八年级数学上册 26探索勾股定理教学案例分析与反思 浙教版

合集下载

浙教版初中数学教案《探索勾股定理》

浙教版初中数学教案《探索勾股定理》

课题:探索勾股定理教材:义务教育课程标准实验教科书《数学》八年级上册(浙江教育出版社)2.6节一.教学背景1.面向学生:中学八年级2.学科:数学3.课时:第一课时4.课前教师准备:利用百度搜索,下载课堂用的教学网址学生准备:四张全等的直角三角形纸片二.教学课题:探索勾股定理三.教学目标1、知识与技能:要求学生从边的角度掌握直角三角形三边的数量关系;利用全等的直角三角形纸片用不同的方法动手拼出弦图,从而理解和掌握勾股定理的证明方法。

2、过程与方法:引导学生探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,体会数学与现实生活的紧密联系。

通过“观察—猜想—归纳—验证”过程理解勾股定理;学会数形结合、从特殊到一般的数学思考方法。

3、情感态度、价值观:通过上网收集资料,掌握一种主动学习的学习方式,经过实验、猜想、拼图、证明等了解数学知识的发生发展过程,学会合作交流,体验探究乐趣,增强探索意识;感受勾股定理的悠久历史,激发学习热情。

四.教材分析勾股定理是平面几何有关度量的最基本定理之一,它揭示了直角三角形中三边的数量关系,是九年级学习解直角三角形的主要依据,也是后续有关几何度量运算和代数学习必要的基础,它还是一般三角形余弦定理和高中的平面解析几何中的两点间距离公式等知识的必要基础,更重要的是勾股定理的发现、验证过程中蕴涵着丰富的数学思想,对丰富学生的数学活动经验,并感受数学文化有非常高的价值。

为此本节课的教学重点是勾股定理证明的发现过程、探索过程和实际应用。

学习难点是:利用弦图的方法正确剪拼图形,并感受推导的过程。

五.教学方法根据教学内容、教学目标和学生的认知水平,教学时(1)教师为学生提供适当的时间与空间,提供学习网址,搜索与学习相关的资料,小组分工合作,激发学生的学习兴趣。

(2)采取教师启发式与学生动手操作探究相结合的教学方法。

六:教学过程(一)、创设问题情景,激发求知欲望问题1:你认为有外星人吗?如果有,可以用什么方式与他们取得联系呢?问题2:图2是1955年希腊发行的一枚纪念一位数学家的邮票,你知道邮票上的图案表示的意义吗?问题3:你知道2002年世界数学大会在哪里召开?它的会徽是什么图案?请欣赏节前的彩图1,图形表示什么意思?为什么用这样的图案呢?图1 图2[设计意图] 通过问题1“怎样与外星人联系”的话题激发学生的探究欲望,寻找交流的工具,引出勾股定理这个课题,明确了本节课的学习任务。

浙教版八年级数学上册《探索勾股定理》教案及教学反思

浙教版八年级数学上册《探索勾股定理》教案及教学反思

浙教版八年级数学上册《探索勾股定理》教案及教学反思一、教学背景本次课程内容是浙教版八年级数学上册的《探索勾股定理》,主要涉及到勾股定理的概念、证明方法和应用。

本课程主要是在通过学生之前对于勾股定理的基础知识之后,通过让学生灵活应用勾股定理解决实际问题,并巩固前期所学知识点。

二、教学目标1.了解勾股定理的概念和证明方法;2.培养学生解决实际问题的数学思维能力;3.加强学生的口算能力和数学语言表达能力。

三、教学过程1. 课前准备教师在讲解勾股定理的概念和证明方法的同时,将数学概念的运用融入到生活中,让学生了解勾股定理的应用领域。

同时,激发学生的学习兴趣,培养学生对于数学的兴趣。

2. 导入环节勾股定理是西方数学的瑰宝之一,它是几何学的基础定理之一,对三角学、物理学、力学等学科都有着非常重要的应用。

勾股定理最早出现在中国,是我国传统数学成就的一部分。

同时,勾股定理也是我们普通人生活中会用到的一个数学定理。

3. 讲授环节1.概念讲解:使用多媒体形式进行展示,讲解斜边和直角边的概念。

讲解勾股定理和勾股性质,将数学知识点与生活、科技等领域有机地结合,激发学生的学习兴趣。

2.证明方法讲解:使用多媒体工具演示斜边平方等于两直角边平方和的证明方法,向学生阐述勾股定理的证明方法,巩固学生对勾股定理的理解。

3.应用实例:通过板书,让学生自行推导解决实例问题,培养学生的实际问题解决能力,同时扩大学生的知识视野。

4. 实践活动完成练习册上的勾股定理实验、应用和练习,检查学生对于勾股定理的理解和应用能力。

5. 总结环节通过问答和讨论的方式,总结本次课程学习的主要内容,巩固学生对于勾股定理的理解,明确下一次课程的学习目标。

四、教学反思本次教学中,我采用了多媒体和板书相结合的方式,使教学内容更加丰富、生动,让学生更加容易地理解勾股定理的概念、性质和应用方法。

同时,我还在实践环节中采用了合作学习的方法,让学生分组合作解决实际问题,这不仅培养了学生的合作精神,也提高了学生的解决问题的能力。

探索勾股定理(2)教案浙教版数学八年级上册

探索勾股定理(2)教案浙教版数学八年级上册

探索勾股定理(2)教案讲授新课 二、提炼概念勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形.符号语言: 在△ABC 中, ∵a 2+b 2=c 2(已知) ∴△ABC 是Rt △,且∠C=Rt ∠三、典例精讲例3 根据下列条件,分别判断以a,b,c 为边的三角形是不是直角三角形(1)a =7,b =24,c =25 (2)a =23 ,b =1,c =23解:(1)∵7²+24²=25²,∴以7,24,25为边的三角形是直角三角形。

(2)∵(23)²+ (23)²= 89≠1²也就是较小两边的平方和不等于较大边的平方,∴a,b,c 中任何两边的平方和都不等于第三边的平方∴以23,1,23为边的三角形不是直角三角形,例4.已知△ABC 三条边长分别为a,b,c,且a =m 2-n 2,b =2mn ,c =m 2+n 2(m>n ,m,n 是正整数)。

△ABC 是直角三角形吗?请证明你的判断。

判断三条线段能否组成直角三角形的方法是:(1)找出最长边;(2)计算较小两边的平方和以及最长边的平方;(3)比较较小两边的平方和是否等于最长边的平方,若相等,则能组成直角三角形,若不相等,则不能组成直角三角形.∵能构成直角三角形.(3)∵a2+b2=72+242=625,c2=252=625,∵a2+b2=c2,∵能构成直角三角形.3.在△ABC中,CD是边AB上的高线,BC=2,CD =3,AC=23,请判断△ABC的形状.解:∵CD是边AB上的高,在Rt△CDB中,BD=BC2-CD2=1,在Rt△ACD中,AD=AC2-CD2=3,∴AB=BD+AD=4,∵AC2=(23)2=12,BC2=22=4,AB2=42=16,又∵12+4=16,即AC2+BC2=AB2∴△ABC是直角三角形.课堂小结。

浙教版数学八年级上册2.7《探索勾股定理》教学设计

浙教版数学八年级上册2.7《探索勾股定理》教学设计

浙教版数学八年级上册2.7《探索勾股定理》教学设计一. 教材分析《探索勾股定理》是浙教版数学八年级上册2.7节的内容,主要介绍了勾股定理的证明和应用。

本节内容是在学生已经掌握了相似三角形、全等三角形和勾股定理的初步知识的基础上进行学习的。

教材通过引导学生探索勾股定理的证明,让学生更深入地理解勾股定理,并能够运用勾股定理解决实际问题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对三角形的相关知识有一定的了解。

但是,对于证明勾股定理的深层次理解还存在一定的困难。

因此,在教学过程中,需要引导学生通过实践探索,加深对勾股定理的理解。

三. 教学目标1.理解勾股定理的证明过程,掌握勾股定理的应用。

2.培养学生的探索精神和合作意识。

3.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.重难点:勾股定理的证明过程。

2.难点:如何引导学生探索并理解勾股定理的证明过程。

五. 教学方法1.引导探究法:通过引导学生探索勾股定理的证明过程,让学生加深对勾股定理的理解。

2.小组合作法:在探索过程中,采用小组合作的方式,培养学生的合作意识。

3.实例讲解法:通过具体实例,讲解勾股定理的应用,提高学生运用数学知识解决实际问题的能力。

六. 教学准备1.教具准备:多媒体课件、黑板、粉笔。

2.学具准备:每人一份勾股定理的证明材料,一份练习题。

七. 教学过程1.导入(5分钟)利用多媒体课件,展示勾股定理的应用场景,引导学生思考勾股定理的意义和重要性。

2.呈现(10分钟)呈现勾股定理的证明过程,引导学生观察和思考,让学生尝试自己证明勾股定理。

3.操练(10分钟)学生分组合作,根据呈现的证明过程,自己动手操作,尝试证明勾股定理。

4.巩固(10分钟)学生分组讨论,总结证明勾股定理的方法和步骤,加深对勾股定理的理解。

5.拓展(10分钟)利用实例,讲解勾股定理在实际问题中的应用,提高学生运用数学知识解决实际问题的能力。

6.小结(5分钟)教师引导学生总结本节课的学习内容,加深对勾股定理的理解。

浙教版数学八年级上册2.7《探索勾股定理》教案

浙教版数学八年级上册2.7《探索勾股定理》教案

浙教版数学八年级上册2.7《探索勾股定理》教案一. 教材分析《探索勾股定理》是浙教版数学八年级上册第2.7节的内容。

本节内容是在学生已经学习了平面直角坐标系、相似三角形等知识的基础上,引导学生通过探索、发现、验证勾股定理,培养学生的逻辑思维能力和探索精神。

教材通过丰富的情境和实例,激发学生的学习兴趣,让学生在探究中掌握勾股定理,体验数学的乐趣。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于平面直角坐标系、相似三角形等概念有一定的了解。

但是,对于勾股定理的证明方法和证明过程可能较为陌生。

因此,在教学过程中,需要关注学生的认知水平,引导学生通过实际操作、观察、思考、交流等方式,逐步理解和掌握勾股定理。

三. 教学目标1.理解勾股定理的含义,掌握勾股定理的证明方法。

2.培养学生的观察能力、操作能力、推理能力、交流与合作能力。

3.激发学生对数学的兴趣,感受数学的趣味性和魅力。

四. 教学重难点1.重点:勾股定理的理解和证明方法的掌握。

2.难点:如何引导学生发现和证明勾股定理。

五. 教学方法1.情境教学法:通过丰富的实例和情境,激发学生的学习兴趣,引导学生主动参与探索。

2.操作教学法:让学生通过实际操作,观察、分析、推理,发现和证明勾股定理。

3.交流讨论法:鼓励学生之间进行交流、讨论,培养学生的合作能力和表达能力。

六. 教学准备1.教学PPT:制作涵盖勾股定理的定义、证明方法、实例等内容的PPT。

2.教学素材:准备一些勾股定理的相关实例和图片,用于引导学生观察和思考。

3.学生活动材料:准备一些三角形模型、直尺、三角板等,供学生实际操作。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的勾股定理实例,如房屋建筑、家具设计等,引导学生关注勾股定理在生活中的应用,激发学生的学习兴趣。

2.呈现(10分钟)介绍勾股定理的定义,引导学生了解勾股定理的基本概念。

3.操练(10分钟)学生分组进行实际操作,使用三角板、直尺等工具,尝试构造三角形,并测量其边长,验证勾股定理。

浙教版数学八年级上册《2.7 探索勾股定理》教案2

浙教版数学八年级上册《2.7 探索勾股定理》教案2

浙教版数学八年级上册《2.7 探索勾股定理》教案2一. 教材分析《探索勾股定理》是浙教版数学八年级上册第二章第七节的内容。

本节课的主要目的是让学生通过探索、发现、验证勾股定理,培养学生的探究能力和合作交流能力,体会数学的探究过程,感受数学的美。

教材通过丰富的背景材料,引出勾股定理的探究,并通过数学活动,让学生体验勾股定理的发现过程,理解并掌握勾股定理。

二. 学情分析学生在学习本节课之前,已经学习了相似多边形的性质,会画直角三角形,对三角形有了一定的认识,但对于证明勾股定理可能会存在一定的困难。

因此,在教学过程中,需要关注学生的学习情况,适时给予引导和帮助。

三. 教学目标1.了解勾股定理的背景,感受数学与实际生活的联系。

2.通过探索、发现、验证勾股定理,培养学生的探究能力和合作交流能力。

3.理解并掌握勾股定理,能运用勾股定理解决实际问题。

四. 教学重难点1.教学重点:理解并掌握勾股定理。

2.教学难点:证明勾股定理。

五. 教学方法采用探究式教学法,以学生为主体,教师为指导,引导学生通过观察、操作、思考、讨论、验证等探究活动,发现并证明勾股定理。

六. 教学准备1.教学课件。

2.直角三角形模型。

3.勾股定理相关背景资料。

七. 教学过程1.导入(5分钟)通过展示直角三角形的三条边长,引导学生思考:如何计算直角三角形的面积?从而引出勾股定理的探究。

2.呈现(10分钟)展示勾股定理的背景资料,让学生了解勾股定理的起源和发展,感受数学与实际生活的联系。

3.操练(10分钟)学生分组进行实验,用直角三角形模型测量三边长,计算面积,观察并记录实验结果。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)学生汇报实验结果,分享发现。

教师引导学生总结勾股定理的表述:直角三角形两条直角边的平方和等于斜边的平方。

5.拓展(10分钟)学生分组讨论,探索如何证明勾股定理。

教师引导学生运用相似三角形的性质进行证明。

6.小结(5分钟)教师引导学生总结本节课的学习内容,巩固勾股定理的理解和记忆。

探索勾股定理-教学反思

探索勾股定理-教学反思

教学反思
依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行.本节课首先创设情境激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得出勾股定理.
勾股定理的验证既是本节课的重点,也是本节课的难点.为了突破这一难点,本节课设计了拼图活动,极大地调动了学生的积极性,先让学生从形上感知,再层层设问,从面积(数)入手.这样学生较容易地突破了本节课的难点.
勾股定理作为“千古第一定理”,其魅力在于其所具有的历史价值和应用价值,因此,应注意充分挖掘其内涵.加深学生对勾股定理文化的理解.。

浙教版数学八年级上册《2.7 探索勾股定理》教案

浙教版数学八年级上册《2.7 探索勾股定理》教案

浙教版数学八年级上册《2.7 探索勾股定理》教案一. 教材分析《探索勾股定理》这一节的内容,主要让学生通过探究、实践、验证勾股定理,培养学生的探究能力和实践能力。

教材中给出了丰富的探究活动,让学生在活动中体验到数学的乐趣。

二. 学情分析八年级的学生已经学习了相似多边形的性质,对图形的变换有了一定的了解。

同时,学生已经学习了锐角三角函数,对三角形的性质也有了一定的认识。

因此,学生具备了探索勾股定理的基本知识。

三. 教学目标1.让学生经历探索勾股定理的过程,理解并掌握勾股定理。

2.培养学生运用几何知识解决实际问题的能力。

3.培养学生的合作交流能力,提高学生的数学素养。

四. 教学重难点1.重点:让学生探索并理解勾股定理。

2.难点:如何引导学生运用几何知识解决实际问题。

五. 教学方法采用“问题驱动”的教学方法,引导学生通过自主探究、合作交流,发现并证明勾股定理。

六. 教学准备1.准备相关的几何图形,如直角三角形、直角梯形等。

2.准备探究活动所需的工具,如直尺、圆规等。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的直角三角形,如篮球架、房屋建筑等,引导学生关注勾股定理在生活中的应用。

2.呈现(10分钟)呈现探究活动,让学生分组进行讨论,每组选择一个几何图形,尝试运用已学的几何知识,探索并证明勾股定理。

3.操练(10分钟)学生在课堂上进行探究活动,教师巡回指导,解答学生的疑问。

4.巩固(5分钟)学生展示自己的探究成果,其他学生进行评价,教师总结并讲解勾股定理的运用。

5.拓展(5分钟)引导学生运用勾股定理解决实际问题,如计算直角三角形的边长等。

6.小结(5分钟)教师引导学生总结本节课的学习内容,巩固勾股定理的知识。

7.家庭作业(5分钟)布置相关的练习题,让学生课后巩固所学知识。

8.板书(5分钟)教师在黑板上板书勾股定理的证明过程,加深学生的记忆。

教学过程每个环节所用的时间如上所示,共计40分钟。

教学情境分析在教学《探索勾股定理》这一课时,我创设了丰富的教学情境,以激发学生的学习兴趣和探究欲望。

浙教版八年级数学上册《探索勾股定理》评课稿

浙教版八年级数学上册《探索勾股定理》评课稿

浙教版八年级数学上册《探索勾股定理》评课稿一、课程背景介绍《探索勾股定理》是浙教版八年级数学上册的一篇重要学习内容。

本课主要通过探索勾股定理的几何解释和应用,帮助学生深入理解勾股定理的几何本质和实际应用,培养学生的几何思维和问题解决能力。

二、教学目标设定本节课的教学目标主要包括:1.理解勾股定理的几何意义;2.能够应用勾股定理解决实际问题;3.培养学生良好的几何思维和问题解决能力。

三、教学重点与难点本节课的教学重点主要包括:•勾股定理的几何解释和证明;•勾股定理在实际问题中的应用。

本节课的教学难点主要包括:•培养学生的几何思维和问题解决能力;•培养学生的数学推理和证明能力。

四、教学内容分析本节课主要分为以下几个部分:1.引入:通过实际生活中的例子引入勾股定理的概念。

2.探索:通过几何图形和实际应用问题,引导学生从不同角度思考勾股定理的几何本质。

3.归纳总结:通过总结讨论,引导学生得出勾股定理的几何解释和应用结论。

4.练习:通过练习题,巩固学生对勾股定理的理解和应用能力。

五、教学过程安排1. 引入阶段首先,我将通过一个有趣的例子引入勾股定理的概念。

例如,说明在直角三角形中,直角边和斜边之间的关系。

2. 探索阶段在引入阶段之后,我将组织学生进行实际探索。

通过给定的几何图形和实际问题,让学生自行思考并提出猜想。

例如,给出一个直角三角形,并要求学生找出直角边和斜边之间的关系。

3. 归纳总结阶段在学生进行了一定的探索之后,我将组织整理讨论,并引导学生共同总结出勾股定理的几何解释和应用结论。

同时,我还会对学生的思考方法和推理过程进行指导和点评。

4. 练习阶段在归纳总结阶段之后,我将通过一些练习题帮助学生巩固对勾股定理的理解和应用能力。

这些练习题将包括直角三角形的边长计算、角度测量等方面的题目。

六、教学方法与手段为了达到教学目标,我将采用多种教学方法与手段:1.启发式教学:通过引入、探索和总结让学生自主思考,并激发学生的学习兴趣和求知欲。

八年级数学上册 2.6探索勾股定理教案 浙教版

八年级数学上册 2.6探索勾股定理教案 浙教版

2.6 探索勾股定理(1)一、教学目标:知识技能:1、经历探索、验证勾股定理的过程,发展推理能力。

2、理解掌握勾股定理,会用勾股定理解决实际问题。

过程方法:以教师为主导、学生为主体的学习方式,让学生经历动手操作、实验观察、归纳猜想、验证发现勾股定理的过程,培养学生探索能力,发展学生数形结合的数学思想方法。

情感态度:1、通过引导学生动手操作观察发现、大胆猜想、自主探究、合作交流,使学生在合作中体验到数学活动充满了探索欲创造,使学生获得成功的体验,增强自信心,提高学习数学的兴趣。

2、培养学生的爱国主义精神。

二、教学重点与难点分析重点:勾股定理难点:勾股定理的证明三、教学准备学生:每一合作小组课前制作四个全等的直角三角形硬纸片。

教师:制作多媒体课件和准备边长1厘米的方格纸(全班每人一张)四、教学过程1、创设情境导入新课利用《九章算术》中的古题:“在《九章算术》中记载了一道有趣的数学题:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”这道题的意思是说:有一个边长为1丈的正方形水池,在池的中央长着一根芦苇,芦苇露出水面1尺。

若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。

问水有多深?芦苇有多长?”导入新课。

【设计说明】此题虽为古代数学题,但却是学生生活中常见的问题。

提出问题,但并不急于解决,意在激发学生的求知欲望。

2、动手探索发现定理(1)在方格纸上(方格边长为1cm),作三个直角三角形,使其顶点在格点上且两条直角边长分别为3cm和4cm,6cm 和8cm ,5cm 和12cm;(2)分别测量这三个直角三角形斜边的长;(3)根据所测得的结果填写课本P38页的表格。

(4)观察表中后两列的数据。

猜想在直角三角形中,三边长之间有什么关系?得出猜想后提出:(5)再任意画一个直角三角形试一试。

得出:有必要来验证一下所得猜想的正确性。

【设计说明】通过已知具体边长的直角三角形的画图、测量、计算、比较,得出猜想,意在锻炼学生的归纳、概括能力。

浙教版初二数学上册:《探索勾股定理》教案

浙教版初二数学上册:《探索勾股定理》教案

浙教版初二数学上册:2教学目标1、经历用数格子的方法探究勾股定理的过程,进一步进展学生的合情推理意识,主动探究的适应,进一步体会数学与现实生活的紧密联系.2、探究并明白得直角三角形的三边之间的数量关系,进一步进展学生的说理和简单推理的意识及能力.重点、难点重点:了解勾股定理的由来并能用它解决一些简单问题.难点:勾股定理的发觉.教学过程一、创设问题的情境,激发学生的学习热情我们明白,任意三角形的三条边必须满足定理:三角形的两边之和大于第三边.关于等腰三角形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相等的专门关系.那么关于直角三角形的边,除满足三边关系定理外,它们之间也存在着专门的关系,这确实是我们这一节要研究的问题:勾股定理.出示投影.并回答:1、观看图,正方形A中有()个小方格,即A的面积为()个面积单位.正方形B中有()个小方格.即B的面积为()个面积单位.正方形C中有()个小方格,即C的面积为()个面积单位.2、你是如何样得出上面结果的?在学生交流回答的基础上教师接着发问.3、图中,A、B、C之间的面积之间有什么关系?在学生交流后形成共识老师板书.A+B=C,接着提出图中A、B、C 的关系呢?以直角三角形两直角边为边的正方形面积和,等于以斜边为边的正方形面积.二、勾股定理直角三角边的两直角边的平方和等于斜边的平方.这确实是闻名的“勾股定理”.也确实是说:假如直角三角形的两直角边为a、b,斜边为c.那么2c22+.ba=我国古代称直角三角形的较短的直角边为勾,较长的直角边为股,斜边为弦,这确实是勾股定理的由来.三、组织学生做随堂练习四、作业课本P75页习题的1、2、3、4.。

浙教版数学八年级上册《2.7 探索勾股定理》教案1

浙教版数学八年级上册《2.7 探索勾股定理》教案1

浙教版数学八年级上册《2.7 探索勾股定理》教案1一. 教材分析《2.7 探索勾股定理》是浙教版数学八年级上册的一个重要内容。

这一节主要让学生通过探究、发现、证明勾股定理,培养学生的逻辑思维能力和空间想象能力。

教材通过丰富的情境和实例,引导学生感受勾股定理的美妙和应用,激发学生学习数学的兴趣。

二. 学情分析学生在学习这一节之前,已经学习了平面几何的基本概念和性质,具备了一定的逻辑思维能力和空间想象能力。

但对于证明勾股定理,可能还存在一定的困难。

因此,在教学过程中,需要关注学生的学习情况,适时给予引导和帮助。

三. 教学目标1.理解勾股定理的内容和意义,掌握勾股定理的证明方法。

2.培养学生的逻辑思维能力和空间想象能力。

3.感受数学的美妙和应用,激发学生学习数学的兴趣。

四. 教学重难点1.教学重点:理解勾股定理的内容和意义,掌握勾股定理的证明方法。

2.教学难点:证明勾股定理,理解勾股定理的证明过程。

五. 教学方法采用问题驱动法、合作探究法、讲授法等教学方法,引导学生主动参与学习,提高学生的学习效果。

六. 教学准备1.教学课件:制作详细的课件,展示勾股定理的证明过程。

2.教学素材:准备一些勾股定理的应用实例,用于巩固和拓展学习。

七. 教学过程1.导入(5分钟)通过展示直角三角形的模型,引导学生回顾直角三角形的性质,为新课的学习做好铺垫。

2.呈现(10分钟)展示勾股定理的定义和表述,引导学生理解勾股定理的意义。

同时,呈现勾股定理的证明过程,让学生初步感受证明的方法。

3.操练(10分钟)让学生分组合作,运用勾股定理解决一些实际问题,巩固对勾股定理的理解。

4.巩固(10分钟)通过一些练习题,检验学生对勾股定理的掌握程度,并对学生的解答进行点评和指导。

5.拓展(10分钟)引导学生探索勾股定理的更多应用,如在实际工程中的运用,激发学生学习数学的兴趣。

6.小结(5分钟)对本节课的学习内容进行总结,强调勾股定理的重要性和应用价值。

八年级数学探索勾股定理说课稿教案 浙教版 教案

八年级数学探索勾股定理说课稿教案 浙教版 教案

探索勾股定理-说课稿一、教材分析(一)教材所处的地位与作用“探索勾股定理”是义务教育课程标准实验教科书八年级第二章第六节内容。

“勾股定理”是安排在学生学习了三角形、全等三角形、等腰三角形等有关知识之后,它揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在几何学中占有非常重要的位置。

同时,勾股定理在生产、生活中也有很大的用途。

(二)教学目标:综上分析及教学大纲要求,本课时教学目标制定如下:1、知识目标:●知道勾股定理的由来,初步理解割补拼接的面积证法。

●掌握勾股定理,通过动手实践理解勾股定理的证明过程。

●能利用勾股定理进行简单的几何计算。

2、能力目标●在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法,培养学生的观察力、抽象概况能力、创造想象能力以及科学探究问题的能力。

3、情感目标:●通过实践、猜想、拼图、证明等操作使学生深刻感受数学知识的发生发展过程。

●介绍中国古代在勾股定理研究方面取得的伟大成就,激发学生爱国情感。

(三)教学重、难点本课重点是掌握勾股定理的内容及其应用。

由于八年级学生的构造能力还较低以及对面积证法的不熟悉,因此,勾股定理的证明是本课的难点。

二、教法与学法分析:教学方法与手段:针对八年级学生的知识结构和心理特征,本节课选择引导探索法,由浅入深,由特殊到一般地提出问题。

引导学生自主探索,合作交流。

并利用教具与多媒体进行教学。

学法分析:在教师的组织引导下,采用自主探索、合作交流方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动口、动脑的能力,使学生真正成为学习的主体。

三、教学过程:根据以上的综合分析,我设计了这样的教学流程:创设情境导入新课—动手操作探求新知—证明结论得到定理—应用知识回归生活—总结反思布置作业五部分。

至此,使各个教学目标在整个教学过程中,逐步得到落实。

(一)创设情境导入新课:(二)以观看台风麦莎的实况录像,提出问题:受台风麦莎影响,一棵树在离地面4米处断裂,树的顶部落在离树跟底部3米处,这棵树折断前有多高?目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?” 的问题。

“探索勾股定理”教学设计及反思

“探索勾股定理”教学设计及反思

“探索勾股定理”教学设计及反思一、教材分析(一)教材所处的地位八年级第二章第六节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的理解。

(二)根据课程标准,本课的教学目标是:1、体验勾股定理的探索过程,进一步发展学生的合情推理意识,主动探究的习惯,体会数学与现实生活的紧密联系。

2、探索并理解直角三角形三边之间的数量关系,进一步发展学生的说理和简单的推理意识及能力。

3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

(三)本课的教学重点:勾股定理的由来,并能用它来解决一些简单的几何问题。

本课的教学难点:用面积法(拼图法)证明勾股定理。

二、教法与学法分析:教法分析:针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。

引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。

学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为的学习主体。

教学过程设计:1、创设情境,引入勾股定理教师:先请同学们欣赏一棵“美丽的勾股树”,漂亮吗?(几何画板课件的动态展示,创设的“美丽”却又“神秘”情境,能够充分调动不同层次学生的“有意识注意”及积极主动性,激发他们的学习愿望和参与动机,体验“数学的美”.)再请同学们欣赏2002年在北京召开的世界数学家大会的会徽,它是经过艺术处理的古代弦图.这两个图形中蕴藏着反映自然界规律的一条重要结论,它历史悠久,在数学的发展中起着重要的作用,现实中也有广泛的应用——勾股定理. (课件闪烁突出“弦图”右图,并从图片中分离出如上两图形.引出课题.).2、勾股定理的探索及验证(1)实验操作(观察、猜想、归纳) 问题一:图1最初来源于古希腊著名的数学家毕达哥拉斯凝望的地砖,他觉得等腰直角△ABC 的三条直角边之间一定有某种数量关系?你们能看出来吗?预设:222AB BCAC=+追问:你是怎么看出来的?预设:222222ABBCACS S S AC S BC S AB S ABDEACHI CBFG ACHI CBFG ABED =+∴=+===,,,(可用文字替代说明)问题二:等腰直角三角形的三条直角边满足这样的数量关系,是否一般的直角三角形也具备这样的结论呢?教师用几何画板动态显示的优越条件,提供足够充分的典型材料——形状、大小、位置发生变化的各种直角三角形,让学生观察分析,归纳概括,探索出直角三角形三边之间的关系式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.6探索勾股定理教学案例分析与反思在教学中,设法使学生在接受数学知识的过程中,融入主动的探究、发现等活动,让学生有机会通过自己的归纳概括获取知识,让学生感受到数学来自生活,数学就在身边,数学就在自已的手中。

以下教学案例就是在新课程标准下的一个尝试。

教材分析:这节课是九年制义务教育初级中学教材浙教版八年级第二章第六节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起到重要的作用,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

教学目标:1、学习掌握勾股定理及内容,并能进行简单证明。

2、培养动口、动手、动脑的综合能力,并感受从具体到抽象的认识规律。

教学重点:勾股定理的证明和应用。

教学难点:拼图、用计算面积的方法证明勾股定理。

教学方法:1、教师教法:引导发现、尝试指导、实验探究相结合。

2、学生学法:积极参与、动手动脑与主动发现相结合。

师生互动活动设计:教学过程:1创设情景,引入新课师:(结合动画讲故事)西周开国时期,周公非常爱才,他和喜欢钻研数学的商高是好朋友。

有一天,商高对周公说,最近我又有一个新的发现,把一根长为7的直尺折成直角,使一边长(勾)为3,另一边长(股)为4,连接两端(弦)得一个直角三角形,周公您猜一猜第三边的长等于多少?周公摇头不知道。

同学们,你们猜猜是多少?生:5!生:不知道!师:不知道也没关系,我们来量一量斜边的长就知道了。

(动画演示)师:后来又发现,直角边为6、8的直角三角形的斜边的长是10。

这两组数据是否具有某种共同点呢?带着这个问题人们对直角三角形做了进一步的研究,通过计算三条边长的平方发现,直角三角形中的三条边长之间还真有一种特殊的关系。

同学们也来算一算、猜一猜看,它们之间到底有什么样的关系呢?生:32+42=52、62+82=102师:这是两组特殊数字,但由此引发一个有待我们深入思考的问题,看哪位同学有新问题要提?生:一个任意的直角三角形的三边是否也有这种相等关系呢?师:这个问题提得好!我们用几何画板再做一个直角三角形来多实验几次,请注意观察。

(任意改变三边的长,度量、计算显示相等关系依然不变。

)师:通过实验,可以得到什么结论?(或问同学们发现直角三角形的三边有什么样的关系?)请同桌商量讨论后把你们的结论用文字语言或数学式子表达出来。

生:直角三角形的三边满足:两直角边的平方和等于斜边的平方。

即 a2+b2=c2师:同学们概括得非常好!这个结论尽管是通过多次实验得到的,但要说明它对任意的直角三角形都成立,还有待进行证明。

首先我们要明确,在什么图形中要证明什么结论?生:在直角三角形中证明a2+b2=c2师:怎样证明呢?(学生茫然)这个问题是有点难度,让我们先来观察这个要证明的等式,看等式中的a、b、c表示什么?生:表示直角三角形的三条边长。

师:a2、b2、c2是边长的平方,由边长的平方可联想到什么图形?生:正方形。

正方形的面积。

师:对整个等式你们怎样理解?生:等式可以理解为两个正方形的面积和等于一个正方形的面积。

师:那好,下面我们就来做一个拼正方形的游戏,看能不能对我们证明结论有些帮助。

(这一环节利用故事情节引入,是为了引起学生的注意,激发学生的学习兴趣,调动学生满腔热情地投入学习过程。

在问题情景中引导学生提问,是为了培养学生问问题的意识,让学生主动地带着问题在实验的过程中去感受数学的再发现。

)2、动手拼图,合作探索定理证明方法师:现在,前后4人为一个小组,老师给每小组提供了拼图模型两套,要求每一套模型拼成一个没有空隙且不重叠的正方形。

拼好后请上台展示你们的成果,比一比,看哪一组完成任务最快。

(这里充分利用了初中学生的好奇心和好胜心,给静态知识注入了活力,同时在课堂上增添了观察、探究等可形成能力的新因素。

这样不仅可以调动学生的已有经验,沟通相关知识,而且还能培养学生观察、动手实践的能力。

另外,在整个拼图过程中,学生自始至终处于主体位置上,老师只是他们的学习合作伙伴,在巡视的同时,给个别小组以适当指导。

这样的设计体现了数学活动的教育思想,有利于学生在建构的环境中,真正主动的建构自己的理解。

)待各组同学基本完成后,挑选出一组拼图和同学们共同分析:师:同学们对比自己拼成的两个图形,看看它们有什么共同点和不同点?生:都是边长相等的正方形,但拼图的模型不同。

生:这两个正方形的面积相等。

师:这两个正方形的面积怎样计算呢?通过你的计算能否证明a2+b2=c2?请试一试。

师:看哪两位同学愿意上来写出证明过程。

生甲:证明:∵两个正方形的面积相等,∴4×(ab÷2)+a2+b2=4×(ab÷2)+c2∴a2+b2=c2生乙:证明:∵(a+b)2=4×(ab÷2)+c2∴a2+2ab+ b2=2ab+ c2∴a2+ b2= c2(证明逐步深入,是为了启发学生把形的问题转化为数的问题,联想到用计算面积的方法证明a2+ b2= c2,从而突破教学难点。

)师:两位同学刚才用两种不同的方法证明了实验得出的结论,这就是我们今天要学习的勾股定理。

请两位同学再谈谈你们的证明思路好吗?生甲:图(A)的面积用四个全等的直角三角形的面积加两个正方形的面积,图(B)的面积用四个全等的直角三角形的面积加一个正方形的面积,利用面积相等就证得结论。

生乙:我把图(B)用两种不同方法计算它的面积也能证得结论。

师:说得非常好!甲同学的证明思路正好符合我们前面对等式的理解;乙同学的证明思路启发我们还可以通过拼各种不同的图形来证明勾股定理。

美国第十二任总统伽菲尔德有一天外出散步,遇到两个伏在石板上冥思苦想的男孩,总统上前问他们遇到了什么麻烦?一男孩说:“先生,您知道怎样证明勾股定理吗?”总统一时语塞,无法解释,于是匆忙回家研究,得出了拼直角梯形证明勾股定理的方法。

(多媒体展示拼图)按这个拼图也能证明勾股定理吗?请试试看。

生:根据拼图,用两种方法计算梯形的面积就能证明勾股定理。

师:对!这种思路很好。

证明勾股定理的方法很多,有兴趣的同学课后可以上网查询相关资料,也可以尝试拼出不同的图形对勾股定理给予证明。

(多媒体展示拼图,提供网址。

启发学生一题多证,多题归一是为了培养学生思维的灵活性和创新性。

)下面我们来看看勾股定理能帮助我们解决什么问题?3课堂练习(1)在Rt△中,∠C=90°,BC=a ,AC=b,AB=c(a)已知a=1,b =2,则c=(b) 已知a=15,c=17,则b=(c) 已知c=25,b=15,则a =(2)一个底边长为6,腰长为5的等腰三角形,求底边上的高和面积。

(3)李明上学经过的路旁有一小湖,隔湖相对有两棵树A、B,但无法直接测量出A、B之间的距离。

请你帮他设计一个解决问题的方案好吗?(这是一道与生活实际贴近的开放题,鼓励学生用所学知识解决实际问题,培养学生应用数学的意识。

)4小结师:通过以上练习,同学们可以感受到勾股定理有什么作用?生:用勾股定理可以解决在直角三角形中已知两条边求第三边的问题。

师:说得非常好!在这一节课中,你们还学会了什么?生:通过拼图学会了用计算面积的方法证明勾股定理。

师:同学们总结得非常好!勾股定理的应用非常广泛,它是联系数学中数与形的第一个定理,是数形结合思想的最初体现,自从我国古代数学家发现勾股定理后,它对数学产生了巨大的作用和影响,我们不仅要为之自豪,更要切实学好它。

【教学反思】学校课堂教学中学生的创新活动,绝大多数不是一种发明创造,而是创新素质的表现和培养过程. 学生的创新活动得到什么结论是次要的,重要的是使学生的创新素质得到培养,这是中学数学课堂教学创新教育的价值取向.本节课的教学过程由激趣、质疑、实验、活动、探法、交流、延伸七个步骤构成.本节课的成功之处:1、故事激趣收到了良好效果,学生产生了质疑意识,教师顺势利导,提出问题,紧扣了中心。

2、由于实现了教师角色的转变,教法的创新,师生平等,关系融洽,气氛活跃,课堂民主,学生积极参与,在他们心底涌现了一股浓浓的学习欲望.3、面向全体学生,以人为本的教育理念落实到位,主体性得到充分体现.由于实现了学生角色的转变,学法的创新,整节课几乎都是学生自主实验、自主探索、自主完成由形到数的转化,学生的主动性及合作精神都体现出来了。

教师只是作为他们的一分子参与研究,起组织、引导的作用.4、通过动手实验,并经推理论证,学生取得了勾股定理的新证法研究成果,一些新思路延伸到课外研究。

5、研究成果不仅极大地丰富了学生对勾股定理的证明的认识,而且学生从中获得了利用已知探求未知数学知识的能力和方法,创新素质得到了培养和提高,这对学生今后的学习和将来的发展是大有裨益的。

【教学评析】这节课主要采用讲、看、思、问、做等多种教学手段,通过激趣、质疑、实验、活动、交流等环节,围绕如何培养学生的创新意识、创新精神和创新能力,进行了很有价值的探索。

本节课的教学活动分以下几个阶段进行:第一阶段是教师讲述“折尺的学问”的故事引入新课,以激发兴趣,鼓励质疑,意在培养学生的探究意识。

———交流收获,,第二阶段是通过计算猜测、实验探究直角三角形三边之间的关系,学生总结勾股定理的证明方法和步骤。

第三阶段是拼图验证再发现的结论。

此时,学生的兴趣大增,利用学具独立或分组进行拼图实验。

更加强了学生的创新思维、创新技能、创新情感和创新人格的培养。

第四阶段是随堂训练掌握定理的基本应用。

第五阶段是归纳小结,教师在充分肯定学生取得成绩的同时,再次引导学生将研究延伸到课外。

总之,本节课之所以取得令人满意的教学效果,是因为教师树立了新的教育观念,转变了教师角色,将以育人为本的理念落到实处;师生平等,课堂民主;教法创新,精心设计和准备,科学的组织和安排,合理使用了多媒体教具和学具。

相关文档
最新文档