3.1.1 函数的概念 教学设计
3.1.1(第1课时)函数的概念 学案(含答案)
3.1.1(第1课时)函数的概念学案(含答案)3.13.1函数的概念与性质函数的概念与性质33..1.11.1函数及其表示方法函数及其表示方法第第11课时课时函数的概念函数的概念学习目标1.在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念.2.体会集合语言和对应关系在刻画函数概念中的作用.3.了解构成函数的要素,能求简单函数的定义域和值域.知识点一函数的有关概念函数的定义给定两个非空实数集A与B,以及对应关系f,如果对于集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数函数的记法yfx,xA定义域x 称为自变量,y称为因变量,自变量取值的范围即数集A称为函数的定义域值域所有函数值组成的集合yB|yfx,xA称为函数的值域知识点二同一个函数一般地,函数有三个要素定义域,对应关系与值域如果两个函数表达式表示的函数定义域相同,对应关系也相同,则称这两个函数表达式表示的就是同一个函数特别提醒两个函数的定义域和对应关系相同就决定了这两个函数的值域也相同思考定义域和值域分别相同的两个函数是同一个函数吗答案不一定,如果对应关系不同,这两个函数一定不是同一个函数1任何两个集合之间都可以建立函数关系2已知定义域和对应关系就可以确定一个函数3若函数的定义域只有一个元素,则值域也只有一个元素4函数yfxx2,xA与uftt2,tA表示的是同一个函数一.函数关系的判断例11多选下列两个集合间的对应中,是A 到B的函数的有AA1,0,1,B1,0,1,fA中的数的平方BA0,1,B1,0,1,fA中的数的开方CAZ,BQ,fA中的数的倒数DA1,2,3,4,B2,4,6,8,fA中的数的2倍答案AD解析A选项121,020,121,为一一对应关系,是A到B的函数B选项00,11,集合A中的元素1在集合B中有两个元素与之对应,不符合函数定义,不是A到B的函数C选项A中元素0的倒数没有意义,不符合函数定义,不是A到B的函数D选项122,224,326,428,为一一对应关系,是A到B的函数2设Mx|0x2,Ny|0y2,给出如图所示的四个图形其中,能表示从集合M到集合N的函数关系的个数是A0B1C2D3答案B解析中,因为在集合M中当1x2时,在N中无元素与之对应,所以不是;中,对于集合M中的任意一个数x,在N中都有唯一的数与之对应,所以是;中,x2对应元素y3N,所以不是;中,当x1时,在N中有两个元素与之对应,所以不是因此只有是反思感悟1判断对应关系是否为函数的两个条件A,B必须是非空实数集A中任意一元素在B中有且只有一个元素与之对应对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系2根据图形判断对应关系是否为函数的方法任取一条垂直于x轴的直线l.在定义域内平行移动直线l.若l与图形有且只有一个交点,则是函数;若在定义域内有两个或两个以上的交点,则不是函数跟踪训练11下列对应关系式中是A到B的函数的是AAR,BR,x2y21BA1,0,1,B1,2,y|x|1CAR,BR,y1x2DAZ,BZ,y2x1答案B解析对于A,x2y21可化为y1x2,显然对任意xAx1除外,y值不唯一,故不符合函数的定义;对于B,符合函数的定义;对于C,2A,在此时对应关系无意义,故不符合函数的定义;对于D,1A,但在集合B中找不到与之相对应的数,故不符合函数的定义2判断下列对应关系f是否为定义在集合A 上的函数AR,BR,对应关系fy1x2;A1,2,3,BR,f1f23,f34;A1,2,3,B4,5,6,对应关系如图所示解AR,BR,对于集合A中的元素x0,在对应关系fy1x2的作用下,在集合B中没有元素与之对应,故所给对应关系不是定义在A上的函数由f1f23,f34,知集合A中的每一个元素在对应关系f的作用下,在集合B中都有唯一的元素与之对应,故所给对应关系是定义在A上的函数集合A 中的元素3在集合B中没有与之对应的元素,且集合A中的元素2在集合B中有两个元素5和6与之对应,故所给对应关系不是定义在A上的函数二.求函数的定义域.函数值和值域命题角度1求函数的定义域例2求下列函数的定义域1fxx12x11x;2fx5x|x|3;3fx3xx1.解1要使函数有意义,自变量x的取值必须满足x10,1x0.解得x1,且x1,即函数定义域为x|x1,且x12要使函数有意义,自变量x的取值必须满足5x0,|x|30,解得x5,且x3,即函数定义域为x|x5,且x33要使函数有意义,自变量x的取值必须满足3x0,x10,解得1x3,所以这个函数的定义域为x|1x3延伸探究在本例3条件不变的前提下,求函数yfx1的定义域解由1x13得0x2.所以函数yfx1的定义域为0,2反思感悟求函数定义域的常用依据1若fx是分式,则应考虑使分母不为零2若fx是偶次根式,则被开方数大于或等于零3若fx是由几个式子构成的,则函数的定义域要使各个式子都有意义4若fx是实际问题的解析式,则应符合实际问题,使实际问题有意义跟踪训练2函数y2x23x214x的定义域为________________答案,122,4解析由2x23x20,4x0,4x0,得x12或2x4,所以定义域为,122,4命题角度2求函数值例3已知fx12xxR,且x2,gxx4xR1求f1,g1,gf1的值;2求fgx解1f11211,g1145,gf1g15.2fgxfx412x412x1x2xR,且x2反思感悟求函数值的方法1已知fx的表达式时,只需用a替换表达式中的x即得fa的值2求fga的值应遵循由里往外的原则跟踪训练3已知fx11xxR,且x1,gxx22xR,则f2______,fg2______,fgx________.答案13171x23解析fx11x,f211213.又gxx22,g22226,fg2f611617.fgx11gx1x23.命题角度3求值域例4求下列函数的值域1y2x1,x1,2,3,4;2y3x1x1;3yxx.解1当x1时,y3;当x2时,y5;当x3时,y7;当x4时,y9.所以函数y2x1,x1,2,3,4的值域为3,5,7,92借助反比例函数的特征y3x14x134x1x1,显然4x1可取0以外的一切实数,即所求函数的值域为y|y33设uxx0,则xu2u0,则yu2uu12214u0由u0,可知u12214,所以y0.所以函数yxx的值域为0,反思感悟求函数值域常用的四种方法1观察法对于一些比较简单的函数,其值域可通过观察得到2配方法当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域3分离常数法此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;4换元法即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域对于fxaxbcxd其中a,b,c,d为常数,且a0型的函数常用换元法跟踪训练4求下列函数的值域1y2x1x3;2y2xx1.解1分离常数法y2x1x32x37x327x3,显然7x30,所以y2.故函数的值域为,22,2换元法设tx1,则xt21,且t0,所以y2t21t2t142158,由t0,再结合函数的图像如图,可得函数的值域为158,.三.同一个函数的判定例5多选下列各组函数表示同一个函数的是Afxx,gxx2Bfxx21,gtt21Cfx1x0,gxxxDfxx,gx|x|答案BC 解析A中,由于fxx的定义域为R,gxx2的定义域为x|x0,它们的定义域不相同,所以它们不是同一个函数B中,函数的定义域.值域和对应关系都相同,所以它们是同一个函数C中,由于gxxx1的定义域为x|x0,故它们的定义域相同,所以它们是同一个函数D中,两个函数的定义域相同,但对应关系不同,所以它们不是同一个函数反思感悟在两个函数中,只有当定义域.对应关系都相同时,两函数才是同一个函数值域相等,只是前两个要素相等的必然结果跟踪训练5下列各组式子是否表示同一个函数为什么1fx|x|,tt2;2y1x1x,y1x2;3y3x2,yx3.解1fx与t的定义域相同,又tt2|t|,即fx与t的对应关系也相同,fx与t是同一个函数2y1x1x的定义域为x|1x1,y1x2的定义域为x|1x1,即两者定义域相同又y1x1x1x2,两函数的对应关系也相同故y1x1x与y1x2是同一个函数3y3x2|x3|与yx3的定义域相同,但对应关系不同,y3x2与yx3不是同一个函数1若Ax|0x2,By|1y2,下列图形中能表示以A为定义域,B为值域的函数的是答案B解析A中值域为y|0y2,故错误;C,D中值域为1,2,故错误2若fxx1,则f3等于A2B4C22D10答案A解析因为fxx1,所以f3312.3函数y1xx的定义域为Ax|x1Bx|x0Cx|x1或x0Dx|0x1答案D解析由题意可知1x0,x0,解得0x1.4如果函数yx22x的定义域为0,1,2,3,那么其值域为A1,0,3B0,1,2,3Cy|1y3Dy|0y3答案A解析当x取0,1,2,3时,y 的值分别为0,1,0,3,则其值域为1,0,35下列四个图像中,不是以x为自变量的函数的图像是答案C解析根据函数定义,可知对自变量x的任意一个值,都有唯一确定的实数函数值与之对应,显然选项A,B,D满足函数的定义,而选项C不满足1知识清单1函数的概念2函数的定义域.值域3同一个函数的判定2方法归纳观察法.换元法.配方法.分离常数法3常见误区1定义域中的每一个自变量都有唯一确定的值与其相对应2自变量用不同字母表示不影响相同函数的判断。
3.1.1 函数的概念 学案(含答案)
3.1.1 函数的概念学案(含答案)3311函数的概念及其表示函数的概念及其表示331.11.1函数的概念函数的概念学习目标1.理解函数的概念,了解构成函数的三要素.2.能正确使用区间表示数集.3.会求一些简单函数的定义域.函数值知识点一函数的有关概念函数的定义设A,B是非空的实数集,如果对于集合A 中任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称fAB为从集合A到集合B的一个函数函数的记法yfx,xA定义域x叫做自变量,x的取值范围A 叫做函数的定义域值域函数值的集合fx|xA叫做函数的值域知识点二同一个函数一般地,函数有三个要素定义域,对应关系与值域如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数是同一个函数特别提醒两个函数的定义域和对应关系相同就决定了这两个函数的值域也相同思考定义域和值域分别相同的两个函数是同一个函数吗答案不一定,如果对应关系不同,这两个函数一定不是同一个函数知识点三区间1区间概念a,b为实数,且ab定义名称符号数轴表示x|axb闭区间a,bx|axb开区间a,bx|axb半开半闭区间a,bx|aax|xax|x0,即x2,所以x2且x1.所以函数yx10x2的定义域为x|x2且x1.3由4x20,x0解得2x0或0x2,所以函数y4x21x的定义域为2,00,2反思感悟求函数定义域的常用依据1若fx是分式,则应考虑使分母不为零;2若fx是偶次根式,则被开方数大于或等于零;3若fx是由几个式子构成的,则函数的定义域要使各个式子都有意义;4若fx是实际问题的解析式,则应符合实际问题,使实际问题有意义跟踪训练2求下列函数的定义域1yx12x11x;2y2x23x214x.解1由x10,1x0,得x1,x1.所以定义域为x|x1且x12由2x23x20,4x0,4x0,得x12或2x4,所以定义域为,122,4命题角度2求函数值例3已知fx11xxR且x1,gxx22xR1求f2,g2的值;2求fg2的值解1因为fx11x,所以f211213.又因为gxx22,所以g22226.2fg2f611617.反思感悟求函数值的方法1已知fx的解析式时,只需用a 替换解析式中的x即得fa的值2已知fx与gx,求fga的值应遵循由里往外的原则跟踪训练3已知fxx21,x0,1x1,x0,则ff2________.答案14解析f22213,ff2f314.三.同一个函数的判定例4下列选项中能表示同一个函数的是Ayx1与yx21x1Byx21与st21Cy2x与y2xx0Dyx12与yx2答案B解析对于选项A,前者定义域为R,后者定义域为x|x1,不是同一个函数;对于选项B,虽然变量不同,但定义域和对应关系均相同,是同一个函数;对于选项C,虽然对应关系相同,但定义域不同,不是同一个函数;对于选项D,虽然定义域相同,但对应关系不同,不是同一个函数反思感悟在两个函数中,只有当定义域.对应关系都相同时,两函数才是同一个函数值域相等,只是前两个要素相等的必然结果跟踪训练4下列各组式子是否表示同一函数为什么1fx|x|,tt2;2y1x1x,y1x2;3y3x2,yx3.解1fx与t的定义域相同,又tt2|t|,即fx与t的对应关系也相同,fx与t是同一函数2y1x1x的定义域为x|1x1,y1x2的定义域为x|1x1,即两者定义域相同又y1x1x1x2,两函数的对应关系也相同故y1x1x与y1x2是同一函数3y3x2|x3|与yx3的定义域相同,但对应关系不同,y3x2与yx3不是同一函数1下列四种说法中,不正确的一个是A在函数值域中的每一个数,在定义域中都至少有一个数与之对应B函数的定义域和值域一定是无限集合C定义域和对应关系确定后,函数的值域也就确定了D若函数的定义域中只含有一个元素,则值域也只含有一个元素答案B解析由函数定义知,A,C,D正确,B不正确2若fxx1,则f3等于A2B4C22D10答案A解析f3312.3函数fxxx1的定义域为A1,B0,C,11,D0,11,答案D 解析由x0,x10,得x0,x1,定义域为0,11,4设fxx2是集合A 到集合B的函数,若集合B1,则集合A不可能是A1B1C1,1D1,0答案D解析因为当x0时,在集合B中没有值与之对应5下列各组函数是同一函数的是________填序号fx2x3与gxx2x;fxx0与gx1x0;fxx22x1与gtt22t1.答案解析fxx2x,gxx2x,对应关系不同,故fx与gx不是同一函数;fxx01x0,gx1x01x0,对应关系与定义域均相同,故是同一函数;fxx22x1与gtt22t1,对应关系和定义域均相同,故是同一函数1知识清单1函数的概念2求函数的定义域.函数值2方法归纳数学抽象3常见误区化简函数的对应关系时要注意定义域的变化.。
学案5:3.1.1 函数的概念
3.1.1 函数的概念【学习目标】1.函数的概念(1)函数的定义设A,B是,如果对于集合A中的,按照某种确定的对应关系f,在集合B中都有和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作.(2)函数的定义域与值域函数y=f(x)中,x叫做,A叫做函数的定义域,与x的值相对应的y值叫做,函数值的集合叫做函数的值域.显然,值域是集合B的.(3)对应关系f:除解析式、图象表格外,还有其他表示对应关系的方法,引进符号f统一表示对应关系.注意:判断对应关系是否为函数的2个条件①A、B必须是非空数集.②A中任意一元素在B中有且只有一个元素与之对应.2.函数的三要素由函数的定义可知,一个函数的构成要素为:、和。
3.相同函数值域是由和决定的,如果两个函数的定义域和相同,我们就称这两个函数是同一函数.两个函数如果仅对应关系相同,但定义域不同,则它们相同的函数.4. 区间及有关概念(1)一般区间的表示.设a,b∈R,且a<b,规定如下:区间{x |a <x ≤b }半开半闭区间(a ,b ](2)特殊区间的表示. 定义 R {x |x ≥a }{x |x >a }{x |x ≤a }{x |x <a }符号【小试牛刀】判断正误(正确的打“√”,错误的打“×”)(1)根据函数的定义,定义域中的一个x 可以对应着不同的y .( ) (2)函数的定义域和值域一定是无限集合.( )(3)函数的定义域和对应关系确定后,函数的值域也就确定了.( ) (4)两个函数相同指定义域和值域相同的函数.( ) (5)f (x )=3x +4与f (t )=3t +4是相同的函数.( )(6)函数值域中每一个数在定义域中有唯一的数与之对应.( ) (7)函数f (2x -1)的定义域指2x -1的取值范围.( ) 【经典例题】题型一 函数关系的判定例1(1) 若集合M ={x |0≤x ≤2},N ={y |0≤y ≤3},则下列图形给出的对应中能构成从M 到N 的函数f :M →N 的是( )(2)下列各题的对应关系是否给出了实数集R 上的一个函数?为什么? ①f :把x 对应到3x +1; ②g :把x 对应到|x |+1; ③h :把x 对应到1x ; ④r :把x 对应到x .[跟踪训练] 1 设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数y =f (x )的定义域为M ,值域为N ,对于下列四个图象,不可作为函数y =f (x )的图象的是( )题型二 已知函数的解析式求定义域 求函数定义域的几种类型(1)若f (x )是整式,则函数的定义域是R . (2)若f (x )是分式,则应考虑使分母不为零. (3)若f (x )是偶次根式,则被开方数大于或等于零.(4)若f (x )是由几个式子构成的,则函数的定义域是几个部分定义域的交集. (5)若f (x )是实际情境的解析式,则应符合实际情境,使其有意义. 例2 求下列函数的定义域. (1)y =2+3x -2;(2)y =x 2-2x -3; (3)y =3-x ·x -1; (4)y =(x -1)0+2x +1;[跟踪训练] 2 求下列函数的定义域:(1)y =(x +1)2x +1--x 2-x +6. (2)y =10-x 2|x |-3.题型三 函数相同判断两个函数为同一函数的方法判断两个函数是否为同一函数,要先求定义域,若定义域不同,则不是同一函数;若定义域相同,再化简函数的解析式,看对应关系是否相同.注意:(1)在化简解析式时,必须是等价变形.(2)函数是两个数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的. 例3 下列各组函数: ①f (x )=x 2-x x ,g (x )=x -1;②f (x )=x x ,g (x )=x x; ③f (x )=(x +3)2,g (x )=x +3; ④f (x )=x +1,g (x )=x +x 0;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5). 其中表示相等函数的是________(填上所有正确的序号). [跟踪训练] 3 (1)与函数y =x -1为同一函数的是( ) A .y =x 2-xxB .m =(n -1)2C .y =x -x 0D .y =3(t -1)3(2)判断以下各组函数是否表示相等函数: ①f (x )=(x )2;g (x )=x 2.②f (x )=x 2-2x -1;g (t )=t 2-2t -1.题型四 求抽象函数的定义域 两类抽象函数的定义域的求法(1)已知f (x )的定义域,求f (g (x ))的定义域:若f (x )的定义域为[a ,b ],则f (g (x ))中a ≤g (x )≤b ,从中解得x 的取值集合即为f (g (x ))的定义域.(2)已知f (g (x ))的定义域,求f (x )的定义域:若f (g (x ))的定义域为[a ,b ],即a ≤x ≤b ,求得g (x )的取值范围,g (x )的值域即为f (x )的定义域.例4 (1)设函数f(x)=x,则f(x+1)等于什么?f(x+1)的定义域是什么?(2)若函数y=f(x)的定义域是[0,+∞),那么函数y=f(x+1)的定义域是什么?[跟踪训练] 4 已知函数f(x)的定义域为[1,3],求函数f(2x+1)的定义域.例5 (1)已知函数y=f(x)的定义域为[-2,3],求函数y=f(2x-3)的定义域;(2)已知函数y=f(2x-3)的定义域是[-2,3],求函数y=f(x+2)的定义域.[跟踪训练] 5(1)函数f(2x+1)的定义域为[1,3],求函数f(x)的定义域.(2)函数f(1-x)的定义域为[1,3],求函数f(2x+1)的定义域。
3.1.1 第1课时 函数的概念(一)
返回导航
(2) 函 数 y = f(x) 的 定 义 域 为 M = {x| - 2≤x≤2} , 值 域 为 N =
{x|0≤x≤2},则y=f(x)图象可能是(
)
答案:B
返回导航
解析:由题意,函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N
={x|0≤x≤2},对于A中,函数的定义域为{x|-2≤x≤0},不符合题
的定义域是{x|2≤x≤5},故对于函数f(x-2),有2≤x-2≤5,解得4≤x≤7,从而
x
B.M=R,N={y|y≥0},f:x→y=|x|
C.M={x|x>0},N=R,f:x→y=± x
D.M={x|x≥2,x∈N*},N={y|y≥0,y∈N*},f:x→y=x2-2x+2
答案:BD
返回导航
解析:对于A选项,因0∈M,而0没有倒数,故A项错误;对于B选
项,因任意实数的绝对值都是非负数,即集合M中的每一个元素在集
10
(1)f(x)= ;
x
10
x
解析:设矩形的长为x,宽为f(x),那么f(x)= ,
其中x的取值范围A={x|x>0},
10
x
f(x)的取值范围B={f(x)|f(x)= },对应关系f把每一个矩形的长x,对应到唯一确
10
定的宽 .
x
返回导航
20
(2)f(x)=2x+ .
x
20
x
解析:设矩形的长为x,周长为f(x),那么f(x)=2x+ ,其中x的取值范围A=
)
A.A=R,B={x|x≥0},f:x→y=|x|
B.A=Z,B=Z,f:x→y=x2
C.A=Z,B=Z,f:x→y= x
3.1.1函数概念(第1课时)教学设计.docx
3.1.1函数的概念(第一课时)(人教A版普通高中教科书数学必修第一册第三章)一、教材地位本节课是普通高中课程标准实验教科书人教A版第三章第一节第一课时(第60~64页).1.概念本身角度:函数是高中数学最抽象的概念,初中曾用运动变化的观点给出函数的描述性定义,并把函数看作两个变量间的依赖关系,但这一定义有一定的阶段性和局限性.2.学科角度:函数是高中数学的核心概念,是整个高中函数知识体系的基石,它不仅将函数概念由“对应论”发展到“集合论”,更承上启下,为后继研究基本初等函数,比如指数函数、对数函数、幂函数、三角函数以及函数的性质等提供研究方法和理论依据,让我们体会到重要概念对数学发展和数学学习的巨大作用;同时,函数的基础知识在日常生活、社会经济、以及等其他学科也有着广泛应用.3.高考角度:函数是高考数学的热点,函数图象性质、函数与代数式方程不等式数列三角解析几何导数的结合问题常考常新,从基础题、中档题到压轴题,每年高考都是绝对重点,高考所考察的五大数学思想中的数形结合思想、函数与方程思想贯穿高中数学学习的全过程.有人说,“得函数者得数学,得数学者得高考”,更是形象的道出了函数在高考中的重要地位.二、学情分析1.从学生知识层面看:通过初中函数相关知识的学习,学生具备了一定的知识经验和基础;通过必修一第一章“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数、从根本上揭示函数的本质提供了知识保证.2.从学生能力层面看:学生已有一定的分析、推理和概括能力,初步具备了运用数形结合思想解决问题的能力,但数形结合的意识和思维的深刻性还有待进一步加强.3.从学生情感培养方面看:多数学生对教学新内容的学习有很高学习兴趣和积极性,但探究能力以及合作交流等能力仍需要通过课堂主渠道加以培养和提高.三、教学目标1.知识与技能:会用集合与对应的语言来刻画函数,理解函数的概念;理解函数符号y=f(x)的含义;了解函数的三要素;会求一些简单函数的定义域.(重点)2.过程与方法:让学生亲身经历函数概念的形成过程,经历从具体到抽象、从特殊到一般、从感性到理性的认知过程,培养学生抽象概括能力,让学生学会数学表达和交流,激发数学学习兴趣,发展数学应用意识.(难点)3.情感、态度与价值观:培养学生细心观察、认真分析、严谨表达的良好思维习惯,养成用函数模型描述和解决现实世界中蕴含的规律,培养学生提出问题的能力,培养创新意识.四、教学重点用集合语言和对应关系刻画函数的概念.五、教学难点对函数概念的理解.六、教学过程1.函数概念的形成1.1创设情境,引发思考思考1:(1)若正方形的边长为1,则其周长l= ;(2)若正方形的边长为2,则其周长l= ; (3)若正方形的边长为x ,则其周长l= ;【预设答案】(1)4(2)8(3)4x【设计意图】通过具体的例子复习函数的概念,让学生再次体会函数高度“抽象”的作用.思考2:初中学习的函数的概念是什么?【预设答案】设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说y 是x 的函数.其中x 叫自变量,y 叫因变量.【设计意图】复习初中函数概念,强调函数是一种特殊的对应.思考3:请同学们考虑以下两个问题【设计意图】从初中的概念来看,这两组中的两个函数没什么不同,但我们有感觉它们是不同函数.让学生体会初中函数概念不够精确,从而有些问题解决不了.1.2探究典例,形成概念问题1: 某“复兴号”高速列车到350km/h 后保持匀速运行半小时.这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系可以表示为 S=350t.思考:根据对应关系S=350t ,这趟列车加速到350km/h 后,运行1h 就前进了350km ,这个说法正确吗?44y x l x ==(1)与周长是同一函数吗?22x y x y x==()与是同一函数吗?【预设答案】不正确.对应关系应为S=350t ,其中 }1750|{},5.00|{11≤≤=∈≤≤=∈s s B s t t A t .问题2 :某电气维修告诉要求工人每周工作至少1天,至多不超过6天.如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w (单位:元)是他工作天数d 的函数吗?【预设答案】是函数,对应关系为w=350d,其中},6,5,4,3,2,1{2=∈A d}2100,1750,1400,1050,700,350{2=∈B w .思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?【预设答案】不是.自变量的取值范围不一样.问题3 :如图,是北京市2016年11月23日的空气质量指数变化图.如何根据该图确定这一天内任一时刻th 的空气质量指数的值I ?你认为这里的I 是t 的函数吗?【预设答案】是,t 的变化范围是}240|{A 3≤≤=t t ,I 的范围是}1500|{I B 3<<=I .问题4: 国际上常用恩格尔系数)总支出金额食物支出金额=r r ( 反映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越高.上表是我国某省城镇居民恩格尔系数变化情况,从表中可以看出,该省城镇居民的生活质量越来越高.你认为该表给出的对应关系,恩格尔系数r 是年份y 的函数吗?思考:上述问题1到问题4中的函数有哪些共同点和不同点?【预设答案】共同点有:(1)都包含两个非空数集,用A ,B 来表示;(2)都有一个对应关系不同点有:(1)(2)是通过解析式表示对应关系,(3)是通过图象,(4)是通过表格【设计意图】通过四个具体的例子,发现要在集合的基础上定义函数会比较准确,同时让学生体会函数对应关系的3种表示形式.函数概念:一般地,设A , B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A B →为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}()f x x A |∈叫做函数的值域.函数的三个要素:定义域,对应关系,值域.常见函数的三要素:正比例函数:y kx =的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.一次函数:(0)y ax b a =+≠的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.二次函数:2(0)y ax bx c a =++≠的定义域是R ,值域是B .当a >0时,244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a <0时,244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭.对应关系f 把R 中的任意一个数x ,对应到B 中唯一确定的数2(0)ax bx c a ++≠. 反比例函数:(0)k y k x =≠的定义域为{}0x x ≠,对应关系为“倒数的k 倍”,值域为{}0y y ≠.反比例函数用函数定义叙述为:对于非空数集{}0A x x =≠中的任意一个x 值,按照对应关系f :“倒数(0)k k ≠倍”,在集合{}0B y y =≠中都有唯一确定的数k x 和它对应,那么此时f :A B →就是集合A 到集合B 的一个函数,记作()(0),.k f x k x A x=≠∉2.例题讲解,理解概念例1.判断下列对应是否是函数【预设答案】(1)是(2)是(3)不是【设计意图】让学生体会函数只能是“一对一”或“多对一”,不能“一对多”.例2. 判断下列图象能表示函数图象的是()【预设答案】D【设计意图】让学生体会概念中的“唯一”二字例3 .你能构建一个问题情景,使其中函数的对应关系为y=x(10-x)吗?【预设答案】长方形的周长为20,设一边长为x,面积为y,那么y=x(10-x),其中x的取值范围是A={x|0<x<10},y的取值范围是B={y|0<y≤25}.对应关系f把每一个长方形的边长x,对应到唯一确定的面积x(10-x)【设计意图】让学生体会数学建模,数学应用思想,同时巩固函数概念是建立在集合基础上的.3.课堂练习,巩固新知练习1.若函数y=f(x)的定义域为{x|−3≤x≤8,x≠5},值域为{y|−1≤y≤2,y≠0},则y=f(x)的图象可能是()A. B.C. D.【答案】B练习2.已知函数f(x),g(x)分别由下表给出.则g(f(5))=;f(g(2))=.【答案】4 3练习3.集合A,B与对应关系f,如图所示,f:A→B是否为从集合A到集合B的函数?如果是,那么定义值域与对应关系各是什么?【答案】由图知A中的任意一个数,B中都有唯一确定数,与之对应,所以f:A→B 是从A 到B的函数定义域是A={1,2,3,4,5},值域C={2,3,4,5}4.构建一个问题情景,使其中的变量关系能用解析式y=√x来描述.【答案】正方形的面积为x,其边长为y,则y=√x,其中x的取值范围是A={x|0<x},y的取值范围是B={y|0<y}4.课堂小结,思想升华本节课主要是在集合的基础上重新定义了函数,让函数的概念更加清晰准确.。
函数的概念(第2课时)(教学设计)高一数学系列(人教A版2019)
重点:理解函数的三要素:定义域、对应法则及值域,会求函数的定义域与函数值,在此过程中培养学生的逻辑推理、数据分析、数学运算的素养。
难点:进一步理解函数的对应关系f,体会函数相等的概念。
学生在第一课时已经学习过函数的概念,并对函数的概念有了深刻的理解。
在此基础上让学生理解函数的三要素、判断两个函数相等,求函数的定义域及值域相对好理解,但是抽象函数的定义域对学生是一个考验。
注意:1、区间是集合的另一种表示形
式,注意与不等式的区别。
如:x ≥-1与[-1,+∞)是完全不同的 2、写区间的端点时,一定注意书写准确
根据具体实例结合数形结合让学
生加深对区间的
理解,使实例成
为理解概念的一
种思维载体。
【练一练】 (1)用区间表示{x |x ≥0且x ≠2}注意区间左端点
【例1】 把下列数集用区间表示: (1){x |x ≥-1}; (2){x |x <0};
(3){x |-1<x <1}; (4){x |0<x <1或2≤x ≤4}.
;
量的值求对应的
函数值,提高学
生数学运算的核
心素养,为求函
数的值域打好基.
础。
通过函数的定义,学生自主归纳出两个函数是同一个函数的概念,培养学生数学抽象的核心素养。
通过具体的例子,使学生掌握同一函数的判断方法.
通过课堂练习,巩固本节学习的内容。
3.1.1函数的概念教学设计-2024-2025学年高一上学期数学人教A版(2019)必修第一册
主备人
备课成员
课程基本信息
1.课程名称:函数的概念
2.教学年级和班级:2024-2025学年高一上学期数学人教A版(2019)必修第一册
3.授课时间:1课时
4.教学时数:45分钟
二、教学目标
1.理解函数的概念,掌握函数的定义及其相关性质。
教学手段:
1. 多媒体课件:利用多媒体课件,以图文并茂的形式展示函数的性质和图象,直观地引导学生理解和掌握函数的概念。
2. 在线教学平台:利用在线教学平台,提供丰富的教学资源和互动工具,方便学生自主学习和交流讨论。
3. 数学软件:运用数学软件进行函数的图象演示和分析,让学生直观地观察和理解函数的性质,提高学习效果。
引导学生思考这些案例对实际生活或学习的影响,以及如何应用函数解决实际问题。
小组讨论:让学生分组讨论函数的未来发展或改进方向,并提出创新性的想法或建议。
4. 学生小组讨论(10分钟)
目标: 培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与函数相关的主题进行深入讨论。
小组内讨论该主题的现状、挑战以及可能的解决方案。
3.练习题:用于巩固所学内容。
七、教学策略
1.采用问题驱动的教学方法,引导学生思考函数的概念。
2.运用多媒体课件,直观地展示函数的性质。
3.通过案例分析,让学生理解函数的概念。
4.注重练习巩固,提高学生的解题能力。
5.鼓励学生提问,解答学生的疑问。
核心素养目标
本节课旨在培养学生的数学抽象、逻辑推理、数学建模等数学核心素养。通过函数的概念的学习,学生能够理解函数的本质,提升数学抽象能力;通过函数性质的探究,学生能够掌握函数的单调性、奇偶性、周期性等逻辑推理方法;通过案例分析和练习巩固,学生能够运用函数的概念解决实际问题,提高数学建模能力。
3.1.1 函数的概念(课时教学设计)-高中数学人教版(2019)必修第一册
《3.1.1 函数的概念》教学设计教材内容:函数是现代数学中最基本的概念,是描述世界变化规律的最重要的数学工具,在解决实际问题中有着不可或缺的作用,函数是贯穿高中数学的主线,在高中的数学中有着重要的地位,本节课的学习有助于学生掌握函数思想,为后续数学的学习起着铺垫作用。
教学目标:1.通过具体实例,归纳、概括出函数的三个要素,建立用集合与对应语言刻画的函数概念,发展学生数学抽象素养.2.对简单具体的函数,能得出其定义域、值域与对应关系,会用函数的定义刻画函数。
3.用具体实例体会对应关系f 的真正含义,能将对应关系 f 与对应关系的具体表示、函数y=f(x),x ∈A 与函数的(解析式、图象与表格等)表示区分开来,在具体函数中体会“对应”观点下函数思想的本质。
教学重点与难点:1.重点:用实例归纳概括函数的三个要素,用集合与对应的语言建立函数的概念。
2.难点:如何在实例分析基础上让学生通过比较、归纳、概括不同案例中的共同特征,并由此建立函数概念.教学过程设计:引导语:同学们好!我们知道,客观世界中有各种各样的运动变化现象.例如,“天宫二号”在发射过程中,离发射点的距离随时间变化而变化;一个装满水的蓄水池在使用过程中,水面高度随时间的变化而不断降低;我国高速铁路运营里程逐年增加,已突破2万公里……所有这些现象,常常用函数模型来描述,并且通过研究函数模型我们就可以把握相应的运动变化规律.在初中我们已经接触过函数的概念,知道函数式刻画变量之间的对应关系的数学模型和工具.初中阶段函数的定义:如果有两个自变量x 与y ,并且对于x 的每个确定的值,y 都有唯一确定的值与其对应,我们就说x 是自变量,y 是x 的函数.例如,正方形的周长l 与边长x 的对应关系是x l 4 ,而且对于每一个确定的x 都有唯一l 与之对应,所以l 是x 的函数.这个函数与正比例函数x y 4=相同吗?要解决这些问题,就需要进一步学习函数概念.问题1 某“复兴号”高速列车加速到h km /350后保持匀速运行半小时.(1)这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系如何表示?这是一个函数吗?(2)有人说“根据对应关系t S 350=,这趟列车加速到h km /350后,运行h 1就前进了km 350.”你认为这个说法正确吗?你能确定这趟列车运行多长时间前进km 210吗?(3)你认为应该如何刻画这个函数?师生活动:1 教师给出问题题干和第(1)问后,提醒学生先不要看教科书,在信息平台上提交自己的答案,教师点评答案,引导学生用初中函数的定义进行表述.2 教师给出第(2)问,学生判断后,教师给予点评,启发学生认识到函数应关注自变量的变化范围和函数值的变化范围.3 让学生思考如何表述S 与t 的对应关系,教师再与学生一起讨论的基础上给出表述的示范.设计意图:问题1的第(1)问是为了让学生回顾初中所学的函数概念,用“是否满足定义要求”来回答问题;第(2)问是要激发认知冲突,发现初中函数概念的不严谨;第(3)问是为了让学生关注到t 与S 的变化范围后,尝试用更精确的语言表述函数概念.问题2 某电气维修公司要求工人每周至少工作1天,至多不超过6天.公司确定的工资标准是每人每天350元,而且每周付一次工资.(1)你认为该怎样确定一个工人每周的工资?(2)一个工人的工资w (单位:元)是他工作天数d 的函数吗?(3)你能仿照问题1刻画这个函数吗?师生活动:1教师给出问题后,让学生在在信息平台上上提交自己的答案,学生可能多数是得出d w 350=,视情况教师也可引导他们得出用表格表示的对应关系(表1): 表1 一个工人一周的工资列表123456工作时间(天)3507001050140017502100所的工资(元)2 教师提问启发学生思考后,还可以用以下追问帮助学生理解函数值的变化范围:你认为工人一周所获取的工资为2450元吗?学生在信息平台上书写并提交自己的答案,教师在点评学生答案的基础上给出规范的表述.3 教师追问(4):如果将问题2中工人每天的工资改为400元,而其它条件不变,你认为还可以用同样的函数来确定工人一周的工资吗?为什么?在学生思考与讨论的基础上,教师引导他们认识到:对应关系是影响函数的重要因素,对应关系不同函数就不同.4 教师追问(5):问题1和问题2中的函数对应关系相同,你认为它们是同一个函数吗?为什么?你认为影响函数的要素有哪些?让学生在信息平台上提交自己的答案,教师引导学生认识到不能只由对应关系是否相同判断两个函数是否相同,决定函数的三个要素是:自变量的变化范围、函数值的变化范围和对应关系.设计意图:问题2的第(1)问和第(2)问让学生在用初中函数定义认识到w是d的函数的基础上,尝试用不同方法表示函数,为认识函数对应关系做准备;第(3)问是让学生模仿问题1的表述方法去描述函数,既让他们熟悉表述方法,同时训练他们的抽象概括能力;追问(4)进一步帮助学生认识函数对应关系的重要性;追问(5)帮助学生理解怎样区别不同的函数,进一步认识函数三要素的不可或缺,引导学生总结函数的三要素.问题3 图1是北京市2016年11月23日的空气质量指数(Air Quality Index,简称AQI)变化图.图1(Ⅰ)你能根据该图确定这一天内12:00的空气质量指数(AQI )的值I 吗?是否可以确定这一天内任一时刻t 的空气质量指数(AQI )的值I ?(Ⅱ)你认为这里的I 是t 的函数吗?如果是,你能仿照前面的说法刻画这个函数吗?师生活动:教师呈现问题3,给学生适当时间阅读思考.教师将第(Ⅰ)问中的前一问设计成填空题,让学生思考后在学案上提交. 学生提交的答案可能不一样,教师点评时要帮助学生理解其原因,并让学生在此基础上回答后一问,引导学生体会图象表示的对应关系的实质,明确由确定的t 值找出对应I 值的方法与步骤.对于第(Ⅱ)问,有些学生可能从初中函数认识的角度,会认为I 不是时间t 的函数(因为没有用解析式表示对应关系)。
人教A版(2019)必修第一册3.1.1 函数的概念 教案
【新教材】3.1.1 函数的概念(人教A版)函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。
重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.其它区间的表示四、典例分析、举一反三题型一 函数的定义例1下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√x x,g(x)=√x;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域: (1)y=(x+2)|x |-x; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集). 跟踪训练四1.求函数y=√2x +3√2-x1x的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1){x |-32≤x <2,且x ≠0} (2)[-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +32-x1x的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32. ∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域) 例5(1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1;②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x ;④y =2x -√x −1. 【答案】(1)1317(2)① R ② [2,6)③ {y|y ∈R 且y≠3}④⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f(x)=11+x ,∴f(2)=11+2=13.又∵g(x)=x 2+2,∴g(2)=22+2=6, ∴f(g(2))=f(6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y =√2x +1 +1;(2)y =1−x 21+x 2. 【答案】(1) [1,+∞) (2)(-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计 七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。
教学设计3:3.1.1 函数的概念
3.1.1 函数的概念教材分析函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.教学目标与核心素养课程目标1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。
教学重难点重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
课前准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)定义名称符号数轴表示{x|a≤x≤b}闭区间{x|a<x<b}开区间{x|a≤x<b}半开半闭区间{x|a<x≤b}半开半闭区间3.其它区间的表示R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a} 定义符号四、典例分析、举一反三题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A ={x |0≤x ≤4},B={y |0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C 题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f (x )=(√x )2,g(x )=√x 2; (2)y =x 0与y =1(x ≠0);(3)y =2x +1(x ∈Z )与y =2x -1(x ∈Z ). 【答案】见解析【解析】(1)因为函数f (x )=(√x )2的定义域为{x |x ≥0},而g(x )=√x 2的定义域为{x |x ∈R },它们的定义域不同,所以它们不表示同一函数.(2)因为y = x 0要求x ≠0,且当x ≠0时,y = x 0=1,故y = x 0与y =1(x ≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y =2x +1(x ∈Z )与y =2x -1(x ∈Z )两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数.解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f (x )=x 2-x x,g(x )=x -1;②f (x )=√xx ,g(x )=√x ;③f (x )=√(x +3)2,g(x )=x +3;④f (x )=x +1,g(x )=x +x 0;⑤汽车匀速运动时,路程与时间的函数关系f (t)=80t(0≤t ≤5)与一次函数g(x )=80x (0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f (x )与g(x )的定义域不同,不是同一函数; ②f (x )与g(x )的解析式不同,不是同一函数; ③f (x )=|x +3|,与g(x )的解析式不同,不是同一函数; ④f (x )与g(x )的定义域不同,不是同一函数;⑤f (x )与g(x )的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A ={x |5-x ≥0},集合B ={x ||x |-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A ={x |5-x ≥0},∴A ={x |x ≤5}. ∵B ={x ||x |-3≠0},∴B ={x |x ≠±3}. ∴A ∩B ={x |x <-3或-3<x <3或3<x ≤5},即A ∩B =(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x |0<x <1或2≤x ≤11}用区间表示为 .2. 若集合A =[2a -1,a +2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a ,b )(或[a ,b ])成立的条件是a <b . ∵A =[2a -1,a+2],∴2a -1<a +2.∴a <3, ∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域: (1)y =(x+2)0|x |-x; (2)f (x )=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x <0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f (x )是整式,那么函数的定义域是实数集R ;(2)如果函数f (x )是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f (x )是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合;(4)如果函数f (x )是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集). 跟踪训练四1.求函数y =√2x +3−√2-x+1x 的定义域.2.已知函数f (x )的定义域是[-1,4],求函数f (2x +1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x <2,且x ≠0,所以函数y =√2x +3−1√2-x+1x 的定义域为{x |-32≤x <2,且x ≠0}. (2)已知f (x )的定义域是[-1,4],即-1≤x ≤4. 故对于f (2x +1)应有-1≤2x +1≤4, ∴-2≤2x ≤3,∴-1≤x ≤32.∴函数f (2x +1)的定义域是[-1,32]. 题型五 求函数值(域) 例5 (1)已知f (x )=11+x(x ∈R ,且x ≠-1),g(x )=x 2+2(x ∈R),则f (2)=________,f (g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x; ④y =2x -√x −1.【答案】(1)13 17(2)① R ② [2,6) ③ {y |y ∈R 且y ≠3} ④ ⎣⎡⎭⎫158,+∞ 【解析】(1) ∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6,∴f ( g(2))=f (6)=11+6=17. (2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R .②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3 x -1 x +1=3 x +3-4 x +1=3-4x +1.∵4x +1≠0,∴y ≠3, ∴y =3 x -1 x +1的值域为{y |y ∈R 且y ≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝⎛⎭⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎡⎭⎫158,+∞.解题方法(求函数值(域)的方法)1.已知f (x )的表达式时,只需用数a 替换表达式中的所有x 即得f (a )的值.2.求f (g(a ))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x 2.【答案】(1) [1,+∞)(2) (-1,1]【解析】(1)因为2x+1≥0,所以2x+1+1≥1,即所求函数的值域为[1,+∞).(2)因为y=1-x21+x2=-1+21+x 2,又函数的定义域为R,所以x2+1≥1,所以0<21+x 2≤2,则y∈(-1,1].所以所求函数的值域为(-1,1].五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业教学反思本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。
学案1:3.1.1 函数的概念
第三章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念课前自主学习知识点1函数的定义及相关概念(1)函数的定义:一般地,设A,B是非空的实数集,如果对于集合A中的任意一个实数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B 为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)相关概念:x叫做,x的取值范围A叫做函数的;与x的值相对应的y值叫做,函数值的集合{f(x)| x∈A }叫做函数的. 显然,值域是集合B的.(3)同一个函数:如果两个函数的相同,并且完全一致,即相同的自变量对应的函数值相同,那么这两个函数是同一个函数.[微思考](1)任何两个集合之间都可以建立函数关系吗?(2)什么样的对应可以构成函数关系?知识点2区间及相关概念(1)一般区间的表示设a,b是两个实数,而且,我们规定:定义名称符号数轴表示{x|a≤x≤b}闭区间{x|a<x<b}开区间{x|a≤x<b}半闭半开区间{x|a<x≤b}半开半闭区间(2)实数集R可以用区间表示为,“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.(3)特殊区间的表示定义区间数轴表示{x|x≥a}{x|x>a}{x|x≤b}{x|x<b}[微体验]1.下列区间与集合{x|x<-2或x≥0}相对应的是()A.(-2,0)B.(-∞,-2]∪[0,+∞)C.(-∞,-2)∪[0,+∞)D.(-∞,-2]∪(0,+∞)2.下列集合不能用区间的形式表示的个数为()①A={0,1,5,10};②{x|2<x≤10,x∈N};③∅;④{x|x是等边三角形};⑤{x|x≤0或x≥3};⑥{x|x >1,x∈Q}.A.2B.3C.4D.53.{x|x>1且x≠2}用区间表示为________.课堂互动探究探究一函数关系的判断例1 下列对应中是A 到B 的函数的个数为( ) (1)A =R ,B ={x |x >0},f :x →y =|x |; (2)A =Z ,B =Z ,f :x →y =x 2; (3)A =[-1,1],B ={0},f :x →y =0;(4)A ={1,2,3},B ={a ,b },对应关系如下图所示:(5)A ={1,2,3},B ={4,5,6},对应关系如下图所示:A .1B .2C .3D .4[方法总结]判断对应关系是否为函数,主要从以下三个方面去判断 (1)A ,B 必须是非空数集;(2)A 中任何一个元素在B 中必须有元素与其对应; (3)A 中任何一个元素在B 中的对应元素必须唯一. 跟踪训练1 对于函数y =f (x ),以下说法正确的有( )①y 是x 的函数;②对于不同的x 值,y 的值也不同;③f (a )表示当x =a 时函数f (x )的值,是一个常量;④f (x )一定可以用一个具体的式子表示出来. A .1个B .2个C .3个D .4个探究二 求函数定义域问题 例2 求下列函数的定义域:(1)y =(x +1)2x +1-1-x ;(2)y =5-x |x |-3;(3)y =ax -3(a 为常数).变式探究 将本例(1)改为y =(x +1)2x +1-1-x 2,其定义域如何?[方法总结]求函数定义域的常用依据(1)若f (x )是分式,则应考虑使分母不为零; (2)若f (x )是偶次根式,则被开方数大于或等于零;(3)若f (x )是指数幂,则函数的定义域是使指数幂运算有意义的实数集合; (4)若f (x )是由几个式子构成的,则函数的定义域要使各个式子都有意义; (5)若f (x )是实际问题的解析式,则应符合实际问题,使实际问题有意义. 跟踪训练2 (1)设全集为R ,函数f (x )=2-x 的定义域为M ,则∁R M 为( ) A .(2,+∞)B .(-∞,2)C .(-∞,2]D .[2,+∞)(2)函数f (x )=xx -1的定义域为________.探究三 求函数值和函数值域问题例3 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f (g (2))的值; (3)求f (x ),g (x )的值域.[方法总结]求函数值域的原则及常用方法(1)原则:①先确定相应的定义域;②再根据函数的具体形式及运算确定其值域.(2)常用方法:①逐个求法:当定义域为有限集时,常用此法;②观察法:如y=x2,可观察出y≥0;③配方法:对于求二次函数值域的问题常用此法;④换元法:对于形如y=ax+b+cx+d的函数,求值域时常用换元法,令t=cx+d,将原函数转化为关于t的二次函数;⑤分离常数法:对于形如y=cx+dax+b的函数,常用分离常数法求值域;⑥图象法:对于易作图象的函数,可用此法,如y=1 x-1.跟踪训练3求下列函数的值域:(1)y=3x-1,x∈{1,3,5,7};(2)y=-x2+2x+1,x∈R;(3)y=x+1-2x.探究四同一个函数的判定例4 下列各组函数是同一个函数的是________.(填序号)①f(x)=-2x3与g(x)=x-2x;②f(x)=x0与g(x)=1x0;③f(x)=x2-2x-1与g(t)=t2-2t-1.[方法总结]判断同一个函数的三个步骤和两个注意点(1)判断函数是否相等的三个步骤.(2)两个注意点.①在化简解析式时,必须是等价变形;②与用哪个字母表示变量无关.跟踪训练4下列各组中的两个函数是否为同一个函数?(1)y1=(x+3)(x-5)x+3,y2=x-5;(2)y1=x+1·x-1,y2=(x+1)(x-1).随堂本课小结1.对函数概念的五点说明(1)对数集的要求:集合A,B为非空数集.(2)任意性和唯一性:集合A中的数具有任意性,集合B中的数具有唯一性.(3)对符号“f”的认识:它表示对应关系,在不同的函数中f的具体含义不一样.(4)一个区别:f(x)是一个符号,不表示f与x的乘积,而f(a)表示函数f(x)当自变量x取a时的一个函数值.(5)函数三要素:定义域、对应关系和值域是函数的三要素,三者缺一不可.2.求函数的定义域就是求使函数解析式有意义的自变量的取值范围,列不等式(组)是求函数定义域的基本方法.3.求函数的值域常用的方法有:观察法、配方法、换元法、分离常数法、图象法等.【参考答案】课前自主学习知识点1函数的定义及相关概念(2)自变量定义域函数值值域子集(3)定义域对应关系[微思考](1)提示:不一定,两个集合必须是非空的数集.(2)提示:两个非空数集之间是一一对应关系或多对一可构成函数关系.知识点2区间及相关概念(1)a<b[a,b](a,b)[a,b)(a,b](2) (-∞,+∞)(3) [a,+∞)(a,+∞)(-∞,b](-∞,b)[微体验]1.C【解析】集合{ x|x<-2或x≥0}可表示为(-∞,-2)∪[0,+∞).2.D【解析】用区间表示的集合必须是连续的实数构成的集合,只有⑤是连续实数构成的集合,因此只有⑤可以用区间表示.3.(1,2)∪(2,+∞)【解析】{x|x>1且x≠2}用区间表示为(1,2)∪(2,+∞).课堂互动探究探究一函数关系的判断例1 B【解析】(1)A中的元素0在B中没有对应元素,故不是A到B的函数;(2)对于集合A中的任意一个整数x,按照对应关系f:x→y=x2,在集合B中都有唯一确定的整数x2与其对应,故是集合A到集合B的函数;(3)对于集合A中任意一个实数x,按照对应关系f:x→y=0,在集合B中都有唯一确定的数0和它对应,故是集合A到集合B的函数;(4)集合B 不是确定的数集,故不是A 到B 的函数;(5)集合A 中的元素3在B 中没有对应元素,且A 中元素2在B 中有两个元素5和6与之对应,故不是A 到B 的函数. 跟踪训练1 B【解析】①③正确,②是错误的,对于不同的x 值,y 的值可以相同,这符合函数的定义,④是错误的,f (x )表示的是函数,而函数并不是都能用具体的式子表示出来. 探究二 求函数定义域问题例2 解 (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,解得x ≤1,且x ≠-1,即函数的定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数的定义域为{x |x ≤5,且x ≠±3}.(3)要使函数有意义,必须使ax -3≥0.当a >0时,原函数的定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫x ≥3a ; 当a <0时,原函数的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≤3a; 当a =0时,ax -3≥0的解集为∅,不符合函数的定义,故此时不是函数.变式探究 解 由⎩⎪⎨⎪⎧x +1≠0,1-x 2≥0,解得{x |-1<x ≤1}.跟踪训练2 (1)A【解析】由2-x ≥0,解得x ≤2,所以M =(-∞,2],所以∁R M =(2,+∞). (2){x |x ≥0,且x ≠1}【解析】要使xx -1有意义,需满足⎩⎪⎨⎪⎧x ≥0,x -1≠0,解得x ≥0,且x ≠1,故函数f (x )的定义域为{x |x ≥0,且x ≠1}.探究三 求函数值和函数值域问题例3 解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6.(2)f (g (2))=f (6)=11+6=17. (3)f (x )=11+x 的定义域为{x |x ≠-1},∴值域是{y |y ≠0}.g (x )=x 2+2的定义域为R ,最小值为2,∴值域是{y |y ≥2}.跟踪训练3 解 (1)(逐个求法)将x =1,3,5,7依次代入解析式,得y =2,8,14,20.∴函数的值域是{2,8,14,20}.(2)(配方法)∵y =-x 2+2x +1=-(x -1)2+2≤2, ∴函数的值域是(-∞,2].(3)(换元法或配方法)令1-2x =t ,则x =1-t 22,且t ≥0,∴原函数化为y =1-t 22+t =-12t 2+t +12=-12(t -1)2+1≤1.∴所求函数的值域是(-∞,1]. 探究四 同一个函数的判定 例4 ②③【解析】①f (x )=-x -2x ,g (x )=x -2x ,对应关系不同,故f (x )与g (x )不是同一个函数; ②f (x )=x 0=1(x ≠0),g (x )=1x 0=1(x ≠0),对应关系与定义域均相同,故是同一个函数;③f (x )=x 2-2x -1与g (t )=t 2-2t -1,对应关系和定义域均相同,故是同一个函数. 跟踪训练4 解 (1)两函数定义域不同,所以不是同一个函数.(2)y 1=x +1·x -1的定义域为{x |x ≥1},而y 2=(x +1)(x -1)的定义域为{x |x ≥1或x ≤-1},定义域不同,所以不是同一个函数.。
3.1.1 函数的概念(4大题型)(教学课件)高一数学 同步备课(人教A版2019必修第一册)
( 3)由 函数 =
+1
=1−
1
+1
, 可 得其 定义 域为 { | ≠ −1 } ,
所以函数 =
的值 域为 { |
+1
(4)令 =
1 − , ( ≥ 0 ) , 则 = 1 − 2 ,
∈ R 且 ≠ 1 }.
则 = − 2 2 + 4 + 2 = − 2 ( − 1 ) 2 + 4 ( ≥ 0 ),
则 − 1 =
=
+2+
−1+3+
1
.
+1
1
−1+2
典型例题
题型一:给出自变量求函数值
【对点训练1】已知定义域为 R的函数 = + 1和 = 2 ,计算下列各式:
(1) 2 + 3 ;
(2) 2 − ;
(3) 0
.
【解析】(1)函数 = + 1, = 2 ,
所以 2 + + 2 − 1 = 0.
又因为 , ∈ ,
所以 = 2 − 4 2 − 1 ≥ 0,
解得 − 2
3
3
≤≤
故答案为: −
2 3
.
2
2 3 2 3
, 2
3
.
.
布置作业,应用迁移
作业:教科书P72的习题3.1的4、 5题
好学数学
数学好学
学好数学
当 = 1时 , 函 数取 得最 大 值, 最大 值为 max = 4,
当 → +∞时, → −∞,
教学设计2:3.1.1 函数的概念
设计意图:问题(1)是引导学生使用不同的表示方法,例如表格的形式:解析式w =350d ;等等. 问题(3)是让学生模仿问题1的方法给出描述,既让他们熟悉表述方法,又训练抽象概括能力.通过追问,使学生进一步关注到定义域、值域问题.问题3:图3.1-1是北京市2016年11月23日的空气质量指数(Air QualityIndex ,简称AQI )变化图.(1)如何根据该图确定这一天内任一时刻t h 的空气质量指数(AQI )的值I ?(2)你认为这里的I 是t 的函数吗?如果是,你能仿照前面的方法描述I 与t 的对应关系吗?师生活动:给学生适当时间阅读思考. 有些学生可能认为I 不是时间t 的函数,对此可进行如下追问.追问:(1)你能根据图3.1-1找到中午12时的AQI 的值吗?这个值是否唯一存在?(2)对于数集}240{3≤≤=t t A 中的任意一个值t ,你会用什么方法寻找此时对应的I 值?在追问的基础上,教师阐释:因为对于数集}240{3≤≤=t t A 中的任意一个值t ,都有唯一确定的AQI 的值与之对应,所以我们可以根据初中所学的函数定义,得出I 是t 的函数,而且还可以断定I 的取值范围也是确定的,不过从图中我们不能确定这个范围. 如果我们设I 的取值范围为C ,那么从图中可以确定,{}15003<<=⊆I I B C .这样我们可以把I 与t 的对应关系描述为:对于数集3A 中的任一时刻t ,按照图3.1-1中曲线所给定的对应关系,在数集3B 中都有唯一确定的AQI 的值I 与之对应,因此I 是t 的函数.设计意图:学生根据图象描述对应关系有困难,特别是在值域不能完全确定时,通过引入一个较大范围的集合,使函数值“落入其中”,这是学生经验中不具备的. 实际上,如果用映射的观点看,这时的映射就是非满射. 为此,在问题(1)之后,先让学生认可图象表示一个函数,然后再通过教师讲解,给出对应关系的描述方法,从而化解难点. 这里,只要学生能够理解I 是t 的函数,并能够接受这种描述方式就可以了.问题4:国际上常用恩格尔系数r )总支出金额食物支出金额(%100⨯=r 反映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越高. 表3.1-1是我国某省城镇居民恩格尔系数变化情况,从中可以看出,该省城镇居民的生活质量越来越高.表3.1-1 我国某省城镇居民恩格尔系数变化情况(1)你认为按表3.1-1给出的对应关系,恩格尔系数r 是年份y 的函数吗?为什么?(2)如果是,你能仿照前面的方法给出精确的刻画吗?(3)如果我们引入}10{4≤<=r r B ,将对应关系表述为“对于任意一个年份y ,都有4B 中唯一确定的r 与之对应”,你认为有道理吗?师生活动:先让学生思考,然后通过举手表决的方式对“恩格尔系数r 是年份y 的函数吗”进行“是”与“不是”的选择性投票,教师根据投票情况进行点评,从而解决问题(1).让学生不看教科书,分组练习用集合与对应的语言刻画函数,并让学生代表发言,教师给予点评,从而解决问题(2).学生给出的函数值取值范围可能是表中r 的10个值,教师在肯定的基础上进行引导:根据恩格尔系数的定义,r 的取值范围是}10{4≤<=r r B ,以4B 为年份与所对应的r的值所在的集合更具有一般性.设计意图:与问题3的情况类似,学生对用表格表示的对应关系是否为函数关系的判断存在疑惑,通过问题引导学生思考,教师再作适当讲解,从而使学生B的合理性,以教师从恩格尔系数的定义的接受. 另外,对于函数值所在的集合4角度进行解释即可.问题5:上述问题1~问题4中的函数有哪些共同特征?由此你能概括出函数的本质特征吗?师生活动:给学生充分的思考时间,引导学生重新回顾用集合与对应的语言刻画函数的过程. 如果学生归纳、概括有困难,可以给出如下的表格帮助学生思考.教师引导学生得出它们的共同特征:(1)都包含两个非空数集,用A,B来表示;(2)都有一个对应关系;(3)尽管对应关系的表示方法不同,但它们都有如下特性:对于数集A中的任意一个数x,按照对应关系,在数集B中都有唯一确定的数y和它对应.在上述归纳的基础上,教师先讲解:事实上,除解析式、图象、表格外,还有其他表示对应关系的方法,为了表示方便,我们引进符号f 统一表示对应关系,然后给出函数的一般概念,并解释函数的记号y = f (x),x A.设计意图:让学生通过归纳四个实例中函数的共同特征,体会数学抽象过程,概括出用集合与对应语言刻画的一般性函数概念. 在此过程中,要突破“从实例中抽象出本质特征,并用抽象的符号去表达”这一教学难点,突出“在学生初中已有函数认识的基础上,通过实例归纳概括出函数的基本特征(要素),用集合与对应的语言建立函数的概念”这一教学重点.。
新教材高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念教学案新人教A版必修第一册
新教材高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念教学案新人教A 版必修第一册3.1.1 函数的概念(教师独具内容)课程标准:1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型.2.在此基础上学习用集合与对应的符号语言来刻画函数,体会对应关系在刻画函数概念中的作用.3.了解构成函数的要素,能求一些简单函数的定义域.教学重点:1.理解函数的定义,会求一些简单函数的定义域和值域.2.明确函数的两个要素,了解同一个函数的定义,会判定两个给定的函数是否是同一个函数.教学难点:1.对应关系f 的正确理解,函数符号y =f (x )的理解.2.抽象函数的定义域.3.一些简单函数值域的求法.【知识导学】知识点一 函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有□01唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作□02y =f (x ),x ∈A .其中,x 叫做□03自变量,x 的取值范围A 叫做函数的□04定义域;与x 的值相对应的y 值叫做□05函数值,函数值的集合{f (x )|x ∈A }叫做函数的□06值域.显然,□07值域是集合B 的子集. 注意:(1)两个非空实数集间的对应能否构成函数,主要看是否满足三性:任意性、存在性、唯一性.这是因为函数概念中明确要求对于非空实数集A 中的任意一个(任意性)元素x ,在非空实数集B 中都有(存在性)唯一(唯一性)的元素y 与之对应.这三性只要有一个不满足便不能构成函数.(2)集合A 是函数的定义域,因为给定A 中每一个x 值都有唯一的y 值与之对应;集合B 不一定是函数的值域,因为B 中的元素可以在A 中没有与之对应的x ,也就是说,B 中的某些元素可以不是函数值,即{f (x )|x ∈A }⊆B .(3)在函数定义中,我们用符号y =f (x )表示函数,其中f (x )表示“x 对应的函数值”,而不是“f 乘x ”.知识点二 函数的两要素从函数的定义可以看出,函数有三个要素:□01定义域、□02对应关系、□03值域,由于值域是由定义域和对应关系决定的,所以确定一个函数只需要两个要素:□04定义域和对应关系.即要检验给定的两个变量(变量均为数值)之间是否具有函数关系,只要检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值是否都有唯一的函数值y 和它对应.知识点三 区间的概念(1)设a ,b 是两个实数,而且a <b .我们规定:①满足不等式a ≤x ≤b 的实数x 的集合叫做□01闭区间,表示为□02[a ,b ]; ②满足不等式a <x <b 的实数x 的集合叫做□03开区间,表示为□04(a ,b ); ③满足不等式a ≤x <b 或a <x ≤b 的实数x 的集合叫做□05半开半闭区间,分别表示为□06[a ,b ),(a ,b ].这里的实数a 与b 都叫做相应区间的□07端点. 实数集R 可以用区间表示为□08(-∞,+∞),“∞”读作“□09无穷大”,“-∞”读作“□10负无穷大”,“+∞”读作“□11正无穷大”. 我们可以把满足x ≥a ,x >a ,x ≤b ,x <b 的实数x 的集合,用区间分别表示为□12[a ,+∞),□13(a ,+∞),□14(-∞,b ],□15(-∞,b ). (2)区间的几何表示在用数轴表示区间时,用实心点表示□16包括在区间内的端点,用空心点表示□17不包括在区间内的端点.(3)含“∞”的区间的几何表示注意:(1)无穷大“∞”只是一个符号,而不是一个数,因而它不具备数的一些性质和运算法则.(2)以“-∞”或“+∞”为区间一端时,这一端必须用小括号. 知识点四 同一个函数如果两个函数的□01定义域相同,并且□02对应关系完全一致,即相同的□03自变量对应的□04函数值也相同,那么这两个函数是同一个函数.【新知拓展】(1)函数符号“y =f (x )”是数学中抽象符号之一,“y =f (x )”仅为y 是x 的函数的数学表示,不表示y 等于f 与x 的乘积,f (x )也不一定是解析式,还可以是图表或图象.(2)函数的概念中强调“三性”:任意性、存在性、唯一性,这是因为函数定义中明确要求是对于非空实数集A 中的任意一个(任意性)数x ,在非空实数集B 中都有(存在性)唯一确定(唯一性)的数y 和它对应,这“三性”只要有一个不满足,便不能构成函数.1.判一判(正确的打“√”,错误的打“×”)(1)函数值域中的每一个数都有定义域中的数与之对应.( ) (2)函数的定义域和值域一定是无限集合.( )(3)定义域和对应关系确定后,函数值域也就确定了.( )(4)若函数的定义域中只有一个元素,则值域中也只有一个元素.( )(5)对于定义在集合A 到集合B 上的函数y =f (x ),x 1,x 2∈A ,若x 1≠x 2,则f (x 1)≠f (x 2).( )答案 (1)√ (2)× (3)√ (4)√ (5)× 2.做一做(请把正确的答案写在横线上)(1)下列给出的对应关系f ,不能确定从集合A 到集合B 的函数关系的是________. ①A ={1,4},B ={-1,1,-2,2},对应关系:开平方; ②A ={0,1,2},B ={1,2},对应关系:③A =[0,2],B =[0,1],对应关系:(2)下列函数中,与函数y =x 是同一个函数的是________. ①y =x 2;②y =3x 3;③y =(x )2;④s =t . 答案 (1)①③ (2)②④题型一 求函数的定义域 例1 求下列函数的定义域: (1)y =2x +3;(2)f (x )=1x +1;(3)y =x -1+1-x ;(4)y =x +1x 2-1;(5)y =(1-2x )0. [解] (1)函数y =2x +3的定义域为{x |x ∈R }.(2)要使函数式有意义,即分式有意义,则x +1≠0,x ≠-1.故函数的定义域为{x |x ≠-1}.(3)要使函数式有意义,则⎩⎪⎨⎪⎧x -1≥0,1-x ≥0,即⎩⎪⎨⎪⎧x ≥1,x ≤1,所以x =1,从而函数的定义域为{x |x =1}.(4)因为当x 2-1≠0,即x ≠±1时,x +1x 2-1有意义,所以函数的定义域是{x |x ≠±1}. (5)∵1-2x ≠0,即x ≠12,∴函数的定义域为{|x x ≠12}.例2 已知函数f (x )的定义域是[-1,4],求函数f (2x +1)的定义域. [解] 已知函数f (x )的定义域是[-1,4],即-1≤x ≤4. 故对于f (2x +1)应有-1≤2x +1≤4. ∴-2≤2x ≤3,∴-1≤x ≤32,∴函数f (2x +1)的定义域是⎣⎢⎡⎦⎥⎤-1,32. 例3 如图所示,用长为1 m 的铁丝做一个下部为矩形、上部为半圆形的框架(铁丝恰好用完),若半圆的半径为x (单位:m),求此框架围成的面积y (单位:m 2)与x 的函数关系式.[解] 由题意可得,AB =2x ,CD ︵的长为πx , 于是AD =1-2x -πx2,∴y =2x ·1-2x -πx 2+πx 22,即y =-π+42x 2+x .由⎩⎪⎨⎪⎧2x >0,1-2x -πx2>0,得0<x <1π+2,∴此函数的定义域为⎝ ⎛⎭⎪⎫0,1π+2. 故所求的函数关系式为y =-π+42x 2+x ⎝ ⎛⎭⎪⎫0<x <1π+2.金版点睛求函数定义域的基本要求(1)整式:若y =f (x )为整式,则函数的定义域是实数集R .(2)分式:若y =f (x )为分式,则函数的定义域为使分母不为0的实数集.(3)偶次根式:若y =f (x )为偶次根式,则函数的定义域为被开方数非负的实数集(特别注意0的0次幂没有意义).(4)几部分组成:若y =f (x )是由几部分数学式子的和、差、积、商组成的形式,定义域是使各部分都有意义的集合的交集.(5)对于抽象函数的定义域:①若f (x )的定义域为[a ,b ],则f [g (x )]中,g (x )∈[a ,b ],从中解得x 的解集即f [g (x )]的定义域.②若f [g (x )]的定义域为[m ,n ],则由x ∈[m ,n ]可确定g (x )的范围,设u =g (x ),则f [g (x )]=f (u ),又f (u )与f (x )是同一个函数,所以g (x )的范围即f (x )的定义域.③已知f [φ(x )]的定义域,求f [h (x )]的定义域,先由f [φ(x )]中x 的取值范围,求出φ(x )的取值范围,即f (x )中的x 的取值范围,即h (x )的取值范围,再根据h (x )的取值范围便可以求出f [h (x )]中x 的取值范围.(6)实际问题:若y =f (x )是由实际问题确定的,其定义域要受实际问题的约束.如:例3中,任何一条线段的长均大于零.[跟踪训练1] (1)若函数f (x +1)的定义域为⎣⎢⎡⎦⎥⎤-12,2,则函数f (x -1)的定义域为________;(2)求下列函数的定义域:①y =(x +1)2x +1-1-x ;②y =x +1|x |-x ;(3)①求函数y =5-x +x -1-1x 2-9的定义域; ②将长为a m 的铁丝折成矩形(铁丝恰好用完),求矩形的面积y (单位:m 2)关于一边长x (单位:m)的解析式,并写出此函数的定义域.答案 (1)⎣⎢⎡⎦⎥⎤32,4 (2)见解析 (3)见解析解析 (1)由题意知,-12≤x ≤2,则12≤x +1≤3,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,3,∴12≤x -1≤3,解得32≤x ≤4.∴f (x -1)的定义域为⎣⎢⎡⎦⎥⎤32,4.(2)①要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,即⎩⎪⎨⎪⎧x ≠-1,x ≤1,∴函数的定义域为{x |x ≤1,且x ≠-1}.②要使函数有意义,需满足|x |-x ≠0,即|x |≠x , ∴x <0.∴函数的定义域为{x |x <0}. (3)①解不等式组⎩⎪⎨⎪⎧5-x ≥0,x -1≥0,x 2-9≠0,得⎩⎪⎨⎪⎧x ≤5,x ≥1,x ≠±3.故函数的定义域是{x |1≤x ≤5,且x ≠3}.②因为矩形的一边长为x ,则另一边长为12(a -2x ),所以y =x ·12(a -2x )=-x 2+12ax ,定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <a 2. 题型二 已知函数值求自变量的值例4 已知函数f (x )=2x 2-4,x ∈R ,若f (x 0)=2,求x 0的值. [解] 易知f (x 0)=2x 20-4, ∴2x 20-4=2,即x 20=3. 又∵x 0∈R ,∴x 0=± 3. 金版点睛就本例而言,已知函数值求自变量的值就是解方程,需要注意:所求的自变量的值必须在函数的定义域内.如果本例中加一个条件“x ∈[0,+∞)”,则x 0=3(-3不符合题意,舍去).[跟踪训练2] 已知函数f (x )=x 2-2x ,x ∈(-∞,0),若f (x 0)=3.求x 0的值. 解 由题意可得f (x 0)=x 20-2x 0. ∴x 20-2x 0=3,即x 20-2x 0-3=0. 解得x 0=3或x 0=-1.又∵x 0∈(-∞,0),∴x 0=-1. 题型三 已知自变量的值求函数值 例5 已知f (x )=x 2,x ∈R ,求: (1)f (0),f (1); (2)f (a ),f (a +1).[解] (1)f (0)=02=0,f (1)=12=1. (2)∵a ∈R ,a +1∈R , ∴f (a )=a 2,f (a +1)=(a +1)2. 金版点睛对于函数定义域内的每一个值,都可以求函数值(当然函数值唯一),本例可以直接应用公式:f (x )=x 2求解,实质上就是求代数式的值,例如f (1)就是当x =1时,代数式x 2的值,而f (a +1)就是当x =a +1时,代数式x 2的值.[跟踪训练3] 已知f (x )=x +1x +1,求: (1)f (2);(2)当a >0时,f (a +1)的值. 解 (1)f (2)=2+13.(2)易知f (x )的定义域A =[0,+∞), ∵a >0,∴a +1>1,则a +1∈A , ∴f (a +1)=a +1+1a +2. 题型四 求函数的值域 例6 求下列函数的值域: (1)y =x +1,x ∈{1,2,3,4,5}; (2)y =x 2-2x +3,x ∈[0,3); (3)y =2x +1x -3;(4)y =2x -x -1.[解] (1)(观察法)因为x ∈{1,2,3,4,5},分别代入求值,可得函数的值域为{2,3,4,5,6}.(2)(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).(3)(分离常数法)y =2x +1x -3=2(x -3)+7x -3=2+7x -3,显然7x -3≠0,所以y ≠2. 故函数的值域为(-∞,2)∪(2,+∞).(4)(换元法)设t =x -1,则x =t 2+1,且t ≥0,所以y =2(t 2+1)-t=2⎝ ⎛⎭⎪⎫t -142+158,由t ≥0,再结合函数的图象(如右图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞. 金版点睛求函数值域的原则及常用方法(1)原则:①先确定相应的定义域;②再根据函数的具体形式及运算法则确定其值域. (2)常用方法①观察法:对于一些比较简单的函数,其值域可通过观察法得到. ②配方法:是求“二次函数”类值域的基本方法.③换元法:运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且ac ≠0)型的函数常用换元法.④分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域.[跟踪训练4] 求下列函数的值域: (1)y =xx +1;(2)y =x 2-4x +6,x ∈[1,5); (3)y =x +x +1. 解 (1)∵y =xx +1=(x +1)-1x +1=1-1x +1,且1x +1≠0,∴函数y =xx +1的值域为{y |y ≠1}.(2)配方,得y =(x -2)2+2. ∵x ∈[1,5),∴结合函数的图象可知,函数的值域为{y |2≤y <11}. (3)(换元法)设t =x +1,则x =t 2-1,且t ≥0,所以y =t 2+t -1=⎝ ⎛⎭⎪⎫t +122-54,由t ≥0,再结合函数的图象可得函数的值域为[-1,+∞). 题型五 相同函数的判断例7 下列各组函数表示同一函数的是( ) A .f (x )=x ,g (x )=(x )2B .f (x )=x 2+1,g (t )=t 2+1 C .f (x )=1,g (x )=x xD .f (x )=x ,g (x )=|x |[解析] A 项中,由于f (x )=x 的定义域为R ,g (x )=(x )2的定义域为{x |x ≥0},它们的定义域不相同,所以它们不是同一函数.B 项中,函数的定义域、值域和对应关系都相同,所以它们是同一函数.C 项中,由于f (x )=1的定义域为R ,g (x )=x x的定义域为{x |x ≠0},它们的定义域不相同,所以它们不是同一函数.D 项中,两个函数的定义域相同,但对应关系不同,所以它们不是同一函数. [答案] B 金版点睛判断两个函数为同一函数的条件(1)判断两个函数是相同函数的准则是两个函数的定义域和对应关系分别相同.定义域、对应关系两者中只要有一个不相同就不是相同函数,即使定义域与值域都相同,也不一定是相同函数.(2)函数是两个实数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的.另外,在化简解析式时,必须是等价变形.[跟踪训练5] 下列函数中哪个与函数y =x 相同?(1)y =(x )2;(2)y =3x 3;(3)y =x 2;(4)y =x 2x.解 (1)y =(x )2=x (x ≥0),y ≥0,定义域不同且值域不同,所以不相同. (2)y =3x 3=x (x ∈R ),y ∈R ,对应关系相同,定义域和值域都相同,所以相同. (3)y =x2=|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,y ≥0;值域不同,且当x <0时,它的对应关系与函数y=x 不相同,所以不相同.(4)y =x 2x的定义域为{x |x ≠0},与函数y =x 的定义域不相同,所以不相同.1.下列各图中,可能是函数y =f (x )的图象的是( )答案 D解析 A ,B 中的图象与y 轴有两个交点,即有两个y 值与x =0对应,所以A ,B 不可能是函数y =f (x )的图象;对于C 中图象,过x =1作与x 轴垂直的直线,与图象有两个交点,所以C 不可能是函数y =f (x )的图象.故选D.2.函数f (x )=x +2-x 的定义域是( )A .{x |x ≥2} B.{x |x >2}C .{x |x ≤2} D.{x |x <2}答案 C解析 要使函数式有意义,则2-x ≥0,即x ≤2.所以函数的定义域为{x |x ≤2}.3.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A .(-1,1)B.⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 答案 B解析 ∵原函数的定义域为(-1,0),∴-1<2x +1<0,解得-1<x <-12. ∴函数f (2x +1)的定义域为⎝⎛⎭⎪⎫-1,-12. 4.已知函数f (x )=x 2-2ax +5的定义域和值域都是[1,a ],则a =________.答案 2解析 因为f (x )=(x -a )2+5-a 2,所以f (x )在[1,a ]上是减函数,又f (x )的定义域和值域均为[1,a ],所以⎩⎪⎨⎪⎧ f (1)=a ,f (a )=1,即⎩⎪⎨⎪⎧ 1-2a +5=a ,a 2-2a 2+5=1,解得a =2. 5.已知函数f (x )=x 2+x -1.(1)求f (2),f ⎝ ⎛⎭⎪⎫1x ,f (a +1); (2)若f (x )=5,求x . 解 (1)f (2)=22+2-1=5,f ⎝ ⎛⎭⎪⎫1x =1x 2+1x -1=1+x -x 2x 2, f (a +1)=(a +1)2+(a +1)-1=a 2+3a +1.(2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0,解得x =2或x =-3.。
中职数学基础模块3.1.1函数的概念教学设计教案人教版
一、函数概念
答教师提出的问题.
突出本课重难点而设
计.
1.问题1辆汽车在段平坦的道路
上以100km/h的速度匀速行驶2小时.
深度挖掘教材提
(1)在这个问题中,路程、时间、速度
出的两个问题,在回
这三个量,哪些是常量?哪些是变量?
顾了初中的函数知识 的基础上,进一步讨
(2)如何用数学付号表示行驶的路程s
课时教学设计首页
授课时间:年 月日
课题
第几
3.1.1函数的概 念课型 新授 第时1〜2
课 时 教 学 目 标(三维)
1.理解函数的概念,会求简单函数的定义域.
2.理解函数符号y—f (x)的意义,会求函数在x—a处的函 数值.
3.通过教学,渗透一切事物相互联系和相互制约的辩证唯 物主义观点.
教学 重点 与
(km)与行驶时间t(h)的关系?
论自变量的取值范
(3)行驶时间t(h)的取值范围是什么?
围,以及自变量与因
(4)对于行驶时间中的每一个确定的t
变量的对应关系,为
值,能求出汽车行驶的路程吗?
顺利引出函数定义做
(5)根据初中知识,关系式s=100t
准备.
(0wtw2)表示的是函数关系吗?
2.问题2如果一个圆的半径用r表
第1页(总页)
☆补充设计☆
教师行为
学生行为
设计意图
导入:
师:事物都是运动变化的, 女口:气温随时间在悄悄变化;
我国的国内生产总值在逐年增
1•试举出各类学过的一些函数例子.
长等.在这些变化中,都存在
为知识迁移做准
着两个变量,当一个变量变化
备.在阅读适量的例
3.1.1函数的概念教学设计.doc
课题3. 1 . 1函数的概念朱庆梅一、教材分析:教材在初中己学的函数知识的基础上,介绍了函数的定义及相关概念,进而介绍函数的三种表示法,通过例题介绍函数定义域的求法。
二、学生分析:中职学生,文化课基础,尤其的数学基础整体比较薄弱,学习积极性不高、主动性不强,为了保证教学课堂教学容量相对要小点。
三、教学目标:(1)理解函数及相关概念;学会求函数定义域和函数值。
(2)通过函数概念的学习,培养学生的数学思维能力和数学知识应用意识。
.教学重点(1)函数的概念;(2)对函数值的理解..教学难点对函数的概念及记号y = /(x)的理解。
.教学设计(1)从复习初中学习过的函数知识入手,做好衔接;(2)抓住两个要素,突出特点,提升对函数概念的理解水平;(3)抓住函数值的理解与计算,为绘图奠定基础。
.教学过程()复习回顾,提出问题(1)请回忆在初中我们学习了那些函数?(2)什么是函数(初中定义)?()动脑思考探索新知游戏问题1:弹簧秤的刻度数与秩码的重量是否是函数关系?问题2:购买饮料的应付款与饮料瓶数是否构成函数关系?概念在某一个变化过程中有两个变量X和y,设变量X的取值范围为数集。
,如果对于D内的每一个x值,按照某个对应法则f, y都有唯一确定的值与它对应,那么,把x叫做自变量,把y叫做x的函数.表示将上述函数记作)=/(%).变量X叫做自变量,数集。
叫做函数的定义域.当x = x0时,函数y = /(x)对应的值叫做函数y = /(x)在点x。
处的函数值.记作光=y(xo)・函数值的集合{y I y = /(x),xe D}叫做函数的值域.研究函数的定义域和对应法则对函数的值域有没有影响?X-101.......y=3x-303........X1234 ......y=2x2468 ......y=3x36912 ........函数的定义域与对应法则一旦确定,函数的值域也就确定了.因此函数的定义域与对应法则叫做函数的两个要素.说明定义域与对应法则都相同的函数视为同一个函数,而与选用的字母无关.如函数y = ^与s = ^t 表示的是同一个函数.()巩固知识典型例题例1求下列函数的定义域:(1) f(x) = 土;(2) f(x) = J1-2X;2 2(3)y=x ; (4) y=7TK分析如果函数的对应法则是用代数式表示的,那么函数的定义域就是使得这个代数式有意义的自变量的取值集合.解 (1)由x + l?O,得xw—1.因此函数的定义域为{工|一"-1},用区间表示为(-!,+■»).(2)由1-2x...O,得x,,-2因此函数的定义域为[-00,!.(3)由于函数的表达式是整式,因此函数的定义域是R.(4)由于是圆面积公式,因此函数的定义域是(0,俱).归纳代数式中含有分式,使得代数式有意义的条件是分母不等于零;代数式中含有二次根式,使得代数式有意义的条件是被开方式大于或等于零.例2 设f(x) = *l,求/(0), /(2), /(-5),世).分析本题是求自变量x = x0时对应的函数值,方法是将与代入函数表达式求值.解/(o)=^1=-rf(2)= WA,()运用知识强化练习教材练习3.1.11.求下列函数的定义域:2 / -------------(1) /(%) = --------- ; (2) /'(X)= Jx2-6x + 5 .2.已知f (x) = 3x-2 ,求/(O), /(l) , f(a).()归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?()作业布置(1)读书部分:教材章节3.1,学习与训练3.1;(2)书面作业:学习与训练3.1训练题;(3)实践调查:举出函数的生活实例.五.教学反思。
3.1.1 函数的概念 教学设计(2)
3.1.1 函数的概念函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。
重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.23.其它区间的表示四、典例分析、举一反三题型一函数的定义例1下列选项中(横轴表示x轴,纵轴表示y轴),表示y是x的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y是x的函数,则函数图象与垂直于x轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2; (2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以 它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法)定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√xx ,g(x)=√x ; ③f(x)=√(x +3)2,g(x)=x+3; ④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数;③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数;④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5]【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}.∵B={x||x|-3≠0},∴B={x|x ≠±3}.∴A ∩B={x|x<-3或-3<x<3或3<x ≤5},即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3,∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域:(1)y=(x+2)|x |-x; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集).跟踪训练四1.求函数y=√2x +3√2-x1x的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +32-x1x的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4.故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32.∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域)例5 (1)已知f(x)=11+x (x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3);③y =3x−11+x; ④y =2x -√x −1.【答案】(1)13 17 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6,∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3,∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}. ④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞. 解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x 2. 【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞).(2)因为y =1-x 21+x 2=-1+21+x 2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.1 函数的概念函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。
重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.23.其它区间的表示四、典例分析、举一反三题型一函数的定义例1下列选项中(横轴表示x轴,纵轴表示y轴),表示y是x的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2; (2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以 它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√xx ,g(x)=√x; ③f(x)=√(x +3)2,g(x)=x+3; ④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号).【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 .【答案】(-∞,-3)∪(-3,3)∪(3,5]【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}.∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5},即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3,∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域例4 求下列函数的定义域:(1)y=(x+2)|x |-x ; (2)f(x)=x 2-1x -1−√4-x . 【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集).跟踪训练四1.求函数y=√2x +3√2-x1x 的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3√2-x1x 的定义域为{x |-32≤x <2,且x ≠0}. (2)已知f(x)的定义域是[-1,4],即-1≤x≤4.故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32.∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域)例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3);③y =3x−11+x; ④y =2x -√x −1.【答案】(1)13 17 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6,∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3,∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}. ④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞. 解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x 2. 【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞).(2)因为y =1-x 21+x 2=-1+21+x 2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x2≤2,则y ∈(-1,1].所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。