2018年安徽省合肥一中高考数学最后一卷(理科)(J)
2018年安徽省合肥一中高考数学最后一卷(理科) (1)
2018年安徽省合肥一中高考数学最后一卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则A. B.C. D.2. 已知是虚数单位,若,则的虚部是()A. B.C. D.3. 已知,函数在上单调递增,则的取值范围是()A.B.C.D.4. 《九章算术》之后,人们学会了用等差数列的知识来解决问题,《张丘建算经》卷上有叙述为:“今有女善织,日益功疾(注:从第天开始,每天比前一天多织相同量的布),如图是源于其思想的一个程序框图,如果输出的是,则输入的是()A. B.C. D.5. 已知,分别满足,,则的值为()A. B.C. D.6. 某空间凸多面体的三视图如图所示,其中俯视图和侧(左)视图中的正方形的边长为,正(主)视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为()A.B.C.D.7. 中,,,的对边分别为,,.已知,,则的值为________8. 某班级有男生人,女生人,现选举名学生分别担任班长、副班长、团支部书记和体育班委.男生当选的人数记为,则的数学期望为()A. B.C. D.9. 已知函数单调递增,函数的图象关于点对称,实数,满足不等式,则的最小值为()A. B.C. D.10. 一个正四面体的四个面上分别标有数字,,,.掷这个四面体四次,令第次得到的数为,若存在正整数使得的概率,其中,是互质的正整数,则的值为()A. B.C. D.11. 已知抛物线,过定点,且作直线交抛物线于,两点,且直线不垂直轴,在,两点处分别作该抛物线的切线,,设,的交点为,直线的斜率为,线段的中点为,则下列四个结论:①;②当直线绕着点旋转时,点的轨迹为抛物线;③当时,直线经过抛物线的焦点;④当,时,直线垂直轴.其中正确的个数有()A.个 B.个C. 个D. 个12. 设函数 在 上存在导函数 ,对任意的 有 ,且当 时, .若 , 的零点有( ) A. 个 B. 个 C. 个 D. 个 二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 平行四边形 中, , ,,则________.14.的展开式中含 的项的系数是________.15. 棱长为 的正方体 如图所示, , 分别为直线 , 上的动点,则线段 长度的最小值为________.16. 如图所示,已知直线 的方程为, , 是相外切的等圆,且分别与坐标轴及线段 相切, ,则两圆半径 ________(用常数 , , 表示)三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设数列 的前 项和为 ,已知 . (1)求 的通项公式;(2)若数列 满足 ,求 前 项和 .18. 底面 为正方形的四棱锥 ,且 底面 ,过 的平面与侧面 的交线为 ,且满足 .(1)证明: 平面 ;(2)当 四边形时,求二面角 的余弦值.19. 深受广大球迷喜爱的某支欧洲足球队.在对球员的使用上总是进行数据分析,为了考察甲球员对球队的贡献,现作如下数据统计:(1)求 , , , , 的值,据此能否有 的把握认为球队胜利与甲球员参赛有关;(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为: , , , ,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为: , , , .则: 当他参加比赛时,求球队某场比赛输球的概率;当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率; 如果你是教练员,应用概率统计有关知识.该如何使用乙球员? 附表及公式:.20. 已知椭圆的离心率为,左、右焦点分别为 ,,且,与该椭圆有且只有一个公共点.(1)求椭圆标准方程;(2)过点 的直线与 相切,且与椭圆相交于 , 两点,求证: ;(3)过点 的直线 与 相切,且与椭圆相交于 , 两点,试探究 的数量关系.21. 已知函数.(1)讨论函数 的零点个数;(2)已知,证明:当时,.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22. 在平面直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系,已知曲线的参数方程为(为参数),直线的极坐标方程为.(1)求曲线和直线的直角坐标方程,并求出曲线上到直线的距离最大的点的坐标,(2)求曲线的极坐标方程,并设,为曲线上的两个动点,且,求的取值范围.[选修4-5:不等式选讲]23. 已知函数.当时,求不等式的解集;若的解集包含,求实数的取值范围.参考答案与试题解析2018年安徽省合肥一中高考数学最后一卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【考点】交、并、补集的混合运算【解析】求出集合,,从而求出,由此能求出.【解答】∵集合,,∴,∴.2.【答案】B【考点】复数的运算【解析】由已知可得,代入,利用复数代数形式的乘除运算化简得答案.【解答】∵,∴,∴的虚部为.3.【答案】C【考点】余弦函数的图象【解析】利用余弦函数的单调性建立不等式关系求解即可.【解答】函数在上单调递增,则,.解得:,.∵,∴当,可得.4.【答案】C【考点】程序框图【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】第一次执行循环体后,,,不满足退出循环的条件;第二次执行循环体后,,,不满足退出循环的条件;第三次执行循环体后,,,不满足退出循环的条件;第四次执行循环体后,,,不满足退出循环的条件;…第次执行循环体后,,,不满足退出循环的条件;第次执行循环体后,,,满足退出循环的条件;故输出∴,5.【答案】D【考点】函数与方程的综合运用【解析】对等式两边取自然对数,再由,求导,判断单调性,运用对数的运算性质,可得所求值.【解答】,可得,,可得,即有,可得,由的导数为,可得在递增,可得,即为,即,可得,可得,6.【答案】C【考点】由三视图求面积、体积【解析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.【解答】由题意可知几何体的直观图如图:左侧是放倒的三棱柱,右侧是三棱锥,俯视图和侧(左)视图中的正方形的边长为,正(主)视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为:.7.【答案】【考点】三角函数的恒等变换及化简求值【解析】利用二倍角和正弦定理,化简可得答案.【解答】∵由,得,即,∴得,∴则(舍),或,∵∴,∵,由正弦定理可得:,∴,推导可得:,即,∴. 8.【答案】C【考点】离散型随机变量的期望与方差【解析】由题意知随机变量的可能取值是,,,,,计算对应的概率值,求出的数学期望值.【解答】由题意知,随机变量的可能取值是,,,,,且,,,,;∴的数学期望为.9.【答案】A【考点】抽象函数及其应用简单线性规划【解析】根据题意,分析可得函数为奇函数,结合函数的单调性分析可得,变形可得:,即或,由二元一次不等式的几何意义分析其可行域,又由,设,其几何意义为可行域中任意一点到点距离的平方,求出的最小值,计算即可得答案.【解答】根据题意,因为函数的图象关于点对称,所以函数的图象关于点对称,即函数是定义在上的奇函数,则,又由函数单调递增,则,变形可得:,即或,所以可得其可行域,如图所示:,设,其几何意义为可行域中任意一点到点距离的平方,分析可得:的最小值为,则的最小值为;故选:.10.【答案】B【考点】模拟方法估计概率【解析】当时,的概率,当时,的概率,当时,的概率,当时,的概率,从而求出的概率,由此能求出的值.【解答】正四面体的四个面上分别标有数字,,,.掷这个四面体四次,令第次得到的数为,存在正整数使得的概率,∴当时,的概率,当时,的概率,当时,的概率,当时,的概率,∴得的概率,其中,是互质的正整数,∴,,则.11.【答案】C【考点】抛物线的性质【解析】设点坐标,根据导数的几何意义,即可求得直线的方程,代入即可求得,即可求得直线的方程,代入抛物线方程,利用韦达定理及中点坐标公式,即可求得,.即可判断①④正确.【解答】设,则直线的方程:,直线过点,所以,解得,所以直线,,由,所以,所以,即,,,所以,则,∴.故垂直轴,故①④正确,12.【答案】C【考点】函数零点的判定定理【解析】令,,由,可得函数为奇函数.利用导数可得函数在上是增函数,,即,解得,再令,分离参数,可得,,利用导数,求出当时,,即可判断函数零点的个数.【解答】当时,令时,,函数单调递增,令时,,函数单调递减,∴,(1)当时,,函数单调递减,∵,∴直线与有两个交点,∴的零点有个,故选:.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【答案】【考点】平面向量数量积的性质及其运算律【解析】推导出,,,由此能求出.【解答】∵平行四边形中,,,,如图,∴,∴,∴,∴,∴.14.【答案】【考点】二项式定理及相关概念【解析】利用二项式定理把展开,可得的展开式中含的项的系数.【解答】∵,故它的展开式中含的项的系数是,15.【答案】【考点】棱柱的结构特征【解析】线段长度的最小值是异面直线与间的距离,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出线段长度的最小值.【解答】∵棱长为的正方体如图所示,,分别为直线,上的动点,∴线段长度的最小值是异面直线与间的距离,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,∴线段长度的最小值:.16.【答案】【考点】直线与圆的位置关系【解析】由题意画出图形,得,,设,,列关于,,,,,的方程组,整体求解得答案.【解答】如图,由已知得,,,设,,则,②+③得:④.把①代入④,得,∴.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【答案】,∴,.故.,当时,,令,∴,,∴,故,又满足上式,∴.【考点】数列的求和数列递推式【解析】(1),相减可得,.即可得出.(2),当时,,令,利用错位相减法即可得出.【解答】,∴,.故.,当时,,令,∴,,∴,故,又满足上式,∴.18.【答案】∵底面为正方形,且底面,∴,,两两垂直,建立如图所示的空间直角坐标系,设,,则,,,,,.∵底面,底面,∴.∵四边形为正方形,∴,∴平面,∴平面的一个法向量为.设平面的一个法向量为,而,.由,得,取得,得为平面的一个法向量.设二面角的大小为,由四边形,得,∴,∴,∴二面角的余弦值为.【考点】二面角的平面角及求法【解析】(1)推导出从而平面,进而,再由,得.连接交于点,连.则,由此能证明平面.(2)推导出,,两两垂直,建立空间直角坐标系,利用向量法能求出二面角的余弦值.【解答】∵底面为正方形,且底面,∴,,两两垂直,建立如图所示的空间直角坐标系,设,,则,,,,,.∵底面,底面,∴.∵四边形为正方形,∴,∴平面,∴平面的一个法向量为.设平面的一个法向量为,而,.由,得,取得,得为平面的一个法向量.设二面角的大小为,由四边形,得,∴,∴,∴二面角的余弦值为.19.【答案】,,,,,,∴有的把握认为球队胜利与甲球员参赛有关;设表示“乙球员担当前锋”;表示“乙球员担当中锋”;表示“乙球员担当后卫”;表示“乙球员担当守门员”;表示“球队输掉某场比赛”,则;.因为:::,所以,应该多让乙球员担任守门员,来扩大赢球场次.【考点】条件概率与独立事件【解析】(1)分别求出,,,,的值,求出的值,利用临界值表可得出结论;(2)根据条件概率公式分别计算出乙球员在担任“前锋”,“中锋”,“后卫”,“守门员”时输球的概率,最后相加得到已乙球员参加比赛时,球队输球的概率;利用乙球员担任前锋时输球的概率除以球队输球的概率即可得出答案;分别计算出乙队员在担任“前锋”,“中锋”,“后卫”,“守门员”时输球的概率,以输球概率最小时,乙球员担任的角色,作为教练员使用乙队员的依据.【解答】,,,,,,∴有的把握认为球队胜利与甲球员参赛有关;设表示“乙球员担当前锋”;表示“乙球员担当中锋”;表示“乙球员担当后卫”;表示“乙球员担当守门员”;表示“球队输掉某场比赛”,则;.因为:::,所以,应该多让乙球员担任守门员,来扩大赢球场次.20.【答案】∵与椭圆有且只有一个公共点,∴公共点为或,若公共点为时,则,又,解得,与矛盾,故公共点为.∴,又,∴,..反之,当时,联立,解得满足条件.∴椭圆标准方程为.证明:∵,设过的直线,联立,得.设,,则,又,∴.由与相切得:,,∴,∴.即:.猜:.证明如下:由(2)得.∵,∴.【考点】椭圆的性质【解析】(1)由与椭圆有且只有一个公共点,可得公共点为或,若公共点为时,得出矛盾,故公共点为.因此,又,.即可得出.(2),设过的直线,联立,得.设,,又,利用数量积运算性质与根及其系数的关系可得:.由与相切得:,解得,即可得出.(3)猜:.分析如下:利用斜率计算公式、根与系数的关系即可得出.【解答】∵与椭圆有且只有一个公共点,∴公共点为或,若公共点为时,则,又,解得,与矛盾,故公共点为.∴,又,∴,..反之,当时,联立,解得满足条件.∴椭圆标准方程为.证明:∵,设过的直线,联立,得.设,,则,又,∴.由与相切得:,,∴,∴.即:.猜:.证明如下:由(2)得.∵,∴.21.【答案】.令,∴.令,则函数与的零点个数情况一致.时,.∴在上单调递增.又,∴有个零点.时,在上单调递增,上单调递减.∴.① 即时,,无零点.② 即时,个零点.③ 即时,,又.又,,令,∴在上单调递增,∴,∴两个零点.综上:当或时,个零点;当时,个零点;当时,个零点.证明(2)要证,只需证.令,只需证:.令,,∴在上单调递增,在上单调递减,∴且.令,,∴在上单调递增,∴,∴,故.【考点】函数零点的判定定理利用导数研究函数的单调性【解析】(1).令,问题转化为求函数令,零点的个数问题,先求导,再分类讨论,根据函数零点存在定理即可求出,(2)利用分析法,和构造函数法,借用导数,即可证明.【解答】.令,∴.令,则函数与的零点个数情况一致.时,.∴在上单调递增.又,∴有个零点.时,在上单调递增,上单调递减.∴.① 即时,,无零点.② 即时,个零点.③ 即时,,又.又,,令,∴在上单调递增,∴,∴两个零点.综上:当或时,个零点;当时,个零点;当时,个零点.证明(2)要证,只需证.令,只需证:.令,,∴在上单调递增,在上单调递减,∴且.令,,∴在上单调递增,∴,∴,故.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.【答案】∵曲线的参数方程为(为参数),∴曲线的直角坐标方程为,∵直线的极坐标方程为.∴直线的普通方程为:,则曲线上点到直线的距离:,当时,最大,此时,.曲线的极坐标方程为,即.设,则.∴的取值范围是.【考点】简单曲线的极坐标方程【解析】(1)曲线的参数方程消去参数,能求出曲线的直角坐标方程;由直线的极坐标方程能求出直线的普通方程,由此能求出曲线上点到直线的距离最大的点的坐标.(2)曲线的极坐标方程转化为.设,能求出的取值范围.【解答】∵曲线的参数方程为(为参数),∴曲线的直角坐标方程为,∵直线的极坐标方程为.∴直线的普通方程为:,则曲线上点到直线的距离:,当时,最大,此时,.曲线的极坐标方程为,即.设,则.∴的取值范围是.[选修4-5:不等式选讲]23.【答案】解:当时,,即.①当时,不等式化为,解得.②当时,不等式化为,解得.③当时,不等式化为,解得.综上,不等式的解集为或.的解集包含在上恒成立在上恒成立.①当时,恒成立恒成立恒成立,解得.②当时,恒成立恒成立恒成立,解得.所以,实数的取值范围为.【考点】绝对值不等式的解法【解析】分段去绝对值,分别求出每个不等式组的解集,再取并集即得所求.(2)的解集包含在上恒成立在上恒成立.当时,恒成立,解得.当时,恒成立解得.【解答】解:当时,,即.①当时,不等式化为,解得.②当时,不等式化为,解得.③当时,不等式化为,解得.综上,不等式的解集为或.的解集包含在上恒成立在上恒成立.①当时,恒成立恒成立恒成立,解得.②当时,恒成立恒成立恒成立,解得.所以,实数的取值范围为.。
2018年安徽省合肥一中高考数学最后一卷(理科)
2018年安徽省合肥一中高考数学最后一卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={x||x−3|<2x},B={x|−4<x<3},则(∁R A)∩B=()A.(−4, 1]B.[−3, 3)C.[−3, 1]D.(−4, 3)【答案】A【考点】交、并、补集的混合运算【解析】求出集合A,B,从而求出C U A={x|x≤1},由此能求出(C R A)∩B.【解答】∵集合A={x||x−3|<2x}={x|x>1},B={x|−4<x<3},∴C U A={x|x≤1},∴(C R A)∩B={x|−4<x≤1}=(−4, 1].2. 已知i是虚数单位,若z=2+i,则zz的虚部是()A.4 5iB.45C.−45i D.−45【答案】B【考点】复数的运算【解析】由已知可得z,代入zz,利用复数代数形式的乘除运算化简得答案.【解答】∵z=2+i,∴zz =2+i2−i=(2+i)2(2−i)(2+i)=35+45i,∴zz 的虚部为45.3. 已知w>0,函数f(x)=cos(wx+π3)在(π3,π2)上单调递增,则w的取值范围是()A.(23,103) B.[23,103] C.[2,103] D.[2,53]【答案】C【考点】余弦函数的单调性【解析】利用余弦函数的单调性建立不等式关系求解即可.【解答】解:函数f(x)=cos(wx+π3)在(π3,π2)上单调递增,则{π3ω+π3≥2kπ−ππ2ω+π3≤2kπ,k ∈Z .解得:{ω≥6k −4ω≤4k −23,k ∈Z . ∵ ω>0,∴ 当k =1,可得2≤ω≤103.故选C .4. 《九章算术》之后,人们学会了用等差数列的知识来解决问题,《张丘建算经》卷上有叙述为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),如图是源于其思想的一个程序框图,如果输出的S 是60,则输入的x 是( )A.4B.3C.2D.1 【答案】 C【考点】 程序框图 【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【解答】第一次执行循环体后,n =1,S =x ,不满足退出循环的条件; 第二次执行循环体后,i =2,S =2x ,不满足退出循环的条件; 第三次执行循环体后,i =3,S =3x ,不满足退出循环的条件; 第四次执行循环体后,i =4,S =4x ,不满足退出循环的条件; …第29次执行循环体后,i =29,S =29x ,不满足退出循环的条件; 第30次执行循环体后,i =30,S =30x ,满足退出循环的条件; 故输出S =30x =60 ∴ x =2,5. 已知α,β分别满足α⋅e α=e 2,β(lnβ−2)=e 4,则αβ的值为( ) A.e B.e 2 C.e 3 D.e 4 【答案】 D【考点】函数与方程的综合运用【解析】对等式两边取自然对数,再由f(x)=x+lnx,求导,判断单调性,运用对数的运算性质,可得所求值.【解答】α⋅eα=e2,可得α+lnα=2,β(lnβ−2)=e4,可得lnβ+ln(lnβ−2)=4,即有lnβ−2+ln(lnβ−2)=2,可得α+lnα=lnβ−2+ln(lnβ−2),由f(x)=x+lnx的导数为1+1x>0,可得f(x)在x>0递增,可得α=lnβ−2,即为2−lnα=lnβ−2,即lnα+lnβ=4,可得ln(αβ)=4,可得αβ=e4,6. 某空间凸多面体的三视图如图所示,其中俯视图和侧(左)视图中的正方形的边长为1,正(主)视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为()A.2+3√22B.72+3√22C.3+2√2D.2+√2【答案】C【考点】由三视图求体积【解析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.【解答】由题意可知几何体的直观图如图:左侧是放倒的三棱柱,右侧是三棱锥,俯视图和侧(左)视图中的正方形的边长为1,正(主)视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为:1×√2+2×12×1×1+1×1+12×1×1+12×1×√2+1 2×1×√2+12×1×1=3+2√2.7. △ABC中,A,B,C的对边分别为a,b,c.已知c2=2b2−2a2,2sin2A+B2=1+ cos2C,则sin(B−A)的值为________【答案】√34【考点】三角函数的恒等变换及化简求值【解析】利用二倍角和正弦定理,化简可得答案.【解答】∵由2sin2A+B2=1+cos2C,得cos2C=2sin2A+B2−1=1−cos(A+B)−1=−cos(π−C)=cosC,即2cos2C−cosC−1=0,∴得(cosC−1)(2cosC+1)=0,∴则cosC=1(舍),或cosC=−12,∵0<C<π∴C=2π3,∵c2=2b2−2a2,由正弦定理可得:2(sin2B−sin2A)=sin2C=34,∴sin2B−sin2A=38,推导可得:sin(B+A)sin(B−A)=38,即sinCsin(B−A)=38,∴sin(B−A)=√34.8. 某班级有男生32人,女生20人,现选举4名学生分别担任班长、副班长、团支部书记和体育班委.男生当选的人数记为ξ,则ξ的数学期望为()A.16 13B.2013C.3213D.4013【答案】C【考点】离散型随机变量的期望与方差【解析】由题意知随机变量ξ的可能取值是0,1,2,3,4,计算对应的概率值,求出ξ的数学期望值.【解答】由题意知,随机变量ξ的可能取值是0,1,2,3,4,且P(ξ=0)=C 320∗C204C 524=C 204C 524,P(ξ=1)=C 321∗C203C 524,P(ξ=2)=C 322∗C202C 524,P(ξ=3)=C 323∗C201C 524,P(ξ=4)=C 324∗C200C 524=C 324C 524;∴ ξ的数学期望为 E(ξ)=0×C 204C 524+1×C 321∗C203C 524+2×C 322∗C202C 524+3×C 323∗C201C 524+4×C 324C 524 =1C 524(32×20×19×3+32×31×19×10+32×31×30×10+32×31×29×5) =3213.9. 已知函数y =f(x)单调递增,函数y =f(x −2)的图象关于点(2, 0)对称,实数x ,y 满足不等式f(x 2−2x)+f(−2y −y 2)≤0,则z =x 2+y 2−6x +4y +14的最小值为( ) A.32B.23C.3√22D.√22【答案】 A【考点】抽象函数及其应用 简单线性规划 【解析】根据题意,分析可得函数f(x)为奇函数,结合函数的单调性分析可得f(x 2−2x)≤f(2y +y 2)⇒x 2−2x ≤y 2+2y ,变形可得:(x +y)(x −y −2)≤0,即{x +y ≤0x −y −2≥0 或{x +y ≥0x −y −2≤0 ,由二元一次不等式的几何意义分析其可行域,又由z =x 2+y 2−6x +4y +14=(x −3)2+(y +2)2+1,设m =(x −3)2+(y +2)2,其几何意义为可行域中任意一点到点(3, −2)距离的平方,求出m 的最小值,计算即可得答案. 【解答】根据题意,因为函数y =f(x −2)的图象关于点(2, 0) 对称,所以函数y =f(x)的图象关于点(0, 0)对称, 即函数f(x)是定义在R 上的奇函数,则f(x 2−2x)+f(−2y −y 2)≤0⇒f(x 2−2x)≤−f(−2y −y 2) ⇒f(x 2−2x)≤f(2y +y 2),又由函数y =f(x)单调递增,则f(x 2−2x)≤f(2y +y 2) ⇒x 2−2x ≤y 2+2y ,变形可得:(x +y)(x −y −2)≤0, 即{x +y ≤0x −y −2≥0 或{x +y ≥0x −y −2≤0, 所以可得其可行域,如图所示:z =x 2+y 2−6x +4y +14=(x −3)2+(y +2)2+1,设m =(x −3)2+(y +2)2,其几何意义为可行域中任意一点到点(3, −2)距离的平方,分析可得:m的最小值为(√1+1)2=12,则z=x2+y2−6x+4y+14的最小值为12+1=32;故选:A.10. 一个正四面体的四个面上分别标有数字1,2,3,4.掷这个四面体四次,令第i次得到的数为a i,若存在正整数k使得∑=i=1k ai 4的概率p=mn,其中m,n是互质的正整数,则log5m−log4n的值为()A.1B.−1C.2D.−2【答案】B【考点】模拟方法估计概率【解析】当k=1时,∑=i=1k ai 4的概率p1=14,当k=2时,∑=i=1k ai4的概率p2=34×4=316,当k=3时,∑=i=1k ai 4的概率p=34×4×4=364,当k=4时,∑=i=1k ai4的概率p=14×4×4×4=1256,从而求出∑=i=1k ai4的概率p=mn=125256,由此能求出log5m−log4n的值.【解答】正四面体的四个面上分别标有数字1,2,3,4.掷这个四面体四次,令第i次得到的数为a i,存在正整数k使得∑=i=1k ai 4的概率p=mn,∴当k=1时,∑=i=1k ai 4的概率p1=14,当k=2时,∑=i=1k ai 4的概率p2=34×4=316,当k=3时,∑=i=1k ai 4的概率p=34×4×4=364,当k=4时,∑=i=1k ai 4的概率p=14×4×4×4=1256,∴得∑=i=1k ai 4的概率p=mn=14+316+664+1256=125256,其中m,n是互质的正整数,∴m=125,n=256,则log5m−log4n=log5125−log4256=3−4=−1.11. 已知抛物线y2=2px(p>0),过定点M(m, 0)(m>0,且m≠p2)作直线AB交抛物线于A,B两点,且直线AB不垂直x轴,在A,B两点处分别作该抛物线的切线l1,l2,设l1,l2的交点为Q,直线AB的斜率为k,线段AB的中点为P,则下列四个结论:①x A⋅x B=m2;②当直线AB绕着M点旋转时,点Q的轨迹为抛物线;③当m=p8,k>0时,直线PQ经过抛物线的焦点;④当m=8p,k<0时,直线PQ垂直y轴.其中正确的个数有()A.0个B.1个C.2个D.3个【答案】C【考点】抛物线的性质【解析】设Q点坐标,根据导数的几何意义,即可求得直线AB的方程,代入即可求得x0=−m,即可求得直线AB的方程,代入抛物线方程,利用韦达定理及中点坐标公式,即可求得x A x B=m2,y P=y0.即可判断①④正确.【解答】设Q(x0, y0),则直线AB的方程:y0y=p(x0+x),直线AB过点M(m, 0),所以y0×0=p(x0+m),解得x0=−m,所以直线AB:y0y=p(x0+x),x=y0y p−x0,由y2=2px(p>0),所以y2=2p(y0y p−x0)=2y0y−2px0,所以y2−2y0y+2px0=0,即y2−2y0y−2pm=0,y A+y B=2y0,y A y B=−2pm,所以x A x B=(y A y B)24p2=(−2mp)24p2=m2,则y P=y A+y B2=y0,∴y P=y0.故PQ垂直y轴,故①④正确,12. 设函数f(x)在R上存在导函数f′(x),对任意的x∈R有f(x)+f(−x)=2x2,且当x∈[0, +∞)时,f′(x)>2x.若f(2e−a)−f(a)<4e(e−a),g(x)=e x−ax的零点有()A.0个B.1个C.2个D.3个【答案】C【考点】函数零点的判定定理【解析】令ℎ(x)=f(x)−x2,ℎ(−x)=f(−x)−x2,由ℎ(−x)+ℎ(x)=0,可得函数ℎ(x)为奇函数.利用导数可得函数ℎ(x)在R 上是增函数,f(2e −a)−f(a)<4e(e −a),即ℎ(2e −a)<ℎg(a),解得a ≥e ,再令g(x)=e x−ax =0,分离参数,可得a =e x x,φ(x)=e x x,利用导数,求出当x >0时,φ(x)min =φ(1)=e ,即可判断函数零点的个数. 【解答】当x >0时,令x >1时,φ′(x)>0,函数φ(x)单调递增, 令0<x <1时,φ′(x)<0,函数φ(x)单调递减, ∴ φ(x)min =φ(1)=e ,(1)当x <0时,φ′(x)<0,函数φ(x)单调递减, ∵ a ≥e , ∴ 直线y =a 与y =e x x有两个交点,∴ g(x)=e x −ax 的零点有2个, 故选:C .二、填空题(每题5分,满分20分,将答案填在答题纸上)平行四边形ABCD 中,AB =3,AD =5,|DA →+DC →|=4,则BA →∗AD →=________. 【答案】 −9【考点】平面向量数量积的性质及其运算律 【解析】推导出BD =4,AB ⊥BD ,cos <BA →,AD →>=−cos∠BAD =−35,由此能求出BA →∗AD →.【解答】∵ 平行四边形ABCD 中,AB =3,AD =5,|DA →+DC →|=4,如图, ∴ BD =4,∴ AB 2+DB 2=AD 2,∴ AB ⊥BD , ∴ cos <BA →,AD →>=−cos∠BAD =−35,∴ BA →∗AD →=|BA →|⋅|AD →|⋅cos <BA →,AD →>=3×5×(−35)=−9.(2x 2−1)(1x −2x)7的展开式中含x 7的项的系数是________. 【答案】 1024 【考点】二项式定理的应用 【解析】利用二项式定理把(1x −2x)7展开,可得(2x 2−1)(1x −2x)7的展开式中含x 7的项的系数. 【解答】∵ (2x 2−1)(1x −2x)7=(2x 2−1)(1x 7−14⋅1x 5+841x 3−280⋅1x +560x −672x 3+448x 5−128x 7),故它的展开式中含x 7的项的系数是2×448+128=1024,棱长为1的正方体ABCD −EFGH 如图所示,M ,N 分别为直线AF ,BG 上的动点,则线段MN 长度的最小值为________.【答案】√33【考点】棱柱的结构特征 【解析】线段MN 长度的最小值是异面直线AF 与BG 间的距离,以H 为原点,HE 为x 轴,HG 为y 轴,HD 为z 轴,建立空间直角坐标系,利用向量法能求出线段MN 长度的最小值. 【解答】∵ 棱长为1的正方体ABCD −EFGH 如图所示,M ,N 分别为直线AF ,BG 上的动点, ∴ 线段MN 长度的最小值是异面直线AF 与BG 间的距离,以H 为原点,HE 为x 轴,HG 为y 轴,HD 为z 轴,建立空间直角坐标系, A(1, 0, 1),F(1, 1, 0),B(1, 1, 1),G(0, 1, 0), AF →=(0, 1, −1),AB →=(0, 1, 0), ∴ 线段MN 长度的最小值:d =|AB →|sin <AB →,AF →>=|AB →|√1−[cos <AB →,AF →>]2=1×√1−(1×√2)2=√22.如图所示,已知直线AB 的方程为x a +yb =1,⊙C ,⊙D 是相外切的等圆,且分别与坐标轴及线段AB 相切,|AB|=c ,则两圆半径r =________(用常数a ,b ,c 表示)【答案】 ac +bc −c 22(a +b)【考点】直线与圆的位置关系 【解析】由题意画出图形,得cos∠OAB =ac ,sin∠OAB =bc ,设AF =x ,BE =y ,列关于a ,b ,c ,r ,x ,y 的方程组,整体求解得答案. 【解答】 如图,由已知得,cos∠OAB =ac ,sin∠OAB =bc , 设AF =x ,BE =y , 则{x +y +2r =cr +2r ∗ac+x =a r +2r ∗bc +y =b, ②+③得:2r +2r(ac +bc )+x +y =a +b ④. 把①代入④,得2r(ac +b c )+c =a +b , ∴ r =ac+bc−c 22(a+b).三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)设数列{a n }的前n 项和为S n ,已知S n =n 2+n +2. (1)求{a n }的通项公式;(2)若数列{b n }满足b n =a n ∗2a n ,求{b n}前n 项和T n .【答案】S n =n 2+n +2,S n−1=(n −1)2+(n −1)+2(n ≥2), ∴ a n =S n −S n−1=2n(n ≥2),a 1=S 1=4. 故a n ={4(n =1)2n(n ≥2,n ∈N ∗) . b n =a n ∗2a n={2n ∗2a n =2n ∗4n (n ≥2,n ∈N ∗)4∗24=64(n =1), 当n ≥2时,T n =b 1+b 2+⋯+b n =64+2(2×42+3×43+⋯+n ×4n ), 令P n =2×42+3×43+⋯+n ×4n ,∴ 4P n =2×43+3×44+⋯+(n −1)×4n +n ×4n+1, −3P n =2×42+43+44−n ×4n+1=32+43(4n−2−1)4−1−n ×4n+1,∴ P n =−323−4n+1−439+n×4n+13,故T n =64+3P n =(6n−2)∗4n+1+5129(n ≥2,n ∈N ∗),又T 1=64满足上式, ∴ T n =(6n−2)∗4n+1+5129(n ∈N ∗).【考点】 数列的求和 数列递推式 【解析】(1)S n =n 2+n +2,S n−1=(n −1)2+(n −1)+2(n ≥2),相减可得a n =S n −S n−1=2n(n ≥2),a 1=S 1.即可得出. (2)b n =a n ∗2a n={2n ∗2a n =2n ∗4n (n ≥2,n ∈N ∗)4∗24=64(n =1),当n ≥2时,T n =b 1+b 2+⋯+b n =64+2(2×42+3×43+⋯+n ×4n ),令P n =2×42+3×43+⋯+n ×4n ,利用错位相减法即可得出. 【解答】S n =n 2+n +2,S n−1=(n −1)2+(n −1)+2(n ≥2), ∴ a n =S n −S n−1=2n(n ≥2),a 1=S 1=4. 故a n ={4(n =1)2n(n ≥2,n ∈N ∗) . b n =a n ∗2a n={2n ∗2a n =2n ∗4n (n ≥2,n ∈N ∗)4∗24=64(n =1), 当n ≥2时,T n =b 1+b 2+⋯+b n =64+2(2×42+3×43+⋯+n ×4n ), 令P n =2×42+3×43+⋯+n ×4n ,∴ 4P n =2×43+3×44+⋯+(n −1)×4n +n ×4n+1, −3P n =2×42+43+44−n ×4n+1=32+43(4n−2−1)4−1−n ×4n+1,∴ P n =−323−4n+1−439+n×4n+13,故T n =64+3P n =(6n−2)∗4n+1+5129(n ≥2,n ∈N ∗),又T 1=64满足上式, ∴ T n =(6n−2)∗4n+1+5129(n ∈N ∗).底面OABC 为正方形的四棱锥P −OABC ,且PO ⊥底面OABC ,过OA 的平面与侧面PBC 的交线为DE ,且满足S △PDE :S △PBC =1:4. (1)证明:PA // 平面OBD ;(2)当S 2四边形OABC =3S 2△POB 时,求二面角B −OE −C 的余弦值.【答案】∵ 底面OABC 为正方形,且PO ⊥底面OABC ,∴ PO ,OA ,OC 两两垂直,建立如图所示的空间直角坐标系O −xyz , 设OA =OC =2a ,OP =2b ,则O(0, 0, 0),C(0, 2a, 0),B(2a, 2a, 0),F(a, a, 0),P(0, 0, 2b),E(a, a, b). ∵ PO ⊥底面OABC ,CF ⊂底面OABC ,∴ CF ⊥PO .∵ 四边形OABC 为正方形,∴ AC ⊥OB ,∴ CF ⊥平面OBE , ∴ 平面OBE 的一个法向量为CF →=(a, −a, 0). 设平面OEC 的一个法向量为m →=(x, y, z), 而OC →=(0, 2a, 0),OE →=(a, a, b).由{m →∗OC →=0m →∗OE →=0,得{0∗x +2a ∗y +0∗z =0ax +ay +bz =0 , 取得z =−a ,得m →=(b, 0, −a)为平面OCE 的一个法向量. 设二面角B −OE −C 的大小为θ, 由S2四边形OABC=2S 2△POB ,得PO =√63OA ,∴ ba=√63,∴ cosθ=|OF →∗m →||OF →|∗|m →|=√a 2+a 2∗√a 2+b 2=√55, ∴ 二面角B −OE −C 的余弦值为√55.【考点】二面角的平面角及求法 【解析】(1)推导出OA // BC 从而OA // 平面PBC ,进而DE // OA ,再由OA // BC ,得DE // BC .连接AC 交OB 于F 点,连DF .则DF // PA ,由此能证明PA // 平面OBD . (2)推导出PO ,OA ,OC 两两垂直,建立空间直角坐标系O −xyz ,利用向量法能求出二面角B −OE −C 的余弦值. 【解答】∵ 底面OABC 为正方形,且PO ⊥底面OABC ,∴ PO ,OA ,OC 两两垂直,建立如图所示的空间直角坐标系O −xyz , 设OA =OC =2a ,OP =2b ,则O(0, 0, 0),C(0, 2a, 0),B(2a, 2a, 0),F(a, a, 0),P(0, 0, 2b),E(a, a, b). ∵ PO ⊥底面OABC ,CF ⊂底面OABC ,∴ CF ⊥PO .∵ 四边形OABC 为正方形,∴ AC ⊥OB ,∴ CF ⊥平面OBE , ∴ 平面OBE 的一个法向量为CF →=(a, −a, 0). 设平面OEC 的一个法向量为m →=(x, y, z), 而OC →=(0, 2a, 0),OE →=(a, a, b).由{m →∗OC →=0m →∗OE →=0,得{0∗x +2a ∗y +0∗z =0ax +ay +bz =0 , 取得z =−a ,得m →=(b, 0, −a)为平面OCE 的一个法向量. 设二面角B −OE −C 的大小为θ, 由S2四边形OABC=2S 2△POB ,得PO =√63OA ,∴ ba=√63,∴ cosθ=|OF →∗m →||OF →|∗|m →|=√a 2+a 2∗√a 2+b 2=√55, ∴ 二面角B −OE −C 的余弦值为√55.深受广大球迷喜爱的某支欧洲足球队.在对球员的使用上总是进行数据分析,为了考察甲球员对球队的贡献,现作如下数据统计:(1)求b,c,d,e,n的值,据此能否有97.5%的把握认为球队胜利与甲球员参赛有关;(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:0.2,0.5,0.2,0.1,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为:0.4,0.2,0.6,0.2.则:1)当他参加比赛时,求球队某场比赛输球的概率;2)当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率;3)如果你是教练员,应用概率统计有关知识.该如何使用乙球员?附表及公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d).【答案】b=8,c=8,d=20,e=20,n=50,K2=50×(22×12−8×8)230×20×30×20≈5.556>5.024,∴有97.5%的把握认为球队胜利与甲球员参赛有关;1)设A1表示“乙球员担当前锋”;A2表示“乙球员担当中锋”;A3表示“乙球员担当后卫”;A4表示“乙球员担当守门员”;B表示“球队输掉某场比赛”,则P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)+P(A4)P(B|A4)=0.2×0.4+0.5×0.2+0.2×0.6+0.1×0.2=0.32;2)P(A1|B)=P(A1B)P(B)=0.2×0.40.32=0.25.3)因为P(A1|B):P(A2|B):P(A3|B):P(A4|B)=0.08:0.10:0.12:0.02,所以,应该多让乙球员担任守门员,来扩大赢球场次.【考点】条件概率与独立事件【解析】(1)分别求出b,c,d,e,n的值,求出K2的值,利用临界值表可得出结论;(2)1)根据条件概率公式分别计算出乙球员在担任“前锋”,“中锋”,“后卫”,“守门员”时输球的概率,最后相加得到已乙球员参加比赛时,球队输球的概率;2)利用乙球员担任前锋时输球的概率P(A 1|B)除以球队输球的概率P(B)即可得出答案;3)分别计算出乙队员在担任“前锋”,“中锋”,“后卫”,“守门员”时输球的概率,以输球概率最小时,乙球员担任的角色,作为教练员使用乙队员的依据. 【解答】b =8,c =8,d =20,e =20,n =50,K 2=50×(22×12−8×8)230×20×30×20≈5.556>5.024,∴有97.5%的把握认为球队胜利与甲球员参赛有关;1)设A 1表示“乙球员担当前锋”;A 2表示“乙球员担当中锋”;A 3表示“乙球员担当后卫”;A 4表示“乙球员担当守门员”;B 表示“球队输掉某场比赛”,则P(B)=P(A 1)P(B|A 1)+P(A 2)P(B|A 2)+P(A 3)P(B|A 3)+P(A 4)P(B|A 4)=0.2×0.4+0.5×0.2+0.2×0.6+0.1×0.2=0.32; 2)P(A 1|B)=P(A 1B)P(B)=0.2×0.40.32=0.25.3)因为P(A 1|B):P(A 2|B):P(A 3|B):P(A 4|B)=0.08:0.10:0.12:0.02,所以,应该多让乙球员担任守门员,来扩大赢球场次. 已知椭圆x 2a2+y 2b 2=1(a >b >1)的离心率为12,左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,⊙F 2:(x −c)2+y 2=1与该椭圆有且只有一个公共点. (1)求椭圆标准方程;(2)过点P(4c, 0)的直线与⊙F 2相切,且与椭圆相交于A ,B 两点,求证:F 2A ⊥F 2B ;(3)过点P(4c, 0)的直线l 与⊙F 1:(x +1)2+y 2=r 2(r >1)相切,且与椭圆相交于A ,B 两点,试探究k F 2A ,k F 2B 的数量关系. 【答案】∵ ⊙F 2与椭圆有且只有一个公共点,∴ 公共点为(a, 0)或(−a, 0),若公共点为(−a, 0)时,则a +c =1,又ca =12,解得a =23<1,与a >1矛盾,故公共点为(a, 0).∴ a −c =r =1,又e =ca =12,∴ a =2,c =1.b 2=a 2−c 2=3. 反之,当c =1时,联立{(x −1)2+y 2=1x 24+y 23=1,解得{x =2y =0满足条件.∴ 椭圆标准方程为x 24+y 23=1.证明:∵ P(4, 0),设过P(4, 0)的直线l:x =my +4, 联立{x =my +4x 24+y 23=1,得(4+3m 2)y 2+24my +36=0.设A(x 1, y 1),B(x 2, y 2),则y 1+y 2=−24m4+3m 2,y 1y 2=364+3m 2,又F 2(1, 0), ∴ F 2A →⋅F 2B →=(x 1−1)(x 2−1)+y 1y 2=(1+m 2)y 1y 2+3m(y 1+y 2)+9=36(1+m 2)4+3m 2−72m 24+3m 2+9=72−9m 24+3m 2.由l:x =my +4与⊙F 2:(x −1)2+y 2=1相切得:2=1,m 2=8, ∴ F 2A →⋅F 2B →=0,∴ F 2A →⊥F 2B →.即:F 2A ⊥F 2B . 猜:k F 2A +k F 2B =0.证明如下: 由(2)得k F 2A +k F 2B =y 1x1−1+y 2x 2−1=2my 1y 2+3(y 1+y 2)m 2y 1y 2+3m(y 1+y 2)+9.∵ 2my 1y 2+3(y 1+y 2)=2m ×364+3m 2−72m4+3m 2=0,∴ k F 2A +k F 2B =0. 【考点】 椭圆的离心率 【解析】(1)由⊙F 2与椭圆有且只有一个公共点,可得公共点为(a, 0)或(−a, 0),若公共点为(−a, 0)时,得出矛盾,故公共点为(a, 0).因此a −c =r =1,又e =ca =12,b 2=a 2−c 2.即可得出.(2)P(4, 0),设过P(4, 0)的直线l:x =my +4,联立{x =my +4x 24+y 23=1 ,得(4+3m 2)y 2+24my +36=0.设A(x 1, y 1),B(x 2, y 2),又F 2(1, 0),利用数量积运算性质与根及其系数的关系可得:F 2A →⋅F 2B →=(x 1−1)(x 2−1)+y 1y 2=(1+m 2)y 1y 2+3m(y 1+y 2)+9.由l:x =my +4与⊙F 2:(x −1)2+y 2=1相切得:2=1,解得m 2=8,即可得出F 2A →⋅F 2B →=0.(3)猜:k F 2A +k F 2B =0.分析如下:利用斜率计算公式、根与系数的关系即可得出.【解答】∵ ⊙F 2与椭圆有且只有一个公共点,∴ 公共点为(a, 0)或(−a, 0),若公共点为(−a, 0)时,则a +c =1,又ca =12,解得a =23<1,与a >1矛盾,故公共点为(a, 0).∴ a −c =r =1,又e =ca =12,∴ a =2,c =1.b 2=a 2−c 2=3. 反之,当c =1时,联立{(x −1)2+y 2=1x 24+y 23=1,解得{x =2y =0满足条件.∴ 椭圆标准方程为x 24+y 23=1.证明:∵ P(4, 0),设过P(4, 0)的直线l:x =my +4, 联立{x =my +4x 24+y 23=1,得(4+3m 2)y 2+24my +36=0.设A(x 1, y 1),B(x 2, y 2),则y 1+y 2=−24m4+3m 2,y 1y 2=364+3m 2,又F 2(1, 0), ∴ F 2A →⋅F 2B →=(x 1−1)(x 2−1)+y 1y 2=(1+m 2)y 1y 2+3m(y 1+y 2)+9=36(1+m 2)4+3m 2−72m 24+3m 2+9=72−9m 24+3m 2.由l:x =my +4与⊙F 2:(x −1)2+y 2=1相切得:2=1,m 2=8, ∴ F 2A →⋅F 2B →=0,∴ F 2A →⊥F 2B →.即:F 2A ⊥F 2B . 猜:k F 2A +k F 2B =0.证明如下: 由(2)得k F 2A +k F 2B =y 1x1−1+y 2x 2−1=2my 1y 2+3(y 1+y 2)m 2y 1y 2+3m(y 1+y 2)+9.∵ 2my 1y 2+3(y 1+y 2)=2m ×364+3m 2−72m4+3m 2=0, ∴ k F 2A +k F 2B =0.已知函数f(x)=√xax .(1)讨论函数f(x)的零点个数;(2)已知g(x)=(2−x)e √x ,证明:当x ∈(0, 1)时,g(x)−f(x)−ax −2>0. 【答案】√xf(x)=lnx −a √x ⋅x .令x 32=t ,∴ x =t 23(t >0).令ℎ(t)=lnt −32at ,则函数y =ℎ(t)与y =f(x)的零点个数情况一致 .ℎ(t)=1t−32a .(i)a ≤0时,ℎ′(t)>0.∴ ℎ(t)在(0, +∞)上单调递增. 又ℎ(1)=−32a ≥0,ℎ(ea+1a)=a +1a−32aea+1a≤a +1a−32a ⋅1e 2=(1−32e 2)a +1a<0,∴ 有1个零点.(ii)a >0时,ℎ(t)在(0,23a )上单调递增,(23a ,+∞)上单调递减. ∴ ℎ(t)max =ℎ(23a )=ln 23a −1.①ln 23a <1即a >23e 时,ℎ(23a )<0,无零点. ②ln 23a =1即a =23e 时,ℎ(23a )=0,1个零点.③ln 23a >1即0<a <23e 时,ℎ(23a )>0,又23a >e >1,ℎ(1)=−32a <0.又23a −49a 2=23a (1−23a )<23a (1−e)<0,ℎ(49a 2)=ln(23a )2−32a ⋅49a 2=21n 23a −23a , 令φ(a)=21n 23a −23a ,φ′(a)=2⋅3a 2(−23⋅1a 2)+23a 2=2−6a 3a 2>0,∴ φ(a)在(0,23e )上单调递增,∴ φ(a)<φ(23e )=2−e <0, ∴ 两个零点.综上:当a≤0或a=23e 时,1个零点;当0<a<23e时,2个零点;当a>23e时,0个零点.证明要证g(x)−f(x)−ax−2>0,只需证√x+2<(2−x)e√x.令√x=m∈(0,1),只需证:21nmm+2<(2−m2)e m.令l(m)=(2−m2)e m,l′(m)=(−m2−2m+2)e m,∴l(m)在(0,√3−1)上单调递增,在(√3−1,1)上单调递减,∴l(m)>l(1)=e且l(m)>l(0)=2.令t(m)=lnmm ,t′(m)=1−lnmm2>0,∴t(m)在(0, 1)上单调递增,∴t(m)<t(2)=0,∴21nmm+2<2,故g(x)−f(x)−ax−2>0.【考点】利用导数研究函数的单调性函数零点的判定定理【解析】(1)√xf(x)=lnx−a√x⋅x.令x32=t,问题转化为求函数令ℎ(t)=lnt−32at,零点的个数问题,先求导,再分类讨论,根据函数零点存在定理即可求出,(2)利用分析法,和构造函数法,借用导数,即可证明.【解答】√xf(x)=lnx−a√x⋅x.令x32=t,∴x=t23(t>0).令ℎ(t)=lnt−32at,则函数y=ℎ(t)与y=f(x)的零点个数情况一致.ℎ(t)=1t −32a.(i)a≤0时,ℎ′(t)>0.∴ℎ(t)在(0, +∞)上单调递增.又ℎ(1)=−32a≥0,ℎ(e a+1a)=a+1a−32ae a+1a≤a+1a−32a⋅1e2=(1−32e2)a+1a<0,∴有1个零点.(ii)a>0时,ℎ(t)在(0,23a )上单调递增,(23a,+∞)上单调递减.∴ℎ(t)max=ℎ(23a )=ln23a−1.①ln23a <1即a>23e时,ℎ(23a)<0,无零点.②ln 23a =1即a =23e 时,ℎ(23a )=0,1个零点.③ln 23a >1即0<a <23e 时,ℎ(23a )>0,又23a >e >1,ℎ(1)=−32a <0.又23a −49a 2=23a (1−23a )<23a (1−e)<0,ℎ(49a 2)=ln(23a )2−32a ⋅49a 2=21n 23a −23a , 令φ(a)=21n 23a −23a ,φ′(a)=2⋅3a 2(−23⋅1a2)+23a2=2−6a 3a 2>0,∴ φ(a)在(0,23e)上单调递增,∴ φ(a)<φ(23e )=2−e <0, ∴ 两个零点.综上:当a ≤0或a =23e 时,1个零点;当0<a <23e 时,2个零点;当a >23e 时,0个零点. 证明要证g(x)−f(x)−ax −2>0, 只需证√x+2<(2−x)e √x .令√x =m ∈(0,1), 只需证:21nm m+2<(2−m 2)e m .令l(m)=(2−m 2)e m ,l ′(m)=(−m 2−2m +2)e m ,∴ l(m)在(0,√3−1)上单调递增,在(√3−1,1)上单调递减, ∴ l(m)>l(1)=e 且l(m)>l(0)=2. 令t(m)=lnm m,t ′(m)=1−lnm m 2>0,∴ t(m)在(0, 1)上单调递增, ∴ t(m)<t(2)=0, ∴21nm m+2<2,故g(x)−f(x)−ax −2>0.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以原点为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的参数方程为{x =2cosθy =sinθ(θ为参数),直线l 的极坐标方程为ρ=2cosθ−2sinθ.(1)求曲线C 和直线l 的直角坐标方程,并求出曲线C 上到直线l 的距离最大的点的坐标,(2)求曲线C 的极坐标方程,并设A ,B 为曲线C 上的两个动点,且OA ∗OB →=0,求|AB →|2的取值范围. 【答案】∵ 曲线C 的参数方程为{x =2cosθy =sinθ(θ为参数),∴曲线C的直角坐标方程为:x24+y2=1,∵直线l的极坐标方程为ρ=2cosθ−2sinθ.∴直线l的普通方程为:x−2y−2=0,则曲线C上点到直线l的距离:d=√5=√5=√5√2sin(θ−π4)+1brack,当θ=3π4时,d最大,此时,P(−√2,√22).曲线C的极坐标方程为ρ2cos2θ+4ρ2sin2θ=4,即ρ2=4cos2θ+4sin2θ=43sin2θ+1.设A(ρ1,θ),B(ρ2,θ+π2),则|AB|2=ρ12+ρ22=43sin2θ+1+43cos2θ+1=2094sin22θ+4∈[165,5].∴|AB→|2的取值范围是[165, 5].【考点】圆的极坐标方程【解析】(1)曲线C的参数方程消去参数,能求出曲线C的直角坐标方程;由直线l的极坐标方程能求出直线l的普通方程,由此能求出曲线C上点到直线l的距离最大的点的坐标.(2)曲线C的极坐标方程转化为ρ2=4cos2θ+4sin2θ=43sin2θ+1.设A(ρ1,θ),B(ρ2,θ+π2),能求出|AB→|2的取值范围.【解答】∵曲线C的参数方程为{x=2cosθy=sinθ(θ为参数),∴曲线C的直角坐标方程为:x24+y2=1,∵直线l的极坐标方程为ρ=2cosθ−2sinθ.∴直线l的普通方程为:x−2y−2=0,则曲线C上点到直线l的距离:d=√5=√5=√5√2sin(θ−π4)+1brack,当θ=3π4时,d最大,此时,P(−√2,√22).曲线C的极坐标方程为ρ2cos2θ+4ρ2sin2θ=4,即ρ2=4cos2θ+4sin2θ=43sin2θ+1.设A(ρ1,θ),B(ρ2,θ+π2),则|AB|2=ρ12+ρ22=43sin2θ+1+43cos2θ+1=2094sin22θ+4∈[165,5].∴|AB→|2的取值范围是[16, 5].5[选修4-5:不等式选讲]已知函数g(x)=|2x+1|−|x−m|.(1)当m=3时,求不等式g(x)>4的解集;(2)若g(x)≥|x−4|的解集包含[3, 5],求实数m的取值范围.【答案】解:(1)当m=3时,g(x)>4,即|2x+1|−|x−3|>4.①当x≥3时,不等式化为2x+1−x+3>4,解得x≥3.≤x<3时,不等式化为2x+1+x−3>4,②当−12解得2<x<3.③当x<−1时,不等式化为−2x−1+x−3>4,2解得x<−8.综上,不等式的解集为{x|x<−8或x>2}.(2)g(x)≥|x−4|的解集包含[3, 5]⇔g(x)≥|x−4|在[3, 5]上恒成立⇔|2x+1|−|x−m|≥|x−4|在[3, 5]上恒成立.①当3≤x≤4时,g(x)≥|x−4|恒成立⇔2x+1≥|x−m|+4−x恒成立⇔3−3x≤x−m≤3x−3恒成立,解得−3≤m≤9.②当4<x≤5时,g(x)≥|x−4|恒成立⇔|2x+1|≥|x−m|+x−4恒成立⇔−x−5≤x−m≤x+5恒成立,解得−5≤m≤11.所以,实数m的取值范围为{m|−3≤m≤9}.【考点】绝对值不等式的解法与证明【解析】(1)分段去绝对值,分别求出每个不等式组的解集,再取并集即得所求.(2)g(x)≥|x−4|的解集包含[3, 5]⇔g(x)≥|x−4|在[3, 5]上恒成立⇔|2x+1|−|x−m|≥|x−4|在[3, 5]上恒成立.1)当3≤x≤4时,⇔3−3x≤x−m≤3x−3恒成立,解得m.2)当4<x≤5时,⇔|2x+1|≥|x−m|+x−4恒成立解得−m.【解答】解:(1)当m=3时,g(x)>4,即|2x+1|−|x−3|>4.①当x≥3时,不等式化为2x+1−x+3>4,解得x≥3.≤x<3时,不等式化为2x+1+x−3>4,②当−12解得2<x<3.③当x<−1时,不等式化为−2x−1+x−3>4,2解得x<−8.综上,不等式的解集为{x|x<−8或x>2}.(2)g(x)≥|x−4|的解集包含[3, 5]⇔g(x)≥|x−4|在[3, 5]上恒成立⇔|2x+1|−|x−m|≥|x−4|在[3, 5]上恒成立.①当3≤x≤4时,g(x)≥|x−4|恒成立⇔2x+1≥|x−m|+4−x恒成立⇔3−3x≤x−m≤3x−3恒成立,解得−3≤m≤9.②当4<x≤5时,g(x)≥|x−4|恒成立⇔|2x+1|≥|x−m|+x−4恒成立⇔−x−5≤x−m≤x+5恒成立,解得−5≤m≤11.所以,实数m的取值范围为{m|−3≤m≤9}.。
2018年普通高等学校招生全国统一考试最后一卷 理科数学 含解析 精品
注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知a ∈R ,i a 的值为( ) A .1- B .0C .1D .2【答案】C【解析】 则10a -=,即1a =,故选C .2.设()()()2i 3i 35i x y +-=++(i 为虚数单位),其中x ,y 是实数,则i x y +等于( ) A .5 B C .D .2【答案】A 【解析】由()()()2i 3i 35i x y +-=++,得()()632i 35i x x y ++-=++,∴63325x x y +=-=+⎧⎨⎩,解得34x y =-=⎧⎨⎩,∴i 34i 5x y +=-+=.选A . 3.为了从甲、乙两人中选一人参加数学竞赛,老师将二人最近的6次数学测试的分数进行统计,甲、乙两人的得分情况如茎叶图所示,若甲、乙两人的平均成绩分别是x 甲,x 乙,则下列说法正确的是() A .x x >甲乙,乙比甲成绩稳定,应选乙参加比赛 B .x x >甲乙,甲比乙成绩稳定,应选甲参加比赛 C .x x <甲乙,甲比乙成绩稳定,应选甲参加比赛 D .x x <甲乙,乙比甲成绩稳定,应选乙参加比赛 【答案】D【解析】由茎叶图可知,甲的平均数是727879858692826+++++=,乙的平均数是788688889193876+++++=,所以乙的平均数大于甲的平均数,即x x <甲乙,从茎叶图可以看出乙的成绩比较稳定,应选乙参加比赛,故选D . 4.正方形ABCD 中,点E ,F 分别是DC ,BC 的中点,那么EF =()A .11+22AB AD B .1122AB AD --C .1122AB AD -+D .1122AB AD -【答案】D【解析】因为点E 是CD 的中点,所以12EC AB = ,点F 是BC 的中点,所以1122CF CB AD ==-,所以1122EF EC CF AB AD =+=-,故选D .5.已知双曲线()222210,0x y a b a b-=>>左焦点为F ,过点F 与x 轴垂直的直线与双曲线的两条渐近线分别交于点M ,N ,若OMN △的面积为20,其中O 是坐标原点,则该双曲线的标准方程为( )A .22128x y -=B .22148x y -=C .22182x y -=D .22184x y -=【答案】A【解析】由c a =225c a =,∴2225a b a +=,故224b a=.∴双曲线的渐近线方程为2y x =±,由题意得(),2M c c -,(),2N c c --,∴14202OMN S c c =⋅⋅=△,解得210c =,∴22a =,28b =, ∴双曲线的方程为22128x y -=.选A . 6.一个几何体的视图如下图所示,则该几何体的外接球的表面积为( )此卷只装订不密封班级姓名准考证号 考场号 座位号A .4πB .5πC .8πD .9π【答案】D【解析】由三视图可知几何体的原图如下图所示:在图中AB ⊥平面BCD ,BC BD ⊥,2BC =,1BD=,2AB =.由于BCD △是直角三角形,所以它的外接圆的圆心在斜边的中点E,且122r CD ==, 设外接球的球心为O,如图所示,由题得222914R=+=, 所以该几何体的外接球的表面积为294π4π9π4R =⨯=,故选D . 7.执行如下图的程序框图,若输入a 的值为2,则输出S 的值为( )A .3.2B .3.6C .3.9D .4.9【答案】C【解析】运行框图中的程序可得①1k =,2122S =+=,不满足条件,继续运行; ②2k =,282=33S =+,不满足条件,继续运行;③3k =,8219+=346S =,不满足条件,继续运行; ④4k =,1921076530S =+=,不满足条件,继续运行; ⑤=5k ,1072117=+==3930630S .,满足条件,停止运行,输出=39S ..选C . 8.已知函数()f x 在定义域()0+∞,上是单调函数,若对于任意()0x ∈+∞,,都有()12f f x x ⎛⎫-= ⎪⎝⎭,则15f ⎛⎫ ⎪⎝⎭的值是() A .5 B .6 C .7 D .8【答案】B【解析】因为函数()f x 在定义域()0+∞,上是单调函数,且()12f f x x ⎛⎫-= ⎪⎝⎭,所以()1f x x -为一个常数,令这个常数为n ,则有()1f x n x -=,且()2f n =,将()2f n =代入上式可得()12f n n n=+=,解得1n =,所以()11f x x =+,所以165f ⎛⎫= ⎪⎝⎭,故选B . 9.己知m 、n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l n ⊥,l α⊄,l β⊄,则( )A .αβ∥,且l α∥,l β∥B .αβ⊥,且l α∥,l β∥C .α与β相交,且交线垂直于l D .α与β相交,且交线平行于l【答案】D 【解析】m ⊥平面α,直线l 满足l m ⊥,且l α⊄,所以l α∥,又n ⊥平面β,l n ⊥,l β⊄,所以l β∥, 由直线m 、n 为异面直线,且m ⊥平面α,n ⊥平面β,则α与β相交,否则,若αβ∥则推出m n ∥,与m 、n 异面矛盾, 故α与β相交,且交线平行于l .故选D .10.已知三棱柱111ABC A BC -的六个顶点都在球O 的球面上,球O 的表面积为194π,1AA ⊥平面ABC ,5AB =,12BC =,13AC =,则直线1BC 与平面11ABC 所成角的正弦值为( )A .52B .52C .26D .26【答案】C【解析】由5AB =,12BC =,13AC =,得222+AB BC AC =,∴AB BC ⊥.设球半径为R ,1AA x =,则由1AA ⊥平面ABC 知1AC 为外接球的直径,在1Rt A AC △中,有()222132x R +=,又24π194πR =,∴24194R =,∴5x =.∴11AB CS =△1252ABB S =△. 设点B 到平面11ABC 的距离为d , 则由1111B AB C C ABB V V --=,得112512332d ⨯=⨯⨯,∴2d =,又113BC =,∴直线1BC 与平面11ABC所成角正弦值为126d BC =C . 11.已知椭圆()222210x y a b a b+=>>的短轴长为2,上顶点为A ,左顶点为B ,1F ,2F 分别是椭圆的左、右焦点,且1F AB △的面积为22-P 为椭圆上的任意一点,则1211PF PF +的取值范围为( ) A .[]12, B.C.⎤⎦D .[]14, 【答案】D【解析】由已知得22b =,故1b =;∵1F AB △∴()12a c b -=,∴2a c -=()()2221a c a c a c b -=-+==, ∴2a =,c =()12212121111112444PF PF a PF PF PF PF PF PF PF PF ++===--+,又122PF ≤≤211144PF PF ≤-+≤,∴121114PF PF ≤+≤. 即1211PF PF +的取值范围为[]14,.选D . 12.已知定义在R 上的偶函数()f x 在[)0+∞,上单调递减,若不等式()()()ln 1ln 121f ax x f ax x f -+++--≥对任意[]13x ∈,恒成立,则实数a 的取值范围是()A .12ln 3e 3+⎡⎤⎢⎥⎣⎦,B .1e e ⎡⎤⎢⎥⎣⎦, C .1e⎡⎫+∞⎪⎢⎣⎭,D .[]2e ,【答案】A【解析】因为定义在R 上的偶函数()f x 在()0+∞,上递减,所以()f x 在()0-∞,上单调递增,若不等式()()()ln 1ln 121f ax x f ax x f -+++--≥对于[]13x ∈,上恒成立, 则()()2ln 121f ax x f --≥对于[]13x ∈,上恒成立, 即()()ln 11f ax x f --≥对于[]13x ∈,上恒成立,所以1ln 11ax x -≤--≤对于[]13x ∈,上恒成立,即0ln 2ax x ≤-≤对于[]13x ∈,上恒成立,令()ln g x ax x =-,则由()10g x a x =-=',求得1x a=, (1)当11a≤时,即0a <或1a ≥时,()0g x '≥在[]13,上恒成立,()g x 单调递增,因为最小值()10g a =≥,最大值()33ln32g a =-≤,所以2ln303a +≤≤,综上可得2ln313a +≤≤;(2)当13a ≥,即103a <≤时,()0g x '≤在[]13,上恒成立,()g x 单调递减,因为最大值()12g a =≤,最小值()33ln30g a =-≥,所以ln323a ≤≤,综合可得,a 无解,(3)当113a <<,即113a <<时,在11a ⎛⎫⎪⎝⎭,上,()0g x '<恒成立,()g x 为减函数, 在13a ⎛⎤⎥⎝⎦,上,()0g x '>恒成立,()g x 单调递增, 故函数最小值为111ln g a a ⎛⎫=- ⎪⎝⎭,()1g a =,()33ln3g a =-,()()312ln3g g a -=-,①若2ln 30a ->,即1a <<,因为()()310g g ->,则最大值为()33ln3g a =-,此时,由11ln0a -≥,()33ln32g a =-≤,求得12ln3e 3a +≤≤,综上可得1a <; ②若2ln 30a -≤,即11ln332a <≤=()()310g g -≤,则最大值为()1g a =,此时,最小值11ln 0a -≥,最大值为()12g a =≤,求得12e a ≤≤,综合可得1ea ≤≤综合(1)(2)(3)可得2ln313a +≤≤或1a <或1e a ≤≤,即12ln3e 3a +≤≤.故选A .第Ⅱ卷本卷包括必考题和选考题两部分。
最新-2018年安徽卷高考理科数学真题及答案 精品
2018年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间为120分钟。
参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一. 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz +i ·z =(A )-2 (B )-2i(C )2 (D )2i(2)“x <0”是ln (x+1)<0的(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34(B )55(C )78(D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。
已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214(C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为 (A )21 或-1 (B )2或21(C )2或1 (D )2或-1(6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x ≤π时,f(x)=0,则)623(πf = (A )21(B )23 (C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A)318+(C)21 (D)1821+(B)3(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有(A)24对(B)30对(C)48对(D)60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为(A)5或8 (B)-1或5 (C)-1或 -4 (D)-4或8 (10)在平面直角坐标系xOy中,已知向量啊a , b , | a | = | b | = 1 , a·b = 0,点Q满足=2( a + b ).曲线C={ P | =acosθ+ bsinθ ,0≤θ<2π},区域Ω={ P | 0 < r≤| | ≤ R , r < R },若C⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R(C )r ≤ 1 < R <3 (D )1 < r < 3 < R第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无........效.。
安徽省合肥市第一中学高三最后一卷数学答案和解析
合肥一中2023届高三最后一卷数学参考答案1.解析:因为][0,2,2,0A B ⎡⎤==-⎣⎦所以{}(){}0,0R A B A B x Rx ⋂=⋂=∈≠∣ð.故选:C .2.解析:因为1z =+,所以1z =,故z 的虚部是.故选:A .3.解析:5x =,故0.155 5.75 6.5y =⨯+=,经计算可得被污损的数据为6.4,答案选B .4.解析:曲线1:sin 2cos22C y x x π⎛⎫=+=⎪⎝⎭,把1:cos2C y x =上各点的横坐标缩短到原来的23,纵坐标不变,可得cos3y x =的图象;再把得到的曲线向左平移18π个单位长度,可以得到曲线25:cos 3cos 366C y x x ππ⎛⎫⎛⎫=--=+ ⎪ ⎪⎝⎭⎝⎭的图象,故选:C.5.解析:设直线1y =与y 轴交点为M ,由对称性,易知MFA 为直角三角形,且1602AFM AFB ∠∠== ,2AF FM ∴=,即1212p +=,去绝对值,解得23p =或6,p =∴抛物线的准线方程为13y =-或3y =-.故选:C.6.解析:一方面,考虑{}Ω,,,a b c d =含有等可能的样本点,{}{}{},,,,,A a b B a c C a d ===.则()()()()()()11,24P A P B P C P AB P BC P AC ======,故,,A B C 两两独立,但()1148P ABC =≠,故此时,()()()()P ABC P A P B P C =不成立.另一方面,考虑{}Ω1,2,3,4,5,6,7,8=含有等可能的样本点,{}{}{}1,2,3,4,3,4,5,6,4,6,7,8A B C ===.则()()()()11,28P A P B P C P ABC ====()111822P AC =≠⨯,故,A C 不独立,也即,,A B C 两两独立不成立.综上,“,,A B C 两两独立”是“()()()()P ABC P A P B P C =”的既不充分也不必要条件.故选D.7.解析:作AQ 垂直下半平面于,作AH x ⊥轴于H ,连接,HQ QB .设11,,,(0)A m B m m m m ⎛⎫⎛⎫--> ⎪ ⎪⎝⎭⎝⎭由题可知60AHQ ∠= ,则11,,22AH QH AQ m m m ===,两点间距离公式可得222144QB m m =+.22222144AB AQ QB m m =+=+≥,当且仅当22m =时,AB 取最小值2.故选A.8.解析:因为()1f x +为偶函数,所以()()11f x f x +=-+①,所以()f x 的图象关于直线1x =轴对称,因为()()11f x g x --=等价于()()11f x g x --=②,又()()31f x g x -+=③,②+③得()()132f x f x -+-=④,即()()132f x f x +++=,即()()22f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,又()()13g x f x =--,所以()g x 的周期也为4,故选项B 正确,①代入④得()()132f x f x ++-=,故()f x 的图象关于点()2,1中心对称,且()21f =,故选项A 正确,易得()()01,41f f ==,且()()132f f +=,故()()()()12344f f f f ++==,故20221()5054(1)(2)2021(1)i f i f f f ==⨯++=+∑,因为()1f 与()3f 值不确定,故选项C 错误,因为()()31f x g x -+=,所以()()()()()()10,30,013,211g g g f g f ===-=-,所以()()()()022130g g f f ⎡⎤+=-+=⎣⎦,故()()()()01230g g g g +++=,故2023()50600i g i ==⨯=∑,所以选项D 正确,故选C .9.解析:A.()()22AD AF AB AF ED =+=+,故A 错误;B.因为()()2,22||AB EA AB EA FA AB FA AB EB AB ⊥⋅+=⋅=⋅= ,故B 正确;C.()()11,22BC CD FE BC BC CD FE FE ⋅=⋅= ,又BC FE =,所以()()BC CD FE BC CD FE ⋅=⋅ ,故C正确;D.AE 在CB方向上的投影向量为()3322AE CB CB AE CB CB CB e CB CB⋅=⋅=-=,故D 错误.故选BC .10.解析:由切线长定理易得12l r r =+,A 正确.由勾股定理知()()222121212(2)4R r r r r r r =+--=,解得R =,B 正确.()()()222122222221212121212124422S R R R S r r r r r r r r l r r r r ππππ===+++++++.()()33212222222121212121212442331233R R V R R V r r r r r r r r h r r r r ππππ===++++++.所以1122,C S V S V =正确.1122212212122122231S r r r r S r r r r r r ==≤++++,当且仅当12r r =时等号成立,这与圆台的定义矛盾,故D 错误.综上,答案为ABC .11.解析:以BC 为x 轴,DA 为y 轴建系,则()(0,0,D A 可以求得动点M 的轨迹方程:22302x y y +-=.这是一个圆心在点0,4P ⎛⎫ ⎪ ⎪⎝⎭,半径为34的圆(不含原点)D A 项:()1,0B -,所以max 193||4BM BP r =+=.故A 错误B项:2222||1||11424CB MB MC MD MD ⎛⎫⋅=-=-≤-=- ⎪ ⎪⎝⎭ .故B 正确C 项:易知直线:10AB x y -+=,故1328ABM M AB S AB d -=≤.故C 错误D 项:易知cos MBC ∠取最小值,当且仅当MBC ∠取最大值,也即BM 与P 相切时.此时3tan 24MBC ∠=,故221tan 132cos 191tan2MBCMBC MBC ∠∠∠-==+.故D 正确.故选:BD.12.解析:由sin 0,cos 0x x >>得()f x 的定义域为2,2,2k k k Z πππ⎛⎫+∈ ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,3,2x πππ⎛⎫+∈ ⎪⎝⎭不在定义域内,故()()f x f x π+=不成立,易知()f x 的最小正周期为2π,故选项A 错误,又()22222cos log cos 2sin log sin 2f x x x x x f x π⎛⎫-=⋅+⋅=⎪⎝⎭,所以()f x 的图象关于直线4x π=对称,所以选项B 正确,因为()222222sin log sin cos log cos f x x x x x =⋅+⋅,设2sin t x =,所以函数转化为()()()()()()2222log 1log 1,0,1,log log 1g t t t t t t g t t t =⋅+-⋅-∈='--,所以()0g t '>得,()0g t '<得102t <<,所以()g t 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,12⎛⎫ ⎪⎝⎭上单调递增,故min 1()12g t g ⎛⎫==- ⎪⎝⎭,即min ()1f x =-,故选项C 正确,因为()g t 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,12⎛⎫ ⎪⎝⎭上单调递增,由2sin t x =,令210sin 2x <<得20sin 2x <<,又()f x 的定义域为2,2,2k k k Z πππ⎛⎫+∈ ⎪⎝⎭,解得22,4k x k k Z πππ<<+∈,因为2sin t x =在2,24k k πππ⎛⎫+ ⎪⎝⎭上单调递增,所以()f x 的单调递减区间为2,2,4k k k Z πππ⎛⎫+∈ ⎪⎝⎭,同理函数的递增区间为2,2,42k k k Z ππππ⎛⎫++∈⎪⎝⎭,所以选项D 正确,故选BCD.13.解析:因为22(1)y x =-',所以曲线11xy x+=-在点()2,3-处的切线斜率为2,所以切线方程为()322y x +=-,即27y x =-,即270x y --=.14.解析:法1:()tan tan tan 1,tan tan tan tan 11tan tan αβαβαβαβαβ++==-∴+=-- .()()()cos sin 1tan tan tan tan 2cos cos βααβαβαβαβ--+∴=-++=.法2:(特殊值法)令38παβ==,易得答案.15.解析:0.255205.2550.250.0025510.0199=+++=+=- .16.解析:设双曲线的右焦点为2F ,根据双曲线方程知,2c =.直线过原点,由对称性,原点O 平分线段原点AB ,又原点O 平分线段2,FF ∴四边形2AFBF 为平行四边形.ABF 和2ABF 中,分别有中位线,,OP BF OQ AF ∥∥,,,OP OQ AF BF ⊥∴⊥∴ 四边形2AFBF 为矩形,2BFF ∴ 为直角三角形.不妨设B 在第一象限,设直线AB 倾斜角为2θ,则2,32ππθ⎡⎫∈⎪⎢⎣⎭,且OFB OBF ∠∠θ==,在Rt 2BFF中可得:22124cos 4sin ,2cos 2sin 4c a BF BF e a θθπθθθ∴=-=-∴===-⎛⎫- ⎪⎝⎭,2,,,3264ππππθθ⎡⎫⎡⎫∈∴∈⎪⎪⎢⎢⎣⎭⎣⎭ ,易知()14f θπθ=⎛⎫- ⎪⎝⎭在,64ππθ⎡⎫∈⎪⎢⎣⎭上为增函数,)11,4e ∞πθ∴=∈+⎛⎫- ⎪⎝⎭17.解析:(1)因为1cos 3B =,所以2222sin 1cos 2costan 222cos 2A CB AC B A C ++++=++()()1cos 1cos 21cos A C B A C -++=+++1cos 1cos 821cos 3B B B ++=+=-.(2)因为ABC S =1122sin 223ac B ac =⋅=,所以6ac =再由余弦定理知,2222cos b a c ac B =+-,即222614263c c ⎛⎫=+-⨯⨯ ⎪⎝⎭,也即4220360c c -+=,解得c =c =.18.解析:(1)因为21342n n n n S S S a +++=-,所以()21132n n n n n S S S S a +++-=--,即2132n n na a a ++=-所以()()()()()()21111111223222220n n n n n n n n n n n n n a a a a a a a a a a a a a ++++++++---=----=---=(为常数)所以数列{}12n n a a +-是等差数列.(2)由(1)知121221n n a a a a +-=-=,即121n n a a +=+.也即()1121n n a a ++=+,又112a +=,所以11222n n n a -+=⋅=..所以()()()()1222112122121n n n n n n n b n n n n n n a +⎡⎤++===-⎢+⋅+⋅++⎢⎥⎣⎦.∴数列{}n b 的前n 项和()12231111111212222232212n n n T n n +⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪ ⎪⋅⋅⋅⋅⋅+⋅⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()1111121121212n n n n +⎡⎤=-=-⎢⎥⋅+⋅+⋅⎢⎥⎣⎦19.(1)补全四面体PQRS 如图,即证:PQ SR ⊥取SR 的中点M ,正四面体中各个面均为正三角形,故,PM SR QM SR ⊥⊥,又PM QM M ⋂=,所以SR ⊥面PQM .又PQ ⊂面PQM ,所以PQ SR ⊥.(2)在QSR 的中心建系如图:则()(33,,,0,,02222S P R Q ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1,0,,,33623A C ⎛⎛- ⎪ ⎪⎝⎭⎝⎭,31,,022K ⎛⎫-- ⎪ ⎪⎝⎭,.设面ACK 的法向量为(),,n x y z = ,则00n AC n AK ⎧⋅=⎪⎨⋅=⎪⎩,解得()n =- ,又33,,22PQ ⎛=- ⎝ ,所以22sin cos ,11n PQ θ== .20.解析:(1)设事件A 为“小周在这三个月集齐三款模型”,则()3333111034500A P A ⎛⎫== ⎪⎝⎭.(2)1,2,,12X = ,由题意得()()1911,2,,111010k P X k k -⎛⎫=== ⎪⎝⎭ ,()1191210P X ⎛⎫== ⎪⎝⎭11111199()12101010k k k E X -=⎛⎫⎛⎫=+⋅ ⎪⎪⎝⎭⎝⎭∑,错位相减求得最后结果为()11910910E X ⎛⎫=-⋅ ⎪⎝⎭.21.解析:(1)将()1,1M 代入,可以求得243b =.联立22314410x y x y ⎧+=⎪⎨⎪+-=⎩,得24610x x --=.设()()1122,,,A x y B x y ,则12262AB x =-=,又易知点M 到直线l的距离为2,故ABM的面积4ABM S = ..(2)设()()1122,,,A x y B x y ,联立22314410x y x ty ⎧+=⎪⎨⎪+-=⎩得()223230t y ty +--=,则1221222333t y y t y y t ⎧+=⎪⎪+⎨-⎪=⎪+⎩,11sin ,sin 22ABM PQM S AM BM AMB S PM QM PMQ ∠∠== ,又sin sin PMQ AMB∠∠=所以5PQM ABM S S = 等价于5PM QM AM BM =,也即5QM AM BMPM=5QM AMBMPM =即1251313x x -=-,也即129115x x --=,也即1295ty ty --=,也即223935t t =+,解得322t =±.22.解析:(1)()ln f x x ax =-'在()0,∞+上有两个变号零点,即ln xa x=有两个不等实根,设()()2ln 1ln ,x x g x g x x x-'==,故()g x 在()0,e 上单调递增,在(),e ∞+上单调递减,所以max 1()g x e=,且()10g =,又(),0x g x ∞+→+→,故10a e<<,且121x e x <<<,所以()2111111ln 12f x x x ax x =--+,又11ln x a x =,所以()21111111111ln 11ln 1ln 122x f x x x x x x x x x =-⋅⋅-+=-+,设()()1ln 1,1,2h x x x x x e =-+∈,所以()()1ln 102h x x =-<',所以()h x 在()1,e 上单调递减,所以()1,02e h x ⎛⎫∈-⎪⎝⎭,所以()11,02e f x ⎛⎫∈- ⎪⎝⎭.(2)法一:ln 0x ax -=的两个实根12,x x ,所以1122ln ,ln x ax x ax ==,所以()2121ln ln x x a x x -=-,得:2121ln ln x x a x x -=-,设21x t x =,又1202x x <<,所以2t >,要证:2128x x <,即证:123ln2ln 2ln x x +<,即证:123ln22ax ax +<,即证:()2123ln2a x x ->,即证:()212121ln ln 23ln2x x x x x x -->-,即证:2211212ln 3ln2x x xx x x -⋅>-,即证:22121121ln 3ln21x x x x x x -⋅>-,即证:21ln 3ln21t t t -⋅>-,设()()212ln 321ln ,(2),,(2)1(1)t t t t t t t t t t t ϕϕ+---=⋅>-'=>-,设()()()()222111112ln 3,(2),20t t F t t t t F t tt t t+-=+-->=--=>',所以()F t 在()2,∞+上单调递增,所以()()32ln202F t F >=->,所以()0t ϕ'>,所以()t ϕ在()2,∞+上单调递增,所以()()23ln2t ϕϕ>=,所以21ln 3ln21t t t -⋅>-,所以2128x x <成立.法二:ln 0x ax -=的两个实根12,x x ,所以1122ln ,ln x ax x ax ==,所以2211ln ln x x x x =,设21x t x =,又1202x x <<,所以2t >,.由2211ln ln x x x x =可得:12ln ln ln ,ln 11t t tx x t t ==--,.要证:2128x x <,即证:123ln2ln 2ln x x +<,即证:ln 2ln 3ln211t t t t t +<--,即证:21ln 3ln21t t t -⋅>-设()()212ln 321ln ,(2),,(2)1(1)t t t t t t t t t t t ϕϕ+---=⋅>-'=>-,设()()()()222111112ln 3,(2),20t t F t t t t F t tt t t+-=+-->=--=>',所以()F t 在()2,∞+上单调递增,所以()()32ln202F t F >=->,所以()0t ϕ'>,所以()t ϕ在()2,∞+上单调递增,所以()()23ln2t ϕϕ>=,所以21ln 3ln21t t t -⋅>-,所以2128x x <成立.法三:由(1)知:10a e<<,且121x e x <<<,()ln xg x x=在()0,e 上单调递增,在(),e ∞+上单调递减,又1122x x x <<,且()()12g x g x a ==,所以()()()2112g x g x g x =<,所以1111ln ln22x x x x <,所以211ln ln2x x <,所以2112x x <,所以112x <<,又()ln222g =,所以ln202a <<,又ln2ln424=,即()()24g g =,所以24x >,因为122x x <,所以212284x x x <<,故2128x x <.。
安徽省合肥市第一中学2018届高考数学冲刺最后1卷试题文20180613015
安徽省合肥市第一中学2018届高考数学冲刺最后1卷试题文第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合S {x|x 2},T {x|x2 3x 4 0},则(C S) T ()RA.( ,1]B.( , 4]C.( 2,1]D.[1, )2.已知a R,i是虚数单位,复数z的共轭复数为z,若z a 3i,z z 4,则a ()A.3B. 3C.7或 7D.1或 13.阅读下面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A.0B.1C.2D.3|a b| |a ||b|a //b4.设a,b为向量,则“”是“”的()A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件5.函数y sin x(1 cos2x)在区间[ 2,2]内的图像大致为()- 1 -A.B.C. D.6.在正方形网格中,某四面体的三视图如图所示.如果小正方形网格的边长为1,那么该四面体的体积是()6432A.B. C. D.1632337.观察下图:则第()行的各数之和等于20172.A.2010B.2018 C. 1005D.10098.已知S,A,B,C是球O表面上的点,SA 平面ABC,AB BC,SA AB 1,BC 2,则球O的表面积等于()- 2 -A.4 B.3 C. 2 D.9.如图所示,点A,B分别在x轴与y轴的正半轴上移动,且AB 2,若点A从(3,0)移动到(2,0),则AB的中点D经过的路程为()A.B. C. D.3461210.设集合A {(x,y)||x| |y| 1},B {(x,y)|(y x)(y x) 0},M A B,若动点P(x,y) M x2 (y 1)2,则的取值范围是()1102101525A.B. C. D.[,][,][,][,]222222222 2 1, 2x x x11.已知函数,若函数存在零点,则实f(x)g(x) f(x) ax ae,x0x数a的取值范围为()A.[ 1,2]B.( , 1] [2, ) C. [1,1]e e333e1D.( , ] [e, )312.点P在直线l:y x 1上,若存在过P的直线交抛物线y x2于A,B两点,且|PA| 2|AB|P,则称点为“点”.下列结论中正确的是()A.直线l上的所有点都是“ 点”B.直线l上仅有有限个点是“ 点”C. 直线l上的所有点都不是“ 点”D.直线l上有无穷多个点(点不是所有的点)是“ 点”第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)- 3 -13. 为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10y x名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程1010为yˆ bˆx aˆ已知.该班某学生的脚长为,据此估计其身高 ˆ24x 225,y 1600,b 4i ii 1i 1为.14.从区间[0,2]随机抽取2n个数1,2,...,n,1,2,...,n,构成个数对x x x y y y n(x,y),(x,y),...,(x,y)1m,其中两数的平方和小于的数对共有个,则用随机模拟的方法1122n n得到的圆周率 的近似值为.15.如图所示,B地在A地的正东方向4km处,C地在B地的北偏东30 方向2km处,河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.现要再曲线PQ上任一处M B,C M B M C a 建一座码头,向两地转运货物.经测算,从到和到修建公路的费用均为万元/km,那么修建这两条公路的总费用最低是万元.n116.已知数列{}满足a1 3,(3 a n 1)(6 a n) 18(n N),则的值是.a*ni a i1三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. ABC的内角A,B,C的对边分别为a,b,c,已知2c os B(a cos B b cos A) 3c. (1)求B;(2)若a,b,c成等差数列,且 ABC的周长为35,求 ABC的面积.18. 在如图所示的几何体ACBFE中,AB BC,AE EC,D为AC的中点,EF//DB. (1)求证:AC FB;(2)若AB BC,AB 4,AE 3,BF 3,BD 2EF,求该几何体的体积.- 4 -19. 某企业生产的某种产品被检测出其中一项质量指标存在问题. 该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,如图所示是乙流水线样本的频率分布直方图.表1 甲流水线样本的频数分布表质量指标值频数(190,195]2(195,200]13(200,205]23(205,210]8(210,215]4(1)若将频率视为概率,某个月内甲、乙两条流水线均生产了6万件产品,则甲、乙两条流水线分别生产出不合格品约多少件?(2)在甲流水线抽取的样本的不合格品中随机抽取两件,求两件不合格品的质量指标值均偏大的概率;(3)根据已知条件完成下面2 2列联表,并判断在犯错误概率不超过0.1的前提下能否认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”?甲生产线乙生产线合计合格品不合格品- 5 -合计2n(ad bc)2附:(其中为样本容量)K n a b c d(a b)(c d)(a c)(b d)P K k0.150.100.050.0250.0100.0050.001 ()2k 2.072 2.706 3.841 5.024 6.6357.87910.828x y2220. 如图所示,在平面直角坐标系xOy中,已知椭圆C: 1(a b 0)的离心率为a b222 2,短轴长为.42(1)求椭圆C的标准方程;(2)设A为椭圆C的左顶点,P为椭圆C上位于x轴上方的点,直线PA交y轴于点M,点N在y轴上,且MF FN 0,设直线AN交椭圆C于另一点Q,求 APQ的面积的最大值.21. 已知函数f(x) x ln x,g(x) (x2 1)( 为常数).(1)若函数y f(x)与函数y g(x)在x 1处有相同的切线,求实数 的值;(2)当x 1时,f(x) g(x),求实数 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程xcos已知曲线的参数方程为 (为参数),在同一平面直角坐标系中,将曲线C C113siny3x x23上的点按坐标变换 得到曲线,以原点为极点、轴的正半轴为极轴,建立2C x2y3y2- 6 -极坐标系.(1)求曲线的极坐标方程和曲线的直角坐标方程;C C12(2)若直线 ( R)与曲线C交于M,N两点,与曲线C交于P,Q两点,求123|MN||PQ|的值.23.选修4-5:不等式选讲已知函数f(x) |x a| |x 2|.(1)当a 1时,解不等式f(x) 4;(2),求的取值范围.x0 R,f(x0) |2a 1|a试卷答案一、选择题1-5:ADCCB 6-10:BDADC 11、12:BA二、填空题16m(27 2)a1(212) 13. 16614. 15. 16.n3三、解答题17.解:(1)已知2cos B(a cos B b cos A) 3c,由正弦定理得2cos B(sin A cos B sin B cos A) 3sin C2cos B sin(A B) 3sin C,,即3cos B , B ABC B为的内角,.26(2) a,b,c成等差数列, 2b a c,又 ABC的周长为35,即a b c 35, b 5,由余弦定理知b ac ac B a c ac a c ac15, 2222cos223()2(23), ac2 3.11115(23)S ac Bsin15(23)ABC2224- 7 -18.(1)证明: EF//BD, EF与BD确定平面EFBD.连接DE, AE EC,D的为AC 的中点, DE AC.同理可得BD AC,又 BD DE D,BD 平面EFBD,DE 平面EFBD, AC 平面BDEF, FB 平面EFBD, AC FB.(2)由(1)可知AC 平面,1,BDEF V V V S ACABCEF A BDEF C BDEF BDEF3AB BC,AB BC,AB 4, BD 22,AC 42,又AE 3, DE AE2 AD2 1BDEF BD M MF.在梯形中,取的中点,连接,则EF//DM EF DM, FMDE FM//DE FM DE 且四边形为平行四边形,且.又BF BF2 FM2 BM23,,.132132FM BM,S (2 22) 1 , V42 4梯形BDEF ABCEF223219. (1)由甲、乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有6件,则63甲流水线生产的产品为不合格品的概率,乙流水线生产的产品为不合格品的概P甲5025 6率.于是,若某个月内甲、乙两条流水线均生产了万件产品,P乙 (0.016 0.32) 5 625360000 720025则甲、乙两条流水线生产的不合格品件数分别为(件),660000 1440025(件).(2)在甲流水线抽取的样本中,不合格品共有6件,其中质量指标值偏小的有2件,记为A,B4C,D,E,F2;质量指标值偏大的有件,记为,则从中任选件有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF156共种结果,其中质量指标值都偏大有种结果.故所求概率为62.P155(3)2 2列联表如下:甲生产线乙生产线合计合格品443882不合格品61218- 8 -合计5050100 2100 (44 12 38 6)2则,所以在犯错误概率不超过的前提下不K 2.439 2.7060.150 50 82 18能认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”.c24aa220.解:(1)由题意得 ,解得 ,所以椭圆的标准方程为2b42b 22Ca b c c22222x y221.168(2)由题可设直线PA的方程为y k(x 4),k 0,则M(0,4k),又F(22,0)且N(0,2) MF FN FN22(22)MF FN0y x ,所以,所以直线的方程为,则,4k k( 4)y k x14y(1 2k2)x2 16k2x 32k2 16 0x联立消去并整理得,解得或x 2y 16224 8kx24 8k8k12,则,直线的方程为,同理可得2 212k P(,)AN y (x 4) 1 2k1 2k2k228k48k2Q(,) 12k12k22,所以关于原点对称,即过原点,所以的面积P,Q PQ APQ116k32S OA |y y| 2 82P Q21 212k2kk21,当且仅当,即时,等号成2k kk2立,所以 APQ的面积的最大值为82.21.解:(1)由题意得f (x) ln x 1,g (x) 2 x,又f(1) g(1) 0,且函数y f(x)与y g(x)在x 1处有相同的切线, f (1) g (1),则2 1,即1.2(2)设h(x) x ln x (x2 1),则h(x) 0对 x [1, )恒成立.h(1) 0, h (1) 01 2 0, 11 h x x x()1ln2,且,即.另一方面,当22- 9 -时,记 (x ) h (x ) ,则 (x ) 1 2 1 2 x .当 x [1, )时, (x )0, (x ) 在xx[1, ) x [1, )(x ) (1) 1 2 0h (x ) 0, h (x )内为减函数, 当时,,即在[1, )x [1, )h (x ) h (1) 01内为减函数, 当时,恒成立,符合题意.当时,①2若 0 ,则 h (x ) 1 ln x 2 x 0对 x [1, ) 恒成立, h (x ) 在[1, ) 内为增函数,x [1, )h (x ) h (1) 00 1当时,恒成立,不符合题意.②若,令,则(x ) 0211 x , (x ) x(x ) (1) 1 2 0(1, 1 )(1, 1 )在内为增函数, 当时,,即2 2 2h x h x (1, 1 )(1, 1 )( ) 0,( )xh (x ) h (1) 0在内为增函数, 当时,,不符合题意,221 2综上所述.2 cosx22.解:(1)已知曲线 的参数方程为( 为参数),消去参数 得C1y 3 sinx yx cos , y sin ,2213 2 cos 24 2 sin 2 12.又,即曲线的极坐标C14 323 x (x 2 3)2 3 x x 3x y22143方程为 2(3 sin2 ) 12.又由已知2得代入1y(y2)y3y23(23)(2)x 2y 2得曲线的直角坐标方程为.1, C(x 23)2 (y 2)2 9299(2)将代入,得.又直线的2(3 sin2 ) 12216,45,||85MN 35551x t2参数方程为 (为参数),代入,整理得t(x 23)2 (y 2)29 3y t2t2 43t 7 0P,Q t1,t2,分别记两点对应的参数为,则.t t43 |MN| 4|PQ||t t|(t t)4t t25,122121212t t 7|PQ|512- 10 -x22x1x 1 23.解:(1)当a 1时,f(x) 4,即或或解得2x14342x14x52或x 或x 3,故此不等式的解集为(,5][3,).222(2)因为f(x) |x a| |x 2| |(x a) (x 2)| |a 2|,因为 x R,有f(x) |2a 1||a 2| |2a 1|a2 1 0a 1a 1成立,所以只需,化简得,解得或,0所以a的取值范围为( , 1] [1, ).- 11 -。
安徽省2018年高考理科数学试题及答案(Word版)
安徽省2018年高考理科数学试题及答案(Word 版)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12- B .10- C .10 D .125.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3C .3D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 A 33B 23C .324D 3 二、填空题:本题共4小题,每小题5分,共20分。
安徽省合肥市第一中学高考数学冲刺最后1卷试题 文
安徽省合肥市第一中学2018届高考数学冲刺最后1卷试题 文第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|2},{|340}S x x T x x x =>-=+-≤,则()R C S T ⋃=( ) A .(,1]-∞ B .(,4]-∞- C .(2,1]- D .[1,)+∞2.已知,a R i ∈是虚数单位,复数z 的共轭复数为z ,若3,4z a i z z =+⋅=,则a =( ) A .3 B .3- C .7或7- D .1或1-3.阅读下面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为( )A .0B .1C .2D .34.设,a b r r 为向量,则“||||||a b a b ⋅=r rr r ”是“//a b r r ”的( )A .充分不必要条件B .必要不充分条件 C.充分必要条件 D .既不充分也不必要条件5.函数sin (1cos 2)y x x =+在区间[2,2]-内的图像大致为( )A .B .C. D .6. 在正方形网格中,某四面体的三视图如图所示. 如果小正方形网格的边长为1,那么该四面体的体积是( )A .643 B .323C. 16 D .32 7.观察下图:则第( )行的各数之和等于22017.A .2010B .2018 C. 1005 D .10098.已知,,,S A B C 是球O 表面上的点,SA ⊥平面,,1,2ABC AB BC SA AB BC ⊥===则球O 的表面积等于( )A .4πB .3π C. 2π D .π9.如图所示,点,A B 分别在x 轴与y 轴的正半轴上移动,且2AB =,若点A 从(3,0)移动到(2,0),则AB 的中点D 经过的路程为( )A .3π B .4π C. 6πD .12π10.设集合{(,)|||||1},{(,)|()()0},A x y x y B x y y x y x M A B =+≤=-+≤=⋂,若动点(,)P x y M ∈,则22(1)x y +-的取值范围是( )A .110[2 B .210[ C. 15[,]22D .25]2 11.已知函数221,20(),0x x x x f x e x ⎧--+-≤<⎪=⎨≥⎪⎩,若函数()()g x f x ax a =-+存在零点,则实数a 的取值范围为( )A .21[,]3e - B .21(,][,)3e -∞-⋃+∞ C. 11[,]3e- D .1(,][,)3e -∞-⋃+∞12.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且||2||PA AB =,则称点P 为“δ点”.下列结论中正确的是( )A .直线l 上的所有点都是“δ点”B .直线l 上仅有有限个点是“δ点” C. 直线l 上的所有点都不是“δ点”D .直线l 上有无穷多个点(点不是所有的点)是“δ点”第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+已知101011ˆ225,1600,4ii i i xy b =====∑∑.该班某学生的脚长为24,据此估计其身高为.14.从区间[0,2]随机抽取2n 个数1212,,...,,,,...,n n x x x y y y ,构成n 个数对1122(,),(,),...,(,)n n x y x y x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 .15.如图所示,B 地在A 地的正东方向4km 处,C 地在B 地的北偏东30o方向2km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km .现要再曲线PQ 上任一处M 建一座码头,向,B C 两地转运货物.经测算,从M 到B 和M 到C 修建公路的费用均为a 万元/km ,那么修建这两条公路的总费用最低是 万元.16.已知数列{}n a 满足*113,(3)(6)18()n n a a a n N +=-+=∈,则11ni ia =∑的值是 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. ABC ∆的内角,,A B C 的对边分别为,,abc ,已知2cos (cos cos )3B a B b A c +=. (1)求B ;(2)若,,a b c 成等差数列,且ABC ∆的周长为35,求ABC ∆的面积.18. 在如图所示的几何体ACBFE 中,,,AB BC AE EC D ==为AC 的中点,//EF DB . (1)求证:AC FB ⊥;(2)若,4,3,3,2AB BC AB AE BF BD EF ⊥====,求该几何体的体积.19. 某企业生产的某种产品被检测出其中一项质量指标存在问题. 该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.表 1是甲流水线样本的频数分布表,如图所示是乙流水线样本的频率分布直方图.表1 甲流水线样本的频数分布表质量指标值频数(190,195]2(195,200]13(200,205]23(205,210]8(210,215]4(1)若将频率视为概率,某个月内甲、乙两条流水线均生产了6万件产品,则甲、乙两条流水线分别生产出不合格品约多少件?(2)在甲流水线抽取的样本的不合格品中随机抽取两件,求两件不合格品的质量指标值均偏大的概率;列联表,并判断在犯错误概率不超过0.1的前提下能否认为(3)根据已知条件完成下面22“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”?甲生产线乙生产线合计合格品不合格品合计附:22()()()()()n ad bcKa b c d a c b d-=++++(其中n a b c d=+++为样本容量)2()P K k≥0.150.100.050.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.828 20. 如图所示,在平面直角坐标系xOy中,已知椭圆2222:1(0)x yC a ba b+=>>的离心率为22,短轴长为42.(1)求椭圆C的标准方程;(2)设A为椭圆C的左顶点,P为椭圆C上位于x轴上方的点,直线PA交y轴于点M,点N在y轴上,且0MF FN→→⋅=,设直线AN交椭圆C于另一点Q,求APQ∆的面积的最大值.21. 已知函数2()ln,()(1)f x x xg x xλ==-(λ为常数).(1)若函数()y f x=与函数()y g x=在1x=处有相同的切线,求实数λ的值;(2)当1x≥时,()()f xg x≤,求实数λ的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知曲线1C的参数方程为cos3xyαα=⎧⎪⎨=⎪⎩(α为参数),在同一平面直角坐标系中,将曲线1C 上的点按坐标变换323232x xy⎧'=+⎪⎨⎪'=+⎩得到曲线2C,以原点为极点、x轴的正半轴为极轴,建立极坐标系.(1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程; (2)若直线()3R πθρ=∈与曲线1C 交于,M N 两点,与曲线2C 交于,P Q 两点,求||||MN PQ 的值.23.选修4-5:不等式选讲 已知函数()|||2|f x x a x =-++. (1)当1a =时,解不等式()4f x ≥;(2)00,()|21|x R f x a ∃∈≤+,求a 的取值范围.试卷答案一、选择题1-5:ADCCB 6-10:BDADC 11、12:BA 二、填空题13. 166 14. 16m n 15. 2)a 16. 11(22)3n n +-- 三、解答题17.解:(1)已知2cos (cos cos )B a B b A +=,由正弦定理得2cos (sin cos sin cos )B A B B A C +=,即2cos sin(),B A B C ⋅+=cos B B ∴=Q 为ABC ∆的内角,6B π∴=.(2),,a b c Q 成等差数列,2b a c ∴=+,又ABC ∆的周长为,即a b c b ++=∴=2222222cos ()(2,b a c ac B a c a c ac =+-=+-=+-ac ∴=111sin 15(2222ABC S ac B ∆∴==⨯⨯=. 18.(1)证明://,EF BD EF ∴Q 与BD 确定平面EFBD .连接,,DE AE EC D =Q 的为AC的中点,DE AC ∴⊥.同理可得BD AC ⊥,又,BD DE D BD ⋂=⊂Q 平面,EFBD DE ⊂平面,EFBD AC ∴⊥平面,BDEF FB ⊂Q 平面,EFBD AC FB ∴⊥. (2)由(1)可知AC ⊥平面1,,3ABCEF A BDEF C BDEF BDEF BDEF V V V S AC --∴=+=⋅⋅,,4,AB BC AB BC AB BD AC =⊥=∴==Q3,1AE DE =∴==.在梯形BDEF 中,取BD 的中点M ,连接MF ,则//EF DM 且,EF DM =∴四边形FMDE 为平行四边形,//FM DE ∴且FM DE =.又222,BF BF FM BM ==+11,142232ABCEF BDEF FM BM S V ∴⊥=⨯⨯=∴=⨯⨯=梯形.19. (1)由甲、乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有6件,则甲流水线生产的产品为不合格品的概率635025P ==甲,乙流水线生产的产品为不合格品的概率6(0.0160.32)525P =+⨯=乙.于是,若某个月内甲、乙两条流水线均生产了6万件产品,则甲、乙两条流水线生产的不合格品件数分别为360000720025⨯=(件),6600001440025⨯=(件).(2)在甲流水线抽取的样本中,不合格品共有6件,其中质量指标值偏小的有2件,记为,A B ;质量指标值偏大的有4件,记为,,,C D E F ,则从中任选2件有,,,,,,,AB AC AD AE AF BC BD ,BE ,BF ,,CD CE,,,CF DE DF EF 共15种结果,其中质量指标值都偏大有6种结果.故所求概率为62155P ==. (3)22⨯列联表如下:则22100(4412386) 2.439 2.70650508218K ⨯⨯-⨯=≈<⨯⨯⨯,所以在犯错误概率不超过0.1的前提下不能认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”.20.解:(1)由题意得22222c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得4a b c =⎧⎪=⎨⎪=⎩,所以椭圆C 的标准方程为221168x y +=. (2)由题可设直线PA 的方程为(4),0y k x k =+>,则(0,4)M k,又F 且0MF FN →→⋅=,所以MF FN ⊥,所以直线FN的方程为y x =-,则2(0,)N k-,联立22(4)216y k x x y =+⎧⎨+=⎩消去y 并整理得2222(12)1632160k x k x k +++-=,解得14x =-或2224812k x k -=+,则222488(,)1212k k P k k -++,直线AN 的方程为1(4)2y x k =-+,同理可得222848(,)1212k k Q k k --++,所以,P Q 关于原点对称,即PQ 过原点,所以APQ ∆的面积211632||212122P Q k S OA y y k k k=⋅-=⋅=≤++12k k =,即2k =时,等号成立,所以APQ ∆的面积的最大值为21.解:(1)由题意得()ln 1,()2f x x g x x λ''=+=,又(1)(1)0f g ==,且函数()y f x =与()y g x =在1x =处有相同的切线,(1)(1)f g ''∴=,则21λ=,即12λ=. (2)设2()ln (1)h x x x x λ=--,则()0h x ≤对[1,)x ∀∈+∞恒成立.()1ln 2h x x x λ'=+-Q ,且(1)0,(1)0h h '=∴≤,即1120,2λλ-≤∴≥.另一方面,当12λ≥时,记()()x h x ϕ'=,则112()2xx x xλϕλ-'=-=.当[1,)x ∈+∞时,()0,()x x ϕϕ'≤∴在[1,)+∞内为减函数,∴当[1,)x ∈+∞时,()(1)120x ϕϕλ≤=-≤,即()0,()h x h x '≤∴在[1,)+∞内为减函数,∴当[1,)x ∈+∞时,()(1)0h x h ≤=恒成立,符合题意.当12λ<时,①若0λ≤,则()1ln 20h x x x λ'=+-≥对[1,)x ∀∈+∞恒成立,()h x ∴在[1,)+∞内为增函数,∴当[1,)x ∈+∞时,()(1)0h x h ≥=恒成立,不符合题意.②若102λ<<,令()0x ϕ'>,则11,()2x x ϕλ<<∴在1(1,)2λ内为增函数,∴当1(1,)2x λ∈时,()(1)120x ϕϕλ>=->,即()0,()h x h x '>∴在1(1,)2λ内为增函数,∴当1(1,)2x λ∈时,()(1)0h x h >=,不符合题意,综上所述12λ≥.22.解:(1)已知曲线1C的参数方程为2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),消去参数α得22143x y +=.又cos ,sin ,x y ρθρθ==22223cos 4sin 12ρθρθ∴+=,即曲线1C 的极坐标方程为22(3sin )12ρθ+=.又由已知322x x y ⎧'=+⎪⎨⎪'=+⎩得2(32)x x y y ⎧'=-⎪⎪⎨⎪'=-⎪⎩代入22143x y +=得2(2)1,9y '-=∴曲线2C的直角坐标方程为22((2)9x y -+-=.(2)将3πθ=代入22(3sin )12ρθ+=,得216,||555MN ρρ=∴=±∴=.又直线的参数方程为122x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),代入22((2)9x y -+-=,整理得270t -+=,分别记,P Q 两点对应的参数为12,t t,则121212||4||||||57t t MN PQ t t PQ t t ⎧+=⎪=-==∴=⎨⋅=⎪⎩. 23.解:(1)当1a =时,()4f x ≥,即2214x x <-⎧⎨--≥⎩或2134x -≤≤⎧⎨≥⎩或1214x x >⎧⎨+≥⎩解得52x ≤-或x ∈∅或32x ≥,故此不等式的解集为53(,][,)22-∞-⋃+∞. (2)因为()|||2||()(2)||2|f x x a x x a x a =-++≥--+=+,因为0x R ∃∈,有- 11 - 0()|21|f x a ≤+成立,所以只需|2||21|a a +≤+,化简得210a -≥,解得1a ≤-或1a ≥,所以a 的取值范围为(,1][1,)-∞-⋃+∞.。
2018年安徽省高考理科数学试卷
2018年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间为120分钟。
参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz+i ·z = (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln (x+1)<0的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。
已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为(A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x ≤π时,f(x)=0,则)623(πf = (A )21(B )23(C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为 (A )5或8 (B )-1或5 (C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足OQ =2( a + b ).曲线C={ P |OP =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| PQ | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R2018普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。
【数学】安徽省合肥一六八2018届高三最后一卷理科数学
合肥一六八中学2018届高三最后一卷(理科数学)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{|A x y ==, {|1n(3)}B y y x ==-,则A B = ( ) A .{|2}x x ≤ B .{|2}x x <C .{|23}x x <≤D .{|23}x x ≤<2.已知,a b R ∈,i 是虚数单位,若a i -与2bi +互为共轭复数,则2()a bi +=( )A .54i -B .54i +C .34i -D .34i +3.某程序框图如图,该程序运行后输出的k 值是( )A .3B .4C .5D .114.设1k >,则关于,x y 的方程222(1)1k x y k -+=-所表示的曲线是( )A.长轴在x 轴上的椭圆B.长轴在y 轴上的椭圆C.实轴在y 轴上的双曲线D.实轴在x 轴上的双曲线 5.设函数()f x 是定义在R 上的偶函数,且(0,)x ∈+∞时,满足(2)()f x f x +=-.当(0,2)x ∈时,2()2f x x =,则(7)f =( )A .-2B .2C .-98D .986.已知,a b 为区间[0,2]上的随机数,函数3()23f x ax bx =-+在区间1[,)2+∞上是增函数的概率为m ,则x m ≤成立的必要不充分条件是( )A .12x ≤B .14x ≤C .18x ≤D .12x ≥ 7.函数()1n|||sin |f x x x =+(x ππ-≤≤且0x ≠)的图象大致是( ) A. B. C. C.8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“困盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈,它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式27254V L h ≈相当于将圆锥体积公式中的π近似取为( ) A .3 B .3.14 C .12742 D .125429.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( )A .1B .1±C .10.在棱长为1的正方体1111ABCD A BC D -中, 112AE AB = ,点F 为平面ABCD 内一点,则1||||EF FC + 的最小值为( )A .2 C .2 D 11.已知抛物线22(0)y px p =>的焦点为,F O 为坐标原点,设M 为抛物线上的动点,则||||MO MF 的最大值为( ) A .3 B.3C .2 D12.已知定义在(0,)+∞上的函数()f x 的导函数()f x '满足1n ()()x f x f x x '+=,且1()f e e =,其中e 为自然对数的底数,则不等式1()f x e x e+>+的解集为( ) A .(,)e +∞ B .(0,)+∞ C .1(0,)eD .(0,)e 第Ⅱ卷 非选择题 (共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置)13.二项式6展开式中常数项为 . 14.设实数,x y 满足20202xy x y ≤⎧⎪≤≤⎨⎪≤≤⎩,则点(,)P x y 表示的区域面积为 .15.在等腰直角ABC ∆中, 4AB BC ==,20PA PB PC ++= ,||1OP = ,则OA OB ⋅ 的最小值为 .16.若ABC ∆沿着三条中位线折起后能够拼接成一个三棱锥,则称这样的ABC ∆为“锥形三角形”.设ABC ∆的三个内角分别为,,A B C ,所对的边分别为,,a b c ,各边上的高分别为123,,h h h ,则下列条件中能够使得ABC ∆为“锥形三角形”的条件有 个(填正确的个数).①::2:3:4A B C =;②sin :sin :sin 2:3:4A B C =;③tan :tan :tan 0A B C >;④333a b c += ⑤123111,,::234h h h =; 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知等差数列{}n a 是单调递增数列,且满足2633a a =,3514a a +=.(1)求数列{}n a 的通项公式.(2)若数列{}n b 满足: 2122()222n n n b b b a n n N +++=+∈ ,求数列{}n b 的前n 项和n S .18.如图,在三棱柱ABC A B C '''-中,底面ABC ∆为边长为 4BB '=,A C BB '''⊥,且45A BB ''∠= .(1)证明:平面BCC B ''⊥平面ABB A ''.(2)求二面角B AC A '--的余弦值.19.随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司M 的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下:(1)由统计表可以看出,可用线性回归模型拟合月度市场占有率y 与月份代码x 之间的关系.求y 关于x 的线性回归方程,并预测M 公司2018年6月份的市场占有率;(2)为进一步扩大市场,公司拟再采购一批单车现有采购成本分别为1000元/辆和1200元/辆的A B 、两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:经测算,平均每辆单车每年可以带来收入500元不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整年,且以频率作为每辆单车使用寿命的概率.如果你是M 公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?(参考公式:回归直线方程为y bx a =+,其中1121()()()n i i n i i x x y y b xx ==--=-∑∑ , a y bx =- ) 20.已知椭圆C的焦点分别为1(0,F,2F,且经过点2P . (1)求椭圆C 的标准方程; (2)过点3(,0)5P -的动直线l 交椭圆C 于A B 、两点.试问:在坐标系中是否存在一个定点Q ,使得以AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标:若不存在,请说明理.21.已知1()1n ()a g x x ax a R x-=--∈,若()1g x ≤-对定义域内的一切x 恒成立. (1)求实数a 的取值范围.(2)对[0.1)x ∀∈,证明: (1)(1)g x g x -≤+.请考生在第22、23题中任选一题作答,注意只能做选定的题目,如果多做,则按所做的第题记分,解答时请写清楚题号. 22.在平面直角坐标系中,直线l的参数方程为12x y t ⎧=⎪⎪⎨⎪=⎪⎩,(t 为参数),圆1C 的参数方程为 1cos sin x y αα=+⎧⎨=⎩(α为参数),圆2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数).若直线l 分别与圆1C 和圆2C 交于不同于原点的点A 和B .(1)以直角坐标系的原点为极点, x 轴的正半轴为极轴,建立极坐标系,求圆1C 和圆2C 的极坐标方程;(2)求2C AB ∆的面积.23.已知函数()|1||1|f x x x =++-,2()g x x x =-.(1)求不等式()()f x g x <的解集;(2)若()()f x g x a +>恒成立,求实数a 的取值范围.2018年高考考前猜题卷理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足ii i z 2|2|++=,则=||z ( ) A .3 B .10 C .9 D .102.已知全集R U =,集合}012|{2≥--=x x x M ,}1|{x y x N -==,则=N M C U )(( )A .}1|{≤x xB .}121|{≤<-x x C .}121|{<<-x x D .}211|{<<-x x3.已知蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点的距离都大于2的区域内的概率P 为( )A .631π-B .43C .63π D .414.已知双曲线)0,0(12222>>=-b a by a x ,过双曲线左焦点1F 且斜率为1的直线与其右支交于点M ,且以1MF 为直径的圆过右焦点2F ,则双曲线的离心率是( )A .12+B .2C .3D .13+5.一个算法的程序框图如图所示,如果输出y 的值是1,那么输入x 的值是( )A .2-或2B .2-或2C .2-或2D .2-或26.已知函数)2||,0)(3sin()(πϕωπω<>+=x x f 的图象中相邻两条对称轴之间的距离为2π,将函数)(x f y =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么)(x f y =的图象( )A .关于点)0,12(π对称 B .关于点)0,12(π-对称C .关于直线12π=x 对称 D .关于直线12π-=x 对称7.如下图,网格纸上小正方形的边长为1,图中实线画的是某几何体的三视图,则该几何体最长的棱的长度为( )A. 32B.43 C. 2 D. 411 8.已知等差数列}{n a 的第6项是6)2(x x -展开式中的常数项,则=+102a a ( ) A .160 B .160- C .350 D .320-9.已知函数)0(212)(<-=x x f x 与)(log )(2a x x g +=的图象上存在关于y 轴对称的点,则a 的取值范围是( )A .)2,(--∞B .)2,(-∞C .)22,(--∞D .)22,22(- 10.已知正四棱台1111D C B A ABCD -的上、下底面边长分别为22,2,高为2,则其外接球的表面积为( )A .π16B .π20C .π65D .π465 11.平行四边形ABCD 中,2,3==AD AB ,0120=∠BAD ,P 是平行四边形ABCD 内一点,且1=AP ,若y x +=,则y x 23+的最大值为( )A .1B .2C .3D .412.设n n n C B A ∆的三边长分别为n n n c b a ,,,n n n C B A ∆的面积为,3,2,1,=n S n …,若n n a a a c b ==++1111,2,2,211n n n n n n a b c a c b +=+=++,则( ) A .}{n S 为递减数列B .}{n S 为递增数列C .}{12-n S 为递增数列,}{2n S 为递减数列D .}{12-n S 为递减数列,}{2n S 为递增数列二、填空题(每题4分,满分20分,将答案填在答题纸上)13.函数x a x a x x f )3()1()(24-+--=的导函数)('x f 是奇函数,则实数=a .14.已知y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤-≥+-002043y x x y x (R y x ∈,),则22y x +的最大值为 .15.已知F 为抛物线x y C 4:2=的焦点,过点F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则||||DE AB +的最小值为 .16.在锐角三角形ABC 中,角C B A ,,的对边分别为c b a ,,,且满足ac a b =-22,则BA tan 1tan 1-的取值范围为 . 三、解答题 (本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等比数列}{n a 的前n 项和为n S ,且满足)(221R m m S n n ∈+=+.(1)求数列}{n a 的通项公式;(2)若数列}{n b 满足)(log )12(112+⋅+=n n n a a n b ,求数列}{n b 的前n 项和n T . 18.小张举办了一次抽奖活动.顾客花费3元钱可获得一次抽奖机会.每次抽奖时,顾客从装有1个黑球,3个红球和6个白球(除颜色外其他都相同)的不透明的袋子中依次不放回地摸出3个球,根据摸出的球的颜色情况进行兑奖.顾客中一等奖,二等奖,三等奖,四等奖时分别可领取的奖金为a 元,10元,5元,1元.若经营者小张将顾客摸出的3个球的颜色分成以下五种情况:1:A 个黑球2个红球;3:B 个红球;:c 恰有1个白球;:D 恰有2个白球;3:E 个白球,且小张计划将五种情况按发生的机会从小到大的顺序分别对应中一等奖,中二等奖,中三等奖,中四等奖,不中奖.(1)通过计算写出中一至四等奖分别对应的情况(写出字母即可);(2)已知顾客摸出的第一个球是红球,求他获得二等奖的概率;(3)设顾客抽一次奖小张获利X 元,求变量X 的分布列;若小张不打算在活动中亏本,求a 的最大值.19.如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,0160=∠CBB ,1AC AB =.(1)证明:平面⊥C AB 1平面C C BB 11;(2)若C B AB 1⊥,直线AB 与平面C C BB 11所成的角为030,求直线1AB 与平面C B A 11所成角的正弦值.20.如图,圆),(),0,2(),0,2(,4:0022y x D B A y x O -=+为圆O 上任意一点,过D 作圆O 的切线,分别交直线2=x 和2-=x 于F E ,两点,连接BE AF ,,相交于点G ,若点G 的轨迹为曲线C .(1)记直线)0(:≠+=m m x y l 与曲线C 有两个不同的交点Q P ,,与直线2=x 交于点S ,与直线1-=y 交于点T ,求OPQ ∆的面积与OST ∆的面积的比值λ的最大值及取得最大值时m 的值.(注:222r y x =+在点),(00y x D 处的切线方程为200r yy xx =+)21.已知函数x a x g x x f ln )(,21)(2==. (1)若曲线)()(x g x f y -=在2=x 处的切线与直线073=-+y x 垂直,求实数a 的值;(2)设)()()(x g x f x h +=,若对任意两个不等的正数21,x x ,2)()(2121>--x x x h x h 恒成立,求实数a 的取值范围;(3)若在],1[e 上存在一点0x ,使得)(')()('1)('0000x g x g x f x f -<+成立,求实数a 的取值范围.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为⎪⎩⎪⎨⎧==21t a y t x (其中t 为参数,0>a ),以坐标原点O 为极点,x 轴的正半轴为极轴建立的极坐标系中,直线l :0sin cos =+-b θρθρ与2C :θρcos 4-=相交于B A ,两点,且090=∠AOB . (1)求b 的值;(2)直线l 与曲线1C 相交于N M ,两点,证明:||||22N C M C ⋅(2C 为圆心)为定值. 23.选修4-5:不等式选讲已知函数|1||42|)(++-=x x x f . (1)解不等式9)(≤x f ;(2)若不等式a x x f +<2)(的解集为A ,}03|{2<-=x x x B ,且满足A B ⊆,求实数a的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共4小题,每小题5分,共20分. 13.3 14.8 15.16 16.)332,1( 三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.解:(1)由)(221R m m S n n ∈+=+得⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=282422321m S m S m S ,)(R m ∈,从而有4,2233122=-==-=S S a S S a , 所以等比数列}{n a 的公比223==a a q ,首项11=a ,因此数列}{n a 的通项公式为)(2*1N n a n n ∈=-.(2)由(1)可得12)22(log )(log 1212-=⋅=⋅-+n a a n n n n , ∴)121121(21)12)(12(1+--⨯=-+=n n n n b n ∴)1211215131311(2121+--++-+-⨯=+++=n n b b b T n n 12+=n n. 18.解:(1)4011203)(31023===C C A P ;12011)(310==C B P ,10312036)(3102416===C C C C P ,2112060)(3101426===C C C D P ,6112020)(31036===C C E P∵)()()()()(D P C P E P A P B P <<<<, ∴中一至四等奖分别对应的情况是C E A B ,,,.(2)记事件F 为顾客摸出的第一个球是红球,事件G 为顾客获得二等奖,则181)|(2912==C C F G P .(3)X 的取值为3,2,2,7,3---a ,则分布列为由题意得,若要不亏本,则03212103)2(61)7(401)3(1201≥⨯+⨯+-⨯+-⨯+-⨯a , 解得194≤a ,即a 的最大值为194.19.解:(1)证明:连接1BC ,交C B 1于O ,连接AO , ∵侧面C C BB 11为菱形,∴11BC C B ⊥ ∵为1BC 的中点,∴1BC AO ⊥ 又O AO C B = 1,∴⊥1BC 平面C AB 1又⊂1BC 平面C C BB 11,∴平面⊥C AB 1平面C C BB 11.(2)由B BO AB C B BO C B AB =⊥⊥ ,,11,得⊥C B 1平面ABO 又⊂AO 平面ABO ,∴C B AO 1⊥,从而1,,OB OB OA 两两互相垂直,以O 为坐标原点,的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz O -∵直线AB 与平面C C BB 11所成角为030,∴030=∠ABO设1=AO ,则3=BO ,∵0160=∠CBB ,∴1CBB ∆是边长为2的等边三角形∴)0,1,0(),0,1,0(),0,0,3(),1,0,0(1-C B B A ,则)1,0,3(),0,2,0(),1,1,0(1111-==-=-=AB B A C B AB 设),,(z y x =是平面C B A 11的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00111C B n B A n 即⎩⎨⎧=-=-0203y z x ,令1=x ,则)3,0,1(=n设直线1AB 与平面C B A 11所成的角为θ, 则46||||||,cos |sin ==><=n AB θ. 20.解:(1)易知过点),(00y x D 的切线方程为400=+y y x x ,其中42020=+y x ,则)24,2(),2,2(000y x F y x E +--, ∴4116416416424424220020000021-=-=--=-⋅-+=y y y x y x y x k k 设),(y x G ,则144122412221=+⇒-=+⋅-⇒-=y x x y x y k k (0≠y ) 故曲线C 的方程为1422=+y x (0≠y ) (2)联立⎩⎨⎧=++=4422y x mx y 消去y ,得0448522=-++m mx x ,设),(),,(2211y x Q y x P ,则544,5822121-=-=+m x x m x x ,由0)44(206422>--=∆m m 得55<<-m 且2,0±≠≠m m∴22221221255245444)58(24)(11||m m m x x x x PQ -=-⨯--⨯=-++=,易得)1,1(),2,2(---+m T m S , ∴)3(2)3()3(||22m m m ST +=+++=,∴22)3(554||||m m ST PQ S S OSTOPQ +-===∆∆λ,令)53,53(,3+-∈=+t t m 且5,3,1≠t ,则45)431(4544654222+--⨯=-+-=t t t t λ, 当431=t ,即43=t 时,λ取得最大值552,此时35-=m . 21.解:(1)xax y x a x x g x f y -=-=-=',ln 21)()(2 由题意得322=-a,解得2-=a (2))()()(x g x f x h +=x a x ln 212+=对任意两个不等的正数21,x x ,2)()(2121>--x x x h x h 恒成立,令21x x >,则)(2)()(2121x x x h x h ->-,即2211)(2)(x x h x x h ->-恒成立 则问题等价于x x a x x F 2ln 21)(2-+=在),0(+∞上为增函数 2)('-+=xax x F ,则问题转化为0)('≥x F 在),0(+∞上恒成立,即22x x a -≥在),0(+∞上恒成立,所以1)2(max 2=-≥x x a ,即实数a 的取值范围是),1[+∞. (3)不等式)(')()('1)('0000x g x g x f x f -<+等价于0000ln 1x ax a x x -<+,整理得01ln 000<++-x ax a x ,构造函数x a x a x x m ++-=1ln )(, 由题意知,在],1[e 上存在一点0x ,使得0)(0<x m2222)1)(1()1(11)('x x a x x a ax x x a x a x m +--=+--=+--=因为0>x ,所以01>+x ,令0)('=x m ,得a x +=1①当11≤+a ,即0≤a 时,)(x m 在],1[e 上单调递增,只需02)1(<+=a m ,解得2-<a ; ②当e a ≤+<11,即10-≤<e a 时,)(x m 在a x +=1处取得最小值.令01)1ln(1)1(<++-+=+a a a a m ,即)1l n (11+<++a a a ,可得)1ln(11+<++a aa (*) 令1+=a t ,则e t ≤<1,不等式(*)可化为t t t ln 11<-+ 因为e t ≤<1,所以不等式左端大于1,右端小于或等于1,所以不等式不能成立. ③当e a >+1,即1->e a 时,)(x m 在],1[e 上单调递减,只需01)(<++-=eaa e e m 解得112-+>e e a .综上所述,实数a 的取值范围是),11()2,(2+∞-+--∞e e . 22.解:(1)由题意可得直线l 和圆2C 的直角坐标方程分别为0=+-b y x ,4)2(22=++y x∵090=∠AOB ,∴直线l 过圆2C 的圆心)0,2(2-C ,∴2=b . (2)证明:曲线1C 的普通方程为)0(2>=a ay x ,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+-=ty t x 22222(t 为参数),代入曲线1C 的方程得04)2222(212=++-t a t , 04212>+=∆a a 恒成立,设N M ,两点对应的参数分别为21,t t ,则821=t t , ∴8||||22=N C M C , ∴||||22N C M C 为定值8.23.解:(1)由9)(≤x f 可得9|1||42|≤++-x x ,即⎩⎨⎧≤->9332x x 或⎩⎨⎧≤-≤≤-9521x x 或⎩⎨⎧≤+--<9331x x解得42≤<x 或21≤≤-x 或12-<≤-x , 故不等式9)(≤x f 的解集为]4,2[-.(2)易知)3,0(=B ,由题意可得a x x x +<++-2|1||42|在)3,0(上恒成立⇒1|42|-+<-a x x 在)3,0(上恒成立1421-+<-<+-⇒a x x a x 在)3,0(上恒成立 3->⇒x a 且53+->x a 在)3,0(上恒成立⎩⎨⎧≥≥⇒50a a 5≥⇒a .。
2018年安徽高考数学试卷与答案.理科word
2018年普通高等学校招生全国统一考试<安徽卷)数学<理科)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
FFGZIpSeWx (1> 设i 是虚数单位,复数12ai i+-为纯虚数,则实数a 为 <A ) 2 <B ) -2 <C ) -12 <D ) 12<2) 双曲线2228x y -=的实轴长是<A )2 (B> <3)设()f x 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-, (1)f = <A )-3 (B> -1 <C)1 <D)3<4)设变量x ,y 满足||||1x y +≤,则2x y +的最大值和最小值分别为<A)1,-1 <B)2,-2 <C)1,-2 <D)2,-1(5> 在极坐标系中,点 (2, )3π到圆2cos ρθ= 的圆心的距离为<A )<6)一个空间几何体得三视图如图所示,则该几何体的表面积为<A ) 48 (B>32+48+(D> 80(7>命题“所有能被2整除的数都是偶数”的否定是<A )所有不能被2整除的数都是偶数<B )所有能被2整除的数都不是偶数<C )存在一个不能被2整除的数都是偶数<D )存在一个不能被2整除的数都不是偶数<8)设集合{1,2,3,4,5,6},{4,5,6,7}A B ==,则满足S A ⊆且S B ≠∅的集合S 为 <A )57 <B )56 <C )49 <D )8<9)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是 <A ), ()36k k k z ππππ⎧⎫-+∈⎨⎬⎩⎭ <B ), ()2k k k z πππ⎧⎫+∈⎨⎬⎩⎭<C )2, ()63k k k z ππππ⎧⎫++∈⎨⎬⎩⎭ <D ), ()2k k k z πππ⎧⎫-∈⎨⎬⎩⎭<10)函数()(1)m n f x nx x =- 在区间上的图像如图所示,则m,n 的值可能是<A )m=1, n=1 <B )m=1, n=2<C )m=2, n=1 <D )m=3, n=1二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.<11)如图所示,程序框图<算法流程图)的输出结果是 .<12)设2122101221(1)x a a x a x a x -=++++,则1011a a +=_________ .<13)已知向量a ,b 满足(2)()6+-=-a b a b ,1|a |=,2|b |=,则a 与b 的夹角为________.<14)已知ABC ∆ 的一个内角为120o ,并且三边长构成公差为4的等差数列,则ABC ∆的面积为_______________FFGZIpSeWx <15)在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是_____________<写出所有正确命题的编号).FFGZIpSeWx ①存在这样的直线,既不与坐标轴平行又不经过任何整点②如果k 与b 都是无理数,则直线y kx b =+不经过任何整点③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点④直线y kx b =+经过无穷多个整点的充分必要条件是:k 与b 都是有理数⑤存在恰经过一个整点的直线三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.FFGZIpSeWx <16)(本小题满分12分> 设2()1x e f x ax=+,其中a 为正实数 <Ⅰ)当43a =a 43=时,求()f x 的极值点; <Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围。
2018年安徽高考理科数学试题及答案
2018年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间为120分钟。
参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz +i ·z = (A )-2 (B )-2i(C )2 (D )2i(2)“x <0”是ln (x+1)<0的(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34(B )55(C )78(D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。
已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214(C )2 (D )22 (5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为 (A )21 或-1 (B )2或21。
2018年安徽省合肥市第一中学冲刺高考最后1卷理科综合能力测试【PDF版】
选项 A B C D
试剂 a M n O a C l 2 和 N 蔗糖 F e S
紫色石蕊溶液 澄清石灰水 溴水 品红溶液
试剂 c
实验目的 验证 C l 2 的漂白性 验证非金属性 : B r >S 验证 S O2 的漂白性 验证 C O 2 的生成
锌溴液流电池用溴化锌溶液作电解液 , 并在电池间不断循环 ㊂ 下列有关说法正确的是 1 1.
N a S O 2 3
3 0
6. 6 8ʃ2. 0 7
6. 1 0ʃ0. 4 4
本试卷分第 Ⅰ 卷 ( 选择题 ) 和第 Ⅱ 卷 ( 非选择题 ) 两部分 ㊂ 满分 3 0 0 分 ㊂ 考试用时 1 5 0 分钟 ㊂ C r 5 2 F e 5 6 Z n 6 5
可能用到的相对原子质量 : H 1 B 1 1 C 1 2 N 1 4 O 1 6 N a 2 3 P 3 1 C l 3 5. 5
一㊁ 选择题 : 本题共 1 每 小 题 6 分㊂ 在 每 小 题 给 出 的 四 个 选 项 中, 只有一项是符合题目要 3小 题, 求的 ㊂ 下列关于细胞结构与成分的叙述 , 错误的是 1. 硅肺是矿工常见的职业病 , 与溶酶体缺乏分解硅尘的酶有关 A. 人体肌肉细胞膜上肾上腺素 ㊁ 胰岛素的受体都是在核糖体上合成的 B. ㊁ 细胞骨架与细胞的分裂 分化以及物质运输等生命活动密切相关 C. 一个 mR 相邻两个碱基之间依次由磷酸 核糖 磷酸连接 D. NA 分子中 , 下表是丽藻细胞液与池水中 以下相关说法正确的是 2. 4 种离子浓度比 ,
‘ , ( ) : ) 草业科学 “ 2 0 1 6, 3 3 1 6 1-6 6 I AA 对蓝叶忍冬扦插生根的影响 ( 根数 根长 生根率/% 处理时间/ ( ㊃L-1 ) 浓度/ m i n m g ( ) 0C K 0 6 3. 3 3ʃ5. 7 7 5. 3 6ʃ0. 7 9 7. 6 0ʃ0. 5 0 5 0 1 0 0 3 0 6 0 6 0 6 3. 3 3ʃ1 2. 5 8 6 1. 6 7ʃ2. 8 9 7 8. 3 3ʃ2. 8 9 5 1. 6 7ʃ7. 6 4 7. 8 5ʃ1. 6 4 7. 1 5ʃ0. 5 5 6. 2 4ʃ0. 2 5 7. 6 0ʃ2. 1 0 6. 3 6ʃ0. 7 8 6. 9 6ʃ0. 9 1
2018年高考试题真题理科数学(安徽卷)解析版及答案
2018年普通高等学校招生全国统一考试(安徽卷)数学(理科)贺昌峰, QQ: 373780592(2018-6-13下午完成)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间为120分钟。
参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设i 是虚数单位,_z 是复数z 的共轭复数,若|()>0I x f x =+2=2z zi ,则z =(A )1+i (B )1i -(C )1+i - (D )1-i -【答案】A 【解析】设2bi 2a 2)i b (a 2bi)i -a (bi)+a (22z bi.z -a =z .bi,+a =z 22+=++=+⋅⇒=+⋅z i 则 i zb a a+=⇒⎩⎨⎧==⇒⎩⎨⎧==+⇒111222b b a 22 所以选A(2) 如图所示,程序框图(算法流程图)的输出结果是(A ) 16 (B )2524(C )34 (D )1112【答案】D 【解析】.1211,1211122366141210=∴=++=+++=s s ,所以选 D (3)在下列命题中,不是公理..的是 (A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内(D )如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线【答案】A。
【高三数学试题精选】2018年安徽省高考理科数学试卷
2018年安徽省高考理科数学试卷
5 2018年普通高等学校招生全国统一考试(安徽卷)
数学(理科)
一.选择题本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设是虚数单位,表示复数的共轭复数若则()
A B c D
(2)“ ”是“ ”的()
A 充分而不必要条
B 必要而不充分条
c 充分必要条 D 既不充分也不必要条
(3)如图所示,程序框图(算法流程图)的输出结果是()
A 34
B 55 c 78 D 89
4以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线的参数方程是,(t为参数),圆c的极坐标方程是则直线被圆c截得的弦长为()
A B c D
5 满足约束条,若取得最大值的最优解不唯一,则实数的值为()
A, B c2或1 D
6设函数满足当时,,则()
A B c0 D
7一个多面体的三视图如图所示,则该多面体的表面积为()A21+ B18+ c21 D18
8从正方体六个面的对角线中任取两条作为一对,其中所成的角为的共有()
A24对 B30对 c48对 D60对。
2018年普通高等学校招生全国统考最后一卷模拟理科数学解析卷
ABCD中,点 E,
F
分别是
DC
,
BC
的中点,那么
EF
(
A.
1
AB+
1
AD
22
B.
1
AB
1
AD
22
C.
1
AB
1
AD
22
)
D.
1
AB
1
AD
22
【答案】D
【解析】因为点 E是
CD
的中点,所以
EC
,综上可得
1 a 2 ln 3 ; 3
(2)当
1 a
3
,即
0
a
1 3
时,
g
x
0
在
1,3
上恒成立,
g
x
单调递减,
因为最大值
g
1
a
2
,最小值
g
3
3a
ln
3
0
,所以
ln 3 3
a
2
,综合可得,
a
无解,
(3)当
1
1 a
3
,即
1 3
a
1
时,在
1,1a
C. 2,4
D. 1,4
【答案】D
【解析】由已知得 2b
2 ,故 b
1 ;∵ △F1AB 的面积为
2 2
3
,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年安徽省合肥一中高考数学最后一卷(理科)(J)副标题一、选择题(本大题共11小题,共11.0分)1.已知集合,,则A. B. C. D.【答案】A【解析】解:集合,,,.故选:A.求出集合A,B,从而求出,由此能求出.本题考查补集、交集的求法,考查补集、交集的定义、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.已知i是虚数单位,若,则的虚部是A. B. C. D.【答案】B【解析】解:,,的虚部为.故选:B.由已知可得,代入,利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.已知,函数在上单调递增,则w的取值范围是A. B. C. D.【答案】C【解析】解:函数在上单调递增,则,.解得:,.,当,可得.故选:C.利用余弦函数的单调性建立不等式关系求解即可.本题主要考查了余弦函数的单调性的应用和计算能力属于基础题.4.《九章算术》之后,人们学会了用等差数列的知识来解决问题,《张丘建算经》卷上有叙述为:“今有女善织,日益功疾注:从第2天开始,每天比前一天多织相同量的布,如图是源于其思想的一个程序框图,如果输出的S是60,则输入的x是A. 4B. 3C. 2D. 1【答案】C【解析】解:第一次执行循环体后,,,不满足退出循环的条件;第二次执行循环体后,,,不满足退出循环的条件;第三次执行循环体后,,,不满足退出循环的条件;第四次执行循环体后,,,不满足退出循环的条件;第29次执行循环体后,,,不满足退出循环的条件;第30次执行循环体后,,,满足退出循环的条件;故输出,故选:C.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.5.已知,分别满足,,则的值为A. eB.C.D.【答案】D【解析】解:,可得,,可得,即有,可得,由的导数为,可得在递增,可得,即为,即,可得,可得,故选:D.对等式两边取自然对数,再由,求导,判断单调性,运用对数的运算性质,可得所求值.本题考查函数方程的转化思想,注意运用构造函数法,运用导数判断单调性,考查变形能力和运算能力,属于中档题.6.某空间凸多面体的三视图如图所示,其中俯视图和侧左视图中的正方形的边长为1,正主视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为A. B. C. D.【答案】C【解析】解:由题意可知几何体的直观图如图:左侧是放倒的三棱柱,右侧是三棱锥,俯视图和侧左视图中的正方形的边长为1,正主视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为:.故选:C.画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键,考查计算能力.7.某班级有男生32人,女生20人,现选举4名学生分别担任班长、副班长、团支部书记和体育班委男生当选的人数记为,则的数学期望为A. B. C. D.【答案】C【解析】解:由题意知,随机变量的可能取值是0,1,2,3,4,且,,,,;的数学期望为.故选:C.由题意知随机变量的可能取值是0,1,2,3,4,计算对应的概率值,求出的数学期望值.本题考查了离散型随机变量的分布列与数学期望的计算问题,也考查了化简与计算能力,是中档题.8.已知函数单调递增,函数的图象关于点对称,实数x,y满足不等式,则的最小值为A. B. C. D.【答案】A【解析】解:根据题意,因为函数的图象关于点对称,所以函数的图象关于点对称,即函数是定义在R上的奇函数,则,又由函数单调递增,则,变形可得:,即或,所以可得其可行域,如图所示:,设,其几何意义为可行域中任意一点到点距离的平方,分析可得:m的最小值为,则的最小值为;故选:A.根据题意,分析可得函数为奇函数,结合函数的单调性分析可得,变形可得:,即或,由二元一次不等式的几何意义分析其可行域,又由,设,其几何意义为可行域中任意一点到点距离的平方,求出m的最小值,计算即可得答案.本题考查函数奇偶性、单调性的综合应用,涉及线性规划的应用,关键是分析x、y的关系.9.一个正四面体的四个面上分别标有数字1,2,3,掷这个四面体四次,令第i次得到的数为,若存在正整数k使得的概率,其中m,n是互质的正整数,则的值为A. 1B.C. 2D.【答案】B【解析】解:正四面体的四个面上分别标有数字1,2,3,掷这个四面体四次,令第i次得到的数为,存在正整数k使得的概率,当时,的概率,当时,的概率,当时,的概率,当时,的概率,得的概率,其中m,n是互质的正整数,,,则.故选:B.当时,的概率,当时,的概率,当时,的概率,当时,的概率,从而求出的概率,由此能求出的值.本题考查对数式化简求值,考查古典概型等基础知识,考查运算求解能力、推理论证能力、归纳总结能力,属于中档题.10.已知抛物线,过定点,且作直线AB交抛物线于A,B两点,且直线AB不垂直x轴,在A,B两点处分别作该抛物线的切线,,设,的交点为Q,直线AB的斜率为k,线段AB的中点为P,则下列四个结论:;当直线AB绕着M点旋转时,点Q的轨迹为抛物线;当时,直线PQ经过抛物线的焦点;当,时,直线PQ垂直y轴其中正确的个数有A. 0个B. 1个C. 2个D. 3个【答案】C【解析】解:设,则直线AB的方程:,直线AB过点,所以,解得,所以直线AB:,,由,所以,所以,即,,,所以,则,.故PQ垂直y轴,故正确,故选:C.设Q点坐标,根据导数的几何意义,即可求得直线AB的方程,代入即可求得,即可求得直线AB的方程,代入抛物线方程,利用韦达定理及中点坐标公式,即可求得,即可判断正确.本题考查抛物线切线方程的求法,直线与抛物线的位置关系,考查韦达定理,中点坐标公式,考查转化思想,属于中档题.11.设函数在R上存在导函数,对任意的有,且当时,2x.'/>若,的零点有A. 0个B. 1个C. 2个D. 3个【答案】C【解析】解:设,;则,得为R上的奇函数,时,0'/>,故在单调递增,再结合及为奇函数,知在为增函数,,,,解得,令,当时,,此时无解则,设,则,当时,令时,,函数单调递增,令时,,函数单调递减,,当时,,函数单调递减,,直线与有两个交点,的零点有2个,故选:C.令,,由,可得函数为奇函数利用导数可得函数在R上是增函数,,即,解得,再令,分离参数,可得,,利用导数,求出当时,,即可判断函数零点的个数.本题主要考查函数的奇偶性、单调性的应用,体现了转化的数学思想,函数零点的问题,属于难题.二、填空题(本大题共5小题,共5.0分)12.中,A,B,C的对边分别为a,b,已知,,则的值为______【答案】【解析】解:由,得,即,得,则舍,或,,,由正弦定理可得:,,平方正弦公式:可得:,即,,故答案为:.利用二倍角和正弦定理,平方正弦公式:化简可得答案.本题考查三角恒等变换及化简求值,二倍角和正弦定理,平方正弦公式的应用,是中档题.13.平行四边形ABCD中,,,,则______.【答案】【解析】解:平行四边形ABCD中,,,,如图,,,,,.故答案为:.推导出,,,由此能求出.本题考查向量的数量积的求法,考查向量的数量积公式、三角形面积等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.14.的展开式中含的项的系数是______.【答案】1024【解析】解:,故它的展开式中含的项的系数是,故答案为:1024.利用二项式定理把展开,可得的展开式中含的项的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.15.棱长为1的正方体如图所示,M,N分别为直线AF,BG上的动点,则线段MN长度的最小值为______.【答案】【解析】解:棱长为1的正方体如图所示,M,N分别为直线AF,BG上的动点,线段MN长度的最小值是异面直线AF与BG间的距离,以H为原点,HE为x轴,HG为y轴,HD为z轴,建立空间直角坐标系,0,,1,,1,,1,,1,,1,,线段MN长度的最小值:.故答案为:.线段MN长度的最小值是异面直线AF与BG间的距离,以H为原点,HE为x轴,HG为y轴,HD为z轴,建立空间直角坐标系,利用向量法能求出线段MN长度的最小值.本题考查线段长的最小值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.16.如图所示,已知直线AB的方程为,,是相外切的等圆,且分别与坐标轴及线段AB相切,,则两圆半径______用常数a,b,c表示【答案】【解析】解:如图,由已知得,,,设,,则,得:把代入,得,.故答案为:.由题意画出图形,得,,设,,列关于a,b,c,r,x,y的方程组,整体求解得答案.本题考查直线与圆的位置关系,考查数形结合的解题思想方法,是中档题.三、解答题(本大题共7小题,共7.0分)17.设数列的前n项和为,已知.求的通项公式;若数列满足,求前n项和.【答案】解:,,.故.,当时,,令,,,,故,又满足上式,.【解析】,相减可得,即可得出.,当时,,令,利用错位相减法即可得出.本题考查了数列递推关系、等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.18.底面OABC为正方形的四棱锥,且底面OABC,过OA的平面与侧面PBC的交线为DE,且满足::4.证明:平面OBD;当四边形时,求二面角的余弦值.【答案】证明:由题知四边形OABC为正方形,,又平面PBC,平面PBC,平面PBC,又平面OAED,平面平面,,又,.由~且::4,知E,D分别为PB,PC的中点.连接AC交OB于F点,连DF.,平面OBD,平面OBD,平面OBD.解:底面OABC为正方形,且底面OABC,,OA,OC两两垂直,建立如图所示的空间直角坐标系,设,,则0,,2a,,2a,,a,,0,,a,.底面OABC,底面OABC,.四边形OABC为正方形,,平面OBE,平面OBE的一个法向量为.设平面OEC的一个法向量为y,,而2a,,a,.由,得,取得,得0,为平面OCE的一个法向量.设二面角的大小为,由四边形,得,,,二面角的余弦值为.【解析】推导出从而平面PBC,进而,再由,得连接AC交OB于F点,连则,由此能证明平面OBD.推导出PO,OA,OC两两垂直,建立空间直角坐标系,利用向量法能求出二面角的余弦值.本题考查线面平行的证明,考查点二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19.深受广大球迷喜爱的某支欧洲足球队在对球员的使用上总是进行数据分析,为了考察甲球员对球队的贡献,现作如下数据统计:关;根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:,,,,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为:,,,则:当他参加比赛时,求球队某场比赛输球的概率;当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率;如果你是教练员,应用概率统计有关知识该如何使用乙球员?附表及公式:.【答案】解:,,,,,,有的把握认为球队胜利与甲球员参赛有关;设表示“乙球员担当前锋”;表示“乙球员担当中锋”;表示“乙球员担当后卫”;表示“乙球员担当守门员”;B表示“球队输掉某场比赛”,则;.因为::::::,所以,应该多让乙球员担任守门员,来扩大赢球场次.【解析】分别求出b,c,d,e,n的值,求出的值,利用临界值表可得出结论;根据条件概率公式分别计算出乙球员在担任“前锋”,“中锋”,“后卫”,“守门员”时输球的概率,最后相加得到已乙球员参加比赛时,球队输球的概率;利用乙球员担任前锋时输球的概率除以球队输球的概率即可得出答案;分别计算出乙队员在担任“前锋”,“中锋”,“后卫”,“守门员”时输球的概率,以输球概率最小时,乙球员担任的角色,作为教练员使用乙队员的依据.本题考察独立性检验和条件概率,关键在于从题中分析出相应的数据,以及相应事件的概率,结合条件概率公式进行计算,属于中等题.20.已知椭圆的离心率为,左、右焦点分别为,,且,:与该椭圆有且只有一个公共点.求椭圆标准方程;过点的直线与相切,且与椭圆相交于A,B两点,求证:;过点的直线l与:相切,且与椭圆相交于A,B两点,试探究的数量关系.【答案】解:与椭圆有且只有一个公共点,公共点为或,若公共点为时,则,又,解得,与矛盾,故公共点为.,又,,.反之,当时,联立,解得满足条件.椭圆标准方程为.证明:,设过的直线l:,联立,得.设,,则,又,.由l:与:相切得:,,,即:B.猜:证明如下:由得.,.【解析】由与椭圆有且只有一个公共点,可得公共点为或,若公共点为时,得出矛盾,故公共点为因此,又,即可得出.,设过的直线l:,联立,得设,,又,利用数量积运算性质与根及其系数的关系可得:由l:与:相切得:,解得,即可得出.猜:分析如下:利用斜率计算公式、根与系数的关系即可得出.本题考查了椭圆的标准方程及其性质、一元二次方程的根与系数的关系、斜率计算公式、向量垂直与数量积的关系,考查了推理能力与计算能力,属于难题.21.已知函数.讨论函数的零点个数;已知,证明:当时,.【答案】解:令,.令,则函数与的零点个数情况一致..时,0'/>.在上单调递增.又,有1个零点.时,在上单调递增,上单调递减..即时,,无零点.即时,个零点.即时,,又.又,,令,在上单调递增,,两个零点.综上:当或时,1个零点;当时,2个零点;当时,0个零点.证明要证,只需证.令,只需证:.令,,在上单调递增,在上单调递减,且.令,,在上单调递增,,,故.【解析】令,问题转化为求函数令,零点的个数问题,先求导,再分类讨论,根据函数零点存在定理即可求出,利用分析法,和构造函数法,借用导数,即可证明.本题考查导数及其应用等基础知识,考查考查推理论证能力、运算求解能力、抽象概括能力,考查转化化归思想、分类讨论思想、函数与方程思想,考查创新意识、应用意识,是难题.22.在平面直角坐标系xOy中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的参数方程为为参数,直线l的极坐标方程为.求曲线C和直线l的直角坐标方程,并求出曲线C上到直线l的距离最大的点的坐标,求曲线C的极坐标方程,并设A,B为曲线C上的两个动点,且,求的取值范围.【答案】解:曲线C的参数方程为为参数,曲线C的直角坐标方程为:,直线l的极坐标方程为.直线l的普通方程为:,则曲线C上点到直线l的距离:,当时,d最大,此时,.曲线C的极坐标方程为,即.设,则的取值范围是.【解析】曲线C的参数方程消去参数,能求出曲线C的直角坐标方程;由直线l的极坐标方程能求出直线l的普通方程,由此能求出曲线C上点到直线l的距离最大的点的坐标.曲线C的极坐标方程转化为设,能求出的取值范围.本题考查曲线的直线的直角坐标方程的求法,考查曲线上的点到直线的距离最大的点的坐标的求法,考查线段长的平方的取值范围的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.23.已知函数.当时,求不等式的解集;若的解集包含,求实数m的取值范围.【答案】解:当时,,即.当时,不等式化为,解得.当时,不等式化为,解得.当时,不等式化为,解得.综上,不等式的解集为或.的解集包含在上恒成立在上恒成立.当时,恒成立恒成立恒成立,解得.当时,恒成立恒成立恒成立,解得.所以,实数m的取值范围为.【解析】分段去绝对值,分别求出每个不等式组的解集,再取并集即得所求.的解集包含在上恒成立在上恒成立.当时,恒成立,解得m.当时,恒成立解得.本题主要考查绝对值不等式的解法,函数的恒成立问题,属于中档题。