励磁系统说明
发电机励磁系统原理
发电机励磁系统原理发电机励磁系统是指为了使发电机在运行中能够产生稳定的电压和电流,采取的一系列控制和调整励磁电流的措施。
励磁系统的原理是通过调节励磁电流来改变磁场强度,进而控制发电机的输出电压和频率。
一、电磁感应原理根据法拉第电磁感应定律,当导体在磁场中运动或磁场变化时,会在导体中产生感应电动势。
由此,发电机中的转子在转动时,通过导线产生的感应电动势可以用来驱动电流,从而实现电能的转换。
二、励磁机构发电机励磁系统的核心是励磁机构,它由励磁电源和励磁回路组成。
励磁电源提供直流电源,用于激励发电机的磁场。
而励磁回路则通过一组电阻、电感和励磁开关等元件,将励磁电流导入到发电机的励磁线圈中。
三、调整励磁电流励磁电流的大小决定了发电机的磁场强度,从而影响了输出电压和频率。
一般情况下,发电机励磁系统会根据负荷的需求,通过调节励磁电流的大小来实现稳定的电压输出。
4、励磁系统的调整机制发电机励磁系统通常采用自动调压和手动调压两种方式来保持输出电压的稳定。
在自动调压模式下,根据电压传感器的反馈信号,控制励磁电流的大小。
一旦输出电压下降,励磁系统会自动增加励磁电流,以提高输出电压。
手动调压模式下,操作人员可以根据需要手动调整励磁电流,以实现电压的稳定输出。
五、励磁系统的稳定性好的励磁系统应具有良好的稳定性,能够在负荷变化时迅速调整励磁电流,并且使输出电压变化最小。
稳定性的提高可以通过增加励磁回路中的电感和电容元件,以及制定合理的励磁调节策略来实现。
六、励磁系统的应用发电机励磁系统广泛应用于各种发电场景中,包括电力站、风力发电、水力发电、汽车发电机等。
它不仅能够保证电力供应的稳定性和可靠性,还能够提高发电效率和节能减排。
总结:发电机励磁系统是使发电机能够稳定输出电压和频率的重要控制系统。
通过调节励磁电流来改变发电机的磁场强度,励磁系统能够实现电能的转换和稳定输出。
良好的励磁系统应具有稳定性和高效性,能够适应负荷变化并实现可靠的电力供应。
励磁系统说明
励磁系统一、励磁系统的主要作用励磁系统的主要作用有:1)根据发电机负荷的变化相应的调节励磁电流,以维持机端电压为给定值;2)控制并列运行各发电机间无功功率分配;3)提高发电机并列运行的静态稳定性;4)提高发电机并列运行的暂态稳定性;5)在发电机内部出现故障时,进行灭磁,以减小故障损失程度;6)根据运行要求对发电机实行最大励磁限制及最小励磁限制。
二、无励磁机的励磁方式1)、在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁。
自励式静止励磁可分为自并励和自复励两种方式。
自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种励磁方式具有结简单,设备少,投资省和维护工作量少等优点。
自复励磁方式除没有整流变压外,还设有串联在发电机定子回路的大功率电流互感器。
这种互感器的作用是在发生短路时,给发电机提供较大的励磁电流,以弥补整流变压器输出的不足。
这种励磁方式具有两种励磁电源,通过整流变压器获得的电压电源和通过串联变压器获得的电流源。
无刷励磁系统组成:一般有永磁副励磁机(或串复励系统)、主励磁机和自动电压、频率调节器三部分组成。
无刷励磁系统简介:无刷励磁系统的永磁副励磁机是一台单项同步发电机,磁极在转子上,机身为永久磁钢,输出的感应电流经自动电压调节器调节后供给主励磁机。
主励磁机采用旋转式三相同步发电机,即转子为电枢,定子为磁场的同步发电机。
硅整流器安装在与主轴一同旋转地圆盘上。
这样,交流励磁机电枢产生的交流电势,经过硅整流器件作交直流后,直接通过导电杆进入主发电机转子的励磁绕组。
因为交流励磁机的三相交流绕组、整流装置、发电机磁场都在同一旋转轴上,故不再需要滑环和碳刷—故称无刷励磁。
无刷励磁机头上的2个碳刷的作用:滑环上的碳刷是测转子的励磁电压,也接到转子接地保护装置的。
电除尘器的工作原理是一种烟气净化设备,它的工作原理是:烟气中灰尘尘粒通过高压静电场时,与电极间的正负离子和电子发生碰撞而荷电(或在离子扩散运动中荷电),带上电子和离子的尘粒在电场力的作用下向异性电极运动并积附在异性电极上,通过振打等方式使电极上的灰尘落入收集灰斗中,使通过电除尘器的烟气得到净化,达到保护大气,保护环境的目的。
励磁的工作原理
励磁的工作原理
励磁是指在电力系统中对发电机进行电磁激励以使其产生电能的过程。
励磁系统的工作原理如下:
1. 动态励磁:在励磁机上通过电源施加直流电流,这些电流通过励磁机的线圈,在励磁机中产生磁场。
这个磁场产生的磁通量通过气隙和转子,进入发电机的定子线圈。
定子线圈中的磁通量和转子上的感应电动势相互作用,产生电流。
这个电流在电力系统中循环,推动电机发电。
2. 静态励磁:使用静止的励磁变压器和整流器来完成励磁。
交流电源输入励磁变压器,变压器将高电压降低并提供给整流器,整流器将交流电转换为直流电。
直流电流通过励磁变压器的次级线圈和发电机的励磁线圈,产生磁场。
励磁线圈中的磁通量和转子上的感应电动势相互作用,使发电机产生电流。
通过控制励磁电流的大小和方向,可以调节发电机产生的电能的性质,例如电压和频率等。
这样就能满足电力系统中对电能的不同需求。
励磁系统的作用及工作原理
励磁系统的作用及工作原理励磁系统是指一种用来激发发电机、电动机、变压器等电力设备的系统,它能够提供必要的电能,将这些设备变成发电或运转时所需要的电磁设备。
励磁系统的作用是通过在电力设备中激发电流来产生磁场,从而实现电能的转换和传输。
本文将从励磁系统的作用和工作原理两个方面来详细阐述。
一、励磁系统的作用1. 产生磁场:励磁系统的主要作用是产生磁场,这个磁场能够影响发电机、电动机和变压器等设备的性能。
在发电机中,励磁系统能够生成必要的磁场,从而引起转子产生旋转运动;在电动机中,通过励磁系统产生的磁场,可以驱动机械装置实现动力传递;在变压器中,励磁系统可以调节磁场大小,实现电压的升降。
励磁系统通过产生磁场来实现电能的转换和传输。
2. 维持稳定运行:励磁系统还能够维持电力设备的稳定运行。
在发电机中,通过调节励磁系统中的激励电流,可以保持发电机输出电压的稳定性,避免电压的波动对电网造成影响;在电动机中,励磁系统能够控制电动机的起动和工作过程,确保电动机在正常运行范围内。
3. 调节功率特性:励磁系统还可以调节电力设备的功率特性,使其在不同负载下能够有不同的输出表现。
这样可以适应不同的工作环境和负载要求,提高设备的工作效率和稳定性。
二、励磁系统的工作原理1. 电磁感应原理:励磁系统的工作原理是基于电磁感应原理的。
当通过励磁系统的线圈中通入激励电流时,就会在线圈周围产生磁场。
这个磁场会对设备中的铁芯或导体产生感应,从而产生感应电动势。
通过调节激励电流的大小和方向,可以控制磁场的强弱和方向,从而实现对设备的控制。
2. 动态反馈控制:励磁系统中通常采用动态反馈控制技术,通过检测设备的运行状态和输出电压等参数,再将这些信息反馈给励磁系统,实现对激励电流的实时调节。
这样可以使电力设备在不同运行状态下始终保持稳定的输出性能。
3. 控制器与调节器:励磁系统中还包括控制器和调节器等设备,用来对激励电流进行调节和控制。
通过这些设备,可以实现对励磁系统的自动化控制和调节,使其能够适应不同的工况和负载要求。
励磁系统讲解
9、停机逆变操作 (1)哪些操作可以实现励磁停机逆变控制? A. 远方停机逆变信号:包括中控室、LCU; B. 近方的逆变旋钮; C. 机组频率低于45HZ。(空载时) (2)注意以下两种情况下,逆变无效: A. 发电机出口断路器合。 B. 定子电流>10%额定值(但在C通道无此限制)。 10、灭磁开关的操作 (1)正常停机采用逆变灭磁,不需要跳灭磁开关。 (2)在并网状态下,严禁跳灭磁开关; (3)进口灭磁开关一般有两路分闸回路,可以保证灭磁开关的可靠分断,但应在检修 时对两个回路都进行检查。 (4)励磁系统内部自动分闸信号只有1个:逆变灭磁失败分闸。 (5)过压、过励、失磁等分闸指令均由外部保护装置控制。
励磁系统的组成
发电机励磁系统是提供发电机转子磁场电流的装置,由励磁调节器、 功率整流器、灭磁及转子过压保护回路、起励单元、测量用电压互 感器、电流互感器及励磁变压器6个部分组成,其系统原理框图如下 图所示。
系统原理框图
各部分的主要组成器件
名称 主要组成器件
调节器
CPU板、电源板、测量板、脉冲板、开出板、总线板、液晶显 示板,外围包括一个双机切换单元
11、机组并网后的操作 (1)观察并网瞬间无功数值的大小,若无功为正,且很大或为负,均说明并网时机端 电压与网压没有一致,需要重新调整。 (2)观察励磁调节柜上有功、无功的显示是否正常。 (3)观察远/近方增减磁操作是否正常。(增磁->无功增,减磁->无功减) (4)确保发电机出口断路器接点已送入励磁系统。 (5)测试调差单元是否工组正常。对于多台机组并联运行,若某台机组增磁,发生和 其它机组争抢无功情况,应将励磁装置调差率往正方向增大。 (6)若电网电压波动频繁,易引起机组无功的波动,此时可以投入“恒无功调节”, 励磁装置将按设定的无功给定值自动增减磁,以保持机组输出无功数值的恒定。 (7)通过调节器显示屏的“恒无功调节”触摸键或监控系统的串行通讯控制可实现上 述功能。 (8)若要保持发电机功率因数的恒定,此时可以投入“恒PF调节”,励磁装置将按设 定的功率因数给定值自动增减磁,以保持机组输出功率因数数值的恒定。 (9)通过调节器显示屏的“恒PF调节”触摸键或监控系统的串行通讯控制可实现上述 功能。
各种励磁系统介绍
各种励磁系统介绍励磁系统是指用来产生磁场的一种系统。
它在许多领域都有应用,包括发电机、电动机和变压器等电力设备,以及医学成像设备、磁选机和磁共振成像仪等。
1.直流励磁系统直流励磁系统是最简单的励磁系统之一,它使用直流电源来供应磁场。
在直流发电机和直流电动机中,一个直流电源通过励磁线圈提供电流,产生一个稳定的磁场。
直流励磁系统具有响应速度快、控制简单、稳定性高等优点,但需要较大的电源容量。
2.交流励磁系统交流励磁系统是利用交流电源来供应磁场的一种励磁系统。
它适用于交流发电机、交流电动机和变压器等设备。
在交流励磁系统中,通常使用电力变压器将输入电压从高电压变成合适的低电压,然后通过整流电路将交流电转换为直流电。
此外,交流励磁系统可以通过改变输入电压的频率和幅度来调节输出磁场的强度。
3.永磁励磁系统永磁励磁系统是利用永磁体产生磁场的一种励磁系统。
永磁励磁系统适用于小型发电机和电动机,具有体积小、质量轻、效率高等优点。
永磁材料可以分为强磁性永磁材料和软磁性永磁材料两类,前者适用于高速运动的设备,后者适用于低速设备。
永磁励磁系统的磁场强度可通过改变永磁体的形状和材料来调节。
4.感应励磁系统感应励磁系统利用电磁感应原理产生磁场。
在感应励磁系统中,通过交变磁场的作用,在导体中感应出涡流,从而产生磁场。
感应励磁系统广泛应用于感应加热设备和感应炉等领域。
感应励磁系统的磁场强度可通过改变交变磁场的频率、幅度和导体材料来调节。
5.分段励磁系统分段励磁系统是指将励磁线圈分成多个段落,每个段落通过控制电流来产生不同强度的磁场。
分段励磁系统可以根据需要调节每个段落的电流,从而改变整个励磁系统的磁场强度。
这种系统适用于电力变压器和磁选机等设备中,可以减少能量消耗和提高效率。
总结起来,励磁系统有直流励磁系统、交流励磁系统、永磁励磁系统、感应励磁系统和分段励磁系统等多种形式。
每种励磁系统都有各自的特点和应用领域,可以根据实际需求选择适合的励磁系统。
2024版图解发电机励磁原理
高可靠性设计
提高发电机励磁系统的可靠性是未 来的重要发展方向,通过采用冗余 设计、故障预测与健康管理等技术
手段降低系统故障率。
绿色环保
随着环保意识的提高,未来发电机 励磁系统将更加注重绿色环保,采 用低能耗、低污染的材料和技术,
降低系统对环境的影响。
对未来学习和工作的建议
深入学习专业知识
继续深入学习电力电子、控制理 论等相关专业知识,为从事发电 机励磁相关领域的工作打下坚实
案例分析:某大型水电站励磁调节器设计
• 设计背景:某大型水电站采用水轮发电机组,装机容量大、运行工况复杂,对励磁调节器性能要求高。 • 设计目标:设计一款高性能、高可靠性的励磁调节器,满足水电站运行要求。 • 设计方案:采用基于DSP的数字式励磁调节器设计方案,实现快速、精确的电压调节和功率分配功能;同时采
基础。
关注前沿技术动态
关注发电机励磁技术的最新发展 动态,了解新技术、新方法的应 用情况,不断提升自己的专业素 养。
加强实践动手能力
通过参与实验、项目等方式加强 实践动手能力,培养解决实际问 题的能力。
拓展跨学科知识
学习与发电机励磁相关的跨学科 知识,如电力系统分析、电机学 等,提升综合分析和解决问题的
如失磁、励磁不稳、励磁过流等故障,通过 案例分析学习相应的处理方法和预防措施。
发电机励磁技术发展趋势预测
数字化与智能化
随着电力电子技术和控制理论的发 展,未来发电机励磁系统将更加数 字化和智能化,实现更精确的控制 和优化。
多功能集成化
为满足不同应用场景的需求,发电 机励磁系统将向多功能集成化方向 发展,如集成无功补偿、谐波治理 等功能。
提高发电机并列运行的稳定性。
功能
发电机励磁系统工作原理
发电机励磁系统工作原理
发电机励磁系统的工作原理如下:
1. 励磁电源:发电机励磁系统通常由励磁电源提供直流电能。
励磁电源可以是直流电源、电池或者其他的电源装置。
2. 励磁线圈:发电机中有一个称为励磁线圈的线圈,它通常由铜导线绕成,固定在发电机的定子上。
励磁线圈连接到励磁电源。
3. 励磁电流:当励磁电源接通时,电流将开始流经励磁线圈。
这会在发电机中产生一个磁场。
4. 磁场:励磁线圈产生的磁场通过铁芯传导到转子和定子之间的空间。
转子是发电机中旋转的部分,定子是固定的部分。
5. 感应电压:当发电机的转子旋转时,磁场也随之旋转。
由于电磁感应的原理,转子中的导线将产生感应电压。
这个感应电压会驱动绕在定子上的线圈产生电流。
6. 电流输出:通过定子上的线圈产生的电流输出到外部负载上,为外部负载提供电能供应。
总结起来,发电机励磁系统的工作原理就是通过励磁电源提供直流电能,产生磁场,使得转子中的线圈通过电磁感应产生电流,从而输出电能供应外部负载。
发电机励磁系统介绍
发电机励磁系统介绍励磁系统主要由励磁电源、励磁绕组、励磁控制器和励磁回路组成。
励磁电源是励磁系统的核心部分,它一般由稳压整流器组成。
稳压整流器通过将交流电转换成直流电,向励磁绕组提供稳定的励磁电流。
稳压整流器的工作原理主要是利用整流元件(如晶闸管、可控整流器等)将交流电变为直流电,并通过电压调节器(如电抗式调压器、电位器等)控制输出电压的大小。
励磁电源的稳定性直接影响着发电机的励磁能力和发电质量。
励磁绕组是发电机中的一部分线圈,一般位于发电机的转子极端。
励磁绕组的主要作用是通过激励电流形成磁场,使得转子产生电磁感应,进而发生电磁能量转换。
励磁绕组的设计和工艺技术对发电机的励磁能力和稳定性有着重要的影响。
一般情况下,励磁绕组采用的是多层绕组,以减少电磁感应的损失并提高转子的稳定性。
励磁控制器是励磁系统的智能控制部分,通过对励磁电源和励磁绕组的调节,实现对发电机励磁电流和磁场的控制。
励磁控制器一般具有自动调节功能,可以根据发电机的负荷情况动态调整励磁电流,确保输出电压和电流的稳定性。
同时,励磁控制器还可以监测发电机的运行状态,如温度、振动等参数,并及时报警,以保护发电机的安全运行。
励磁回路是连接励磁电源和励磁绕组的电路,它主要由导线、接线盒、开关等组成。
励磁回路的设计应考虑导线的导电性、抗干扰能力和散热能力等因素,以确保励磁电流的稳定传输。
此外,励磁回路还应具备可靠的保护装置,以防止因励磁电流过大或故障等原因对发电机造成损坏。
总体而言,发电机励磁系统是确保发电机能够持续稳定输出电能的关键系统。
它通过励磁电源、励磁绕组、励磁控制器和励磁回路等组成部分的协同工作,实现对发电机励磁能力的控制和调节。
只有励磁系统工作正常、稳定,才能保障发电机提供稳定的电力输出,并确保电力系统的安全和可靠运行。
励磁系统工作原理
励磁系统工作原理励磁系统可以理解为一种用来产生磁场的装置。
它的主要作用是对发电机、电机等电动机设备进行电磁励磁,使得设备能够正常运行,并能够保证其使用寿命和电能转换效率。
由于这个系统十分重要,因此我们需要了解励磁系统的工作原理以及常见的励磁方式。
一、励磁系统的工作原理励磁系统实质上是一种“电磁铁”,其特殊之处在于,它除了具有一般铁磁体的电磁特性外还具有一定的自激振荡特性,如图1所示。
这个系统的主要部件是励磁源和励磁线圈。
励磁源可以是各种类型的电源(包括交直流电源及其他的互感式、电感式和阻抗式等),而励磁线圈则是由若干匝紧密缠绕而成的线圈,处于磁场中心部分的铁心上,它的作用就是在被电流通过时,产生一个磁场。
励磁线圈的构造与电磁铁非常相似,其电极部分与励磁源相连,原则上可以实现任意的电极组合,如图2所示。
当电流通过励磁线圈时,线圈所绕制的铁心产生了一个磁场,它的方向与电流方向相关。
如果线圈中的电流始终维持不变,那么线圈内部的磁场同样也将不会有任何变化。
然而,如果线圈内部的电流变化,那么它所产生的磁场也会跟随变化,而这种变化将会导致有电动势产生,如图3所示。
此时,产生的电动势是否能产生稳定的电磁力,取决于线圈的特性。
如果线圈本身可以实现自激振荡效果,那么产生的电动势就可以在电磁铁上形成一个稳定的磁场,这种磁场可以长期存在,直到电流被关闭。
二、常见的励磁方式在实际生产中,常用的励磁方式包括直接励磁、串联励磁、并联励磁等等。
这些方式各具特点,其用途也存在一定的差异,下面我们就来详细介绍一下这些方式的基本原理及适用范围。
1、直接励磁直接励磁也称为自励磁,其主要特点就是直接将励磁电流直接加到励磁电源上。
对于这一方式,我们需要特别对其工作原理进行描述。
直接励磁的工作原理基于极化现象,也就是说,当励磁电流通过励磁线圈传导到铁芯中,铁芯材料就会被极化,从而改变其磁性质。
从而实现电机磁场的产生。
通过这种方式可以实现一个稳定的、非常强的磁场,从而实现电机或发电机的正常运行。
励磁系统的工作原理
励磁系统的工作原理
励磁系统是指在发电机、变压器等电力设备中用来产生磁场的装置,其工作原理主要包括激励磁场的产生、磁通闭合和磁场稳定等过程。
励磁系统通常采用电磁铁或永磁体作为磁场的产生源。
以电磁铁为例,当电流通过线圈时,会在线圈的周围产生磁场。
这个磁场可以通过磁铁的磁性材料集中到一起,形成一个相对强大的磁场。
为了实现励磁系统的工作,首先需要通过一定的控制电路将电流引入到励磁线圈中。
当电流通过线圈时,会在线圈的磁心中产生磁场。
励磁线圈通常会放置在发电机或变压器的定子上,以便产生一个稳定的磁场。
在励磁系统中,磁场的闭合是至关重要的。
通过将励磁线圈的两端连接起来,形成一个闭合的回路,磁场就可以在回路中流动,从而保证磁力的连续存在。
同时,闭合回路还可以提供给励磁线圈所需的电能,使其能够持续地产生磁场。
在励磁系统中,还需要保持磁场的稳定性,以确保电力设备的正常运行。
为了达到这个目的,常常会在励磁系统中添加稳定磁场的装置,如稳定魔环等。
稳定魔环可以通过反馈机制调节励磁系统中的电流,使得磁场保持在一个稳定的水平,从而使电力设备的输出也能保持稳定。
综上所述,励磁系统的工作原理包括磁场的产生、磁通闭合和
磁场稳定等过程。
通过控制电流的引入和闭合回路的构建,励磁系统可以产生一个稳定的磁场,为电力设备的正常运行提供必要的磁力支持。
发电机励磁系统
发电机励磁系统一、简介:励磁系统是同步发电机的重要组成部分,它是供给同步发电机励磁电源的一套系统,励磁系统是一种直流电源装置。
励磁系统一般由两部分组成:(如图一所示)一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称作励磁功率输出部分(或称励磁功率单元)。
另一部分用于在正常运行或发生故障时调节励磁电流,以满足安全运行的需要,通常称作励磁控制部分(或称励磁控制单元或励磁调节器)。
励磁功率单元向同步发电机转子提供直流电流,即励磁电流,以建立直流磁场。
励磁功率单元有足够的可靠性并具有一定的调节容量。
在电力系统运行中,发电机依靠电流的变化进行系统电压和本身无功功率的控制因此,励磁功率单元应具备足够的调节容量以适应电力系统中各种运行工况的要求。
而且它有足够的励磁顶值电压和电压上升速度具有较大的强励能力和快速的响应能力。
励磁调节器根据输入信号和给定的调节准则控制励磁功率单元的输出,是整个励磁系统中较为重要的组成部分。
励磁调节器的主要任务是检测和综合系统运行状态的信息,以产生相应的控制信号,经放大后控制励磁功率单元以得到所要求的发电机励磁电流。
系统正常运行时,励磁调节器就能反映发电机电压高低以维持发电机电压在给定水平。
应能迅速反应系统故障,具备强行励磁等控制功能以提高暂态稳定和改善系统运行条件。
在电力系统的运行中,同步发电机的励磁控制系统起着重要的作用,它不仅控制发电机的端电压,而且还控制发电机无功功率、功率因数和电流等参数。
图一二、励磁系统必须满足以下要求:1、正常运行时,能按负荷电流和电压的变化调节(自动或手动)励磁电流,以维持电压在稳定值水平,并能稳定地分配机组间的无功负荷。
2、整流装置提供的励磁容量应有一定的裕度,应有足够的功率输出,在电力系统发生故障,电压降低时,能迅速地将发电机地励磁电流加大至最大值(即顶值),以实现发动机安全、稳定运行。
3、调节器应设有相互独立的手动和自动调节通道;4、励磁系统应装设过电压和过电流保护及转子回路过电压保护装置。
同步发电机励磁系统
同步发电机励磁系统引言同步发电机是一种将机械能转换为电能的设备,它通过励磁系统来生成磁场,使得转子能够与电网同步运行。
励磁系统在同步发电机的运行中起着至关重要的作用,它对发电机的稳定运行和输出电能的质量产生着重要影响。
本文将介绍同步发电机励磁系统的原理、常见的励磁系统类型以及其在电能发电中的作用。
一、同步发电机励磁系统的原理同步发电机的励磁系统的主要作用是在转子上产生磁场,使得转子与电网的磁场同步,从而使得发电机可以向电网输出电能。
励磁系统的原理可以通过法拉第定律来解释,该定律表明磁场的变化会产生感应电动势。
在同步发电机中,励磁系统的磁场可以通过直流电流在转子上产生。
当通过励磁绕组的电流改变时,绕组周围的磁场也会发生变化,从而在转子内感应出电动势。
这个感应电动势会引起一定的电流流动,从而通过励磁绕组将转子磁场与电网磁场同步。
二、常见的励磁系统类型1. 直流励磁系统直流励磁系统是最常见的励磁系统类型之一。
在直流励磁系统中,励磁绕组通常由一组电枢绕组和磁极绕组组成。
电枢绕组通过直流电流产生磁场,并与磁极绕组相互作用,从而产生所需的磁场分布。
直流励磁系统具有调节灵活性好、响应速度快等优点,被广泛应用于各种类型的发电机。
2. 恒功率励磁系统恒功率励磁系统是一种在同步发电机中常用的励磁系统类型。
恒功率励磁系统通过自动调节输出的励磁电流,使得同步发电机在负载变化时能够保持输出功率不变。
该励磁系统利用负载的反馈信号对励磁电流进行调整,从而实现恒功率输出。
恒功率励磁系统在电能供应系统中起到了稳定电能输出的重要作用。
3. 智能励磁系统随着电力系统的发展,智能励磁系统逐渐成为同步发电机励磁系统的研究重点。
智能励磁系统利用现代控制技术和计算机技术,可以实现对励磁电流和磁场的精确控制,从而提高同步发电机的运行效率和稳定性。
智能励磁系统具有较高的灵活性和可扩展性,能够适应不同负载和电网变化的要求。
三、同步发电机励磁系统在电能发电中的作用1. 稳定发电机输出电压和频率同步发电机励磁系统是保证电力系统稳定运行的关键之一。
各种励磁系统介绍
各种励磁系统介绍励磁系统是指在电力系统中提供电磁场的设备或装置,用于激励发电机产生电能。
不同类型的励磁系统适用于不同的发电机类型和工作条件。
下面将介绍几种常见的励磁系统。
1.直流励磁系统:直流励磁系统是最常见的励磁系统类型,适用于大多数发电机。
它由直流发电机和励磁电源组成。
励磁电源通常由电枢绕组和励磁电流控制器组成。
励磁电流控制器用于调节励磁电流大小,以控制发电机的电压和功率输出。
2.恒功率励磁系统:恒功率励磁系统是一种高级的励磁系统,能够在负载变化时自动调节发电机的电压和功率输出。
它通过测量发电机的电压和功率输出来调节励磁电流的大小。
当负载增加时,励磁电流增加,以保持发电机输出的恒定电压和功率。
3.无刷励磁系统:无刷励磁系统是一种先进的励磁系统,适用于无刷发电机。
它使用电子器件代替传统的刷子和电刷,从而消除了刷子摩擦和电刷磨损带来的问题。
无刷励磁系统具有高效率、低噪音和长寿命的优点,广泛应用于现代发电机。
4.永磁励磁系统:永磁励磁系统是一种利用永磁体产生磁场的励磁系统。
它不需要外部电源,可以直接产生励磁电流。
永磁励磁系统具有结构简单、可靠性高和功耗低的优点,适用于一些小型发电机和特殊应用。
5.感应励磁系统:感应励磁系统是一种利用感应电流产生磁场的励磁系统。
它通过将励磁线圈接入到发电机的绕组中,利用感应电流产生磁场。
感应励磁系统适用于一些特殊的发电机类型,如感应发电机和同步电机。
6.变磁励磁系统:变磁励磁系统是一种通过改变励磁电流的方向和大小来控制发电机的电压和功率输出的系统。
它使用可调的励磁变压器或励磁电感器来改变励磁电流的大小和相位。
变磁励磁系统具有灵活性和精确性,适用于一些对发电机电压和功率输出要求较高的应用。
总结起来,励磁系统是电力系统中不可或缺的一部分,它能够提供稳定的电磁场,使发电机能够产生稳定的电能输出。
不同类型的励磁系统适用于不同的发电机类型和工作条件,选择合适的励磁系统能够提高发电机的性能和可靠性。
同步发电机励磁系统介绍
智能控制技术的应用
要点一
智能控制算法
随着智能控制算法的发展,如模糊控制、神经网络等,励 磁系统的智能化水平得到了显著提升。这些算法可以对励 磁系统进行自适应控制,自动调整励磁电流的参数,提高 发电机的运行效率和稳定性。
要点二
应用优势
智能控制技术的应用,使得励磁系统的自适应能力和鲁棒 性得到了增强。同时,通过智能控制算法,可以实现对励 磁系统的优化控制,降低发电机的运行成本和维护成本。
系统的寿命也得到了延长。
数字化控制技术的应用
数字化控制器
随着数字信号处理器(DSP)和可编程逻辑控制器(PLC)等数字化控制技术的发, 励磁系统的控制精度和响应速度得到了显著提升。数字化控制器可以对励磁电流进行快
速、准确的调节,提高发电机的动态性能和稳定性。
应用优势
数字化控制技术的应用,使得励磁系统的控制策略更加灵活和智能化。通过数字化控制 器,可以实现对励磁系统的远程监控和故障诊断,提高励磁系统的可靠性和可维护性。
高性能永磁材料的应用
永磁材料
随着高性能永磁材料的出现,如稀土永磁材 料,励磁系统的性能得到了显著提升。这些 材料具有高磁能积和矫顽力,可以替代传统 的电磁铁,减小励磁系统的体积和重量,提 高励磁系统的效率和可靠性。
应用优势
高性能永磁材料的应用,使得励磁系统在小 型化和高效化方面取得了重要突破。同时, 由于永磁材料的耐腐蚀和抗氧化性能,励磁
励磁系统的组成
励磁电源
提供励磁电流的电源设备,通常为直流电源 或交流电源。
励磁线圈
安装在发电机转子上的线圈,用于产生励磁 磁场。
励磁控制器
用于控制励磁电流的调节器,根据发电机运 行状态和电网需求进行自动调节。
励磁系统原理
励磁系统原理
励磁系统是指在发电机中,通过给定的电流和电压来激励电磁铁,产生磁场,从而使发电机产生感应电动势的系统。
励磁系统的原理是通过不同的激励方式来控制电磁铁的磁场强度,从而影响发电机的输出电压和电流。
在励磁系统中,常见的激励方式有直流励磁和交流励磁两种。
直流励磁是通过直流电源给电磁铁供电,产生恒定的磁场,从而使发电机输出恒定的电压和电流。
而交流励磁则是通过交流电源给电磁铁供电,可以通过控制交流电源的电压和频率来调节电磁铁的磁场强度,进而影响发电机的输出。
励磁系统的原理可以用简单的电磁感应定律来解释。
根据电磁感应定律,当导体在磁场中运动或者磁场的强度发生变化时,导体内就会产生感应电动势。
在发电机中,通过控制电磁铁的磁场强度,可以控制发电机中的感应电动势,进而影响输出电压和电流。
励磁系统的原理还涉及到发电机的磁场和电路的特性。
发电机的磁场特性决定了电磁铁的磁场强度和稳定性,而电路的特性则决定了励磁系统的稳定性和响应速度。
因此,设计和调试励磁系统需要综合考虑发电机的磁场特性和电路特性,以确保系统的稳定性和可靠性。
总的来说,励磁系统的原理是通过控制电磁铁的磁场强度来影响发电机的输出电压和电流。
不同的激励方式和控制方法可以实现对发电机输出的精确控制,从而满足不同场合对电能的需求。
因此,对励磁系统原理的深入理解和掌握对于发电机的运行和维护具有重要意义。
发电机的励磁电源系统说明书
发电机的励磁电源系统说明书一、引言在发电机运行过程中,励磁电源系统起着至关重要的作用。
本说明书将详细介绍发电机励磁电源系统的原理、工作流程以及注意事项,以确保发电机的正常运行和安全使用。
二、系统概述发电机的励磁电源系统负责为励磁系统提供稳定的电能,以确保发电机输出的电压和频率符合要求。
该系统主要由电源控制器、励磁电源单元及连接线路组成。
下面将分别对这些组成部分进行详细说明。
1. 电源控制器电源控制器是励磁电源系统的核心部分,通过监测发电机输出电压和频率的变化,并与调节器进行通信来控制励磁电源单元的输出。
同时,电源控制器还能实现对励磁电源系统的保护功能,当出现过压、欠压或过载等异常情况时,会采取相应的措施以保证系统的安全稳定运行。
2. 励磁电源单元励磁电源单元是系统中提供电能的关键部分,其主要功能是将输入电能转换为适合励磁系统的直流电能。
根据实际需求,励磁电源单元可以采用不同的技术路线,如整流器、逆变器等,以满足不同工况下的要求。
同时,为了保证系统的可靠性,励磁电源单元通常采用冗余设计,即采用多个独立供电通路,确保在一个通路发生故障时,系统能够无缝切换到备用通路,保持供电的连续性和稳定性。
3. 连接线路连接线路将电源控制器与励磁电源单元连接起来,通过传递控制信号和电能,实现两者之间的有效协调。
连接线路应具备良好的电气特性和机械强度,以保证系统的稳定性和可靠性。
三、系统工作流程发电机励磁电源系统的工作流程如下:1. 初始化系统启动时,电源控制器进行初始化操作,包括对励磁电源单元的状态检测、电源输出通路的选择等。
2. 监测与调节系统开始监测发电机输出电压和频率的变化,并将信息传递给电源控制器。
电源控制器通过调节励磁电源单元的输出,使发电机输出的电压和频率保持在设定值范围内。
3. 故障保护系统会实时监测励磁电源系统的工作状态,当出现过压、欠压或过载等异常情况时,电源控制器会采取相应的保护措施,如切断电源供应、减小输出功率等,以保证系统和设备的安全。
励磁系统工作原理
引言概述:励磁系统是电力系统中的重要组成部分,用于提供适当的励磁电流来激励发电机产生电能。
本文将深入探讨励磁系统工作原理的第二部分,包括励磁装置和励磁控制方法的详细解析。
通过对各种励磁装置和控制方法的介绍和分析,我们将更好地理解励磁系统的工作原理和优化其性能的方法。
正文内容:一、励磁装置1.1滑环励磁装置1.2反应励磁装置1.3无刷励磁装置1.4静止励磁装置1.5外加励磁装置二、励磁控制方法2.1手动励磁控制2.2自动调节励磁控制2.3频率调节励磁控制2.4功率系统励磁控制2.5电压调节励磁控制三、滑环励磁装置的工作原理3.1励磁传动机构3.2励磁电源3.3励磁发电机3.4励磁控制逻辑3.5励磁装置的优化策略四、反应励磁装置的工作原理4.1换流器4.2反应励磁传动装置4.3励磁系统的控制原理4.4励磁稳定性分析4.5励磁响应速度优化五、无刷励磁装置的工作原理5.1无刷励磁系统的结构和组成5.2无刷励磁的电机原理5.3无刷励磁的发电机原理5.4无刷励磁的控制原理5.5无刷励磁装置的优势和应用场景总结:励磁系统作为电力系统的重要组成部分,其工作原理对电力系统的稳定运行至关重要。
本文从励磁装置和励磁控制方法两个方面进行了详细的阐述。
对于励磁装置,滑环励磁、反应励磁、无刷励磁、静止励磁和外加励磁等各种类型的装置的工作原理和优化策略进行了介绍。
对于励磁控制方法,手动控制、自动调节控制、频率调节控制、功率系统控制和电压调节控制等不同的控制方法进行了详细的解析。
通过对励磁系统的工作原理的深入研究,我们可以更好地理解励磁系统的运行机制,优化励磁系统的性能,确保电力系统的稳定运行。
励磁系统操作说明
励磁系统操作说明
1、零起升压:
①将励磁面板试验按钮按下,即进入手动调节模式;
②按面板的增减按钮,改变Vg的给定值,Vg范围为2100至
13000(也可通过Ⅰ、Ⅱ机切换按钮使Vg给定值下降到达所
需建压值);
③调节好给定值后,合上灭磁开关,退灭磁,投上起励电源,
按起励机组会建压到所设的Vg给定值;
④到达给定值后,可通过增减磁调节机端电压的大小,范围
2100到13000此时零起升压过程完成。
2、正常的建压起励流程:
①此时可将试验按钮退出,Vg给定值会恢复到额定的105000.
②此时退灭磁起励,机端电压会自动建压额定值;
3、带厂变时注意问题:
①正常建压到额定后,按下试验按钮,进入到手动状态带厂变
压器;
②此时并网灯是不会亮的,因断路器的位置信号被取掉手动短
接起来。
4、运行中注意问题:
①双机切换时,要仔细观察。
一、二机的控制角ak是否在相同,
相差不大时才能切换(一般正常情况下不做切换)。
②建压时观察风机有没有启动,若未启动,应立即手动启动。
③检查风机的风向朝上。
④运行时观察励磁电流是否波动很大,若来回摆动则应灭磁处
理。
⑤注意桥后方的阻容保护回路,防止因虚焊而引起打火的现象。
若发现,停下来焊机焊接一下即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静止励磁系统说明
静止励磁系统说明
1﹒概述
早在七十年代初期,由哈尔滨电机厂制造的全国首台静止励磁系统安装在新安江水电站九号机上。
到目前为止,哈尔滨电机厂已制造了五百余套静止励磁系统在国内外的电厂运行。
现在,伴随着半导体技术的发展,静止励磁系统的可靠性越来越高,其优越的性能越来越被认知,因而在电力系统上得到了广泛的应用。
静止励磁适用于各种类型的发电厂的同步发电机:水力、热力、压缩空气、柴油和风力以及同步调相机和同步电动机。
其优点可归纳为以下几点:
○由于没有运动部件,运行和维修费用低
○优良的动态控制特性
○良好的传输特性
○容易与不同容量和型式的发电机配套
○低损耗
○一定容量的励磁装置其体积与发电机的转速无关
2﹒运行原理
静止励磁系统由自动电压调节器、励磁变压器、可控硅整流器、灭磁设备及起励设备五个部分组成。
其中励磁变压器、可控硅整流器及灭磁设备组成了静止励磁系统的主电路。
主电路为同步发电机的磁场线圈提供励磁功率,灭磁装置吸收储存在磁场线圈电感中的能量。
励磁变压器的原边接在同步发电机的机端,励磁功率取自发电机本身,通过可控的主电路联接到同步发电机的磁场线圈。
初始建压所需要的功率由起励设备提供。
发电机正常停机时采用逆变灭磁,电力系统故障时继电保护跳发电机断路器,同时跳灭磁开关紧急灭磁。
2﹒1 主电路
2﹒1﹒1 励磁变压器
励磁变压器的作用是给整流器提供一个合适的电压源,并且将磁场线圈与电源网络和定子线圈隔离开。
励磁变压器的原边电压等于发电机的端电压,副边电压值是由发电机的额定励磁电压及励磁系统所要求的顶值电压倍数来确定的。
变压器的额定电流由同步发电机的最大连续磁场电流来确定。
励磁变压器通常为三相、空气自冷、环氧树脂绝缘的变压器。
大容量的发电机为了安装方便,励磁变压器也可以设计成三个单相的变压器
组成三相变压器组。
2﹒1﹒2 可控硅整流器
三相全控整流桥,由一个可控硅桥或多个并联的可控硅桥、触发脉冲发生器、脉冲放大器和必要的监视和冷却设备组成。
每一个可控硅桥为三相,六脉冲单元。
这种联接允许整流桥既可作整流运行,也可作逆变运行,提供负的或正的输出电压。
可控硅桥在每支臂或相上用快速熔断器作短路保护。
每个可控硅两端并联RC电路防止电压突变。
为了高效冷却,可控硅带散热器,用风机进行强迫风冷。
控制
调节器通过触发脉冲发生器和放大器来控制可控硅整流器。
触发脉冲发生器将电压调节器的控制信号转换成一定控制角( 角)下的触发脉冲,从而从可控硅整流器上就可以得到一个可控的直流电压输出,以满足同步发电机不同工况下的励磁要求。
输入电压是由励磁变压器的副边提供的,在各种不同的情况下都能与发电机数据相适应。
顶值电压对发电机电压的调整速度是很关键的,因而在电网受到扰动的情况下,对发电机以至电力系统的稳定性都有巨大贡献。
根据发电机对电网的重要性,顶值电压通常在额定磁场电压的1.2至3.0倍范围选取。
可控硅整流器的容量是根据发电机最大长期运行负荷下的连续磁场电流来决定的。
它也应能提供上述顶值电压下所产生的强励电流。
通常磁场强励时间是5~20秒。
整流桥数按冗余设计。
冗余方式视发电机的额定励磁电流的大小而定。
对于额定励磁电流不大于1800A的系统,采用一倍冗余,即100%备用。
两个容量相同的整流桥并联运行,当一个桥退出运行时,另一个桥能保证发电机包括强励在内的各种运行工况。
对于额定励磁电流不大于1800A的系统,采用(n-1)的冗余方式,即多个整流桥并联运行,当一个整流桥退出运行时,剩下的几个桥能保证发电机包括强励在内的各种运行工况。
2﹒1﹒3 磁场起励
同步发电机通常只有很低的剩磁电压,初始建压时,整流桥没有完整的输入电压,在这种情况下,有必要对发电机的磁场线圈提供一个较小的电流持续几秒钟,以起动建压。
磁场起励的专用电路对磁场线圈提供约10%的空载励磁电流,直到发电机电压能为整流器提供有效的电源,起励单元然后自动切除。
起励功率通常由厂用蓄电池提供,在某些情况下,也可以由厂用交流电源提供起励功率。
磁场起励的电源应有熔断器保护。
2﹒1﹒4 灭磁
必须有特殊测量装置来切断磁场电流,并释放掉储存在发电机磁场
线圈中的能量。
如果没有该装置,将会在发电机的励磁绕组两端产生非常高的电压,励磁设备和励磁线圈都有可能被损坏。
灭磁是由磁场开关(接在整流器的直流侧或交流侧均可)以及放电回路来完成的。
灭磁开关将整流器电源切断,同时将放电回路接入磁场绕组回路中,为磁场电流提供一条放电通路。
这种方式适用于各种容量的发电机。
为了使磁场线圈快速灭磁,放电回路采用非线性的放电电阻,该电阻吸收储存在磁场线圈中的能量,以减少灭磁时间。
2﹒1﹒5 磁场回路的过电压保护
磁场过电压保护的作用是防止在磁场回路中电压极度升高,在某些不利的瞬间故障条件下,如错误的同期或者失步,过电压的方向与整流器输出电压的方向相反。
过电压保护包括在灭磁设备中,它由一个过电压检测装置与非线性的放电电阻组成,当检测装置检测到磁场绕组两端的电压超过保护值后,就自动将非线性的放电电阻接入磁场绕组回路,为过电压提供放电通路,从而抑制过电压。
2﹒2自动电压调节器
自动电压调节器的三个基本作用是:
○自动保持发电机端电压恒定
○使无功功率在并联运行的发电机组之间合理分配
○保持电力系统的静态和动态稳定性
现代自动电压调节器是以计算机为基本单元的。
由于采用了计算机的控制系统,很方便就能引入各种附加的控制要求。
详情请参见《HWLT-4型微机励磁调节器产品说明书》。
2﹒3设计
励磁设备,除励磁变压器和熔断器外,均安装在标准屏体内。
屏体设计成全封闭可通风型,这样就便于检查和工作,机械的和电气的模件设计为与其它设备相互联接提供良好的接口。
环境温度限制正常为:
储存-20—+70℃
运行0 —+40℃
除非有其它特殊要求,通常是这样的。
独特的大气状况是决定密封设计和冷风安排的重要条件,如有必要,可在屏体的冷风入口处装上滤网。
2﹒4 调试
在励磁设备和发电机试验期间,励磁设备的能源必须取自一个独立于发电机之外的电源。
+1.
静止励磁设备方框图
+1. 发电机
+2. 励磁变压器
+3. 可控硅整流器和触发脉冲设备
+4. 灭磁设备
+5. 起励设备
+6. 测量电路
+7. 电压调节器HWLT-4
+8. MMI。