2018届高考数学(理)大一轮复习顶层设计教师用书第二章 函数、导数及其应用 第五节 指数与指数函数 Word版
2018版高中数学一轮全程复习(课件)第二章 函数、导数及其应用 2.11.2
——[通·一类]—— 1.设 f(x)=2x3+ax2+bx+1 的导数为 f′(x),若函数 y=f′(x)
的图象关于直线 x=-12对称,且 f′(1)=0. (1)求实数 a,b 的值; (2)求函数 f(x)的极值.
第七页,编辑于星期六:二十二点 二十三分。
——[悟·技法]—— 求函数 f(x)在[a,b]上的最大值和最小值的步骤
(1)求函数在(a,b)内的极值; (2)求函数在区间端点的函数值 f(a),f(b); (3)将函数 f(x)的各极值与 f(a),f(b)比较,其中最大的一个为 最大值,最小的一个为最小值.
第十二页,编辑于星期六:二十二点 二十三分。
第九页,编辑于星期六:二十二点 二十三分。
考向二 利用导数研究函数的最值 [例 2] (2017·湖北省七市(州)联考)设 n∈N*,a,b∈R,函 数 f(x)=alxnn x+b,已知曲线 y=f(x)在点(1,0)处的切线方程为 y= x-1. (1)求 a,b; (2)求 f(x)的最大值.
第十八页,编辑于星期六:二十二点 二十三分。
——[通·一类]—— 3.(2017·云南省第一次统一检测)已知常数 a≠0,f(x)=aln x
+2x. (1)当 a=-4 时,求 f(x)的极值; (2)当 f(x)的最小值不小于-a 时,求实数 a 的取值范围.
第十九页,编辑于星期六:二十二点 二十三分。
考向三 函数极值与最值的综合问题 [互动讲练型] [例 3] (2016·全国甲,理 21)(1)讨论函数 f(x)=xx-+22ex 的单 调性,并证明:当 x>0 时,(x-2)ex+x+2>0; (2)证明:当 a∈[0,1)时,函数 g(x)=ex-xa2x-a(x>0)有最小 值.设 g(x)的最小值为 h(a),求函数 h(a)的值域.
2018届高考数学文大一轮复习教师用书:第2章 函数、导数及其应用 第6节 对数函数 含答案 精品
第六节 对数函数———————————————————————————————— 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象.3.体会对数函数是一类重要的函数模型.4.了解指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.1.对数的概念如果a x=N (a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质、换底公式与运算性质 (1)对数的性质:①alogaN =N ;②log a a b =b (a >0,且a ≠1).(2)换底公式:log a b =log c blog c a(a ,c 均大于0且不等于1,b >0).(3)对数的运算性质:如果a >0,且a ≠1,M >0,N >0,那么:①log a (M ·N )=log a M +log a N ;②log a M N=log a M -log a N ,③log a M n=n log a M (n ∈R). 3.对数函数的定义、图象与性质4.反函数指数函数y =a x(a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)log 2x 2=2log 2x .( ) (2)当x >1时,log a x >0.( )(3)函数y =lg(x +3)+lg(x -3)与y =lg 的定义域相同.( )(4)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝ ⎛⎭⎪⎫1a,-1,函数图象不在第二、三象限.( )(1)× (2)× (3)× (4)√ 2.已知a =2,b =log 213,c =log 13,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >bD3.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图261,则下列结论成立的是( )【导学号:31222050】图261A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1 D4.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,34 B .(1,+∞)C.⎝ ⎛⎭⎪⎫0,34∪(1,+∞) D.⎝ ⎛⎭⎪⎫34,1C5.(2017·杭州二次质检)计算:2log 510+log 514=________,2log 43=________.23(1)设2a =5b=m ,且a +b=2,则m 等于( ) A.10 B .10 C .20D .100(2)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________.(1)A (2)-201.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b=N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.(1)(2017·东城区综合练习(二))已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥4,f x +,x <4,则f (2+log 23)的值为( )A .24B .16C .12D .8(2)(2015·浙江高考)计算:log 222=________,2log 23+log 43=________. (1)A (2)-123 31.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(2017·西城区二模)如图262,点A,B在函数y=log2x+2的图象上,点C在函数y=log2x的图象上,若△ABC为等边三角形,且直线BC∥y轴,设点A的坐标为(m,n),则m=( )【导学号:31222051】图262A.2 B.3C. 2D. 3D☞角度1(2016·全国卷Ⅰ)若a>b>0,0<c<1,则( )A.log a c<log b c B.log c a<log c bC.a c<b c D.c a>c bB☞角度2 解简单的对数不等式(2016·浙江高考)已知a,b>0且a≠1,b≠1,若log a b>1,则( ) A.(a-1)(b-1)<0 B.(a-1)(a-b)>0C.(b-1)(b-a)<0 D.(b-1)(b-a)>0D☞角度3 探究对数型函数的性质已知函数f(x)=log a(3-ax),是否存在这样的实数a,使得函数f(x)在区间上为减函数,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由.假设存在满足条件的实数a.∵a>0,且a≠1,∴u=3-ax在上是关于x的减函数.3分又f(x)=log a(3-ax)在上是关于x的减函数,∴函数y=log a u是关于u的增函数,∴a>1,x∈时,u最小值为3-2a,7分f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a -a =1,即⎩⎪⎨⎪⎧a <32,a =32,10分故不存在这样的实数a ,使得函数f (x )在区间上为减函数,并且最大值为1.12分 利用对数函数的性质研究对数型函数性质,要注意以下四点:一是定义域;二是底数与1的大小关系;三是如果需将函数解析式变形,一定确保其等价性;四是复合函数的构成,即它是由哪些基本初等函数复合而成的.1.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0.2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性.4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y=1交点的横坐标进行判定.1.在对数式中,真数必须是大于0的,所以对数函数y=log a x的定义域应为(0,+∞).对数函数的单调性取决于底数a与1的大小关系,当底数a与1的大小关系不确定时,要分0<a<1与a>1两种情况讨论.2.在运算性质log a Mα=αlog a M中,要特别注意条件,在无M>0的条件下应为log a Mα=αlog a|M|(α∈N*,且α为偶数).3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.课时分层训练(九) 对数函数A组基础达标(建议用时:30分钟)一、选择题x-的定义域是( )1.函数y=log23【导学号:31222052】A.B.2.(2017·石家庄模拟)已知a=log23+log23,b=log29-log23,c=log32,则a,b,c的大小关系是( )A.a=b<c B.a=b>cC.a<b<c D.a>b>cB3.若函数y=log a x(a>0,且a≠1)的图象如图263所示,则下列函数图象正确的是( )图263A B C DB4.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x+1,x ≤0,则f (f (1))+f ⎝ ⎛⎭⎪⎫log 312的值是( )A .5B .3C .-1 D.72A5.已知y =log a (2-ax )在区间上是减函数,则a 的取值范围是( )【导学号:31222053】A .(0,1)B .(0,2)C .(1,2)D .上单调递减,u =2-ax (a >0)在上是减函数,所以y =log a u 是增函数,所以a >1.又2-a >0,所以1<a <2.]二、填空题6.(2015·安徽高考)lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________.-17.函数y =log 2|x +1|的单调递减区间为________,单调递增区间为________. (-∞,-1) (-1,+∞)8.(2016·浙江高考)已知a >b >1,若log a b +log b a =52,a b =b a,则a =________,b =________.4 2 三、解答题9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值. (1)∵f (1)=2, ∴log a 4=2(a >0,a ≠1), ∴a =2.3分由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3),∴函数f (x )的定义域为(-1,3).5分 (2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2,7分 ∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.12分 10.已知函数f (x )是定义在R 上的偶函数,f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.(1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数,所以f (-x )=f (x ),2分 所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12-x,x <0.5分(2)因为f (4)=log 124=-2,f (x )是偶函数,所以不等式f (x 2-1)>-2可化为f (|x 2-1|)>f (4).8分 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).12分B 组 能力提升 (建议用时:15分钟)1.(2017·东北三省四市一联)已知点(n ,a n )(n ∈N *)在y =e x的图象上,若满足当T n =ln a 1+ln a 2+…+ln a n >k 时,n 的最小值为5,则k 的取值范围是( )【导学号:31222054】A .k <15B .k <10C .10≤k <15D .10<k <15C2.(2015·福建高考)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是 .]3.已知函数f (x )=log a (x +1)-log a (1-x )(a >0且a ≠1).(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集. (1)要使函数f (x )有意义, 则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1.3分故所求函数f (x )的定义域为(-1,1).4分 (2)证明:由(1)知f (x )的定义域为(-1,1), 且f (-x )=log a (-x +1)-log a (1+x ) =-=-f (x ), 故f (x )为奇函数.8分(3)因为当a >1时,f (x )在定义域(-1,1)内是增函数,所以f (x )>0⇔x +11-x>1,解得0<x <1,所以使f (x )>0的x 的解集是(0,1).12分。
2018届高考数学理科全国通用一轮总复习课件:第二章 函数、导数及其应用 2.11.3 精品
又y=g(x)在R上是偶函数,且g(x)在(0,+∞)上单调递增, 所以y=g(x)在(0,+∞)上有唯一零点,在(-∞,0)也有唯 一零点. 故当b>1时,y=g(x)在R上有两个零点, 则曲线y=f(x)与直线y=b有两个不同交点.
综上可知,如果曲线y=f(x)与直线y=b有两个不同交点, 那么b的取值范围是(1,+∞). 答案:(1,+∞)
【变式训练】(2015·北京高考)设函数f(x)= x2 kln x,
2
k>0.
(1)求f(x)的单调区间和极值.
(2)证明若f(x)有零点,则f(x)在区间 (1, e) 上仅有一个 零点.
【解析】(1)f(x)的定义域为(0,+∞),f′(x)=
x k x2 k . xx
因为k>0,所以令f′(x)=0得 x 列k表,如下:
2
22 2
上没有零点.
(1, e)
当1 k 即1e,<k<e时,f(x)在 上(1,递k减) ,在
( k, e)
上递增,
f 1 1 0,f ( e) e k 0,f ( k ) k kln k k 1 ln k 0,
2
2
2
2
此时函数没有零点.
当 k 即ek,≥e时,f(x)在 上(1单, 调e) 递减,
f′(x)
+
0
-
0
+
f(x)
↗ 极大值 ↘ 极小值 ↗
故函数f(x)的单调递增区间是(-∞,-1),(a,+∞);单调递 减区间是(-1,a). 可知函数f(x)在区间(-2,-1)内单调递增;在区间(-1,0) 内单调递减.
近年高考数学复习 第2章 函数、导数及其应用 热点探究课1 导数应用中的高考热点问题教师用书(20
(浙江专版)2018高考数学一轮复习第2章函数、导数及其应用热点探究课1 导数应用中的高考热点问题教师用书编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2018高考数学一轮复习第2章函数、导数及其应用热点探究课1 导数应用中的高考热点问题教师用书)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2018高考数学一轮复习第2章函数、导数及其应用热点探究课1 导数应用中的高考热点问题教师用书的全部内容。
热点探究课(一) 导数应用中的高考热点问题[命题解读] 函数是中学数学的核心内容,导数是研究函数的重要工具,因此,导数的应用是历年高考的重点与热点,常涉及的问题有:讨论函数的单调性(求函数的单调区间)、求极值、求最值、求切线方程、求函数的零点或方程的根、求参数的范围、证明不等式等,涉及的数学思想有:函数与方程、分类讨论、数形结合、转化与化归思想等,中、高档难度均有.热点1 利用导数研究函数的单调性、极值与最值(答题模板)函数的单调性、极值是局部概念,函数的最值是整体概念,研究函数的性质必须在定义域内进行,因此,务必遵循定义域优先的原则,本热点主要有三种考查方式:(1)讨论函数的单调性或求单调区间;(2)求函数的极值或最值;(3)利用函数的单调性、极值、最值,求参数的范围.(本小题满分15分)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.[思路点拨](1)求出导数后对a分类讨论,然后判断单调性;(2)运用(1)的结论分析函数的最大值,对得到的不等式进行等价转化,通过构造函数并分析该函数的单调性求a的范围.[规范解答](1)f(x)的定义域为(0,+∞),f′(x)=错误!-a。
2018高考数学一轮复习第2章函数导数及其应用重点强化课1函数的图像与性质教师用书文北师大版
重点强化课(一) 函数的图像与性质[复习导读] 函数是中学数学的核心概念,函数的图像与性质既是中学数学教学的重点,又是高考考查的重点与热点,题型以选择题、填空题为主,既重视三基,又注重思想方法的考查,备考时,要透彻理解函数,尤其是分段函数的概念,切实掌握函数的性质,并加强函数与方程思想、数形结合思想、分类讨论思想的应用意识.重点1 函数图像的应用已知f (x )为偶函数,当x ≥0时,f (x )=⎩⎪⎨⎪⎧cos πx ,x ∈⎣⎢⎡⎦⎥⎤0,12,2x -1,x ∈⎝ ⎛⎭⎪⎫12,+∞,则不等式f (x -1)≤12的解集为( )A.⎣⎢⎡⎦⎥⎤14,23∪⎣⎢⎡⎦⎥⎤43,74 B.⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤14,23C.⎣⎢⎡⎦⎥⎤13,34∪⎣⎢⎡⎦⎥⎤43,74D.⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤13,34A [画出函数f (x )的图像,如图,当0≤x ≤12时,令f (x )=cosπx ≤12,解得13≤x ≤12;当x >12时,令f (x )=2x -1≤12,解得12<x ≤34,故有13≤x ≤34.因为f (x )是偶函数,所以f (x )≤12的解集为⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤13,34,故f (x -1)≤12的解集为⎣⎢⎡⎦⎥⎤14,23∪⎣⎢⎡⎦⎥⎤43,74.][迁移探究1] 在本例条件下,若关于x 的方程f (x )=k 有2个不同的实数解,求实数k 的取值范围.[解] 由函数f (x )的图像(图略)可知,当k =0或k >1时,方程f (x )=k 有2个不同的实数解,即实数k 的取值范围是k =0或k >1. 12分[迁移探究2] 在本例条件下,若函数y =f (x )-k |x |恰有两个零点,求实数k 的取值范围.[解] 函数y =f (x )-k |x |恰有两个零点,即函数y =f (x )的图像与y =k |x |的图像恰有两个交点,借助函数图像(图略)可知k ≥2或k =0,即实数k 的取值范围为k =0或k ≥2. 12分[规律方法] 1.利用函数的图像研究函数的性质,一定要注意其对应关系,如:图像的左右范围对应定义域,上下范围对应值域,上升、下降趋势对应单调性,对称性对应奇偶性.2.有关方程解的个数问题常常转化为两个熟悉的函数图像的交点个数;利用此法也可由解的个数求参数值或范围.3.有关不等式的问题常常转化为两个函数图像的上、下关系来解.[对点训练1] 已知函数y=f (x)的图像是圆x2+y2=2上的两段弧,如图1所示,则不等式f (x)>f (-x)-2x的解集是________.图1(-1,0)∪(1,2] [由图像可知,函数f (x)为奇函数,故原不等式可等价转化为f (x)>-x,在同一直角坐标系中分别画出y=f (x)与y=-x的图像,由图像可知不等式的解集为(-1,0)∪(1,2].]重点2 函数性质的综合应用☞角度1 单调性与奇偶性结合(1)(2017·南昌二模)已知函数f (x )是定义在R 上的偶函数,且当x ∈[0,+∞)时,函数f (x )是递减函数,则f (log 25),f ⎝⎛⎭⎪⎫log 315,f (log 53)的大小关系是( )A .f ⎝⎛⎭⎪⎫log 315<f (log 53)<f (log 25) B .f ⎝⎛⎭⎪⎫log 315<f (log 25)<f (log 53) C .f (log 53)<f ⎝⎛⎭⎪⎫log 315<f (log 25) D .f (log 25)<f ⎝⎛⎭⎪⎫log 315<f (log 53)(2)(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,12B.⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎭⎪⎫12,32D.⎝ ⎛⎭⎪⎫32,+∞ (1)D (2)C [(1)因为f (x )为偶函数,所以f ⎝ ⎛⎭⎪⎫log 315=f (-log 35)=f (log 35),而log 53<log 35<log 25,则根据f (x )在[0,+∞)上是递减函数,得f (log 53)>f (log 35)>f (log 25),即f (log 25)<f ⎝⎛⎭⎪⎫log 315<f (log 53),故选D.(2)因为f (x )是定义在R 上的偶函数,且在区间(-∞,0)上递增,所以f (-x )=f (x ),且f (x )在(0,+∞)上递减.由f (2|a -1|)>f (-2),f (-2)=f (2)可得2|a -1|<2,即|a -1|<12,所以12<a <32.]☞角度2 奇偶性与周期性结合(2017·贵阳适应性考试(二))若函数f (x )=a sin2x +b tan x +1,且f (-3)=5,则f (π+3)=________.-3 [令g (x )=a sin2x +b tan x ,则g (x )是奇函数,且最小正周期是π,由f (-3)=g (-3)+1=5,得g (-3)=4,则g (3)=-g (-3)=-4,则f (π+3)=g (π+3)+1=g (3)+1=-4+1=-3.]☞角度3 单调性、奇偶性与周期性结合已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)D [因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, 所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).] [规律方法] 函数性质综合应用问题的常见类型及解题方法(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图像的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.重点3 函数图像与性质的综合应用(1)(2017·郑州二检)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )【导学号:66482084】A .[-1,1)B .[0,2]C .[-2,2)D .[-1,2)(2)已知函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -1,x >0,若方程f (x )=x +a 有且只有两个不相等的实数根,则实数a 的取值范围是( )A .(-∞,0]B .[0,1)C .(-∞,1)D .[0,+∞)(1)D (2)C [(1)由题意知g (x )=⎩⎪⎨⎪⎧2-x ,x >a ,x 2+3x +2,x ≤a .因为g (x )有三个不同的零点,所以2-x =0在x >a 时有一个解.由x =2,得a <2. 由x 2+3x +2=0,得x =-1或x =-2, 由x ≤a ,得a ≥-1.综上,a 的取值范围为[-1,2).(2)函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -1,x >0的图像如图所示,当a <1时,函数y =f (x )的图像与函数f (x )=x +a 的图像有两个交点,即方程f (x )=x +a 有且只有两个不相等的实数根.][规律方法] 解决分段函数与函数零点的综合问题的关键在于“对号入座”,即根据分段函数中自变量取值范围的界定,代入相应的解析式求解零点,注意取值范围内的大前提,以及函数性质和数形结合在判断零点个数时的强大功能.[对点训练2] (2017·云南二次统一检测)已知f (x )的定义域为实数集R ,任意x ∈R ,f (3+2x )=f (7-2x ),若f (x )=0恰有n 个不同实数根,且这n 个不同实数根之和等于75,则n=________.15 [由f (3+2x)=f (7-2x)得函数f (x)的图像关于直线x=5对称,则f (x)=0的n个实根的和为5n=75,解得n=15.]。
2018届高三数学(文)教师用书:第2章函数、导数及其应用
C.[1,2) ∪(2,+∞ )
D.
-
1,-
1 2
∪
- 12, 1
解析: 选 D
由函数
1- x2
1-x2 ≥ 0,
y=
2
2x
-
3x-
2
得
2x2- 3x-2≠ 0,
解得
- 1≤ x≤ 1, x≠ 2且 x≠- 12,
即-
1≤ x≤ 1 且 x≠ - 12, 所以所求函数的定义域为
- 1,-
1 2
∪
- 1, 1 2
1- |x- 1| 4.函数 f(x)= ax- 1 (a> 0 且 a≠ 1)的定义域为 ____________________.
1-|x- 1|≥ 0,
0≤ x≤2,
解析: 由 ax- 1≠ 0
? x≠0
? 0< x≤ 2,
故所求函数的定义域为 (0,2] .
答案: (0,2]
[ 谨记通法 ] 函数定义域的求解策略
名称
称 f:A→ B 为从集合 A 到集合 B 称对应 f:A→ B 为从集合 A 到集
的一个函数
合 B 的一个映射
记法
y=f (x), x∈ A
对应 f :A→ B 是一个映射
2. 函数的有关概念 (1)函数的定义域、值域: 在函数 y= f(x),x∈A 中, x 叫做自变量, x 的取值范围 A 叫做函数的定义域;与 x 的值 相对应的 y 值叫做函数值,函数值的集合 { f(x)|x∈ A} 叫做函数的值域.显然,值域是集合 B 的子集.
数 f(x+ 1)有意义,则有 1≤ x+ 1≤2 017,解得 0≤ x≤ 2 016,故函数 f(x+ 1)的定义域为 [0,2
(全国通用)近年高考数学一轮复习 第2章 函数、导数及其应用 第7节 函数的图象教师用书 文 新人教
(全国通用)2018高考数学一轮复习第2章函数、导数及其应用第7节函数的图象教师用书文新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用)2018高考数学一轮复习第2章函数、导数及其应用第7节函数的图象教师用书文新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用)2018高考数学一轮复习第2章函数、导数及其应用第7节函数的图象教师用书文新人教A版的全部内容。
第七节函数的图象—-————————————----—--—————-——-—-[考纲传真]会运用基本初等函数的图象分析函数的性质.1.利用描点法作函数的图象方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、最值等);(4)描点连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换①y=f(x)的图象错误!y=-f(x)的图象;②y=f(x)的图象错误!y=f(-x)的图象;③y=f(x)的图象错误!y=-f(-x)的图象;④y=a x(a>0且a≠1)的图象错误!y=log a x(a>0且a≠1)的图象.(3)伸缩变换①y=f(x)的图象y=f(ax)的图象;②y=f(x)的图象错误!y=af(x)的图象.(4)翻转变换①y=f(x)的图象错误!y=|f(x)|的图象;②y=f(x)的图象错误!y=f(|x|)的图象.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y=f(1-x)的图象,可由y=f(-x)的图象向左平移1个单位得到.()(2)函数y=f(x)的图象关于y轴对称即函数y=f(x)与y=f(-x)的图象关于y轴对称.()(3)当x∈(0,+∞)时,函数y=f(|x|)的图象与y=|f(x)|的图象相同.()(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.()[答案](1)×(2)×(3)×(4)√2.(教材改编)甲、乙二人同时从A地赶往B地,甲先骑自行车到两地的中点再改为跑步,乙先跑步到中点再改为骑自行车,最后两人同时到达B地.已知甲骑车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A地的距离s与所用时间t的函数关系用图象表示,则下列给出的四个函数图象中,甲、乙的图象应该是( )①②③④图27。
2018届高考数学理科全国通用一轮总复习课件:第二章 函数、导数及其应用 2.11.1 精品
【加固训练】
1.已知函数f(x)=x+ a +lnx(a∈R).
x
(1)求函数f(x)的单调区间.
(2)若函数f(x)在(1,+∞)上单调递增,求a的取值范围.
【解析】(1)函数f(x)=x+ a +lnx的定义域为
x
(0,+∞),f′(x)=
1-
a x2
+1=x2 x
x x2
a
.
①当Δ=1+4a≤0,即a≤- 1时,x2+x-a≥0恒成立,即
数φ(x)=
2 x
1 x2
( 1 故1)只2 要1,2m≥1即可,即
x
m 1. 2
答案:[1 , )
2
考向一 利用导数判断或证明函数的单调性 【典例1】(1)(2015·湖南高考)设函数f(x)=ln(1+x)ln(1-x),则f(x)是 ( ) A.奇函数,且在(0,1)上是增函数 B.奇函数,且在(0,1)上是减函数 C.偶函数,且在(0,1)上是增函数 D.偶函数,且在(0,1)上是减函数
第十一节 导数在研究函数中的应用 第一课时 利用导数研究函数的单调性
【知识梳理】 函数的单调性与导数的关系 函数y=f(x)在某个区间内可导: (1)若f′(x)>0,则f(x)在这个区间内_单__调__递__增__; (2)若f′(x)<0,则f(x)在这个区间内_单__调__递__减__; (3)若f′(x)=0,则f(x)在这个区间内是_常__数__函__数__.
(4)确定f′(x)在各个区间内的符号,根据符号判定函 数在每个相应区间内的单调性.
【变式训练】已知函数f(x)=(-x2+2x)ex,x∈R,e为自 然对数的底数.则函数f(x)的单调递增区间为 .
2018届高考数学文大一轮复习教师用书:第二章 函数、
第十一节导数的应用1.了解函数单调性与导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).3.会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).4.会用导数解决实际问题.知识点一利用导数研究函数的单调性函数y=f(x)在区间(a,b)内可导,1.若f′(x)>0,则f(x)在这个区间内是____________;2.若f′(x)<0,则f(x)在这个区间内是____________;3.若恒有f′(x)=0,则f(x)在这个区间内是________.答案1.单调递增函数 2.单调递减函数3.常函数1.判断正误(1)f′(x)>0是f(x)为增函数的充要条件.( )(2)函数的导数越小,函数的变化越慢,函数的图象就越“平缓”.( )答案:(1)×(2)×2.(选修1—1P91例1改编)如图所示是函数f(x)的导函数f′(x)的图象,则下列判断中正确的是( )A.函数f(x)在区间(-3,0)上是减函数B.函数f(x)在区间(-3,2)上是减函数C.函数f(x)在区间(0,2)上是减函数D.函数f(x)在区间(-3,2)上是单调函数解析:当x∈(-3,0)时,f′(x)<0,则f(x)在(-3,0)上是减函数.其他判断均不正确.答案:A3.函数f(x)=e x-x的单调递增区间是________.解析:由f′(x)=e x-1>0,解得x>0,故其单调递增区间是(0,+∞).答案:(0,+∞)知识点二利用导数研究函数的极值函数极值的概念函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0.类似地,函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0.我们把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值;点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极大值点和极小值点统称为极值点,极大值和极小值统称为极值.4.函数f(x)=|x|的极值点是________,函数f(x)=(x-1)3的极值点________.解析:结合函数图象可知f(x)=|x|的极值点是x=0(此时函数的导数不存在),f′(x)=3(x-1)2≥0,f′(x)=0无变号零点,故函数f(x)=(x-1)3不存在极值点.答案:0 不存在5.(2016·四川卷)已知a为函数f(x)=x3-12x的极小值点,则a=( )A.-4 B.-2C .4D .2解析:由题意得f ′(x )=3x 2-12.由f ′(x )=0得x =±2,当x ∈(-∞,-2)时,f ′(x )>0,函数f (x )单调递增,当x ∈(-2,2)时,f ′(x )<0,函数f (x )单调递减,当x ∈(2,+∞)时,f ′(x )>0,函数f (x )单调递增,所以a =2.答案:D知识点三 函数最值的求解步骤一般地,求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤如下: (1)求函数y =f (x )在(a ,b )内的极值;(2)将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.6.(选修1—1P97例5改编)函数f (x )=x 3-12x 在区间[-3,3]上的最大值是________. 解析:由f ′(x )=3x 2-12=0,得x =±2,验证可知x =-2是函数f (x )的极大值点,故函数f (x )在[-3,3]上的最大值f (x )max =max{f (-2),f (3)}=max{16,-9}=16.答案:16第1课时 导数与函数的单调性热点一 判断或证明函数的单调性【例1】 已知函数f (x )=(a -1)ln x +ax 2+1,讨论函数f (x )的单调性. 【解】 f (x )的定义域为(0,+∞).f ′(x )=a -1x +2ax =2ax 2+a -1x,①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; ②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; ③当0<a <1时,令f ′(x )=0,解得x =1-a2a, 则当x ∈⎝ ⎛⎭⎪⎫0,1-a 2a 时,f ′(x )<0.当x ∈⎝⎛⎭⎪⎫1-a 2a ,+∞时,f ′(x )>0. 故f (x )在⎝⎛⎦⎥⎤0, 1-a 2a 上单调递减,在⎣⎢⎡⎭⎪⎫1-a 2a ,+∞上单调递增.已知函数f (x )=x 2-e x,试判断f (x )的单调性并给予证明. 解:f (x )在R 上单调递减.设g (x )=f ′(x )=2x -e x ,则g ′(x )=2-e x. 当x =ln2时,g ′(x )=0. 当x ∈(-∞,ln2)时,g ′(x )>0. 当x ∈(ln2,+∞)时,g ′(x )<0.所以f ′(x )max =g (x )max =g (ln2)=2ln2-2<0. 所以f ′(x )<0恒成立, 所以f (x )在R 上单调递减.热点二 已知函数的单调性求参数的取值范围 【例2】 已知函数f (x )=x 3+ax 2+1,a ∈R . (1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝ ⎛⎭⎪⎫-23,-13内是减函数,求a 的取值范围.【解】 (1)对f (x )求导得f ′(x )=3x 2+2ax =3x (x +23a ).①当a =0时,f ′(x )=3x 2≥0恒成立. ∴f (x )的递增区间是(-∞,+∞).②当a >0时,由于f ′(x )在(-∞,-23a )和(0,+∞)上都恒为正,所以f (x )的递增区间是(-∞,-23a ),(0,+∞);由于f ′(x )在(-23a ,0)上恒为负,所以f (x )的递减区间是(-23a ,0); ③当a <0时,在x ∈(-∞,0)和x ∈(-23a ,+∞)上均有f ′(x )>0,∴f (x )的递增区间是(-∞,0),(-23a ,+∞);在(0,-23a )上,f ′(x )<0,f (x )的递减区间是(0,-23a ).(2)由(1)知,(-23,-13)⊆(-23a,0),∴-23a ≤-23,∴a ≥1.(2017·安徽模拟)已知函数f (x )=-12x 2-3x +4ln x 在(t ,t +1)上不单调,则实数t 的取值范围是________.解析:∵函数f (x )=-12x 2-3x +4ln x (x >0),∴f ′(x )=-x -3+4x ,∵函数f (x )=-12x2-3x +4ln x 在(t ,t +1)上不单调,∴f ′(x )=-x -3+4x =0在(t ,t +1)上有解,∴x 2+3x -4x=0在(t ,t +1)上有解,∴x 2+3x -4=0在(t ,t +1)上有解,由x 2+3x -4=0得x =1或x =-4(舍去),∴1∈(t ,t +1),∴t ∈(0,1),故实数t 的取值范围是(0,1).答案:(0,1)热点三 函数单调性的简单应用 考向1 比较大小【例3】 已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则以下判断正确的是( )A .f (2 013)>e 2 013f (0) B .f (2 013)<e2 013f (0) C .f (2 013)=e2 013f (0)D .f (2 013)与e2 013f (0)大小无法确定【解析】 令函数g (x )=f xex,则g ′(x )=f x -f xex.∵f (x )>f ′(x ),∴g ′(x )<0, 即函数g (x )在R 上递减, ∴g (2 013)<g (0),∴fe2 013<fe,∴f (2 013)<e 2 013f (0).故选B.【答案】 B 考向2 解不等式【例4】 设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 014)2f (x +2 014)-4f (-2)>0的解集为( )A .(-∞,-2 012)B .(-2 012, 0)C .(-∞,-2 016)D .(-2 016,0)【解析】 由2f (x )+xf ′(x )>x 2,x <0,得2xf (x )+x 2f ′(x )<x 3,即[x 2f (x )]′<x 3<0,令F (x )=x 2f (x ),则当x <0时,F ′(x )<0,即F (x )在(-∞,0)上是减函数,F (x +2 014)=(2 014+x )2f (x +2 014),F (-2)=4f (-2),F (2 014+x )-F (-2)>0,即F (2 014+x )>F (-2).又F (x )在(-∞,0)上是减函数,所以2 014+x <-2,即x <-2 016,故选C.【答案】 C(1)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)(2)(2017·福建质检)已知f (x )是定义在R 上的减函数,其导函数f ′(x )满足f xfx+x <1,则下列结论正确的是( )A .对于任意x ∈R ,f (x )<0B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1)时,f (x )<0D .当且仅当x ∈(1,+∞)时,f (x )>0 解析:(1)记函数g (x )=f x x ,则g ′(x )=xfx -f xx 2,因为当x >0时,xf ′(x )-f (x )<0,故当x >0时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减; 又因为函数f (x )(x ∈R )是奇函数,故函数g (x )是偶函数, 所以g (x )在(-∞,0)上单调递增, 且g (-1)=g (1)=0.当0<x <1时,g (x )>0,则f (x )>0; 当x <-1时,g (x )<0,则f (x )>0,综上所述,使得f (x )>0成立的x 的取值范围是 (-∞,-1)∪(0,1).(2)因为函数f (x )是定义在R 上的减函数,所以f ′(x )<0.因为f xf x+x <1,所以f (x )+xf ′(x )>f ′(x ).所以f (x )+(x -1)f ′(x )>0,构造函数g (x )=(x -1)f (x ),则g ′(x )=f (x )+(x -1)f ′(x )>0,所以函数g (x )在R 上单调递增,又g (1)=(1-1)f (1)=0,所以当x <1时,g (x )<0,所以f (x )>0;当x >1时,g (x )>0,所以f (x )>0.因为f (x )是定义在R 上的减函数,所以f (1)>0.综上,对于任意x ∈R ,f (x )>0.故选B.答案:(1)A (2)B1.在某个区间(a ,b )上,若f ′(x )>0,则f (x )在这个区间上单调递增;若f ′(x )<0,则f (x )在这个区间上单调递减;若f ′(x )=0恒成立,则f (x )在这个区间上为常数函数;若f ′(x )的符号不确定,则f (x )不是单调函数.2.若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y=f(x)在区间(a,b)上单调递减,则f′(x)≤0,且在(a,b)的任意子区间,等号不恒成立.3.使f′(x)=0的离散的点不影响函数的单调性.第2课时导数与函数的极值、最值热点一利用导数研究函数的极值考向1 根据函数的图象判断函数的极值【例1】(2017·青海西宁月考)设三次函数f(x)的导函数为f′(x),函数y=x·f′(x)的图象的一部分如图所示,则( )A.f(x)的极大值为f(3),极小值为f(-3)B.f(x)的极大值为f(-3),极小值为f(3)C.f(x)的极大值为f(-3),极小值为f(3)D.f(x)的极大值为f(3),极小值为f(-3)【解析】由图象知,当x<-3时,f′(x)<0;当-3<x<0时,f′(x)>0,由此知极小值为f(-3);当0<x<3时,f′(x)>0;当x>3时,f′(x)<0,由此知极大值为f(3),故选D.【答案】 D考向2 求函数的极值【例2】已知函数f(x)=x-a ln x(a∈R).(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f (x )的极值.【解】 由题意知函数f (x )的定义域为(0,+∞),f ′(x )=1-a x.(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0),因为f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0. (2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.考向3 已知函数的极值求参数【例3】 (2017·江西八校联考)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是( )A .(-∞,0) B.⎝ ⎛⎭⎪⎫0,12C .(0,1)D .(0,+∞)【解析】 ∵f (x )=x (ln x -ax ),∴f ′(x )=ln x -2ax +1,故f ′(x )在(0,+∞)上有两个不同的零点, 令f ′(x )=0,则2a =ln x +1x,设g (x )=ln x +1x ,则g ′(x )=-ln xx2,∴g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,又∵当x →0时,g (x )→-∞,当x →+∞时,g (x )→0,而g (x )max =g (1)=1. ∴只需0<2a <1⇒0<a <12.【答案】 B(1)(选修2-2P32A 组第4题改编)如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4(2)(2017·合肥模拟)若函数f (x )=x 33-a2x 2+x +1在区间⎝ ⎛⎭⎪⎫13,4上有极值点,则实数a的取值范围是( )A.⎝⎛⎭⎪⎫2,103B.⎣⎢⎡⎭⎪⎫2,103C.⎝⎛⎭⎪⎫103,174D.⎝⎛⎭⎪⎫2,174 解析:(1)由题意知在x =-1处f ′(-1)=0,且其左右两侧导数符号为左负右正. (2)因为f (x )=x 33-a2x 2+x +1,所以f ′(x )=x 2-ax +1.由题意可得x 2-ax +1=0有两个解, 则Δ=a 2-4>0,故a >2或a <-2,函数f (x )=x 33-a 2x 2+x +1在区间⎝ ⎛⎭⎪⎫13,4上有极值点可化为x 2-ax +1=0在区间⎝ ⎛⎭⎪⎫13,4上有解,①当2<a <8时,f ′(4)>0,即16-4a +1>0,故a <174,故2<a <174.②当a ≥8时,f ′(4)f ′⎝ ⎛⎭⎪⎫13<0,无解.综上所述,2<a <174.答案:(1)A (2)D热点二 利用导数研究函数的最值【例4】 (2017·洛阳模拟)已知函数f (x )=1-x x +k ln x ,k <1e ,求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值和最小值.【解】 因为f (x )=1-xx+k ln x ,f ′(x )=-x --xx2+k x =kx -1x 2.①若k =0,则f ′(x )=-1x 2在⎣⎢⎡⎦⎥⎤1e ,e 上恒有f ′(x )<0,所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递减. 所以f (x )min =f (e)=1-ee,f (x )max =f ⎝ ⎛⎭⎪⎫1e=e -1.②若k ≠0,f ′(x )=kx -1x 2=k ⎝ ⎛⎭⎪⎫x -1k x 2.(ⅰ)若k <0,则在⎣⎢⎡⎦⎥⎤1e ,e 上恒有k ⎝ ⎛⎭⎪⎫x -1k x 2<0,所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递减, 所以f (x )min =f (e)=1-e e +k lne =1e +k -1,f (x )max =f ⎝ ⎛⎭⎪⎫1e =e -k -1. (ⅱ)若k >0,由k <1e,得1k >e ,则x -1k <0,所以k ⎝ ⎛⎭⎪⎫x -1k x 2<0, 所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递减.所以f (x )min =f (e)=1-e e +k lne =1e +k -1,f (x )max =f ⎝ ⎛⎭⎪⎫1e =e -k -1. 综上,k <1e 时,f (x )min =1e+k -1,f (x )max =e -k -1.若把本例中函数改为“f (x )=2x+a ln x ,a ∈R ”,试求解此函数在区间(0,e]上的最小值.解:f ′(x )=ax -2x 2,x ∈(0,+∞). ①当a =0时,在区间(0,e]上f ′(x )=-2x2,此时f (x )在区间(0,e]上单调递减,则f (x )在区间(0,e]上的最小值为f (e)=2e.②当2a<0,即a <0时,在区间(0,e]上f ′(x )<0,此时f (x )在区间(0,e]上单调递减,则f (x )在区间(0,e]上的最小值为f (e)=2e+a ,③当0<2a <e ,即a >2e时,在区间⎝⎛⎭⎪⎫0,2a 上f ′(x )<0,此时f (x )在区间⎝⎛⎭⎪⎫0,2a 上单调递减;在区间⎝ ⎛⎦⎥⎤2a,e 上f ′(x )>0.此时f (x )在区间⎝⎛⎦⎥⎤2a,e 上单调递增;则f (x )在区间(0,e]上的最小值为f ⎝ ⎛⎭⎪⎫2a =a +a ln 2a.④当2a ≥e,即0<a ≤2e 时,在区间(0,e]上f ′(x )≤0,此时f (x )在区间(0,e]上单调递减,则f (x )在区间(0,e]上的最小值为f (e)=2e+a .综上所述,当a ≤2e 时,f (x )在区间(0,e]上的最小值为2e +a ;当a >2e 时,f (x )在区间(0,e]上的最小值为a +a ln 2a.热点三 函数极值与最值的综合问题 【例5】 已知函数f (x )=ax 2+bx +cex(a >0)的导函数y =f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 【解】 (1)f ′(x ) =ax +bx-ax 2+bx +cxx2=-ax 2+a -b x +b -cex.令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以y =f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点,且f ′(x )与g (x )符号相同.又因为a >0,所以-3<x <0时,g (x )>0,即f ′(x )>0, 当x <-3或x >0时,g (x )<0,即f ′(x )<0, 所以f (x )的单调递增区间是(-3,0), 单调递减区间是(-∞,-3),(0,+∞). (2)由(1)知,x =-3是f (x )的极小值点,所以有 ⎩⎪⎨⎪⎧9a -3b +c e -3=-e 3,g =b -c =0,g -=-9a -a -b +b -c =0,解得a =1,b =5,c =5. 所以f (x )=x 2+5x +5ex.因为f (x )的单调递增区间是(-3,0), 单调递减区间是(-∞,-3),(0,+∞). 所以f (0)=5为函数f (x )的极大值,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者,而f (-5)=5e =5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m、n∈[-1,1],则f(m)+f′(n)的最小值是( )A.-13 B.-15C.10 D.15解析:对函数f(x)求导得f′(x)=-3x2+2ax,由函数f(x)在x=2处取得极值知f′(2)=0.即-3×4+2a×2=0,∴a=3.由此可得f(x)=-x3+3x2-4,f′(x)=-3x2+6x,易知f(x)在[-1,0)上单调递减,在[0,1]上单调递增,∴当m∈[-1,1]时,f(m)min=f(0)=-4.又∵f′(x)=-3x2+6x的图象开口向下,且对称轴为x=1,∴当n∈[-1,1]时,f′(n)min=f′(-1)=-9.故f(m)+f′(n)的最小值为-13.答案:A1.函数的最值是整个定义域上的问题,而函数的极值只是定义域的局部问题.2.f′(x0)=0是f(x)在x=x0处取得极值的必要非充分条件,因为求函数的极值,还必须判断x0两侧的f′(x)的符号是否相反.3.求f(x)的最值应注意在闭区间上研究,还是在开区间上研究,若闭区间上最值问题只需比较端点值与极值即可,若开区间上最值问题,注意考查f(x)的有界性.第3课时 导数的综合应用热点一 利用导数证明不等式【例1】 (2016·新课标全国卷Ⅱ)已知函数f (x )=(x +1)ln x -a (x -1). (Ⅰ)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (Ⅱ)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围.【解】 (Ⅰ)f (x )的定义域为(0,+∞),当a =4时,f (x )=(x +1)ln x -4(x -1),f ′(x )=ln x +1x-3,f ′(1)=-2,f (1)=0.曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0. (Ⅱ)当x ∈(1,+∞)时,f (x )>0等价于ln x -a x -x +1>0.设g (x )=ln x -a x -x +1,则g ′(x )=1x-2a x +2=x 2+-a x +1x x +2,g (1)=0. (ⅰ)当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)上单调递增,因此g (x )>0;(ⅱ)当a >2时,令g ′(x )=0得x 1=a -1-a -2-1,x 2=a -1+a -2-1.由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)上单调递减,此时g (x )<g (1)=0.综上,a 的取值范围是(-∞,2].证明:当x ∈[0,1]时,22x ≤sin x ≤x . 证明:记F (x )=sin x -22x ,则F ′(x )=cos x -22. 当x ∈(0,π4)时,F ′(x )>0,F (x )在[0,π4]上是增函数;当x ∈(π4,1)时,F ′(x )<0,F (x )在[π4,1]上是减函数.又F (0)=0,F (1)>0,所以当x ∈[0,1]时,F (x )≥0,即sin x ≥22x . 记H (x )=sin x -x ,则当x ∈(0,1)时,H ′(x )=cos x -1<0,所以H (x )在[0,1]上是减函数,则H (x )≤H (0)=0,即sin x ≤x .综上,22x ≤sin x ≤x ,x ∈[0,1]. 热点二 利用导数解决恒成立问题【例2】 (2016·四川卷)设函数f (x )=ax 2-a -ln x ,g (x )=1x -e e ,其中a ∈R ,e =2.718…为自然对数的底数.(Ⅰ)讨论f (x )的单调性; (Ⅱ)证明:当x >1时,g (x )>0;(Ⅲ)确定a 的所有可能取值,使得f (x )>g (x )在区间(1,+∞)内恒成立. 【解】 (Ⅰ)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0有x =12a .当x ∈(0,12a)时,f ′(x )<0,f (x )单调递减;当x ∈(12a ,+∞)时,f ′(x )>0,f (x )单调递增.(Ⅱ)证明:令s (x )=e x -1-x ,则s ′(x )=ex -1-1.当x >1时,s ′(x )>0, 所以ex -1>x ,从而g (x )=1x -1ex -1>0.(Ⅲ)由(Ⅱ),当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(Ⅰ)有f (12a)<f (1)=0,而g (12a )>0,所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1),当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x2>0, 因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈[12,+∞).已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围; (2)证明:对一切x ∈(0,+∞),ln x >1e x -2e x恒成立.解:(1)由题意知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立,则a ≤2ln x +x +3x,设h (x )=2ln x +x +3x(x >0),则h ′(x )=x +x -x 2,①当x ∈(0,1)时,h ′(x )<0,h (x )单调递减, ②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以h (x )min =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,所以a ≤h (x )min =4. 即实数a 的取值范围是(-∞,4]. (2)证明:问题等价于证明x ln x >x ex -2e(x ∈(0,+∞)),又f (x )=x ln x ,f ′(x )=ln x +1,当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e . 设m (x )=x e x -2e (x ∈(0,+∞)),则m ′(x )=1-x e x ,易知m (x )max =m (1)=-1e,从而对一切x ∈(0,+∞),ln x >1e x -2e x 恒成立.热点三 利用导数解决存在性问题【例3】 (2017·福建四地六校联考)已知a 为实数,函数f (x )=a ln x +x 2-4x . (1)是否存在实数a ,使得f (x )在x =1处取得极值?证明你的结论;(2)设g (x )=(a -2)x ,若∃x 0∈⎣⎢⎡⎦⎥⎤1e ,e ,使得f (x 0)≤g (x 0)成立,求实数a 的取值范围. 【解】 (1)函数f (x )定义域为(0,+∞),f ′(x )=a x +2x -4=2x 2-4x +ax.假设存在实数a ,使f (x )在x =1处取极值,则f ′(1)=0, ∴a =2,此时,f ′(x )=2x -2x,当x >0时,f ′(x )≥0恒成立,∴f (x )在(0,+∞)上单调递增, ∴x =1不是f (x )的极值点.故不存在实数a ,使得f (x )在x =1处取得极值.(2)由f (x 0)≤g (x 0),得(x 0-ln x 0)a ≥x 20-2x 0,记F (x )=x -ln x (x >0), ∴F ′(x )=x -1x(x >0). ∴当0<x <1时,F ′(x )<0,F (x )单调递减; 当x >1时,F ′(x )>0,F (x )单调递增.∴F (x )>F (1)=1>0.∴a ≥x 20-2x 0x 0-ln x 0,记G (x )=x 2-2x x -ln x ,x ∈⎣⎢⎡⎦⎥⎤1e ,e . ∴G ′(x )=x -x -ln x -x -x -x -ln x 2=x -x -2ln x +x -ln x 2.∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,∴2-2ln x =2(1-ln x )≥0,∴x -2ln x +2>0, ∴x ∈⎝ ⎛⎭⎪⎫1e ,1时,G ′(x )<0,G (x )单调递减; x ∈(1,e]时,G ′(x )>0,G (x )单调递增.∴G (x )min =G (1)=-1, ∴a ≥G (x )min =-1.故实数a 的取值范围为[-1,+∞).(2017·新乡调研)已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+e x -x e x.(1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)恒成立,求a 的取值范围.解:(1)f (x )的定义域为(0,+∞),f ′(x )=x -x -ax2.①当a ≤1时,x ∈[1,e],f ′(x )≥0,f (x )为增函数,f (x )min =f (1)=1-a .②当1<a <e 时,x ∈[1,a ]时,f ′(x )≤0,f (x )为减函数;x ∈[a ,e]时,f ′(x )≥0,f (x )为增函数.所以f (x )min =f (a )=a -(a +1)ln a -1. ③当a ≥e 时,x ∈[1,e]时,f ′(x )≤0,f (x )在[1,e]上为减函数. f (x )min =f (e)=e -(a +1)-ae.综上,当a ≤1时,f (x )min =1-a ; 当1<a <e 时,f (x )min =a -(a +1)ln a -1; 当a ≥e 时,f (x )min =e -(a +1)-ae.(2)由题意知f (x )(x ∈[e ,e 2])的最小值小于g (x )(x ∈[-2,0])的最小值.由(1)知当a <1时,f (x )在[e ,e 2]上单调递增,f (x )min =f (e)=e -(a +1)-ae .g ′(x )=(1-e x)x .当x ∈[-2,0]时,g ′(x )≤0,g (x )为减函数.g (x )min =g (0)=1. 所以e -(a +1)-ae <1,即a >e 2-2ee +1,所以a 的取值范围为⎝ ⎛⎭⎪⎫e 2-2e e +1,1.热点四 利用导数解决零点问题 【例4】 设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. 【解】 (1)由f (x )=x 22-k ln x (k >0),得x >0且f ′(x )=x -k x =x 2-kx.由f ′(x )=0,解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的情况如下:k-ln k2(x )在x =k处取得极小值f (k )=k-ln k2. (2)证明:由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k-ln k2. 因为f (x )存在零点,所以k-ln k2≤0,从而k ≥e. 当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(1,e]上单调递减,且f (1)=12>0,f (e)=e -k2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.(2017·潍坊模拟)已知函数f (x )=12x 2,g (x )=a ln x (a >0).(1)求函数F (x )=f (x )·g (x )的极值;(2)若函数G (x )=f (x )-g (x )+(a -1)x 在区间⎝ ⎛⎭⎪⎫1e ,e 内有两个零点,求实数a 的取值范围.解:(1)由题意知,F (x )=f (x )·g (x )=12ax 2ln x , F ′(x )=ax ln x +12ax =12ax (2ln x +1),由F ′(x )>0得x >e -12,由F ′(x )<0得0<x <e -12,故F (x )在(0,e -12)上单调递减,在(e -12,+∞)上单调递增,所以x =e -12为F (x )的极小值点,F (x )极小值=F (e -12)=-a4e,无极大值.(2)G (x )=12x 2-a ln x +(a -1)x ,G ′(x )=x -a x +a -1=x +a x -x,由G ′(x )=0,得x =1或x =-a (舍去), 当x ∈(0,1)时,G ′(x )<0,G (x )单调递减, 当x ∈(1,+∞)时,G ′(x )>0,G (x )单调递增,要使G (x )在区间⎝ ⎛⎭⎪⎫1e ,e 内有两个零点,需满足⎩⎪⎨⎪⎧G ⎝ ⎛⎭⎪⎫1e >0,G ,G ,即⎩⎪⎨⎪⎧12e 2+a -1e+a >0,12+a -1<0,e 22+a --a >0,即⎩⎪⎨⎪⎧a >2e -12e 2+2e,a <12,a >2e -e 22e -2.下面比较2e -12e 2+2e 与2e -e22e -2的大小.由于2e -12e 2+2e -2e -e 22e -2=2e 4-2e 3-6e +22+-=2e[e2--3]+22+->0, 故2e -12e 2+2e >2e -e 22e -2, 故实数a 的取值范围为⎝⎛⎭⎪⎫2e -12e 2+2e ,12.1.利用导数证明不等式若证明f(x)<g(x),x∈(a,b),可以构造函数F(x)=f(x)-g(x),如果F′(x)<0,则F(x)在(a,b)上是减函数,同时若F(a)≤0,由减函数的定义可知,x∈(a,b)时,有F(x)<0,即证明了f(x)<g(x).2.利用导数解决不等式的恒成立问题利用导数研究不等式恒成立问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.3.利用导数研究函数的零点或方程的根研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.专题一高考解答题鉴赏——函数与导数函数与导数作为高中数学的核心内容,常常与其他知识结合起来,形成层次丰富的各类综合题,常涉及的问题:研究函数的性质(如求单调区间、求极值、最值),研究函数的零点(或方程的根)、求参数的取值范围、不等式的证明或恒成立问题,运用导数解决实际问题是函数应用的延伸,由于传统数学应用题的位置被概率统计解答题占据,因此很少出现单独考查函数应用题的问题,但结合其他知识综合考查用导数求解最值的问题在每年的高考试题中都有体现.试题类型齐全,中、高档难度,突出四大数学思想方法的考查.【典例】 (2016·新课标全国卷Ⅰ,12分)已知函数f (x )=(x -2)e x+a (x -1)2. (Ⅰ)讨论f (x )的单调性;(Ⅱ)若f (x )有两个零点,求a 的取值范围.【标准解答】 (Ⅰ)f ′(x )=(x -1)e x+2a (x -1)=(x -1)(e x+2a ).(ⅰ)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)单调递减,在(1,+∞)单调递增.(2分)(ⅱ)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)单调递增.(4分)②若a >-e2,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x ∈(ln(-2a ),1)时,f ′(x )<0,所以f (x )在(-∞,ln(-2a )),(1,+∞)单调递增,在(ln(-2a ),1)单调递减.(6分)③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0,所以f (x )在(-∞,1),(ln(-2a ),+∞)单调递增,在(1,ln(-2a ))单调递减.(8分)(Ⅱ)(ⅰ)设a >0,则由(Ⅰ)知,f (x )在(-∞,1)单调递减,在(1,+∞)单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=a (b 2-32b )>0.所以f (x )有两个零点.(10分)(ⅱ)设a =0,则f (x )=(x -2)e x,所以f (x )只有一个零点.(ⅲ)设a <0,若a ≥-e2,则由(Ⅰ)知,f (x )在(1,+∞)单调递增,又当x ≤1时,f (x )<0,故f (x )不存在两个零点;若a <-e2,则由(Ⅰ)知,f (x )在(1,ln(-2a ))单调递减,在(ln(-2a ),+∞)单调递增,又当x ≤1时,f (x )<0,故f (x )不存在两个零点.综上,a 的取值范围为(0,+∞).(12分)【阅卷点评】 1.研究方程根(函数零点)的个数,实质上是研究函数的性质(单调性、极值、最值等),通过函数性质画出函数图象,通过图象特点作出判断.2.在定义域[a ,b ]上连续的函数f (x ),在[a ,x 1)上单调递减,在(x 1,b ]上单调递增,则方程f (x )=0的根的情况如下表:已知函数f(x)=x2+x sin x+cos x的图象与直线y=b有两个不同交点,求b的取值范围.解:f′(x)=x(2+cos x),令f′(x)=0,得x=0.∴当x>0时,f′(x)>0,f(x)在(0,+∞)上递增.当x<0时,f′(x)<0,f(x)在(-∞,0)上递减.∴f(x)的最小值为f(0)=1.∵函数f(x)在区间(-∞,0)和(0,+∞)上均单调,∴当b>1时,曲线y=f(x)与直线y =b有且仅有两个不同交点.综上可知,b的取值范围是(1,+∞).。
2018届高考数学文大一轮复习教师用书:第2章 函数、导
第八节函数与方程————————————————————————————————结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性与根的个数.1.函数的零点(1)定义:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x ∈D)的零点.(2)函数零点与方程根的关系:方程f(x)=0有实根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)零点存在性定理:如果函数y=f(x)在区间上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在x0∈(a,b),使得f(x0)=0.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数的零点就是函数的图象与x轴的交点.( )(2)函数y=f(x),x∈D在区间(a,b)⊆D内有零点(函数图象连续不断),则f(a)·f(b)<0.( )(3)若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在上有且只有一个零点.( )(4)二次函数y=ax2+bx+c在b2-4ac<0时没有零点.( )(1)×(2)×(3)×(4)√2.(教材改编)函数f(x)=e x+3x的零点个数是( )A.0 B.1C.2 D.3B3.(2015·安徽高考)下列函数中,既是偶函数又存在零点的是( ) A .y =cos x B .y =sin x C .y =ln x D .y =x 2+1A4.(2016·江西赣中南五校联考)函数f (x )=3x-x 2的零点所在区间是( ) A .(0,1) B .(1,2) C .(-2,-1) D .(-1,0)D5.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________.【导学号:31222059】⎝ ⎛⎭⎪⎫13,1A .(0,1)B .(1,2)C .(2,3)D .(3,4)(2)函数f (x )=x 2-3x -18在区间上________(填“存在”或“不存在”)零点. 【导学号:31222060】(1)B (2)存在 的图象是连续的, 故f (x )=x 2-3x -18在x ∈上存在零点. 法二:令f (x )=0,得x 2-3x -18=0, ∴(x -6)(x +3)=0. ∵x =6∈,x =-3∉,∴f (x )=x 2-3x -18在x ∈上存在零点.] 判断函数零点所在区间的方法:判断函数在某个区间上是否存在零点,要根据具体题目灵活处理,当能直接求出零点时,就直接求出进行判断;当不能直接求出时,可根据零点存在性定理判断;当用零点存在性定理也无法判断时,可画出图象判断.已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)C0.5A .1 B .2 C .3D .4(2)(2017·秦皇岛模拟)函数f (x )={ ln x -x 2+2x ,x >0,x +1,x ≤0的零点个数是________.(1)B (2)3判断函数零点个数的方法:(1)解方程法:所对应方程f (x )=0有几个不同的实数解就有几个零点. (2)零点存在性定理法:利用零点存在性定理并结合函数的性质进行判断.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数.(2015·湖北高考)函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2-x 2的零点个数为________.2(2017·昆明模拟)已知定义在R 上的偶函数f (x )满足f (x -4)=f (x ),且在区间上f (x )=x ,若关于x 的方程f (x )=log a x 有三个不同的实根,求a 的取值范围.先作出函数f (x )的图象,根据方程有三个不同的根,确定应满足的条件. 由f (x -4)=f (x )知,函数的周期为4,又函数为偶函数,所以f (x -4)=f (x )=f (4-x ),3分所以函数图象关于x =2对称,且f (2)=f (6)=f (10)=2,要使方程f (x )=log a x 有三个不同的根,则满足⎩⎪⎨⎪⎧a >1,f<2,f>2,8分如图,即⎩⎪⎨⎪⎧a >1,log a 6<2,log a 10>2,解得6<a <10.故a 的取值范围是(6,10).12分已知函数有零点求参数取值范围常用的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.(1)函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)(2)(2016·山东高考)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.(1)C (2)(3,+∞)1.转化思想在函数零点问题中的应用方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.2.判断函数零点个数的常用方法 (1)通过解方程来判断.(2)根据零点存在性定理,结合函数性质来判断.(3)将函数y =f (x )-g (x )的零点个数转化为函数y =f (x )与y =g (x )图象公共点的个数来判断.3.利用函数零点求参数范围的常用方法:直接法、分离参数法、数形结合法.1.函数的零点不是点,是方程f (x )=0的实根.2.函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.课时分层训练(十一) 函数与方程A 组 基础达标 (建议用时:30分钟)一、选择题1.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是( ) 【导学号:31222061】A .0,2B .0,12C .0,-12D .2,-12C2.函数f (x )=e x+x -2的零点所在的区间为( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)C3.函数f (x )=2x+x 3-2在区间(0,2)内的零点个数是( ) A .0 B .1 C .2 D .3B4.已知函数f (x )=⎩⎪⎨⎪⎧0,x ≤0,e x,x >0,则使函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是( )A .∪(2,+∞) D .(-∞,0]∪(1,+∞)D5.(2016·湖北七校2月联考)已知f (x )是奇函数且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A.14B.18C .-78D .-38C 二、填空题6.已知关于x 的方程x 2+mx -6=0的一个根比2大,另一个根比2小,则实数m 的取值范围是________.【导学号:31222062】(-∞,1)7.(2016·浙江高考)设函数f (x )=x 3+3x 2+1,已知a ≠0,且f (x )-f (a )=(x -b )(x -a )2,x ∈R ,则实数a =________,b =________.-2 18.(2015·湖南高考)若函数f (x )=|2x-2|-b 有两个零点,则实数b 的取值范围是__________.(0,2)三、解答题9.已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈⎝ ⎛⎭⎪⎫0,12,使f (x 0)=x 0.令g (x )=f (x )-x .2分∵g (0)=14,g ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫12-12=-18,∴g (0)·g ⎝ ⎛⎭⎪⎫12<0.7分 又函数g (x )在⎣⎢⎡⎦⎥⎤0,12上连续, ∴存在x 0∈⎝ ⎛⎭⎪⎫0,12,使g (x 0)=0, 即f (x 0)=x 0.12分10.已知二次函数f (x )=x 2+(2a -1)x +1-2a ,(1)判断命题:“对于任意的a ∈R ,方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,求实数a 的取值范围. (1)“对于任意的a ∈R ,方程f (x )=1必有实数根”是真命题. 依题意,f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根.3分因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a=0必有实根,从而f (x )=1必有实根.5分(2)依题意,要使y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点, 只需⎩⎪⎨⎪⎧ f -,f ,f ⎝ ⎛⎭⎪⎫12>0,7分即⎩⎪⎨⎪⎧3-4a >0,1-2a <0,34-a >0,解得12<a <34.10分故实数a 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪12<a <34.12分 B 组 能力提升 (建议用时:15分钟)1.(2017·郑州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x-a ,x ≤0,2x -1,x >0(a ∈R),若函数f (x )在R 上有两个零点,则a 的取值范围是( )A .(-∞,-1)B .(-∞,-1]C .D 上有唯一实数解.又当x ∈(-∞,0]时,2x∈(0,1],且y =2x在(-∞,0]上单调递增, 故所求a 的取值范围是(0,1].]2.函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f +1的所有零点所构成的集合为________.【导学号:31222063】⎩⎨⎧⎭⎬⎫-3,-12,14,2 =-1,由f (x )=-1得x =-2或x =12,则函数y =f +1的零点就是使f (x )=-2或f (x )=12的x 的值.解f (x )=-2得x =-3或x =14,解f (x )=12得x =-12或x =2,从而函数y =f +1的零点构成的集合为⎩⎨⎧⎭⎬⎫-3,-12,14,2.]3.若关于x 的方程22x +2xa +a +1=0有实根,求实数a 的取值范围. 法一(换元法):设t =2x (t >0),则原方程可变为t 2+at +a +1=0,(*) 原方程有实根,即方程(*)有正根. 令f (t )=t 2+at +a +1.3分 ①若方程(*)有两个正实根t 1,t 2, 则⎩⎪⎨⎪⎧Δ=a 2-a +,t 1+t 2=-a >0,t 1·t 2=a +1>0,解得-1<a ≤2-22;6分②若方程(*)有一个正实根和一个负实根(负实根不合题意,舍去),则f (0)=a +1<0,解得a <-1;9分③若方程(*)有一个正实根和一个零根,则f (0)=0且-a2>0,解得a =-1.综上,a 的取值范围是(-∞,2-22].12分 法二(分离变量法):由方程,解得a =-22x+12x +1,3分设t =2x(t >0),则a =-t 2+1t +1=-⎝ ⎛⎭⎪⎫t +2t +1-1=2-⎣⎢⎡⎦⎥⎤t ++2t +1,其中t +1>1,9分 由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2.12分。
2018高考数学一轮复习 第2章 函数、导数及其应用 第1节 函数及其表示教师用书 文 北师大版
第二章函数、导数及其应用[深研高考·备考导航] 为教师备课、授课提供丰富教学资源 [五年考情][重点关注]1.从近五年全国卷高考试题来看,函数、导数及其应用是每年高考命题的重点与热点,既有客观题,又有解答题,中高档难度.2.函数的概念、图像及其性质是高考考查的主要内容,函数的定义域、解析式、图像是高考考查的重点,函数性质与其他知识的综合是历年高考的热点.3.导数的几何意义,导数在研究函数单调性、极值、最值、函数的零点等方面的应用是高考的重点与热点.4.本章内容集中体现了四大数学思想:函数与方程、数形结合、分类讨论、转化与化归的思想,且常与方程、不等式、导数等知识交汇命题,体现了综合与创新.[导学心语]1.注重基础:对函数的概念、图像、性质(单调性、奇偶性、周期性)、导数的几何意义、导数在研究函数单调性、极值、最值、函数的零点等方面的应用,要熟练掌握并灵活应用.2.加强交汇,强化综合应用意识:在知识的交汇点处命制试题,已成为高考的一大亮点,函数的观点和方法贯穿于高中数学的全过程,因此,应加强函数与三角函数、数列、不等式、解析几何、导数等各章节之间的联系.3.把握思想:数形结合思想、函数与方程思想、分类讨论思想和等价转化思想在解决各种与函数有关的问题中均有应用,复习时应引起足够重视.第一节函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.1.函数与映射的概念(1)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫作自变量,集合A 叫作函数的定义域;集合{f (x )|x ∈A }叫作函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.(4)函数的表示法表示函数的常用方法有列表法、图像法和解析法. 3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)× 2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.(2017·南昌一模)已知函数f (x )=⎩⎨⎧x ,x >0,2-x,x ≤0,则f (f (-4))=________.4 [∵f (-4)=24=16,∴f (f (-4))=f (16)=16=4.]4.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________. -2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.] 5.给出下列四个命题:①函数是其定义域到值域的映射; ②f (x )=x -3+2-x 是一个函数; ③函数y =2x (x ∈N )的图像是一条直线; ④f (x )=lg x 2与g (x )=2lg x 是同一个函数. 其中正确命题的序号是________.【导学号:66482021】① [由函数的定义知①正确.∵满足⎩⎪⎨⎪⎧x -3≥0,2-x ≥0的x 不存在,∴②不正确.∵y =2x (x ∈N )的图像是位于直线y =2x 上的一群孤立的点,∴③不正确. ∵f (x )与g (x )的定义域不同,∴④也不正确.](2)(2017·郑州模拟)若函数y =f (x )的定义域为[0,2],则函数g (x )=f xx -1的定义域是________.(1)[-3,1] (2)[0,1) [(1)要使函数有意义,需3-2x -x 2≥0,即x 2+2x -3≤0,得(x -1)(x +3)≤0,即-3≤x ≤1,故所求函数的定义域为[-3,1].(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1, 所以0≤x <1,即g (x )的定义域为[0,1).][规律方法] 1.求给出解析式的函数的定义域,可构造使解析式有意义的不等式(组)求解.2.(1)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出; (2)若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.[变式训练1] (1)函数f (x )=1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【导学号:66482022】(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意,自变量x 应满足⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式.(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式.(3)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x=x (x ≠0),求f (x )的解析式.[解] (1)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(3)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.联立方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x,解得f (x )=23x -x3(x ≠0).[规律方法] 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x );(4)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),即得f (x )的表达式.[变式训练2] (1)已知f (x +1)=x +2x ,则f (x )=________.【导学号:66482023】(2)已知函数f (x )的定义域为(0,+∞),且f (x )=2·f ⎝ ⎛⎭⎪⎫1x·x -1,则f (x )=________.(1)x 2-1(x ≥1) (2)23 x +13(x >0) [(1)(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1), 所以f (x )=x 2-1(x ≥1).(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,∴f (x )=x 2-1(x ≥1). (2)在f (x )=2f ⎝ ⎛⎭⎪⎫1x·x -1中,用1x代替x , 得f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x-1,由⎩⎪⎨⎪⎧f x =2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f x 1x-1,得f (x )=23 x +13(x >0).]☞角度1(1)(2017·湖南衡阳八中一模)若f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( )A .-2B .-3C .9D .-9(2)(2017·东北三省四市一联)已知函数f (x )的定义域为(-∞,+∞),如果f (x +2 016)=⎩⎨⎧2sin x ,x ≥0,-x ,x <0,那么f ⎝⎛⎭⎪⎫2 016+π4·f (-7 984)=( )A .2 016B .14 C .4D .12 016(1)C (2)C [(1)∵f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,∴f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9.(2)当x ≥0时,有f (x +2 016)=2sin x ,∴f ⎝ ⎛⎭⎪⎫2 016+π4=2sin π4=1;当x <0时,f (x +2 016)=lg(-x ),∴f (-7 984)=f (-10 000+2 016)=lg 10 000=4,∴f⎝⎛⎭⎪⎫2 016+π4·f (-7 984)=1×4=4.] ☞角度2 已知分段函数的函数值求参数(1)(2017·成都二诊)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x 2+m 2,x <1,若f (f (-1))=2,则实数m 的值为( )A .1B .1或-1 C. 3D .3或- 3(2)设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =( )A .1B .78C .34D .12(1)D (2)D [(1)f (f (-1))=f (1+m 2)=log 2(1+m 2)=2,m 2=3,解得m =±3,故选D.(2)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝ ⎛⎭⎪⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12.] ☞角度3 解与分段函数有关的方程或不等式(1)(2017·石家庄一模)已知函数f (x )=⎩⎪⎨⎪⎧sin πx 2,-1<x ≤0,log 2x +,0<x <1,且f (x )=-12,则x 的值为________.(2)(2014·全国卷Ⅰ)设函数f (x )=⎩⎨⎧ex -1,x <1,x,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.(1)-13 (2)(-∞,8] [(1)当-1<x ≤0时,f (x )=sin πx 2=-12,解得x =-13;当0<x <1时,f (x )=log 2(x +1)∈(0,1),此时f (x )=-12无解,故x 的值为-13.(2)当x <1时,x -1<0,ex -1<e 0=1≤2,∴当x <1时满足f (x )≤2.当x ≥1时,x ≤2,x ≤23=8,∴1≤x ≤8. 综上可知x ∈(-∞,8].][规律方法] 1.求分段函数的函数值,要先确定要求值的自变量属于定义域的哪一个子集,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.2.已知函数值或函数值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.易错警示:当分段函数自变量的范围不确定时,应分类讨论.[思想与方法]1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.定义域优先原则:函数定义域是研究函数的基础,对函数性质的讨论,必须在定义域内进行.3.求函数解析式的几种常用方法:待定系数法、换元法、配凑法、构造法.4.分段函数问题要分段求解.[易错与防范]1.求函数定义域时,不要对解析式进行化简变形,以免定义域发生变化.2.用换元法求函数解析式时,应注意元的范围,既不能扩大,又不能缩小,以免求错函数的定义域.3.在求分段函数的值f (x0)时,首先要判断x0属于定义域的哪个子集,然后再代入相应的关系式;如果x0的范围不确定,要分类讨论.。
2018届高考数学理科全国通用一轮总复习课件:第二章 函数、导数及其应用 2.9 精品
【规律方法】一次函数、二次函数模型问题的常见类 型及解题策略 (1)单一考查一次函数或二次函数模型.解决此类问题 应注意三点: ①二次函数的最值一般利用配方法与函数的单调性解 决,但一定要密切注意函数的定义域,否则极易出错;
②确定一次函数模型时,一般是借助两个点来确定,常 用待定系数法; ③解决函数应用问题时,最后要还原到实际问题.
(2)牧场中羊群的最大蓄养量为m只,为保证羊群的生长 空间,实际蓄养量不能达到最大蓄养量,必须留出适当 的空闲量.已知羊群的年增长量y只和实际蓄养量x只与 空闲率的乘积成正比,比例系数为k(k>0).
①写出y关于x的函数关系式,并指出这个函数的定义域; ②求羊群年增长量的最大值; ③当羊群的年增长量达到最大值时,求k的取值范围.
y=logax(a>1) 单调_递__增__ 越来越_慢__
y=xn(n>0) 单调递增 相对平稳
函数 y=ax(a>1)
性质
y=logax(a>1)
y=xn(n>0)
图象的 变化
随x的增大 随x的增大逐渐 随n值变化
逐渐表现为 表现为与_x_轴__平 而各有不
与_y_轴__平行 行
同
值的比较 存在一个x0,当x>x0时,有logax<xn<ax
【特别提醒】
“f(x)=x+ a (a>0)”型函数模型
x
形如f(x)=x+ a (a>0)的函数模型称为“对勾”函
x
数模型:(1)该函数在(-∞,- a ]和[ a ,+∞)上单调递
增,在[- a ,0)和(0, a ]上单调递减.
(2)当x>0时,x= a 时取最小值2 a ,
2018届高考数学文大一轮复习教师用书:第2章 函数、导数及其应用 第5节 指数函数 含答案 精品
第五节 指数函数———————————————————————————————— 1.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.2.了解指数函数模型的实际背景,理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,12,13的指数函数的图象.3.体会指数函数是一类重要的函数模型.1.根式的性质 (1)(na )n=a .(2)当n 为奇数时,n a n=a . (3)当n 为偶数时,nan=|a |=⎩⎪⎨⎪⎧a a,-a a<(4)负数的偶次方根无意义. (5)零的任何次方根都等于零. 2.有理指数幂 (1)分数指数幂①正分数指数幂:a =na m (a >0,m ,n ∈N *,且n >1); ②负分数指数幂:a=1a m n=1na m(a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的运算性质 ①a r·a s=ar +s(a >0,r ,s ∈Q);②(a r )s =a rs(a >0,r ,s ∈Q); ③(ab )r=a r b r(a >0,b >0,r ∈Q). 3.指数函数的图象与性质1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)4-4=-4.( )(2)(-1)24=(-1)12=-1.( ) (3)函数y =2x -1是指数函数.( )(4)函数y =ax 2+1(a >1)的值域是(0,+∞).( )(1)× (2)× (3)× (4)×2.化简12-(-1)0的结果为( ) A .-9 B .7 C .-10 D.9B3.函数y =a x-a (a >0,且a ≠1)的图象可能是( )【导学号:31222044】A B C DC4.(教材改编)已知0.2m<0.2n,则m ________n (填“>”或“<”). >5.指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. (1,2)(1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫214--(0.01)0.5;(1)原式=1+14×⎝ ⎛⎭⎪⎫49-⎝ ⎛⎭⎪⎫1100=1+14×23-110=1+16-110=1615.6分(2)原式==1a .12分1.指数幂的运算,首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:(1)必须同底数幂相乘,指数才能相加; (2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 化简求值:(1)(0.027)-⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫279-(2-1)0;(2)56a ·b -2·(-3a -b -1)÷(4a ·b -3) .(1)原式=⎝ ⎛⎭⎪⎫271 000-72+⎝ ⎛⎭⎪⎫259-1=103-49+53-1=-45.6分=-54·1ab 3=-5ab 4ab 2.12分(1)函数f (x )=1-e |x |的图象大致是( )A B C D(2)若曲线y =|2x-1|与直线y =b 有两个公共点,求b 的取值范围. (1)A ,只有A 满足上述两个性质.](2)曲线y =|2x-1|与直线y =b 的图象如图所示,由图象可得,如果曲线y =|2x-1|与直线y =b 有两个公共点,8分则b 的取值范围是(0,1).12分指数函数图象的画法(判断)及应用(1)画(判断)指数函数y =a x(a >0,a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝ ⎛⎭⎪⎫-1,1a . (2)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解. (1)函数f (x )=ax -b的图象如图251,其中a ,b 为常数,则下列结论正确的是( )【导学号:31222045】图251A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0(2)方程 2x=2-x 的解的个数是________. (1)D (2)1☞角度1(1)(2016·全国卷Ⅲ)已知a =2,b =3,c =25,则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b(2)(2016·浙江高考)已知函数f (x )满足:f (x )≥|x |且f (x )≥2x,x ∈R.( ) A .若f (a )≤|b |,则a ≤b B .若f (a )≤2b,则a ≤b C .若f (a )≥|b |,则a ≥b D .若f (a )≥2b,则a ≥b (1)A (2)B☞角度2 解简单的指数方程或不等式(2015·江苏高考)不等式2x 2-x <4的解集为______.{x |-1<x <2}()或-1,☞角度3 探究指数型函数的性质已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值; (3)若f (x )的值域是(0,+∞),求a 的值.(1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令g (x )=-x 2-4x +3=-(x +2)2+7, 则g (x )在区间(-∞,-2)上单调递增,2分在区间 1.比较指数式的大小的方法是:(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小.2.解简单的指数方程或不等式可先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解.3.探究指数型函数的性质与研究一般函数的定义域、单调性(区间)、奇偶性、最值(值域)等性质的方法一致.易错警示:在研究指数型函数的单调性时,当底数a 与“1”的大小关系不确定时,要分类讨论.1.根式与分数指数幂的实质是相同的,分数指数幂与根式可以互化,通常利用分数指数幂进行根式的化简运算.2.判断指数函数图象上底数大小的问题,可以先通过令x=1得到底数的值再进行比较.1.指数函数的单调性取决于底数a的大小,当底数a与1的大小关系不确定时应分0<a<1和a>1两种情况分类讨论.2.对与复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成,并且一定要注意函数的定义域.3.对可化为a2x+b·a x+c=0或a2x+b·a x+c≥0(≤0)形式的方程或不等式,常借助换元法解决,但应注意换元后“新元”的范围.课时分层训练(八) 指数函数A组基础达标(建议用时:30分钟)一、选择题1.函数f(x)=2|x-1|的大致图象是( )【导学号:31222046】A B C DB2.(2016·山东德州一模)已知a =⎝ ⎛⎭⎪⎫3525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫2525,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <c <aD3.(2016·河南安阳模拟)已知函数f (x )=a x,其中a >0,且a ≠1,如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)等于( )A .1B .aC .2D .a 2A4.函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为( ) 【导学号:31222047】A.⎣⎢⎡⎭⎪⎫12,+∞B.⎝ ⎛⎦⎥⎤-∞,12C.⎝ ⎛⎦⎥⎤0,12 D .(0,2]A5.设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)C 二、填空题 6.计算:________.【导学号:31222048】27.已知函数f (x )=4+a x -1的图象恒过定点P ,则点P 的坐标是________.(1,5)8.已知正数a 满足a 2-2a -3=0,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________.m >n三、解答题 9.求不等式a2x -7>a4x -1(a >0,且a ≠1)中x 的取值范围.设y =a x(a >0且a ≠1), 若0<a <1,则y =a x为减函数, ∴a2x -7>a4x -1⇔2x -7<4x -1,解得x >-3;5分若a >1,则y =a x为增函数, ∴a2x -7>a4x -1⇔2x -7>4x -1,解得x <-3.9分综上,当0<a <1时,x 的取值范围是(-3,+∞); 当a >1时,x 的取值范围是(-∞,-3).12分 10.已知函数f (x )=12x -1+a 是奇函数.(1)求a 的值和函数f (x )的定义域; (2)解不等式f (-m 2+2m -1)+f (m 2+3)<0.(1)因为函数f (x )=12x -1+a 是奇函数,所以f (-x )=-f (x ),即12-x -1+a =11-2x-a ,即-a x +a 1-2x =a ·2x+1-a 1-2x,从而有1-a =a ,解得a =12.3分 又2x-1≠0,所以x ≠0,故函数f (x )的定义域为(-∞,0)∪(0,+∞).5分 (2)由f (-m 2+2m -1)+f (m 2+3)<0,得f (-m 2+2m -1)<-f (m 2+3),因为函数f (x )为奇函数,所以f (-m 2+2m -1)<f (-m 2-3).8分由(1)可知函数f (x )在(0,+∞)上是减函数,从而在(-∞,0)上是减函数,又-m 2+2m -1<0,-m 2-3<0,所以-m 2+2m -1>-m 2-3,解得m >-1,所以不等式的解集为(-1,+∞).12分B 组 能力提升 (建议用时:15分钟)1.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b =0.其中不可能成立的关系式有( )【导学号:31222049】A .1个B .2个C .3个D .4个B2.(2017·安徽江淮十校第一次联考)已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e|x -2|},则f (x )的最小值为________.e3.已知f (x )=⎝⎛⎭⎪⎫1a x -1+12x 3(a >0,且a ≠1).(1)讨论f (x )的奇偶性;(2)求a 的取值范围,使f (x )>0在定义域上恒成立. (1)由于a x-1≠0,则a x≠1,得x ≠0, ∴函数f (x )的定义域为{x |x ≠0}.2分 对于定义域内任意x ,有f (-x )=⎝⎛⎭⎪⎫1a -x -1+12(-x )3=⎝ ⎛⎭⎪⎫a x1-a x +12(-x )3 =⎝⎛⎭⎪⎫-1-1a x-1+12(-x )3=⎝⎛⎭⎪⎫1a x -1+12x 3=f (x ). ∴f (x )是偶函数.5分(2)由(1)知f (x )为偶函数,∴只需讨论x >0时的情况. 当x >0时,要使f (x )>0,即⎝ ⎛⎭⎪⎫1a x -1+12x 3>0,即1a x -1+12>0,即a x +1a x ->0,9分即a x-1>0,a x>1,a x>a 0.又∵x >0,∴a >1. 因此a >1时,f (x )>0.12分。
2018届高考数学大一轮复习第二章函数、导数及其应用第二节函数的单调性与最值教师用书理
第二节函数的单调性与最值☆☆☆2017考纲考题考情☆☆☆自|主|排|查1.增函数与减函数一般地,设函数f(x)的定义域为I:(1)如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数。
(2)如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数。
2.单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的) 单调性,区间D叫做y=f(x)的单调区间。
3.函数的最大值与最小值一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f (x )≤M ;存在x 0∈I ,使得f (x 0)=M ,那么,我们称M 是函数y =f (x )的最大值。
(2)对于任意的x ∈I ,都有f (x )≥M ;存在x 0∈I ,使得f (x 0)=M ,那么我们称M 是函数y =f (x )的最小值。
4.函数单调性的两个等价结论 设∀x 1,x 2∈D (x 1≠x 2),则 (1)f x 1-f x 2x 1-x 2>0(或()x 1-x 2[]f x 1-f x 2>0)⇔f (x )在D 上单调递增; (2)f x 1-f x 2x 1-x 2<0(或()x 1-x 2[]f x 1-f x 2<0)⇔f (x )在D 上单调递减。
5.对勾函数的单调性对勾函数y =x +a x(a >0)的递增区间为(-∞,-a ]和[a ,+∞);递减区间为[-a ,0)和(0,a ],且对勾函数为奇函数。
6.函数单调性常用结论微点提醒1.函数的单调性是对某个区间而言的,如函数y =1x分别在(-∞,0),(0,+∞)内都是单调递减的,但它在整个定义域即(-∞,0)∪(0,+∞)内不单调递减,单调区间只能分开写或用“和”连接,不能用“∪”连接,也不能用“或”连接。
2018届高考数学(理)大一轮复习顶层设计教师用书第二章 函数、导数及其应用 第九节 函数模型及其应用 Word
第九节函数模型及其应用☆☆☆考纲考题考情☆☆☆
自主排查
.三种函数模型性质比较
微点提醒
.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢。
.充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键。
.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性。
小题快练
一、走进教材.(必修组改编)某种产品的产量原来是件,在今后年内,计划使每年的产量比上一年增加,
则该产品的产量随年数变化的函数解析式为( )
.=(+)(<<)
.=(+)(≤≤,∈)
.=(+)(<<)
.=(+)(≤≤,∈)【解析】设年产量经过年增加到件,则第一年为=(+),第二年为=(+)(+)=(+),
第三年为=(+)(+)(+)=(+),…,则=(+)(≤≤且∈)。
故选。
【答案】.(必修组改编)在某个物理实验中,测量得变量和变量的几组数据,如下表:。
2018届高考数学(理)大一轮复习顶层设计教师用书第二章 函数、导数及其应用 第七节 函数的图象 Word版含答
第七节函数的图象
☆☆☆考纲考题考情☆☆☆
自主排查
.利用描点法作函数图象
基本步骤是列表、描点、连线。
首先:()确定函数的定义域;
()化简函数解析式;
()讨论函数的性质(奇偶性、单调性、周期性、对称性等)。
其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,
连线。
.利用图象变换法作函数的图象
()平移变换:
=
=
()
-
(
;
)
()
=
=
+。
()
()伸缩变换:=
()=
(ω);
=()
=()。
()对称变换:
=()))=-();
=()))=(-);
=()))=-(-)。
()翻折变换:
=()=();
=()=()。
微点提醒
.在解决函数图象的变换问题时,要遵循“只能对函数关系式中的,变换”的原则。
.注意含绝对值符号的函数图象的对称性,如=()与=()的图象一般是不同的。
.记住几个重要结论
()函数=()与=(-)的图象关于直线=对称。
()函数=()与=-(-)的图象关于点(,)中心对称。
()若函数=()对定义域内任意自变量满足:(+)=(-),则函数=()的图象关于直线=。
2018届高考数学大一轮复习第二章函数导数及其应用第四节二次函数与幂函数教师用书理201710142225
第四节二次函数与幂函数☆☆☆2017考纲考题考情☆☆☆自|主|排|查1.幂函数(1)定义:一般地,函数y=xα叫做幂函数,其中底数x是自变量,α是常数。
(2)幂函数的图象比较:2.二次函数 (1)解析式:一般式:f (x )=ax 2+bx +c (a ≠0)。
顶点式:f (x )=a (x -h )2+k (a ≠0)。
两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0)。
(2)图象与性质:解析式f (x )=ax 2+bx +c (a >0) f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝⎛⎦⎥⎤-∞,4ac -b 24a单调性在x ∈⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递增在x ∈⎝⎛⎦⎥⎤-∞,-b 2a 上单调递减在x ∈⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递增在x ∈⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递减奇偶性 当b =0时为偶函数顶点⎝⎛⎭⎪⎫-b 2a ,4ac -b 24a对称性图象关于直线x =-b2a成轴对称图形微点提醒1.幂函数的图象最多出现在两个象限内,一定会经过第一象限,一定不出现在第四象限。
至于是否出现在第二、三象限内,要看函数的奇偶性;如果幂函数图象与坐标轴相交,则交点一定是原点。
2.幂函数y =x α的系数为1,系数不为1的都不是幂函数,当α>0时,在(0,+∞)上都是增函数,当α<0时,在(0,+∞)上都是减函数,而不能说在定义域上是增函数或减函数。
3.对于函数y =ax 2+bx +c ,要认为它是二次函数,就必须满足a ≠0,当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况;二次函数的单调性、最值与抛物线的开口方向以及给定区间的范围有关,不能盲目利用配方法得出结论。
4.数形结合是讨论二次函数问题的基本方法。
2018届高考数学大一轮复习 第二章 函数、导数及其应用 第七节 函数的图象教师用书 理
第七节函数的图象☆☆☆2017考纲考题考情☆☆☆自|主|排|查1.利用描点法作函数图象基本步骤是列表、描点、连线。
首先:(1)确定函数的定义域; (2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等)。
其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线。
2.利用图象变换法作函数的图象 (1)平移变换:y =f (x )――――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a );y =f (x )――――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b 。
(2)伸缩变换:y =f (x )y =f (ωx );y =f (x )――――――――――――――――――――――→A >1,横坐标不变,纵坐标伸长为原来的A 倍0<A <1,横坐标不变,纵坐标缩短为原来的Ay =Af (x )。
(3)对称变换:y =f (x )―――――→关于x 轴对称y =-f (x ); y =f (x )――――――→关于y 轴对称 y =f (-x ); y =f (x )――――――→关于原点对称 y =-f (-x )。
(4)翻折变换:y =f (x )――――――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图象翻折到左边去y =f (|x |);y =f (x )――――――――――――――――→保留x 轴上方图将x 轴下方的图象翻折到上方去y =|f (x )|。
微点提醒1.在解决函数图象的变换问题时,要遵循“只能对函数关系式中的x ,y 变换”的原则。
2.注意含绝对值符号的函数图象的对称性,如y =f (|x |)与y =|f (x )|的图象一般是不同的。
3.记住几个重要结论(1)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称。
近年高考数学复习 第2章 函数、导数及其应用 第9节 实际问题的函数建模教师用书 文 北师大版(2
2018高考数学一轮复习第2章函数、导数及其应用第9节实际问题的函数建模教师用书文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学一轮复习第2章函数、导数及其应用第9节实际问题的函数建模教师用书文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学一轮复习第2章函数、导数及其应用第9节实际问题的函数建模教师用书文北师大版的全部内容。
第九节实际问题的函数建模[考纲传真]1。
了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义。
2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.1.常见的几种函数模型(1)一次函数模型:y=kx+b(k≠0).(2)反比例函数模型:y=kx+b(k,b为常数且k≠0).(3)二次函数模型:y=ax2+bx+c(a,b,c为常数,a≠0).(4)指数函数模型:y=ba x+c(a,b,c为常数,a>0且a≠1,b≠0).(5)对数函数模型:y=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0).(6)幂函数模型:y=a·x n+b(a≠0).2.三种函数模型之间增长速度的比较y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的增减性递增递增递增增长速度越来越快越来越慢相对平稳图像的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x<x n<a x3(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题.以上过程用框图表示如下:1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y=2x的函数值比y=x2的函数值大.( )(2)幂函数增长比直线增长更快.()(3)不存在x0,使ax0<x错误!<log a x0.()(4)f (x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)<f (x)<g (x).()[答案] (1)×(2)×(3)×(4)√2.已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到()【导学号:66482089】A.100只B.200只C.300只D.400只B[由题意知100=a log3(2+1),∴a=100,∴y=100log3(x+1),当x=8时,y=100log3 9=200.]3.(教材改编)在某种新型材料的研制中,试验人员获得了下列一组试验数据.现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )x 1.953。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】曲线=-与直线=的图象如图所示,由图象可得,如果曲线=-与直线=有两个公共点,则的取值范围是()。
【答案】()
反思归纳 指数函数图象的画法及应用
.与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象。
【解析】①当<<时,函数()在[-]上单调递减,由题意可得即解得
此时+=-。
②当>时,函数()在[-]上单调递增,由题意可得即显然无解。
所以+=-。
【答案】-
.如图所示,曲线,,,分别是指数函数=,=,=,=的图象,则,,,与的大小关系是。
【答案】>>>>
微考点 大课堂
考点一
指数幂的计算
【典例】 计算:
.一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解。
【拓展变式】(·呼和浩特模拟)偶函数()满足(-)=(+),且在∈[]时,()=,则关于的方程()=,在∈[]上解的个数是()
..
..
【解析】由(-)=(+)可知=。因为∈[]时,()=,()是偶函数,所以可得图象如图,所以()=在∈[]上解的个数是个。故选。
..
.
【解析】由=,=,∴()=,(-)=-=。故选。
【答案】
.(必修组改编)不等式->-(<<)的解集为。
【解析】=(<<)为减函数,所以-<-,>-。
【答案】(-,+∞)
二、双基查验
.(·唐山模拟)函数=-(>,且≠)的图象可能是()
【解析】解法一:当>时,=-为增函数,且在轴上的截距为<-<,此时四个选项均不对;当<<时,函数=-是减函数,且其图象可视为是由函数=的图பைடு நூலகம்向下平移个单位长度得到的,结合各选项知选。
>且∈*
当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数
零的次方根是零
当是偶数时,正数的次方根有两个,这两个数互为相反数
±(>)
负数没有偶次方根
()两个重要公式
①=
②()=(注意必须使有意义)。
.有理数的指数幂
()幂的有关概念
①正分数指数幂:=(>,、∈*,且>);
②负分数指数幂:-==(>,、∈*,且>)。
【典例】()(·秦皇岛模拟)函数()=-的大致图象为()
()若曲线=+与直线=没有公共点,则的取值范围是。
【解析】()函数()=-=×,单调递减且过点(),选项中的图象符合要求。故选。
()曲线=+与直线=的图象如图所示,由图象可得:如果曲线=+与直线=没有公共点,则应满足的条件是∈[-,]。
【答案】()()[-]
【答案】
考点三
指数函数的性质及应用……多维探究
角度一:比较大小
【典例】(·全国卷Ⅲ)已知=,=,=,则()
.<<.<<
.<<.<<
【解析】因为==,==,=,且幂函数=在上单调递增,指数函数=在上单调递增,所以<<。故选。
【答案】
角度二:解简单的方程或不等式
【典例】()(·福州模拟)已知实数≠,函数()=若(-)=(-),则的值为。
.当底数是负数时,先确定符号,再把底数化为正数。
.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数。
【变式训练】()化简(<,<)得()
..
..-
()-·=。
【解析】()=()=
[·(-)·(-)]=··(-)··(-)·
=(-)(-)=-。故选。
()原式==。
【答案】()()
考点二
指数函数的图象及应用……母题发散
.指数函数的单调性是由底数的大小决定的,因此,应用单调性解题时,应对底数分为>和<<两种情况进行。
.与指数函数有关的复合函数的单调性,要弄清复合函数由哪些基本初等函数复合而成;而与其有关的最值问题,往往转化为二次函数的最值问题。
小题快练
一、走进教材
.(必修例改编)若函数()=(>,且≠)的图象经过,则(-)=()
()若偶函数()满足()=-(≥),则不等式(-)>的解集为。
【解析】()当<时,-=,∴=;当>时,代入不成立。∴=。
()()为偶函数,
当<时,()=(-)=--。
∴()=
当(-)>时,
()+()-+--π+;
()(>,>);
()若+-=,求的值。
【解析】()原式=++--+=++-+=。
()原式==+-+×+--=-。
()由+-=,两边平方,
得+-=,再平方得+-=。
∴+--=。
由+-=,两边立方,
得++-+-=。
∴+-=,∴+--=。
∴=。
【答案】()()-()
反思归纳.指数幂的运算首先将根式、分数指数幂统一化为分数指数幂,以便利用法则计算,但应注意:()必须同底指数幂相乘,指数才能相加;()运算的先后顺序。
,山东卷,分(指数函数单调性)
,江苏卷,分(解指数不等式)
,江苏卷,分(指数求值)
直接考查指数函数的图象及其性质或以指数与指数函数为知识载体,考查指数幂的运算和函数图象的应用,或以指数函数为载体与函数方程、不等式等内容交汇命题。
微知识 小题练
自主排查
.根式
()根式的概念
根式的概念
符号表示
备注
如果=,那么叫做的次方根
解法二:因为函数=-(>,且≠)的图象必过点(-),所以选。
【答案】
.设<<<,那么()
.<<.<<
.<<.<<
【解析】由<<<得>>>,又因为函数=(<<)在定义域内是单调递减的,所以>,所以,不成立。函数=(>)在(,+∞)内是单调递增的,又<,所以<。故选。
【答案】
.已知函数()=+(>,≠)的定义域和值域都是[-],则+=。
第五节 指数与指数函数
☆☆☆考纲考题考情☆☆☆
考纲要求
真题举例
命题角度
.了解指数函数模型的实际背景;
.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算;
.理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点;
.知道指数函数是一类重要的函数模型。
,全国卷Ⅲ,分(指数函数比较大小)
③的正分数指数幂等于的负分数指数幂无意义。
()有理数指数幂的性质
①=+(>,,∈);
②()=(>,,∈);
③()=(>,>,∈)。
.指数函数的图象与性质
=
>
<<
图象
定义域
值域
(,+∞)
性质
()过定点()
()当>时,>;<时,<<
()当>时,<<;
<时,>
()在上是增函数
()在上是减函数
微点提醒
.指数幂运算化简的依据是幂的运算性质,应防止错用、混用公式。对根式的化简,要先化成分数指数幂,再由指数幂的运算性质进行化简。