广东省2016年高考信息卷(二)数学(理工农医类)试题(PDF版)

合集下载

(完整word版)2016全国二卷理科数学高考真题及答案

(完整word版)2016全国二卷理科数学高考真题及答案

2016年全国高考理科数学试题全国卷2一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知z=(m+3)+(m –1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(–3,1) B .(–1,3) C .(1,+∞) D .(–∞,–3) 2、已知集合A={1,2,3},B={x|(x+1)(x –2)<0,x ∈Z},则A ∪B=( ) A .{1} B .{1,2} C .{0,1,2,3} D .{–1,0,1,2,3} 3、已知向量a =(1,m),b =(3,–2),且(a +b )⊥b ,则m=( ) A .–8 B .–6 C .6 D .8 4、圆x 2+y 2–2x –8y+13=0的圆心到直线ax+y –1=0的距离为1,则a=( ) A .–43 B .–34 C . 3 D .25、如下左1图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( ) A .24 B .18 C .12 D .96、上左2图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ) A .20π B .24π C .28π D .32π7、若将函数y=2sin2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为( ) A .x=kπ2–π6(k ∈Z) B .x=kπ2+π6(k ∈Z) C .x=kπ2–π12(k ∈Z) D .x=kπ2+π12(k ∈Z)8、中国古代有计算多项式值的秦九韶算法,上左3图是实现该算法的程序框图。

执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=( )A .7B .12C .17D .34 9、若cos(π4–α)=35,则sin2α= ( )A .7B .1C .–1D .–7中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A .4n m B .2n m C .4m n D .2m n11、已知F 1、F 2是双曲线E :x 2a 2–y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A . 2B .32 C .3 D .212、已知函数f(x)(x ∈R)满足f(–x)=2–f(x),若函数y=x+1x 与y=f(x)图像的交点为(x 1,y 1),(x 2,y 2),...(x m ,y m ),则1()miii x y =+=∑( )A .0B .mC .2mD .4m 二、填空题:本大题共4小题,每小题5分13、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cosA=45,cosC=513,a=1,则b=___________. 14、α、β是两个平面,m ,n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β。

2016年高考理科数学全国Ⅱ卷试题及答案

2016年高考理科数学全国Ⅱ卷试题及答案

2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m = (A )-8 (B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43-(B )34-(C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x =k π2–π6 (k ∈Z ) (B )x =k π2+π6 (k ∈Z ) (C )x =k π2–π12 (k ∈Z ) (D )x =k π2+π12 (k ∈Z )(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)= 35,则sin 2α=(A )725 (B )15 (C )–15 (D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,学科&网1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F 1,F 2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为(A )2 (B )32(C )3 (D )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅ 则1()miii x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A =45,cos C =513,a =1,则b = .(14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n .(3)如果α∥β,m ⊂α,那么m ∥β. 学科.网(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

2016年高考理科数学全国卷2(含详细答案)

2016年高考理科数学全国卷2(含详细答案)

数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,{0}1,2M =,2{|320}N x x x =-+≤,则M N = ( )A .{1}B .{2}C .{0,1}D .{1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12i z =+,则12z z =( )A .5-B .5C .4i -+D .4i -- 3.设向量a ,b 满足|a +b||a -b|=则a b =( )A .1B .2C .3D .5 4.钝角三角形ABC △的面积是12,1AB =,BC =,则AC =( )A .5BC .2D .15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.456.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59 C .1027D .137.执行如图的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7 8.设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a =( ) A .0 B .1 C .2D .39.设x ,y 满足约束条件70,310,350,x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥则2z x y =-的最大值为( )A .10B .8C .3D .210.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,O 为坐标原点,则OAB △的面积为 ( )ABC .6332D .94 11.直三棱柱111ABC A B C -中,90BCA ∠=,M ,N 分别是11A B ,11AC 的中点,1BC CA CC ==,则BM 与AN 所成角的余弦值为( )A .110B .25 CD12.设函数π()3sin x f x m,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.10()x a +的展开式中,7x 的系数为15,则a = (用数字填写答案). 14.函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为 .15.已知偶函数()f x 在[0,)+∞上单调递减,(2)0f =,若(1)0f x ->,则x 的取值范围是 .16.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是 .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足11a =,131n n aa +=+.(Ⅰ)证明:1{}2n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1211132n a a a ++⋅⋅⋅+<.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB平面AEC ;(Ⅱ)设二面角D AE C --为60,1AP =,AD =求三棱锥E ACD -的体积.19.(本小题满分12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:121()()ˆ()nii i ni i tt y y bt t ==--=-∑∑,ˆˆay bt =-.20.(本小题满分12分)设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左、右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数()e e 2x xf x x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001).请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时填写试题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π0,2θ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y +垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||(0)f x x x a a a =++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.3 / 132016年普通高等学校招生全国统一考试(全国新课标卷2)【解析】集合A B {0,1,2,3}=A B 的值.【解析】向量a(4,m),b(3,2)-,a b (4,m ∴+=-又(a b)b +⊥,12∴-【提示】求出向量a b +的坐标,根据向量垂直的充要条件,构造关于m 的方程,解得答案.【解析】输入的数学试卷第10页(共39页)数学试卷第11页(共39页)数学试卷第12页(共39页)5 / 13:πcos 4⎛- ⎝:π2cos 4⎛⎫-α= ⎝【提示】方法1:利用诱导公式化22π1n 1,π∴=解得e 2=.1数学试卷第16页(共39页)数学试卷第17页(共39页)数学试卷第18页(共39页)(Ⅰ)某保险的基本保费为7 / 13数学试卷 第22页(共39页)数学试卷 第23页(共39页) 数学试卷 第24页(共39页)(Ⅰ)ABCD 是菱形,AC BD ⊥,则,AC 6=,AEOD 1AO=,则, ,又OHEF H =,为坐标原点,建立如图所示空间直角坐标系,AB 5=,C(1,3,0),D (0,0,3)',AB (4,3,0)=,AD (1,3,3)'=-,AC (0,6,0)=,设平面的一个法向量为n (x,y,z)=11n AB 0n AD 0⎧=⎪⎨'=⎪⎩,得3y 03y 3z 0=⎧⎨+=3=,得n (3,4,5)∴=-同理可求得平面AD '的一个法向量n (3,01)=,的平面角为θ,122n n 9255210n n +==,∴二面角9 / 13为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到AB 、AD '、AC的一个法向量n 、n ,设二面角221234k +,由2212121k 413k 341kk =+⎛⎫++- ⎪⎝⎭,由AM =22212121k434k 3k k=+++, 整理可得2(k 1)(4k k 4)0--+=,由24k -212144134⎫=⎪+⎭轴对称,由MA ⊥数学试卷 第28页(共39页)数学试卷 第29页(共39页) 数学试卷 第30页(共39页)226t 3tk +,26t t 3k k+, AN ,可得2226t 6t 21k 1kt 3tk 3k k+=+++, 整理得26k 3kt -=,由椭圆的焦点在x 轴上,11 / 13 当2)(2,)-+∞2)和(2,-+∞x 2e f (0)=2>x 2e a 2⎫+⎪⎭a ∈x x 2(x)e 2-=的值域为t 2e a 2=-,只需t 2e 02≤0,可得t ∈t t 2e e 2t 2=+t e (t +22.【答案】(Ⅰ)DF CE ⊥,Rt DFC Rt EDC ∴△∽△,DF CF ED CD∴=, DE DG =,CD BC =,DF CF DG BC∴=,又GDF DEF BCF ∠=∠=∠, GDF BCF ∴△∽△,CFB DFG ∴∠=∠,GFB GFC CFB GFC DFG DFC 90∴∠=∠+∠=∠+∠=∠=,GFB GCB 180∴∠+∠=,B ∴,C ,G ,F 四点共圆;(Ⅱ)E 为AD 中点,A B 1=,1DG CG DE 2∴===,数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)∴在Rt DFC △中,1GF CD GC 2==,连接GB ,Rt BCG Rt BFG △≌△, BCG BCGF 111S 2S =21=222∴=⨯⨯⨯△四边形.【提示】(Ⅰ)证明B ,C ,G ,F 四点共圆可证明四边形BCGF 对角互补,由已知条件可知BCD 90∠=,因此问题可转化为证明GFB 90∠=;(Ⅱ)在Rt DFC △中,1GF CD GC ==,因此可得BCG BFG △≌△,则BCG BCGF S 2S =△四边形,据此解答.(Ⅰ)圆,22x ρ=+(Ⅱ)直线x α, l C (6,0)-,13 / 13 【考点】圆的标准方程,直线与圆相交的性质24.【答案】(Ⅰ)当1x 2<-时,不等式f (x)2<可化为:11x x 222---<,解得x 1>-, 11x 2∴-<<-, 当11x 22-≤≤时,不等式f (x)2<可化为:11x x 1222-+-=<,此时不等式恒成立, 11x 22∴-≤≤,当1x 2>时,不等式f (x)2<可化为:11x x 222++-<,解得x 1<, 1x 12∴<<,综上可得M (1,1)=-; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,即2222a b 2ab 1a 2ab b +++>++, 即22(ab 1)(a b)+>+,即a b ab 1+<+.【提示】(Ⅰ)分当1x 2<-时,当11x 22-≤≤时,当1x 2>时三种情况,分别求解不等式,综合可得答案; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,配方后,可证得结论. 【考点】绝对值不等式的解法。

2016年高考理科数学全国卷2(含详细答案)

2016年高考理科数学全国卷2(含详细答案)

数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,{0}1,2M =,2{|320}N x x x =-+≤,则M N = ( )A .{1}B .{2}C .{0,1}D .{1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12i z =+,则12z z =( )A .5-B .5C .4i -+D .4i -- 3.设向量a ,b 满足|a +b||a -b|=则a b =( )A .1B .2C .3D .5 4.钝角三角形ABC △的面积是12,1AB =,BC =,则AC =( )A .5BC .2D .15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.456.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59 C .1027D .137.执行如图的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7 8.设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a =( ) A .0 B .1 C .2D .39.设x ,y 满足约束条件70,310,350,x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥则2z x y =-的最大值为( )A .10B .8C .3D .210.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,O 为坐标原点,则OAB △的面积为 ( )ABC .6332D .94 11.直三棱柱111ABC A B C -中,90BCA ∠=,M ,N 分别是11A B ,11AC 的中点,1BC CA CC ==,则BM 与AN 所成角的余弦值为( )A .110B .25 CD12.设函数π()3sin x f x m,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.10()x a +的展开式中,7x 的系数为15,则a = (用数字填写答案). 14.函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为 .15.已知偶函数()f x 在[0,)+∞上单调递减,(2)0f =,若(1)0f x ->,则x 的取值范围是 .16.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是 .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足11a =,131n n aa +=+.(Ⅰ)证明:1{}2n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1211132n a a a ++⋅⋅⋅+<.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB平面AEC ;(Ⅱ)设二面角D AE C --为60,1AP =,AD =求三棱锥E ACD -的体积.19.(本小题满分12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:121()()ˆ()nii i ni i tt y y bt t ==--=-∑∑,ˆˆay bt =-.20.(本小题满分12分)设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左、右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数()e e 2x xf x x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001).请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时填写试题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π0,2θ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y +垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||(0)f x x x a a a =++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.3 / 132016年普通高等学校招生全国统一考试(全国新课标卷2)【解析】集合A B {0,1,2,3}=A B 的值.【解析】向量a(4,m),b(3,2)-,a b (4,m ∴+=-又(a b)b +⊥,12∴-【提示】求出向量a b +的坐标,根据向量垂直的充要条件,构造关于m 的方程,解得答案.【解析】输入的数学试卷第10页(共39页)数学试卷第11页(共39页)数学试卷第12页(共39页)5 / 13:πcos 4⎛- ⎝:π2cos 4⎛⎫-α= ⎝【提示】方法1:利用诱导公式化22π1n 1,π∴=解得e 2=.1数学试卷第16页(共39页)数学试卷第17页(共39页)数学试卷第18页(共39页)(Ⅰ)某保险的基本保费为7 / 13数学试卷 第22页(共39页)数学试卷 第23页(共39页) 数学试卷 第24页(共39页)(Ⅰ)ABCD 是菱形,AC BD ⊥,则,AC 6=,AEOD 1AO=,则, ,又OHEF H =,为坐标原点,建立如图所示空间直角坐标系,AB 5=,C(1,3,0),D (0,0,3)',AB (4,3,0)=,AD (1,3,3)'=-,AC (0,6,0)=,设平面的一个法向量为n (x,y,z)=11n AB 0n AD 0⎧=⎪⎨'=⎪⎩,得3y 03y 3z 0=⎧⎨+=3=,得n (3,4,5)∴=-同理可求得平面AD '的一个法向量n (3,01)=,的平面角为θ,122n n 9255210n n +==,∴二面角9 / 13为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到AB 、AD '、AC的一个法向量n 、n ,设二面角221234k +,由2212121k 413k 341kk =+⎛⎫++- ⎪⎝⎭,由AM =22212121k434k 3k k=+++, 整理可得2(k 1)(4k k 4)0--+=,由24k -212144134⎫=⎪+⎭轴对称,由MA ⊥数学试卷 第28页(共39页)数学试卷 第29页(共39页) 数学试卷 第30页(共39页)226t 3tk +,26t t 3k k+, AN ,可得2226t 6t 21k 1kt 3tk 3k k+=+++, 整理得26k 3kt -=,由椭圆的焦点在x 轴上,11 / 13 当2)(2,)-+∞2)和(2,-+∞x 2e f (0)=2>x 2e a 2⎫+⎪⎭a ∈x x 2(x)e 2-=的值域为t 2e a 2=-,只需t 2e 02≤0,可得t ∈t t 2e e 2t 2=+t e (t +22.【答案】(Ⅰ)DF CE ⊥,Rt DFC Rt EDC ∴△∽△,DF CF ED CD∴=, DE DG =,CD BC =,DF CF DG BC∴=,又GDF DEF BCF ∠=∠=∠, GDF BCF ∴△∽△,CFB DFG ∴∠=∠,GFB GFC CFB GFC DFG DFC 90∴∠=∠+∠=∠+∠=∠=,GFB GCB 180∴∠+∠=,B ∴,C ,G ,F 四点共圆;(Ⅱ)E 为AD 中点,A B 1=,1DG CG DE 2∴===,数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)∴在Rt DFC △中,1GF CD GC 2==,连接GB ,Rt BCG Rt BFG △≌△, BCG BCGF 111S 2S =21=222∴=⨯⨯⨯△四边形.【提示】(Ⅰ)证明B ,C ,G ,F 四点共圆可证明四边形BCGF 对角互补,由已知条件可知BCD 90∠=,因此问题可转化为证明GFB 90∠=;(Ⅱ)在Rt DFC △中,1GF CD GC ==,因此可得BCG BFG △≌△,则BCG BCGF S 2S =△四边形,据此解答.(Ⅰ)圆,22x ρ=+(Ⅱ)直线x α, l C (6,0)-,13 / 13 【考点】圆的标准方程,直线与圆相交的性质24.【答案】(Ⅰ)当1x 2<-时,不等式f (x)2<可化为:11x x 222---<,解得x 1>-, 11x 2∴-<<-, 当11x 22-≤≤时,不等式f (x)2<可化为:11x x 1222-+-=<,此时不等式恒成立, 11x 22∴-≤≤,当1x 2>时,不等式f (x)2<可化为:11x x 222++-<,解得x 1<, 1x 12∴<<,综上可得M (1,1)=-; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,即2222a b 2ab 1a 2ab b +++>++, 即22(ab 1)(a b)+>+,即a b ab 1+<+.【提示】(Ⅰ)分当1x 2<-时,当11x 22-≤≤时,当1x 2>时三种情况,分别求解不等式,综合可得答案; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,配方后,可证得结论. 【考点】绝对值不等式的解法。

(完整word版)2016年新课标全国卷2高考理科数学试题及答案

(完整word版)2016年新课标全国卷2高考理科数学试题及答案

一、选择题(本大题共12小题,共60.0分)1.已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)2.已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}3.已知向量=(1,m),=(3,-2),且(+)⊥,则m=()A.-8B.-6C.6D.84.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-B.-C.D.25.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.96.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π7.若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=-(k∈Z)B.x=+(k∈Z)C.x=-(k∈Z)D.x=+(k∈Z)8.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7B.12C.17D.349.若cos(-α)=,则sin2α=()A. B. C.- D.-10.从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n构成n个数对(x1,y1),(x2,y2)…(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A. B. C. D.11.已知F1,F2是双曲线E:-=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为()A. B. C. D.212.已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则(x i+y i)=()A.0B.mC.2mD.4m二、填空题(本大题共4小题,共20.0分)13.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b= ______ .14.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题是 ______ (填序号)15.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 ______ .16.若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b= ______ .三、解答题(本大题共8小题,共94.0分)17.S n为等差数列{a n}的前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000项和.18.某保险的基本保费为a(单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险0 1 2 3 4 ≥5次数保费0.85a a 1.25a 1.5a 1.75a 2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险0 1 2 3 4 ≥5次数概率0.30 0.15 0.20 0.20 0.10 0.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.19.如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点M,将△DEF沿EF折到△D′EF的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B-D′A-C的正弦值.20.已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求k的取值范围.21.(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x-2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.22.如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.23.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.24.已知函数f(x)=|x-|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.2016年全国统一高考数学试卷(新课标Ⅱ)(理科)答案和解析【答案】1.A2.C3.D4.A5.B6.C7.B8.C9.D 10.C 11.A 12.B13.14.②③④15.1和316.1-ln217.解:(Ⅰ)S n为等差数列{a n}的前n项和,且a1=1,S7=28,7a4=28.可得a4=4,则公差d=1.a n=n,b n=[lgn],则b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2.(Ⅱ)由(Ⅰ)可知:b1=b2=b3=…=b9=0,b10=b11=b12=…=b99=1.b100=b101=b102=b103=…=b999=2,b10,00=3.数列{b n}的前1000项和为:9×0+90×1+900×2+3=1893.18.解:(Ⅰ)∵某保险的基本保费为a(单位:元),上年度出险次数大于等于2时,续保人本年度的保费高于基本保费,∴由该险种一续保人一年内出险次数与相应概率统计表得:一续保人本年度的保费高于基本保费的概率:p1=1-0.30-0.15=0.55.(Ⅱ)设事件A表示“一续保人本年度的保费高于基本保费”,事件B表示“一续保人本年度的保费比基本保费高出60%”,由题意P(A)=0.55,P(AB)=0.10+0.05=0.15,由题意得若一续保人本年度的保费高于基本保费,则其保费比基本保费高出60%的概率:p2=P(B|A)===.(Ⅲ)由题意,续保人本年度的平均保费与基本保费的比值为:=1.23,∴续保人本年度的平均保费与基本保费的比值为1.23.19.(Ⅰ)证明:∵ABCD是菱形,∴AD=DC,又AE=CF=,∴,则EF∥AC,又由ABCD是菱形,得AC⊥BD,则EF⊥BD,∴EF⊥DH,则EF⊥D′H,∵AC=6,∴AO=3,又AB=5,AO⊥OB,∴OB=4,∴OH=,则DH=D′H=3,∴|OD′|2=|OH|2+|D′H|2,则D′H⊥OH,又OH∩EF=H,∴D′H⊥平面ABCD;(Ⅱ)解:以H为坐标原点,建立如图所示空间直角坐标系,∵AB=5,AC=6,∴B(5,0,0),C(1,3,0),D′(0,0,3),A(1,-3,0),,,设平面ABD′的一个法向量为,由,得,取x=3,得y=-4,z=5.∴.同理可求得平面A D′C的一个法向量,设二面角二面角B-D′A-C的平面角为θ,则|cosθ|=.∴二面角B-D′A-C的正弦值为sinθ=.20.解:(Ⅰ)t=4时,椭圆E的方程为+=1,A(-2,0),直线AM的方程为y=k(x+2),代入椭圆方程,整理可得(3+4k2)x2+16k2x+16k2-12=0,解得x=-2或x=-,则|AM|=•|2-|=•,由AN⊥AM,可得|AN|=•=•,由|AM|=|AN|,k>0,可得•=•,整理可得(k-1)(4k2-k+4)=0,由4k2-k+4=0无实根,可得k=1,即有△AMN的面积为|AM|2=(•)2=;(Ⅱ)直线AM的方程为y=k(x+),代入椭圆方程,可得(3+tk2)x2+2t k2x+t2k2-3t=0,解得x=-或x=-,即有|AM|=•|-|=•,|AN|═•=•,由2|AM|=|AN|,可得2•=•,整理得t=,由椭圆的焦点在x轴上,则t>3,即有>3,即有<0,可得<k<2,即k的取值范围是(,2).21.解:(1)证明:f(x)=f'(x)=e x()=∵当x∈(-∞,-2)∪(-2,+∞)时,f'(x)>0∴f(x)在(-∞,-2)和(-2,+∞)上单调递增∴x>0时,>f(0)=-1即(x-2)e x+x+2>0(2)g'(x)==a∈[0,1]由(1)知,当x>0时,f(x)=的值域为(-1,+∞),只有一解使得,t∈[0,2]当x∈(0,t)时,g'(x)<0,g(x)单调减;当x∈(t,+∞),g'(x)>0,g(x)单调增;h(a)===记k(t)=,在t∈(0,2]时,k'(t)=>0,故k(t)单调递增,所以h(a)=k(t)∈(,].22.(Ⅰ)证明:∵DF⊥CE,∴Rt△DFC∽Rt△EDC,∴=,∵DE=DG,CD=BC,∴=,又∵∠GDF=∠DEF=∠BCF,∴△GDF∽△BCF,∴∠CFB=∠DFG,∴∠GFB=∠GFC+∠CFB=∠GFC+∠DFG=∠DFC=90°,∴∠GFB+∠GCB=180°,∴B,C,G,F四点共圆.(Ⅱ)∵E为AD中点,AB=1,∴DG=CG=DE=,∴在Rt△DFC中,GF=CD=GC,连接GB,Rt△BCG≌Rt△BFG,∴S四边形BCGF=2S△BCG=2××1×=.23.解:(Ⅰ)∵圆C的方程为(x+6)2+y2=25,∴x2+y2+12x+11=0,∵ρ2=x2+y2,x=ρcosα,y=ρsinα,∴C的极坐标方程为ρ2+12ρcosα+11=0.(Ⅱ)∵直线l的参数方程是(t为参数),∴直线l的一般方程y=tanα•x,∵l与C交与A,B两点,|AB|=,圆C的圆心C(-6,0),半径r=5,∴圆心C(-6,0)到直线距离d==,解得tan2α=,∴tanα=±=±.∴l的斜率k=±.24.解:(I)当x<时,不等式f(x)<2可化为:-x-x-<2,解得:x>-1,∴-1<x<,当≤x≤时,不等式f(x)<2可化为:-x+x+=1<2,此时不等式恒成立,∴≤x≤,当x>时,不等式f(x)<2可化为:-+x+x+<2,解得:x<1,∴<x<1,综上可得:M=(-1,1);证明:(Ⅱ)当a,b∈M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,即a2b2+1+2ab>a2+b2+2ab,即(ab+1)2>(a+b)2,即|a+b|<|1+ab|.【解析】1. 解:z=(m+3)+(m-1)i在复平面内对应的点在第四象限,可得:,解得-3<m<1.故选:A.利用复数对应点所在象限,列出不等式组求解即可.本题考查复数的几何意义,考查计算能力.2. 解:∵集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z}={0,1},∴A∪B={0,1,2,3}.故选:C.先求出集合A,B,由此利用并集的定义能求出A∪B的值.本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.3. 解:∵向量=(1,m),=(3,-2),∴+=(4,m-2),又∵(+)⊥,∴12-2(m-2)=0,解得:m=8,故选:D.求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.本题考查的知识点是向量垂直的充要条件,难度不大,属于基础题.4. 解:圆x2+y2-2x-8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y-1=0的距离d==1,解得:a=,故选:A.求出圆心坐标,代入点到直线距离方程,解得答案.本题考查的知识点是圆的一般方程,点到直线的距离公式,难度中档.5. 解:从E到F,每条东西向的街道被分成2段,每条南北向的街道被分成2段,从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,故共有C42=6种走法.同理从F到G,最短的走法,有C31=3种走法.∴小明到老年公寓可以选择的最短路径条数为6×3=18种走法.故选:B.从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,由组合数可得最短的走法,同理从F到G,最短的走法,有C31=3种走法,利用乘法原理可得结论.本题考查排列组合的简单应用,得出组成矩形的条件和最短走法是解决问题的关键,属基础题6. 解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,∴在轴截面中圆锥的母线长是=4,∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,∴圆柱表现出来的表面积是π×22+2π×2×4=20π∴空间组合体的表面积是28π,故选:C.空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面.本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端.7. 解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.利用函数y= A sin(ωx+ φ)(A>0,ω>0)的图象的变换及正弦函数的对称性可得答案.本题考查函数yy= A sin(ωx+ φ)(A>0,ω>0)的图象的变换规律的应用及正弦函数的对称性质,属于中档题.8. 解:∵输入的x=2,n=2,当输入的a为2时,S=2,k=1,不满足退出循环的条件;当再次输入的a为2时,S=6,k=2,不满足退出循环的条件;当输入的a为5时,S=17,k=3,满足退出循环的条件;故输出的S值为17,故选:C根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.9. 解:∵cos(-α)=,∴sin2α=cos(-2α)=cos2(-α)=2cos2(-α)-1=2×-1=-,故选:D.利用诱导公式化sin2α=cos(-2α),再利用二倍角的余弦可得答案.本题考查三角函数的恒等变换及化简求值,熟练掌握诱导公式化与二倍角的余弦是关键,属于中档题.10. 解:由题意,,∴π=.故选:C.以面积为测度,建立方程,即可求出圆周率π的近似值.古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.11.解:设|MF1|=x,则|MF2|=2a+x,∵MF1与x轴垂直,∴(2a+x)2=x2+4c2,∴x=∵sin∠MF2F1=,∴3x=2a+x,∴x=a,∴=a,∴a=b,∴c=a,∴e==.故选:A.设|MF1|=x,则|MF2|=2a+x,利用勾股定理,求出x=,利用sin∠MF2F1=,求得x=a,可得=a,求出a=b,即可得出结论.本题考查双曲线的定义与方程,考查双曲线的性质,考查学生分析解决问题的能力,比较基础.12. 解:函数f(x)(x∈R)满足f(-x)=2-f(x),即为f(x)+f(-x)=2,可得f(x)关于点(0,1)对称,函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(-x1,2-y1)也为交点,(x2,y2)为交点,即有(-x2,2-y2)也为交点,…则有(x i+y i)=(x1+y1)+(x2+y2)+…+(x m+y m)=[(x1+y1)+(-x1+2-y1)+(x2+y2)+(-x2+2-y2)+…+(x m+y m)+(-x m+2-y m)]=m.故选B.由条件可得f(x)+f(-x)=2,即有f(x)关于点(0,1)对称,又函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(-x1,2-y1)也为交点,计算即可得到所求和.本题考查抽象函数的运用:求和,考查函数的对称性的运用,以及化简整理的运算能力,属于中档题.13. 解:由cosA=,cosC=,可得sinA===,sinC===,sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,由正弦定理可得b===.故答案为:.运用同角的平方关系可得sinA,sinC,再由诱导公式和两角和的正弦公式,可得sinB,运用正弦定理可得b=,代入计算即可得到所求值.本题考查正弦定理的运用,同时考查两角和的正弦公式和诱导公式,以及同角的平方关系的运用,考查运算能力,属于中档题.14. 解:①如果m⊥n,m⊥α,n∥β,那么α∥β,故错误;②如果n∥α,则存在直线l⊂α,使n∥l,由m⊥α,可得m⊥l,那么m⊥n.故正确;③如果α∥β,m⊂α,那么m与β无公共点,则m∥β.故正确④如果m∥n,α∥β,那么m,n与α所成的角和m,n与β所成的角均相等.故正确;故答案为:②③④根据空间直线与平面的位置关系的判定方法及几何特征,分析判断各个结论的真假,可得答案.本题以命题的真假判断与应用为载体,考查了空间直线与平面的位置关系,难度中档.15. 解:根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;∴根据甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又甲说,“我与乙的卡片上相同的数字不是2”;∴甲的卡片上写的数字不是1和2,这与已知矛盾;∴甲的卡片上的数字是1和3.故答案为:1和3.可先根据丙的说法推出丙的卡片上写着1和2,或1和3,分别讨论这两种情况,根据甲和乙的说法可分别推出甲和乙卡片上的数字,这样便可判断出甲卡片上的数字是多少.考查进行简单的合情推理的能力,以及分类讨论得到解题思想,做这类题注意找出解题的突破口.16. 解:设y=kx+b与y=lnx+2和y=ln(x+1)的切点分别为(x1,kx1+b)、(x2,kx2+b);由导数的几何意义可得k==,得x1=x2+1再由切点也在各自的曲线上,可得联立上述式子解得;从而kx1+b=lnx1+2得出b=1-ln2.先设切点,然后利用切点来寻找切线斜率的联系,以及对应的函数值,综合联立求解即可本题考查了导数的几何意义,体现了方程思想,对学生综合计算能力有一定要求,中档题17.(Ⅰ)利用已知条件求出等差数列的公差,求出通项公式,然后求解b1,b11,b101;(Ⅱ)找出数列的规律,然后求数列{b n}的前1000项和.本题考查数列的性质,数列求和,考查分析问题解决问题的能力,以及计算能力.18.(Ⅰ)上年度出险次数大于等于2时,续保人本年度的保费高于基本保费,由此利用该险种一续保人一年内出险次数与相应概率统计表根据对立事件概率计算公式能求出一续保人本年度的保费高于基本保费的概率.(Ⅱ)设事件A表示“一续保人本年度的保费高于基本保费”,事件B表示“一续保人本年度的保费比基本保费高出60%”,由题意求出P(A),P(AB),由此利用条件概率能求出若一续保人本年度的保费高于基本保费,则其保费比基本保费高出60%的概率.(Ⅲ)由题意,能求出续保人本年度的平均保费与基本保费的比值.本题考查概率的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式、条件概率计算公式的合理运用.19.(Ⅰ)由底面ABCD为菱形,可得AD=CD,结合AE=CF可得EF∥AC,再由ABCD是菱形,得AC⊥BD,进一步得到EF⊥BD,由EF⊥DH,可得E F⊥D′H,然后求解直角三角形得D′H⊥OH,再由线面垂直的判定得D′H⊥平面ABCD;(Ⅱ)以H为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到的坐标,分别求出平面ABD′与平面AD′C的一个法向量,设二面角二面角B-D′A-C的平面角为θ,求出|cosθ|.则二面角B-D′A-C的正弦值可求.本题考查线面垂直的判定,考查了二面角的平面角的求法,训练了利用平面的法向量求解二面角问题,体现了数学转化思想方法,是中档题.20.(Ⅰ)求出t=4时,椭圆方程和顶点A,设出直线AM的方程,代入椭圆方程,求交点M,运用弦长公式求得|AM|,由垂直的条件可得|AN|,再由|AM|=|AN|,解得k=1,运用三角形的面积公式可得△AMN的面积;(Ⅱ)直线AM的方程为y=k(x+),代入椭圆方程,求得交点M,可得|AM|,|AN|,再由2|AM|=|AN|,求得t,再由椭圆的性质可得t>3,解不等式即可得到所求范围.本题考查椭圆的方程的运用,考查直线方程和椭圆方程联立,求交点,以及弦长公式的运用,考查化简整理的运算能力,属于中档题.21.从导数作为切入点探求函数的单调性,通过函数单调性来求得函数的值域,利用复合函数的求导公式进行求导,然后逐步分析即可该题考查了导数在函数单调性上的应用,重点是掌握复合函数的求导,以及导数代表的意义,计算量较大,中档题.22.(Ⅰ)证明B,C,G,F四点共圆可证明四边形BCGF对角互补,由已知条件可知∠BCD=90°,因此问题可转化为证明∠GFB=90°;(Ⅱ)在Rt△DFC中,GF=CD=GC,因此可得△GFB≌△GCB,则S四边形BCGF=2S△BCG,据此解答.本题考查四点共圆的判断,主要根据对角互补进行判断,注意三角形相似和全等性质的应用.23.(Ⅰ)把圆C的标准方程化为一般方程,由此利用ρ2=x2+y2,x=ρcosα,y=ρsinα,能求出圆C 的极坐标方程.(Ⅱ)由直线l的参数方程求出直线l的一般方程,再求出圆心到直线距离,由此能求出直线l的斜率.本题考查圆的极坐标方程的求法,考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线公式、圆的性质的合理运用.24.(I)分当x<时,当≤x≤时,当x>时三种情况,分别求解不等式,综合可得答案;(Ⅱ)当a,b∈M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,配方后,可证得结论.本题考查的知识点是绝对值不等式的解法,不等式的证明,难度中档.。

2016全国卷Ⅱ高考理科数学试卷及答案(word版)

2016全国卷Ⅱ高考理科数学试卷及答案(word版)

2016年普通高等学校招生全统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 已知i m m z )1()3(-++=在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(3-,1) (B )(1-,3) (C )(1,∞+) (D )(∞-,3-)(2) 已知集合{}3,2,1=A ,{}Z x x x x B ∈<-+=,0)2)(1(,则=B A (A ){}1 (B ){}2,1 (C ){}3,2,1,0 (D ){}3,2,1,0,1- (3) 已知向量),1(m a =,)2,3(-=b 且b b a ⊥+)(,则=m(A )8- (B )6- (C )6 (D )8 (4) 圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a(A )34-(B )43- (C )3 (D )2(5) 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7) 若将函数x y 2sin 2=的图像向左平移12π个单位长度,则平移后图像的对称轴为 (A ))(62Z k k x ∈-=ππ (B ))(62Z k k x ∈+=ππ (C ))(122Z k k x ∈-=ππ (D ))(122Z k k x ∈+=ππ (8) 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s (A )7 (B )12 (C )17 (D )34(9) 若53)4cos(=-απ,则=α2sin(A )257 (B )51 (C )51- (D )257- (10)以从区间[]1,0随机抽取n 2个数n n y y y x x x ,⋯⋯,,,,,,2121,构成n 个数对则),(),,(),,(2211n n y x y x y x ,⋯,其中两数的平方和小于1的数对共有m 个,用随机模拟的方法得到的圆周率π的近似值为 (A )m n 4 (B )m n 2 (C )n m 4 (D )nm 2 (11)已知21,F F 是双曲线E :12222=-by a x 的左,右焦点,点M 在E 上,1MF 与x 轴垂直,31sin 12=∠F MF ,则E 的离心率为 (A )2 (B )23(C )3 (D )2 (12)已知函数))((R x x f ∈满足)(2)(x f x f -=-,若函数xx y 1+=与)(x f y =图像的交点为),(,),,(),,(2211m m y x y x y x ⋯,则=+∑=mi i iy x1)((A )0 (B )m (C )m 2 (D )m 4第Ⅱ卷本卷包括必考题和选考题两部分。

2016年高考理科数学全国Ⅱ卷试题及答案

2016年高考理科数学全国Ⅱ卷试题及答案

2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m = (A )-8 (B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43-(B )34-(C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x =k π2–π6 (k ∈Z ) (B )x =k π2+π6 (k ∈Z ) (C )x =k π2–π12 (k ∈Z ) (D )x =k π2+π12 (k ∈Z )(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)= 35,则sin 2α=(A )725 (B )15 (C )–15 (D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F 1,F 2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为(A )2 (B )32(C )3 (D )2(12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅ 则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A =45,cos C =513,a =1,则b = .(14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n .(3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

2016年普通高等学校招生全国统一考试全国卷Ⅱ数学(理)解析版

2016年普通高等学校招生全国统一考试全国卷Ⅱ数学(理)解析版

2016年普通高等学校招生全国统一考试全国卷Ⅱ数学(理)解析版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟. 第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( )A.⎝ ⎛⎭⎪⎫-3,-32B.⎝ ⎛⎭⎪⎫-3,32C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫32,3解析:选D.通过解不等式化简集合A ,B ,再利用交集定义求解. ∵x 2-4x +3<0,∴1<x <3,∴A ={x |1<x <3}.∵2x -3>0,∴x >32,∴B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32. ∴A ∩B ={x |1<x <3}∩⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x >32=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x <3. 故选D.2.设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A .1 B. 2 C. 3 D .2解析:选 B.利用两复数相等的充要条件:实部与实部、虚部与虚部分别相等,求出x ,y ,再利用复数模的定义求解.∵(1+i)x =1+y i ,∴x +x i =1+y i. 又∵x ,y ∈R ,∴x =1,y =x =1. ∴|x +y i|=|1+i|=2,故选B.3.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97解析:选C.利用等差数列的通项公式、前n 项和公式及性质,结合方程思想求解.(方法1)∵{a n }是等差数列,设其公差为d ,∴S 9=92()a 1+a 9=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎨⎧ a 1+4d =3,a 1+9d =8,∴⎩⎨⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C. (方法2)∵{a n }是等差数列,∴S 9=92()a 1+a 9=9a 5=27,∴a 5=3. 在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5.故a 100=a 5+(20-1)×5=98.故选C.4.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34 解析:选B.利用几何概型概率公式求解.如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P =2040=12.故选B. 5.已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)解析:选A.根据双曲线的焦距,建立关于n 的不等式组求解.若双曲线的焦点在x 轴上,则⎩⎨⎧m 2+n >0,3m 2-n >0.又∵(m 2+n )+(3m 2-n )=4,∴m 2=1,∴⎩⎨⎧1+n >0,3-n >0,∴-1<n <3.若双曲线的焦点在y 轴上,则双曲线的标准方程为y 2n -3m 2-x 2-m 2-n =1,即⎩⎨⎧n -3m 2>0,-m 2-n >0,即n >3m 2且n <-m 2,此时n 不存在.故选A.6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π 解析:选A.由三视图还原为直观图后计算求解.由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A.7.函数y =2x 2-e |x |在[-2,2]的图象大致为( )解析:选D.利用导数研究函数y =2x 2-e |x |在[0,2]上的图象,利用排除法求解.∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数, 又f (2)=8-e 2∈(0,1),故排除A ,B. 设g (x )=2x 2-e x ,则g ′(x )=4x -e x . 又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D. 8.若a >b >1,0<c <1,则( ) A .a c <b c B .ab c <ba cC .a log b c <b log a cD .log a c <log b c解析:选 C.根据待比较式的特征构造函数,利用函数单调性及不等式的性质进行比较.∵y =x α,α∈(0,1)在(0,+∞)上是增函数, ∴当a >b >1,0<c <1时,a c >b c ,选项A 不正确. ∵y =x α,α∈(-1,0)在(0,+∞)上是减函数, ∴当a >b >1,0<c <1,即-1<c -1<0时, a c -1<b c -1,即ab c >ba c ,选项B 不正确.∵a >b >1,∴lg a >lg b >0,∴a lg a >b lg b >0,∴a lgb >blg a .又∵0<c <1,∴lg c <0.∴a lg c lg b <b lg c lg a,∴a log b c <b log a c ,选项C 正确. 同理可证log a c >log b c ,选项D 不正确. 9.执行右面的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x解析:选C.执行程序框图,直至输出x ,y 的值. 输入x =0,y =1,n =1,运行第一次,x =0,y =1,不满足x 2+y 2≥36;运行第二次,x =12,y =2,不满足x 2+y 2≥36;运行第三次,x =32,y =6,满足x 2+y 2≥36;输出x =32,y =6.由于点⎝ ⎛⎭⎪⎫32,6在直线y =4x 上,故选C.10.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8解析:选B.设出抛物线和圆的方程,将点的坐标代入,联立方程组求解. 设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25,抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上, ∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p 24+5,∴p =4(负值舍去).∴C 的焦点到准线的距离为4.11.平面α过正方体ABCD ­A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A.32B.22C.33 D.13 解析:选A.根据平面与平面平行的性质,将m ,n 所成的角转化为平面CB 1D 1与平面A 1B 1C 1D 1的交线及平面CB 1D 1与平面DCC 1D 1的交线所成的角.设平面CB 1D 1∩平面ABCD =m 1. ∵平面α∥平面CB 1D 1,∴m 1∥m .又平面ABCD ∥平面A 1B 1C 1D 1,且平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1, ∴B 1D 1∥m 1.∴B 1D 1∥m .∵平面ABB 1A 1∥平面DCC 1D 1, 且平面CB 1D 1∩平面DCC 1D 1=CD 1, 同理可证CD 1∥n .因此直线m 与n 所成的角即直线B 1D 1与CD 1所成的角.在正方体ABCD ­A 1B 1C 1D 1中,△CB 1D 1是正三角形,故直线B 1D 1与CD 1所成角为60°,其正弦值为32.12.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .5解析:选 B.先根据函数的零点及图象对称轴,求出ω,φ满足的关系式,再根据函数f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则⎝ ⎛⎭⎪⎫π18,5π36的区间长度不大于函数f (x )周期的12,然后结合|φ|≤π2计算ω的最大值.因为f (x )=sin(ωx +φ)的一个零点为x =-π4,x =π4为y =f (x )图象的对称轴,所以T 4·k =π2(k 为奇数).又T =2πω,所以ω=k (k 为奇数). 又函数f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以π12≤12×2πω,即ω≤12.若ω=11,又|φ|≤π2,则φ=-π4,此时,f (x )=sin ⎝⎛⎭⎪⎫11x -π4,f (x )在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝⎛⎭⎪⎫3π44,5π36上单调递减,不满足条件. 若ω=9,又|φ|≤π2,则φ=π4,此时,f (x )=sin⎝ ⎛⎭⎪⎫9x +π4,满足f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调的条件.故选B. 第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 解析:先化简|a +b |2=|a |2+|b |2,再利用向量数量积的坐标运算公式求解. ∵|a +b |2=|a |2+|b |2+2a ·b =|a |2+|b |2, ∴a ·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2. 答案:-214.(2x +x )5的展开式中,x 3的系数是________.(用数字填写答案)解析:利用二项展开式的通项公式求解.(2x +x )5展开式的通项为T r +1=C r 5(2x )5-r(x )r =25-r ·C r 5·x 5-r2.令5-r2=3,得r =4.故x 3的系数为25-4·C 45=2C 45=10. 答案:1015.设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:利用等比数列通项公式求出首项a 1与公比q ,再将a 1a 2…a n 的最值问题利用指数幂的运算法则转化为二次函数最值问题.设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8. 故a 1a 2…a n =a n 1q 1+2+…+(n -1)=23n·⎝ ⎛⎭⎪⎫12n -1n 2 =23n -n 22+n 2=2-n 22+72n .记t =-n 22+7n 2=-12(n 2-7n ),结合n ∈N *可知n =3或4时,t 有最大值6.又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:6416.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设出产品A ,B 的产量,列出产品A ,B 的产量满足的约束条件,转化为线性规划问题求解.设生产产品A x 件,产品B y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).当直线z =2 100x +900y 经过点(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000(元).答案:216 000三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.【思路方法】 (1)利用正弦定理将已知条件的边化为角,再利用两角和的正弦公式求角C ;(2)根据(1)的结论,利用三角形面积公式求ab ,再利用余弦定理求a +b ,从而求得三角形周长.解:(1)由已知及正弦定理得2cos C (sin A cos B +sin B cos A )=sin C , 即2cos C sin(A +B )=sin C , 故2sin C cos C =sin C .可得cos C =12,所以C =π3.(2)由已知得12ab sin C =332.又C =π3,所以ab =6.由已知及余弦定理得a 2+b 2-2ab cos C =7, 故a 2+b 2=13,从而(a +b )2=25. 所以△ABC 的周长为5+7. 18.(本小题满分12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D ­AF ­E 与二面角C ­BE ­F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E ­BC ­A 的余弦值.【思路方法】 (1)先证线面垂直,再证面面垂直;(2)建立空间直角坐标系利用法向量求解.解:(1)证明:由已知可得AF ⊥DF ,AF ⊥FE , 所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G .由(1)知DG ⊥平面ABEF . 以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G ­xyz .由(1)知∠DFE 为二面角D ­AF ­E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得AB ∥EF ,所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF . 由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C ­BE ­F 的平面角,∠CEF =60°. 从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量. 则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E ­BC ­A 的余弦值为-21919.19.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【思路方法】(1)利用频率代替概率以及由互斥事件、相互独立事件的概率列出分布列;(2)根据(1)的结论求解;(3)利用期望值的大小求解.解:(1)由柱状图及以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X(2)由故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040;当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.20.(本小题满分12分)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【思路方法】 (1)利用椭圆的定义求解;(2)设出直线方程代入椭圆方程中,利用弦长公式求出|MN |,再利用点到直线的距离公式求出|PQ |,从而将四边形面积问题转化为关于k 的函数问题求解.解:(1)因为|AD |=|AC |,EB ∥AC ,所以∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |, 故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4, 所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0).(2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0), M (x 1,y 1),N (x 2,y 2).由⎩⎨⎧y =k x -1,x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0,则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+13.所以|MN |=1+k 2|x 1-x 2|=12k 2+14k 2+3. 过点B (1,0)且与l 垂直的直线m :y =-1k(x -1),点A 到直线m 的距离为2k 2+1, 所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1.故四边形MPNQ 的面积S =12|MN ||PQ |=121+14k 2+3.可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8, 故四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为[12,83).21.(本小题满分12分)已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.【思路方法】 (1)利用函数的导数判断函数的单调性,根据函数的单调性分类讨论求解;(2)根据(1)的结论,将问题转化为f (x 1)>f (2-x 2),构造函数求解.解析:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))内单调递减,在(ln(-2a ),+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)不妨设x 1<x 2,由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)内单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0. 由于f (2-x 2)=-x 2e2-x 2+a (x 2-1)2,而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e2-x 2-(x 2-2)e x 2. 设g (x )=-x e 2-x -(x -2)e x , 则g ′(x )=(x -1)(e 2-x -e x ).所以当x >1时,g ′(x )<0,而g (1)=0, 故当x >1时,g (x )<0.从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲如图,△OAB 是等腰三角形,∠AOB =120°,以O 为圆心,12OA 为半径作圆.(1)证明:直线AB 与⊙O 相切;(2)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB ∥CD . 【思路方法】 (1)利用圆心到直线的距离等于圆的半径证明直线与圆相切;(2)利用直线AB ,CD 均与直线OO ′垂直证明AB ,CD 平行.证明:(1)设E 是AB 的中点,连接OE . 因为OA =OB ,∠AOB =120°, 所以OE ⊥AB ,∠AOE =60°.在Rt △AOE 中,OE =12AO ,即O 到直线AB 的距离等于⊙O 的半径,所以直线AB 与⊙O 相切.(2)因为OA =2OD ,所以O 不是A ,B ,C ,D 四点所在圆的圆心.设O ′是A ,B ,C ,D 四点所在圆的圆心,作直线OO ′. 由已知得O 在线段AB 的垂直平分线上,又O ′在线段AB 的垂直平分线上,所以OO ′⊥AB . 同理可证,OO ′⊥CD ,所以AB ∥CD .23.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =a cos t ,y =1+a sin t(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .【思路方法】 (1)消去参数,求出曲线C 1的直角坐标方程,利用极坐标与直角坐标互化公式求出曲线C 1的极坐标方程;(2)将曲线C 1,C 2的极坐标方程联立得方程组,解方程组求解.解:(1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2,则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎨⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.24.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x +1|-|2x -3|. (1)画出y =f (x )的图象;(2)求不等式|f (x )|>1的解集.【思路方法】 (1)利用绝对值的性质化简函数表达式;(2)根据函数的图象写出不等式的解集.解:(1)由题意得f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知,当f (x )=1时,可得x =1或x =3;当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <13或x >5.所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <13或1<x <3或x >5.。

2016届广东省湛江市普通高考测试(二)数学(理)试题(解析版)

2016届广东省湛江市普通高考测试(二)数学(理)试题(解析版)

2016届广东省湛江市普通高考测试(二)数学(理)试题一、选择题1.已知全集U R =,集合{}24A x x =≥,集合{}1B x x =>,则()U A B = ð( )A .{}22x x -<< B .{}12x x ≤≤ C .{}21x x -<≤D .{}21x x -≤< 【答案】C【解析】试题分析:由{}24A x x =≥得{}22-≤≥=x x x A 或,则{}21-≤>=⋃x x x B A 或,故(){}12≤<-=⋃x x B A C U ,故答案为C.【考点】集合的运算.2.已知i 是虚数单位,a R ∈,复数123,12z ai z i =-=+,若12z z ⋅是纯虚数,则a =( ) A .32-B .32C .6-D .6 【答案】A 【解析】试题分析:复数123,12z ai z i=-=+,∴()()()i a a i ai z z -++=+-=⋅62321321是纯虚数,∴⎩⎨⎧≠-=+06023a a ,解得23-=a .故选:A .【考点】复数代数形式的乘除运算.3.某中学共有学生2000名,校卫生室为了解学生身体健康状况,对全校学生按性别采用分层抽样的办法进行抽样调查,抽取了一个容量为200的样本,样本中男生107人,则该中学共有女生( )A .1070人B .1030人C .930人D .970人 【答案】C【解析】试题分析:设女生有x 人,则2002000107200=-x ,解得930=x ,所以该校女生有930人.故选:C . 【考点】分层抽样方法.4.执行如图所示的程序框图,若输入2x =,则输出y 的值为( )A .2B .5C .11D .23 【答案】D 【解析】试题分析:模拟执行程序,可得本程序框图为计算并输出y 的值,循环体为“直到型”循环结构,由框图,可得:5,2==y x 不满足条件8>-y x ,执行循环体,11,5==y x ,不满足条件8>-y x ,执行循环体,23,11==y x ,满足条件8>-y x ,退出循环,输出y 的值为23.故选:D .【考点】程序框图. 5.给出以下四个结论: ①0a b +=的充要条件是1ab=-; ②命题:“,sin 1x R x ∀∈≤”的否定是“00,sin 1x R x ∃∈>”; ③20,2xx x ∀>>;④一组数据的方差越大,则这组数据的波动越小. 其中正确的个数是( )A .0B .1C .2D .3 【答案】B【解析】试题分析:①当0==b a 时,1-=ba不成立,∴充分性不成立,即0a b +=的充要条件是1ab=-错误,②命题:“,sin 1x R x ∀∈≤”的否定是“00,sin 1x R x ∃∈>”;正确,③当2=x 时,x x22=;∴20,2x x x ∀>>;错误,④一组数据的方差越大,则这组数据的波动越大.故④错误,故正确的是②,故选:B.【考点】命题的真假判断与应用.【方法点晴】本题主要考查命题的真假判断,涉及的知识点较多,综合性较强,但难度不大.①根据充分条件和必要条件的定义进行判断.②根据全称命题的否定是特称命题进行判断.③根据全称命题的定义,能够举出一个反例不成立,则全称命题不成立进行判断.④根据方差的意义方差越大,则这组数据的波动越大进行判断. 6.函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,将其图象向右平移3π个单位后所得图象对应的解析式为( ) A .sin 26y x π⎛⎫=- ⎪⎝⎭B .cos 2y x =-C .sin2xy = D .cos 2y x = 【答案】B【解析】试题分析:由πωπ==2T ,2=ω,()⎪⎭⎫ ⎝⎛+=62sin πx x f ,将其图象向右平移3π个单位后,()⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=22sin 632sin πππx x x f ,∴()x x f 2cos -=,故答案为:B .【考点】函数()ϕω+=x A y sin 的图象变换.7.如图,圆柱内有一个三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形.圆柱侧面积为16π,其底面直径与母线长相等,则此三棱柱的体积为( )A..12 C..【答案】C【解析】试题分析:设圆柱的底面半径为r ,则圆柱的高为r 2,∴ππ1622=⋅=r r S 侧,解得2=r .∴正三棱柱的底面边长为32.棱柱的高为4.∴棱柱的体积()312432432=⨯⨯=V ,故选:C . 【考点】旋转体(圆柱、圆锥、圆台). 8.设0sin a xdx π=⎰,则二项式6⎛⎝展开式中含x 项的系数是( )A .192-B .192C .240-D .240【答案】D【解析】试题分析:2cos sin 0=-==⎰ππx xdx a ,∴66121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-x x x x a 展开式的通项为()r r r rr x C T --+-=366121,令13=-r 得2=r ,故展开式中含x 项的系数是2401626=C ,故选D .【考点】二项式系数的性质.9.已知实数,x y 满足121y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,如果目标函数z y x =-的最大值为1,则实数m 等于( )A .6B .5C .4D .3 【答案】B【解析】试题分析:由x y z -=得z x y +=,由图象可知要使x y z -=的最大值为1,即1+=x y ,此时直线1+=x y 对应区域的截距最大,由⎩⎨⎧-=+=121x y x y ,解得⎩⎨⎧==32y x ,即()3,2A ,同时A 也在直线m y x =+上,即532=+=m ,故选:B .【考点】简单线性规划.10.已知双曲线()222210,0x y a b a b-=>>的两条渐近线与抛物线()220y px p =>的准线分别交于,A B 两点,O 为坐标原点.若双曲线的离心率为2,AOB ∆则p =( ) A .2 B .4 C .12 D .14【答案】A【解析】试题分析:由2122222=+=+==a b a b a a c e ,可得3=a b .由⎪⎪⎩⎪⎪⎨⎧-=±=2px x ab y ,求得⎪⎭⎫ ⎝⎛-a bp p M 2,2,⎪⎭⎫⎝⎛--a bp p N 2,2,所以3221=⋅=∆p a bp S MON .将3=a b 代入,得42=p ,解得2=p .故选A .【考点】双曲线的简单性质.【方法点晴】本题考查双曲线和抛物线的综合应用.求解这类问题关键是结合两个曲线的位置关系,找到它们对应的几何量,属于中档题.由双曲线的离心率公式及c b a ,,的关系可得3=ab,由双曲线的渐近线方程和抛物线的准线方程列出方程组解得⎪⎭⎫ ⎝⎛-a bp p M 2,2,⎪⎭⎫⎝⎛--a bp p N 2,2,求出三角形MON ∆的面积,进而解得p 的值. 11.设数列{}n a 为等差数列,{}n b 为等比数列.若1212,a a b b <<,且()21,23i i b a i ==,则数列{}n b 的公比为( )A.1+.3+.3-.1 【答案】B【解析】试题分析:由题意可知()()22222222131313a b b b a a a a ====,则2213a aa =±.若2213a aa =,易知123a a a ==,舍去;若2213a a a =-,则10a <,且213132a a a a +⎛⎫=- ⎪⎝⎭,所以22113360a a a a ++=,23311610a a a a ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭,则3132a a =-,又2223332111b a aq b a a ⎛⎫===⎪⎝⎭,且1q >,所以3q =+ B. 【考点】(1)等比数列的通项公式;(2)等差数列的通项公式.12.定义在R 上的函数()f x 的导函数为()f x ',若对任意实数x ,有()()f x f x >',且()1f x +为奇函数,则不等式()0xf x e +<的解集是( )A .(),0-∞B .()0,+∞C .1,e ⎛⎫-∞ ⎪⎝⎭ D .1,e ⎛⎫+∞ ⎪⎝⎭【答案】B【解析】试题分析:设()()x f x g x e =.由()()fx f x '>,得()()()()()()20x xxx f x e f x e f x f x g x e e ''--'==<,故函数()g x 在R 上单调递减.由()1f x +为奇函数()01f =-,所以()()0001f g e ==-.不等式()0x f x e +<等价于()1xf x e<-,即()()0g x g <,结合函数()g x 的单调性可得0x >,从而不等式()0x f x e +<的解集为()0,+∞,故答案为B.【考点】利用导数研究函数的单调性.【方法点晴】本题考查了导数的综合应用及函数的性质的应用,构造函数的思想,阅读分析问题的能力,属于中档题.常见的构造思想是使含有导数的不等式一边变为0,即()()f x f x >'得()()0<-'x f x f ,当是形如()()0<-'x f x f 时构造()()x f x g x e=;当是()()0<+'x f x f 时构造()()x e x f x g ⋅=,在本题中令()()xf xg x e =,(R x ∈),从而求导()0<'x g ,从而可判断()x g y =单调递减,从而可得到不等式的解集.二、填空题13.已知数列{}n a 满足11a =,且对于任意*n N ∈都有11n n a a n +=++,则121001111a a a ++⋅⋅⋅+=______. 【答案】5011001【解析】试题分析:∵对于任意*n N ∈都有11n n a a n +=++,即11+=-+n a a n n , ∴()()()()()21121112211+=+++-+=+-++-+-=---n n n n a a a a a a a a n n n n n , ∴⎪⎭⎫ ⎝⎛+-=11121n n a n .∴12111112122310011002a a a ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦11001211002501⎛⎫=-= ⎪⎝⎭.故答案为:5011001. 【考点】(1)数列的递推式;(2)数列求和. 14.已知平面向量,i j 是单位向量,且1,2=i j ,若平面向量a满足:=⋅=⋅a a i j ,则=a ______. 【答案】2【解析】试题分析:∵,是单位向量,21=⋅,∴平面向量,的夹角为60,∵3=⋅=⋅,∴a为的角平分线,∴330==⋅2=.故答案为:2.【考点】平面向量数量积的运算.15.若(10,,9log 02x a x x a ⎛⎫∀∈<> ⎪⎝⎭且)1a ≠,则实数a 的取值范围是______.【答案】⎪⎪⎭⎫⎢⎣⎡-1,231【解析】试题分析:(10,,9log 02x a x x a ⎛⎫∀∈<> ⎪⎝⎭,∴10<<a ,3921log 21=≥a ,即1231<≤-a .故答案为:⎪⎪⎭⎫⎢⎣⎡-1,231.【考点】全称命题.16.已知圆22:9O x y +=,点()2,0A ,点P 为动点,以线段AP 为直径的圆内切于圆O ,则动点P 的轨迹方程是______.【答案】15922=+y x 【解析】试题分析:设AP 的中点为M ,切点为N ,连OM ,MN ,则3==+ON MN OM ,取A 关于y 轴的对称点1A ,连P A 1,故()621=+=+ON OM AP P A .所以点P 的轨迹是以1A ,A 为焦点,长轴长为6的椭圆.其中3=a ,2=c ,5=b ,则动点P 的轨迹方程是15922=+y x .故答案为:15922=+y x . 【考点】轨迹方程.【方法点晴】本题考查轨迹方程的求法,判断轨迹的椭圆简化解题的过程,考查直线与椭圆的位置关系的应用,考查分析问题解决问题的能力.在圆锥曲线题中应根据草图加以理解,利用转化思想,对称性,构造三角形中位线,根据圆锥曲线的定义,性质方程构造出本题正符合一动点到两定点的距离之和为定值即椭圆的定义,从而可得结果.三、解答题17.已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,A 为锐角,向量(2sin ,A =m ,2cos 2,2cos 12A A ⎛⎫=- ⎪⎝⎭n ,且m n .(Ⅰ)求A 的大小;(Ⅱ)如果2a =,求ABC ∆面积的最大值. 【答案】(Ⅰ)3π;(Ⅱ)3. 【解析】试题分析:(I )由向量平行的坐标表示整理可得22sin 2cos 122A A A ⎛⎫-= ⎪⎝⎭结合已经知道20π<<A 可求A ;(II )利用余弦定理可得2240b c bc +--=,利用基本不等式可得4bc ≤,代入面积公式A bc S ABC sin 21=∆可求. 试题解析:(Ⅰ)∵ m n,∴22sin 2cos 122A A A ⎛⎫-= ⎪⎝⎭.∴sin 2A A =,即tan 2A = 又∵A 为锐角,∴()20,A π∈.∴22,33A A ππ==. (Ⅱ)∵,23A a π==,由余弦定理222cos 2b c a A bc+-=得2240b c bc +--=.∵222b c bc +≥,代入上式得:4bc ≤(当且仅当2b c ==时等号成立).1sin 24ABC S bc A ∆==≤2b c ==时等号成立). ∴ABC ∆【考点】(1)解三角形;(2)平面向量共线(平行)的坐标表示;(3)三角函数的恒等变换及化简求值.18.某校数学文化节同时安排A 、B 两场讲座.已知甲、乙两寝室各有6位同学,甲寝室1人选择听A 讲座,其余5人选择听B 讲座;乙寝室2人选择听A 讲座,其余4人选择听B 讲座.现从甲、乙两寝室中各任选2人. (Ⅰ)求选出的4人均选择听B 讲座的概率;(Ⅱ)设ξ为选出的4人中选择听A 讲座的人数,求ξ的分布列和数学期望E ξ. 【答案】(Ⅰ)154;(Ⅱ)分布列见解析,()1=ζE . 【解析】试题分析:(Ⅰ)利用相互独立事件概率乘法公式能求出选出的4人均选择听B 讲座的概率;(Ⅱ)由题意得ζ的可能取值为3,2,1,0,分别求出相应的概率,由此能求出ζ的分布列和ζE .试题解析:(Ⅰ)设“从甲寝室选出的2人选择听B 讲座”为事件M , “从乙寝室选出的2人选择听B 讲座”为事件N ,∴()()2254226622,35C C P M P N C C ====.由于事件M 、N 相互独立,所以选出的4人均选择听B 讲座的概率()()()2243515P M N P M P N =⋅=⨯=. (Ⅱ)ξ可能的取值为0,1,2,3.∴()4015P ξ==, ()21112552442222666622145C C C C C P C C C C ξ==⨯+⨯=,()12052422661345C C C P C C ξ==⨯=.∴()()()()2210139P P P P ξξξξ==-=-=-==. ∴ξ的分布为ξ的数学期望42221012311545945E ξ=⨯+⨯+⨯+⨯=. 【考点】(1)离散型随机变量的期望与方差;(2)古典概型及其概率计算公式;(3)离散型随机变量及其分布列.19.如图,己知ABCDEF 是正六边形,GA 、ND 都垂直于平面ABCDEF ,平面GFN交线段DE 于点R ,点M 是CD 的中点,1,2AB DN AG ===.(Ⅰ)证明:AM 平面GFRN ; (Ⅱ)求二面角A GF N --的余弦值. 【答案】(Ⅰ)证明见解析;(Ⅱ)41-. 【解析】试题分析:(Ⅰ)以A 为原点,直线AG AC AF ,,分别为z y x ,,轴,建立如图所示的空间直角坐标系,利用和向量法能证明//AM 平面GFRN ;(Ⅱ)求出平面GFRN 的法向量和平面AGF 的法向量,利用向量法能求出二面角N GF A --的余弦值.试题解析:由正六边形的性质得:AF AC ⊥,以点A 为坐标原点,直线,,AF AC AG 分别为,,x y z 轴,建立如图所示的空间直角坐标系.则()()()()()1,,,1,0,0,0,0,2,2C D N F G M ⎛⎫---- ⎪⎝⎭∴()()1,1,0,2,2AM FG FN ⎛⎫=-== ⎪⎝⎭.设平面FRNG 的法向量为(),,x y z =n则20FN x z ⋅=+= n,0FN z ⋅+=n得一个法向量()3=-n.∵()160302AM ⎛⎫⋅=⨯-+⋅-= ⎪⎝⎭n∴AM ⊥n .且AM ⊄平面FRNG , ∴AM 平面GFRN .(Ⅱ)由(Ⅰ)证法2,得平面FRNG的一个法向量为()3=-n . 而平面AGF 的一个法向量是()0,1,0=m .则1cos ,4⋅===⋅n mn m n m. 又因为所求二面角为钝角,所以所求二面角A GF N --的余弦值为14-. 【考点】(1)直线与平面平行的判定;(2)二面角的平面角及求法. 【一题多解】(Ⅰ)取,AF GF 的中点,H K ,连结,,DH HK KN .∵,AH MD AH MD = .∴四边形AMDH 都是平行四边形.∴HD AM .① ∵GA 、ND 都垂直于平面ABCDEF .∴GA ND . 又112KH AG DN ===,且KH ND .∴四边形DHKM 是平行四边形. ∴KH HD .②由①②得AM KN .又KN ⊂平面GFRN ,且AM ⊄平面GFRN .∴AM 平面GFRN .(Ⅱ)AM ⊂平面ABCDEF ,FR =平面GFRN 平面ABCDEF . 由(Ⅰ)得AM FR (注:第一小题的证明也可先证此结论). 延长FR 、MD 交于U .则MU AF =,且12DU =. 3EDU π∠=,则22232cos34EU DU DE DU DE π=+-⋅⋅⋅=即222DU UE DE +=,∴UE DU ⊥.延长UE 交AF 于S ,∵AF MD ,∴US AS ⊥∵GA ⊥平面ABCDEF ,∴GA US ⊥ 且AS AG A = ,∴US ⊥平面GAF .作ST GF ⊥,交GF 延长线于T ,则US GT ⊥,连结UT .由GT STGT US GT TS SU S ⊥⎫⎪⊥⇒⊥⎬⎪=⎭ 平面STU GT UT ⇒⊥. STU ∠是二面角A GF R --的平面角的补角.在Rt STF ∆中,1sin 2ST SF GFA US AC =⋅∠==== 在Rt TSU ∆中,1cos 4ST STU UT ∠====.∴所求二面角A GF N --的余弦值为14-.20.如图,已知抛物线C 以坐标原点O 为顶点,焦点F 在x 轴的正半轴上,且12OF =.(Ⅰ)求抛物线C 的方程;(Ⅱ)过定点()00,N x y 的动直线l 与抛物线C 相交于A 、B 两点(A 、B 异于点O ),设OA 、OB 的倾斜角分别为α、β,若()()0,αβαβπ++∈为定值,求0x 的值.【答案】(Ⅰ)x y 22=;(Ⅱ)20-=x .【解析】试题分析:(Ⅰ)根据抛物线的几何性质得12122=⨯==OF p ,问题得以解决;(Ⅱ)设()()2211,,,y x B y x A ,设l 的方程为()00x x k y y -=-,与抛物线方程联立,根据韦达定理表示出21y y +,21y y ⋅,分若2πβα≠+和若2πβα=+,求得直线方程,进而求出()00,y x N 的值.试题解析:(Ⅰ)依题意,设抛物线的方程为()220y px p =>.∴根据抛物线的几何性质得12212p OF ==⋅=. ∴抛物线C 的方程是22y x =.(Ⅱ)当直线l 的斜率不存在时,,A B 关于x 轴对称, 此时αβ+=,不符合题意.设l的方程为()()()()0011220,,,,y y k x x k A x y B x y -=-≠,则()001x y y x k=-+,代入22y x =, 得:2002120y y y x k k ⎛⎫-+-= ⎪⎝⎭. ∴01201222,y y y x y y k k ⎛⎫=-+=⎪⎝⎭.①由题意知,αβ均不为2π,记12tan ,tan k k αβ==.(1)若2παβ+≠,则()1212tan 1k k k k αβ++=-.又111221112222,y y k k x y y y ====,代入上式得 ()()12122tan 4y y y y αβ++=-.②将①代入②,化简得:()()002tan 2y x kαβ+=-+.∵上式左边是定值,且00,y x 为定值,k 是变量. ∴020x +=,即02x =-. (2)若2παβ+=,则tan tan 1αβ⋅=,即121k k =.∵12122212120442y y k k y y y y y x k===-. ∴02y x k-=,即()0020y x k -+=.∴002,0x y =-=. 综上可知,符合题意的点N 的横坐标02x =-.【考点】(1)抛物线的性质;(2)直线与圆锥曲线的综合.【方法点晴】本题主要考查了求轨迹方程的问题.涉及直线的抛物线的关系,常需要联立方程根据韦达定理找到解决问题的突破口,属于中档题.第一问中直接根据抛物线的几何性质,得到p 的值,从而得到结果;第二问中,直线与抛物线相交,联立方程组,运用韦达定理属于通法,结合本题中的已知条件βα+为定值,故可结合其正切值为定值,但要注意分为90=+βα和90≠+βα两种情况,结合韦达定理中的结论利用整体代换得结果.21.已知函数()ln xx f x e ex a -=--.(Ⅰ)若()f x 在R 上单调递增,求实数a 的取值范围; (Ⅱ)讨论()f x 的零点个数.【答案】(Ⅰ)(]2,0e ;(Ⅱ)当20a e <≤时,()f x 有且只有1个零点;当2a e >时,()f x 有3个零点.【解析】试题分析:(Ⅰ)求出函数的导数,得到()ln 0xxf x e ea -'=+-≥恒成立,结合基本不等式的性质,从而求出a 的范围即可;(Ⅱ)通过讨论a 的范围,结合函数的单调性求出函数的零点的个数即可.试题解析:(Ⅰ)依题意:()ln 0xxf x e ea -'=+-≥对于x R ∈恒成立,即ln x x e e a -+≥恒成立.∵当x R ∈时,有2x x e e -+≥=(当且仅当0x =时等号成立).∴2ln 20a a e ≤⇒<≤,故a 的取值范围为(20,e ⎤⎦.(Ⅱ)(ⅰ)当20a e <≤时,由(Ⅰ)知()f x 在R 上单调递增,故此时()f x 至多有一个零点.又()00f =,∴当20a e <≤时,()f x 有且只有一个零点00x =. (ⅱ)当2a e >时,先考察0x >时函数()f x 的零点个数.由(Ⅰ)()ln xxf x e ea -'=+-.记()ln ,0x x x e e a x ϕ-=+->.则()0xxx e eϕ-'=->.∴()x ϕ在()0,+∞上单调递增.∵2a e >,∴()02ln 0f a '=-<.又()()()()ln ln ln ln 11ln ln ln ln ln 0ln ln a a a ee a a a a aϕ-=+-=+-=>, 即()()ln ln 0f a '>.∴存在()()00,ln ln x a ∈,使()00f x '=. ∴当00x x <<时,有()0f x '<;当0x x >时,有()0f x '>. ∴()f x 在()0,+∞上有极小值()0f x ,且()()000f x f <=. 以下先证对任意0,ln x x x >>. 令()ln t x x x =-,则()111x t x x x-'=-=,得1x >时,()0,01t x x '><<时,()0t x '<.∴()()min 110t x t ==>.∴ln 0x x ->成立,即ln x x >.取3ln x a =,则()()()()223ln 3ln 33223331113ln 3ln 3ln 33a a f a e e a a a a a a a a a a -=--=-->--=--∵24a e >>,∴()23130aa a-->. 即()3ln 0f a >.()f x 在()0,3ln x a 上存在零点,∵()f x 在()0,x +∞上单调递增,∴()f x 在()0,x +∞上存在唯一零点.另一方面,∵()()f x f x -=-,∴()f x 是R 上的奇函数, ∴根据对称性知:()f x 在()0,x -∞-上也存在一个零点. 又()00f =,∴当2a e >时,函数()f x 有3个零点.综上所述,当20a e <≤时,()f x 有且只有1个零点;当2a e >时,()f x 有3个零点.【考点】(1)利用导数研究函数的单调性;(2)函数零点的判定定理.【方法点晴】本题考查了函数的单调性、最值问题,考查函数的零点问题,利用导数求函数的极值,以及利用导数求函数在闭区间上的最值,熟练掌握导数的性质是解本题的关键综合性强,难度较大;首先利用函数单调递增等同于()0≥'x f 恒成立解决第一问,当涉及到零点个数时,由(Ⅰ)知分为20a e <≤和2a e >两种情况,主要是利用导数判断该函数的单调性,得到函数的大致图象,结合奇偶性得到结果. 22.选修4-1:几何证明选讲 如图,直线AB 为O 的切线,切点为B ,点C 、D 在圆上,DB DC =,作B E B D ⊥交圆于点E .(Ⅰ)证明:CBE ABE ∠=∠;(Ⅱ)设O 的半径为2,BC =延长CE 交AB 于点F ,求BCF ∆外接圆的半径.【答案】(Ⅰ)证明见解析;(Ⅱ)3.【解析】试题分析:(Ⅰ)构造辅助线DE ,交BC 于点G .由弦切角定理,圆上的同弧,等弧的性质,通过导角,可以得知BCE CBE ∠=∠,ABE BCE ∠=∠即可得结果;(Ⅱ)由(Ⅰ)可得DG 是BC 的中垂线,即可求得BG 的长度.设DE 的中点为O ,连结BO ,求得60=∠BOG ,通过导角,可得BF CF ⊥,即可求得BCF Rt ∆外接圆的半径.试题解析:(Ⅰ)连结DE ,交BC 与点G ∵BE BD ⊥,∴DE 是直径. ∵222222,BE DE DB CE DE DC =-=-,又DB DC =,∴BE CE =.∴BCE CBE ∠=∠.由弦切角定理得ABE BCE ∠=∠,∴CBE ABE ∠=∠.(Ⅱ)由(Ⅰ)知,Rt CDE Rt BDE ∆∆≌,∴,CDE BDE DB DC ∠=∠=, ∴DG 是BC的中垂线,∴BG =连结BO,则sin 602BOG BOG ∠=∠=︒,所以OBE ∆为正三角形. 30ABE BCE CBE ∠=∠=∠=︒,∴CF BF ⊥,∴Rt BCF ∆【考点】与圆有关的比例线段. 23.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程()()22121x y -+-=,以原点O 为极点,以x 轴正半轴为极轴建立 极坐标系.(Ⅰ)求圆C 的极坐标方程;(Ⅱ)若直线l的参数方程为112x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),求圆C 上的点到直线l 的距离的取值范围.【答案】(Ⅰ)22cos 4sin 40ρρθρθ--+=;(Ⅱ)1⎤⎦.【解析】试题分析:(Ⅰ)把圆的标准方程化为普通方程,利用公式cos ,sin x y ρθρθ==转化即可得到结果;(Ⅱ)把直线由参数方程化为直角坐标方程,利用几何知识圆上的点到直线距离的最大值为圆心到直线的距离加半径,最小值为圆心到直线的距离减半径即可.试题解析:(Ⅰ)圆C 的方程可化简为:222440x x y y -+-+=. ∵cos ,sin x y ρθρθ==.∴圆C 的极坐标方程为:22cos 4sin 40ρρθρθ--+=.(Ⅱ)直线l的直角坐标方程为10x -=,圆C 的圆心坐标为()1,2.圆心到直线l 的距离d ==∴圆C 上的点到直线l的距离的取值范围是1⎤⎦.【考点】(1)普通方程与极坐标方程的互化;(2)直线与圆的位置关系. 24.选修4-5:不等式选讲 已知函数()121f x x x =+--. (Ⅰ)求不等式()1f x ≥的解集;(Ⅱ)求函数()f x 的图象与x 轴围成的三角形的面积S . 【答案】(Ⅰ)⎭⎬⎫⎩⎨⎧≤≤232x x;(Ⅱ)38. 【解析】试题分析:(I )通过讨论x 的范围,求出不等式的解集即可;(II )画出函数的图象,从而求出三角形的面积即可. 试题解析:(Ⅰ)原不等式等价于:11221x x x <-⎧⎨--+-≥⎩①或111221x x x -≤<⎧⎨++-≥⎩②或11221x x x ≥⎧⎨+-+≥⎩③. 解①得:∅;解②得;213x ≤<;解③得:12x ≤≤. ∴原不等式的解集是223xx ⎧⎫≤≤⎨⎬⎩⎭. (Ⅱ)依题意:()31311131x x f x x x x x -<-⎧⎪=--≤<⎨⎪-+≥⎩.’∴()f x 的图象与x 轴围成的三角形的三个顶点的坐标分别为()()1,0,3,0,1,23⎛⎫ ⎪⎝⎭.∴所求三角形的面积11832233S⎛⎫=⨯-⨯=⎪⎝⎭.【考点】绝对值不等式的解法.。

2016年高考全国数学卷二试题及答案解析

2016年高考全国数学卷二试题及答案解析
A.
B.
C.
D.
二、填空题(共4小题)
13.
已知向量 , ,且 ,则 =___________.
14.
若 满足约束条件 ,则 的最小值为__________.
15.
的内角 的对边分别为 ,若 , , ,则 =____________.
16.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.
答案:A
7.考点:空间几何体的三视图与直观图
试题解析:因为原几何体由同底面一个圆柱和一个圆锥构成,所以其表面积为 ,故选C.
答案:C
8.考点:几何概型
试题解析:至少需要等待15秒才出现绿灯的概率为 ,故选B.
答案:B
9.考点:算法和程序框图
试题解析:第一次运算: ,
第二次运算: ,
第三次运算: ,故选C.
因为 ,所以 ,所以
, , , ,
, ,
四点共圆.
(Ⅱ) , ,
,
四点共圆
所以
所以
答案:(Ⅰ)见解析(Ⅱ)
23.考点:参数和普通方程互化极坐标方程
试题解析:(Ⅰ)利用 , 可得C的极坐标方程;(Ⅱ)先将直线 的参数方程化为普通方程,再利用弦长公式可得 的斜率.
解析(Ⅰ)由 得

故 的极坐标方程为
(Ⅱ)由 ( 为参数)得 ,即
试题解析:由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2.
答案: 和

2016年高考全国Ⅱ理科数学试题及答案(word解析版)

2016年高考全国Ⅱ理科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(全国II )数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅱ,理1,5分】已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 取值范围是( ) (A )()31-, (B )()13-, (C )()1,∞+ (D )()3∞--, 【答案】A【解析】∴30m +>,10m -<,∴31m -<<,故选A . (2)【2016年全国Ⅱ,理2,5分】已知集合{}1,23A =,,{}|(1)(2)0B x x x x =+-<∈Z ,,则A B = ( )(A ){}1 (B ){12}, (C ){}0123,,, (D ){}10123-,,,, 【答案】C【解析】()(){}120Z B x x x x =+-<∈,{}12Z x x x =-<<∈,,∴{}01B =,,{}0123A B = ,,,,所以选C .(3)【2016年全国Ⅱ,理3,5分】已知向量()()1,3,2a m b ==- ,,且()a b b +⊥,则m =( )(A )8- (B )6- (C )6 (D )8 【答案】D【解析】由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关. (4)【2016年全国Ⅱ,理4,5分】圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a =( )(A )43- (B )34- (C (D )2【答案】A【解析】圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=,故圆心为()14,,1d =,解得43a =-,故选A .(5)【2016年全国Ⅱ,理5,5分】如图,小明从街道的E 处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则 小明到老年公寓可以选择的最短路径条数为( )(A )24 (B )18 (C )12 (D )9 【答案】B【解析】E F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法,故选B . (6)【2016年全国Ⅱ,理6,5分】右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C【解析】几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得2r =,2π4πc r ==,由勾股定理得:4l ==,21π2S r ch cl =++表4π16π8π=++28π=,故选C .(7)【2016年全国Ⅱ,理7,5分】若将函数2sin 2y x =的图像向左平移π12个单位长度,则平移后图象的对称轴为( )(A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212k x k =-∈Z (D )()ππ212k x k =+∈Z【答案】B【解析】平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .(8)【2016年全国Ⅱ,理8,5分】中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s =( ) (A )7 (B )12 (C )17 (D )34 【答案】C【解析】第一次运算:0222s =⨯+=,第二次运算:2226s =⨯+=,第三次运算:62517s =⨯+=,故选C .(9)【2016年全国Ⅱ,理9,5分】若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=( )(A )725 (B )15 (C ) 15- (D )725-【答案】D【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .(10)【2016年全国Ⅱ,理10,5分】从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为( )(A )4n m (B )2n m(C )4m n (D )2m n【答案】C【解析】由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在如图所示的 阴影中由几何概型概率计算公式知π41m n=,∴4πmn=,故选C .(11)【2016年全国Ⅱ,理11,5分】已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为( )(A(B )32(C(D )2【答案】A【解析】离心率1221F F e MF MF =-,由正弦定理得122112sin 3sin sin 13F F M e MF MF F F ====---,故选A . (12)【2016年全国Ⅱ,理12,5分】已知函数()()f x x ∈R 满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】B【解析】由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点 '0i i x x += '=2i i y y +,∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上(13)【2016年全国Ⅱ,理13,5分】ABC △的内角A B C ,,的对边分别为a b c ,,,若4c o s 5A =,5cos 13C =,1a =,则b =______.【答案】2113【解析】∵4cos 5A =,5cos 13C =,3sin 5A =,12sin 13C =,()63sin sin sin cos cos sin 65B A C A C A C =+=+=,由正弦定理得:sin sin b a B A =解得2113b =. (14)【2016年全国Ⅱ,理14,5分】α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号) 【答案】②③④ 【解析】. (15)【2016年全国Ⅱ,理15,5分】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_______. 【答案】()1,3【解析】由题意得:丙不拿()2,3,若丙()1,2,则乙()2,3,甲()1,3满足,若丙()1,3,则乙()2,3,甲()1,2不满足,故甲()1,3. (16)【2016年全国Ⅱ,理16,5分】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,b = _______.【答案】1ln2-【解析】ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ),()ln 1y x =+的切线为: ()22221ln 111x y x x x x =++-++,∴()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩,解得112x = 212x =-,∴1ln 11ln 2b x =+=-.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)【2016年全国Ⅱ,理17,12分】n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(1)求1b ,11b ,101b ;(2)求数列{}n b 的前1000项和.解:(1)设{}n a 的公差为d ,74728S a ==,∴44a =,∴4113a a d -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101101lg lg 2b a ===.(2)记{}n b 的前n 项和为n T ,则1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,;当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,;当lg 3n a =时,1000n =. ∴1000091902900311893T =⨯+⨯+⨯+⨯=.(18)【2016年全国Ⅱ,理18,12分】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保(1(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率. (3)求续保人本年度的平均保费与基本保费的比值. 解:(1)设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=. (2)设续保人保费比基本保费高出60%为事件B ,()0.100.053()()0.5511P AB P B A P A +===. (30.2550.150.250.30.1750.1 1.23a a a a a a a =+++++=,∴平均保费与基本保费比值为1.23.(19)【2016年全国Ⅱ,理19,12分】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆的位置OD '=(1)证明:DH'⊥平面ABCD ; (2)求二面角B D A C '--的正弦值.解:(1)∵54AE CF ==,∴AE CF AD CD =,∴EF AC ∥.∵四边形ABCD 为菱形,∴AC BD ⊥,∴EF BD ⊥, ∴EF D H ⊥,∴EF DH '⊥.∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =,∴1AEOH OD AO=⋅=,∴3DH D H '==,∴222'OD OH D H '=+,∴'D H OH ⊥.又∵OH EF H =I ,∴'D H ⊥面ABCD . (2)建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,, ()130A -,,,()430AB =u u u r ,,,()'133AD =-u u u r ,,,()060AC =u u u r,,,设面'ABD 法向量()1n x y z =,,u r ,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩, 取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r ,,.同理可得面'AD C 的法向量()2301n =u u r ,,, ∴1212cos n n n nθ⋅===u r u u r u r u u r sin θ=. (20)【2016年全国Ⅱ,理20,12分】已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E的左顶点,斜率为(0)k k > 的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥. (1)当4t =,AM AN =时,求AMN ∆的面积;(2)当2AM AN =时,求k 的取值范围.解:(1)当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,,则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-=,解得2x =-或228634k x k -=-+,则222861223434k AM k k -=+=++,因为AM AN ⊥,所以21212413341AN k k k =⎛⎫++⋅- ⎪⎝⎭,因为AM AN =,0k >,212124343k k k=++,整理得()()21440k k k --+=,2440k k -+=无实根,所以1k =. 所以AMN △的面积为221112144223449AM ⎫==⎪+⎭. (2)直线AM的方程为(y k x =+,联立(2213x y t y k x ⎧+=⎪⎨⎪=⎩并整理得,()222223230tk x x t k t +++-=,解得x =x =AM ==所以3AN k k =+,因为2AM AN =,所以23k k=+,整理得, 23632k k t k -=-.因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-,2k <.(21)【2016年全国Ⅱ,理21,12分】(1)讨论函数2(x)e 2xx f x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>;(2)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a的值域.解:(1)()2e 2x x f x x -=+,()()()22224e e 222x xx x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭,∵当x ∈()()22,-∞--+∞ ,时,()0f x '>, ∴()f x 在()()22,-∞--+∞,和上单调递增,∴0x >时,()2e 0=12xx f x ->-+,∴()2e 20x x x -++>. (2)()()()24e 2e x x a x x ax a g x x ----'=()4e 2e 2x xx x ax a x -++=()322e 2x x x a x x-⎛⎫+⋅+ ⎪+⎝⎭= [)01a ∈, 由(1)知,当0x >时,()2e 2x x f x x -=⋅+的值域为()1-+∞,,只有一解.使得2e 2tt a t -⋅=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增()()()222e 1e e 1e 22tt t t t t a t t h a t t t -++⋅-++===+,记()e 2t k t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+, ∴()k t 单调递增,∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个 题目计分,做答时请写清题号. (22)【2016年全国Ⅱ,理22,10分】(选修4-1:几何证明选讲)如图,在正方形ABCD ,E ,G分别在边DA ,DC 上(不与端点重合),且DE DG =,过D 点作DF CE ⊥,垂足为F . (1)证明:B C G F ,,,四点共圆;(2)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.解:(1)∵DF CE ⊥,∴Rt Rt DEF CED △∽△,∴GDF DEF BCF ∠=∠=∠,DF CFDG BC=, ∵DE DG =,CD BC =,∴DF CFDG BC=,∴GDF BCF △∽△,∴CFB DFG ∠=∠, ∴90GFB GFC CFB GFC DFG DFC ∠=∠+∠=∠+∠=∠=︒,∴180GFB GCB ∠+∠=︒. ∴B ,C ,G ,F 四点共圆.(2)∵E 为AD 中点,1AB =,∴12DG CG DE ===,∴在Rt GFC △中,GF GC =,连接GB ,Rt Rt BCG BFG △≌△,∴1112=21=222BCG BCGF S S =⨯⨯⨯△四边形.(23)【2016年全国Ⅱ,理23,10分】(选修4-4:坐标系与参数方程)在直线坐标系xOy 中,圆C 的方程为()22625x y ++=.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A B 、两点,AB =l 的斜率.解:(1)整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.(2)记直线的斜率为k ,则直线的方程为0kx y -=,由垂径定理及点到直线距离公式知:22369014k k =+,整理得253k =,则k = (24)【2016年全国Ⅱ,理24,10分】(选修4-5:不等式选讲)已知函数()1122f x x x =-++,M 为不等式()2f x <的解集.(1)求M ;(2)证明:当a ,b M ∈时,1a b ab +<+.解:(1)当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(2)当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+,则2222212a b ab a ab b +++>++, 则()()221ab a b +>+,即1a b ab +<+,证毕.。

广东省广州市2016届高三数学毕业班综合测试试题(二)理

广东省广州市2016届高三数学毕业班综合测试试题(二)理

2016年某某市普通高中毕业班综合测试(二)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的某某和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的。

(1)已知集合}{11M x x =-<<,{22,N x x =<x ∈Z },则(A)M N ⊆ (B) N M ⊆ (C) {}0M N = (D) MN N =答案:C解析:解一元二次不等式:2x <2,得:x <<,又x Z ∈,所以,N ={}1,0,1-,所以,{}0MN =。

(2)已知复数z =1i +,其中i 为虚数单位, 则z =(A) 12(B) 1 (C) (D)2 答案:B解析:因为z =()2i1i +=112222i i -==--,所以,2213||22z ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭=1 (3)已知cos 1123πθ⎛⎫-=⎪⎝⎭, 则5sin 12πθ⎛⎫+ ⎪⎝⎭的值是 (A)13 (B)223 (C)13- (D)223-答案:A 解析:5sin 12πθ⎛⎫+⎪⎝⎭=sin ()212ππθ⎛⎫-- ⎪⎝⎭=cos 1123πθ⎛⎫-= ⎪⎝⎭ (4)已知随机变量X 服从正态分布()23,N σ, 且()40.84P X ≤=, 则()24P X <<=(A) 0.84 (B) 0.68 (C) 0.32 (D)0.16 答案:B解析:由于随机变量X 服从正态分布()23,N σ,又()40.84P X ≤=, 所以,(4)(2)0.16P X P X ≥=≤=,()24P X <<=1-0.32=0.68(5)不等式组0,2,22x y x y x y -≤⎧⎪+≥-⎨⎪-≥-⎩的解集记为D , 若(),a b D ∈, 则23z a b =-的最小值是(A) 4- (B) 1- (C) 1 (D) 4 答案:A解析:画出不等式组表示的平面区域,如图三角形ABC 为所示,当23z a b =-过A (-2,0)时取得最上值为-4(6)使231(2nx n x ⎛⎫+∈ ⎪⎝⎭N *)展开式中含有常数项的n 的最小值是(A) 3 (B) 4 (C) 5 (D) 6 答案:C解析:2251311()()22kn kk k n k k n n kT C x C x x --+==,令25n k -=0,得52n k =,所以n 的最小值是5 (7)已知函数()()(sin 20f x x ϕϕ=+<<)2π的图象的一个对称中心为3,08π⎛⎫⎪⎝⎭, 则函数 ()f x 的单调递减区间是(A)32,2(88k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ) (B)52,2(88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ) (C) 3,(88k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z )(D)5,(88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ) 答案:D 解析:3sin(2)8πϕ⨯+=0,得:4πϕ=,所以,()sin 24f x x π⎛⎫=+ ⎪⎝⎭,由3222242k x k πππππ+≤+≤+,得()f x 的单调递减区间是5,(88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z )(8)已知球O 的半径为R ,,,A B C 三点在球O 的球面上,球心O 到平面ABC 的距离为12R ,2AB AC ==,120BAC ︒∠=, 则球O 的表面积为 (A)169π (B)163π (C)649π (D)643π答案:D解析:由余弦定理,得:BC 44222cos120⨯⨯︒+-3ABC 外接圆半径为r , 由正弦定理:232120r sin =︒,得r =2,又22144R R =+,所以,2R =163,表面积为:24R π=643π(9)已知命题p :x ∀∈N *, 1123x x⎛⎫⎛⎫≥ ⎪ ⎪⎝⎭⎝⎭,命题q :x ∃∈N *,12222x x-+=,则下列命题中为真命题的是(A) p q ∧ (B) ()p q ⌝∧ (C) ()p q ∧⌝ (D)()()p q ⌝∧⌝ 答案:C解析:因为ny x =(n 为正整数)是增函数,又1123>所以,x ∀∈N *, 1123x x⎛⎫⎛⎫≥ ⎪ ⎪⎝⎭⎝⎭成立,p 正确;112222222x x x x --+≥⨯=,当且仅当122x x -=,即*2x N =∉,所以,q 假命题,所以()p q ∧⌝为真命题。

(精校版)2016年新课标Ⅱ理数高考试题文档版(含答案)

(精校版)2016年新课标Ⅱ理数高考试题文档版(含答案)

2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m = (A )-8 (B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43-(B )34-(C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x =k π2–π6 (k ∈Z ) (B )x =k π2+π6 (k ∈Z ) (C )x =k π2–π12 (k ∈Z ) (D )x =k π2+π12 (k ∈Z )(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)= 35,则sin 2α=(A )725 (B )15 (C )–15 (D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,学科&网1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F 1,F 2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为(A )2 (B )32(C )3 (D )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅ 则1()miii x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A =45,cos C =513,a =1,则b = .(14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n .(3)如果α∥β,m ⊂α,那么m ∥β. 学科.网(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AD⊥平面 A1BC,又 BC 平面 A1BC,所以 AD⊥BC.
侧面 A1ABB1=A1B,得
因为三棱柱 ABC—A1B1C1 是直三棱柱,则 AA1⊥底面 ABC,所以 AA1⊥BC. 又 AA1
AD=A,从而 BC⊥侧面 A1ABB1,
数学(理工农医类) 6/8
广东省 2016 年高考信息卷
22、选修 4-1 几何证明选讲 2 24.解(1)A= x | x 0, x 2 …………5 分 (2)当 x -2 时, 2 x a x 3 0 2x+4 成立. 当 x>-2 时, 2 x a x 3 = 2 x a x+3 2x+4. 得 x a +1 或 x
A.4 B.
5 2
A. 2 1
a
B. 1 2
a
C. 2
a
1
D. 1 2
a
x3 mx 2 (m n) x 1 的两个极值点分别为 x1 , x2 ,且 x1 (0,1) , 3 2 x2 (1, ) ,记分别以 m,n 为横、纵坐标的点 P(m, n) 表示的平面区域为 D,若函数 y loga ( x 4)(a 1) 的图象上存在区域 D 内的点,则实数 a 的取值范围为 A. (1,3] B. (1,3) C. (3, ) D. [3, )
4.已知球的直径 SC=4,A,B 是该球球面上的两点,AB=2. ASC BSC 45 则 棱锥 S—ABC 的体积为 ( ) A.
3 3
B.
2 3 3
C.
4 3 3
D.
5 3 3
5.已知抛物线 y x 2 3 上存在关于直线 x y 0 对称的相异两点 A, B ,则 AB 等于
数学(理工农医类)
4/8
广东省 2016 年高考信息卷
( 2 )若 C 1 上的点 P 对应的参数为 t

2
, Q 为 C 2 上的动点,求 PQ 中点 M 到直线
x 3 2t , C3 : y 2 t
(t 为参数)距离的最小值及此时 Q 点坐标.
24. (本题满分 10 分) 已知 a R ,设关于 x 的不等式 2 x a + x 3 2 x 4 的解集为 A. (Ⅰ)若 a 1 ,求 A ; (Ⅱ)若 A R , 求 a 的取值范围。
AC 2 AF 的值. ,求 AB 5 DF
[来源:学,科,网]
x 4 cos t , x 8cos , (t 为参数) , C2 : ( 为参数) 。 y 3 sin t , y 3sin ,
[来源:Z&xx&]
(1)分别求出曲线 C 1 ,C 2 的普通方程;
[来源:]
数学(理工农医类)
3/8
广东省 2016 年高考信息卷
A1
C1
B1
A
E
F C
B
20.如图,已知椭圆 C :
x2 y 2 1 的上、下顶点分别为 A、B ,点 P 在椭圆上,且异于 4
点 A、B ,直线 AP、BP 与直线 l : y 2 分别交于点 M、N , (ⅰ)设直线 AP、BP 的斜率分别为 k1 、 k 2 ,求证: k1 k 2 为定值; (ⅱ)当点 P 运动时,以 MN 为直径的圆是否经过定点?请证明你的结论. 22.已知函数 f ( x) x3 ax2 a2 x 2, a R. (1)当 a 0 时,试求函数 y f ( x) 的单调递减区间; (2) 若 a 0 , 且曲线 y f ( x) 在点 A, B ( A, B 不重合) 处切线的交点位于直线 x 2 上 , 求证 :
16.程序框图如图所示: 如果上述程序运行的结果 S=1320,那么判断框中应填入
数学(理工农医类) 2/8
广东省 2016 年高考信息卷
三、解答题(共 70 分. ) 17. (本题满分 12 分)已知锐角 ABC 的三个内角 A, B, C 所对的边分别为 a, b, c 。 已 知 (a c)(sin A sin C) (a b) sin B 。 (1)求角 C 的大小。 (2)求 cos2 A cos2 B 的取值范围。 18.下图是某市 3 月 1 日至 14 日的空气质量指数趋势图,空气质量指数小于 100 表示空气 质量优良,空气质量指数大于 200 表示空气重度污染,某人随机选择 3 月 1 日至 3 月 13 日中 的某一 天到达该市,并停留 2 天. (Ⅰ)求此人到达当日空气重度污染的概率; (Ⅱ)设 X 是此人停留期间空气质量优良的天数,求 X 的分布列与数学期望;
x y 2 1, (a 0, b 0) 右支上一点, F1 , F2 分别是双曲线的 2 a b
左、右焦点, I 为 PF1 F2 的内心,若 率为
S IPF1 S IPF2
C.2
1 S IF1F成立,则双曲线的离心 2 2
D.
5 3 log ( x 1), x [0,1) 1 2 11.定义在 R 上的奇函数 f ( x) ,当 x 0 时, f ( x) ,则关于 x 的 1 | x 3 |, x [1, ) 函 数 F ( x) f ( x) a(0 a 1) 的所有零点之和为
又 AB 侧面 A1ABB1,故 AB⊥BC.
………… ………………4 分
(2)由(Ⅰ)知,以点 B 为坐标原点,以 BC、BA、BB1 所在的直线分 别为 x 轴、y 轴、z 轴,可建立如图所示的空间直角坐标系,
B(0,0,0), A(0,3,0), C(3,0,0) , A1 (0,3,3)
A .3
B .4
C .3 2
x 5 y 3
D .4 2

6.平面上动点 A( x, y) 满足
1 , B(4,0) , C (4,0) ,则一定有(
B . AB AC 10
A . AB AC 10
C . AB AC 10
D . AB AC 10
7 . 在 等 差 数 列 an 中 , a2 5 , a6 21 , 记 数 列
数学(理工农医类)
1/8
广东省 2016 年高考信息卷
足 x AB y AD PA 0 ( x, y R ) , 则当点 P 在以 A 为圆心, 实数 x , y 应满足关系式为( ) A. 4 x 2 y 2 2 xy 1 C. x 2 4 y 2 2 xy 1
有 由
线段AC、A1 B上分别有一点E、F



2 AE EC ,2 BF FA1 ,
所以 E(1,2,0), F(0,1,1)
EF (1, 1,1),
BA1 (0,3,3). 所以 EF BA1 ,
所以点 E到直线A1 B 的距离 d EF
3。
…………………………8 分
3 BD 为半径的圆上时, 3
B. 4 x 2 y 2 2 xy 1 D. x 2 4 y 2 2 xy 1
9.函数 f x cos x 与 g x log 2 x 1 的图像所有交点的横坐标之和为 A. 2 B. 4
2 2
C.6
பைடு நூலகம்
D. 8
10.已知点 P 是双曲线
综上, a 的取值范围为 a -2………………10 分
数学(理工农医类)
a 1 , 3
所以 a +1 -2 或 a +1
a 1 ,得 a -2. 3
8/8
A, B 两点的横坐标之和小于 4;
(3) 当 a 0 时 , 如 果 对 于 任 意 x1 . x2 . x3 [0,1] , ( x1 , x2 , x3可以相等), 总 存 在 以
f ( x1 ) . f ( x2 ) . f ( x3 ) 为三边长的三角形,试求实数 a 的取值范围.
请考生在第 22、23、24 题中任选一道作答,多答、不答按本选考题的首题进行评分. 22. (本题满分 10 分)如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线 AD 交⊙O 于 点 D,DE⊥AC,交 AC 的延长线于点 E,OE 交 AD 于点 F。 (I)求证:DE 是⊙O 的切线; (II)若 23. (本题满分 10 分) 已知曲线 C 1 :
12 .已知函数 y 二 填空题 13.已知 ( x m)7 a0 a1 x a2 x 2 则 a1 a2 a3
a7 x7 的展开式中 x 4 的系数是-35,
a7 =
14.高三毕业时,甲,乙,丙等五位同学站成一排合影留念,已知甲,乙相邻,则甲丙相邻 的概率为 15. 四棱锥 P ABCD 的三视图如图所示,四棱锥 P ABCD 的五个顶点都在一个球面上, E 、 F 分别是 棱 AB 、 CD 的中点,直线 EF 被球面所截得的线段长 为 2 2 ,则该球表面积为 .
(3)
cos
6 。 6
…………………………12 分
20 —
1 4
数学(理工农医类)
7/8
广东省 2016 年高考信息卷
AF 7 DF 5 x2 y2 2 2 23(Ⅰ) C1 : ( x 4) ( y 3) 1, C 2 : 1. ……………2 分 64 9 32 9 ( , ) ……………… …10 分 (Ⅱ) Q 5 点坐标为 5
1 的 前 n 项 和 为 Sn , 若 an

[来源:]
S 2 n 1 S n
m 对 n N * 恒成立,则正整数 m 的最小值为( 15 A .5 B .4 D .2 C .3
相关文档
最新文档