励磁系统基本原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 当碗中的球受到一个大的外力,怎样保证该球不飞出,最主要措施就是快 速的继电保护。继保的作用就相当于减少这个外部力量的作用时间,继保 越快,外力的作用时间就越短,这个球就不会一下子掉下来。自动电压调 节器此时作用相当于自动改变这个碗的坡度,当这个球上升时增加坡度, 当这个球下降时就减少这个坡度,使这个球在碗中滚动幅度迅速减小。
想。 • SiC非线性电阻,国外生产,经常采用英国M&I公司的产品,超大型
机组应用较多,比如:三峡、龙滩、拉西瓦等;灭磁时间适中。 • 水轮发电机要求快速灭磁,普遍采用非线性电阻灭磁方案。 • 单片ZnO阀片的工作能容量是15KJ,而单片SiC阀片的工作能容量为
62.5KJ。在超大型水轮发电机组中,灭磁能量很大,比如10MJ,需 要几百片非线性电阻阀片串、并联连接。并联均能或并联均流问题突 出。 SiC阀片容量大、其伏安特性更适合并联,所以,在超大型发电 机的励磁系统中普遍使用。
Excitation励磁
G
功角含义(电气量与空间量)、静稳极限Pmax、系 统稳定余度(Pmax/P)、功角范围(机组小于系统)
基本作用
建立发电机机端电压:电磁感应原理 最主要功能:维持发电机机端电压恒定、稳定
交流输电系统的输送功率极限公式:
在并列运行的发电机间合理分配无功功率 提高电力系统的运行稳定性
PM
U2 X
电力系统稳定简介
• 电力系统稳定分为三个电量的稳定: • 电压稳定(励磁、无功平衡、电压崩溃、人工干预:增加Q) • 频率稳定(调速、有功平衡、安稳装置切机、自动减载)、功角稳定(P、
Q变化)。 • 励磁系统提高电力系统的稳定主要是提高电压的稳定,其次是提高功角稳
定。频率稳定由调速器调节。 • 功角稳定又分为三种:静态稳定、暂态稳定和动态稳定。 • 静态稳定是系统受到小扰动后系统的稳定性(稳定余度问题、极限功率问
• 如果这个碗和球之间的摩擦很小,这个球受到扰动后在碗中来回滚动时间 就很长,特别是,如果这个扰动的外力不断的来回施加,就比如我们不断 的荡秋千,这个球就永远不停的来回滚动甚至掉下来,我们就说这个系统 的动态稳定性差。这里的摩擦阻力相当于电力系统的阻尼,这个来回不断 施加的外部力量就相当于自动电压调节器产生的负阻尼。一般来说,自动 电压调节器在电力系统的动态稳定中起坏作用,产生负阻尼,使整个系统 阻尼减少。当我们在自动电压调节器中增添PSS装置,PSS就把自动电压 调节器原来所产生的负阻尼变为正阻尼,相当于增加碗和球的摩擦系数, 使球的滚动幅度快速减小,于是这个系统的动态稳定性就满足要求。
3.2 励磁变压器
• 将高电压隔离并转换为适当的低电压,供整流器使用。一 般接线组别:Y/d-11。
• 励磁变的额定容量要满足发电机1.1倍额定励磁电流的要 求。
• 励磁变的二次电压的大小要满足励磁系统强励的要求。 • 励磁变的绝缘等级:F级或H级。 • 励磁变的额定最大温升:80K或100K。
3.3 可控硅整流桥
灭磁中的移能
• 灭磁过程中,移能成功的条件:
U DCarc U E U r
灭磁开关要有足够高的弧压,才能顺利实现移能。 UR、HPB型灭磁开关的弧压,都在4000V以上。
灭磁电阻
• 线性电阻,汽轮发电机励磁系统经常采用;灭磁时间较长。 • 氧化锌ZnO非线性电阻,国内生产,应用普遍;灭磁时间短,较为理
三、自并励励磁系统的基本构成
自并励励磁系统是当今主流励磁系统。已在大、中 型发电机组中普遍采用。其主要技术特点: 接线简单、结构紧凑; 取消励磁机,发电机组长度缩短,减小轴系振动,节 约成本; 典型的快速励磁系统; 调节性能优越,通过附加PSS控制可以有效提高电力系 统稳定性。
3.1 自并励励磁系统的主要组成部分
电气功率Pe
由励磁系统引起的附加电磁
ΔTE
转矩,包含同步转矩ΔTຫໍສະໝຸດ 和阻尼转矩ΔTD两个分量。当发电机
采用高放大倍数、快速励磁系
统时,阻尼转矩可能会出现负
值(如图中的ΔTD′),引起发
电机阻尼不足,当系统发生扰
动时造成发电机低频振荡。
ΔTs
Pe/ΔPe、Δδ
负阻尼区
ΔTD′
ΔTE′
PSS的原理
• 在发电机的励磁控制系统中,采用ΔPe、Δω、Δf等一个或几个信号, 经适当放大、相位补偿后作为励磁附加反馈控制,可以增加电力系统 的正阻尼,从而阻尼电力系统功率振荡,这种用于增加电力系统正阻 尼的附加励磁控制装置称为电力系统稳定器(Power System Stabilizer,简称PSS)。它不降低励磁系统电压调节环的增益,不影 响励磁控制系统的暂态性能,而对抑制电力系统低频振荡效果显著。 PSS在国内外都得到了广泛应用。
两种灭磁方法
• 逆变灭磁:正常停机时采用。不需要分断灭磁开关,控制可控硅整流 桥处于逆变状态,使转子绕组中能量通过励磁变反送到发电机端电源 侧及回路电阻中消耗,实现灭磁。在自并励励磁系统中,由于在逆变 灭磁过程中,发电机端电压也在不断减小,吸收能量不断减小,所以, 逆变灭磁的时间比较长。空载额定状态下,逆变灭磁时间一般达到 10s。
换相是严格按顺序的。
发电机转子相当于大电感。三 相全控桥带电感负载下的二个主 要工作状态:
整流状态:交流变直流,能量供 给,输出电压Ud>0。
逆变状态:直流变交流,能量反 送,输出电压Ud<0。
三相全控桥电路要点
三相全控桥带电感负载下的二个重要关系公式:
Ud=1.35U2cosa,a为整流桥触发控制角 I2=0.816Id
不能突变的。储存能量为:
W

1 2
L
f
If2
灭磁系统由灭磁开关、灭磁电阻及灭磁回路 开通控制单元组成。灭磁,就是把转子中储存的 能量转移到灭磁电阻中,来消耗掉。
灭磁系统的构成原理图
灭磁系统的基本工作原理
发电机正常运行中,励磁电压比较小,控制单元不能 触发可控硅开通,灭磁电阻回路中没有电流通过 。
• 灭磁系统灭磁:在发电机事故、过压或系统故障情况下停机时,励磁 电流较大,希望能快速灭磁,消除故障、防止事故扩大化,采用分断 灭磁开关的方法将能量转移到灭磁电阻中实现快速灭磁。灭磁系统灭 磁的时间一般在5s以下。
3.5 励磁调节器
励磁系统的控制核心,利用自动控制原理,自动控 制可控硅整流桥的触发角度、快速调节励磁电流大小,实 现励磁系统的各种控制功能,使发电机组满足各种发电工 况的运行要求。
励磁系统基本原理
尹志丰 2016.06.21
一、励磁系统的基本作用
励磁的基本概念
什么是励磁? 导体切割磁力线感生电动势e 励磁就是提供一个磁场B
E=4.44fNΦ
对于发电机来说,励磁就是产生磁通Φ
励磁的基本任务
Governor调速
Active Power(P) Frequency(f)
Reactive Power(Q) Terminal Voltage(Ug)
Ud、Id--直流输出侧电压、电流; U2、I2--交流输入侧线电压、相电流;
触发控制角的理论范围0~180°,超出此范围外的触发信号就会造成 混乱。触发控制角的角度控制是严格的,一般实用范围:10~150°
0~90°:整流状态; 90~180°:逆变状态。 逆变状态时为什么是负的?电流方向与原来一致,而电压方向反,
题、发电机的能力问题); • 暂态稳定是大扰动后系统在随后的1-2个周波的稳定性;(安稳装置切机
问题、继电保护问题) • 动态稳定是小扰动后或者是大扰动1-2周波后的,并且采取技术措施后的
稳定性(励磁PSS问题)。
功角稳定比喻
• 碗中放置一个球,且受到外部的一个小外力,它就偏离原来的位置。如果 这个碗的高度很矮,像一个盘子,该球就有可能从碗中掉下来。此时,我 们就说这个系统静稳不足。提高碗的高度最经济的办法就是采用自动电压 调节器。
晶闸管的关断条件:以下任一条件即可关断 1. 主回路断开; 2. 晶闸管两端处于反向电压时(阳极电压低于阴极电压) 3. 流过晶闸管的电流下降到小于维持电流
三相全控桥电路结构
SCR循环导通顺序:至少有2个 可控硅开通。 12-32-34-54-56-16- 12…… 1个工频周期完成1个换 相导通循环。
因此功率传送方向会反转,从整流态到逆变态,完成能量消耗。 自并励情况、发电机空载状态下,可实现逆变灭磁。转子电流通过
发电机、励磁变及转子回路的电阻消耗。灭磁时间较长,10s左右。
三相全控桥电路的典型波形
α=00: 自然换相点, 二极管整流, AC变DC
α=0~900: 整流状态, AC变DC
α=1500: 逆变状态, DC变AC
三相全控桥的散热
• 可控硅流过电流,会在可控硅两端产生电压降(一般1~ 2V),造成可控硅发热,温度升高。可控硅内部的最大承 受结温(PN结)是125℃。
• 可控硅散热方法:可控硅压装散热器,并启动冷却风机进
行风冷散热。
三相全控桥的保护
• 可控硅过流保护:每可控硅串联快速熔断器。 • 可控硅换相尖峰过电压保护:可控硅两端并联R、C吸收
可控硅整流桥一般采用三相全控可控硅整流桥的方 式,实现把交流电转换为可控的直流电的主要任务,给发 电机提供各种运行状况下所需要的励磁电流。
晶闸管的伏安特性
电力电子技术的发展:IGBT
晶闸管的导通与关断条件
晶闸管的导通条件:以下两条件须同时具备 正向阳极状态(阳极电位高于阴极电位); 控制极加上触发电压(或触发脉冲);
当灭磁开关分断后进行灭磁时,转子电感两端出现较大 的反向电压,同时控制单元快速接通反向可控硅触发回路, 把灭磁电阻接入、灭磁电阻回路开通,转子电流就可以快 速转移到灭磁电阻回路,通过灭磁电阻把电流转换为热量 释放。
灭磁开关
灭磁开关的基本作用:控制转子绕组中励磁电流的接通、分断;灭磁开 关分断后,配合灭磁电阻完成灭磁的任务。
电路,或采用集中式阻容保护。 • 由于可控硅换相尖峰电压产生于励磁变的漏感,集中式阻
容保护可以直接吸收,保护效果更好。
三相全控桥的集中式阻容保护电路:C1主要吸收
3.4 灭磁系统
灭磁,即是快速把转子电感中储存的大电流
释放掉,以保证发电机安全运行,保护机组和其
它设备安全 。
转子电感是大的储能元件,电感中的电流是
Pe/ΔPe 、 Δδ
快速励磁及较高的强励倍数,可以提高电力系统暂态稳定极限。
• 第一位的措施是继电保护正确、快速动作,如0.1s内切除近端故障。 • 在0.1s内各种励磁系统作用没有明显差别。 • 故障切除后,快速励磁及较高的强励倍数,可以提高系统暂态稳定极
限,有利于暂态稳定的恢复。
采用可靠性高、控制性能强的励磁系统, 是保证发电机安全稳定运行并提高电力系 统稳定性的经济而有效的措施。
• 因此,通过PSS实现的主要目标就是:获得一个附加的电磁力矩,
在电力系统低频振荡区(0.1~2.0Hz)内使该力矩向量对应Δω轴在
超前10º~滞后45º以内,并使本机振荡频率下的力矩向量对应Δω轴
在0º~滞后30º以内,以尽可能的提供较大的正阻尼力矩,抑制低频
振荡。
Δ
w
附加电磁力矩的 相位
Pm 、 ΔPa
电力系统稳定器(PSS)可以增加电力系统正阻尼,用于抑制电
。 力系统低频振荡 Δω
发电机电气功率 Pe/ΔPe、机械功 率Pm、加速功率 ΔPa、同步转矩 ΔTs、阻尼转矩 ΔTD、电磁转矩 ΔTE、转子角Δδ、 转子角速度Δω的 正方向相位关系如 下图所示:
Pm、ΔPa
ΔTD
正阻尼区
加速功率ΔPa=机械功率Pm-
二、励磁系统的几种主要类型
励磁系统的组成: 自动电压调节器AVR、ECR/FCR(励磁调节器) 励磁电源(励磁机、励磁变压器) 整流器(AC/DC变换,SCR、二极管) 灭磁与转子过电压保护 按励磁电源分类: 直流励磁机励磁系统 交流励磁机励磁系统 无刷励磁系统 自并励励磁系统 按响应速度分类: 慢速励磁系统 快速励磁系统 高起始励磁系统
耗能型灭磁开关——灭磁开关分断励磁回路后,利用开关断口将灭磁能 量形成的电弧引入灭磁开关的灭弧室内燃烧,使电弧能量消耗完毕,实 现灭磁。灭磁能量有限。很少采用。典型产品:国产DM2型。
移能型灭磁开关——灭磁开关分断励磁回路后,将转子电流转移到灭磁 电阻上消耗或吸收,开关本身基本不吸收灭磁能量。灭磁能量大,灭磁 时间快,普遍采用。典型产品:国产DM4、DMX,进口ABB-E、UR、 HPB型。
相关文档
最新文档