,用相当于甲的1.5的速度追赶,当追到B 地时,甲比乙先到20分钟,求甲、乙两人的速度.7、 某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?8、北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)9、开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.10、某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.(1) 求A、B两种纪念品的进价分别为多少?(2) 若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?参考答案1、【解析】根据总费用等于水量乘以平均值得出方程,求出水量,然后求出水费。

列方程解应用题(优秀6篇)

列方程解应用题(优秀6篇)

列方程解应用题(优秀6篇)列方程解应用题篇一教学目标1.初步学会列方程解比较容易的两步应用题。

2.知道列方程解应用题的关键是找应用题中相等的数量关系。

教学重点列方程解应用题的方法步骤。

教学难点根据题意分析数量间的相等关系。

教学过程一、复习准备(一)口算(二)练习(课件演示:列方程解应用题)商店原有一些饺子粉,卖出35千克以后,还剩40千克。

这个商店原来有饺子粉多少千克?1.读题,现解题意。

2.学生独立解答。

3.集体订正。

解法一:35+40=75(千克)解法二:设原来有千克饺子粉。

答:原来有75千克饺子粉。

(三)教师说明:这种方法(解法二)就是我们今天要学习的列方程解应用题。

板书课题:列方程解应用题二、新授教学(一)教学例1(继续演示课件:列方程解应用题)例1.商店原来有一些饺子粉,每袋5千克,卖出7袋后,还剩40千克。

这个商店原来有多少千克饺子粉?1.读题,理解题意。

2.教师提问:通过读题你都知道了什么?教师板书:原有的重量-卖出的重量=剩下的重量3.教师提问:等号左边表示什么?等号右边表示什么?卖出的饺子粉重量直接给了吗?应该怎样表示?教师板书:原有的重量-每袋的重量×卖出的袋数=剩下的重量4.根据等量关系式列出方程并解答。

教师板书:解:设原来有千克饺子粉。

答:原来有75千克饺子粉。

5.小结:列方程解应用题的关键是什么?(二)教学例2 (继续演示课件:列方程解应用题)例2.小青买4节五号电池,付出8.5元,找回0.1元。

每节五号电池的价钱是多少元?1.读题,理解题意。

2.提问:要解答这道题关键是什么?3.学生独立解答。

4.学生汇报解答过程。

(三)总结列方程解应用题的一般步骤(继续演示课件:列方程解应用题)(四)练习商店原来有15袋饺子粉,卖出35千克以后,还剩40千克,每袋饺子粉重多少千克?三、课堂小结今天你学习了哪些知识?列方程解应用题的关键是什么?步骤呢?四、课堂练习(一)把每个方程补充完整。

列方程解应用题(带答案)

列方程解应用题(带答案)

列方程解应用题1、有一个三位数,其各位数字之和是16,十位数字是个位数字与百位数字之和,若把百位数字与个位数字对调,那么新数比原数大594,求原数?2、一个两位数,个位上的数字与十位上的数字和为10,如果把十位的数字与个位上数字对调,新数就比原数少36,求原来的两位数?3、一个两位数,个位数是十位上的数的3倍,若把这个十位上的数与个位上的数对调,那么所得的两位数比原来的大54,求原两位数。

4、学校组织新年联欢会,用于奖品的铅笔、圆珠笔、钢笔共232支,价值100元,其中铅笔的数量是圆珠笔的4倍,已知每支铅笔0.2元,每支圆珠笔0.9元,每支钢笔2.1元。

三种笔各值多少元?5、蜘蛛有8只脚,晴蜓有6只脚和2双翅膀,蝉有6只脚和一对翅膀,现在有这三种小虫共16只,共有110条腿,14对翅膀,问每只小虫各有多少只?6、有大、中、小卡车共42辆,每次共运货315箱,已知每辆大卡车每次能运10箱,中卡车每辆每次运8箱,小卡车每辆每次可运5箱,又知中卡车的辆数和小卡车同样多,求大卡车有多少辆?7、甲、乙两人分别从AB两地同时出发,如果两人同向而行,经过13分钟,甲赶上乙。

如两人相向而行,经过3分钟两人相遇。

已知乙每分钟行25千米,问AB两地相距多少米?8、一架飞机飞行于两城之间顺风需要6小时30分,逆风时需要7小时,已知风速是每小时26千米,求两城之间的距离是多少千米?9、学校组织暑假旅游,一共用了10辆车,大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多坐了520人,问大小客车各几辆?10、五年一班有52人做手工,男生每人做3件,女生每人做2件,已知男生比女生多做36件,求五年一班男女生各有多少人?答案1、设这个三位数是100a+10b+ca+b+c=16b=a+c100c+10b+c-(100a+10b+a)=5942、设这个两位数是10a+ba+b=1010a+b-(10b+a)=363、 b=3a10b+a-(10a+b)=544、设圆珠笔x支、钢笔y支,则铅笔4x支X+4x+y=2320.2×4x+0.9x+2.1y=1 005、设蜘蛛有x只,晴蜓有y只,蝉有z只。

小学六年级数学列方程解应用题及答案

小学六年级数学列方程解应用题及答案

列方程解应用题综合练习题(50道)1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。

还要运几次才能运完?2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?3、某车间计划四月份生产零件5480个。

已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。

甲每小时行45千米,乙每小时行多少千米?5、某校六年级有两个班,上学期级数学平均成绩是85分。

已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?6、甲乙两人同时从同一地点向相反方向行走,3.5小时后两人相距38.5千米。

甲每小时行走5千米,乙每小时行走多少千米?7、5个足球比5个排球贵62.5元,已知每个排球52.5元,每个足球多少元8、一批煤,每天烧3.6吨,可以烧30天,如果每天烧2.4吨,可以烧多少天?9、一只足球46.8元,比一只排球价钱的3倍少1.2元,一只排球的价钱是多少元?10、果园里有苹果树270棵,比梨树的3倍少30棵,梨树有多少棵?11、王阿姨买空11个暖瓶,付了200元,找回35元,每个暖瓶多少元?12、一个长方形的周长是35米,长是12.5米,它的宽是多少米?13、李明和王军共有邮票54张,王军的张数是李明张数的2倍,李明和王军各有邮票多少张?14、两袋大米共重104千克,甲袋重量是乙袋的3倍,两袋面粉各多少千克?15、学校买一台电脑和一台彩电共用去8860元,已知一台电脑的价格是彩电的2倍,一台电脑和一台彩电各是多少元?16、同学们植树,五六年级一共植了560棵,六年级植的棵数是五年级的1.5倍,两个年级各植多少棵?17、两袋面粉共88千克,甲袋的重量是乙袋的3倍,两袋各多少千克?18、两袋面粉,甲比乙重34千克,甲袋是乙袋的3倍,两袋各多少?19、少先队员在果园,上午摘了18筐苹果,比下午少摘了100千克,下午摘了22筐,平均每筐苹果重多少千克?20、今年10月份李明家用电131度,王强家用电120度,王强家少缴电费5.5元。

列方程解应用题(专题训练)

列方程解应用题(专题训练)

列方程解应用题(专题训练)1、世界第一河尼罗河全长6670 km,比亚洲第一河长江还长 371km ,长江长多少千米?2、少年宫舞蹈队有 24 人,比合唱队少34 人,合唱队有多少人?3、某化肥厂三月份生产化肥 935 吨,比四月份生产少 76 吨,四月份生产化肥多少吨?4、五年级有 32 个同学参加数学兴趣小组,是参加体育小组人数的 2 倍,参加体育小组有多少人?5、地球赤道长约 400076km ,约是地球直径的 3.14 倍,地球直径大约有多长?6、幼儿园大班小朋友做 32 朵红花,送给小班 11 朵后,两班的花数相等,小班原有红花多少朵?7、学校饲养小组今年养兔子 25 只,比去年养的只数的 3 倍少 8 只,去年养兔子多少只?8、地球绕太阳一周要用 365 天,比水星绕太阳一周所用的时间的 4 倍少 13 天。

水星绕太阳一周要用多少天?9、一个等腰三角形的周长是 86 厘米,底是 38 厘米,它的腰是多少厘米?10、两个火车站相距 425 千米。

甲、乙两列火车同时从两站相对开出,经过2.5 小时相遇,甲车每小时行90千米,乙车每小时行多少千米?11、两个工程队共同开凿一条117米长的隧道,各从一端相向施工,13天打通。

甲队每天开凿4米,乙队每天开凿多少米?12、有36米布,正好裁成10件大人衣服和8件儿童衣服。

每件大人衣服用布 2.4 米,每件儿童衣服用布多少米?13、李晖买了一支铅笔和一本练习本,一共花了 0.48 元,练习本的价钱是铅笔价钱的2 倍,铅笔和练习本的单价各是多少钱?14、小强妈妈的年龄是小强的 4 倍,小强比妈妈小 27 岁,他们两人的年龄各是多少?15、有两袋大米,甲袋大米的重量是乙袋大米的 3 倍,如果再往乙袋大米装 5 千克大米,两袋大米就一样重,原来两袋大米各有多少千克?16、一块长方形菜地的面积是 180 平方米,它的宽是 12 米,长是多少米?17、爸爸的体重是 66 千克,比小军的2 倍轻 24 千克,小军的体重是多少千克?18、北京和上海相距 1200km 两列直快火车同时从北京和上海相对开出,两车速度相同,6 小时后两车相遇,它的速度是多少?19、幼儿园大班小朋友做了 32 朵花,其中红花朵数是黄花朵数的 3 倍,做红花和黄花各多少朵?20、学校的足球场宽21.5m 的长方形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

NO.9《列方程组解应用题(一)》导学案
小组姓名评价
【使用说明】
1.结合学习目标用10分钟时间预习课本P61-63,学会用列二元一次方程组解应用题。

2.独立完成学案,不允许讨论,注意书写工整,过程规范,疑难问题做好标记,以备课上交流讨论、质疑。

3.在完成导学案的基础上,A层同学能对带★的题目进行总结;B层同学能对巩固练习题目进行总结及拓展研究;C层同学力争对能力提升★题目进行尝试、完成。

【学习目标】
1.能根据题目中的数量关系,熟练列出二元一次方程组解应用题,。

2.自主学习,合作探究,学会将具体问题中的数量关系转化为二元一次方程组的的方法和技巧。

3.积极学习,挑战,合作,在学习的超市中享受合作学习的快乐,品味数学与生活的联系。

【预习案】
1.小亮和小英练习赛跑,如果小亮让小英先跑10米,那么小亮跑5秒就追上小英;如果小亮让小英先跑2秒,那么小亮跑4秒就追上小英。

两人每秒各跑多少米?
通过仔细审题,我们知道上题中的等量关系是:
(1)小亮跑5秒的路程= 小英跑5秒的路程+ 10米
(2)小亮跑4秒的路程= 小英跑(4+2)秒的路程
解:设小亮每秒跑
x米,小英每秒跑y米
根据题意得:
解这个方程组得:
x y
=⎧

=⎩
经检验,
答:
【训练案】
2.(古代数学问题)几个合作经营的商人正分配所得银两,某人在隔壁听见他们说,如果每人分得7两,就剩下4两;如果每人分得9两,还少半斤(旧时1斤=16两)。

你知道共有多少商人和多少银两吗?
3.2010年4月份中国民航国内和国际航线运送旅客总人数共2160万人,其中,国内和国际航线运送旅客人数比2009年4月份分别增长13.2%和28.2%,2009年4月份国内航班和国际航班运送旅客总人数为1894万人。

那么2009年4月份国内和国际航班运送旅客分别有多少万人?(结果精确到万人)
4.果园要将一批水果运往某地,打算租用某汽车运输公司的甲、乙两种货车。

过去两次租用这两种货车的信息如下表所示:
30元,果园应付运费多少元?
【探究案】
★5.一张方桌由一个桌面和四条桌腿组成。

如果1立方米木料可制作桌面50个,或制作桌腿300条,现有5立方米的木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张?。

相关文档
最新文档