励磁系统基本原理

合集下载

交流发电机励磁系统的原理

交流发电机励磁系统的原理

交流发电机励磁系统的原理一、引言交流发电机励磁系统是发电机中一个重要的组成部分,其作用是提供励磁电流,使发电机能够产生稳定的交流电能。

本文将深入探讨交流发电机励磁系统的原理。

二、交流发电机励磁系统概述交流发电机励磁系统由励磁电源、励磁电路和励磁控制系统组成。

励磁电源主要提供励磁电流,励磁电路将励磁电流传递给发电机励磁线圈,励磁控制系统用于控制励磁电流的大小和稳定性。

2.1 励磁电源励磁电源一般采用直流电源供电,如直流发电机、蓄电池或整流装置。

直流发电机是一种常用的励磁电源,它通过独立运行的小型发电机产生直流电流。

蓄电池作为备用励磁电源,当主要励磁电源故障时起到过渡和保护的作用。

整流装置是将交流电转换为直流电的装置,用于辅助励磁电源。

2.2 励磁电路励磁电路包括励磁线圈、励磁开关和励磁绕组等组成部分。

励磁线圈是由导体绕成的线圈,通过其产生的磁场来激励发电机产生电能。

励磁开关用于控制励磁电流的开闭,以实现对发电机励磁的控制。

励磁绕组是将励磁电流传递给发电机定子绕组的装置。

2.3 励磁控制系统励磁控制系统是通过控制励磁电路中的参数来调节励磁电流的大小和稳定性。

常见的励磁控制系统有自动励磁控制系统和手动励磁控制系统。

自动励磁控制系统根据发电机的输出电压和电流等参数自动调节励磁电流,使之保持在合适的范围内。

手动励磁控制系统需要人工干预来调节励磁电流。

三、交流发电机励磁系统原理交流发电机励磁系统的原理包括励磁电流的产生、流动和调节等方面。

3.1 励磁电流的产生励磁电流的产生是通过励磁电源产生的,一般是直流电流。

在直流发电机中,励磁电流由独立运行的小型发电机产生,其输出电流经过整流装置转换为直流电流。

在蓄电池作为励磁电源时,其直接提供直流电流。

励磁电流的大小取决于励磁电源的输出电压和电流。

3.2 励磁电流的流动励磁电流通过励磁线圈和励磁绕组流动,形成磁场激发发电机产生电能。

励磁线圈是发电机中的一个线圈,当励磁电流通过时,会产生磁场。

发电机励磁系统工作原理

发电机励磁系统工作原理

发电机励磁系统工作原理
发电机励磁系统工作原理是通过在发电机的励磁线圈中通电产生电磁场,从而激发转子磁极上的磁场,进而导致转子磁极和定子磁极之间的磁场相互作用,产生电磁感应,最终实现电能的转换和发电。

具体过程如下:
1. 发电机的励磁线圈通电:励磁线圈被连接到直流电源上,通电后产生电流,从而在励磁线圈内形成电磁场。

2. 电磁场激发转子磁极:产生的电磁场经过磁路作用,激发转子磁极上的磁场。

3. 转子磁场与定子磁场交互作用:转子磁场和定子磁场之间相互作用,引发电磁感应现象。

4. 电磁感应产生交流电:由于转子磁场和定子磁场的相互作用,导致定子线圈中产生交流电流。

5. 交流电输出:产生的交流电经过定子线圈的接触器或整流器等装置,进行调整和控制后输出为电能。

总之,发电机励磁系统工作原理是通过励磁线圈通电产生电磁场,激发转子磁极上的磁场,并与定子磁场相互作用产生电磁感应,从而实现电能的转换和发电。

各种励磁系统介绍

各种励磁系统介绍

各种励磁系统介绍励磁系统是指用来产生磁场的一种系统。

它在许多领域都有应用,包括发电机、电动机和变压器等电力设备,以及医学成像设备、磁选机和磁共振成像仪等。

1.直流励磁系统直流励磁系统是最简单的励磁系统之一,它使用直流电源来供应磁场。

在直流发电机和直流电动机中,一个直流电源通过励磁线圈提供电流,产生一个稳定的磁场。

直流励磁系统具有响应速度快、控制简单、稳定性高等优点,但需要较大的电源容量。

2.交流励磁系统交流励磁系统是利用交流电源来供应磁场的一种励磁系统。

它适用于交流发电机、交流电动机和变压器等设备。

在交流励磁系统中,通常使用电力变压器将输入电压从高电压变成合适的低电压,然后通过整流电路将交流电转换为直流电。

此外,交流励磁系统可以通过改变输入电压的频率和幅度来调节输出磁场的强度。

3.永磁励磁系统永磁励磁系统是利用永磁体产生磁场的一种励磁系统。

永磁励磁系统适用于小型发电机和电动机,具有体积小、质量轻、效率高等优点。

永磁材料可以分为强磁性永磁材料和软磁性永磁材料两类,前者适用于高速运动的设备,后者适用于低速设备。

永磁励磁系统的磁场强度可通过改变永磁体的形状和材料来调节。

4.感应励磁系统感应励磁系统利用电磁感应原理产生磁场。

在感应励磁系统中,通过交变磁场的作用,在导体中感应出涡流,从而产生磁场。

感应励磁系统广泛应用于感应加热设备和感应炉等领域。

感应励磁系统的磁场强度可通过改变交变磁场的频率、幅度和导体材料来调节。

5.分段励磁系统分段励磁系统是指将励磁线圈分成多个段落,每个段落通过控制电流来产生不同强度的磁场。

分段励磁系统可以根据需要调节每个段落的电流,从而改变整个励磁系统的磁场强度。

这种系统适用于电力变压器和磁选机等设备中,可以减少能量消耗和提高效率。

总结起来,励磁系统有直流励磁系统、交流励磁系统、永磁励磁系统、感应励磁系统和分段励磁系统等多种形式。

每种励磁系统都有各自的特点和应用领域,可以根据实际需求选择适合的励磁系统。

发电机励磁系统工作原理

发电机励磁系统工作原理

发电机励磁系统工作原理
发电机励磁系统的工作原理是通过直流磁场激励转子产生电能的过程。

在发电机励磁系统中,主要包括励磁电源、励磁绕组以及励磁控制装置。

首先,励磁电源提供直流电流用于激励发电机的转子。

这个电源可以是独立的设备,也可以由发电机自身产生。

其次,励磁绕组是一系列线圈,它们包裹在转子上。

当励磁电源连接到这些绕组时,电流会流经线圈产生磁场。

励磁控制装置则用于调节励磁电流的大小。

根据发电机实际负荷的需要,控制装置可以增大或减小励磁电流,以满足输出电压的要求。

当励磁电流通过励磁绕组时,会在发电机的转子上产生一个磁场。

该磁场与定子上的导线相互作用,将机械能转化为电能。

这样,发电机就能够向外部电路提供所需的电力。

总的来说,发电机励磁系统工作原理是通过励磁电源提供直流电流,通过励磁绕组在转子上产生磁场,然后通过磁场与定子上的导线相互作用,将机械能转化为电能。

励磁控制装置用于调节励磁电流的大小,以满足输出电压的要求。

励磁系统工作原理

励磁系统工作原理

励磁系统工作原理励磁系统可以理解为一种用来产生磁场的装置。

它的主要作用是对发电机、电机等电动机设备进行电磁励磁,使得设备能够正常运行,并能够保证其使用寿命和电能转换效率。

由于这个系统十分重要,因此我们需要了解励磁系统的工作原理以及常见的励磁方式。

一、励磁系统的工作原理励磁系统实质上是一种“电磁铁”,其特殊之处在于,它除了具有一般铁磁体的电磁特性外还具有一定的自激振荡特性,如图1所示。

这个系统的主要部件是励磁源和励磁线圈。

励磁源可以是各种类型的电源(包括交直流电源及其他的互感式、电感式和阻抗式等),而励磁线圈则是由若干匝紧密缠绕而成的线圈,处于磁场中心部分的铁心上,它的作用就是在被电流通过时,产生一个磁场。

励磁线圈的构造与电磁铁非常相似,其电极部分与励磁源相连,原则上可以实现任意的电极组合,如图2所示。

当电流通过励磁线圈时,线圈所绕制的铁心产生了一个磁场,它的方向与电流方向相关。

如果线圈中的电流始终维持不变,那么线圈内部的磁场同样也将不会有任何变化。

然而,如果线圈内部的电流变化,那么它所产生的磁场也会跟随变化,而这种变化将会导致有电动势产生,如图3所示。

此时,产生的电动势是否能产生稳定的电磁力,取决于线圈的特性。

如果线圈本身可以实现自激振荡效果,那么产生的电动势就可以在电磁铁上形成一个稳定的磁场,这种磁场可以长期存在,直到电流被关闭。

二、常见的励磁方式在实际生产中,常用的励磁方式包括直接励磁、串联励磁、并联励磁等等。

这些方式各具特点,其用途也存在一定的差异,下面我们就来详细介绍一下这些方式的基本原理及适用范围。

1、直接励磁直接励磁也称为自励磁,其主要特点就是直接将励磁电流直接加到励磁电源上。

对于这一方式,我们需要特别对其工作原理进行描述。

直接励磁的工作原理基于极化现象,也就是说,当励磁电流通过励磁线圈传导到铁芯中,铁芯材料就会被极化,从而改变其磁性质。

从而实现电机磁场的产生。

通过这种方式可以实现一个稳定的、非常强的磁场,从而实现电机或发电机的正常运行。

励磁基本原理..

励磁基本原理..

灭磁中的移能
• 灭磁过程中,移能成功的条件:
U DCarc U E U r
灭磁开关要有足够高的弧压,才能顺利实现移能。 UR、HPB型灭磁开关的弧压,都在4000V以上。
灭磁电阻
• 线性电阻,汽轮发电机励磁系统经常采用;灭磁时间较长。 • 氧化锌ZnO非线性电阻,国内生产,应用普遍;灭磁时间短,较为理 想。 • SiC非线性电阻,国外生产,经常采用英国M&I公司的产品,超大型 机组应用较多,比如:三峡、龙滩、拉西瓦等;灭磁时间适中。 • 水轮发电机要求快速灭磁,普遍采用非线性电阻灭磁方案。 • 单片ZnO阀片的工作能容量是15KJ,而单片SiC阀片的工作能容量为 62.5KJ。在超大型水轮发电机组中,灭磁能量很大,比如10MJ,需 要几百片非线性电阻阀片串、并联连接。并联均能或并联均流问题突 出。 SiC阀片容量大、其伏安特性更适合并联,所以,在超大型发电 机的励磁系统中普遍使用。
AVR的数学控制模型
PID控制
给定值 Ref + - 电压 偏差 微分 积分 比例 励磁电压 Efd 机端电压 Ut
发电机
AVR数学模型中的放大倍数Kavr
• Kavr关系到发电机端电压的调节精度。在保证AVR闭环调节稳定的前 提下,Kavr越大,机端电压的调节精度越高,越能维持机端电压的恒 定。 • 超前-滞后环节的参数整定,保证AVR闭环控制稳定,并有良好的动 态特性。通过励磁标准中机端电压阶跃试验的指标来验证。 • 励磁标准中要求机端电压的调节精度为0.5%。即,在AVR给定值 Uref不变的情况下,发电机输出从空载到满载的过程中,机端电压的 变化不超过发电机额定电压的0.5%。
积分参数的作用和影响
对稳态特性的影响 积分控制能消除系统的稳态误差,提高控制系统的控制精 度。但若TI太大,积分作用太弱,将不能减小稳态误差; 对动态特性的影响 积分时间常数TI偏小,积分作用强,振荡次数较多,TI太 大,对系统性能的影响减小。当时间常数TI合适时,过渡

励磁是什么意思励磁工作原理

励磁是什么意思励磁工作原理

励磁是什么意思?励磁工作原理励磁是一种物理学概念,指的是在一个磁性材料中产生磁场的过程。

通过施加外部磁场或电流来激发材料的自发磁化,从而使其成为一个永久磁体或磁化材料。

在许多领域中,励磁被广泛应用,包括电力系统、传感器、磁存储等。

励磁工作原理励磁的工作原理主要涉及到磁性材料内部磁矩的翻转。

磁性材料中的磁矩会按照特定方向排列,形成磁性区域。

当外部磁场或电流加入时,可以影响磁矩的方向,导致磁性区域的重新排列,最终产生新的磁场。

励磁的关键步骤1.磁化材料:首先需要选择一个磁性材料,通常是具有高磁导率和低矫顽力的材料。

2.施加外部磁场或电流:对磁性材料施加外部磁场或电流,可以通过磁铁或线圈等方式来实现。

3.磁化过程:外部磁场或电流的作用下,磁性材料内部的磁矩会发生翻转,导致磁性区域重新排列。

4.形成新的磁场:经过励磁后,磁性材料会生成新的磁场,可以用于各种应用领域。

励磁的分类1.永久励磁:通过外部磁场的作用,使材料成为永久磁体,具有稳定的磁性。

2.临时励磁:在施加电流的情况下,磁性材料会产生临时磁化效应,电流断开后磁性消失。

励磁的作用1.增强磁场:励磁可以增强磁性材料的磁场强度,提高其在传感器、电机等领域的应用效果。

2.维持磁化状态:对于永磁体或磁存储设备,励磁可以帮助保持其磁化状态,确保设备正常运行。

总的来说,励磁是一种重要的物理现象,通过对磁性材料的磁化过程,产生新的磁场,为多种领域的应用提供了基础支持。

通过不同方式的励磁方式,可以实现对磁性材料的控制和应用,具有广泛的研究和实践价值。

同步电机励磁系统原理

同步电机励磁系统原理

同步电机励磁系统原理同步电机励磁系统的原理主要是通过给同步电机的电磁绕组提供直流电源来产生磁场,以实现电机的励磁。

同步电机是一种在运行时需要外加磁场的电机,只有当电磁铁绕组中通以直流电时,才能产生磁通,从而使电机能够正常运行。

同步电机励磁系统的工作原理就是在电机转子与励磁系统之间建立一个稳定的磁场以使电机能够运转。

同步电机励磁系统主要包括直流电源、可调整电压源和励磁绕组。

直流电源一般采用整流器将交流电转换为直流电,以提供给励磁绕组。

可调整电压源用于控制励磁系统的磁场大小,从而实现对同步电机的转矩和速度的调控。

励磁绕组是同步电机中的一个特殊绕组,它通常由绝缘线圈组成,绕制在电机的转子上。

当励磁绕组通以电流时,将产生一个旋转的磁场,与电机的转子磁场相互作用,形成一个力矩,在电机上产生运动。

在同步电机励磁系统中,励磁绕组产生的磁场与转子磁场的相互作用决定了电机的转矩和速度。

当励磁磁场与转子磁场同向时,电机产生正转矩。

当励磁磁场与转子磁场反向时,电机产生反转矩。

同时,通过调整励磁绕组的电流或电压,可以控制励磁系统的磁场大小,进而调控电机的转矩和速度。

通常,同步电机励磁系统的控制方法有恒定励磁方法和可调励磁方法。

恒定励磁方法是指在电机运行时,励磁绕组的电流或电压保持不变,以维持一个恒定的励磁磁场。

可调励磁方法是指根据实际需要,通过调整励磁绕组的电流或电压,来改变励磁磁场的大小,以实现对电机的转矩和速度进行调节。

总之,同步电机励磁系统的原理是通过给励磁绕组提供直流电源,产生一个稳定的磁场来实现电机的励磁。

励磁绕组产生的磁场与转子磁场相互作用决定了电机的转矩和速度。

通过调节励磁绕组的电流或电压,可以控制励磁系统的磁场大小,从而调节电机的转矩和速度。

励磁系统的控制方法有恒定励磁和可调励磁两种方法。

同步电机励磁系统在实际应用中,能够满足各种工况要求,实现电机的稳定运行。

汽轮机励磁系统原理

汽轮机励磁系统原理

汽轮机励磁系统原理一、引言汽轮机励磁系统是指通过电力方式为汽轮机提供所需的励磁电流,以保证发电机正常运行。

本文将详细介绍汽轮机励磁系统的原理及其各个组成部分。

二、概述1. 励磁系统作用:解释了汽轮机励磁系统在整个发电过程中起到稳定输出功率和调节负荷等重要作用。

2. 功能要求:了对于一个高效可靠的励磁系统应具备哪些功能特点。

三、主体内容3.1 发生器(Generator)1) 结构与工作原理:描述了发生器内部结构,并阐明其中关键元件如转子和定子之间产生感应交变电动势并实现能量转换。

2) 输出参数控制方法:说明如何通过改变输入端或输出端参数来控制出来的交流信号波形。

3.2 整流装置(Rectifier Unit)1)单相全桥式整流装置:a) 原理简介: 解释使用四只晶闸管进行单相全桥式整流时需要满足什么条件才能使得直接获得有源适配网络;b)性能评估标准: 阐述了评估单相全桥式整流装置性能的几个关键指标。

2)三相半波可控整流器:a) 工作原理: 描述使用六只晶闸管进行三相半波可控整流时,如何实现对输出电压和功率因数的调节;b) 控制策略:介绍常用的脉宽调制技术以及其在三相半波可控整流中应用。

3.3 励磁变压器(Excitation Transformer)1)结构与工作原理:详细描述励磁变压器内部线圈之间通过互感耦合产生高低电位差,并将输入端交换参数转化为输出端所需参数。

2)设计要点:阐明选择适当材料、匹配正确比例等方面需要注意事项。

四、附件本文涉及到以下附件,请参考查看:1. 汽轮机励磁系统示意图2. 发生器内部结构示意图五、法律名词及注释1. 动力设备安全监察条例 - 国家相关法规文件,旨在确保动力设备运行过程中人员和财产安全。

2. 变频马达–使用特定算法来改变发出的电流频率,以控制马达转速和输出功率。

发电机励磁系统的作用及工作原理

发电机励磁系统的作用及工作原理

一、概述作为发电机的重要组成部分,励磁系统在发电过程中起着至关重要的作用。

它可以保证发电机的正常运行,并且对于电力系统的稳定性和可靠性也有着重要的影响。

本文将介绍励磁系统的作用以及其工作原理,希望能够对读者有所帮助。

二、励磁系统的作用1. 维持发电机的励磁电流励磁系统通过控制励磁电流的大小和方向,可以确保发电机在运行过程中产生稳定的电压。

这对于电力系统的正常运行至关重要,因为电压的稳定性直接影响着电力设备的运行效果和寿命。

2. 调节发电机的输出电压通过调节励磁电流的大小,励磁系统可以实现对发电机输出电压的调节,从而满足电网对于不同电压等级的需求。

这种灵活性保证了电力系统的运行效率和稳定性。

3. 提供短路电流在发电机连接到电网时,励磁系统可以提供短路电流,保证电网在故障发生时的稳定性和安全性。

这对电网的运行和保护有着重要的作用。

三、励磁系统的工作原理1. 励磁电路励磁系统的核心部分是励磁电路,它由励磁电源、励磁变压器、励磁开关和励磁调节装置等组成。

在励磁电路中,励磁电源提供所需的励磁电流,励磁变压器将其升压或降压,励磁开关用于控制电路的接通和断开,励磁调节装置用于调节励磁电流的大小。

2. 励磁调节励磁调节是励磁系统的关键部分,它通过控制励磁电源的输出电流来调节发电机的励磁电流,进而实现对发电机输出电压的调节。

在励磁调节装置中,通常采用自动调节和手动调节相结合的方式,以保证发电机在不同负载条件下都能够保持稳定的输出电压。

3. 励磁稳定励磁稳定是励磁系统的一个重要特性,它用于在发电机负载变化或电网故障时维持发电机的电压稳定。

励磁稳定通常通过控制励磁系统的PID调节器来实现,该调节器可以根据发电机运行状态和电网负载情况实时调整励磁电流,使发电机的输出电压保持在合适的范围内。

四、总结励磁系统作为发电机的重要组成部分,通过维持励磁电流、调节发电机的输出电压和提供短路电流等功能,保证了发电机的正常运行和电力系统的稳定性。

发电机励磁系统原理

发电机励磁系统原理

发电机励磁系统原理
发电机的励磁系统是指用来激励电磁铁产生磁场的装置。

励磁系统的原理是通过外部直流电源对电磁铁进行电流供给,使其产生磁场。

在发电机的励磁系统中,有三种常见的励磁方式:直接励磁、直流励磁和交流励磁。

直接励磁是指直接将励磁电流来自发电机的一个分支。

这种方式简单、容易实现,但在应对大功率发电机时,励磁电流较大,会对发电机本身产生较大压力。

直流励磁是将外部直流电源的电流通过整流装置变为直流电源,然后再供给到发电机的励磁设备。

这种方式比直接励磁更加灵活,能够适应不同功率的发电机,并且可以稳定控制励磁电流。

交流励磁是将外部交流电源的电流通过变压器降压,然后再通过整流装置变为直流电源供给到发电机的励磁设备。

这种方式可以根据需要调整变压器的输出电压来控制励磁电流,从而实现对发电机输出电压的调节。

总的来说,发电机的励磁系统通过对电磁铁供给电流,产生一定强度和方向的磁场,进而实现对发电机的励磁,调整发电机的输出电压。

不同的励磁方式具有不同的特点和适用范围,可以根据实际需求进行选择和调节。

静止励磁系统工作原理

静止励磁系统工作原理

静止励磁系统工作原理静止励磁系统(PME)是一种采用电气方式对发电机进行励磁的方法,其工作原理如下:首先,需要明确静止励磁系统的基本结构。

它主要由调速器(AVR)、励磁绕组、电压传感器、励磁开关和励磁旁通控制器等组成。

其中,调速器是整个系统的核心部分,通过对励磁绕组的控制,使发电机的电磁感应强度达到一定的目标值。

当发电机开始运转时,电动机的转子通过转子端,将电磁能转换成机械能,使发电机的转子开始旋转。

在发电机的转子上,通过励磁绕组通电,产生磁场。

接着,通过转子的旋转,在转子上形成了一个磁场旋转的感应线圈,即转子上的“感应圈”。

随着转子的旋转,感应线圈上出现了一种频率、振幅、相位与转速相关的感应电势(即感应电动势),这个感应电势通过转子两端的转子线圈(也称为励磁绕组)传递到外部。

感应电势的振幅与转子感应线圈上的有效磁通变化速率成正比,转速愈大磁通变化速度愈大,感应电势振幅就愈大。

在这个过程中,转子上的感应电势和励磁绕组的电阻、电感以及负载电压之间存在一个很高的耦合。

当感应电势的振幅达到或超过一定阈值时,这个电路就会关闭。

通过控制电路的开关器件的开合情况,可以控制励磁电流的大小和方向,从而实现对发电机电磁感应强度的调节。

具体而言,当转速较低时,感应电势的振幅较小,此时调速器会通过控制励磁绕组的通电开关来增加励磁电流的大小。

增加励磁电流的同时,由于励磁电流通过励磁绕组产生的磁场增强,转子上的感应电势也会增强,最终实现发电机电磁感应强度的增加。

当转速较高时,感应电势的振幅较大,此时调速器会通过控制励磁绕组的通电开关来减小励磁电流的大小。

减小励磁电流的同时,转子上的感应电势也会减小,以达到对发电机电磁感应强度进行调节的目的。

总之,静止励磁系统通过感应电势、励磁绕组的通电开关以及调速器等部件的协调工作,实现对发电机电磁感应强度的调节。

通过不断地调节励磁电流的大小和方向,使电机在运行时稳定工作,并能够根据负载的需求,实现对发电功率和电压的调控。

同步发电机励磁系统

同步发电机励磁系统

同步发电机励磁系统引言同步发电机是一种将机械能转换为电能的设备,它通过励磁系统来生成磁场,使得转子能够与电网同步运行。

励磁系统在同步发电机的运行中起着至关重要的作用,它对发电机的稳定运行和输出电能的质量产生着重要影响。

本文将介绍同步发电机励磁系统的原理、常见的励磁系统类型以及其在电能发电中的作用。

一、同步发电机励磁系统的原理同步发电机的励磁系统的主要作用是在转子上产生磁场,使得转子与电网的磁场同步,从而使得发电机可以向电网输出电能。

励磁系统的原理可以通过法拉第定律来解释,该定律表明磁场的变化会产生感应电动势。

在同步发电机中,励磁系统的磁场可以通过直流电流在转子上产生。

当通过励磁绕组的电流改变时,绕组周围的磁场也会发生变化,从而在转子内感应出电动势。

这个感应电动势会引起一定的电流流动,从而通过励磁绕组将转子磁场与电网磁场同步。

二、常见的励磁系统类型1. 直流励磁系统直流励磁系统是最常见的励磁系统类型之一。

在直流励磁系统中,励磁绕组通常由一组电枢绕组和磁极绕组组成。

电枢绕组通过直流电流产生磁场,并与磁极绕组相互作用,从而产生所需的磁场分布。

直流励磁系统具有调节灵活性好、响应速度快等优点,被广泛应用于各种类型的发电机。

2. 恒功率励磁系统恒功率励磁系统是一种在同步发电机中常用的励磁系统类型。

恒功率励磁系统通过自动调节输出的励磁电流,使得同步发电机在负载变化时能够保持输出功率不变。

该励磁系统利用负载的反馈信号对励磁电流进行调整,从而实现恒功率输出。

恒功率励磁系统在电能供应系统中起到了稳定电能输出的重要作用。

3. 智能励磁系统随着电力系统的发展,智能励磁系统逐渐成为同步发电机励磁系统的研究重点。

智能励磁系统利用现代控制技术和计算机技术,可以实现对励磁电流和磁场的精确控制,从而提高同步发电机的运行效率和稳定性。

智能励磁系统具有较高的灵活性和可扩展性,能够适应不同负载和电网变化的要求。

三、同步发电机励磁系统在电能发电中的作用1. 稳定发电机输出电压和频率同步发电机励磁系统是保证电力系统稳定运行的关键之一。

发电厂励磁系统原理-陈小明

发电厂励磁系统原理-陈小明
发电厂励磁系统原理-陈 小明
电力发电厂是能将各种能源转化为电能的设备,励磁系统是确保发电机ห้องสมุดไป่ตู้利 运行的重要组成部分。
电力发电厂概述
电力发电厂是为了满足人们对电能的需求而建造的设施,通过转换能源形式, 将机械能转换为电能。
励磁系统的作用
励磁系统的主要作用是提供足够的磁场强度,使发电机产生稳定的电压和电 流。
通过调节励磁机输入电压的大小,来控制发电机 输出电压的稳定性。
自动调节
通过自动调节励磁机的励磁电流,来保持发电机 输出电压的稳定性。
励磁系统故障排除方法
1 检查电源
2 检查励磁机
确保励磁系统的电源正常工作,没有断电 或电压异常。
检查励磁机的连接和导线是否良好,排除 机械故障或损坏。
3 检查调压器
4 检查励磁控制器
检查调压器的参数和设置,确保调节精度 和稳定性。
检查励磁控制器的工作状态和程序,排除 控制器故障。
陈小明的研究成果
陈小明博士在励磁系统领域做出了突出贡献,他提出了一种新型的调节方法,可以有效提高励磁系统的 效率和稳定性。
励磁系统的基本原理
励磁系统的基本原理是通过电磁感应原理,将直流电能转换为磁能,然后转 换成交流电能。
励磁系统的组成部分
励磁机
负责产生磁场并提供稳定的直流电源。
励磁控制器
负责监控和调节励磁系统的运行状态。
调压器
用于控制励磁机输出的电压和电流。
电源
提供励磁系统所需的电能。
励磁系统的调节方式
静态调节

发电机励磁系统的工作原理

发电机励磁系统的工作原理

发电机励磁系统的工作原理
发电机励磁系统的工作原理是利用电磁感应原理,通过励磁电流产生磁场,从而在发电机转子中感应出电动势,进而产生电能。

具体来说,当发电机转子旋转时,励磁系统会向转子提供一个直流电流,这个电流会在转子中产生一个磁场。

当转子旋转时,这个磁场会与定子中的绕组相互作用,产生电动势,从而产生电能。

励磁系统的主要作用是控制发电机的输出电压和无功功率。

通过调节励磁电流的大小和相位,可以控制发电机的输出电压和无功功率,以满足电网的需求。

在现代发电机中,励磁系统通常采用数字控制技术,通过传感器和控制器对发电机的运行状态进行实时监测和控制,以提高发电机的可靠性和稳定性。

总之,发电机励磁系统是发电机的重要组成部分,它的工作原理是利用电磁感应原理产生磁场,从而在发电机转子中感应出电动势,进而产生电能。

发电机励磁系统原理

发电机励磁系统原理

发电机励磁系统原理发电机励磁系统是指将发电机所产生的电功率转化为磁能的过程。

通过励磁系统,将某种能量形式转化为磁场能量,从而激发转子产生电能,实现发电的过程。

下面将介绍发电机励磁系统的原理。

1. 励磁原理发电机励磁系统的原理就是利用外部的能源,如直流电源,将能量转化为磁场能量,使电机转子感应电动势,从而产生电能。

在发电机中,励磁线圈将直流电源的电能转化为磁场能量,在转子中感应电动势,形成电流,从而产生电能。

发电机励磁的原理是基于法拉第电磁感应定律,即在磁通量变化时,会在回路中产生感应电动势。

2. 励磁方式励磁系统根据不同的应用场景可以采用不同的方式进行励磁,常见的励磁方式包括直流励磁、交流励磁、恒磁励磁和变磁励磁。

其中,直流励磁和交流励磁是最常见的励磁方式。

(1)直流励磁在直流励磁系统中,直流电源连接到发电机绕组的一个极性,一般以正极为主极。

通过调节电阻,可以调节电流大小。

直流励磁的优点是输出电压稳定,容易控制,缺点是成本较高。

(2)交流励磁在交流励磁系统中,交流电源通过变压器变换,使其与发电机绕组进行耦合。

交流励磁可以通过调节变压器的变比来调节输出电压大小,具有成本低,调节容易的优点。

3. 励磁控制励磁控制是指通过控制励磁电流或电压来调节发电机的输出功率和电压稳定性。

针对不同的负载需求,可以采用不同的励磁控制方式,如手动调节、自动调节、恒压励磁等方式。

励磁控制的目的是维持发电机的稳定性能,确保输出电压和功率稳定,同时保证发电机及其附属设备的安全可靠运行。

4. 总结在发电机中,励磁系统是将外部能源转化为磁场能量,从而产生电能的关键部件。

根据不同的场景可以采用不同的励磁方式和励磁控制方式。

通过励磁系统的合理设计和优化控制,可以保证发电机的稳定性能,确保其安全可靠运行。

同步电机励磁系统原理

同步电机励磁系统原理

同步电机励磁系统原理
同步电机励磁系统原理主要包括静态励磁和动态励磁两种方式。

静态励磁是通过直接将励磁电压加在同步电机的定子上,使电机产生励磁磁场。

这种方式通常使用直流电源来提供励磁电压,通过调节直流电压的大小和方向可以改变同步电机的励磁磁场大小和方向。

动态励磁是通过外部励磁设备产生励磁磁场,通过变压器等设备将励磁电源的交流电压转换为同步电机所需的励磁电压。

这种方式通常使用交流电源来提供励磁电压,通过调节交流电压的大小和频率可以改变同步电机的励磁磁场大小和方向。

在实际应用中,一般采用动态励磁方式来实现对同步电机的励磁控制。

励磁系统的主要功能是使同步电机的励磁磁场与电网电压的频率和相位保持同步,从而实现同步发电和同步运行的要求。

励磁系统通常由电源、励磁变压器、励磁装置和励磁控制器等组成。

励磁系统的工作原理是通过励磁控制器对励磁电源进行控制,从而控制励磁磁场的大小和方向。

励磁控制器根据同步电机的运行状态和电网的要求,调节励磁电源的电压和频率,使励磁磁场与电网电压同步,并保持合适的大小,以实现同步运行。

总之,同步电机励磁系统通过静态励磁或动态励磁的方式,通过对励磁电源进行控制,使同步电机的励磁磁场与电网电压同
步,并保持合适的大小和方向,以实现同步发电和同步运行的要求。

励磁系统工作原理

励磁系统工作原理
持机端电压为给定值; • 2、控制并列运行各发电机组间无功功率分配; • 3、提高发电机并列运行的静态稳定性; • 4、提高发电机并列运行的暂态稳定性; • 5、在发电机内部出现故障时,进行灭磁,以减小故
障损失程度; • 6、根据运行要求对发电机实行强大励磁限制及最小
励磁限制。
4、励磁系统巡检检查注意事项
励磁系统原理介绍
1、励磁系统的组成
组成
励磁变压器 数字式自动电压调节2、励磁系统的原理
从发电机端部经三相封闭母线连接到励磁变的一次侧; 22KV降压为800V并经三相封闭母线连接到可控硅整流桥,可 控硅整流桥输出连接到与发电机转子绕组直接相连的滑环。 UNITROL 5000调节器根据测量到的发电机电压、电流可算出 有功、无功、功率因数并根据实际运行工况计算出所需脉冲, 控制可控硅整流桥的输出,即控制发电机励磁,从而达到控 制发电机运行。
谢谢
UNITROL 5000调节器可根据电厂或电网的需要实现PID 或恒无功或恒功率因数调节及PSS稳定控制。自并励系统在 发电机无电压输出或电压低于5%空载额定电压时可控硅整流 桥不工作即无整流电压输出。此时起励装置借助于厂用220V 交流电经整流二极管、接触器、限流电阻送入发电机转子绕 组中,起励电压可用软件参数设定,一般建立发电机的端电 压不超过5%空载额定.在起励阶段,AVR测量到发电机电压达 到预先设定的某一个值,就即刻自行切换到AVR控制,即起 励装置的输出自行断开,由AVR控制可控硅整流桥输出保持着 发电机电压达到预设值。如果采用零起升压,在上述过程中 AVR会继续升压,一直升至发电机电压额定值20KV。(基本过 程:起励-切换-自动升压-自动停在设定的电压值)。
为了保证励磁系统中所有电子器件、电器装置的可靠性要 求,AVR采用双通道,且两通道互为备用。AVR采用双通道数字 式,具有微调节的特性。 AVR具有手动和双自动通道,各通道 之间相互独立,可随时停用任一通道进行检修。各备用通道可 相互跟踪,保证无扰动切换。AVR与DCS接口实现控制室内对 AVR的远方操作。AVR采用强迫通风,风机故障时能保证AVR正 常运行。AVR设有远方和就地给定装置;过励磁限制;过励磁 保护;低励限制;电力系统稳定器(PSS);V/H限制器;功率 因数控制器;PT断线保护、导通监视、定子电流限制、磁场电 流限制等附加功能。AVR的自动调节模式为端电压PID,手动调 节采用PI方式。AVR各通道设恒电流调节手动单元,手动跟踪 自动,切换无扰动。AVR两个通道,各通道装设独立的PT接口, 每个通道功能齐全,都具有独立工作能力。 AVR可方便地显示 和修改参数并可故障自检。AVR工作逻辑:正常时,双通道自 动运行,同时发脉冲。一个自动通道故障时,故障通道无扰动 退出、发信。

水轮发电机励磁系统课件

水轮发电机励磁系统课件

励磁调节器的工作原理
励磁调节器的作用
励磁调节器的作用是调节发电机的输出电压和频率,使其 保持稳定。
励磁调节器的组成
励磁调节器主要由检测单元、控制单元和执行单元组成。
励磁调节器的工作流程
励磁调节器通过检测发电机的输出电压和频率,根据设定 的控制规律调节励磁电流,从而控制发电机的输出电压和 频率。
03
在发电机出现异常时,迅速切断励磁电流并防止过电压损害发电机 。
励磁系统的分类
直流励磁系统
采用直流发电机作为励磁电源,结构 简单,但维护困难,现已逐渐被淘汰 。
交流励磁系统
采用交流发电机作为励磁电源,具有 较高的调节性能和可靠性,是现代大 型水轮发电机组常用的励磁方式。
02
水轮发电机励磁系统 原理
水轮发电机转子励磁电路
01
转子励磁电路的组成
水轮发电机的转子励磁电路主要由励磁机、励磁调节器、转子绕组等组
成。
02
励磁机的结构和工作原理
励磁机通常采用直流发电机,其结构和工作原理与普通直流发电机类似

03
励磁调节器的作用和原理
励磁调节器的作用是调节励磁电流,从而调节发电机的输出电压和频率
。其原理是通过检测发电机的输出电压和频率,控制励磁机的励磁电流
励磁系统的基本原理
直流发电机的基本原理
01
直流发电机是根据电磁感应原理,通过旋转的磁场和导线的相
对运动来发电的。
交流发电机的基本原理
02
交流发电机是通过旋转的磁场和导线的相对运动来发电的,输
出的电压和频率是变化的。
同步发电机的原理
03
同步发电机是通过旋转的磁场和导线的相对运动来发电的,输
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 当碗中的球受到一个大的外力,怎样保证该球不飞出,最主要措施就是快 速的继电保护。继保的作用就相当于减少这个外部力量的作用时间,继保 越快,外力的作用时间就越短,这个球就不会一下子掉下来。自动电压调 节器此时作用相当于自动改变这个碗的坡度,当这个球上升时增加坡度, 当这个球下降时就减少这个坡度,使这个球在碗中滚动幅度迅速减小。
想。 • SiC非线性电阻,国外生产,经常采用英国M&I公司的产品,超大型
机组应用较多,比如:三峡、龙滩、拉西瓦等;灭磁时间适中。 • 水轮发电机要求快速灭磁,普遍采用非线性电阻灭磁方案。 • 单片ZnO阀片的工作能容量是15KJ,而单片SiC阀片的工作能容量为
62.5KJ。在超大型水轮发电机组中,灭磁能量很大,比如10MJ,需 要几百片非线性电阻阀片串、并联连接。并联均能或并联均流问题突 出。 SiC阀片容量大、其伏安特性更适合并联,所以,在超大型发电 机的励磁系统中普遍使用。
Excitation励磁
G
功角含义(电气量与空间量)、静稳极限Pmax、系 统稳定余度(Pmax/P)、功角范围(机组小于系统)
基本作用
建立发电机机端电压:电磁感应原理 最主要功能:维持发电机机端电压恒定、稳定
交流输电系统的输送功率极限公式:
在并列运行的发电机间合理分配无功功率 提高电力系统的运行稳定性
PM
U2 X
电力系统稳定简介
• 电力系统稳定分为三个电量的稳定: • 电压稳定(励磁、无功平衡、电压崩溃、人工干预:增加Q) • 频率稳定(调速、有功平衡、安稳装置切机、自动减载)、功角稳定(P、
Q变化)。 • 励磁系统提高电力系统的稳定主要是提高电压的稳定,其次是提高功角稳
定。频率稳定由调速器调节。 • 功角稳定又分为三种:静态稳定、暂态稳定和动态稳定。 • 静态稳定是系统受到小扰动后系统的稳定性(稳定余度问题、极限功率问
• 如果这个碗和球之间的摩擦很小,这个球受到扰动后在碗中来回滚动时间 就很长,特别是,如果这个扰动的外力不断的来回施加,就比如我们不断 的荡秋千,这个球就永远不停的来回滚动甚至掉下来,我们就说这个系统 的动态稳定性差。这里的摩擦阻力相当于电力系统的阻尼,这个来回不断 施加的外部力量就相当于自动电压调节器产生的负阻尼。一般来说,自动 电压调节器在电力系统的动态稳定中起坏作用,产生负阻尼,使整个系统 阻尼减少。当我们在自动电压调节器中增添PSS装置,PSS就把自动电压 调节器原来所产生的负阻尼变为正阻尼,相当于增加碗和球的摩擦系数, 使球的滚动幅度快速减小,于是这个系统的动态稳定性就满足要求。
3.2 励磁变压器
• 将高电压隔离并转换为适当的低电压,供整流器使用。一 般接线组别:Y/d-11。
• 励磁变的额定容量要满足发电机1.1倍额定励磁电流的要 求。
• 励磁变的二次电压的大小要满足励磁系统强励的要求。 • 励磁变的绝缘等级:F级或H级。 • 励磁变的额定最大温升:80K或100K。
3.3 可控硅整流桥
灭磁中的移能
• 灭磁过程中,移能成功的条件:
U DCarc U E U r
灭磁开关要有足够高的弧压,才能顺利实现移能。 UR、HPB型灭磁开关的弧压,都在4000V以上。
灭磁电阻
• 线性电阻,汽轮发电机励磁系统经常采用;灭磁时间较长。 • 氧化锌ZnO非线性电阻,国内生产,应用普遍;灭磁时间短,较为理
三、自并励励磁系统的基本构成
自并励励磁系统是当今主流励磁系统。已在大、中 型发电机组中普遍采用。其主要技术特点: 接线简单、结构紧凑; 取消励磁机,发电机组长度缩短,减小轴系振动,节 约成本; 典型的快速励磁系统; 调节性能优越,通过附加PSS控制可以有效提高电力系 统稳定性。
3.1 自并励励磁系统的主要组成部分
电气功率Pe
由励磁系统引起的附加电磁
ΔTE
转矩,包含同步转矩ΔTຫໍສະໝຸດ 和阻尼转矩ΔTD两个分量。当发电机
采用高放大倍数、快速励磁系
统时,阻尼转矩可能会出现负
值(如图中的ΔTD′),引起发
电机阻尼不足,当系统发生扰
动时造成发电机低频振荡。
ΔTs
Pe/ΔPe、Δδ
负阻尼区
ΔTD′
ΔTE′
PSS的原理
• 在发电机的励磁控制系统中,采用ΔPe、Δω、Δf等一个或几个信号, 经适当放大、相位补偿后作为励磁附加反馈控制,可以增加电力系统 的正阻尼,从而阻尼电力系统功率振荡,这种用于增加电力系统正阻 尼的附加励磁控制装置称为电力系统稳定器(Power System Stabilizer,简称PSS)。它不降低励磁系统电压调节环的增益,不影 响励磁控制系统的暂态性能,而对抑制电力系统低频振荡效果显著。 PSS在国内外都得到了广泛应用。
两种灭磁方法
• 逆变灭磁:正常停机时采用。不需要分断灭磁开关,控制可控硅整流 桥处于逆变状态,使转子绕组中能量通过励磁变反送到发电机端电源 侧及回路电阻中消耗,实现灭磁。在自并励励磁系统中,由于在逆变 灭磁过程中,发电机端电压也在不断减小,吸收能量不断减小,所以, 逆变灭磁的时间比较长。空载额定状态下,逆变灭磁时间一般达到 10s。
换相是严格按顺序的。
发电机转子相当于大电感。三 相全控桥带电感负载下的二个主 要工作状态:
整流状态:交流变直流,能量供 给,输出电压Ud>0。
逆变状态:直流变交流,能量反 送,输出电压Ud<0。
三相全控桥电路要点
三相全控桥带电感负载下的二个重要关系公式:
Ud=1.35U2cosa,a为整流桥触发控制角 I2=0.816Id
不能突变的。储存能量为:
W

1 2
L
f
If2
灭磁系统由灭磁开关、灭磁电阻及灭磁回路 开通控制单元组成。灭磁,就是把转子中储存的 能量转移到灭磁电阻中,来消耗掉。
灭磁系统的构成原理图
灭磁系统的基本工作原理
发电机正常运行中,励磁电压比较小,控制单元不能 触发可控硅开通,灭磁电阻回路中没有电流通过 。
• 灭磁系统灭磁:在发电机事故、过压或系统故障情况下停机时,励磁 电流较大,希望能快速灭磁,消除故障、防止事故扩大化,采用分断 灭磁开关的方法将能量转移到灭磁电阻中实现快速灭磁。灭磁系统灭 磁的时间一般在5s以下。
3.5 励磁调节器
励磁系统的控制核心,利用自动控制原理,自动控 制可控硅整流桥的触发角度、快速调节励磁电流大小,实 现励磁系统的各种控制功能,使发电机组满足各种发电工 况的运行要求。
励磁系统基本原理
尹志丰 2016.06.21
一、励磁系统的基本作用
励磁的基本概念
什么是励磁? 导体切割磁力线感生电动势e 励磁就是提供一个磁场B
E=4.44fNΦ
对于发电机来说,励磁就是产生磁通Φ
励磁的基本任务
Governor调速
Active Power(P) Frequency(f)
Reactive Power(Q) Terminal Voltage(Ug)
Ud、Id--直流输出侧电压、电流; U2、I2--交流输入侧线电压、相电流;
触发控制角的理论范围0~180°,超出此范围外的触发信号就会造成 混乱。触发控制角的角度控制是严格的,一般实用范围:10~150°
0~90°:整流状态; 90~180°:逆变状态。 逆变状态时为什么是负的?电流方向与原来一致,而电压方向反,
题、发电机的能力问题); • 暂态稳定是大扰动后系统在随后的1-2个周波的稳定性;(安稳装置切机
问题、继电保护问题) • 动态稳定是小扰动后或者是大扰动1-2周波后的,并且采取技术措施后的
稳定性(励磁PSS问题)。
功角稳定比喻
• 碗中放置一个球,且受到外部的一个小外力,它就偏离原来的位置。如果 这个碗的高度很矮,像一个盘子,该球就有可能从碗中掉下来。此时,我 们就说这个系统静稳不足。提高碗的高度最经济的办法就是采用自动电压 调节器。
晶闸管的关断条件:以下任一条件即可关断 1. 主回路断开; 2. 晶闸管两端处于反向电压时(阳极电压低于阴极电压) 3. 流过晶闸管的电流下降到小于维持电流
三相全控桥电路结构
SCR循环导通顺序:至少有2个 可控硅开通。 12-32-34-54-56-16- 12…… 1个工频周期完成1个换 相导通循环。
因此功率传送方向会反转,从整流态到逆变态,完成能量消耗。 自并励情况、发电机空载状态下,可实现逆变灭磁。转子电流通过
发电机、励磁变及转子回路的电阻消耗。灭磁时间较长,10s左右。
三相全控桥电路的典型波形
α=00: 自然换相点, 二极管整流, AC变DC
α=0~900: 整流状态, AC变DC
α=1500: 逆变状态, DC变AC
三相全控桥的散热
• 可控硅流过电流,会在可控硅两端产生电压降(一般1~ 2V),造成可控硅发热,温度升高。可控硅内部的最大承 受结温(PN结)是125℃。
• 可控硅散热方法:可控硅压装散热器,并启动冷却风机进
行风冷散热。
三相全控桥的保护
• 可控硅过流保护:每可控硅串联快速熔断器。 • 可控硅换相尖峰过电压保护:可控硅两端并联R、C吸收
可控硅整流桥一般采用三相全控可控硅整流桥的方 式,实现把交流电转换为可控的直流电的主要任务,给发 电机提供各种运行状况下所需要的励磁电流。
晶闸管的伏安特性
电力电子技术的发展:IGBT
晶闸管的导通与关断条件
晶闸管的导通条件:以下两条件须同时具备 正向阳极状态(阳极电位高于阴极电位); 控制极加上触发电压(或触发脉冲);
当灭磁开关分断后进行灭磁时,转子电感两端出现较大 的反向电压,同时控制单元快速接通反向可控硅触发回路, 把灭磁电阻接入、灭磁电阻回路开通,转子电流就可以快 速转移到灭磁电阻回路,通过灭磁电阻把电流转换为热量 释放。
灭磁开关
灭磁开关的基本作用:控制转子绕组中励磁电流的接通、分断;灭磁开 关分断后,配合灭磁电阻完成灭磁的任务。
相关文档
最新文档