4.3.3--2余角和补角性质

合集下载

湘教版数学七年级上册4.3.2《余角和补角》说课稿1

湘教版数学七年级上册4.3.2《余角和补角》说课稿1

湘教版数学七年级上册4.3.2《余角和补角》说课稿1一. 教材分析《余角和补角》是湘教版数学七年级上册4.3.2的内容。

这部分内容是在学生已经掌握了角的分类、垂线的性质等知识的基础上进行学习的。

本节课的主要内容是引导学生探究余角和补角的概念,理解余角和补角的关系,并能运用余角和补角解决一些简单的问题。

教材通过生活实例引入余角和补角的概念,让学生在具体的情境中感受和理解这两个概念,进而掌握它们之间的关系。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和探究能力,他们对于角的分类和垂线的性质有一定的了解。

但是,对于余角和补角的概念和关系,他们可能还比较陌生。

因此,在教学过程中,我需要引导学生通过观察、操作、思考、交流等活动,理解和掌握余角和补角的概念和关系。

三. 说教学目标1.知识与技能目标:让学生理解余角和补角的概念,掌握余角和补角之间的关系,并能运用余角和补角解决一些简单的问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生独立思考和合作交流的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的抽象思维能力。

四. 说教学重难点1.教学重点:余角和补角的概念,余角和补角之间的关系。

2.教学难点:余角和补角的概念的理解和运用。

五. 说教学方法与手段在教学过程中,我将采用启发式教学法、情境教学法和小组合作学习法等多种教学方法。

同时,我还会利用多媒体课件、实物模型等教学手段,帮助学生更好地理解和掌握余角和补角的概念和关系。

六. 说教学过程1.导入:通过生活实例引入余角和补角的概念,让学生在具体的情境中感受和理解这两个概念。

2.探究:让学生通过观察、操作、思考、交流等活动,自主探究余角和补角之间的关系。

3.讲解:引导学生通过实例理解余角和补角的概念,讲解余角和补角之间的关系。

4.练习:设计一些练习题,让学生运用余角和补角的概念和关系解决问题。

5.总结:对本节课的内容进行总结,强化学生对余角和补角概念和关系的理解。

4.3.3余角和补角的教案.3.3余角和补角

4.3.3余角和补角的教案.3.3余角和补角

4.3.3 余角和补角教学目标:1、知识技能:(1)在具体的情景中认识一个角的余角和补角,并会用文字语言、图形语言、符号语言进行描述;(2)掌握余角和补角的性质,并能初步进行简单的推理和计算。

2、过程与方法:进一步提高学生的几何语言表达能力,发展空间观念,学会简单的逻辑推理,并能对问题的结论进行归纳。

3、情感态度与价值观:在具体的情景中,通过观察、交流、推理和归纳,获得必需的数学知识,激发学生的学习兴趣。

学情分析:余角和补角是人教版七年级上册第4章《几何图形初步》第3节“角”中两个比较重要的基本概念,是后续学习图形与几何的预备知识。

通过对探索余角和补角的性质的学习,为今后证明角的相等提供了一种依据和方法。

在这之前学生已经学过角的相关概念、角的比较和度量,对角度之间的和差倍分运算、简单的几何语言有了初步的认识,推理证明过程的书写也有过初步的接触,但由于刚接触几何,对几何概念的理解和几何语言的书写还存在较多问题,对几何知识的运用还有一定的难度,普遍学生感到几何入门较难。

并且我班学生学习基础比较薄弱,识图能力较差,学生之间的基础知识、综合素质差异较大。

因此本节努力从学生最熟悉的情景入手,通过几何图形引入余角和补角的概念,然后通过做一做得到的结论推出余角和补角的性质,采取即时练习和分层练习,争取学生在原有的基础上能运用上述性质来解决问题,从而达到人人都有所收获的教学效果。

同时根据本班学生的特点和实际以及时间安排的关系,把课本例3安排在第二课时的综合练习中解决,重点难点:1、重点:余角和补角的概念和性质。

2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质并应用。

21教学过程: 一、 谈话导入:在前面我们学过了一些角,有些角两者之间有一定的联系,如在一幅三角板中,每一块都有一个角是90°,且另外两角为30°、60°和45°,45°那么它们两者之间有何关系呢?我们来学习4.3.3 余角和补角。

人教版数学七年级上册4.3.3:余角、补角的概念和性质(教案)

人教版数学七年级上册4.3.3:余角、补角的概念和性质(教案)
-难点在于将理论知识应用到解决具体问题时,如何识别问题中的余角和补角关系。
-难点在于在实际问题中灵活运用余角和补角的性质,进行角度的转换和计算。
举例:对于性质的掌握,可以通过以下步骤进行教学:
a.引导学生观察图形,直观感受余角和补角的关系。
b.通过具体例题,如“如果一个角的度数是40°,那么它的余角和补角分别是多少度?”,让学生尝试自己推导出答案。
另外,在学生小组讨论环节,虽然大部分学生能够积极参与,但仍有个别学生显得比较被动。为了提高这部分学生的参与度,我打算在接下来的课程中,多设计一些互动性强的活动,鼓励他们大胆发表自己的观点。
b.提供实际操作的机会,如让学生用量角器在纸上画出特定角度,并找出其补角或余角。
c.引导学生进行小组讨论,分享解题策略,以促进学生之间的相互学习和启发。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《余角、补角的概念和性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要补全角度的情况?”比如,当我们用直角尺测量一个角度时,如何快速找出另一个角度的度数。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索余角和补角的奥秘。
其次,在新课讲授环节,我发现学生在案例分析部分表现得比较积极,能够跟着我的思路走。但在重点难点解析时,尤其是从角度和推导出补角或余角的度数这一部分,学生们的掌握程度不够理想。我意识到,对于这个难点的讲解,我可能需要再细化一些,用更简单易懂的语言和示例来进行解释。
在实践活动和小组讨论环节,学生们表现出了很高的热情。通过分组讨论和实验操作,他们能够将所学的理论知识应用到实际问题中。但在讨论过程中,我也发现有些小组在问题的深入挖掘上还不够,可能需要我在今后的教学中多给予一些引导和启发。

人教版数学七年级上册4.3.3余角和补角

人教版数学七年级上册4.3.3余角和补角
4.3.3 余角和补角
情境引入
❖说一说
你知道一副三角尺中每一块三角尺中 各角的度数吗?
A D
B C
45°,45°,90°
E F
30°,60°,90°
1.互为余角的定义:
一般地,如果两个角的和等于90 °(直 角),就说这两个角互为余角,简称两个角 互余.
∠1 =90°—∠2 几何语言表示为: 如果∠1+∠2= 90°, 那么∠1与∠2互余.

(2)请写出图中相等的锐角,
∠C= 42°,则∠A = ,理由是
.
一般地,如果两个角的和等于90 °(直角),就说这两个角互为余角,简称两个角互余.
理由.请用一句话概括这一规律. 已知一个角的补角是这个角的余角的4倍,
如图,点A、O、B在同一条直线上,∠AOD=∠COE=90°.
∠3 = 180°—∠4
第1组互余:
∠COD 和∠COE互为余角,
同理,第2组互余: ∠COD 和∠BOE互余, 第3组互余:∠AOD 和∠COE互余,
第4组互余:∠AOD 和∠BOE也互余. ∠AOD 和∠BOD互补,∠BOE 和∠AOE互补. ∠COD 和∠BOD互补,∠COE 和∠AOE互补.
训练提升
1.如图,点A、O、B在同一条直线上,
同时,在它北偏东40°、南偏西10°、西北方向上又分别发现了客轮B、货轮C和海岛D.
方向角为
.
方向角:一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北
(南)偏东(西)××度.
通过这节课的学习,你有什么收获?
方向角为
.
(1) 射线 OA 表示的
∠AOD=∠COE=90°.

4.3.3余角和补角(教案)-七年级上学期数学教材(人教版)

4.3.3余角和补角(教案)-七年级上学期数学教材(人教版)
5.增强问题解决能力:通过设置实际问题,激发学生运用余角和补角知识解决问题的兴趣,提高他们分析问题和解决问题的能力。
三、教学难点与重点
1.教பைடு நூலகம்重点
-重点一:余角和补角的定义及其性质。通过具体实例,让学生理解并掌握两个角的和分别为90度和180度时,这两个角互为余角和补角的关系。
-举例:一个角为30度,求其余角和补角。余角为60度,补角为150度。
-突破方法:设计不同难度的练习题,让学生逐步提升计算能力,同时教师及时纠正错误并提供反馈。
-难点三:将余角和补角知识应用于解决复杂问题。学生在应用知识解决实际问题时可能会感到困惑,需要教师引导他们分析问题并逐步解决。
-突破方法:通过分组讨论和问题解决策略的教学,帮助学生建立解题思路,逐步提高问题解决能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解余角和补角的基本概念。余角是指两个角的和为90度时,这两个角互为余角;补角是指两个角的和为180度时,这两个角互为补角。它们在几何图形的求解和实际问题的应用中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。比如在一个直角三角形中,一个角为30度,那么另一个角的余角为60度,补角为150度。这个案例展示了余角和补角在实际中的应用,以及它们如何帮助我们解决问题。
4.3.3余角和补角(教案)-七年级上学期数学教材(人教版)
一、教学内容
本节课选自人教版七年级上学期数学教材第四章第三节第三部分“4.3.3余角和补角”。教学内容主要包括以下两个方面:
1.余角:定义两个角的和为90度的角互为余角,即若两个角的度数分别为α和β,则α + β = 90°。通过实例和练习,让学生掌握求一个角的余角的方法。

4.3.3 余角和补角

4.3.3 余角和补角

80︒65︒46︒44︒25︒10︒课题:§4.3.3 余角和补角备课人: 教学目标: 知识与技能:⑴、在具体的现实情境中,认识一个角的余角和补角掌握余角和补角的性质。

⑵、了解方位角,能确定具体物体的方位。

过程与方法:进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。

情感、态度与价值观:体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。

教学重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点。

教学难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点。

教学方法:疑探展评用 教 具:多媒体 教学流程: 一设疑:让学生观察意大利著名建筑比萨斜塔。

比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工。

设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜。

2.提出问题形成自探提纲( 预设)。

(1)、探究互为余角、互为补角的定义; (2)余角、补角的性质; (3)怎样确定方位角。

二、探究:⑴:图中给出的各角,那些互为余角?南北西170︒120︒100︒150︒80︒10︒30︒60︒⑵:图中给出的各角,那些互为补角?(3)填下列表:4、如图.货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C 和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C 和海岛D 方向的射线.(二)小组合探。

对于自探问题中解决不了的问题在小组内合探解决。

三、展示:板书展示,主要展示计算过程。

四、评价:1、学生评价:主要评价展示题的优点与不足。

2、教师点评:在学生评价的基础上不重复评价,适当补充重点地方加以强调。

4.3.3 余角和补角 教案

4.3.3 余角和补角 教案

4.3.3余角和补角◇教学目标◇【知识与技能】1.掌握余角、补角的定义、性质及应用;2.理解方位角的意义,会画方位角.【过程与方法】经历余角、补角性质的推导和应用过程,初步掌握图形语言与符号语言之间的相互转化,进一步提高识图能力,发展空间观念.【情感、态度与价值观】通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.◇教学重难点◇【教学重点】方位角的辨析与应用.【教学难点】余角、补角的性质及应用.◇教学过程◇一、情境导入知识回顾(1)叙述直角、平角的概念.(2)画出直角、平角的图形.二、合作探究探究1探究余角、补角的性质典例1点A,O,B在一直线上,射线OD,OE分别平分∠AOC和∠BOC.(1)图中互余的角有对;(2)∠3的补角是.[解析](1)由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对;(2)∠3的补角是∠AOE.[答案](1)4如图是一张不规则的纸,先任意折叠,得折痕OC,展开后,通过点O折叠使OA落在OC上,得折痕OD,同样将OB落在OC上得折痕OE,沿着这三条折痕剪开,得到四个角,用其中的两个角拼成一个直角,共有不同的拼法是()A.1种B.2种C.3种D.4种[解析] 由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对.[答案] D探究2角的计算典例2 一个角的补角与这个角的余角的和是平角的34还多1°,求这个角. [解析] 设这个角为x °,则它的余角为(90-x )°,补角为(180-x )°,则(90-x+180-x )=34×180+1,解得x=67.答:这个角为67°.一个角的补角与它的余角的2倍的差是平角的13,则这个角的度数是 .[答案] 60°探究3 方位角典例3 如图,O 点是学校所在位置,A 村位于学校南偏东42°方向,B 村位于学校北偏东25°方向,C 村位于学校北偏西65°方向,在B 村和C 村间的公路OE (射线)平分∠BOC.(1)求∠AOE 的度数;(2)公路OE 上的车站D 相对于学校O 的方位是什么?(以正北、正南方向为基准)[解析] (1)∵A 村位于学校南偏东42°方向,∴∠1=42°,则∠2=48°,∵C 村位于学校北偏西65°方向,∴∠COM=65°,∵B 村位于学校北偏东25°方向,∴∠4=25°,∴∠BOC=90°,∵OE (射线)平分∠BOC ,∴∠COE=45°,∴∠EOM=65°-45°=20°,∴∠AOE=20°+90°+48°=158°.(2)由(1)可得:∠EOM=20°,则车站D 相对于学校O 的方位是:北偏西20°.三、板书设计余角和补角余角和补角{余角、补角的性质余角、补角的计算方位角◇教学反思◇对于七年级学生来说,他们在生活中已有了一定的确定位置的经验,方位角的概念、方位角的表示是学生在小学就有所了解的,但根据题意画出方位角以及运用方位角的知识确定点的方位是学生不熟悉的.特别是图形与文字语言之间的转化,以及从实际问题中抽象出几何图形,对学生来说有一定难度.基于学生的以上学情,制定教学难点:运用方位角解决实际问题.。

4.3.3 余角和补角教案

4.3.3 余角和补角教案

4.3.3 余角和补角教案
教学目的:
1、知识与技能:
⑴、在详细的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。

⑵、理解方位角,能确定详细物体的方位。

2、过程与方法:
进一步进步学生的抽象概括才能,开展空间观念和知识运用才能,学会简单的逻辑推理,并能对问题的结论进展合理的猜测。

3、情感态度与价值观:
体会观察、归纳、推理对数学知识中获取数学猜测和论证的重要作用,初步数学中推理的严谨性和结论确实定性,能在独立考虑和小组交流中获益。

重、难点及关键:
1、重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点。

2、难点:通过简单的推理,归纳出余角、补角的性质,并能用标准的语言描绘性质是难点。

3、关键:理解推理的意义和推理过程是掌握性质的关键。

教学过程:
一、引入新课:
让学生观察意大利著名建筑比萨斜塔。

比萨斜塔建于1173年,工程曾连续了两次很长的时间,历经约二百年才完工。

设计为垂直建造,但是在工程开场后不久便由于地基不均匀和土层松软而倾斜。

二、新课讲解:
1、探究互为余角的定义:
假如两个角的和是90(直角),那么这两个角叫做互为余角,其中一个角是另一个角的余角。

即:1是2的余角或2是1的余角。

七年级(人教版)集体备课教案:4.3.3 《余角和补角》

七年级(人教版)集体备课教案:4.3.3 《余角和补角》

七年级(人教版)集体备课教案:4.3.3 《余角和补角》一. 教材分析《余角和补角》这一节的内容,主要出现在人教版七年级数学教科书第三章“角”的一部分。

本节内容是在学生已经掌握了角度制、角的分类等基础知识之后进行教授的,旨在让学生了解和掌握余角和补角的概念,并能够运用它们解决一些实际问题。

教材通过例题和练习,帮助学生理解和掌握余角和补角的性质和计算方法,为学生今后的数学学习打下坚实的基础。

二. 学情分析在进入七年级之前,学生已经学习了一定的数学知识,包括基本的算术、几何等。

但是,对于余角和补角这样的概念,他们可能是第一次接触,因此需要通过具体的例子和实际操作来理解和掌握。

此外,学生的学习习惯和思维方式也会影响他们对这一节内容的理解和掌握。

三. 教学目标通过本节课的学习,学生能够理解余角和补角的概念,掌握它们的性质和计算方法,并能够运用它们解决一些实际问题。

同时,通过小组合作和讨论,培养学生的合作意识和解决问题的能力。

四. 教学重难点本节课的重点是让学生理解和掌握余角和补角的概念,以及它们的性质和计算方法。

难点在于如何让学生理解和接受余角和补角这样的抽象概念,并能够灵活运用它们解决实际问题。

五. 教学方法在本节课的教学过程中,我将采用讲授法、例题解析法、小组合作法、问题解决法等教学方法。

通过讲解和示例,让学生理解和掌握余角和补角的概念;通过小组合作和讨论,培养学生的合作意识和解决问题的能力;通过问题解决,激发学生的学习兴趣和思考能力。

六. 教学准备为了保证课堂教学的顺利进行,我需要准备一些教学工具和材料,包括PPT、教科书、黑板、粉笔等。

此外,我还需要准备一些例题和练习题,以便学生在课堂上进行操练和巩固。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出余角和补角的概念。

例如,可以出一个实际问题:在平面直角坐标系中,点A(2,3)和点B(-3,2)之间的线段AB的倾斜角是多少?通过解决这个问题,让学生初步接触和理解余角和补角的概念。

人教版七年级上数学:4.3.3余角和补角(2)学案

人教版七年级上数学:4.3.3余角和补角(2)学案

2143西北西南东南东北北西南东数学:4.3.3《余角和补角(2)》学案(人教版七年级上)【学习目标】:1、掌握余角和补角的性质。

2、了解方位角,能确定具体物体的方位。

【重点难点】掌握余角和补角的性质;方位角的应用; 【导学指导】 一、知识链接1.70°的余角是 ,补角是 ;2.∠α(∠α <90°)的它的余角是 ,它的补角是 ; 二、自主学习 1.探究补角的性质:例3、如图, ∠1与∠2互补,∠3与∠4互补, ∠1= ∠3,那么∠2与∠4相等吗?为什么?分析:(1)∠1与∠2互补,∠2等于什么?∠2=1800- ,∠3与∠4互补,∠4等于什么? ∠4=1800 - 。

(2)当∠1= ∠3时,∠2与∠4有什么关系?为什么?∠2=∠4(等量减等量,差相等)上面的结论,用文字怎么叙述?补角的性质:等角的 相等。

2.探究余角的性质:如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?余角性质:等角的 相等 3.方位角:(1)认识方位:正东、正南、正西、正北、东南、 西南、西北、东北。

(2)找方位角:乙地对甲地的方位角 ; 甲地对乙地的方位角1 2 3 4南北西例4:如图.货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C 和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C 和海岛D 方向的射线。

(师生共同完成)【课堂练习】:1、α∠和β∠都是AOB ∠的补角,则α∠ β∠;2、如果9031,9021=∠+∠︒=∠+∠,则32∠∠与的关系是 , 理由是 ;3、A 看B 的方向是北偏东21°,那么B 看A 的方向( )A 南偏东69°B 南偏西69°C 南偏东21°D 南偏西21°4、在点O 北偏西60°的某处有一点A ,在点O 南偏西20°的某处有一点B ,则∠AOB 的度数是( ) A 100° B 70° C 180° D 140° 【要点归纳】:补角的性质:余角的性质:【拓展训练】:1. 如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E 在一条直线上,且∠2=∠4,请说出∠1与∠3之间的关系?并试着说明理由?【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,两轮船同时从O 点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A ,B 点,则此时两轮船行进路线的夹角∠AOB 的度数是( )A.165°B.155°C.115°D.105°2.锐角4720'的余角是( ) A.4240'B.4280'C.5240'D.13240'3.在海上,灯塔位于一艘船的北偏东40方向,那么这艘船位于这个灯塔的( ) A.南偏西50°B.南偏西40°C.北偏东50°D.北偏东40°4.下列方程的变形中,正确的是( ) A .由3+x =5,得x =5+3B .由3x ﹣(1+x )=0,得3x ﹣1﹣x =0C .由102y =,得y =2 D .由7x =﹣4,得74x =-5.一个两位数的个位数字是x ,十位数字是y ,这个两位数可表示为( ) A.xyB.C.D.6.如果代数式4y 2-2y +5的值是7,那么代数式2y 2-y +1的值等于( ) A .2 B .3 C .-2 D .4 7.若代数式2x a y 3z c与4212b x y z -是同类项,则( ) A.a=4,b=2,c=3 B.a=4,b=4,c=3C.a=4,b=3,c=2D.a=4,b=3,c=48.下列代数式中:1x ,2x y +,213a b ,x y π-,54y x,0,整式有( ) 个 A.3个B.4个C.5个D.6个9.若一个代数式与代数式2ab 2+3ab 的和为ab 2+4ab-2,那么,这个代数式是( ) A .3ab 2+7ab-2 B .-ab 2+ab-2 C .ab 2-ab+2 D .ab 2+ab-2 10.和数轴上的点一一对应的是( ) A .整数 B .实数 C .有理数 D .无理数11.实数1 ,1- ,0 ,12- 四个数中,最大的数是( ) A.0B.1C.1-D.12-12.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作 A .7℃ B .-7℃ C .2℃ D .-12℃ 二、填空题13.若一个角是34︒,则这个角的余角是_______︒.14.如图,点P 是∠AOB 内任意一点,且∠AOB=40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为_____.15.有甲、乙两桶油,从甲桶到出14到乙桶后,乙桶比甲桶还少6升,乙桶原有油30升,设甲有油x 升,可列方程为_____.16.去括号合并:(3)3(3)a b a b --+=_________.17.计算:()()35---=______;()225323a a b b ---=______.18.若a,b 是整数,且ab =12,|a|<|b|,则a+b=________ .19.一个两位数,个位上的数字是十位上数字的3倍,它们的和是12,那么这个两位数是____. 20.比较大小:-3__________0.(填“< ”“=”“ > ”) 三、解答题21.如图,点O 在直线AB 上,OM 平分∠AOC ,ON 平分∠BOC ,如果∠1:∠2=1:2,求∠1的度数.22.如图,在四边形ABCD 中, //AD BC ,B D ∠=∠延长BA 至点E ,连接CE ,且CE 交AD 于点F ,EAD ∠和ECD ∠的角平分线相交于点P .(1)求证:①//AB CD ;②2EAD ECD APC ∠+∠=∠; (2)若70B ∠=︒,60E ∠=︒,求APC ∠的度数;(3)若APC m ∠=︒,EFD n ∠=︒请你探究m 和n 之间的数量关系. 23.解方程(1)3x-7(x-1)=3-2(x+3) (2)12x -=413x --1 24.为实施“学讲计划”,某班学生计划分成若干个学习小组,若每组5人,则多出4人,若每组6人,则有一组只有2人,该班共有多少名学生?25.先化简,再求值:已知|2a +1|+(4b -2)2=0,求3ab 2-[2221522a b ab ab ⎛⎫+-+ ⎪⎝⎭]+6a 2b 的值. 26.先化简,再求值:2(﹣3xy+52x 2)+5(2xy ﹣x 2),其中x =﹣2,y =12.27.现从小欣作业中摘抄了下面一道题的解题过程:计算:24÷(13-18-16); 解:24÷(13-18-16)=24÷13-24÷18-24÷16=72-192-144 =-264;观察以上解答过程,请问是否正确?若不正确,请写出正确的解答.28.某粮库3天内粮食进出库的吨数如下:(“+”表示进库,“-”表示出库)(1)经过这3天,库里的粮食是增多了还是减少了?(2)经过这3天,仓库管理员结算发现库里还存有480吨粮食,那么3天前库里存粮多少吨? (3)如果进出的装卸费都是每吨5元,那么这3天要付多少元装卸费?【参考答案】*** 一、选择题 1.B 2.A 3.B 4.B 5.C 6.A7.C 8.B 9.A 10.B 11.B 12.B 二、填空题 13.56 14.100°15.(1﹣ SKIPIF 1 < 0 )x ﹣(30+ SKIPIF 1 < 0 x )=6 解析:(1﹣14)x ﹣(30+14x )=6 16.-10 SKIPIF 1 < 0 解析:-10b17.SKIPIF 1 < 0 解析:223a b + 18.7,8,13 19.39 20.< 三、解答题 21.30°22.(1)①见解析,②见解析;(2)65°;(3)12m n =,见解析. 23.(1)x=5;(2)x=1. 24.4425.a 2b +1;98.26.4xy ,-4.27.错误,正确的解法见解析.28.(1)库里的粮食减少了;(2)3天前库里存粮食是525吨;(3)3天要付装卸费825元.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图是某几何体的表面展开图,则该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱2.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于()A.90°B.80°C.70°D.60°3.∠A 的余角与∠A 的补角互为补角,那么 2∠A 是()A.直角B.锐角C.钝角D.以上三种都有可能4.若关于x的一元一次方程1﹣46x a+=54x a+的解是x=2,则a的值是()A.2B.﹣2C.1D.﹣15.同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了()A.10场B.11场C.12场D.13场6.某车间有22名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母20个或螺栓12个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.20x=12(22-x)B.12x=20(22-x)C.2×12x=20(22-x)D.20x=2×12(22-x)7.下列计算正确的是()A.3a+2a=5a2B.3a-a=3 C.2a3+3a2=5a5D.-a2b+2a2b=a2b8.下列算式中,计算结果为a3b3的是()A.ab+ab+ab B.3ab C.ab•ab•ab D.a•b39.下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是()A .96B .86C .68D .5210.如果|a ﹣1|+(b+2)2=0,则a ﹣b 的值是( ) A .-1 B .1 C .-3 D .311.计算(﹣8)﹣(﹣5)的结果等于( ) A .-3 B .-13 C .-40 D .312.在下面的四个有理数中,最小的是( ) A .﹣1 B .0 C .1 D .﹣2 二、填空题13.如图,在△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过点O 作DE//BC ,分别交AB,AC 于点D,E,若AB=4,AC=3,则△ADE 的周长是_______________。

数学人教版七年级上册4.3.3余角和补角的概念和性质

数学人教版七年级上册4.3.3余角和补角的概念和性质

《余角和补角》的教学设计【教材】人教版4.3角【课时安排】第1课时【教学对象】初一学生【授课教师】台山市越华中学高立琼【教材分析】这是人教版七年级上册第四章第三节第三课的内容,是研究余角、补角概念以及相关性质的一节课。

第四章《图形认识初步》是学生平面几何的基础入门课,这一课为以后论证角的相等打下了良好的基础,也为培养和发展学生的思维能力、观察分析能力、演绎归纳能力打下了坚实的基础。

【教材目标】1、知识目标了解余角和补角的概念,知道余角和补角的性质,能运用他们进行简单的说理,并能解决简单的实际问题。

2、能力目标经历观察、操作、说理、交流等活动,发展空间观念,初步形成有条理的几何推理以及表达能力。

能运用类比等数学方法研究问题,能运用方程思想解决几何问题。

3、情感目标体验数学知识的发生、发展的过程,参与到研究探索过程中,有目的的思考与表达,大胆发言,及时的鼓励表扬,激发学习兴趣,敢于面对数学中遇到的困难,建立学好数学的自信心。

【教材重、难点】教学重点:余角和补角的概念与性质。

教学难点:通过“观察、操作、猜想、探索”的过程,研究余角的性质,运用性质进行有条理的说理。

【学情分析】几何基础知识小学里已经初步接触,本节课是在认识直角、平角的基础上,进行角的和差倍分,比较角的大小后,通过数量关系和图形关系学习两角互余、互补的概念和性质。

七年级学生逻辑思维能力,抽象能力,几何表达能力都还比较弱,必须借助于形象思维。

【教法、学法】教法:在活动中教师着眼于“引”,尽力激发学生求知的欲望,引导学生自主探索、自主归纳,教学过程中最重要的是传授给他们数学意识、数学思维和研究方法。

因此本节课的教学中,力图让学生了解知识的形成和应用过程,让学生感知数学来源于生活又应用于生活。

学法:学生在活动中,着眼于“探”,根据学法指导自主性原则和差异性原则,让学生在观察、操作、猜想、探索、归纳、应用中,自主参与知识的产生、发展、形成与应用的过程。

4.3.3余角和补角-七年级数学上册(人教版)

4.3.3余角和补角-七年级数学上册(人教版)

上.同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又
分别发现了客轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出表示客
轮B,货轮C和海岛D方向的射线.

画法:1. 以点O为顶点,表示正北
●D
●B
方的射线为角的一边,画40°的角, 使它的另一边OB落在东与北之间. 射线OB的方向就是北偏东40°,即 西
板各个角的度数
30°
90°
90°
45° 60°
45°
互动新授
人教版数学七年级上册
在一副三角尺中,每块都有一个角是90o,而其他两个角的和是多少呢?90o
一般地,如下图,如果两个角的和等于90°(直角),就说这两个 角互为余角 ( 简称为两个角互余 ),即其中一个角是另一个角的余角.
2
1
如图:∠1与∠2互为余角,也可以说∠1是∠2的余角,或者∠2 是∠1 的余角. 余角是成对出现的,所以不能说某个角是余角.
(1)以1cm表示10海里,在图中画出B,C的位置; (2)求∠BAC的度数; (3)量出B,C的图上距离,并换算出实际距离. 解:(1)如图, (2)∠BAC=180°-20°-70°=90°. (3) 用 刻 度 尺 量 出 B , C 的 图 上 距 离 约 为 2.5cm,所以实际距离约为25海里.
D AO
C E
B
课堂小结
人教版数学七年级上册
互余
两角间的 1 2 90
数量关系 (1 90 2)
互补
1 2 180 (1 180 2)
对应图形
性质
同角或等角的 余角相等
同角或等角的 补角相等
课后作业
1.如图,下列说法正确的个数有( D ) ①射线OA表示北偏东30°; ②射线OB表示北偏西30°; ③射线OD表示南偏西45°,也叫西南方向; ④射线OC表示正南方向. A.1个 B.2个 C.3个 D.4个

4.3.3 余角和补角

4.3.3  余角和补角

(2)北偏西60 A

60° 西
300
东 25° 南
例2 如图,货轮O在航行过程中,发现灯塔A在
南偏东60°的方向上。同时,在它北偏东40°、南 偏西10°、西北方向上又分别发现了客轮B、货轮 C和海岛D.仿照表示灯塔方位的方法,画出表示客 轮B、货轮C和海岛D的射线。
北 东 西
D
西

40 °
B

2
1
4
3
推导性质,理解运用
(2)已知∠1与∠2互补,∠3与∠4互补.若 ∠1=∠3,那么∠2和∠4 相等吗?为什么?
1 2 3 4
由∠1与∠2互补,得∠1+∠2=180º , 所以 ∠2=180º -∠1. 由∠3与∠4互补,得∠3+∠4=180º , 所以∠4=180º -∠3. 又因为∠1=∠3,180º -∠1=180º -∠3,
互 余
数量 关系 对 应 图 形 性


∠1+∠2=90°
∠1+∠2=180°
21
等角的余角相等
2
1
等角的补角相等.

探索研究 如图,已知AOB是一直线,OC是 ∠ AOB的平分线, ∠ DOE是直角,图 中哪些角互余?哪些角互补?哪些角 相等? C D
E
4
3
1
2
O
A
B
推导性质,理解运用
解:因为A,O,B在同一直线上, 所以∠AOC和∠BOC互为补角.
如图,E、F是直线DG上两点
D E F G
∠BEF = ∠BFE
∠AED = ∠CFG = 90 °
找出图中相等的角并说明理由。
200m
300m

人教版七年级数学上册:4.3.3余角和补角说课稿

人教版七年级数学上册:4.3.3余角和补角说课稿
本节课的主要知识点包括:余角的定义、性质和计算;补角的定义、性质和计算。通过本节课的学习,学生能够理解并掌握余角和补角的概念,能够运用它们解决实际问题。
(二)教学目标
知识与技能:
1.理解并掌握余角和补角的概念。
2.能够运用余角和补角的性质进行计算。
3.能够运用余角和补角的知识解决实际问题。
过程与方法:
3.对于小组讨论,设计更具吸引力的讨论题目,并适时给予指导和激励。
课后,我将通过以下方式评估教学效果:
1.收集和分析学生的练习和作业,评估知识掌握情况。
2.与学生交流,了解他们对课堂内容的理解和感受。
3.自我反思,记录教学过程中的亮点和不足。
反思和改进措施:
1.根据学生的反馈调整教学方法和节奏。
2.对课堂活动进行优化,提高学生的参与度。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.个人练习:设计具有代表性的练习题,让学生独立完成,检验学习效果。
2.小组讨论:将学生分成小组,针对实际问题进行讨论,共同解决。
3.数学游戏:设计余角和补角相关的数学游戏,让学生在游戏中巩固知识。
4.实践活动:让学生在课后寻找生活中的余角和补角实例,并进行记录和分享。
这些教具和多媒体资源在教学中的作用是:直观展示知识点,激发学生学习兴趣,提高课堂互动性,帮助学生更好地理解和掌握知识。
(三)互动方式
为促进学生的参与和合作,我计划设计以题进行提问,引导学生积极思考,检验学习效果。
2.小组讨论:将学生分成小组,针对实际问题进行讨论,鼓励他们发表见解,共同解决问题。
3.课堂游戏:设计余角和补角相关的数学游戏,让学生在游戏中互动,提高学习兴趣。

初中数学 什么是余角和补角

初中数学 什么是余角和补角

初中数学什么是余角和补角余角和补角是初中数学中关于角的重要概念。

它们在几何学中有着广泛的应用,用于描述和分析角度的性质和关系。

在本文中,我们将详细讨论余角和补角的概念、性质和应用。

一、余角余角是指两个角的和等于90度的情况。

具体来说,如果有一个角A,那么与角A 的余角B满足以下条件:角A的度数加上角B的度数等于90度。

余角具有以下几个重要的性质:1. 余角是对应角,即角A与角B是余角,角B与角A也是余角。

2. 余角的度数是互补的,即角A的度数加上角B的度数等于90度。

3. 余角之间的度数和是90度,即角A的度数加上角B的度数等于90度。

余角在几何学中有着广泛的应用。

它可以用来解决关于角度的问题,比如计算角度的度数、寻找角度的性质等。

此外,余角也可以用来解决关于直角的问题,比如判断一个角是否为直角、寻找直角的特性等。

二、补角补角是指两个角的和等于180度的情况。

具体来说,如果有一个角C,那么与角C的补角D满足以下条件:角C的度数加上角D的度数等于180度。

补角具有以下几个重要的性质:1. 补角是对应角,即角C与角D是补角,角D与角C也是补角。

2. 补角的度数是互补的,即角C的度数加上角D的度数等于180度。

3. 补角之间的度数和是180度,即角C的度数加上角D的度数等于180度。

补角在几何学中也有着广泛的应用。

它可以用来解决关于角度的问题,比如计算角度的度数、寻找角度的性质等。

此外,补角也可以用来解决关于直角和平行线的问题,比如判断一个角是否为直角、判断两条线是否平行等。

三、性质余角和补角具有一些重要的性质。

下面我们将分别讨论余角和补角的性质。

1. 余角的性质:a. 余角是对应角,即角A与角B是余角,角B与角A也是余角。

b. 余角的度数是互补的,即角A的度数加上角B的度数等于90度。

c. 余角之间的度数和是90度,即角A的度数加上角B的度数等于90度。

2. 补角的性质:a. 补角是对应角,即角C与角D是补角,角D与角C也是补角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、一个角是80.39°,则其余角的补角是_______(用度、分、秒表示)
4、(1)若一个角的余角与它的补角的和为210°,则这个角等于______.
(2)若一个角的补角与这个角的余角的度数之比是3:1,则这个角等于_____.
5、若∠α和∠β互为余角,则∠α和∠β的补角之和是().
A.90°B.180°C.270°D.不能确定
解:由∠1与∠2互补,可得∠2=1800—,由∠3与∠4互补,
可得∠2=1800—,因为∠1=∠3,所以1800—∠1=1800—∠3
这就是
2、画一画,想一想:若∠1与∠2互余,∠3与∠4互余,如果∠1=∠3,那么∠2=∠4相等吗?为什么?
解:由∠1与∠2互余,可得∠2=900—,由∠3与∠4互余,
可得∠2=900—,因为∠1=∠3,所以900—∠1=900—∠3
这就是
归纳:等角的余角相等,等角的补角
【合作探究】
探究一:已知∠α和∠β互为余角,∠α—∠β= 150,求∠@的度数,∠β的补角的度数。
解பைடு நூலகம்设∠α为,则∠β为∠α+150,即X0+ 150。
等量关系:∠α和∠β互为余角
列方程:解得X=
余角和补角性质
上饶县枫岭头中学七年级数学导学案
执笔:审核:审批:学案编号:NO:19
授课人:授课时间:姓名:班级:小组:
课题:余角和补角性质课型:新授课课时:3--2
教师复备栏
/学生笔记栏
【学习目标】
1、要求掌握余角、补角的性质.
2、会利用互余、互补关系求出角的度数.
【学习重点难点】
重点:互余、互补的性质
6、一个x°锐角的补角比它的余角().
A.大90°B.小90°C.大x°D.小x°

【整理学案】
我学习了
我知道了
我发现了
【教学反思】
难点:互余、互补的应用.
【学法指导】
类比、发现规律
【知识链接】
1、余角的概念。补角的概念。
2、X0的角的余角可表示为900—∠X0,则它的补角为
【自主学习】
阅读感知:阅读课本第142页的例3。
1、:∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?
思路点拨:“等量减等量,差相等”是根据等式性质1得到的
所以∠α=,∠β=,∠β的补角为
探究二:如图是一副三角尺拼成的图案,则∠AED=度。
析解:∠AED与∠CED互为补角,而∠CED=°,故∠AED=。
【达标测评】
1、已知β为α角的补角,γ为α的余角,则β-γ=_______.
2、已知互余的两个角的差是20°,则这两个角的度数分别为______和_____.
相关文档
最新文档