射线检测 焊缝缺陷图谱
无损检测射线常见缺陷图集及分析
气孔缺陷定义:在金属材料中气孔是由于熔炼或 浇注过程中气体在金属内部未能全部逸出而形成 的空穴。
气孔缺陷图集展示:展示不同类型的气孔缺陷图 谱包括圆形气孔、椭圆形气孔、链状气孔等。
气孔缺陷产生原因:主要由于金属材料熔 炼或浇注过程中气体在金属内部未能全部 逸出或者由于金属材料中含有易形成气体 的元素所致。
无损检测射线常见缺 陷图集及分析
汇报人:
目录
添加目录标题
无损检测射线技术 简介
常见缺陷图集展示
缺陷图集分析
无损检测射线技术 发展趋势
结论
添加章节标题
无损检测射线技术 简介
通过检测衰减后射线的强度 或透射后的影像进行分析
利用射线穿透物质时产生的 衰减作用进行检测
可用于检测各种材料和产品 内部缺陷
降低维护成本:及时发现设备故障 避免重大事故发生降低维护成本。
添加标题
添加标题
添加标题添ຫໍສະໝຸດ 标题提高生产效率:通过快速检测减少 生产过程中的停机时间提高生产效 率。
促进工业发展:无损检测技术的应 用提高了工业生产的可靠性和安全 性推动了工业的发展。
提高检测精度和可 靠性
降低漏检和误检率
促进缺陷识别和分 类标准化
常见缺陷图集展示
裂纹缺陷定义:裂纹是一种常见的缺陷类型通常是由于材料受到外力作用或内部应力过大而产生的断裂现象。
裂纹缺陷图集展示:展示不同材料、不同形状和尺寸的裂纹缺陷图像以便更好地了解裂纹的形成和分布情况。
裂纹缺陷分析:对裂纹缺陷进行详细分析包括裂纹的形态、走向、大小等方面以便更好地了解裂纹的性质和产生 原因。
缺点:无损检测 射线技术需要使 用放射性物质存 在一定的安全风 险同时检测成本 较高设备也较为 昂贵。
常见的焊接缺陷缺陷图片
常见的焊接缺陷(1)常见的焊接缺陷(1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。
未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。
(2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。
(3)气孔:在熔化焊接过程中,焊缝金属内的气体f冷裂纹r热影响区裂纹)或外界侵入的气体在熔池金属冷却凝固前未来得及逸岀而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。
尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从根部未焊透中间未焊透坡面未焙合链狀气孔S间未焙合夹渣而导致焊缝的强度降低。
某钢板对接焊缝X射线照相底片V型坡口,手工电弧焊,未焊透某钢板对接焊缝X射线照相底片V型坡口,手工电弧焊,密集气孔(4 )夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。
视其形态可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。
另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。
W18Cr4V(高速工具钢)-45钢棒对接电阻焊缝中的夹渣断口照片钢板对接焊缝X射线照相底片V型坡口,手工电弧焊,局部夹渣钢板对接焊缝X射线照相底片V型坡口,手工电弧焊,两侧线状夹渣钢板对接焊缝X射线照相底片V型坡口,钨极氩弧焊打底+手工电弧焊,夹钨(5)裂纹:焊缝裂纹是焊接过程中或焊接完成后在焊接区域中出现的金属局部破裂的表现。
射线探伤缺陷图谱之未焊透(高清图文并茂,值得收藏)
射线探伤缺陷图谱之未焊透(高清图文并茂,值得收藏)
本图谱根据缺陷性质共分6个章节:
1. 裂纹Cracks
2. 未焊透Lack of Penetration
3. 未熔合Incomplete Fusion
4. 条状缺陷Linear indication
5. 圆形缺陷Rounded indication
6. 伪缺陷Image Artifacts
1. 未焊透Lack of Penetration定义:未焊透是指母材金属之间没有熔化,焊缝金属没有进入接头的根部造成的缺陷。
影像特征:未焊透的典型影像是细直黒线,两侧轮廓都很整齐,为坡口钝边痕迹,宽度恰好为钝边的间隙宽度。
有时坡口钝边有部分溶化,影像轮廓就变得不很整齐,线宽度和黑度局部发生变化,但只要能判断是处于焊缝根部的线性缺陷,仍判定为未焊透。
未焊透有底片上处于焊缝根部的投影位置,一般在焊缝中部,因透照偏、焊偏等原因也可能偏向一侧。
未焊透呈断续或连续分布,有时能贯穿整张底片。
焊接缺陷图片X光底片
焊接缺陷图片X光底片weld-01 (High - Low、高-低)welld-02 (Incomplete Root Fusion、根部未熔合)welld-03 (Insuffucient Reinforcement、内凹)welld-04 (Excess Root Penetration、根部焊瘤)welld-05welld-06welld-07(Root Concavity、根部凹陷)(Root Concavity、根部凹陷)welld-08(Burn Through、烧穿)(Burn Through、烧穿)welld-09(Isolated Slag Inclusion、单个的夹渣)(Isolated Slag Inclusion、单个的夹渣)welld-10Wagon Track - Slag Line、线状夹渣线状夹渣welld-11 (Interrun Fusion、内部未熔合)(Interrun Fusion、内部未熔合)welld-12 (Lack of Sidewall Fusion、内侧未熔合)(Lack of Sidewall Fusion、内侧未熔合)welld-13 (Porosity、气孔)(Porosity、气孔)welld-14 (Cluster Porosity、链状气孔)(Cluster Porosity、链状气孔)welld-15(Hollow Bead、夹珠)(Hollow Bead、夹珠)welld-16 (Transverse Crack、横向裂纹)welld-17(Centerline Crack、中心线裂纹)welld-18 (Root Crack、根部裂纹)(Root Crack、根部裂纹)welld-19 (Tungsten Inclusion)夹钨(Tungsten Inclusion)夹钨。
射线检测-焊缝缺陷图谱
1.外部缺陷在焊缝的表面,用肉眼或低倍放大镜就可看到,如咬边,焊瘤,弧坑,表面气孔和裂纹等。
2.内部缺陷位于焊缝内部,必须通过各种无损检测方法或破坏性试验才能发现。
内部缺陷有未焊透,未熔合,夹渣,气孔,裂纹等,这些缺陷是我们无损检测人员检查的主要对象。
焊缝缺陷的危害性:1、由于缺陷的存在,减少了焊缝的承载截面积,削弱了静力拉伸强度。
2、由于缺陷形成缺口,缺口尖端会发生应力集中和脆化现象,容易产生裂纹并扩展。
3、缺陷可能穿透焊缝,发生泄漏,影响致密性。
焊缝纵向裂纹示意图一、焊缝纵向裂纹X光底片焊缝纵向裂纹1 焊缝纵向裂纹2焊缝纵向裂纹3 焊缝纵向裂纹4焊缝纵向裂纹5 焊缝纵向裂纹6焊缝纵向裂纹7 焊缝纵向裂纹8焊缝纵向裂纹9 焊缝纵向裂纹10焊缝纵向裂纹11 焊缝纵向裂纹12焊缝纵向裂纹13 焊缝纵向裂纹14焊缝纵向裂纹15 焊缝纵向裂纹16焊缝纵向裂纹17 焊缝纵向裂纹18焊缝纵向裂纹19 焊缝纵向裂纹20 纵向裂纹的表面特征是沿焊缝长度方向出现的黑线,它既可以是连续线条,也可以是间断线条。
纵向裂纹影像产生的原因是沿焊缝长度破裂而导致的不连续黑线。
二、热影响区纵向裂纹X光底片热影响区纵裂1 热影响区纵裂2 热影响区撕裂呈线性黑色锯齿状,平行于熔合线,穿晶扩展,表面无明显氧化色彩,属脆性断口的延迟裂纹。
焊缝横向裂纹示意图三、焊缝横向裂纹X光底片焊缝横向裂纹1 焊缝横向裂纹25焊缝横向裂纹3 焊缝横向裂纹4焊缝横向裂纹的表征是横在焊接影像上的一根细小黑线(直线或曲线),它产生的原因是由焊缝上的金属破裂引起的。
当焊接应力为拉应力并与氢的析集和淬火脆化同时发生时,极易产生冷裂纹。
四、母材裂纹X光底片母材裂纹1 母材裂纹2裂纹:材料局部断裂形成的缺陷。
裂纹的分类方法:按延伸方向可分为纵向裂纹、横向裂纹、辐射状裂纹;按发生部位可分为焊缝裂纹、热影响区裂纹、熔合区裂纹、焊趾裂纹、弧坑裂纹、母材裂纹;按发生条件和时机可分为热裂纹、冷裂纹、再热裂纹。
射线检测底片评定典型缺陷图示课件
夹渣缺陷图示
总结词
夹渣是由于焊接过程中熔渣未完全清 除干净导致的一种缺陷。
详细描述
夹渣缺陷图示显示了焊接接头中条状 或点状的熔渣夹缝,夹渣的存在会降 低焊接接头的强度和致密性。
未熔合缺陷图示
总结词
未熔合是由于焊接过程中母材与填充金属未能完全熔合在一起导致的一种缺陷 。
详细描述
未熔合缺陷图示显示了焊接接头中母材与填充金属之间存在未完全熔合的缝隙 ,未熔合会严重影响焊接接头的承载能力。
某些特定性质的缺陷可能对部件的使用性 能造成影响,如夹杂物、分层等,这些性 质的缺陷会判定为不合格。
底片评定注意事项
注意细节
在底片评定过程中,要特别注 意细节,避免漏检或误判。
经验判断
对于某些难以确定的缺陷,需 要依靠经验进行判断。
保持标准一致性
在评定过程中,应保持标准的 一致性,避免出现不同人评定 结果不一致的情况。
夹渣产生原因及防止措施
• 夹渣:缺陷图示中的夹渣缺陷表现为不规则的暗区或高密度 条纹,产生原因是焊接过程中熔渣混入焊道,防止措施包括 选用合适的焊接电流和焊接速度,确保焊条质量良好并保持 清洁。
未熔合产生原因及防止措施
• 未熔合:缺陷图示中的未熔合缺陷表现为焊缝金属与母材之 间的高密度条纹或线状暗区,产生原因是焊接过程中热输入 不足或母材与焊条熔点不匹配,防止措施包括选用合适的焊 接电流和焊接速度,确保母材与焊条熔点匹配并保持焊条清 洁。
裂纹产生原因及防止措施
• 裂纹:缺陷图示中的裂纹缺陷表现为线性或曲线形 的暗区,产生原因是焊接过程中热应力集中或母材 中存在杂质,防止措施包括选用合适的焊接电流和 焊接速度,确保母材质量良好并采用合理的焊接顺 序以减少热应力集中。
射线探伤评片图--气孔36张
焊接方法 手工
焊缝型式 焊接位置 单面 水平
重点观察缺陷 密集气孔
其它缺陷
编号
焊接方法
手工
焊缝型式 焊接位置
单面 水平
重点观察缺陷
气孔
其它缺陷
编号
焊接方法
焊缝型式 焊接位置
重点观察缺陷
其它缺陷
手工
单面
水平
气孔
编号
焊接方法 手工
焊缝型式 焊接位置 单面 水平
重点观察缺陷 气孔
其它缺陷
焊缝型式 焊接位置 单面 水平
重点观察缺陷 气孔
其它缺陷
编号
焊接方法 手工
焊缝型式 焊接位置 单面 水平
重点观察缺陷 密集气孔
其它缺陷
编号
焊接方法 手工
焊缝型式 焊接位置 单面 水平
重点观察缺陷 链状气孔
其它缺陷
编号
焊接方法 手工
焊缝型式 焊接位置 单面 水平
重点观察缺陷 表面气孔
其它缺陷
编号
凸瘤中的气孔
其它缺陷
编号 QK47 CK48
焊接方法 手工
焊缝型式 焊接位置 单面 垂直 水平
重点观察缺陷 条形气孔 密集气孔
其它缺陷
编号
焊接方法 手工
焊缝型式 焊接位置 单面 水平
重点观察缺陷 气孔(夹珠)
其它缺陷
编号
焊接方法
焊缝型式 焊接位置
重点观察缺陷
其它缺陷
手工
单面
水平
夹珠
编号
焊接方法 手工
其它缺陷
QK33 QK35
编号
焊接方法 自动
焊缝型式 焊接位置 双面 平
重点观察缺陷 链状气孔
管道射线探伤评片图--裂纹18张
其它缺陷
编号
焊接方法
焊缝型式 焊接位置
重点观察缺陷
其它缺陷
手工
单面
裂纹
其它缺陷
LW11
手工
单面
LW11
焊接方法 手工
焊缝型式 焊接位置 单面 仰焊
重点观察缺陷 根部裂纹
其它缺陷
编号
LW11
焊接方法 手工
焊缝型式 焊接位置 单面 仰焊
重点观察缺陷 横向裂纹
其它缺陷
编号
LW11
焊接方法 手工
焊缝型式 焊接位置 单面 仰焊
重点观察缺陷 中心纵向裂纹
其它缺陷
编号
焊接方法 手工
焊缝型式 焊接位置 单面
重点观察缺陷 焊趾裂纹
其它缺陷
编号
焊接方法 手工
焊缝型式 焊接位置 单面
重点观察缺陷 弧坑裂纹
其它缺陷
编号
焊接方法 手工
焊缝型式 焊接位置 单面
重点观察缺陷 弧坑裂纹扩展纵向裂纹
其它缺陷
编号
焊接方法 手工
焊缝型式 焊接位置 单面
重点观察缺陷 角焊缝裂纹
编号
LW01
焊接方法
焊缝型 式
焊接位置
重点观察缺陷
其它缺陷
自动
双面
平
热裂纹(在纵缝上)
编号
LW13 LW15
焊接方法 自动+手工
焊缝型式 双面
焊接位置 平
重点观察缺陷 热裂纹
其它缺陷
编号
LW06 LW14
焊接方法 自动 自动+手工
焊缝型式 焊接位置 双面 平
重点观察缺陷 横向热裂纹
其它缺陷
编号
LW05
焊接方法 手工
射线无损检测缺陷图谱集 02
Rt缺陷图片021
小径管焊缝和板对接焊缝射线缺陷图谱Rt缺陷图片022
Rt缺陷图片023
小径管焊缝和板对接焊缝射线缺陷图谱Rt缺陷图片024
Rt缺陷图片025
小径管焊缝和板对接焊缝射线缺陷图谱Rt缺陷图片026
Rt缺陷图片027
小径管焊缝和板对接焊缝射线缺陷图谱Rt缺陷图片028
Rt缺陷图片029
小径管焊缝和板对接焊缝射线缺陷图谱Rt缺陷图片030
Rt缺陷图片031
小径管焊缝和板对接焊缝射线缺陷图谱Rt缺陷图片032
Rt缺陷图片033
小径管焊缝和板对接焊缝射线缺陷图谱Rt缺陷图片034
Rt缺陷图片035
Rt缺陷图片036
Rt缺陷图片037
小径管焊缝和板对接焊缝射线缺陷图谱Rt缺陷图片038
Rt缺陷图片039
小径管焊缝和板对接焊缝射线缺陷图谱Rt缺陷图片040。
射线探伤评片图气孔36张
手工
单面
水平
重点观察缺陷 气孔
其它缺陷
编号 焊接方法 焊缝型式 焊接位置
手工
单面
水平
重点观察缺陷 密集气孔
其它缺陷
编号 焊接方法 焊缝型式 焊接位置
手工
单面
水平
重点观察缺陷 链状气孔
其它缺陷
编号 焊接方法 焊缝型式 焊接位置 重点观察缺陷
手工
单面
水平
表面气孔
其它缺陷
编号 焊接方法 焊缝型式 焊接位置 重点观察缺陷
编号 焊接方法
QK47 CK48
手工
焊缝型式 焊接位置
单面
垂直 水平
重点观察缺陷 条形气孔 密集气孔
其它缺陷
编号 焊接方法 焊缝型式 焊接位置 重点观察缺陷
手工
单面 水平
气孔(夹珠)
其它缺陷
编号 焊接方法 焊缝型式 焊接位置
手工
单面 水平
重点观察缺陷 夹珠
其它缺陷
编号 焊接方法 焊缝型式 焊接位置
重点观察缺陷 密集气孔
其它缺陷
编号 焊接方法
QK55 QK57
自动
焊缝型式 焊接位置
双面
平
重点观察缺陷 夹珠
其它缺陷 圆形气孔
编号 焊接方法
QK31 QK60
自动
焊缝型式 焊接位置双面 Nhomakorabea平
重点观察缺陷 夹珠
其它缺陷 圆形及孔
编号 焊接方法
QK33 QK35
自动
焊缝型式 焊接位置
双面
平
重点观察缺陷 深孔
编号 焊接方法
QK01 QK02
自动
焊缝型式 焊接位置
双面
钢制对接焊缝缺陷X射线照相参考图谱共87页
41、俯仰终宇宙,不乐复何如。 42、夏日长抱饥,寒夜无被眠。 43、不戚戚于贫贱,不汲汲于富贵。 44、欲言无予和,挥杯劝孤影。 45、盛年不重来,一日难再晨。及时 当勉励 ,岁月 不待人 。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END
ቤተ መጻሕፍቲ ባይዱ
焊缝RT底片的评判规律及典型缺陷图谱
焊缝射线照相底片的评判规律一、探伤人员要评片,四项指标放在先*,底片标记齐又正,铅字压缝为废片。
二、评片开始第一件,先找四条熔合线,小口径管照椭圆,根部都在圈里面。
三、气孔形象最明显,中心浓黑边缘浅,夹渣属于非金属,杂乱无章有棱边。
四、咬边成线亦成点,似断似续常相见,这个缺陷最好定,位置就在熔合线。
五、未焊透是大缺陷,典型图象成直线,间隙太小钝边厚,投影部位靠中间。
六、内凹只在仰焊面,间隙太大是关键,内凹未透要分清,内凹透度成弧线。
七、未熔合它斜又扁,常规透照难发现,它的位置有规律,都在坡口与层间。
八、横裂纵裂都危险,横裂多数在表面,纵裂分布范围广,中间稍宽两端尖。
九、还有一种冷裂纹,热影响区常发现,冷裂具有延迟性,焊完两天再拍片。
十、有了裂纹很危险,斩草除根保安全,裂纹不论长和短,全部都是Ⅳ级片。
十一、未熔和也很危险,黑度有深亦有浅,一旦判定就是它,亦是全部Ⅳ级片。
十二、危害缺陷未焊透,Ⅱ级焊缝不能有,管线根据深和长,容器跟着条渣走**。
十三、夹渣评定莫着忙,分清圆形和条状,长宽相比3为界,大于3倍是条状。
十四、气孔危害并不大,标准对它很宽大,长径折点套厚度,中间厚度插入法。
十五、多种缺陷大会合,分门别类先评级,2类相加减去Ⅰ,3类相加减Ⅱ级。
十六、评片要想快又准,下拜焊工当先生,要问诀窍有哪些,焊接工艺和投影。
注:*四项指标系底片的黑度、灵敏度、清晰度、灰雾度必须符合标准的要求。
**指单面焊的管线焊缝和双面焊的容器焊缝内未焊透的判定标准。
Radiograph Interpretation - WeldsIn addition to producing high quality radiographs, the radiographer must also be skilled in radiographic interpretation. Interpretation of radiographs takes place in three basic steps which are (1) detection, (2) interpretation, and (3) evaluation. All of these steps make use of the radiographer's visual acuity. Visual acuity is the ability to resolve a spatial pattern in an image. The ability of an individual to detect discontinuities in radiography is also affected by the lighting condition in the place of viewing, and the experience level for recognizing various features in the image. The following material was developed to help students develop an understanding of the types of defects found in weldments and how they appear in a radiograph.DiscontinuitiesDiscontinuities are interruptions in the typical structure of a material. These interruptions may occur in the base metal, weld material or "heat affected" zones. Discontinuities, which do not meet the requirements of the codes or specification used to invoke and control an inspection, are referred to as defects.General Welding DiscontinuitiesThe following discontinuities are typical of all types of welding.Cold lap is a condition where the weld filler metal does not properly fuse with the base metal or the previous weld pass material (interpass cold lap). The arc does not melt the base metal sufficiently and causes the slightly molten puddle to flow into base material without bonding.Porosity气孔is the result of gas entrapment in the solidifying metal. Porosity can take many shapes on a radiograph but often appears as dark round or irregular spots or specks appearing singularly, in clusters or rows. Sometimes porosity is elongated and may have the appearance of having a tail This is the result of gas attempting to escape while the metal is still in a liquid state and is called wormhole porosity. All porosity is a void in the material it will have a radiographic density more than the surrounding area..Cluster porosity链状气孔is caused when flux coated electrodes are contaminated with moisture. The moisture turns into gases when heated and becomes trapped in the weld during the welding process. Cluster porosity appear just like regular porosity in the radiograph but the indications will be grouped close together.Slag inclusions夹渣 are nonmetallic solid material entrapped in weld metal or between weld and base metal. In a radiograph, dark, jagged asymmetrical shapes within the weld or along the weld joint areas are indicative of slag inclusions.Incomplete penetration (IP) or lack of penetration (LOP)未焊透occurs when the weld metal fails to penetrate the joint. It is one of the most objectionable weld discontinuities. Lack of penetration allows a natural stress riser from which a crack may propagate. The appearance on a radiograph is a dark area with well-defined, straight edges that follows the land or root face down the center of the weldment.Incomplete fusion未熔合is a condition where the weld filler metal does not properly fuse with the base metal. Appearance on radiograph: usually appears as a dark line or lines oriented in the direction of the weld seam along the weld preparation or joining area.Internal concavity or suck back内凹或吸入is condition where the weld metal has contracted as it cools and has been drawn up into the root of the weld. On a radiograph it looks similar to lack of penetration but the line has irregular edges and it is often quite wide in the center of the weld image.Internal or root undercut内部或根部咬边is an erosion of the base metal next to the root of the weld. In the radiographic image it appears as a dark irregular line offset from the centerline of the weldment. Undercutting is not as straight edged as LOP because it does not follow a ground edge.External or crown undercut外部或顶部咬边is an erosion of the base metal next to the crown of the weld. In the radiograph, it appears as a dark irregular line along the outside edge of the weld area.Offset or mismatch错边are terms associated with a condition where two pieces being welded together are not properly aligned. The radiographic image is a noticeable difference in density between the two pieces. The difference in density is caused by the difference in material thickness. The dark, straight line is caused by failure of the weld metal to fuse with the land area.Inadequate weld reinforcement未填满is an area of a weld where the thickness of weld metal deposited is less than the thickness of the base material. It is very easy to determine by radiograph if the weld has inadequate reinforcement, because the image density in the area of suspected inadequacy will be more (darker) than the image density of the surrounding base material.Excess weld reinforcement增强余高is an area of a weld, which has weld metal added in excess of that specified by engineering drawings and codes. The appearance on a radiograph is a localized, lighter area in the weld. A visual inspection will easily determine if the weld reinforcement is in excess of that specified by the individual code involved in the inspection.Cracking裂纹can be detected in a radiograph only the crack is propagating in a direction that produced a change in thickness that is parallel to the x-ray beam. Cracks will appearas jagged and often very faint irregular lines. Cracks can sometimes appearing as "tails" on inclusions or porosity.Discontinuities in TIG weldsThe following discontinuities are peculiar to the TIG welding process. These discontinuities occur in most metals welded by the process including aluminum and stainless steels. The TIG method of welding produces a clean homogeneous weld which when radiographed is easily interpreted.Tungsten inclusions. 夹钨Tungsten is a brittle and inherently dense material used in the electrode in tungsten inert gas welding. If improper welding procedures are used, tungsten may be entrapped in the weld. Radiographically, tungsten is more dense than aluminum or steel; therefore, it shows as a lighter area with a distinct outline on the radiograph.Oxide inclusions夹氧化物are usually visible on the surface of material being welded (especially aluminum). Oxide inclusions are less dense than the surrounding materials and, therefore, appear as dark irregularly shaped discontinuities in the radiograph.Discontinuities in Gas Metal Arc Welds (GMAW)The following discontinuities are most commonly found in GMAW welds.Whiskers are short lengths of weld electrode wire, visible on the top or bottom surface of the weld or contained within the weld. On a radiograph they appear as light, "wire like" indications.Burn through (icicles) results when too much heat causes excessive weld metal to penetrate the weld zone. Lumps of metal sag through the weld creating a thick globular condition on the back of the weld. On a radiograph, burn through appears as dark spots surrounded by light globular areas.welld-02 (Incomplete Root Fusion、根部未熔合)—welld-03 (Insuffucient Reinforcement、增强高)——welld-04 (Excess Root Penetration、根部焊瘤)——welld-05 (External Undercut、外部咬肉)——welld-06 (Internal Undercut、内部咬肉)——welld-07 (Root Concavity、根部凹陷)——welld-08 (Burn Through、烧穿)——welld-09 (Isolated Slag Inclusion、单个的夹渣)——welld-10 (Wagon Track - Slag Line、线状夹渣)——welld-11 (Interrun Fusion、内部未熔合)——welld-12 (Lack of Sidewall Fusion、内侧未熔合)——welld-13 (Porosity、气孔)——welld-14 (Cluster Porosity、链状气孔)——welld-15 (Hollow Bead、夹珠)——welld-16 (Transverse Crack、横向裂纹)——welld-17 (Centerline Crack、中心线裂纹)——welld-18 (Root Crack、根部裂纹)——welld-19 (Tungsten Inclusion)夹钨—。
管道射线探伤评片图--裂纹18张
重点观察缺陷 裂纹
其它缺陷
编号 焊接方法 焊缝型式 焊接位置 重点观察缺陷
LW11
手工
单面
仰焊
根部裂纹
其它缺陷
编号 焊接方法 焊缝型式 焊接位置 重点观察缺陷
LW11
手工
单面
仰焊
横向裂纹
其它缺陷
编号 焊接方法 焊缝型式 焊接位置 重点观察缺陷
LW11
手工
单面
仰焊 中心纵向裂纹
其它缺陷
编号 焊接方法 焊缝型式 焊接位置 重点观察缺陷
其它缺陷
LW05手工单面 Nhomakorabea平
热裂纹
根部未焊透
编号 焊接方法 焊缝型式 焊接位置 重点观察缺陷
LW03
自动
单面
平
LW08
冷裂纹
其它缺陷
编号 焊接方法 焊缝型式 焊接位置 重点观察缺陷
LW11
手工
单面
水平
冷裂纹
其它缺陷
编号 焊接方法 焊缝型式 焊接位置 重点观察缺陷
其它缺陷
LW11
手工
单面
仰焊 仰焊收缩裂纹
手工
单面
焊趾裂纹
其它缺陷
编号 焊接方法 焊缝型式 焊接位置 重点观察缺陷
手工
单面
弧坑裂纹
其它缺陷
编号 焊接方法 焊缝型式 焊接位置
重点观察缺陷
其它缺陷
手工
单面
弧坑裂纹扩展纵向裂纹
编号 焊接方法 焊缝型式 焊接位置
手工
单面
重点观察缺陷 角焊缝裂纹
其它缺陷
编号 焊接方法 焊缝型式 焊接位置
手工
单面
编号
焊接方法
焊缝型 式
射线检测缺陷对比表
未焊透
单侧未焊透
根部未ቤተ መጻሕፍቲ ባይዱ合
内凹
内咬边
未焊满
未焊透
1.只能看到一条直线;
2.内焊道一半黑一半白。
3.存在未焊透时无内焊道,单侧未焊透有一半内焊道。
1.只能看到一条直线;
2.内焊道一半黑一半白。
3.存在未焊透时无内焊道,根部未熔合有一半内焊道。
1.未焊透无内焊道,内凹有,且内凹与内焊道宽度一致;
黑线或黑丝状,锯齿状或有分叉,线的端部尖细,或有丝状阴影延伸。
在焊缝的边缘,走向与焊纹走向一致,黑度过渡均匀。
未熔合
条状夹渣
条状气孔
裂纹
咬边
焊缝形成示意图
内咬边无直边,内焊道完整,单侧未焊透只有一半内焊道。
根部未熔合
内凹宽度与内焊道一致,根部未熔合只有一半内焊道,内凹无直边。
内咬边无直边,内焊道完整,根部未熔合只有一半内焊道。
内凹
内凹内焊道黑度较大,内咬内焊道黑度正常,内咬边位置于内焊道边缘,与焊纹走向一致。
未焊满在外表面,宽度比外焊道稍窄。
内凹在内表面,宽度与内焊道一致。
内咬边
未焊满
2.双面焊常见缺陷对比表
未焊透
未熔合
条状夹渣
条状气孔
裂纹
咬边
未焊透
1.未熔合多处于1/2坡口处,未透在焊缝正中;
2.未熔合一般有一条直边,另一边为不规则,黑度也有过渡,未透黑度均匀,两边线为直线。
条渣两边多为不规则状,两端一般较尖。黑度有界线,但本身黑度变化无规律。
条孔两边多为不规则状,两端一般较圆滑。黑度有界线且较均匀。
2.未焊透有两条直界线,内凹无。
1.未焊透无内焊道,内咬有,且内咬与内焊道宽度一致;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊缝缺陷图谱焊接基本知识1、焊接的冶金特点什么叫焊接:两个分离的物体(同种或异种材料)通过原子或分子之间的结合和扩散造成永久性联接的工艺过程叫焊接。
熔化焊是金属材料焊接的主要方法:熔化焊接时,被焊金属在热源作用下被加热,发生局部熔化,同时熔化了的金属、熔渣、气相之间进行着一系列影响焊缝金属的成分、组织和性能的化学冶金反应,随着热源的离开,熔化金属开始结晶,由液态转为固态,形成焊缝。
熔化焊的冶金特点:⑴、温度高以手工电弧焊为例,电弧温度高达6000℃~8000℃,熔滴温度约1800℃~2400℃,在如此高温下,外界气体会大量分解,溶入液态金属中,随后又在冷却过程中析出,所以焊缝易形成气孔缺陷。
⑵、温度梯度大焊接是局部加热,熔池温度在1700℃以上,而其周围是冷态金属,形成很陡的温度梯度,从而会导致较大的内应力,引起变形或产生裂纹缺陷。
⑶、熔池小,冷却速度快3333,金属从熔池到凝固只有几秒钟,30 cm10 cm~,自动焊约熔池的体积,手工焊约2cm9 cm~在这样短的时间里,冶金反应是不平衡的,因此焊缝金属成分不均匀,偏析较大。
2、焊缝的结晶特点焊接熔池从高温冷却到常温,其间经历过两次组织变化过程;第一次是液态金属转变为固体金属的结晶过程,称为一次结晶;第二次是温度降低到相变温度时,发生组织转变,称为第二次结晶。
一次结晶从熔合线上开始,晶体的生长方向指向溶池中心,形成柱状晶体,当柱状晶生长至相互接触时,结晶过程即告结束。
焊缝表面形态以及热裂纹、气孔等缺陷的成因、形态、位置均与一次结晶有关。
对低碳钢及低合金钢,一次结晶的组织为奥氏体,继续冷却到低于相变温度时,奥氏体分解为铁素体和珠光体,冷却速度影响着铁素体和珠光体的比率和大小,进而影响焊缝的强度、硬度和塑性韧性,当冷却速度很大时,有可能产生淬硬组织马氏体,冷裂纹的形成与淬硬组织有关。
3、焊缝的组成及热影响区组织焊接接头由焊缝和热影响区两部分组成。
二次结晶不仅仅发生在焊缝,也发生在靠近焊缝的基本金属区域,该区域在焊接过程中受到不同程度的加热,在不同温度下停留一段时间后又以不同速度冷却下来,最终获得各不相同的组织和机械性能,称为热影响区。
根据组织特征可将热影响区划分为熔合区、过热区、相变重结晶区和不完全重结晶区四个小区,其中熔合区和过热区组织晶粒粗大,塑性很低,是产生裂纹、局部脆性破坏的发源地,是焊接接头的薄弱环节。
1焊缝缺陷的分类1.外部缺陷在焊缝的表面,用肉眼或低倍放大镜就可看到,如咬边,焊瘤,弧坑,表面气孔和裂纹等。
2.内部缺陷位于焊缝内部,必须通过各种无损检测方法或破坏性试验才能发现。
内部缺陷有未焊透,未熔合,夹渣,气孔,裂纹等,这些缺陷是我们无损检测人员检查的主要对象。
焊缝缺陷的危害性:1、由于缺陷的存在,减少了焊缝的承载截面积,削弱了静力拉伸强度。
2、由于缺陷形成缺口,缺口尖端会发生应力集中和脆化现象,容易产生裂纹并扩展。
3、缺陷可能穿透焊缝,发生泄漏,影响致密性。
焊缝纵向裂纹示意图X光底片焊缝纵向裂纹一、2焊缝纵向裂纹焊缝纵向裂纹12焊缝纵向裂纹3 焊缝纵向裂纹4焊缝纵向裂纹6焊缝纵向裂纹5焊缝纵向裂纹87 焊缝纵向裂纹焊缝纵向裂纹9 焊缝纵向裂纹1011 焊缝纵向裂纹焊缝纵向裂纹12314焊缝纵向裂纹焊缝纵向裂纹1316焊缝纵向裂纹焊缝纵向裂纹1518焊缝纵向裂纹焊缝纵向裂纹17焊缝纵向裂纹20 19 焊缝纵向裂纹纵向裂纹的表面特征是沿焊缝长度方向出现的黑线,它既可以是连续线条,也可以是间断线条。
纵向裂纹影像产生的原因是沿焊缝长度破裂而导致的不连续黑线。
4二、热影响区纵向裂纹X光底片2热影响区纵裂热影响区纵裂1热影响区撕裂呈线性黑色锯齿状,平行于熔合线,穿晶扩展,表面无明显氧化色彩,属脆性断口的延迟裂纹。
焊缝横向裂纹示意图三、焊缝横向裂纹X光底片2焊缝横向裂纹 1 焊缝横向裂纹54焊缝横向裂纹焊缝横向裂纹3焊缝横向裂纹的表征是横在焊接影像上的一根细小黑线(直线或曲线),它产生的原因是由焊缝上的金属破裂引起的。
当焊接应力为拉应力并与氢的析集和淬火脆化同时发生时,极易产生冷裂纹。
四、母材裂纹X光底片2 母材裂纹母材裂纹1裂纹:材料局部断裂形成的缺陷。
裂纹的分类方法:按延伸方向可分为纵向裂纹、横向裂纹、辐射状裂纹;按发生部位可分为焊缝裂纹、热影响区裂纹、熔合区裂纹、焊趾裂纹、弧坑裂纹、母材裂纹;按发生条件和时机可分为热裂纹、冷裂纹、再热裂纹。
1、热裂纹产生的机理:发生于焊缝金属凝固末期,敏感温度区间大致在固相线附近的高温区,最常见的热裂纹区是结晶裂纹,其生成原因是在焊缝金属凝固过程中,结晶偏析使杂质生成的低熔点共晶物富集于晶界,形成所谓“液态薄膜”,由于焊缝凝固收缩而受到拉应力,最终开裂形成裂纹。
结晶裂纹最常见的情况是沿焊缝中心长度方向开裂,为纵向裂纹。
有时也发生在焊缝内部两个柱状晶体之间,为横向裂纹。
孤坑裂纹是另一种形态的常见的热裂纹。
热裂纹都是沿晶界开裂,通常发生在杂质较多的碳钢、低合金钢、奥氏体不锈钢等材料焊缝中。
62、冷裂纹产生的机理:①、焊接拉应力的作用:金属在焊后冷却至马氏体转变温度(大致在300℃-200℃)以下时被冷却过程中的过度热应力拉开,常发生在热影响区熔合线附近的过热区中。
②、氢的聚集作用:在焊接高温作用下,氢以原子状态进入熔池中,随着熔池温度的不断降低,氢在金属中的溶解度急剧下降;在金属发生相变时其溶解度将发生突变。
焊接时冷却速度很快,氢来不及逸出而残留在焊缝中,过饱和的氢就向热影响区扩散,聚集在熔合线附近,氢原子结合成氢分子,以气体状态进入到金属的细微孔隙中,并造成很大的压力,使局部产生很大的应力而形成冷裂纹。
氢的扩散在不同材料中速度不同,因此这类冷裂纹产生的时间也不同,有时在焊接后立即出现,有时在焊后几天,几周甚至更长的时间才出现,这就是冷裂纹的延迟性,具有更大的危险性。
3、再热裂纹产生的机理:是指某些含钼、钒、铬、铌、钛等沉淀强化元素的低合金高强钢和耐热钢,焊接冷却后又重新加热(通常是消除应力热处理)的过程中,在焊接热影响区的粗晶区产生的裂纹。
产生裂纹的原因是再加热时焊接残余应力松弛,导致较大的附加变形,与此同时热影响区的粗晶部位会析出合金碳化物组成的沉淀硬化相,如果粗晶部位的蠕变塑性不足以适应应力松弛所产生的附加变形,则沿晶界发生裂纹。
再热裂纹的敏感温度区间为550℃-650℃。
产生裂纹的三大因素:拘束应力、淬硬组织和扩散氢。
延迟裂纹发生的部位:热影响区,少数在焊缝上,纵向和横向都有发生。
常出现在低合金高强钢和中、高碳钢的焊接接头。
焊趾裂纹、热影响区裂纹、焊道下裂纹、根部裂纹等都是延迟裂纹常见的形态。
裂纹微观形态:穿晶开裂,也有沿晶开裂。
裂纹是危害性最大的一种焊接缺陷:裂纹是一种面积型缺陷[具有三维尺寸的缺陷称为体积型缺陷,具有二维尺寸(第三维尺寸极小)的缺陷称为面积性缺陷],它的出现将显著减少承载面积,更严重的是裂纹端部形成尖锐缺口,应力高度集中,很容易扩展导致破坏。
防止裂纹的措施:1)焊前预热,焊后缓慢冷却,使热影响区的奥氏体分解能在足够高温度区间内进行,避免淬硬组织的产生,同时也有减少焊接应力的作用。
2)焊接后即时进行低温退火,去氢处理,消除焊接时产生的应力,并使氢及时扩散到外界去。
3)选用低氢型焊条和碱性焊剂等;焊材按规定烘干,并严格清理坡口。
4)加强焊接时的保护和被焊处表面的清理,避免氢的侵入。
5)选用合理的焊接规范(例如:焊接速度过大或过小均易产生淬硬组织),采用合理的对口组装焊接顺序,以改善焊件的应力状态。
7未熔合示意图焊缝未熔合X光底片2 未熔合未熔合14 未熔合 3 未熔合6未熔合 5 未熔合88未熔合7 未熔合未熔合9坡口咬边(未熔)示意图坡口咬边(未熔)X光底片2坡口咬边(未熔)坡口咬边(未熔)19坡口咬边(未熔)影像的表面特征是较黑的细长起伏宽度不一的黑线{线内常含有熔渣},可以是一根黑线,也可以是多根黑线,它产生的原因是长条形空腔出现在焊缝坡口的两侧。
未熔合影像的表面特征为一根或多根长条形的平行黑线,未熔合线较直,有时较黑的密集斑点会沿未熔合线散布。
它产生的原因是由焊接金属与母材金属之间长条形的间隙而引起的。
未熔合:熔焊时,焊缝金属与母材金属、或焊缝金属之间未熔化结合在一起的部分,对口点焊时,母材与母材之间未完全熔化结合的部分。
未熔合的种类:按其所在部位,未熔合可分为坡口未熔合、根部未熔合、层间未熔合三种。
未熔合产生的原因:焊接电流过小;焊接速度过快;焊接角度不对;产生了弧偏吹现象;焊接处于下坡焊位置,母材未熔化时已被铁水覆盖;母材表面有污物或氧化物影响熔敷金属与母材间的熔化结合等。
未熔合的危害:未熔合也是一种面积型缺陷,坡口未熔合和根部未熔合对承载截面积的减小非常明显,应力集中也比较严重,其危害性仅次于裂纹。
防止措施:正确选用坡口和电流,坡口清理干净,正确操作防止焊偏等。
10未焊透示意图未焊透X光底片2 未焊透未焊透14未焊透未焊透3未焊透影像表面特征为焊缝中心部分呈规则性的边缘整齐的直线,成连续的或间断的黑色条纹,产生的原因是焊缝坡口钝边的根部未完全溶化。
未焊透:母材根部钝边金属之间没有熔化,焊缝金属没有进入接头的根部或根部未完全熔透的现象叫未焊透。
未焊透类型:可分为双面焊未焊透和单面焊未焊透两种。
未焊透型状:可分为双边未焊透与单边未焊透两种。
未焊透产生的原因:焊接电流过小或运条速度过快,焊接速度过快;坡口角度太小;根部钝边太厚;组对间隙太小;焊条角度不当;电孤太长及电弧偏吹等。
未焊透的危害:未焊透也是一种比较危险的缺陷,其危害性取决于缺陷的形状、深度和长度。
未焊透缺陷不仅降低了焊接接头的机械性能,而且在未焊透处的缺口和端部形成应力集中点,承载后往往会引起裂纹,是一种危险性缺陷,在受压焊缝中,这类缺陷一般是不允许存在的。
防止措施:合理选用坡口型式,装配间隙和采用正确的焊接工艺等。
内凹示意图焊缝内凹X光底片13夹钨示意图焊缝夹钨X光底片2 夹钨夹钨14夹钨夹钨36夹钨夹钨5 14夹钨8 夹钨7夹钨影像的表面特征为焊缝中出现一些不规则的白色斑点,它们是由焊接过程中残留的小块钨渣引起的。
夹渣示意图焊缝夹渣X光底片2夹渣夹渣14夹渣 3 夹渣156夹渣夹渣5夹渣7夹渣在焊缝中呈现的形态是点状或条状的宽度不一、黑度不一的影像,它们产生的原因是焊接过程中焊药熔渣或其它低密度杂质清理不干净而留存在焊缝中。
夹渣:焊缝金属中残留有外来固体物质所形成的缺陷。
夹渣:是指焊后残留在焊缝中的熔渣。
夹杂物:是指由于焊接冶金反应产生的,焊后残留在焊缝金属中的非金属杂质(如氧化物,硫化物等)。
夹渣的形状:条状和点状,外形不规则。
夹渣的分类:按形态,夹渣可分为点状夹渣、块状夹渣、条状夹渣;按残留固体物质种类,夹渣可分为非金属夹渣和金属夹渣。