ICDE2010

合集下载

Incoterms 2010 全

Incoterms 2010 全

Incoterms 2010 全目录INCOTERMS2010相对于INCOTERS2000的主要变化 (2)INCOTERMS2010 ...................................................... ................................................. (2)RULES FOR ANY MODE OR MODES OFTRANSPORT (3)EXW ................................................................ ........................................................................3FCA ................................................................ .........................................................................7CPT ................................................................ .......................................................................11CIP ................................................................ ........................................................................15DAT ................................................................ ......................................................................21DAP ................................................................ .......................................................................25DDP ................................................................ .......................................................................29RULES FOR SEA AND IINLAND WATERWAYTRANSPORT (33)FAS ................................................................ .......................................................................33FOB ................................................................ .......................................................................37CFR ................................................................ .......................................................................41CIF ................................................................ ........................................................................46一、【国际贸易术语解释通则】全名为“international rules for the interpretation of trade terms”简称为“international commercialterms"(以下简称INCOTERMS),宗旨是为国际贸易中最普遍使用的贸易术语提供一套解释的国际规则,以避免因各国不同解释而出现的不确定性,或至少在相当程度上减少这种不确定性。

[2010]1号-重要国际学术会议列表

[2010]1号-重要国际学术会议列表

华中科技大学智能与分布计算实验室[2010] 1号━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━重要国际学术会议列表根据华中科技大学计算机学院学位评定分委会于2006年2月23日发布的《计算机科学与技术学院资助教师和学生参加顶尖国际学术会议试行办法》以及2008年11月17日的修订版,结合本实验室的实际情况,特制定IDC实验室重要学术会议列表。

一、计算机学院所列顶尖国际学术会议(TOP 40)1. International Conference on Architectural Support for Programming Languages and OperatingSystems (ASPLOS)2. ACM Conference on Computer and Communication Security (CCS)3. USENIX Conference on File and Storage Techniques (FAST)4. International Symposium on Computer Architecture (ISCA)5. International Symposium on High Performance Computer Architecture (HPCA)6. International Conference on Software Engineering (ICSE)7. USENIX Conference on Operating System and Design (OSDI)8. ACM SIGCOMM Conference (SIGCOMM)9. ACM Annual International ACM SIGIR Conference on Research and Development inInformation Retrieval (SIGIR)10. ACM International Conference on Management of Data and Symposium on Principles ofDatabase Systems (SIGMOD/PODS)11. ACM Symposium on Operating Systems Principles (SOSP)12. Annual ACM Symposium on Theory of Computing (STOC)13. USENIX Annual Technical Conference (USENIX)14. ACM International Conference on Virtual Execution Environments (VEE)15. International Conference on Very Large Data Bases (VLDB)16. IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)17. IEEE Symposium on Foundations of Computer Science (FOCS)18. IEEE International Symposium on High Performance Distributed Computing (HPDC)19. International Conference on Distributed Computing Systems (ICDCS)20. International Conference on Data Engineering (ICDE)21. IEEE International Conference on Network Protocols (ICNP)22. ACM International Conference on Supercomputing (ICS)23. International Joint Conference on Artificial Intelligence (IJCAI)24. IEEE Conference on Computer Communications (INFOCOM)25. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)26. Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)27. ACM/IFIP/USENIX International Middleware Conference (Middleware)28. ACM International Conference on Multimedia (MM)29. ACM International Conference on Mobile Systems, Applications, and Services (MobiSys)30. ACM Conference on Programming Language Design and Implementation (PLDI)31. Annual ACM Symposium on Principles of Distributed Computing (PODC)32. ACM Symposium on Principles of Programming Languages (POPL)33. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP)34. IEEE Real-Time Systems Symposium (RTSS)35. Supercomputing (SC) Conference - International Conference for High PerformanceComputing, Networking, Storage and Analysis (SC)36. ACM Conference on Computer Graphics and Interactive Techniques (SIGGRAPH)37. ACM Conference on Measurement and Modeling of Computer Systems (SIGMETRICS)38. IEEE Symposium on Security and Privacy (SP)39. Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA)40. International World Wide Web Conference (WWW)二、IDC实验室所列重要国际学术会议1(TOP 41-80)1. National Conference on Artificial Intelligence (AAAI)2. International Conference on Machine Learning (ICML)3. International Conference on Principles of Knowledge Representation & Reasoning (KR)4. International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS)5. IEEE International Conference on Data Mining (ICDM)6. ACM International Conference on Information and Knowledge Management (CIKM)7. International Conference on Innovative Data Systems Research (CIDR)8. International Semantic Web Conference (ISWC)9. ACM Conference on Electronic Commerce (EC)10. IEEE International Parallel and Distributed Processing Symposium (IPDPS)11. International Conference on Parallel Processing (ICPP)12. International Workshop on Peer-to-Peer Systems (IPTPS)13. ACM SIGCOMM/USENIX Internet Measurement Conference (IMC)14. European Conference on Computer Systems (EuroSys)15. International Symposium on Modeling, Analysis, and Simulation of Computer &Telecommunication Systems (MASCOTS)16. International Conference on Mobile Computing and Networking (MobiCom)17. ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC)18. IEEE International Conference on Pervasive Computing and Communications (PerCom)19. USENIX Symposium on Networked Systems Design and Implementation (NSDI)20. International Conference on Parallel Architectures and Compilation Techniques (PACT)21. IFIP International Symposium on Computer Performance Modeling, Measurement andEvaluation (Performance)22. International Symposium on Reliable Distributed Systems (SRDS)23. Annual International Cryptology Conference (CRYPTO)24. USENIX Security Symposium (Security)25. Annual International Conference on the Theory and Applications of CryptographicTechniques (Eurocrypt)26. Annual Network and Distributed System Security Symposium (NDSS)27. ACM Symposium on Access Control Models and Technologies (SACMAT)28. IEEE Computer Security Foundations Symposium (CSF)29. Information Hiding (IH)30. International Workshop on Network and Operating System Support for Digital Audio andVideo (NOSSDAV)31. SPIE Conference on Multimedia Computing and Networking (MMCN)32. ACM International Conference on Multimedia Retrieval (ICMR)33. International Conference on Computer Vision (ICCV)34. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)35. European Conference on Computer Vision (ECCV)36. Neural Information Processing Systems (NIPS)37. Annual Meeting of the Association of Computational Linguistics (ACL)38. ACM Symposium on the Foundations of Software Engineering (FSE)39. ACM-SIAM Symposium on Discrete Algorithms (SODA)40. ACM Conference on Computer Supported Cooperative Work (CSCW)三、IDC实验室所列重要国际学术会议2(TOP 81-120)1. IEEE Symposium on Logic in Computer Science (LICS)2. International Conference on Logic Programming (ICLP)3. Conference on Uncertainty in Artificial Intelligence (UAI)4. IEEE Conference on Tools with Artificial Intelligence (ICTAI)5. European Conference on Artificial Intelligence (ECAI)6. The European Conference on Machine Learning and Principles and Practice of KnowledgeDiscovery in Databases (ECML/PKDD)7. SIAM International Conference on Data Mining (SDM)8. ACM/IEEE Joint Conference on Digital Libraries (JCDL)9. International Conference on Database Theory (ICDT)10. International Conference on Extending Database Technology (EDBT)11. International Conference on Database and Expert System Applications (DEXA)12. International Conference on Conceptual Modeling (ER)13. International Conference on Database Systems for Advanced Applications (DASFAA)14. European Semantic Web Conference (ESWC)15. IEEE International Conference on Web Services (ICWS)16. ACM International Symposium on High Performance Distributed Computing (HPDC)17. ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation (PADS)18. ACM Conference on Embedded Networked Sensor Systems (SenSys)19. IEEE International Conference on Communications (ICC)20. International Conference on Computer Communications and Networks (ICCCN)21. IEEE International Workshop on Quality of Service (IWQoS)22. IEEE Wireless Communications and Networking Conference (WCNC)23. International Conference on Information Processing in Sensor Networks (IPSN)24. IEEE Global Telecommunications Conference (GLOBECOM)25. European Conference on Parallel Computing (Euro-Par)26. International Conference on High Performance Computing (HiPC)27. IEEE International Conference on Peer-to-Peer Computing (P2P)28. Annual Computer Security Applications Conference (ACSAC)29. European Symposium on Research in Computer Security (ESORICS)30. ACM Symposium on Information, Computer and Communications Security (ASIACCS)31. Information Security Conference (ISC)32. International Workshop on Digital Watermarking (IWDW)33. SPIE Security, Steganography, and Watermarking of Multimedia Contents (SSWMC)34. International Conference on Multimedia & Expo (ICME)35. International Conference on Image Processing (ICIP)36. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)37. International Conference on Pattern Recognition (ICPR)38. Data Compression Conference (DCC)39. ACM Conference on Human Factors in Computing Systems (CHI)40. ACM/SIGAPP Symposium on Applied Computing (SAC)华中科技大学智能与分布计算实验室二O一O年一月二十日。

一种高效的高维数据流查询方法研究

一种高效的高维数据流查询方法研究

一种高效的高维数据流查询方法研究【摘要】为了改进无线传感器网络中高维数据的查询扩展、提高数据的查询精度以及减小数据通信量,提出一种高效的高维数据查询处理框架。

该框架可利用用户的偏好函数来进行任意查询。

并在该框架的基础上提出了改进滤波器算法,该算法通过滤波器避免sink分发所有RSsink数据,从而减少通信量。

【关键词】高维数据;查询扩展;偏好函数;查询精度0 引言Top-k查询大量运用在数据库领域,可以从大量数据库中提取到K个数据集或者数据点。

目前面临两方面的挑战,许多研究通过数据融合来完成数据查询处理,来减少传送能耗、增长传感器生命期。

数据融合技术中,传感器网络最基础的应用为top-k。

Silberstein.et.al[1-2]提出了一种线性top-k查询方法,设计了数据查询器。

Zeinalipont et.al[3]提出了一种阀值数据查询算法,需查询的各个属性区域设置了一些不同的阀值来减小对基站所传送的无用数据。

Wu et.al[4-5]在节点中设置了滤波器来滤除无用的数据。

上面的几种算法一定程度上改善了传感器网络数据查询的效率,降低了能耗,关注的却是传感器一维数据集。

而传感器网络高维数据的查询在理论研究及实际应用中,同样有着非常重要的意义,如海洋的检测研究,生物学家关注的是光照度、水温等,地质学家却关注水流速度、酸碱度等。

需要设计的系统可根据用户的需求及偏好采用多属性的查询方式。

而无线传感器网络多维数据查询研究较少。

设计传感器的节点能量高效及多用户需求与偏好的连续高维数据的top-k查询为当前要解决的首要问题。

1 问题描述无线传感器网络中,假设数据集为D={d1,d2.....dn},di则为m-维数据点即表示为(m+2)个数据元组:di=(di.x1,di.x2,.......,di.xm,di.id,di.t),di.xi 表示为数据,di.id表示为数据类ID号,di.t表示所需要的时间。

2010版GMP附录完整版-计算机化系统

2010版GMP附录完整版-计算机化系统

2010版GMP附录计算机化系统第一章范围第一条本附录适用于在药品生产质量管理过程中应用的计算机化系统。

计算机化系统由一系列硬件和软件组成,以满足特定的功能。

第二章原则第二条计算机化系统代替人工操作时,应当确保不对产品的质量、过程控制和其质量保证水平造成负面影响,不增加总体风险。

第三条风险管理应当贯穿计算机化系统的生命周期全过程,应当考虑患者安全、数据完整性和产品质量。

作为质量风险管理的一部分,应当根据书面的风险评估结果确定验证和数据完整性控制的程度。

第四条企业应当针对计算机化系统供应商的管理制定操作规程。

供应商提供产品或服务时(如安装、配置、集成、验证、维护、数据处理等),企业应当与供应商签订正式协议,明确双方责任。

企业应当基于风险评估的结果提供与供应商质量体系和审计信息相关的文件。

第三章人员第五条计算机化系统生命周期中所涉及的各种活动,如验证、使用、维护、管理等,需要各相关的职能部门人员之间的紧密合作。

应当明确所有使用和管理计算机化系统人员的职责和权限,并接受相应的使用和管理培训。

应当确保有适当的专业人员,对计算机化系统的设计、验证、安装和运行等方面进行培训和指导。

第四章验证第六条计算机化系统验证包括应用程序的验证和基础架构的确认,其范围与程度应当基于科学的风险评估。

风险评估应当充分考虑计算机化系统的使用范围和用途。

应当在计算机化系统生命周期中保持其验证状态。

第七条企业应当建立包含药品生产质量管理过程中涉及的所有计算机化系统清单,标明与药品生产质量管理相关的功能。

清单应当及时更新。

第八条企业应当指定专人对通用的商业化计算机软件进行审核,确认其满足用户需求。

在对定制的计算机化系统进行验证时,企业应当建立相应的操作规程,确保在生命周期内评估系统的质量和性能。

第九条数据转换格式或迁移时,应当确认数据的数值及含义没有改变。

第五章系统第十条系统应当安装在适当的位置,以防止外来因素干扰。

第十一条关键系统应当有详细阐述的文件(必要时,要有图纸),并须及时更新。

consort2010版准则的主要内容

consort2010版准则的主要内容

Consort 2010版准则的主要内容一、引言Consort 2010版准则是为了提高临床试验报告的质量和完整性而制定的。

该准则旨在促进临床试验结果的可重复性和透明性,以促进科学的进步和患者的利益。

二、目的本准则旨在提供一个标准的框架,指导研究者编写和发表临床试验报告,确保报告中数据准确性和完整性,以及提高临床试验结果的可重复性和透明性。

三、范围本准则适用于所有类型的研究,包括随机对照试验、观察性研究、诊断性研究等。

这些研究可以是药物、设备或非药物干预的临床试验。

四、历史背景自1996年以来,Consort声明已经经历了多次修订和更新,以适应临床试验设计和报告的最新发展。

Consort 2010版准则是在前几版的基础上进行修订的,以更好地满足当前的临床试验报告需求。

五、报告规范的发展随着临床试验设计和报告的不断发展,Consort声明也在不断更新和完善。

这些更新旨在提高临床试验报告的质量和完整性,以促进科学的进步和患者的利益。

六、Consort声明与试验报告的关系Consort声明是一套标准和指南,旨在指导研究者编写和发表临床试验报告。

通过遵循Consort声明,研究者可以确保其试验报告的准确性和完整性,从而使得其他研究者能够更准确地评估和重复试验结果。

七、Consort声明与期刊政策的关系许多学术期刊已经采用了Consort声明作为临床试验报告的指导原则。

这些期刊要求作者在提交临床试验报告时遵循Consort声明的标准。

通过遵循这些标准,作者可以确保其论文的质量和完整性,从而增加被期刊接受的机会。

八、核查单与流程图为了帮助研究者遵循Consort声明,许多组织已经开发了核查单和流程图。

这些工具可以帮助研究者确保其试验报告的准确性和完整性,并提高报告的可重复性和透明性。

研究者可以使用这些工具来核查其报告是否符合Consort声明的标准。

九、核查单的应用核查单是一种重要的工具,可以帮助研究者检查其试验报告是否符合Consort 声明的标准。

05578214[1]使用cloudsim仿真

05578214[1]使用cloudsim仿真

Resource Pricing and Equilibrium Allocation Policy in Cloud ComputingFei TengApplied Mathematics and Systems Laboratory Ecole Centrale Paris,Francefei.teng@ecp.frFr´e d´e ric Magoul`e sApplied Mathematics and Systems Laboratory Ecole Centrale Paris,Francefrederic.magoules@AbstractCloud computing is a new emerging computing paradigm that advocates supplying users everything as a pared with grid computing,the focus of resource management problem is transformed to resource virtualization and allocation rather than job decomposition and scheduling.It is more urgent tofind better solutions for cloud resource allocation than ever before.Although there have been some research efforts in grid computing, most of them aim at maximizing utility of system and lack of analysis for competition between different users.Some researches consider competition analysis,but they assume that common knowledge is certain and known for every user,which is difficult to be applied in a global distributed cloud environment.In this paper,we hereby propose a new resource pricing and allocation policy where users can predict the future resource price as well as satisfy budget and deadline constraints.Experimental results prove that resource price can gradually converge to an equilibrium state by dynamic games and that cloud users can receive Nash equilibrium allocation proportion without other competitors’bidding information.Keywords cloud computing,resource pricing,resource allocation,Nash equilibrium,dynamic games1.BackgroundThroughout2009cloud computing has continued to catch eyes and efforts both in industry and academic orga-nizations.Cloud solutions seemed to state master keys for the IT enterprises who suffer for budget concerns and eco-nomic woes.I.Foster,defines the ambiguous cloud as“A large-scale of distributed computing paradigm that is driven by economies of scale,in which a pool of abstracted vir-tualized,dynamically-scalable,managed computing power, storage,platforms,and services are delivered on demand to external customers over the Internet”[4].This statement illustrates that although cloud computing shares similar vi-sion with other distributed computing paradigms,it can not be simply treated as the updated version of grid comput-ing.Grid computing aims at how to effectively make use of networked and loosely coupled computers to execute large calculations.Its primary commitment is job decomposition and scheduling,while cloud computing inclines to support Internet services of supplement,consumption and delivery through resource virtualization and allocation.Cloud computing technology roots the idea to implement “Everything-as-a-Service”.It integrates dynamic,scalable, distributed resources into various services available to en-terprises and individuals[14].Since cloud services involve frequent buying,selling,trading and exchanging behaviors between resource providers and consumers who both are financially rational,market mechanism turns out to be an appropriate approach for resource allocation in the complex and heterogeneous environment.In a market-oriented environment,both supplier’s rev-enue and user’s Quality of Services(QoS)intend to be max-imized.It is very difficult to apply the traditional system-centric allocation policy in a highly dynamic and distributed environment[13].Instead,with the market-oriented allo-cation policy,supply and demand of cloud resources will spontaneously converge at an equilibrium state after a se-ries of market adjustments caused by economic incentives for both sides[7].We suggest that the future of resource management in cloud computing may move towards a user-centric direction.That is the reason which pushes us to pay more attention on these equilibrium based policies which play a main role in cloud resource allocation mechanisms.This paper is organized as follows.Section two intro-duces the development of cloud computing platforms and the related research on resource allocation methods.Af-ter the analysis of their strengths and weaknesses,Section three describes our new resource pricing and allocation pol-icy,followed by its mathematic model.In Section four,we demonstrate a simulation algorithm ran on the Cloudsim platform,while experimental results are discussed in Sec-tionfive.Finally,Section six concludes this paper.2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)2.Related WorksMarket mechanisms are used as an effective method to control electronic resources.They are also applied in vari-ous distributed resource management including bandwidth pricing,TCP congestion control,contents delivery,routing, and wireless caching[2].There are several scientific and commercial platforms employ economic methods to solve resource allocation problems in grid or cloud computing.G-commerce[15]for instance is computational economy for controlling resource allocation in computational grid.It de-veloped two different market conditions,commodities mar-kets and auctions for resource allocation.BEinGRID[12] sets out to provide the infrastructure to support pilot imple-mentations of grid technologies in actual business scenar-ios.GridEcon[11]project has created a commodity market platform that enables users to bid on available computing capacity,or put out a tender for a specific computing time slot.Cloudbus[3]mostly provides a service brokering in-frastructure and a core middleware for deploying applica-tions in the datacenter to realize the vision of global cloud computing marketplace.The mentioned frameworks can support conceptual envi-ronments for grid or cloud resource allocation,but the short-comings come from lacking of overall equilibrium utility and optimization from point of views of consumers.That is to say,the cooperation in the economic market just in-cludes the balance between users and providers to maxi-mize resource utilization,but ignoring the competition be-tween different users.Therefore we introduce game the-ory to solve resource allocation problem in cloud environ-ment.The allocation strategies based on Nash equilib-rium focus on analysis how these selfish and rational users make their decisions.Khan[6]was committed to simple game theoretic allocation scheme comparison with differ-ent design rationales:noncooperative,semicooperative and cooperative.Bredin[2]developed decentralized negotia-tion strategies in auctioning divisible resource and proved the auction has a unique Nash equilibrium.However,this model tends to idealize the competitive environment and lets agents know each other well in a limited scope.An[1] presented a proportional resource allocation mechanism for multi-agent system and gave game theoretical analysis.The upturn will be considering more constraints(for example budget constraints and time constraints)into current mech-anism.Kwok[8]pioneered the consideration of a hierar-chical game theoretic model of grid and analytically derive the optimal strategies for the general case.But time delay caused by intra and inter repeated bidding should be im-proved.Li[9]did research on utility-driven solution for optimal resource allocation;the deficiency is lack of pre-diction for future load and price.Aiming at the disadvantages of above algorithms,we make efforts to propose a new resource pricing and alloca-tion policy in cloud computing.Our work is mainly basedon the former research“Nash equilibrium and decentral-ized negotiation in auctioning divisible resources”[10],butintegrates new challenge issues.For example,in auctionsone user can not know how much others would like to payfor bid item,because they are at widely scattered locationswithout communication.In other words,there is no com-mon knowledge in the whole system.Besides,pay-as-you-go manner makes auctions never static,but turn to be dy-namic repeated gambling processes.Each user can adjustits bid price in the next stage in terms of others prior behav-iors.In addition,more constraints and variables should becomplementary to let mathematical model more adapted toreality.Finally,a practicable cloud resource managementpolicy is achieved by sequent gambling auction,which willrealize Nash equilibrium allocation among users under bud-get and time constraints.3.Resource Pricing and Allocation ModelsIn a real-life scenario,cloud computational resources areshared among different cloud consumers who will pay forthe services according to their usage of resource.Generally,the resource details are hidden from users through virtual-ization.Observed from user perspective,services are iden-tical in terms of functionality and interface.However,it isnotfinancially reasonable to provide the same QoS to theusers who would like to pay more for better services.Ourpaper studies the situation where users are competing for re-sources with differentfinancial capacities.We assume thatwhen proposing their requests for cloud resources,all theusers offer their bids at the same time and only know theirown bids.The resources are allocated later based on theirbid proportions.Now we look at a general case as an example wherecloud provider virtualizes K resources totally,each ofwhich can render a specific service with afixedfinite ca-pacity C=[C1,C2,...,C K].These resources will be allo-cated to cloud users using bid proportion allocation mecha-nism.We assume that there are N users who hold the samejobs in cloud market.Each job is composed by a set ofsequent subtasks where q i k stands for the task size.Mean-while,every user has its own bidding function,which cal-culates the suitable estimated cost to purchase a resourcedepending on task size,priority,QoS requirement,budgetand ers will bid for their subtasks according totheir bidding functions.In our paper,normal distribution,which is popular in stocks market nowadays,is employedto describe thefinancial capability of the users:p(B i)∼N(μi,σ2)where B i is the money that user would like to pay for hiringthe resource for a second distributed normally with mean μi and variance σer i bids for task k at price b i k that can be considered as a sample for B i .B =⎛⎜⎜⎜⎜⎜⎜⎝B 1...B i ...B N ⎞⎟⎟⎟⎟⎟⎟⎠=⎛⎜⎜⎜⎜⎜⎜⎝b 11...b 1k ...b 1K ...............b i 1...b i k ...b i K ...............b N 1...b N k ...b N K ⎞⎟⎟⎟⎟⎟⎟⎠In terms of total bids for task k ,Θk is introduced to indicatethe resource scarcity.Higher value reveals greater market demand.Θk = Ni =1b i k where Θk equals the sum of all users’bids on task k ,while θ−ik = N j =i b j k is given as the sum of other bids except bidb i k from user i .For these N independent users B 1···B N,according to the properties of the normal distribution,their linear combination is also normally distributed.p (Θ)∼N ( Ni =1μi , N i =1σ2)Market sharing scheme with bid proportion allocation pol-icy reveals that the allocation of resource k obtained by the user i is proportional to its purchasing price.The portion isx i k =b i k N i =1b ik,and obviously,∀k, N i =1x i k =1.Time and cost taken to complete task k are defined by t i k =q i k C k x ikande i k =b i k t ik ,respectively.We found that the similar scenarios are well analyzed in game theory,in which an individual’s success in making choices depends on the choices of others [5].In our paper,we use the equilibrium model to estimate the final state of such a competition scenario and build a market-oriented re-source allocation mechanism with two types of constraints:budget and deadline.3.1Budget constraintsUnder budget constraints E =[E 1,E 2,...,E N ],eachuser is given a limited budget E i .Cloud customers want to complete their tasks as fast as possible with limited funds.For example,user i can not exceed the given budget E i when it attempts to minimize the total time taken to finish all tasks as follows:minK k =1t i ks.tK k =1e i k ≤EiThe Hamilton equation is built by introducing the La-grangianL =K k =1t i k +λi (Kk =1e i k −E i)Substituting for t i k and e ik ,and taking the partial derivative with respect to b i k ,we set the first-derivative condition to zero:∂L ∂b i k =−q i k θ−i k C k (b i k)2+λi q i kC k =0which givesλi=θ−ik(b i k )2where θ−ik >0means that there are at least two users,which leads to λ>0.Then we can get the relationship between any two bids of user i .For instance,b i k =b i jθ−ik −i jfor bidj and bid k .Similarly,taking partial derivative with respect to λi ,we obtain∂L ∂λi =Kk =1b i k +θ−i k C k−E i =0Substituting of b i j by b ik ,the equation is expandedk −1j =1q i j C j (θ−i j θ−i kb i k +θ−i j )+q i k C k (b i k +θ−i k )+K j =k +1q i j C j(ˆθ−i j −i kb i k +ˆθ−i j)−E i =0Simplifying the above equation,user i will bid for its task kat price b i k =E i−k −1j =1q ij C j θ−i j−q i k C k θ−i k−Kj =k +1q i j C j ˆθ−ij k −1j =1q i jC jθ−ij θ−i k+q i kC k+Kj =k +1q i jC jˆθ−i jθ−ik(1)In Maheswaran’s model,the bidding function for one user is under the condition that all other payments are fixed throughout the network.In other words,game players know each other’s bidding functions.The model should be classified as the static games of complete information [5].However,these isolated cloud users are impossible to collect all rivals’financial information in real market,so the resource allocation problem changes into the game of incomplete information.In equation (1),for user i ,theexpectation of future bids ˆθ−i k +1,···,ˆθ−iK should be esti-mated precisely.We could then deduce b i k as a functionf i k(θ−i 1,···,θ−i k,ˆθ−i k +1,···,ˆθ−iK)with K parameters.Under imperfect information scenario,we assume thateach user only knows its own bidding function μi ,but it has no idea about others distribution parameters μj ,∀j =i .Let μall = N i =1μi and σ2all = N i =1σ2=Nσ2,thenthe estimation of μall is ˆμall =1k k j =1Θj .Furthermore,let Θk be one sample of Θdistributed normally,where μis unknown and τ2is known.p (Θk |Θ)∼N (˜μ,τ2)In probability theory,Bayes’theorem shows how the prob-ability of a hypothesis given observed evidence depends on its inverse,so the posteriori distribution can be calculated from the priori p (Θ).The likelihood function p (Θ|Θk )isp (Θ|Θk )=p (Θk |Θ)p (Θ)p (Θk |Θ)p (Θ)d ΘThe posteriori hyperparameters are achieved by using Bayesian learning mechanismp (Θ|Θk )∼N (ˆμk ,ˆσ2k )∼N ⎛⎜⎜⎝ˆμall σ2all+ kj =1Θjτ21σ2all+kτ2,11σ2all+k τ2⎞⎟⎟⎠With the maximum likelihood prediction value of resource price,all unknown variables are estimated as followsˆθ−i j =ˆμj −μij ∈k +1,···,KAfter substituting θ−ik =Θk −b i k and introducing threeparameters to equation (1),we obtain the explicit function f i k (Θk ,αi k ,βi k ,γi k )of b i k with respect of Θk .g i k(Θk ,αi k ,βi k ,γik )=(αi k −βi k Θk )22(γi k )2−1+ 1+4(γi k )2Θk (αi k −βi k Θk)2αik =E i − k −1j =1q i j C j θ−i j−Kj =k +1q i j C j ˆθ−ijβi k =q i kC kγi k=k −1j =1q ijC jθ−i j+Kj =k +1q i jC jˆθ−i jΘk ∈(0,αi k βi k)(2)In equation (2),αik implies the remaining capital for cur-rent task,while βik represents the minimum time required to finish task k .Ratioαi k βi kstands for available budget for thecurrent task,and γikpredicts the time to finish the leaving tasks in job sequence.In addition,the bid function will be a positive value forever,when the user can not afford for the resource,it will quit with bidding nothing.Figure 1shows that any bid in the sequence is not only decided by its budget,but also influenced by its workloads.The dot-dash line indicates that a user is able to submit a larger positive bid and the participated bid range enlarges when it becomes wealthier.On the contrary,soften dash line means that user just receives very limited allocation.Because it should save more money to participate in the fol-lowing competitions,if there are more future tasks to com-plete.Figure 1.Bid under budget constraints3.2Deadline ConstraintsNow we consider another restraint,where each userholds a limited completion ers should finish all tasks before the given deadlines,T =[T 1,T 2,...,T N ],at the same time they must cut down the expenditures spent on their jobs.This constraint is defined as followsminK k =1e i ks.tK k =1t i k ≤TiWe solve the problem by Lagrangian methodsL =K k =1e i k+λi(Kk =1t i k −T i)Following the same steps,we reach the equation which characterizes the optimal bidding price under dynamic games of incomplete information.g i k (Θk ,βi k ,γi k ,ωi k )=βik ωi k +βi kΘk +√(γi k)4+4(γi k )2(ωi k +βi k )ωi k Θk 2(ωi k+βi k)2−(γi k )22(ωi k +βi k)2βik =q i k C kγi k = k −1j =1q i jC j θ−ij+Kj =k +1q i jC jˆθ−i jωi k=T i − K k =1q ikC k(3)From equation (3),the major difference over former onecomes from ωik,it turns to be a constant which stands for flextime under the deadline.That gives us an intuition that bids will increase to infinite and equilibrium price does not exist,because it is a monotonic ascending function with re-spect of Θk .Lacking of budget constraint,even exorbitant prices would not deter the users,so vicious competition can not be restrained.Figure 2.Bid under double constraints Our assumption is proven by Figure 2.Solid line shows that when resource price turns higher,bid will rise accord-ingly.Dot dash line illustrates that if users have enough time they can effectively control their expenditures.That’s because the user is not urged to put a higher bid to get suffi-cient computing resource to finish the task on time under a longer deadline constraint.3.3Double constraintsBudget constraints can not be skipped in reality,we therefore introduce output elasticity factor ρto measure the responsiveness of output to a change in levels of either bud-get and deadline constraints.Optimal object function is re-built as follows:min ( Kk =1e i k )ρ( K k =1t i k )1−ρs.tK k =1e ik ≤E i K k =1t ik ≤TiThe object can be minimized by looking at the natural log-arithm,so the Lagrange function is expressedL =ρlnK k =1e i k +(1−ρ)lnK k =1t i k+λi e (K k =1e i k−E i)+λi t (Kk =1t i k−T i )The first order conditions are∇L (b i k ,λi e ,λit )=0Taking partial derivative with respect to b i k ,we obtain1−ρ k−λi e ρt i k−λi t=θ−i k(b i k )2=θ−i j (b i j )2(4)We could get two conclusions from equation (4).(i)For user i ,the capital sum e ik and time sum t i k remain the same for any two tasks,we could therefore get the relation-ship between any two bids,b k and b j .(ii)Given Θk ,pref-erence ρbetween budget and deadline has a major effect on their bids b k .Figure 3.Bid under double constraints The bid function under double constraints is drawn in Figure 3.From the chart,we can find out how the possi-ble bid range enlarges accordingly when the constraints are loosed.The intersection of two solid lines signifies that bud-get and deadline are both exhausted at the same time.When the deadline is extended,the solid budget curve meets the dashed deadline curve at a lower position.It indicates that the possible bid should be above the solid deadline curve to complete all the tasks in finite time.For the same reason,if the user holds more funds,intersection moves right along solid deadline curve,so the left side of solid budget curve will contain the possible bids.We thereby get bid region which is surround by cross and plus curves.Particularly,the crosses mean that all the capital is used up remaining time left,while pluses stand for deadline is reached with redundant money.Outside this region,there is no feasi-ble bidding solution that expresses the given constraints are over rigid.If the user still wishes to accomplish this im-possible mission,it must loose any of the two constraints slightly to continue bidding.Furthermore,no matter budget or deadline constraints are relaxed,the range Θk over which user participates is stretched.Because higher bids are more competitive in terms of same Θk ,we choose the cross curve as the new biddingfunction h i k (Θk ,αi k ,βi k ,γi k ,ωik )under double constraints.Figure 4offers us the equilibrium allocation solutions and resource selling price for dynamic system.Because the bid function sum h (Θk )of task k should be equal to Θk ,we draw a line with slope one to represent the sum of all bids for task k .The intersection of this line and the curve h (Θk )stands for the only stable solution.From Figure 4,Figure 4.Equilibrium resource price under double constraintswe can observe how the final equilibrium bidding is affected by different number of users.The increasing number of ri-vals uplifts the bid sum and makes resource turn to be more expensive.It is obvious that the user becomes more active to join in a bidding environment where all the other competi-tors give a higher bid.As a result,the resource price soars high.Once the price is too high for users to afford,users will quit the competitive bidding and the resource price will consequently decrease quickly.4.Simulation Model in CloudsimRegarding the simulation framework,we choose Cloudsim as our experiment platform which benefits us to focus on resource allocation policy without concerning about low level details related to cloud-based infrastruc-tures.Cloudsim integrates the new cloud features and job QoS into economic models.These features are not sup-ported by other cloud simulators [3].There are three entities offered by Cloudsim,CIS (Cloud Information Service)Registry,Datacenter and Broker who acts on the behalf of users.In order to realize our allo-cation policy we implement the forth entity,namely,auc-tioneer.CIS Registry provides database level match-making service for mapping user requests to datacenter.Datacenter integrates distributed hardware,database,storage devices,application software and operating system to build a re-source pool and then according to users demands virtual-izes applicable computing resources.It is composed by a set of hosts,which represent physical computing nodes in the ers play a bidding role for their own tasks in the market,who are self-interested and rational consider-ing their budget and deadline constraints.Auctioneer is the mid-person in charge of maintaining an open,fair and equi-table market environment.In accordance with the rules ofmarket economy,auctioneer will fix an equilibrium price for users to avoid inflated price.In the end of sequent games,resource allocation proportion will reach Nash equilibrium,and no one would like to deviate the allocation result.Figure 5.Flowchart of communication among entitiesFigure 5depicts the flow of communications among en-tities.On start,datacenter initializes current available hosts,regardless their homogeneous or heterogeneous configura-tion.Furthermore,it generates provision information and registers in CIS.At the same time,cloud users queue their tasks and send them to the auctioneer.In order to sim-plify bidding process,here we only consider that all cloud users compete for the same set of tasks in a given sequence.Next,auctioneer orders datacenter to create different kinds of virtual resources through CIS Registry.Datecenter cre-ates corresponding quantity of VMs with respect to the ser-vice requirements from users.When datacenter is ready and informs the provision results to the auctioneer,successive auction process starts.In each auction stage,users ask the auctioneer individ-ually about configuration information such as virtual ma-chine provision policy,time zone,bandwidth,residual com-puting processors.Afterwards they bid according to their asset valuations.Auctioneer collects all bids then informs the sum of bids to users.Under the game of incomplete information,cloud users only know their own price func-tion as well as incurred bids sum.By using Bayesian learn mechanism,they dynamically predicate the future resource selling price,and submit four parametersα,β,γandωof bidding function to the auctioneer.Next,holding all users’price function,auctioneer could search the Nash equilib-rium allocation strategy with bisection method.As soon as auctioneerfixes thefinal resource selling price and alloca-tion proportion,it publishes allocation results to datacenter and users simultaneously.Resource is thereby shared on the proportion,while users execute their tasks and pay for dat-acenter.In the end,datacenter destroys the used VMs and waits for new service demands.5.Experiment ResultsWe now present the simulation results of our resource pricing and allocation policy in Cloudsim.To model cloud datacenter,we create CPU with different MIPS,memory with different MB,storage with different GB and bandwidth with different Mbps.At the same time,variation of CPU ar-chitectures,operation systems,virtualization standards and machine locations are considered when we initialize hetero-geneous computing resource configuration.To model cloud users,application tasks are createdfirst. This tiny application contains all information related to task execution management details such as tasks processing re-quirements expressed in MIPS,disk I/O operations and the size of inputfiles.We choose thirty-two users to compete for a set of tasks that will be processed sequentially.All these users bid according to their bidding functions under budget and deadline constraints.We choose one user from all as our observable object, and assign it a mean purchasing price of$10/s.Others mean bids are generated randomly in the range of$1-$100/s.All bidding functions obey normal distribution rules,in which variance parameters are given by anticipation.Hence this user totally has no idea about other’s economic situations, but it will keep on estimating them from their prior behav-iors.Figure6illustrates how closing price changes at each game stage.We could conclude that budget exerts a huge influence on preliminary equilibrium price,because selfish but rational users always wish to seek extra benefits from others.With limited budget,a user will behave conserva-tively at the initial stages,avoiding overrunning the bud-get and saving enough money to complete remaining tasks. Therefore,at the beginning,the equilibrium price is lower than the mean price.On the contrary,when the user has suf-ficient capital,it is eager to improve current payment to get a larger petition leads to equilibrium price rise,higher than anticipated cost.However,with money available for current job decreasing,user turns to be less ag-gressive.As bidding is undergoing,the price will graduallyFigure6.Convergence of Nash equilibriumbidconverge to the original mean value.Figure7.Prediction of resource price Figure7exhibits the predication of resource price in dy-namic game of incomplete information.If the common knowledge is lacked,a user experientially predicts others bidding functions using those published equilibrium prices. When the bidding variance is low,no more than0.01,the estimation works quite well.Our policy has little difference from Maheswaran’s scheme,where all users’information isfixed and public.If users perform unstably in gambling process and offered bids become more randomly,accurate price forecast turns to be difficult.As long as the relief is trained repeatedly in the sequential games,experiments re-sults show that resource price still converges to the optimal equilibrium price stage by stage.6.Conclusions and PerspectivesFrom resource management aspect,main difference be-tween grid and cloud computing is that allocation policy。

国家开放大学社会认可吗

国家开放大学社会认可吗

国家开放大学社会认可吗国家开放大学社会认可吗成人教育,作为目前大部分上班族提升学历的主要方式,自然是受到了社会普遍关注。

以下小编为大家整理了国家开放大学社会认可吗的详细内容,希望对大家有所帮助!认可的。

国家开放大学是中华人民共和国教育部直属的,以现代信息技术为支撑,学历教育与非学bai历教育并举,实施远程开放教育的新型高等学校。

学校在中央广播电视大学基础上组建,面向全体社会成员,强调优质教育资源的集聚、整合和共享,强调以现代信息技术为支撑,探索现代信息技术与教育的深度融合。

学校有权授予学士学位,由学校向北京市学位委员会申请并获批后,报国务院学位委员会备案。

原中央广播电视大学名称暂时保留,过渡时期采取“老人老办法、新人新办法”,中央广播电视大学的在校学生仍按原有关规定管理,国家开放大学挂牌以后新进入学习的学生,按照新政策执行。

国家开放大学强调“开放、责任、质量、多样化、国际化”的办学理念,大力发展非学历继续教育,稳步发展学历继续教育,推进现代科技与教育的深度融合,搭建终身学习“立交桥”,适应国家经济社会发展和人的全面发展需要;促进终身教育体系建设,促进全民学习、终身学习的学习型社会形成。

经过10年努力,把国家开放大学建设成为我国高等教育体系中一所新型大学;世界开放大学体系中富有中国特色的开放大学;我国学习型社会的重要支柱。

国家开放大学简介新型大学国家开放大学是教育部直属,以现代信息技术为支撑,学历继续教育与非学历继续教育并举,实施远程开放教育的新型高等学校。

国家开放大学是在广播电视大学基础上组建而成的。

办学组织体系跨行业、跨省(市)、跨区域,立体覆盖全国城乡,包括总部、分部、学院和学习中心,依托各种社会力量,与国内外一流大学、部委行业、知名企业、中心城市,建立支持与合作联盟。

按照“统一战略、共同平台、资源共享、相对独立、错位发展、各具特色”原则运行。

目前,在学生规模359万,其中,本科生109万,专科生250万,包括20万农民学生、10万部队士官学生和6000多名残疾人学生。

如何发表计算机视觉顶级论文CVPR,ICCV,ECCV

如何发表计算机视觉顶级论文CVPR,ICCV,ECCV

Database Community
• Jeffrey Naughton’s ICDE 2010 keynote • What’s wrong with the reviewing process? • How to fix that?
Journals
• PAMI – IEEE Transactions on Pattern Analysis and Machine Intelligence, since 1979 (impact
Reactions
• • • • • • • • • • • • • Top journal papers Workshops vs conferences Waiting for the review and results Acceptance Reject Mixed feeling Finding an error Resubmit? This time, it will go through Paper finally accepted Registration Oral presentation Poster presentation
11.62% 11.40% 11.90%
Oral
1600 1400 1200
1000 800 600 400 200 0 96 97 98 99 00 01 03 04 05 06 07
551 544 453 504 466
9.27% 8.15% 6.63% 5.40% 4.77% 4.80% 3.95% 4.21% 4.52% 3.52% 2.48% 3.34%
24.86% 31.80% 30.68% 29.76%
Overall
31.89% 29.67% 26.00% 23.09% 28.02% 28.12% 28.24% 26.41% 26.74% 26.12% 26.25% 24.06%

肿瘤随访登记技术方案

肿瘤随访登记技术方案

肿瘤随访登记技术方案肿瘤登记报告是一项按一定的组织系统经常性的搜集、储存、整理、统计分析和评价肿瘤发病、死亡和生存资料的统计制度。

肿瘤登记是国际公认的有关肿瘤信息的收集方法。

在慢性非传染性疾病中,只有恶性肿瘤采用登记方法。

自上世纪七十年代以来,我国癌症的发病及死亡一直呈明显上升趋势,目前癌症已成为我国城乡居民的首要死因,对我国国民经济,社会发展,人民健康,卫生服务与经济负担造成极大影响。

癌症控制已成为全球卫生战略的重点。

掌握癌情信息是制定卫生事业发展规划,肿瘤防治策略与对策,制定科研方向及评价防治效果的科学依据。

目前我国还没有完善的肿瘤登记制度,从而给以上工作带来极大困难。

2003年,卫生部下发了《中国癌症预防与控制规划纲要(2004-2010)》(卫疾控发[2003]352号),为在全国开展肿瘤登记提供了政策依据。

为加强肿瘤发病死亡登记工作的规范化管理,提高登记质量,为癌症监测、预警提供基础数据,为制定癌症防治策略提供可靠依据,根据《中国肿瘤登记工作指导手册》,参考国际癌症研究中心(IARC)对肿瘤登记资料的相关要求,结合中国各地区的卫生资源现状、工作条件,特制定肿瘤随访登记技术方案。

本技术方案适用于承担中央转移支付地方肿瘤随访登记项目的地区及各级肿瘤登记机构开展工作,更详细的内容可参照全国肿瘤防治研究办公室编写的《中国肿瘤登记工作指导手册》。

一、开展肿瘤随访登记报告的基本条件(一)建立肿瘤登记报告制度,制定和颁布相应法规或政策,成立肿瘤登记处在新开展恶性肿瘤新病例登记报告的地区,首先要由当地政府或卫生行政部门制定和颁布实行肿瘤登记报告制度的法律法规或规范性文件,建立肿瘤登记处,配备相应的工作人员、设备及经费。

(二)制定肿瘤登记报告实施细则新建立的肿瘤登记处根据全国肿瘤登记中心的统一要求和当地的实际情况,制订肿瘤新病例登记报告实施细则等规定(包括报告程序、核实和随访、各基层单位职责分工等),以保证此项工作的建立和长期的正常运行。

CE EDMS 编码 2010版

CE EDMS 编码 2010版

1140 1138 1133 1130 1129 1126 1124 1123 1116 1115 1113 1970 1971 3000 1032
1814 1784 1577 1500 1411 1329 1301 1265 1258 1035
1802 1753 1630 1510 1481 1378 1360 3300 3001
1886 1739 1578 1563 1430 3003 1070
1857 1684 1612 1567 1474 1022
Period: Currency unit:
EDMA CLASSIFICATION / DESCRIPTION CIP CODE
1846 1717 1618 1494 1447 1415 1330 1286 1281 1247 1228 1208 1193 1184 1179 1166 1162 1159 1155 1152 1149 1142 1141 1137 1134 1132 1128 1127 1125 1121 1021
EDMS - EuropeanDiagnosticMarketStatistics - DataInputForm 2010 Companycode: 11 11.01 11.01.01 11.01.01.01 11.01.01.02 11.01.01.03 11.01.01.04 11.01.01.05 11.01.01.06 11.01.01.07 11.01.01.08 11.01.01.09 11.01.01.10 11.01.01.11 11.01.01.12 11.01.01.13 11.01.01.14 11.01.01.15 11.01.01.16 11.01.01.17 11.01.01.18 11.01.01.19 11.01.01.20 11.01.01.21 11.01.01.22 11.01.01.23 11.01.01.24 11.01.01.25 11.01.01.26 11.01.01.27 11.01.01.28 11.01.01.29 11.01.01.30 11.01.01.90 11.02 11.02.01 11.02.01.01 11.02.01.02 11.02.01.03 11.02.01.04 11.02.01.05 11.02.01.06 11.02.01.07 11.02.01.08 11.02.01.09 11.02.01.10 11.02.01.11 11.02.01.12 11.02.01.13 11.02.01.14 11.02.01.15 11.02.01.16 11.02.01.17 11.02.01.18 11.02.01.19 11.02.01.20 11.02.01.21 11.02.01.22 cr cr cr cr Substrates Albumin (CC) Bile acids Bilirubin Urea/Blood Urea Nitrogen Cholesterol Copper Creatinine D-Xylose Delta-Aminolaevulinic acid Fructosamine Fructose Galactose Glucose Glycosylated/Glycated Haemoglobin (CC) High Density Lipoprotein Cholesterol Iron (CC) Lactate Lecithin Lipoprotein, Chemical determination/detection Low Density Lipoprotein Cholesterol including sd-LDL Non Esterified Fatty Acids LDL-C/sd-LDL NEFA IC =>12.07.01.04 IC =>12.07.01.05 Iron Binding Capacity - Total (CC) IC==>12.06.01.06 HbA1/HbA1C HDL-C Fe TIBC ALAD Cu BUN IC =>12.01.03.01 cr cr cr cr cr Enzymes 5'-Nucleotidase Acid Phosphatase (CC) Alanine Amino-Transferase Aldolase Alkaline Phosphatase - Total Alkaline Phosphatase Isoenzymes(CC) Amylase - Total Amylase Isoenzyme Angiotensin Converting Enzyme (CC) Aspartate Amino-Transferase Cholinesterase Chymotrypsin Creatine Kinase - Total Creatine Kinase - MB Activity"(CC) Creatine Kinase Isoenzymes Gamma Glutamyltransferase Glutamate Dehydrogenase Hydroxybutyrate Dehydrogenase Lactate Dehydrogenase L ( LDH - L --> P ) Lactate Dehydrogenase P ( LDH - P --> L ) Lactate Dehydrogenase Isoenzymes Leucine Aminopeptidase Lipase Lysozyme Malate Dehydrogenase N-acetyl-b,D-Glucosaminidase Pepsin Phospho Hexose Isomerase Sorbitol Dehydrogenase Trypsin (CC) Other Enzymes TOTAL 11.01 Substrates IC =>12.01.90.07 MDH b-NAG PPS PHI SDH TPS IC =>12.01.05.02 CK CK-MB iso-CK GGT GLDH HBDH LDH-L LDH-P iso-LDH LAP LPS IC =>12.06.02.03 IC =>12.06.03.01 IC =>12.03.01.37 NTP ACP ALT/SGPT ALS ALP/AP iso-AP AMS/AMY iso-AMS ACE AST/SGOT CHE TOTAL IVD MARKET REAGENTS INSTRUMENTS SERVICES (AFTER SALES) SUPPORTING SOFTWARE Sample Containers Classification REAGENTS CLINICAL CHEMISTRY Enzymes

INTERCOMS 2010

INTERCOMS 2010

国际贸易术语的变化国际商会修订的《国际贸易术语解释通则2010》(Incoterms®2010)于9月27日向全球正式公布,并于2011年1月1日生效。

新版本考虑了无关税区的不断扩大,商业交易中电子信息使用的增加,货物运输中对安全问题的进一步关注以及运输方式的变化。

更新并整合与“交货”相关的规则,将术语总数由原来的13条减至11条,并对所有规则做出更加简洁、明确的陈述。

同时,国际贸易术语解释通则®2010首次在贸易术语中对买方与卖方不使用有性别差别的称谓。

它主要描述了货物由卖方交付给买方过程中所涉及的工作、成本和风险。

11条贸易术语:EXW Ex Works All types of transportationFAS Free Alongside Ship Water transportFOB Free On Board Water transportFCA Free Carrier All types of transportationCFR Cost and Freight Water transportCPT Carriage Paid To All types of transportationCIF Cost, Insurance and Freight Water transportCIP Carriage and Insurance Paid All types of transportationDAT (new delivery term) Delivered At Terminal All types of transportationDAP (new delivery term) Delivered At Place All types of transportationDDP Delivered Duty Paid All types of transportation取消四条贸易术语:DDU (Delivered Duty Unpaid);DAF (Delivered At Frontier);DES (Delivered Ex Ship);DEQ (Delivered Ex Quay).参考网站:/参考文章:如何选择适合自己的贸易术语——对IncotermsRrules2010的认识《国际贸易术语解释通则》(IncotermsRrules2010)即将于2010年正式实施,新版本充分考虑到近十年贸易领域出现的新变化,内容更清晰简洁,操作性和指导性进一步加强,更符合当前贸易实务的需要。

英国皇家学会院士樊文飞:把大数据变小,突破企业资源限制

英国皇家学会院士樊文飞:把大数据变小,突破企业资源限制

英国皇家学会院士樊文飞:把大数据变小,突破企业资源限制作者:张静来源:《海外星云》2019年第17期无论是去年李开复所言的“AI泡沫破裂”、Yann LeCun说的“AI公司要没钱了”,还是今年张钹院士提出的“深度学习触及天花板”,亦或是图灵奖得主ludea Pearl直指“AT现在的重点是曲线拟合,而不是智能”,这些人工智能领域的大牛无一不在表述这样一个观点:人工智能需要冷思考。

“AT目前可以帮助我们发现一些关联关系,提高生产效率。

要使AI进一步发挥潜力,就需要提高基础计算引擎的效率。

”英国皇家学会院士樊文飞表示,“大数据是AI的基础。

由于大数据计算的困难性,传统的经典计算理论已经不能够解决大数据的问题,需要新的理论和切实可行的技术”。

樊文飞是国际学术界公认的在“数据库理论与系统领域都做出突破性贡献的极少数学者之一”。

他是英国皇家学会计算机领域唯一的华裔院士(美国科学院计算机领域的华裔院士也只有姚期智一人),是在英国皇家学会具有300余年历史的签名簿上用中文签名的第一人。

他是数据库领域历史上仅有的两个“大满贯”学者之一,即获得国际数据库理论与系统四大顶级会议的最佳论文奖或10年最佳论文奖(SIGMOD 2017,PODS 2015 & 2010,VLDB2010,ICDE 2007)。

尽管樊文飞从理论到实践,从学术到科研再到产业,都有丰富的积淀和经验,但是他很少在公共舆论环境中发表意见。

据了解,他已经接受了中国计算机学会(China Computer Federation,缩写“CCF”)的邀请,将出席即将召开的中国计算机大会,并发表演讲。

我们就此和他进行了交流。

“计算机研究的核心是理论和系统。

”樊文飞开篇明义。

“打个比方,大家都知道Google的阿尔法狗(Alpha Go)打败围棋世界冠军,是人工智能的一个重要里程碑。

但大家也应该看到,Alpha Go背后用到的处理资源的价值是以千万美元计算的,研发团队里面集聚了一大批国际顶级人才,他们的价值更是以亿计算。

微软发布器2010产品指南说明书

微软发布器2010产品指南说明书

目錄簡介 (1)Publisher 2010:快速瀏覽 (2)建立外觀出色的出版物 (2)節省時間並簡化工作 (3)適時運用正確的工具 (3)讓您更有自信分享出版物 (4)Publisher 2010:深入瞭解 (5)輕鬆存取線上範本增強設計! (5)自訂範本並重複使用自訂內容 (6)建置組塊增強設計! (7)與 Publisher 使用者社群共享全新設計! (8)編輯和使用相片工具全新和增強的設計! (10)物件對齊技術全新設計! (12)精細印刷樣式全新設計! (12)即時預覽全新設計! (14)貼上時即時預覽全新設計! (14)隱藏草稿區全新設計! (16)頁面導覽全新設計! (17)功能區全新設計! (18)Backstage 檢視全新設計! (19)整合的列印體驗全新設計! (20)商業與數位印刷支援增強設計! (21)發佈成 PDF 或 XPS 增強設計! (23)語言工具增強設計! (24)儲存和管理客戶清單 (25)傳送電子報 (25)功能位置 (27)版本比較 (33)常見問題集 (38)需求\揭露 (42)簡介Microsoft® Publisher 2010 提供簡單易用的設計工具,能讓您建立、列印和共享具有專業品質的行銷資料和出版物。

經過更新的使用者介面讓工作更有效率,增強的相片工具讓您獲得更精確的結果,視覺化的指南則能幫助您導覽出版物並查看列印內容。

無論您需要摺頁冊、傳單、目錄或電子報,您都可以用更低的花費和更少的工作量自行製作。

Publisher 2010 讓您輕鬆建立屬於自己的成功宣傳方式。

Publisher 2010:快速瀏覽實現您的創意您不必是專業設計師,就能夠製作出專業的行銷和宣傳資料。

各種預先設計好可自訂的範本,以及簡單好用的設計工具,都可幫助您快速將創意付諸實行,建立視覺效果豐富的出版物。

建立外觀出色的出版物您的內容外觀會大幅影響對象接收資訊的意願。

中科院2010年分区表

中科院2010年分区表

刊名简称刊名全称ISSN大类名称复分大类分区1941-1405地学1 ANNU REV MAR SCI Annual Review of Marine Science1680-7316地学1 ATMOS CHEM PHYS ATMOSPHERIC CHEMISTRY AND PHYSI0003-0007地学1B AM METEOROL SOC BULLETIN OF THE AMERICAN METEORCLIM DYNAM CLIMATE DYNAMICS0930-7575地学1 CRYOSPHERE Cryosphere1994-0416地学10012-821X地学1 EARTH PLANET SC LETTEARTH AND PLANETARY SCIENCE LETEARTH-SCI REV EARTH-SCIENCE REVIEWS0012-8252地学1 GEOCHIM COSMOCHIM ACGEOCHIMICA ET COSMOCHIMICA ACTA0016-7037地学1 GEOLOGY GEOLOGY0091-7613地学1 GONDWANA RES GONDWANA RESEARCH1342-937X地学1J CLIMATE JOURNAL OF CLIMATE0894-8755地学1J METAMORPH GEOL JOURNAL OF METAMORPHIC GEOLOGY0263-4929地学1J PETROL JOURNAL OF PETROLOGY0022-3530地学1 NAT GEOSCI Nature Geoscience1752-0894地学1 PALEOCEANOGRAPHY PALEOCEANOGRAPHY0883-8305地学1 PRECAMBRIAN RES PRECAMBRIAN RESEARCH0301-9268地学1 QUATERNARY SCI REV QUATERNARY SCIENCE REVIEWS0277-3791地学1 REV GEOPHYS REVIEWS OF GEOPHYSICS8755-1209地学1 GEOPHYS RES LETT GEOPHYSICAL RESEARCH LETTERS0094-8276地学20022-4928地学2J ATMOS SCI JOURNAL OF THE ATMOSPHERIC SCIE0148-0227地学2J GEOPHYS RES JOURNAL OF GEOPHYSICAL RESEARCHJ HYDROL JOURNAL OF HYDROLOGY0022-1694地学2 LIMNOL OCEANOGR LIMNOLOGY AND OCEANOGRAPHY0024-3590地学2AM J SCI AMERICAN JOURNAL OF SCIENCE0002-9599地学2 APPL CLAY SCI APPLIED CLAY SCIENCE0169-1317地学21867-1381地学2 ATMOS MEAS TECH Atmospheric Measurement TechniqB VOLCANOL BULLETIN OF VOLCANOLOGY0258-8900地学2 BASIN RES BASIN RESEARCH0950-091X地学2 BOREAS BOREAS0300-9483地学2 BOUND-LAY METEOROL BOUNDARY-LAYER METEOROLOGY0006-8314地学2 CHEM GEOL CHEMICAL GEOLOGY0009-2541地学2 CLIM PAST Climate of the Past 1814-9324地学20010-7999地学2 CONTRIB MINERAL PETRCONTRIBUTIONS TO MINERALOGY AND0967-0637地学2 DEEP-SEA RES PT I DEEP-SEA RESEARCH PART I-OCEANO0377-0265地学2 DYNAM ATMOS OCEANS DYNAMICS OF ATMOSPHERES AND OCEELEMENTS Elements1811-5209地学21525-2027地学2 GEOCHEM GEOPHY GEOSYGEOCHEMISTRY GEOPHYSICS GEOSYST0016-7606地学2 GEOL SOC AM BULL GEOLOGICAL SOCIETY OF AMERICA BGEOMORPHOLOGY GEOMORPHOLOGY0169-555X地学20956-540X地学2 GEOPHYS J INT GEOPHYSICAL JOURNAL INTERNATION1639-4488地学2 GEOSTAND GEOANAL RESGEOSTANDARDS AND GEOANALYTICALGEOTEXT GEOMEMBRANESGEOTEXTILES AND GEOMEMBRANES0266-1144地学2 HOLOCENE HOLOCENE0959-6836地学21027-5606地学2 HYDROL EARTH SYST SCHYDROLOGY AND EARTH SYSTEM SCIE0899-8418地学2INT J CLIMATOL INTERNATIONAL JOURNAL OF CLIMAT1437-3254地学2INT J EARTH SCI INTERNATIONAL JOURNAL OF EARTHJ GEOL JOURNAL OF GEOLOGY0022-1376地学20016-7649地学2J GEOL SOC LONDON JOURNAL OF THE GEOLOGICAL SOCIEJ HYDROMETEOROL JOURNAL OF HYDROMETEOROLOGY1525-755X地学2J MARINE SYST JOURNAL OF MARINE SYSTEMS0924-7963地学2 J PALEOLIMNOL JOURNAL OF PALEOLIMNOLOGY0921-2728地学20022-3670地学2 J PHYS OCEANOGR JOURNAL OF PHYSICAL OCEANOGRAPHJ QUATERNARY SCI JOURNAL OF QUATERNARY SCIENCE0267-8179地学21477-2019地学2 J SYST PALAEONTOL JOURNAL OF SYSTEMATIC PALAEONTOLITHOS LITHOS0024-4937地学2 MAR GEOL MARINE GEOLOGY0025-3227地学2 MAR MICROPALEONTOL MARINE MICROPALEONTOLOGY0377-8398地学2 MON WEATHER REV MONTHLY WEATHER REVIEW0027-0644地学2 OCEAN MODEL OCEAN MODELLING1463-5003地学2 ORE GEOL REV ORE GEOLOGY REVIEWS0169-1368地学2 ORG GEOCHEM ORGANIC GEOCHEMISTRY0146-6380地学20031-0182地学2 PALAEOGEOGR PALAEOCLPALAEOGEOGRAPHY PALAEOCLIMATOLOPALEOBIOLOGY PALEOBIOLOGY0094-8373地学2 PROG OCEANOGR PROGRESS IN OCEANOGRAPHY0079-6611地学2 PROG PHYS GEOG PROGRESS IN PHYSICAL GEOGRAPHY0309-1333地学2 Q J ROY METEOR SOC QUARTERLY JOURNAL OF THE ROYAL0035-9009地学2 QUAT GEOCHRONOL Quaternary Geochronology 1871-1014地学2 QUATERNARY RES QUATERNARY RESEARCH0033-5894地学2 REV MINERAL GEOCHEM REVIEWS IN MINERALOGY & GEOCHEM1529-6466地学2 SURV GEOPHYS SURVEYS IN GEOPHYSICS0169-3298地学2 TECTONICS TECTONICS0278-7407地学2 TELLUS B TELLUS SERIES B-CHEMICAL AND PH0280-6509地学21000-9515地学3 ACTA GEOL SIN-ENGL ACTA GEOLOGICA SINICA-ENGLISH EACTA PALAEONTOL POL ACTA PALAEONTOLOGICA POLONICA0567-7920地学3 AM MINERAL AMERICAN MINERALOGIST0003-004X地学3 ANN GEOPHYS-GERMANY ANNALES GEOPHYSICAE0992-7689地学3 ANTARCT SCI ANTARCTIC SCIENCE0954-1020地学3 APPL GEOCHEM APPLIED GEOCHEMISTRY0883-2927地学3 ARCHAEOMETRY ARCHAEOMETRY0003-813X地学31523-0430地学3 ARCT ANTARCT ALP RESARCTIC ANTARCTIC AND ALPINE RESATMOS RES ATMOSPHERIC RESEARCH0169-8095地学3 ATMOS SCI LETT Atmospheric Science Letters1530-261X地学30812-0099地学3 AUST J EARTH SCI AUSTRALIAN JOURNAL OF EARTH SCI0037-1106地学3 B SEISMOL SOC AM BULLETIN OF THE SEISMOLOGICAL SCHEM ERDE-GEOCHEM CHEMIE DER ERDE-GEOCHEMISTRY0009-2819地学3 CLAY CLAY MINER CLAYS AND CLAY MINERALS0009-8604地学3 CLIM RES CLIMATE RESEARCH0936-577X地学3 CONT SHELF RES CONTINENTAL SHELF RESEARCH0278-4343地学30967-0645地学3 DEEP-SEA RES PT II DEEP-SEA RESEARCH PART II-TOPICEARTH INTERACT Earth Interactions 1087-3562地学3 EARTH SURF PROC LANDEARTH SURFACE PROCESSES AND LAN0197-9337地学3 ECON GEOL ECONOMIC GEOLOGY0361-0128地学3 EPISODES EPISODES0705-3797地学3 ESTUAR COAST SHELF SESTUARINE COASTAL AND SHELF SCI0272-7714地学3 EUR J MINERAL EUROPEAN JOURNAL OF MINERALOGY0935-1221地学3 FACIES FACIES0172-9179地学3 GEOARABIA GEOARABIA1025-6059地学3 GEOCHEM T GEOCHEMICAL TRANSACTIONS1467-4866地学3 GEOFLUIDS GEOFLUIDS1468-8115地学3GEOL ACTA GEOLOGICA ACTA 1695-6133地学3 GEOL J GEOLOGICAL JOURNAL0072-1050地学3 GEOL MAG GEOLOGICAL MAGAZINE0016-7568地学3 GEO-MAR LETT GEO-MARINE LETTERS0276-0460地学3 GEOPHYS PROSPECT GEOPHYSICAL PROSPECTING0016-8025地学3 GEOPHYSICS GEOPHYSICS0016-8033地学31991-959X地学3 GEOSCI MODEL DEV Geoscientific Model DevelopmentGEOSPHERE Geosphere1553-040X地学3 HELGOLAND MAR RES HELGOLAND MARINE RESEARCH1438-387X地学3 INT GEOL REV INTERNATIONAL GEOLOGY REVIEW0020-6814地学30303-2434地学3 INT J APPL EARTH OBSInternational Journal of Applie0020-7128地学3 INT J BIOMETEOROL INTERNATIONAL JOURNAL OF BIOMETINT J GEOGR INF SCI INTERNATIONAL JOURNAL OF GEOGRA1365-8816地学30392-6672地学3 INT J SPELEOL INTERNATIONAL JOURNAL OF SPELEOJ APPL METEOROL CLIMJournal of Applied Meteorology1558-8424地学30305-4403地学3 J ARCHAEOL SCI JOURNAL OF ARCHAEOLOGICAL SCIEN1367-9120地学3 J ASIAN EARTH SCI JOURNAL OF ASIAN EARTH SCIENCESJ ATMOS OCEAN TECH JOURNAL OF ATMOSPHERIC AND OCEA0739-0572地学31364-6826地学3 J ATMOS SOL-TERR PHYJOURNAL OF ATMOSPHERIC AND SOLAJ GEOCHEM EXPLOR JOURNAL OF GEOCHEMICAL EXPLORAT0375-6742地学3 J GEODESY JOURNAL OF GEODESY0949-7714地学3 J GEODYN JOURNAL OF GEODYNAMICS0264-3707地学3 J GLACIOL JOURNAL OF GLACIOLOGY0022-1430地学3 J MAR RES JOURNAL OF MARINE RESEARCH0022-2402地学30895-9811地学3 J S AM EARTH SCI JOURNAL OF SOUTH AMERICAN EARTHJ SEA RES JOURNAL OF SEA RESEARCH1385-1101地学31527-1404地学3 J SEDIMENT RES JOURNAL OF SEDIMENTARY RESEARCHJ STRUCT GEOL JOURNAL OF STRUCTURAL GEOLOGY0191-8141地学3 J VERTEBR PALEONTOL JOURNAL OF VERTEBRATE PALEONTOL0272-4634地学30377-0273地学3 J VOLCANOL GEOTH RESJOURNAL OF VOLCANOLOGY AND GEOTJOKULL Jokull0449-0576地学3 LANDSLIDES Landslides 1612-510X地学3 LETHAIA LETHAIA0024-1164地学31541-5856地学3 LIMNOL OCEANOGR-METHLIMNOLOGY AND OCEANOGRAPHY-METHLITHOSPHERE-US Lithosphere1941-8264地学3 MAR PETROL GEOL MARINE AND PETROLEUM GEOLOGY0264-8172地学3 MINER DEPOSITA MINERALIUM DEPOSITA0026-4598地学31561-8633地学3 NAT HAZARD EARTH SYSNATURAL HAZARDS AND EARTH SYSTEOCEAN DYNAM OCEAN DYNAMICS1616-7341地学3 OCEANOGRAPHY OCEANOGRAPHY 1042-8275地学3 PALAEONTOLOGY PALAEONTOLOGY0031-0239地学3 PALAIOS PALAIOS0883-1351地学31045-6740地学3 PERMAFROST PERIGLAC PERMAFROST AND PERIGLACIAL PROC0099-1112地学3 PHOTOGRAMM ENG REM SPHOTOGRAMMETRIC ENGINEERING AND0342-1791地学3 PHYS CHEM MINER PHYSICS AND CHEMISTRY OF MINERAQUATERN INT QUATERNARY INTERNATIONAL1040-6182地学3 RADIOCARBON RADIOCARBON0033-8222地学3 REV PALAEOBOT PALYNOREVIEW OF PALAEOBOTANY AND PALY0034-6667地学3 SEDIMENT GEOL SEDIMENTARY GEOLOGY0037-0738地学3 SEDIMENTOLOGY SEDIMENTOLOGY0037-0746地学3SEISMOL RES LETT SEISMOLOGICAL RESEARCH LETTERS0895-0695地学30038-6804地学3 SPEC PAP PALAEONTOL SPECIAL PAPERS IN PALAEONTOLOGYSTRATIGRAPHY Stratigraphy 1547-139X地学3 SWISS J GEOSCI Swiss Journal of Geosciences1661-8726地学3 TECTONOPHYSICS TECTONOPHYSICS0040-1951地学30280-6495地学3 TELLUS A TELLUS SERIES A-DYNAMIC METEOROTERRA NOVA TERRA NOVA0954-4879地学30177-798X地学3 THEOR APPL CLIMATOL THEORETICAL AND APPLIED CLIMATOWEATHER FORECAST WEATHER AND FORECASTING0882-8156地学3 ACTA CARSOLOGICA ACTA CARSOLOGICA 0583-6050地学41217-8977地学4 ACTA GEOD GEOPHYS HU Acta Geodaetica et Geophysica H1214-9705地学4 ACTA GEODYN GEOMATER Acta Geodynamica et Geomaterial1581-6613地学4 ACTA GEOGR SLOV Acta Geographica Slovenica-GeogACTA GEOL POL ACTA GEOLOGICA POLONICA0001-5709地学4 ACTA GEOPHYS Acta Geophysica1895-6572地学4 ACTA GEOTECH SLOV Acta Geotechnica Slovenica1854-0171地学4 ACTA METEOROL SIN Acta Meteorologica Sinica 0894-0525地学4 ACTA MONTAN SLOVACA Acta Montanistica Slovaca 1335-1788地学4 ACTA OCEANOL SIN ACTA OCEANOLOGICA SINICA0253-505X地学4 ADV ATMOS SCI ADVANCES IN ATMOSPHERIC SCIENCE0256-1530地学4 ADV GEOPHYS ADVANCES IN GEOPHYSICS0065-2687地学4 ALCHERINGA ALCHERINGA0311-5518地学4 AMEGHINIANA AMEGHINIANA0002-7014地学4 ANDEAN GEOL Andean Geology0718-7092地学4 ANN GEOPHYS-ITALY ANNALS OF GEOPHYSICS1593-5213地学40003-4088地学4 ANN LIMNOL-INT J LIMANNALES DE LIMNOLOGIE-INTERNATIANN PALEONTOL ANNALES DE PALEONTOLOGIE 0753-3969地学4 ANN SOC GEOL POL ANNALES SOCIETATIS GEOLOGORUM P0208-9068地学4 APPL GEOPHYS Applied Geophysics1672-7975地学4 APPL OCEAN RES APPLIED OCEAN RESEARCH0141-1187地学4 AQUAT GEOCHEM AQUATIC GEOCHEMISTRY1380-6165地学4 ARAB J GEOSCI Arabian Journal of Geosciences1866-7511地学4 ARCHAEOL PROSPECT Archaeological Prospection1075-2196地学4 ARCTIC ARCTIC0004-0843地学41976-7633地学4 ASIA-PAC J ATMOS SCIAsia-Pacific Journal of AtmosphATMOS OCEAN ATMOSPHERE-OCEAN0705-5900地学4 ATMOSFERA ATMOSFERA0187-6236地学41836-716X地学4 AUST METEOROL OCEAN Australian Meteorological and O0251-7493地学4 AUSTRIAN J EARTH SCIAustrian Journal of Earth Scien0007-4802地学4 B CAN PETROL GEOL BULLETIN OF CANADIAN PETROLEUMB CIENC GEOD Boletim de Ciencias Geodesicas1413-4853地学40006-6729地学4 B GEOFIS TEOR APPL Bollettino di Geofisica Teorica0011-6297地学4 B GEOL SOC DENMARK BULLETIN OF THE GEOLOGICAL SOCI0367-5211地学4 B GEOL SOC FINLAND BULLETIN OF THE GEOLOGICAL SOCIB GEOSCI BULLETIN OF GEOSCIENCES1214-1119地学4 B MAR SCI BULLETIN OF MARINE SCIENCE0007-4977地学40037-9409地学4 B SOC GEOL FR BULLETIN DE LA SOCIETE GEOLOGIQ0375-7633地学4 B SOC PALEONTOL ITALBOLLETTINO DELLA SOCIETA PALEONBALTICA Baltica 0067-3064地学41679-8759地学4 BRAZ J OCEANOGR BRAZILIAN JOURNAL OF OCEANOGRAPCAN GEOTECH J CANADIAN GEOTECHNICAL JOURNAL0008-3674地学40008-4077地学4 CAN J EARTH SCI CANADIAN JOURNAL OF EARTH SCIENCAN MINERAL CANADIAN MINERALOGIST0008-4476地学4 CARBONATE EVAPORITE CARBONATES AND EVAPORITES0891-2556地学40254-4059地学4 CHIN J OCEANOL LIMN CHINESE JOURNAL OF OCEANOLOGY A0001-5733地学4 CHINESE J GEOPHYS-CHCHINESE JOURNAL OF GEOPHYSICS-CCLAY MINER CLAY MINERALS0009-8558地学4 COMPUT GEOSCI-UK COMPUTERS & GEOSCIENCES0098-3004地学4 COMPUT GEOTECH COMPUTERS AND GEOTECHNICS0266-352X地学4 COMPUTAT GEOSCI COMPUTATIONAL GEOSCIENCES1420-0597地学4 CR GEOSCI COMPTES RENDUS GEOSCIENCE1631-0713地学4 CR PALEVOL COMPTES RENDUS PALEVOL1631-0683地学4 CRETACEOUS RES CRETACEOUS RESEARCH0195-6671地学4 DISASTER ADV Disaster Advances 0974-262X地学4 DOKL EARTH SCI DOKLADY EARTH SCIENCES1028-334X地学41755-6910地学4 EARTH ENV SCI T R SOEarth and Environmental ScienceEARTH SCI HIST EARTH SCIENCES HISTORY0736-623X地学4 EARTH SCI INFORM Earth Science Informatics1865-0473地学41794-6190地学4 EARTH SCI RES J Earth Sciences Research JournalENG GEOL ENGINEERING GEOLOGY0013-7952地学41078-7275地学4 ENVIRON ENG GEOSCI ENVIRONMENTAL & ENGINEERING GEOERDE ERDE0013-9998地学4 ERDKUNDE Erdkunde0014-0015地学41736-4728地学4 EST J EARTH SCI Estonian Journal of Earth ScienESTUD GEOL-MADRID ESTUDIOS GEOLOGICOS-MADRID0367-0449地学4 EXPLOR GEOPHYS Exploration Geophysics 0812-3985地学41863-9135地学4 FUND APPL LIMNOL Fundamental and Applied LimnoloGEMS GEMOL GEMS & GEMOLOGY0016-626X地学4 GEOARCHAEOLOGY GEOARCHAEOLOGY-AN INTERNATIONAL0883-6353地学4 GEOBIOS-LYON GEOBIOS0016-6995地学4 GEOCHEM INT+GEOCHEMISTRY INTERNATIONAL0016-7029地学4 GEOCHEM J GEOCHEMICAL JOURNAL0016-7002地学41467-7873地学4 GEOCHEM-EXPLOR ENV AGEOCHEMISTRY-EXPLORATION ENVIROGEOCHRONOMETRIA GEOCHRONOMETRIA1733-8387地学4 GEOD LIST Geodetski List0016-710X地学4 GEODIN ACTA GEODINAMICA ACTA0985-3111地学4 GEODIVERSITAS GEODIVERSITAS1280-9659地学4 GEOFIS INT Geofisica Internacional 0016-7169地学4 GEOFIZIKA Geofizika 0352-3659地学40435-3676地学4 GEOGR ANN A GEOGRAFISKA ANNALER SERIES A-PH0391-9838地学4 GEOGR FIS DIN QUAT Geografia Fisica e Dinamica QuaGEOINFORMATICA GEOINFORMATICA1384-6175地学4 GEOL BELG GEOLOGICA BELGICA1374-8505地学4 GEOL CARPATH GEOLOGICA CARPATHICA1335-0552地学4 GEOL ORE DEPOSIT+GEOLOGY OF ORE DEPOSITS1075-7015地学4 GEOL Q GEOLOGICAL QUARTERLY1641-7291地学41811-4598地学4 GEOL SURV DEN GREENLGEOLOGICAL SURVEY OF DENMARK AN1266-5304地学4 GEOMORPHOLOGIE Geomorphologie-Relief ProcessusGEOSCI CAN GEOSCIENCE CANADA0315-0941地学4 GEOSCI J GEOSCIENCES JOURNAL1226-4806地学4GEOSYNTH INT GEOSYNTHETICS INTERNATIONAL1072-6349地学4 GEOTECTONICS+GEOTECTONICS0016-8521地学4 GFF GFF1103-5897地学4 GISCI REMOTE SENS GIScience & Remote Sensing1548-1603地学4 HIMAL GEOL HIMALAYAN GEOLOGY0971-8966地学4 HYDROGEOL J HYDROGEOLOGY JOURNAL1431-2174地学4 IDOJARAS Idojaras0324-6329地学41939-1404地学4 IEEE J-STARS IEEE Journal of Selected TopicsINDIAN J MAR SCI INDIAN JOURNAL OF MARINE SCIENC0379-5136地学41753-8947地学4 INT J DIGIT EARTH International Journal of DigitaISL ARC ISLAND ARC1038-4871地学4 ITAL J GEOSCI Italian Journal of Geosciences2038-1719地学40001-4338地学4 IZV ATMOS OCEAN PHY+IZVESTIYA ATMOSPHERIC AND OCEAN1069-3513地学4 IZV-PHYS SOLID EART+IZVESTIYA-PHYSICS OF THE SOLID1464-343X地学4 J AFR EARTH SCI JOURNAL OF AFRICAN EARTH SCIENCJ APPL GEOPHYS JOURNAL OF APPLIED GEOPHYSICS0926-9851地学40167-7764地学4 J ATMOS CHEM JOURNAL OF ATMOSPHERIC CHEMISTR1090-6924地学4 J CAVE KARST STUD JOURNAL OF CAVE AND KARST STUDIJ COASTAL RES JOURNAL OF COASTAL RESEARCH0749-0208地学4 J EARTH SCI-CHINA Journal of Earth Science1674-487X地学40253-4126地学4 J EARTH SYST SCI Journal of Earth System Science1793-4311地学4 J EARTHQ TSUNAMI Journal of Earthquake and Tsuna1083-1363地学4 J ENVIRON ENG GEOPH JOURNAL OF ENVIRONMENTAL AND EN0096-1191地学4 J FORAMIN RES JOURNAL OF FORAMINIFERAL RESEAR1009-637X地学4 J GEOGR SCI Journal of Geographical Science0016-7622地学4 J GEOL SOC INDIA JOURNAL OF THE GEOLOGICAL SOCIEJ GEOSCI-CZECH Journal of Geosciences1802-6222地学4 J IBER GEOL JOURNAL OF IBERIAN GEOLOGY1698-6180地学4 J LIMNOL JOURNAL OF LIMNOLOGY1129-5767地学4 J MAPS Journal of Maps1744-5647地学4 J METEOROL SOC JPN JOURNAL OF THE METEOROLOGICAL S0026-1165地学41345-6296地学4 J MINER PETROL SCI Journal of Mineralogical and PeJ OCEANOGR JOURNAL OF OCEANOGRAPHY0916-8370地学4 J OPER OCEANOGR Journal of Operational Oceanogr1755-876X地学4 J PALEONTOL JOURNAL OF PALEONTOLOGY0022-3360地学4 J PETROL GEOL JOURNAL OF PETROLEUM GEOLOGY0141-6421地学4 J SEISM EXPLOR JOURNAL OF SEISMIC EXPLORATION0963-0651地学4 J SEISMOL JOURNAL OF SEISMOLOGY1383-4649地学40718-9508地学4 J SOIL SCI PLANT NUTJournal of Soil Science and PlaJ SPAT SCI Journal of Spatial Science 1449-8596地学4 J TROP METEOROL Journal of Tropical Meteorology1006-8775地学40742-0463地学4 J VOLCANOL SEISMOL+Journal of Volcanology and SeisLIMNOLOGY LIMNOLOGY1439-8621地学4 LITHOL MINER RESOUR+LITHOLOGY AND MINERAL RESOURCES0024-4902地学4 MAR GEOD MARINE GEODESY 0149-0419地学4 MAR GEOPHYS RES MARINE GEOPHYSICAL RESEARCHES0025-3235地学4 MATH GEOSCI Mathematical Geosciences1874-8961地学4 MAUSAM Mausam 0252-9416地学4 METEOROL APPL METEOROLOGICAL APPLICATIONS1350-4827地学40177-7971地学4 METEOROL ATMOS PHYS METEOROLOGY AND ATMOSPHERIC PHYMETEOROL Z METEOROLOGISCHE ZEITSCHRIFT0941-2948地学4 MICROPALEONTOLOGY MICROPALEONTOLOGY0026-2803地学4 MINER PETROL MINERALOGY AND PETROLOGY0930-0708地学4 MINERAL MAG MINERALOGICAL MAGAZINE0026-461X地学4 MT RES DEV MOUNTAIN RESEARCH AND DEVELOPME0276-4741地学4 NEAR SURF GEOPHYS Near Surface Geophysics 1569-4445地学40016-7746地学4 NETH J GEOSCI NETHERLANDS JOURNAL OF GEOSCIEN0077-7749地学4 NEUES JAHRB GEOL P-ANEUES JAHRBUCH FUR GEOLOGIE UND0077-7757地学4 NEUES JB MINER ABH NEUES JAHRBUCH FUR MINERALOGIE-0028-8306地学4 NEW ZEAL J GEOL GEOPNEW ZEALAND JOURNAL OF GEOLOGYNEWSL STRATIGR NEWSLETTERS ON STRATIGRAPHY0078-0421地学41023-5809地学4 NONLINEAR PROC GEOPHNONLINEAR PROCESSES IN GEOPHYSINORW J GEOL NORWEGIAN JOURNAL OF GEOLOGY0029-196X地学4 OCEAN SCI Ocean Science1812-0784地学41730-413X地学4 OCEANOL HYDROBIOL STOCEANOLOGICAL AND HYDROBIOLOGICOCEANOLOGIA OCEANOLOGIA0078-3234地学4 OCEANOLOGY+OCEANOLOGY0001-4370地学4 OFIOLITI OFIOLITI0391-2612地学40016-7878地学4 P GEOLOGIST ASSOC PROCEEDINGS OF THE GEOLOGISTS A0044-0604地学4 P YORKS GEOL SOC PROCEEDINGS OF THE YORKSHIRE GE0375-0442地学4 PALAEONTOGR ABT A PALAEONTOGRAPHICA ABTEILUNG A-P0375-0299地学4 PALAEONTOGR ABT B PALAEONTOGRAPHICA ABTEILUNG B-PPALAEONTOL ELECTRON PALAEONTOLOGIA ELECTRONICA1094-8074地学4 PALAEONTOL Z Palaeontologische Zeitschrift0031-0220地学4 PALEONTOL J+PALEONTOLOGICAL JOURNAL0031-0301地学4 PALYNOLOGY PALYNOLOGY0191-6122地学4 PERIOD MINERAL Periodico di Mineralogia 0369-8963地学4 PETROL GEOSCI PETROLEUM GEOSCIENCE1354-0793地学4 PETROL SCI Petroleum Science1672-5107地学4 PETROLOGY+PETROLOGY0869-5911地学4 PETROPHYSICS Petrophysics 1529-9074地学41432-8364地学4 PHOTOGRAMM FERNERKUNPhotogrammetrie Fernerkundung GPHOTOGRAMM REC PHOTOGRAMMETRIC RECORD0031-868X地学41474-7065地学4 PHYS CHEM EARTH PHYSICS AND CHEMISTRY OF THE EAPHYS GEOGR PHYSICAL GEOGRAPHY0272-3646地学4 POL POLAR RES POLISH POLAR RESEARCH0138-0338地学4 POLAR RES POLAR RESEARCH0800-0395地学4 PURE APPL GEOPHYS PURE AND APPLIED GEOPHYSICS0033-4553地学41470-9236地学4 Q J ENG GEOL HYDROGEQUARTERLY JOURNAL OF ENGINEERINQUATERNAIRE QUATERNAIRE1142-2904地学4 RESOUR GEOL RESOURCE GEOLOGY1344-1698地学41026-8774地学4 REV MEX CIENC GEOL REVISTA MEXICANA DE CIENCIAS GE0035-6883地学4 RIV ITAL PALEONTOL SRIVISTA ITALIANA DI PALEONTOLOG1129-8596地学4 RIV ITAL TELERILEVAMRivista Italiana di TelerilevamRUSS GEOL GEOPHYS+Russian Geology and Geophysics1068-7971地学41819-7140地学4 RUSS J PAC GEOL Russian Journal of Pacific Geol1068-3739地学4 RUSS METEOROL HYDRO+Russian Meteorology and HydroloS AFR J GEOL SOUTH AFRICAN JOURNAL OF GEOLOG1012-0750地学4 SCI CHINA EARTH SCI Science China-Earth Sciences1674-7313地学4 SCOT J GEOL SCOTTISH JOURNAL OF GEOLOGY0036-9276地学4SOLA SOLA 1349-6476地学40869-5938地学4 STRATIGR GEO CORREL+STRATIGRAPHY AND GEOLOGICAL COR0039-3169地学4 STUD GEOPHYS GEOD STUDIA GEOPHYSICA ET GEODAETICASURV REV SURVEY REVIEW0039-6265地学41017-0839地学4 TERR ATMOS OCEAN SCITERRESTRIAL ATMOSPHERIC AND OCE1300-0985地学4 TURK J EARTH SCI TURKISH JOURNAL OF EARTH SCIENCWEATHER Weather0043-1656地学41860-1804地学4 Z DTSCH GES GEOWISS Zeitschrift der Deutschen GeselZ GEOMORPHOL ZEITSCHRIFT FUR GEOMORPHOLOGIE0372-8854地学4 ANNU REV ASTRON ASTRANNUAL REVIEW OF ASTRONOMY AND0066-4146地学天文10935-4956地学天文1 ASTRON ASTROPHYS REVASTRONOMY AND ASTROPHYSICS REVI0067-0049地学天文1 ASTROPHYS J SUPPL S ASTROPHYSICAL JOURNAL SUPPLEMENASTROPHYS J ASTROPHYSICAL JOURNAL0004-637X地学天文20084-6597地学天文2 ANNU REV EARTH PL SCANNUAL REVIEW OF EARTH AND PLANASTRON J ASTRONOMICAL JOURNAL0004-6256地学天文2 ASTROPHYS J LETT Astrophysical Journal Letters2041-8205地学天文21475-7516地学天文2 J COSMOL ASTROPART PJOURNAL OF COSMOLOGY AND ASTROP0035-8711地学天文2 MON NOT R ASTRON SOCMONTHLY NOTICES OF THE ROYAL ASASTRON ASTROPHYS ASTRONOMY & ASTROPHYSICS0004-6361地学天文3 ASTROPART PHYS ASTROPARTICLE PHYSICS0927-6505地学天文3 EXP ASTRON EXPERIMENTAL ASTRONOMY0922-6435地学天文3 GLOBAL PLANET CHANGEGLOBAL AND PLANETARY CHANGE0921-8181地学天文3 ICARUS ICARUS0019-1035地学天文31086-9379地学天文3 METEORIT PLANET SCI METEORITICS & PLANETARY SCIENCE1323-3580地学天文3 PUBL ASTRON SOC AUSTPUBLICATIONS OF THE ASTRONOMICA0004-6264地学天文3 PUBL ASTRON SOC JPN PUBLICATIONS OF THE ASTRONOMICA0004-6280地学天文3 PUBL ASTRON SOC PAC PUBLICATIONS OF THE ASTRONOMICASOL PHYS SOLAR PHYSICS0038-0938地学天文3 SPACE SCI REV SPACE SCIENCE REVIEWS0038-6308地学天文3 ACTA ASTRONOM ACTA ASTRONOMICA0001-5237地学天文4 ADV SPACE RES ADVANCES IN SPACE RESEARCH0273-1177地学天文4 ASTRON GEOPHYS ASTRONOMY & GEOPHYSICS1366-8781地学天文41063-7737地学天文4 ASTRON LETT+ASTRONOMY LETTERS-A JOURNAL OFASTRON NACHR ASTRONOMISCHE NACHRICHTEN0004-6337地学天文4 ASTRON REP+ASTRONOMY REPORTS1063-7729地学天文4 ASTROPHYS BULL Astrophysical Bulletin1990-3413地学天文4 ASTROPHYS SPACE SCI ASTROPHYSICS AND SPACE SCIENCE0004-640X地学天文4 ASTROPHYSICS+ASTROPHYSICS0571-7256地学天文40304-9523地学天文4 B ASTRON SOC INDIA Bulletin of the Astronomical SoBALT ASTRON BALTIC ASTRONOMY1392-0049地学天文40923-2958地学天文4 CELEST MECH DYN ASTRCELESTIAL MECHANICS & DYNAMICAL1335-1842地学天文4 CONTRIB ASTRON OBS S Contributions of the AstronomicCOSMIC RES+COSMIC RESEARCH0010-9525地学天文4 EARTH MOON PLANETS EARTH MOON AND PLANETS0167-9295地学天文4 EARTH PLANETS SPACE EARTH PLANETS AND SPACE1343-8832地学天文4 GEOPHYS ASTRO FLUID GEOPHYSICAL AND ASTROPHYSICAL F0309-1929地学天文4 GRAVIT COSMOL-RUSSIAGravitation & Cosmology0202-2893地学天文41473-5504地学天文4 INT J ASTROBIOL International Journal of Astrob0218-2718地学天文4 INT J MOD PHYS D INTERNATIONAL JOURNAL OF MODERN0250-6335地学天文4 J ASTROPHYS ASTRON JOURNAL OF ASTROPHYSICS AND AST0021-8286地学天文4 J HIST ASTRON JOURNAL FOR THE HISTORY OF ASTR1225-4614地学天文4 J KOREAN ASTRON SOC Journal of the Korean Astronomi0884-5913地学天文4 KINEMAT PHYS CELEST+Kinematics and Physics of CelesNEW ASTRON NEW ASTRONOMY1384-1076地学天文4 NEW ASTRON REV NEW ASTRONOMY REVIEWS1387-6473地学天文4 OBSERVATORY OBSERVATORY0029-7704地学天文4 PHYS EARTH PLANET INPHYSICS OF THE EARTH AND PLANET0031-9201地学天文4 PLANET SPACE SCI PLANETARY AND SPACE SCIENCE0032-0633地学天文41674-4527地学天文4 RES ASTRON ASTROPHYSResearch in Astronomy and AstroREV MEX ASTRON ASTR REVISTA MEXICANA DE ASTRONOMIA0185-1101地学天文4 SOLAR SYST RES+SOLAR SYSTEM RESEARCH0038-0946地学天文41542-7390地学天文4 SPACE WEATHER SPACE WEATHER-THE INTERNATIONALACM COMPUT SURV ACM COMPUTING SURVEYS0360-0300工程技术1 ACM T GRAPHIC ACM TRANSACTIONS ON GRAPHICS0730-0301工程技术1 ACS NANO ACS Nano 1936-0851工程技术1 ACTA BIOMATER Acta Biomaterialia1742-7061工程技术1 ACTA MATER ACTA MATERIALIA1359-6454工程技术1 ADV APPL MECH ADVANCES IN APPLIED MECHANICS0065-2156工程技术1 ADV FUNCT MATER ADVANCED FUNCTIONAL MATERIALS1616-301X工程技术1 ADV MATER ADVANCED MATERIALS0935-9648工程技术11523-9829工程技术1 ANNU REV BIOMED ENG ANNUAL REVIEW OF BIOMEDICAL ENGANNU REV MATER RES ANNUAL REVIEW OF MATERIALS RESE1531-7331工程技术1 APPL SPECTROSC REV APPLIED SPECTROSCOPY REVIEWS0570-4928工程技术1 BIOMATERIALS BIOMATERIALS0142-9612工程技术1 BIORESOURCE TECHNOL BIORESOURCE TECHNOLOGY0960-8524工程技术1 BIOSENS BIOELECTRON BIOSENSORS & BIOELECTRONICS0956-5663工程技术1 BIOTECHNOL ADV BIOTECHNOLOGY ADVANCES0734-9750工程技术10006-3592工程技术1 BIOTECHNOL BIOENG BIOTECHNOLOGY AND BIOENGINEERINBIOTECHNOL BIOFUELS Biotechnology for Biofuels1754-6834工程技术1 CARBON CARBON0008-6223工程技术1 CHEM MATER CHEMISTRY OF MATERIALS0897-4756工程技术10738-8551工程技术1 CRIT REV BIOTECHNOL CRITICAL REVIEWS IN BIOTECHNOLO1040-8398工程技术1 CRIT REV FOOD SCI CRITICAL REVIEWS IN FOOD SCIENC0958-1669工程技术1 CURR OPIN BIOTECH CURRENT OPINION IN BIOTECHNOLOG1359-0286工程技术1 CURR OPIN SOLID ST MCURRENT OPINION IN SOLID STATE1388-2481工程技术1 ELECTROCHEM COMMUN ELECTROCHEMISTRY COMMUNICATIONSELECTROCHIM ACTA ELECTROCHIMICA ACTA0013-4686工程技术11301-8361工程技术1 ENERGY EDUC SCI TECHEnergy Education Science and TeHUM-COMPUT INTERACT HUMAN-COMPUTER INTERACTION0737-0024工程技术10018-8646工程技术1 IBM J RES DEV IBM JOURNAL OF RESEARCH AND DEV1553-877X工程技术1 IEEE COMMUN SURV TUTIEEE Communications Surveys andIEEE J SEL AREA COMMIEEE JOURNAL ON SELECTED AREAS0733-8716工程技术10018-9200工程技术1 IEEE J SOLID-ST CIRCIEEE JOURNAL OF SOLID-STATE CIR1053-5888工程技术1 IEEE SIGNAL PROC MAGIEEE SIGNAL PROCESSING MAGAZINEIEEE T EVOLUT COMPUTIEEE TRANSACTIONS ON EVOLUTIONA1089-778X工程技术10278-0046工程技术1 IEEE T IND ELECTRON IEEE TRANSACTIONS ON INDUSTRIAL0162-8828工程技术1 IEEE T PATTERN ANAL IEEE TRANSACTIONS ON PATTERN AN0920-5691工程技术1 INT J COMPUT VISION INTERNATIONAL JOURNAL OF COMPUT0360-3199工程技术1 INT J HYDROGEN ENERGINTERNATIONAL JOURNAL OF HYDROG1565-1339工程技术1 INT J NONLIN SCI NUMINTERNATIONAL JOURNAL OF NONLIN0749-6419工程技术1 INT J PLASTICITY INTERNATIONAL JOURNAL OF PLASTI0950-6608工程技术1 INT MATER REV INTERNATIONAL MATERIALS REVIEWSJ CATAL JOURNAL OF CATALYSIS0021-9517工程技术11392-3730工程技术1 J CIV ENG MANAG Journal of Civil Engineering anJ HAZARD MATER JOURNAL OF HAZARDOUS MATERIALS0304-3894工程技术1 J MATER CHEM JOURNAL OF MATERIALS CHEMISTRY0959-9428工程技术1 J MEMBRANE SCI JOURNAL OF MEMBRANE SCIENCE0376-7388工程技术1 J POWER SOURCES JOURNAL OF POWER SOURCES0378-7753工程技术1 LAB CHIP LAB ON A CHIP1473-0197工程技术1 MACROMOL RAPID COMM MACROMOLECULAR RAPID COMMUNICAT1022-1336工程技术1 MACROMOLECULES MACROMOLECULES0024-9297工程技术10927-796X工程技术1 MAT SCI ENG R MATERIALS SCIENCE & ENGINEERINGMATER TODAY Materials Today1369-7021工程技术1 MED IMAGE ANAL MEDICAL IMAGE ANALYSIS1361-8415工程技术1 METAB ENG METABOLIC ENGINEERING1096-7176工程技术1 MICROB CELL FACT Microbial Cell Factories1475-2859工程技术1 MICROFLUID NANOFLUIDMicrofluidics and Nanofluidics1613-4982工程技术1 MIS QUART MIS QUARTERLY0276-7783工程技术11613-4125工程技术1 MOL NUTR FOOD RES MOLECULAR NUTRITION & FOOD RESEMRS BULL MRS BULLETIN0883-7694工程技术1 NANO LETT NANO LETTERS1530-6984工程技术1 NANO TODAY Nano Today1748-0132工程技术1 NANOMED-NANOTECHNOL Nanomedicine-Nanotechnology Bio1549-9634工程技术1 NANOSCALE Nanoscale2040-3364工程技术1 NANOTECHNOLOGY NANOTECHNOLOGY0957-4484工程技术1 NAT BIOTECHNOL NATURE BIOTECHNOLOGY1087-0156工程技术1 NAT MATER NATURE MATERIALS1476-1122工程技术1 NAT NANOTECHNOL Nature Nanotechnology1748-3387工程技术1 ORG ELECTRON ORGANIC ELECTRONICS1566-1199工程技术1 P IEEE PROCEEDINGS OF THE IEEE0018-9219工程技术1 PLASMONICS Plasmonics 1557-1955工程技术1 POLYM REV Polymer Reviews1558-3724工程技术10960-8974工程技术1 PROG CRYST GROWTH CHPROGRESS IN CRYSTAL GROWTH AND0360-1285工程技术1 PROG ENERG COMBUST PROGRESS IN ENERGY AND COMBUSTIPROG MATER SCI PROGRESS IN MATERIALS SCIENCE0079-6425工程技术1 PROG PHOTOVOLTAICS PROGRESS IN PHOTOVOLTAICS1062-7995工程技术1 PROG QUANT ELECTRON PROGRESS IN QUANTUM ELECTRONICS0079-6727工程技术1 PROG SURF SCI PROGRESS IN SURFACE SCIENCE0079-6816工程技术11364-0321工程技术1 RENEW SUST ENERG REVRENEWABLE & SUSTAINABLE ENERGYSIAM J IMAGING SCI SIAM Journal on Imaging Science1936-4954工程技术1 SMALL SMALL1613-6810工程技术1 SOFT MATTER Soft Matter1744-683X工程技术1 SOL ENERG MAT SOL C SOLAR ENERGY MATERIALS AND SOLA0927-0248工程技术1 TRENDS BIOTECHNOL TRENDS IN BIOTECHNOLOGY0167-7799工程技术10924-2244工程技术1 TRENDS FOOD SCI TECHTRENDS IN FOOD SCIENCE & TECHNOVLDB J VLDB JOURNAL1066-8888工程技术1 AICHE J AICHE JOURNAL0001-1541工程技术20175-7598工程技术2 APPL MICROBIOL BIOT APPLIED MICROBIOLOGY AND BIOTECCHEM ENG SCI CHEMICAL ENGINEERING SCIENCE0009-2509工程技术2 FOOD CHEM FOOD CHEMISTRY0308-8146工程技术20018-926X工程技术2 IEEE T ANTENN PROPAGIEEE TRANSACTIONS ON ANTENNAS A0018-9286工程技术2 IEEE T AUTOMAT CONTRIEEE TRANSACTIONS ON AUTOMATIC0018-9383工程技术2 IEEE T ELECTRON DEV IEEE TRANSACTIONS ON ELECTRON D0018-9448工程技术2 IEEE T INFORM THEORYIEEE TRANSACTIONS ON INFORMATIO0018-9480工程技术2 IEEE T MICROW THEORYIEEE TRANSACTIONS ON MICROWAVE1053-587X工程技术2 IEEE T SIGNAL PROCESIEEE TRANSACTIONS ON SIGNAL PRO0888-5885工程技术2 IND ENG CHEM RES INDUSTRIAL & ENGINEERING CHEMIS0168-1605工程技术2 INT J FOOD MICROBIOLINTERNATIONAL JOURNAL OF FOOD M0017-9310工程技术2 INT J HEAT MASS TRANINTERNATIONAL JOURNAL OF HEAT A0925-8388工程技术2 J ALLOY COMPD JOURNAL OF ALLOYS AND COMPOUNDSJ AM CERAM SOC JOURNAL OF THE AMERICAN CERAMIC0002-7820工程技术20013-4651工程技术2 J ELECTROCHEM SOC JOURNAL OF THE ELECTROCHEMICAL0921-5093工程技术2 MAT SCI ENG A-STRUCTMATERIALS SCIENCE AND ENGINEERIMATER LETT MATERIALS LETTERS0167-577X工程技术2 SCRIPTA MATER SCRIPTA MATERIALIA1359-6462工程技术20925-4005工程技术2 SENSOR ACTUAT B-CHEMSENSORS AND ACTUATORS B-CHEMICASURF COAT TECH SURFACE & COATINGS TECHNOLOGY0257-8972工程技术2 SYNTHETIC MET SYNTHETIC METALS0379-6779工程技术20734-2071工程技术2 ACM T COMPUT SYST ACM TRANSACTIONS ON COMPUTER SY0098-3500工程技术2 ACM T MATH SOFTWARE ACM TRANSACTIONS ON MATHEMATICA1550-4859工程技术2 ACM T SENSOR NETWORK ACM Transactions on Sensor Netw1049-331X工程技术2 ACM T SOFTW ENG METHACM TRANSACTIONS ON SOFTWARE ENACM T WEB ACM Transactions on the Web 1559-1131工程技术21944-8244工程技术2 ACS APPL MATER INTERACS Applied Materials & Interfa0724-6145工程技术2 ADV BIOCHEM ENG BIOTADVANCES IN BIOCHEMICAL ENGINEEANN BIOMED ENG ANNALS OF BIOMEDICAL ENGINEERIN0090-6964工程技术20066-4200工程技术2 ANNU REV INFORM SCI ANNUAL REVIEW OF INFORMATION SCAPPL ENERG APPLIED ENERGY0306-2619工程技术2 APPL SOFT COMPUT APPLIED SOFT COMPUTING1568-4946工程技术21134-3060工程技术2 ARCH COMPUT METHOD EARCHIVES OF COMPUTATIONAL METHOARTIF INTELL ARTIFICIAL INTELLIGENCE0004-3702工程技术21322-7130工程技术2 AUST J GRAPE WINE R AUSTRALIAN JOURNAL OF GRAPE ANDAUTOMATICA AUTOMATICA0005-1098工程技术21387-2532工程技术2 AUTON AGENT MULTI-AGAUTONOMOUS AGENTS AND MULTI-AGE1822-427X工程技术2 BALT J ROAD BRIDGE EBaltic Journal of Road and Brid1369-703X工程技术2 BIOCHEM ENG J BIOCHEMICAL ENGINEERING JOURNALBIODEGRADATION BIODEGRADATION0923-9820工程技术2 BIOMASS BIOENERG BIOMASS & BIOENERGY0961-9534工程技术2 BIOMECH MODEL MECHANBiomechanics and Modeling in Me1617-7959工程技术2 BIOMED MICRODEVICES BIOMEDICAL MICRODEVICES1387-2176工程技术2 BIOTECHNIQUES BIOTECHNIQUES0736-6205工程技术2 BIOTECHNOL PROGR BIOTECHNOLOGY PROGRESS8756-7938工程技术2 BMC BIOTECHNOL BMC BIOTECHNOLOGY1472-6750工程技术2 CELLULOSE CELLULOSE0969-0239工程技术2 CEMENT CONCRETE RES CEMENT AND CONCRETE RESEARCH0008-8846工程技术2 CHEM ENG J CHEMICAL ENGINEERING JOURNAL1385-8947工程技术20169-7439工程技术2 CHEMOMETR INTELL LABCHEMOMETRICS AND INTELLIGENT LACOAST ENG COASTAL ENGINEERING0378-3839工程技术2 COMBUST FLAME COMBUSTION AND FLAME0010-2180工程技术2 COMMUN ACM COMMUNICATIONS OF THE ACM0001-0782工程技术2。

ICDE2010 Keynote - what's new in the cloud

ICDE2010 Keynote - what's new in the cloud

Types of clouds: Any type
– both private, public, hybrid
only difference: private clouds have planned downtime
– cloud on the chip – swarms: ad-hoc private clouds
– transparent use of resources (computers + humans)
hide heterogeneity of resources
100Ks machines are a reality
– problems that need 100Ks machines are a reality
[Source: SIGMOD, VLDB, ICDE Reviews]
Problem: Vendor Lock-In
Hardware
– no standard APIs for IaaS – expensive to move TBs of data between clouds – this was actually a solved problem before the cloud
Variant II: Partition Workload by Load“
Client HTTP Web Server FCGI, ... App Server ??? SQL DB Server get/put Store block records Store (e.g., S3) Store (e.g., S3) Store (e.g., S3) XML, JSON, HTML Server-A Server-B XML, JSON, HTML Workload Splitter XML, JSON, HTML Client Client Client

2010版GMP附录《计算机化系统》解读

2010版GMP附录《计算机化系统》解读

2010版GMP附录《计算机化系统》解读2015年5月26日,国家食品药品监督管理总局(CFDA)正式发布了2010版GMP的新附录之一《计算机化系统》,并于2015年12月1日起执行,引起了国内制药行业的广泛讨论和高度关注。

一、本附录出台的背景1、与国际化接轨的要求。

国内外GMP法规有许多差异,而对计算机化系统的要求差异尤为明显。

CFDA所执行的2010版GMP法规内容与国际上其他法规机构的cGMP法规是对等的,如FDA 21 CFR Part 211。

但美国的制药企业除了执行 21 CFR Part 211以外,同时还要遵守21 CFR Part 11法规;欧盟国家的制药企业除了执行欧盟GMP以外,还要遵循Annex 11法规。

FDA的21 CFR Part 11与欧盟的Annex 11的内容是类似的,都是针对于制药企业使用计算机化系统的法规要求。

新颁布的《计算机化系统》法规附录是国内法规与国际接轨的重要一步,填补了国内对于计算机化系统要求的法规空白,是实现与国际法规监管机构之间相互认可的前提条件之一。

2、行业发展的要求。

随着中国医药行业信息化的发展,计算机化系统在药品生产过程中的应用不断增多,制药企业和相关软件厂商运用信息技术和系统控制技术提升生产效率、改进生产和质量管理成为医药行业计算机化系统应用的重要方向之一。

因此,如何对计算机化系统进行有效地验证就成为制药企业质量管理体系中的重要环节,CFDA在《药品生产质量管理规范(2010年修订)》(GMP)中也将计算机化的仓库管理系统和其他相关计算机软件的变更纳入变更控制范畴要求。

3、监督管理部门监管的需要。

从认证检查中发现的问题来看,无菌制剂企业GMP认证中检查缺陷主要分布在质量管理、质量控制与质量保证,机构与人员,厂房与设施,设备,物料与产品等11个方面。

非无菌制剂企业的跟踪检查中发现的典型问题则包括未定期对关键系统完成再确认或再验证,企业的质量管理体系运行存在问题等。

consort2010版准则主要内容

consort2010版准则主要内容

consort2010版准则主要内容
Consort 2010版准则主要涉及临床试验报告的撰写,其主要内容包括以下几个方面:
1. 流程透明:要求报告者清晰地描述研究的整体设计和实施过程,包括研究设计、招募方法、随机分配、盲法实施和统计分析等,以确保读者能够理解研究的完整流程。

2. 结果完整:要求报告者全面报告所有预先确定的结果指标,避免选择性地报告某些结果而忽略其他结果。

报告者需要对实验组和对照组的结果进行清晰对比,确保结果的完整性和客观性。

此外,Consort 2010版准则还规定了临床试验报告的一般格式和内容,包括标题、摘要、正文(引言、方法、结果和讨论)等部分,以确保报告的规范性和易于理解。

总之,Consort 2010版准则旨在提高临床试验报告的质量和完整性,促进临床试验结果的可信度和可重复性。

基于SMS的图书馆服务的研究与实践

基于SMS的图书馆服务的研究与实践

基于SMS的图书馆服务的研究与实践
董晓霞;韩为民;施怀鹃;李高虎
【期刊名称】《计算机应用与软件》
【年(卷),期】2010(027)004
【摘要】随着移动通信技术的迅猛发展,图书馆开展移动服务已经成为一种趋势,而其中的SMS(Short Message Service)由于具备费用低廉、易于部署等特点已经成为了一种优先部署的服务.对图书馆短信服务的应用场景进行了分析,并且归纳比较了短信服务的三种部署模式(短信猫模式、申请短信SP资质以及利用SP的短信通道)的优劣性,在此基础上结合具体应用提出了SMS系统的技术体系架构和具体实现方案.
【总页数】4页(P212-214,220)
【作者】董晓霞;韩为民;施怀鹃;李高虎
【作者单位】北京邮电大学图书馆,北京,100876;北京邮电大学图书馆,北
京,100876;北京邮电大学图书馆,北京,100876;北京创讯未来软件技术有限公司,北京,100876
【正文语种】中文
【相关文献】
1.基于360度绩效考核机制和SMART原则的送变电工程公司部门绩效管理系统研究与实践 [J], 高梅娟
2.基于空间再造的图书馆服务创新研究与实践——以江阴职业技术学院图书馆为例[J], 王键
3.基于空间再造的图书馆服务创新研究与实践——以江阴职业技术学院图书馆为例[J], 王键
4.基于Livescribe Smartpen的交传教学、研究与实践新范式探索 [J], 朱珠
5.基于Livescribe Smartpen的交传教学、研究与实践新范式探索 [J], 朱珠
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Route Skyline Queries:A Multi-Preference PathPlanning ApproachHans-Peter Kriegel1,Matthias Renz2,Matthias Schubert3Institute for Informatics,Ludwig-Maximilians-Universit¨a t M¨u nchenOettingenstr.67,Munich,Germany[1kriegel,2renz,3schubert@dbs.ifi.lmu.de]Abstract—In recent years,the research community introduced various methods for processing skyline queries in multidimen-sional databases.The skyline operator retrieves all objects being optimal w.r.t.an arbitrary linear weighting of the underlying criteria.The most prominent example query is tofind a rea-sonable set of hotels which are cheap but close to the beach. In this paper,we propose an new approach for computing skylines on routes(paths)in a road network considering multiple preferences like distance,driving time,the number of traffic lights,gas consumption,etc.Since the consideration of different preferences usually involves different routes,a skyline-fashioned answer with relevant route candidates is highly useful.In our work,we employ graph embedding techniques to enable a best-first based graph exploration considering route preferences based on arbitrary road attributes.The core of our skyline query processor is a route iterator which iteratively computes the top routes according to(at least one)preference in an efficient way avoiding that route computations need to be issued from scratch in each iteration.Furthermore,we propose pruning techniques in order to reduce the search space.Our pruning strategies aim at pruning as many route candidates as possible during the graph exploration.Therefore,we are able to prune candidates which are only partially explored.Finally,we show that our approach is able to reduce the search space significantly and that the skyline can be computed in efficient time in our experimental evaluation.I.INTRODUCTIONIn recent years,the skyline operator has emerged as an important operation when searching a database for a set of result objects being ranked by various user preferences.Instead of considering afixed weighting for a set of optimization criteria,the skyline operator computes all data objects that might offer an optimal result w.r.t.an arbitrary weighting of these criteria.The canonical example for this task is a traveler who wants to select a hotel w.r.t.two or more criteria,e.g.cost and distance to the city center.Since the user might not be able to determine afixed ratio between both characteristics,the skyline operator now determines the set of all hotels that might be the best choice considering all possible ratios and thus,all possible user preferences.Technically,the quality of the result is modeled as the weighted sum of the object values over all considered criteria and the user preference is determined by a particular weight for each criterion.Thus,the higher this weight,the higher is the importance of the corresponding attribute to the user.The definition of the skyline implicitly defines the so-called domination relation between data objects. Object a dominates object b if a is as least as good as b w.r.t.all attributes and there exists at least one attribute where a is better than b.Thus,there cannot exist any weighted sum for which b would be more optimal than a.There exists a considerable amount of efficient algorithms calculating skyline queries in databases.Most of these ap-proaches are based on describing data objects as feature vectors where each dimension represents a given optimization criterion,e.g.[2],[18],[26],[31].More recent approaches, started to consider skyline queries over more general object descriptions as well.For example,in[28]skyline computation in databases of uncertain objects is examined and in[4]the authors propose a general skyline computation method for arbitrary data objects that can be compared with a distance metric.Another important type of optimization criterion is the spatial distance in a road network.Going back to the hotel example,it often does not make sense to describe the distance to the city center w.r.t.the direct Euclidean distance.Instead, a better model would be to consider the path a person would have to walk from the hotel to the city center.If one of the compared positions is not previously known or even moving in the road network,the solution has to handle a dynamic attribute which has to be derived from the road network via shortest path computation before building the skyline. Another aspect when searching for optimal paths in a road network is the selection of the underlying optimization criteria. Thus,the optimal path will vary depending on whether a user wants to reach the airport by the fastest or the shortest connection.Furthermore,the user might want to minimize highway fees or altitude differences.Thus,selecting a suitable path with respect to a given user preference is already an optimization problem in itself.Thus,a skyline over the set of all possible routes w.r.t.a set of relevant criteria will significantly improve the usability of route planning systems. Let us note that several route planning systems already employ multiple criteria when proposing a route to the user.All of these systems,determine routes by a single criterion only or employ a determined weighting between the criteria.However, none computes a skyline over all optimal combinations.In this paper,we propose new algorithms for determining a skyline of routes w.r.t.multiple optimization criteria.The problem is highly dynamic because the skyline depends on previously unknown start and destination points.Precomputing all possible routes between all possible start and destination points is not a viable solution because the enormous amountof routes would quickly exceed reasonable space limitations. Thus,our algorithm has to dynamically explore paths and prune those paths which cannot be extended into elements of the skyline as fast as possible.Our solution models the road network as a multi-attribute graph(MAG)storing a vector of different optimization criteria for each edge.To efficiently compute route skylines,we base our algorithm on a lower-bound forward estimation for each optimization criterion.If this optimistic forward estimation is already dominated by another route to the destination,we can stop further extending the route.Ourfirst algorithm,called BRSC(Basic Route Skyline Computation)is similar to established skyline pro-cessing on feature vectors and uses exclusively this pruning criterion.However,BRSC can only prune a route r if there is an already-known route s to the destination which dominates the forward estimation of route r.Thus,this simple algorithm often has a large computational overhead because every path which could be potentially extended into a skyline path has to be kept and processed.Therefore,we introduce a second local pruning criterion based on the observation that any sub route of a skyline route needs to be pareto optimal as well. Thus,we propose a second algorithm called ARSC(Advanced Route Skyline Computing)employing both pruning criteria. Furthermore,the data structures employed by ARSC support pruning candidate paths without costly reorganizations.To summarize,we present the following contributions:•We introduce route skylines queries on multi-attribute road networks as a new important skyline problem having applications in route planning and navigation systems.•We define forward estimation for route skylines as a global pruning criterion for paths and introduce a simple algorithms(BRSC)for route skyline computation.•We propose a local pruning criterion based on pareto optimal subroutes and introduce a more efficient skyline algorithm(ARSC)which employs both pruning criteria. The rest of the paper is organized as follows.Section II surveys related work for skyline computation.In section III, we present basic definitions and briefly survey the underlying techniques for shortest path computation.The new pruning criteria and the proposed route skyline algorithms are intro-duced in section IV.Section V compares both new algorithms and demonstrates that our second algorithms is capable to calculate route skylines even on large road networks having over170,000nodes and links.Finally,section VI concludes the paper with a summary and some directions for future work.II.R ELATED W ORKThe skyline operator was introduced in[2].Additionally,the authors propose block-nested-loop processing and an extended divide and conquer approach to process results for their new method.Since then,skyline processing has attracted consider-able attention in the database community.In the following,we will briefly survey several algorithms for skyline processing in databases[31],[18],[26],[5],[25],extensions of the topic[3], [33],[29],[23],[4],[13]andfinally,we will discuss dedicated methods employing skyline operators in road networks[12], [7],[15].[31]proposes two progressive methods to improve the original solutions.Thefirst technique employs Bitmaps and is directed towards data sets being described with low cardi-nality domains.In other words,each optimization criterion is described by a small set of discrete attribute values.Other solutions for this scenario are proposed in[5]and[25]. Since the attribute values of a path are summed up over an arbitrary amount of edges,this scenario is not relevant to our problem.The second technique proposed in[31]is known as index method and divides the data set into d sorted lists for d optimization criteria.[18]introduces the nearest neighbor approach which is based on an R-Tree[11].This approach starts withfinding the nearest neighbor of the query point which has to be part of the skyline.Thus,objects being dominated by the nearest neighbor can be pruned.Afterwards, the algorithm recursively processes the remaining sections of the data space and proceeds in a similar way.A problem of this approach is that these remaining parts might overlap and thus,the result has to be kept consistent.To improve this approach,[26]proposes a branch and bound approach called (BBS)which is guaranteed to visit each page of the underlying R-Tree at most once.There is a large variety on methods that extend the basic skyline operator to multiple application types and settings.Fur-thermore,there are several post processing methods grouping or selecting the resulting skyline points.In[3]k-dominant skylines are proposed which generalize the dominance re-lationship by requiring that a point needs to improve all other points in at least k attributes.[33]and[21]discuss cube operators which allow the efficient parallel computation of skylines for subsets of all known optimization criteria. In[4]the authors examine dynamic skyline computation in general metric spaces.There exist several techniques for post-processing the result of skyline queries for the case that the number of skyline points becomes too large to be manually explored.The method proposed in[34]deals with the discovery of strong skyline points.[23]demonstrates that the selection of the k most representative skyline objects is a non trivial task and proposes a dynamic programming algorithm for the2D case.Additionally,a polynomial time algorithm is presented for higher dimensionalities.In[29]the authors propose to group skyline points w.r.t.the subspace for which they are part of the skyline and they propose the algorithm Skyey for efficient computation.An extension of the skyline operator to uncertain data objets is presented in [28].[22]and[32]examine the construction of skylines in a streaming environment.The problem of computing skylines in an distributed environment of multiple mobile devices is examined in[13].There has already been some work considering the appli-cation of the skyline operator in a setting including road net-works.In[7]the authors introduce the problem of multi-source skyline processing in road networks.The general task in this paper is to calculate a skyline of landmarks in a road networkthat are compared w.r.t.their network distance to several query objects or persons traveling in the network.The proposed approach shares some similarity to our method because it is calculating a skyline based on a road network.However,the shortest paths in this approach describe distances and thus,can be considered as feature values for afixed set of objects.In contrast,our approach ranks paths between a single pair of a starting point and a destination point instead of ranking single locations.Furthermore,our approach considers an arbitrary number of network properties whereas the method proposed in[7]considers only a single edge attribute,i.e.length.Afinal difference is that our approach computes pareto optimal paths whereas the method in[7]calculates a skyline of locations. In[12]the authors propose in-route skyline processing in road networks.Assuming a user is moving along a predefined route to a known destination,the algorithm processes minimal detours to sets of landmarks being distributed along the path. For example,a user might want to visit a super market or a gas station during his way from home to work.The approach is different to our setting as it works with single attribute edge-weights and ranks detours as skyline routes.In comparison, the approach discussed in this paper employs multi-attribute edge weights and determines a skyline of alternative routes. In[15]the authors discuss continuous skyline queries in road networks.In this work,it is assumed that a user is moving on a road network and wants to process the skyline over a set of locations like restaurants or hotels.To compute this skyline the method can rely on attributes which are considered asfixed,e.g.price,quality,etc..Additionally,the algorithm has to consider one dynamic attribute,i.e.the distance to the considered locations which is continuously changing due to the moving query point.Since this method again ranks spatial location instead of routes,it is also concerned with a different problem.To conclude,all of these related topics deal with a completely different setting and different goals.Route planning systems for road networks are usually based onfinding the shortest path between two objects,e.g. computed by Dijkstra’s algorithm[8]and its variants[6]. The A∗-algorithm[20]applies heuristics to prune the search space and to direct the graph expansion.Another approach is followed materialization techniques like[1],[14],[16]. However,these methods suffer from increasing storage cost. In[17]the authors divide the graph into regions and gather information whether an edge is on a shortest path leading to a specific region.All these approaches provide only efficient path computation based on one single road attribute,but cannot be used for a multi-preference based route planning.The Euclidean distance between graph nodes/objects can be used to lower bound the network distance between two graph nodes as proposed for the incremental Euclidean restriction (IER)method introduced in[27].Here,the Euclidean distance is used asfilter in order to restrict the search space for the identification of the k-nearest neighbors of a query object. This approach works well only if the object neighborhood based on the Euclidean distance well approximates the ob-ject neighborhood based on the network distance which is not true in real spatial networks.To resolve this problem, the incremental network expansion method(INE)based on Dijkstra was proposed.In[30],one of the graph embedding technique from[24]is applied in order to estimate the network distance between two nodes and extended dynamic embedding for moving objects is presented.A severe drawback of the approach is that the embedded space involves40to256 dimensions.The work of this paper is based on the network graph embedding originally proposed independently by two research groups[10],[9]and[19].While the work in[10],[9] only explores a lower bound,the authors in[19]also derive an upper bound for the network distance.In addition,the authors in[10],[9]focus only on speeding up the shortest path computations whereas in[19],the authors propose a multi-step query processing framework for supporting proximity queries in traffic networks.III.R OUTE S KYLINES IN N ETWORK E NVIRONMENTSIn this section,we will specify the problem of route skylines and discuss the requirements to possible solutions.Therefore, we will begin with defining multi-attribute network graphs for representing a road network:Definition1(Multi-attribute network graph(MAG)):A multi-attribute network graph(MAG)is a directed network graph G(V,E,W)with V denoting a set of vertices, E⊂V×V denoting a set of edges and W⊂R d+denoting a set of d-dimensional positive weight vectors.Since G is directed e=(v s,v t)=(v t,v s)=ˆe.Furthermore,let ω:E⇒R d be a mapping,assigning a weight vectorωto each edge e∈E.The l-th attribute of edge e is denoted as ω(e)l.In our application,a MAG represents a road network and thus,the nodes correspond to crossings,the edges correspond to road segments and the weight vectors describe the con-sidered attributes of each road segment.The attributes of a segment might represent the length,the maximum speed,the time to pass the segment,the number of pedestrian crossings or the maximum ascent etc..In the following,we will assume that all attributes are positive and a small weight is more beneficial than a large weight.Let us note that this is no general limitation of our approach because our algorithm can be modified to handle other types of attributes as well.However, this would make the description unnecessary complicated.A path p and its cost cost l(p)w.r.t.the l-th attribute in this network is specified as follows:Definition2(Path and Cost of a Path):A path p is a se-quence of nodes(v1,..,v k)where the following conditions hold:∀1≤i<k:∃e∈E:e=(v i,v i+1)∀i=j:n i=n jThe cost of path p=(n1,..,n k)w.r.t.the l-th attribute is defined as follows:cost l(p)=k−1i=0ω((v i,v i+1))lWhile condition(1)describes a path as a walk,i.e.a connected sequence of edges,condition(2)specifies that no cycles are allowed in a path,i.e.the path visits no node twice. Considering our application it makes sense that a route a driver wants to select does not contain any circles because the predominant goal of driving is reaching a certain destination. Thus,we will only consider paths in the following.The cost of a path is summed up over the costs of all contained edges. For example,if the l-th attribute describes length,then the cost of path p correspond to the total length of the path.Our algorithm aims atfinding all paths that are optimal w.r.t.a given user preference.Thus,we have to specify a preference function mirroring this intention:Definition3(Preference Function):Given the d-dimensional space of edge weights W⊆R d+,the preference function P refΠ(p)for path p is defined as follows:P refΠ(p)=dl=1πl·cost l(p)under consideration of the preference vectorΠ= (π1,...,πd)∈R d.The preference function is the weighted sum over all considered edge attributes W and the preference vectorΠdescribes the importance of each attribute to the given user query.For example,if a user is only interested in the total length of a path,Πconsists of a zero vector with the exception of a one for the attribute representing the segment length. As mentioned above,we assume that each attribute represents some type of cost and thus,the lower P refΠ(p)is,the better is path p.Correspondingly,path p is an optimal selection under consideration of the preferenceΠif its cost is minimal,or following the common terminology,if P refΠ(p)is a shortest path w.r.t.Π.Definition4(Preference Shortest Path):Given two nodes v s,v t∈V,then pathˇp=(v s,...,v t)is called shortest path or minimal path for the user preferenceΠiff∀p=(v s,...,v t): P refΠ(ˇp)≤P refΠ(p)Let us note that there might be more than one path sufficing this condition.A.Shortest Path CalculationThe most well-known approach for shortest path compu-tation was proposed by Dijkstra.Though this algorithm is an optimal solution when assuming that no additional information about the shortest path is available,it usually has to consider large portions of the graph.To further speed up shortest path computation,it is necessary to employ an optimistic approximation of the remaining distance to the destination for each point in the network.Adding this approximation to the cost of the currently explored path,we may decide that it is not possible to reach the destination via an extension of this path any faster than the present shortest path.Thus,we can prune the path if there is an already known path to the destination which is already shorter than the currently examined path.This is the core idea behind A∗-Search which explores paths in the order of the smallest optimistic approximation.A∗-Search can significantly reduce the number of nodes that have to be traversed for shortest path computation.Considering the length of each road segment as its cost,a simple solution for calculating a lower bound approximation is to employ Euclidean distance.Since there is no shorter way between two points than the direct line,the Euclidean distance will always be lower than or equal to the distance which has to be traversed on the road network.Thus,for this particular cost function the Euclidean distance allows A∗-Search.Unfortunately,this natural lower bound is not extendable to other criteria which are not strongly correlated to the spatial distance.Thus,for applying A∗-Search on an arbitrary preference function com-bining various,general optimization criteria,it is necessary to employ a more general approach.To solve this problem,we employ a special form of Lipschitz embedding of the traffic network using singleton reference sets which we call reference nodes according to [19](in[10],[9],these reference nodes are called landmarks). The embedding transforms the nodes of a given multi-attribute network graph into d×k-dimensional vectors,where d denotes the dimensionality of the edge weight vectors of our graph and k the number of reference nodes.In the following,we will only consider the embedding according to a single road attribute l to simplify the presentation.Therefore,d l net(u,v) denotes cost l(sp u,v)where sp u,v describes the shortest path between the nodes u and v w.r.t.attribute l.Let G=(V,E,W)be a MAG and V = v r1,...,v rk⊆V be a subsequence of k≥1reference nodes.The embedding, or transformation,of the native space V into a k-dimensional vector space R k according to a road attribute l is a mapping F V ,l:V→R k,where|V |=k is the dimensionality of the vector space.A reference node embedding of G based on V ⊂V defines the function F V ,l as follows:∀v∈V:F V ,l(v)=(F V ,l1(v),...,F V ,lk(v))T,where F V ,li(v)=d l net(v,v ri)for1≤i≤k and d l net(v,v ri) denotes the network distance between node v and node v ri according to the corresponding road attribute l.An example demonstrating the embedding of the network graph according to a road attribute l using the reference nodes V = v8,v7 is depicted in Figure1.Note,that our example does not show a complete embedding,rather we just displayed the embedding of a subset of graph nodes(those nodes are displayed using a cross instead of a point).The left graph shows the network graph with edge weights corresponding to one road attribute.Nodes,v7∈V and v8∈V are selected as reference nodes.On the right side,the(partial)embedding according to V is depicted.When constructing the embedding for a network graph,we have to compute for each node and each attribute the shortest paths to all reference nodes.Since the graph structure remains fixed,the embedding is processed off-line and the results are stored with each node.To compute the graph embedding w.r.t reference node v r,we perform a graph expansion based on Dijkstra starting from v r until all nodes have been visited.work graph embedding.At each graph node n,the minimal cost according to each road attribute is determined and maintained in a vector.In fact,the embedding according to one reference node and all road attributes can be done by one single scan on the graph. This is done for all reference nodes,such that the overhead of the whole preprocessing step is restricted to k complete graph expansions if we assume k reference nodes.As mentioned above the reference node embedding can be used to compute lower bounds for the network distance according to each road attribute.Definition5(Network Distance Estimation):LetG=(V,E,W)and F V ,j be the reference node embedding of G w.r.t.V ⊂V according to a road attribute l.For any path p=(v s,...,v t)and any road attribute1≤j≤d,the network distance according to l can be estimated byD l(v s,v t)=maxi=1..k |F V ,li(v s)−F V ,li(v t)|.In[19]it is shown that the distance D l(v s,v t)lower bounds the network distance according to the l-th road attribute.Thus, we can employ this embedding as lower bound approximation for A∗-search.B.Problem DefinitionAfter these preliminaries,we can now define the route skyline in a multi-attribute network graph as follows:Definition6(Route Skyline in MAG):Given the MAG G(V,E,W),the result a of route skyline query RSQ(v s,v t) for a start node v s and a destination node v t is the subset of all paths P(v s,v t)={(v s,...,v t)}for which the following condition holds:RSQ(v s,v t)⊆P(v s,v t)∀ˇp∈RSQ(v s,v t),∃Π∈R d,∀p∈P(v s,v t):P refΠ(ˇp)≤P refΠ(p)In other words,a route skyline query returns the subset of all paths that offer an optimal result w.r.t.an arbitrary user preference.Thus,a user does not have to specify his preferencesΠfirst.Instead,the query retrieves all possibly optimal paths and the user can afterwards select which of the calculated pathsfits best to his or her goals.Analogously to skylines in vectors spaces,a skyline implies a domination relationship,which is formalized as follows:Definition7(Route Domination in a MAG):Let p,q∈P(v s,v t)={(v s,...,v t)}be two paths leading from node v s to node v t.p is called to dominate q with respect to the l-th attribute iff:cost l(p)<cost l(q)∧∀1≤j≤d∧j=i:cost l(p)≤cost l(q) In other words,path p dominates path q if it yields at least an improvement w.r.t.one attribute and p is at least as good as q for all other attributes.The dominance relationship is closely connected to the skyline via the following lemma.Lemma1:Let p,q∈P(v s,v t)={(v s,...,v t)}be two paths leading from node v s to node v t and let p dominate path q.Then,the following condition holds:∀Π∈R d\{ 0}:P refΠ(ˇp)<P refΠ(q)Proof:Due to p dominating q,we know:∃1≤l≤d:cost l(p)<cost l(q)∧∀1≤h≤d∩h=l:cost h(p)≤cost h(q)⇒∀Π∈R d\{ 0}:∃1≤l≤d:πl·cost l(p)<πl·cost l(q)∧∀1≤h≤d∧h=l:πl·cost l(p)≤πl·cost l(q) Since P refΠ(p)is a weighted sum where each addendπh·cost h(p)is smaller thanπh·cost h(q)and there exists at least on addend l withπl·cost l(p)<πl·cost l(q),we can conclude that P refΠ(ˇp)<P refΠ(q)for all positive preference vectors Π.C.Requirements for Calculating Route Skylines Compared to established solutions processing skyline queries on databases of feature vectors,our new approach has to handle several problems.First of all,the set of all possible paths between two nodes v s,v t cannot be assumed to be previously known.Instead,the information is implicitly stored in the MAG and the paths have to be derived before determining their costs.Thus,a naive solution could be to calculate all paths from v s to v t and afterwards to sort out all dominated ones.However,the number of possible paths is increasing exponentially with network distance,i.e.the mini-mum number of edges between two nodes.Another problem making the approach of materializing all paths unattractive is that the number of possible start and destination nodes can be rather large.Thus,unlike in databases of feature vectors where there is only one skyline for one database,a MAG allows a large amount of different skylines corresponding to all possible start and destination nodes.As a result,precomputing the set of all paths for all possible start and destination nodes would obviously cause an enormous amount of data and thus, this brute force approach is infeasible for graphs exceeding。

相关文档
最新文档