2018年高考理科数学复习教学案:第二部分 板块(一) 系统思想方法——融会贯通 Word版含解析
【通用版】2018年高考理科数学二轮复习:教学案全集(含答案)
[全国卷3年考情分析][题点·考法·全练]1.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C .{1,3}D .{1,5}解析:选C 因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.2.(2018届高三·安徽名校阶段测试)设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <32B.⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪32<x ≤3 解析:选B A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <32. 3.(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:选B 因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.4.已知集合P ={n |n =2k -1,k ∈N *,k ≤50},Q ={2,3,5},则集合T ={xy |x ∈P ,y ∈Q }中元素的个数为( )A .147B .140C .130D .117解析:选B 由题意得,y 的取值一共有3种情况,当y =2时,xy 是偶数,与y =3,y =5时,没有相同的元素,当y =3,x =5,15,25,…,95时,与y =5,x =3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140.5.已知集合A =⎩⎨⎧⎭⎬⎫-1,12,B ={x |mx -1=0,m ∈R},若A ∩B =B ,则所有符合条件的实数m 组成的集合是( )A .{-1,0,2} B.⎩⎨⎧⎭⎬⎫-12,0,1 C .{-1,2}D.⎩⎨⎧⎭⎬⎫-1,0,12解析:选A 因为A ∩B =B ,所以B ⊆A .若B 为∅,则m =0;若B ≠∅,则-m -1=0或12m -1=0,解得m =-1或2.综上,m ∈{-1,0,2}. [准解·快解·悟通][题点·考法·全练] 1.(2017·天津高考)设x∈R,则“2-x≥0”是“|x-1|≤1”的() A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选B由2-x≥0,得x≤2,由|x-1|≤1,得0≤x≤2.∵0≤x≤2⇒x≤2,x≤2⇒/ 0≤x≤2,故“2-x ≥0”是“|x -1|≤1”的必要而不充分条件.2.(2017·惠州三调)设函数y =f (x ),x ∈R ,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选C 设f (x )=x 2,y =|f (x )|是偶函数,但是不能推出y =f (x )的图象关于原点对称.反之,若y =f (x )的图象关于原点对称,则y =f (x )是奇函数,这时y =|f (x )|是偶函数,故选C.3.(2017·浙江高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C 因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.4.已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( ) A .[2,+∞) B .[1,+∞) C .(2,+∞)D .(-∞,-1]解析:选A 由3x +1<1,可得3x +1-1=-x +2x +1<0,所以x <-1或x >2,因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2. 5.已知条件p :x +y ≠-2,条件q :x ,y 不都是-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 因为p :x +y ≠-2,q :x ≠-1或y ≠-1, 所以綈p :x +y =-2,綈q :x =-1且y =-1,因为綈q ⇒綈p 但綈p ⇒/綈q ,所以綈q 是綈p 的充分不必要条件,即p 是q 的充分不必要条件.[准解·快解·悟通][题点·考法·全练]1.下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若tan x =3,则x =π3”的逆否命题解析:选B 对于选项A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故选项A 为假命题;对于选项B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知选项B 为真命题;对于选项C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故选项C 为假命题;对于选项D ,命题“若tan x =3,则x =π3”为假命题,故其逆否命题为假命题,综上可知,选B.2.(2015·全国卷Ⅰ)设命题p :∃n ∈N ,n 2>2n ,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2n C .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:选C 因为“∃x ∈M ,p (x )”的否定是“∀x ∈M ,綈p (x )”,所以命题“∃n ∈N ,n 2>2n ”的否定是“∀n ∈N ,n 2≤2n ”.3.(2017·山东高考)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p ∧qB .p ∧綈qC .綈p ∧qD .綈p ∧綈q解析:选B 当x >0时,x +1>1,因此ln(x +1)>0,即p 为真命题;取a =1,b =-2,这时满足a >b ,显然a 2>b 2不成立,因此q 为假命题.由复合命题的真假性,知B 为真命题.[准解·快解·悟通][专题过关检测]一、选择题1.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B=() A.{1}B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.2.(2017·成都一诊)命题“若a>b,则a+c>b+c”的否命题是()A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:选A命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”.3.(2017·广西三市第一次联考)设集合A={x|8+2x-x2>0},集合B={x|x=2n-1,n ∈N*},则A∩B等于()A.{-1,1} B.{-1,3}C.{1,3} D.{3,1,-1}解析:选C∵A={x|-2<x<4},B={1,3,5,…},∴A ∩B ={1,3}.4.(2017·郑州第二次质量预测)已知集合A ={x |log 2x ≤1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪1x>1,则A ∩(∁R B )=( )A .(-∞,2]B .(0,1]C .[1,2]D .(2,+∞)解析:选C 因为A ={x |0<x ≤2},B ={x |0<x <1},所以A ∩(∁R B )={x |0<x ≤2}∩{x |x ≤0或x ≥1}={x |1≤x ≤2}.5.(2017·北京高考)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝⎛⎦⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎫π2,π时,m ,n 不共线. 故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件.6.(2018届高三·湘中名校联考)已知集合A ={x |x 2-11x -12<0},B ={x |x =2(3n +1),n ∈Z},则A ∩B 等于( )A .{2}B .{2,8}C .{4,10}D .{2,4,8,10}解析:选B 因为集合A ={x |x 2-11x -12<0}={x |-1<x <12},集合B 为被6整除余数为2的数.又集合A 中的整数有0,1,2,3,4,5,6,7,8,9,10,11,故被6整除余数为2的数有2和8,所以A ∩B ={2,8}.7.(2017·石家庄调研)设全集U =R ,集合A ={x |x ≥1},B ={x |(x +2)(x -1)<0},则( ) A .A ∩B =∅ B .A ∪B =U C .∁U B ⊆AD .∁U A ⊆B解析:选A 由(x +2)(x -1)<0,解得-2<x <1,所以B ={x |-2<x <1},则A ∩B =∅,A ∪B ={x |x >-2},∁U B ={x |x ≥1或x ≤-2},A ⊆∁U B ,∁U A ={x |x <1},B ⊆∁U A ,故选A.8.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25解析:选A 本题关键看清-1和1本身也具备这种运算,这样所求集合即由-1,1,3和13,2和12这“四大”元素所能组成的集合.所以满足条件的集合的个数为24-1=15. 9.(2017·郑州第一次质量预测)已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 命题p 等价于0<a <4.命题q ,对∀x ∈R ,ax 2+ax +1>0,必有a =0或⎩⎪⎨⎪⎧a >0,a 2-4a <0,则0≤a <4,所以命题p 是命题q 的充分不必要条件. 10.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝⎛⎭⎫0,π2,f (x )<0,则( ) A .p 是假命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0 B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 C .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 D .p 是真命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )>0 解析:选C 因为f ′(x )=3cos x -π,所以当x ∈⎝⎛⎭⎫0,π2 时,f ′(x )<0,函数f (x )单调递减,即对∀x ∈⎝⎛⎭⎫0,π2,f (x )<f (0)=0恒成立,所以p 是真命题.而p 的否定为∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0,故选C. 11.已知命题p :函数f (x )=2ax 2-x -1在(0,1)内恰有一个零点;命题q :函数y =x 2-a在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞)解析:选C 由题意可得,对命题p ,令f (0)·f (1)<0,即-1·(2a -2)<0,得a >1;对命题q ,令2-a <0,即a >2,则綈q 对应的a 的范围是(-∞,2].因为p 且綈q 为真命题,所以实数a 的取值范围是(1,2].12.在下列结论中,正确的个数是( )①命题p :“∃x 0∈R ,x 20-2≥0”的否定形式为綈p :“∀x ∈R ,x 2-2<0”;②O 是△ABC 所在平面上一点,若OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→,则O 是△ABC 的垂心;③“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N”的充分不必要条件;④命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”. A .1 B .2 C .3D .4解析:选C 由特称(存在性)命题与全称命题的关系可知①正确. ∵OA ―→·OB ―→=OB ―→·OC ―→,∴OB ―→·(OA ―→-OC ―→)=0,即OB ―→·CA ―→=0, ∴OB ―→⊥CA ―→.同理可知OA ―→⊥BC ―→,OC ―→⊥BA ―→,故点O 是△ABC 的垂心,∴②正确. ∵y =⎝⎛⎭⎫23x是减函数,∴当M >N 时,⎝⎛⎭⎫23M <⎝⎛⎭⎫23N ,当⎝⎛⎭⎫23M >⎝⎛⎭⎫23N 时,M <N . ∴“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N ”的既不充分也不必要条件,∴③错误. 由逆否命题的写法可知,④正确. ∴正确的结论有3个. 二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________________________.解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x-a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R},集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3}, 所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3}. 则∁U (M ∪P )={(2,3)}. 答案:{(2,3)}15.已知命题p :不等式xx -1<0的解集为{x |0<x <1};命题q :在△ABC 中,“A >B ”是“sin A >sin B ”成立的必要不充分条件.有下列四个结论:①p 真q 假;②“p ∧q ”为真;③“p ∨q ”为真;④p 假q 真,其中正确结论的序号是________.解析:解不等式知,命题p是真命题,在△ABC中,“A>B”是“sin A>sin B”的充要条件,所以命题q是假命题,所以①③正确.答案:①③16.a,b,c为三个人,命题A:“如果b的年龄不是最大,那么a的年龄最小”和命题B:“如果c不是年龄最小,那么a的年龄最大”都是真命题,则a,b,c的年龄由小到大依次是________.解析:显然命题A和B的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A可知,当b不是最大时,则a是最小,所以c最大,即c>b>a;而它的逆否命题也为真,即“若a的年龄不是最小,则b的年龄是最大”为真,即b>a>c.同理,由命题B为真可得a>c>b或b>a>c.故由A与B均为真可知b>a>c,所以a,b,c三人的年龄大小顺序是:b最大,a次之,c最小.答案:c,a,b送分专题(二)函数的图象与性质[全国卷3年考情分析][题点·考法·全练]1.(2017·广州综合测试)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,1-log 2x ,x >0,则f (f (-3))=( ) A.43B .23C .-43D .3解析:选D 因为f (-3)=2-2=14,所以f (f (-3))=f ⎝⎛⎭⎫14=1-log 214=3. 2.函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 要使函数y =1-x 22x 2-3x -2有意义,则⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以该函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1. 3.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x +x +12>1,显然成立.当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x 的取值范围是⎝⎛⎭⎫-14,+∞.答案:⎝⎛⎭⎫-14,+∞ 4.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R)是偶函数,且它的值域为(-∞,2],则该函数的解析式为________.解析:由题意知:a ≠0,f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图象关于y 轴对称,所以2a +ab =0,b =-2.所以f (x )=-2x 2+2a 2,因为它的值域为(-∞,2],所以2a 2=2.所以f (x )=-2x 2+2.答案:f (x )=-2x 2+25.已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.解析:当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,y =(1-2a )x +3a 必须取遍(-∞,1]内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.答案:⎣⎡⎭⎫0,12 [准解·快解·悟通][题点·考法·全练]1.(2018届高三·安徽名校阶段性测试)函数y =x 2ln|x ||x |的图象大致是( )解析:选D 易知函数y =x 2ln|x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x+1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图象可知D正确,故选D.2.已知函数f (x -1)是定义在R 上的奇函数,且在[0,+∞)上是增函数,则函数f (x )的图象可能是( )解析:选B 函数f (x -1)的图象向左平移1个单位,即可得到函数f (x )的图象,因为函数f (x -1)是定义在R 上的奇函数,所以函数f (x -1)的图象关于原点对称,所以函数f (x )的图象关于点(-1,0)对称,排除A 、C 、D ,选B.3.设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是( )A .(-∞,-1]∪[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)解析:选C 因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1.画出函数y =f (x )的图象(如图所示),由于函数g (x )是二次函数,值域不会是选项A 、B ,易知,当g (x )的值域是[0,+∞)时,f (g (x ))的值域是[0,+∞).[准解·快解·悟通][题点·考法·全练]1.下列函数中,满足“∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]<0”的是()A.f(x)=1x-x B.f(x)=x3C.f(x)=ln x D.f(x)=2x解析:选A“∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)·[f(x1)-f(x2)]<0”等价于f(x)在(0,+∞)上为减函数,易判断f(x)=1x-x满足条件.2.(2017·广西三市第一次联考)已知f(x)是定义在R上的偶函数,且在区间(-∞,0]上单调递增,若实数a满足f(2log3a)>f(-2),则a的取值范围是()A.(-∞,3) B.(0,3)C.(3,+∞) D.(1,3)解析:选B∵f(x)是定义在R上的偶函数,且在区间(-∞,0]上单调递增,∴f(x)在区间[0,+∞)上单调递减.根据函数的对称性,可得f(-2)=f(2),∴f(2log3a)>f(2).∵2log 3a >0,f (x )在区间[0,+∞)上单调递减,∴0<2log 3a <2⇒log 3a <12⇒0<a < 3.3.(2017·山东高考)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.解析:∵f (x +4)=f (x -2),∴f (x +6)=f (x ), ∴f (x )的周期为6,∵919=153×6+1,∴f (919)=f (1). 又f (x )为偶函数,∴f (919)=f (1)=f (-1)=6. 答案:64.(2017·福建普通高中质量检测)已知函数f (x )=x 2(2x -2-x ),则不等式f (2x +1)+f (1)≥0的解集是________.解析:因为f (-x )=(-x )2(2-x -2x )=-x 2(2x -2-x )=-f (x ),所以函数f (x )是奇函数.不等式f (2x +1)+f (1)≥0等价于f (2x +1)≥f (-1).易知,当x >0时,函数f (x )为增函数,所以函数f (x )在R 上为增函数,所以f (2x +1)≥f (-1)等价于2x +1≥-1,解得x ≥-1.答案:{x |x ≥-1}[准解·快解·悟通][专题过关检测]一、选择题 1.函数f (x )=1x -1+x 的定义域为( ) A .[0,+∞) B .(1,+∞) C .[0,1)∪(1,+∞)D .[0,1)解析:选C 由题意知⎩⎪⎨⎪⎧x -1≠0,x ≥0,∴f (x )的定义域为[0,1)∪(1,+∞).2.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =1xB .y =|x |-1C .y =lg xD .y =⎝⎛⎭⎫12|x |解析:选B A 中函数y =1x 不是偶函数且在(0,+∞)上单调递减,故A 错误;B 中函数满足题意,故B 正确;C 中函数不是偶函数,故C 错误;D 中函数不满足在(0,+∞)上单调递增,故选B.3.已知函数f (x )=2×4x -a2x的图象关于原点对称,g (x )=ln(e x +1)-bx 是偶函数,则log a b =( )A .1B .-1C .-12D .14解析:选B 由题意得f (0)=0,∴a =2. ∵g (1)=g (-1),∴ln(e +1)-b =ln ⎝⎛⎭⎫1e +1+b , ∴b =12,∴log 212=-1.4.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-2解析:选C 由图象可得a (-1)+b =3,ln(-1+a )=0,∴a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1, 故f (-3)=2×(-3)+5=-1.5.已知函数f (x )的定义域为(-∞,+∞),若f (x +2 017)=⎩⎨⎧2sin x ,x ≥0,lg (-x ),x <0,则f ⎝⎛⎭⎫2 017+π4·f (-7 983)=( ) A .2 016 B.14C .4 D.12 016解析:选C 由题意得,f ⎝⎛⎭⎫2 017+π4=2sin π4=1, f (-7 983)=f (2 017-10 000)=lg 10 000=4, ∴f ⎝⎛⎭⎫2 017+π4·f (-7 983)=4. 6.函数y =sin xx ,x ∈(-π,0)∪(0,π)的图象大致是( )解析:选A 函数y =sin xx ,x ∈(-π,0)∪(0,π)为偶函数,所以图象关于y 轴对称,排除B 、C ,又当x 趋近于π时,y =sin xx 趋近于0,故选A.7.(2016·山东高考)已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)=( ) A .-2 B .-1 C .0D .2解析:选D 由题意知,当x >12时,f ⎝⎛⎭⎫x +12=fx -12,则f (x +1)=f (x ). 又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1).又当x <0时,f (x )=x 3-1, ∴f (-1)=-2,∴f (6)=2.8.如图,动点P 在正方体ABCD -A 1B 1C 1D 1的体对角线BD 1上.过点P 作垂直于平面BB 1D 1D 的直线,与正方体的表面相交于M ,N 两点.设BP =x ,MN =y ,则函数y =f (x )的图象大致是( )解析:选B 设正方体的棱长为1,显然,当P 移动到体对角线BD 1的中点E 时,函数y =MN =AC =2取得唯一的最大值,所以排除A 、C ;当P 在BE 上时,分别过M ,N ,P 作底面的垂线,垂足分别为M 1,N 1,P 1,则y =MN =M 1N 1=2BP 1=2x cos ∠D 1BD =263x ,是一次函数,所以排除D.故选B.9.(2017·贵阳模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 10.函数f (x )=ax +b(x +c )2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0 解析:选C ∵f (x )=ax +b(x +c )2的图象与x 轴,y 轴分别交于N ,M ,且点M 的纵坐标与点N 的横坐标均为正,∴x =-b a >0,y =bc 2>0,故a <0,b >0,又函数图象间断点的横坐标为正,∴-c >0,c <0,故选C.11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,若f (2)=2,则不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞)解析:选C (转化法)由f (x 1)-f (x 2)x 1-x 2<1,可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,且是奇函数,F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x -1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.二、填空题13.函数f (x )=ln 1|x |+1的值域是________.解析:因为|x |≥0,所以|x |+1≥1. 所以0<1|x |+1≤1.所以ln 1|x |+1≤0, 即f (x )=ln1|x |+1的值域为(-∞,0]. 答案:(-∞,0]14.(2018届高三·安徽名校阶段性测试)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=________.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-2-log 23=-2log 213=-13.答案:-1315.若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x 的图象的下方,则实数a 的取值范围是________.解析:如图,在同一平面直角坐标系中画出函数y =(x -1)2和y =log a x 的图象,由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则⎩⎪⎨⎪⎧a >1,log a 2≥1,解得1<a ≤2.答案:(1,2]16.(2017·惠州三调)已知定义在R 上的函数y =f (x )满足条件f ⎝⎛⎭⎫x +32=-f (x ),且函数y =f ⎝⎛⎭⎫x -34为奇函数,给出以下四个命题: ①函数f (x )是周期函数;②函数f (x )的图象关于点⎝⎛⎭⎫-34,0对称; ③函数f (x )为R 上的偶函数; ④函数f (x )为R 上的单调函数. 其中真命题的序号为____________.解析:f (x +3)=f ⎣⎡⎦⎤⎝⎛⎭⎫x +32+32=-f ⎝⎛⎭⎫x +32=f (x ),所以f (x )是周期为3的周期函数,①正确;函数f ⎝⎛⎭⎫x -34是奇函数,其图象关于点(0,0)对称,则f (x )的图象关于点⎝⎛⎭⎫-34,0对称,②正确;因为f (x )的图象关于点⎝⎛⎭⎫-34,0对称,-34=-x +⎝⎛⎭⎫-32+x 2,所以f (-x )=-f ⎝⎛⎭⎫-32+x , 又f ⎝⎛⎭⎫-32+x =-f ⎝⎛⎭⎫-32+x +32=-f (x ), 所以f (-x )=f (x ),③正确;f (x )是周期函数在R 上不可能是单调函数,④错误. 故真命题的序号为①②③. 答案:①②③送分专题(三) 平面向量[全国卷3年考情分析][题点·考法·全练]1.(2017·贵州适应性考试)已知向量e 1与e 2不共线,且向量AB ―→=e 1+me 2,AC ―→=ne 1+e 2,若A ,B ,C 三点共线,则实数m ,n 满足的条件是( )A .mn =1B .mn =-1C .m +n =1D .m +n =-1解析:选A 法一:因为A ,B ,C 三点共线,所以一定存在一个确定的实数λ,使得AB―→=λAC ―→,所以有e 1+me 2=nλe 1+λe 2,由此可得⎩⎪⎨⎪⎧1=nλ,m =λ,所以mn =1.法二:因为A ,B ,C 三点共线,所以必有1n =m1,所以mn =1.2.如图所示,下列结论正确的是( )①PQ ―→=32a +32b ;②PT ―→=32a -b ;③PS ―→=32a -12b ;④PR ―→=32a +b .A .①②B .③④C .①③D .②④解析:选C ①根据向量的加法法则,得PQ ―→=32a +32b ,故①正确;②根据向量的减法法则,得PT ―→=32a -32b ,故②错误;③PS ―→=PQ ―→+QS ―→=32a +32b -2b =32a -12b ,故③正确;④PR ―→=PQ ―→+QR ―→=32a +32b -b =32a +12b ,故④错误.故正确命题的结论为①③.3.已知平面内不共线的四点O ,A ,B ,C ,若OA ―→-3OB ―→+2OC ―→=0,则|AB ―→||BC ―→|=________.解析:由已知得OA ―→-OB ―→=2(OB ―→-OC ―→),即BA ―→=2CB ―→, ∴|BA ―→|=2|CB ―→|,∴|AB ―→||BC ―→|=2.答案:24.已知e 1,e 2是不共线向量,a =me 1+2e 2,b =ne 1-e 2,且mn ≠0,若a ∥b ,则mn 等于________.解析:∵a ∥b ,∴a =λb ,即me 1+2e 2=λ(ne 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,解得m n =-2.答案:-2[准解·快解·悟通][题点·考法·全练]1.已知向量m =(t +1,1),n =(t +2,2),若(m +n )⊥(m -n ),则t =( ) A .0 B .-3 C .3D .-1解析:选B 法一:由(m +n )⊥(m -n )可得(m +n )·(m -n )=0,即m 2=n 2,故(t +1)2+1=(t +2)2+4,解得t =-3.法二:m +n =(2t +3,3),m -n =(-1,-1),∵(m +n )⊥(m -n ),∴-(2t +3)-3=0,解得t =-3.2.(2017·洛阳统考)已知向量a =(1,0),|b |=2,a 与b 的夹角为45°,若c =a +b ,d =a -b ,则c 在d 方向上的投影为( )A.55B .-55C .1D .-1解析:选D 依题意得|a |=1,a ·b =1×2×cos 45°=1,|d |=(a -b )2=a 2+b 2-2a ·b =1,c ·d =a 2-b 2=-1,因此c 在d 方向上的投影等于c ·d|d |=-1. 3.已知向量a =(2,1),b =(1,k ),且a 与b 的夹角为锐角,则实数k 的取值范围是( ) A.⎝⎛⎭⎫-2,12 B.⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞ C .(-2,+∞)D .[-2,+∞)解析:选B 当a ,b 共线时,2k -1=0,k =12,此时a ,b 方向相同,夹角为0,所以要使a 与b 的夹角为锐角,则有a·b >0且a ,b 不共线.由a·b =2+k >0得k >-2,又k ≠12,即实数k 的取值范围是⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞,选B. 4.(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 解析:法一:易知|a +2b |=|a |2+4a ·b +4|b |2=4+4×2×1×12+4=2 3.法二:(数形结合法)由|a |=|2b |=2,知以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC ―→|.又∠AOB =60°,所以|a +2b |=2 3.答案:2 35.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析:因为(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2|·|e 1+λe 2|=3-λ21+λ2,故3-λ21+λ2=12,解得λ=33.答案:33[准解·快解·悟通][题点·考法·全练]1.在△ABC 中,∠ABC =90°,AB =6,点D 在边AC 上,且2AD ―→=DC ―→,则BA ―→·BD ―→的值是( )A .48B .24C .12D .6解析:选B 法一:由题意得,BA ―→·BC ―→=0,BA ―→·CA ―→=BA ―→·(BA ―→-BC ―→)=|BA ―→|2=36,∴BA ―→·BD ―→=BA ―→·(BC ―→+CD ―→)=BA ―→·⎝⎛⎭⎫BC ―→+23 CA ―→ =0+23×36=24. 法二:(特例法)若△ABC 为等腰直角三角形,建立如图所示的平面直角坐标系,则A (6,0),C (0,6).由2AD ―→=DC ―→,得D (4,2).∴BA ―→·BD ―→=(6,0)·(4,2)=24.2.如图所示,已知点G 是△ABC 的重心,过点G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM ―→=x AB ―→,AN ―→=y AC ―→,则x +2y 的最小值为( )A .2 B.13 C.3+223D.34解析:选C 由已知可得AG ―→=23×12(AB ―→+AC ―→)=13AB ―→+13AC ―→=13x AM ―→+13y AN ―→,又M ,G ,N 三点共线,故13x +13y=1,∴1x +1y =3,则x +2y =(x +2y )·⎝⎛⎭⎫1x +1y ·13=13⎝⎛⎭⎫3+2y x +x y ≥3+223(当且仅当x =2y 时取等号).3.(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ―→·(PB ―→+PC ―→)的最小值是( )A .-2B .-32C .-43D .-1解析:选B 如图,以等边三角形ABC 的底边BC 所在直线为x轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则PA ―→=(-x, 3-y ),PB ―→=(-1-x ,-y ),PC ―→=(1-x ,-y ),所以PA ―→·(PB ―→+PC ―→)=(-x ,3-y )·(-2x ,-2y )=2x 2+2⎝⎛⎭⎫y -322-32,当x =0,y =32时,PA ―→·(PB ―→+PC ―→)取得最小值,为-32.4.如图,已知△ABC 中,∠BAC =90°,∠B =30°,点P 在线段BC 上运动,且满足CP ―→=λCB ―→,当PA ―→·PC ―→取到最小值时,λ的值为( )A.14 B.15 C.16D.18解析:选D 如图所示,建立平面直角坐标系.不妨设BC =4,P (x,0)(0≤x ≤4),则A (3,3),C (4,0),∴PA ―→·PC ―→=(3-x ,3)·(4-x,0)=(3-x )(4-x )=x 2-7x +12=⎝⎛⎭⎫x -722-14.当x =72时,PA ―→·PC ―→取得最小值-14.∵CP ―→=λCB ―→,∴⎝⎛⎭⎫-12,0=λ(-4,0), ∴-4λ=-12,解得λ=18.故选D.5.如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP ―→=3PD ―→,AP ―→·BP ―→=2,则AB ―→·AD ―→的值是________.解析:因为AP ―→=AD ―→+DP ―→=AD ―→+14AB ―→,BP ―→=BC ―→+CP ―→=AD ―→-34AB ―→,所以AP ―→·BP ―→=⎝⎛⎭⎫AD ―→+14AB ―→·⎝⎛⎭⎫AD ―→-34AB ―→= |AD ―→|2-316|AB ―→|2-12AD ―→·AB ―→=2,将AB =8,AD =5代入解得AB ―→·AD ―→=22. 答案:22[准解·快解·悟通][专题过关检测]一、选择题1.设a =(1,2),b =(1,1),c =a +kb .若b ⊥c ,则实数k 的值等于( ) A .-32B .-53C.53D .32解析:选A 因为c =a +kb =(1+k,2+k ),又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32.2.(2017·贵州适应性考试)已知向量a =(2,4),b =(-1,1),c =(2,3),若a +λb 与c 共线,则实数λ=( )A.25 B .-25C.35D .-35解析:选B 法一:a +λb =(2-λ,4+λ),c =(2,3),因为a +λb 与c 共线,所以必定存在唯一实数μ,使得a +λb =μc ,所以⎩⎪⎨⎪⎧2-λ=2μ,4+λ=3μ,解得⎩⎨⎧μ=65,λ=-25.法二:a +λb =(2-λ,4+λ),c =(2,3),由a +λb 与c 共线可知2-λ2=4+λ3,解得λ=-25. 3.(2018届高三·云南11校跨区调研)已知平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( )A .13+6 2B .2 5 C.30D .34解析:选D 依题意得a 2=2,a ·b =2×2×cos 45°=2,|3a +b |=(3a +b )2=9a 2+6a ·b +b 2=18+12+4=34.4.在等腰梯形ABCD 中,AB ―→=-2CD ―→CD ―→,M 为BC 的中点,则AM ―→=( ) A.12AB ―→+12AD ―→ B.34AB ―→+12AD ―→ C.34AB ―→+14AD ―→ D.12AB ―→+34AD ―→ 解析:选B 因为AB ―→=-2CD ―→,所以AB ―→=2DC ―→.又M 是BC 的中点,所以AM ―→=12(AB―→+AC ―→)=12(AB ―→+AD ―→+DC ―→)=12⎝⎛⎭⎫AB ―→+AD ―→+12AB ―→=34AB ―→+12AD ―→.5.(2017·成都二诊)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6 B.5π6 C.π4D.3π4解析:选A 法一:因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |=3,又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b|a +2b ||b |=343×12=32, 所以a +2b 与b 的夹角为π6.法二:(特例法)设a =(1,0),b =⎝⎛⎭⎫12cos π3,12sin π3=⎝⎛⎭⎫14,34,则(a +2b )·b =⎝⎛⎭⎫32,32·⎝⎛⎭⎫14,34=34,|a +2b |=⎝⎛⎭⎫322+⎝⎛⎭⎫322=3,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6. 6.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB ―→在CD ―→方向上的投影为( ) A.322B .3152C .-322D .-3152解析:选A 由题意知AB ―→=(2,1),CD ―→=(5,5),则AB ―→在CD ―→方向上的投影为|AB ―→|·cos 〈AB ―→,CD ―→〉=AB ―→·CD ―→|CD ―→|=322.7.(2017·安徽二校联考)在边长为1的正三角形ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD ―→·AE ―→等于( )A.16B.29C.1318D.13解析:选C 法一:因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =13,在△ABD 中,AD 2=BD 2+AB 2-2BD ·AB ·cos 60° =⎝⎛⎭⎫132+12-2×13×1×12=79, 即AD =73,同理可得AE =73, 在△ADE 中,由余弦定理得 cos ∠DAE =AD 2+AE 2-DE 22AD ·AE=79+79-⎝⎛⎭⎫1322×73×73=1314,所以AD ―→·AE ―→=|AD ―→|·|AE ―→|cos ∠DAE =73×73×1314=1318. 法二:如图,建立平面直角坐标系,由正三角形的性质易得A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD ―→=⎝⎛⎭⎫-16,-32,AE ―→=⎝⎛⎭⎫16,-32,所以AD ―→·AE ―→=⎝⎛⎭⎫-16,-32·⎝⎛⎭⎫16,-32=-136+34=1318.8.(2017·东北四市模拟)已知向量OA ―→=(3,1),OB ―→=(-1,3),OC ―→=m OA ―→-n OB ―→(m >0,n >0),若m +n =1,则|OC ―→|的最小值为( )A.52B.102C. 5D.10解析:选C 由OA ―→=(3,1),OB ―→=(-1,3),得OC ―→=m OA ―→-n OB ―→=(3m +n ,m -3n ),因为m +n =1(m >0,n >0),所以n =1-m 且0<m <1,所以OC ―→=(1+2m,4m -3), 则|OC ―→|=(1+2m )2+(4m -3)2=20m 2-20m +10 =20⎝⎛⎭⎫m -122+5(0<m <1),所以当m =12时,|OC ―→|min = 5.9.已知向量m ,n 的模分别为2,2,且m ,n 的夹角为45°.在△ABC 中,AB ―→=2m +2n ,AC ―→=2m -6n ,BC ―→=2BD ―→,则|AD ―→|=( )A .2B .2 2C .4D .8解析:选B 因为BC ―→=2BD ―→,所以点D 为边BC 的中点,所以AD ―→=12(AB ―→+AC ―→)=2m -2n ,所以|AD ―→|=2|m -n |=2(m -n )2=22+4-2×2×2×22=2 2. 10.(2018届高三·湘中名校联考)若点P 是△ABC 的外心,且PA ―→+PB ―→+λPC ―→=0,C =120°,则实数λ的值为( )A.12 B .-12C .-1D .1解析:选C 设AB 中点为D ,则PA ―→+PB ―→=2PD ―→PD ―→. 因为PA ―→+PB ―→+λPC ―→=0,所以2PD ―→+λPC ―→=0,所以向量PD ―→,PC ―→共线. 又P 是△ABC 的外心,所以PA =PB , 所以PD ⊥AB ,所以CD ⊥AB .因为∠ACB =120°,所以∠APB =120°, 所以四边形APBC 是菱形, 从而PA ―→+PB ―→=2PD ―→=PC ―→,所以2PD ―→+λPC ―→=PC ―→+λPC ―→=0,所以λ=-1.11.已知Rt △AOB 的面积为1,O 为直角顶点,设向量a =OA ―→|OA ―→|,b =OB ―→|OB ―→|,OP ―→=a +2b ,则PA ―→·PB ―→的最大值为( )A .1B .2C .3D .4解析:选A 如图,设A (m,0),B (0,n ),∴mn =2,则a =(1,0),b =(0,1),OP ―→=a +2b =(1,2),PA ―→=(m -1,-2),PB ―→=(-1,n -2),PA ―→·PB ―→=5-(m +2n )≤5-22nm =1,当且仅当m =2n ,即m =2,n =1时,等号成立.12.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF ―→·BC ―→的值为( )A .-58B.18 C.14D.118解析:选B 如图所示, AF ―→=AD ―→+DF ―→.又D ,E 分别为AB ,BC 的中点, 且DE =2EF ,所以AD ―→=12AB ―→,DF ―→=12AC ―→+14AC ―→=34AC ―→,所以AF ―→=12AB ―→+34AC ―→.又BC ―→=AC ―→-AB ―→,则AF ―→·BC ―→=⎝⎛⎭⎫12AB ―→+34AC ―→·(AC ―→-AB ―→)=12AB ―→·AC ―→-12AB ―→2+34AC ―→2-34AC ―→·AB ―→ =34AC ―→2-12AB ―→2-14AC ―→·AB ―→. 又|AB ―→|=|AC ―→|=1,∠BAC =60°, 故AF ―→·BC ―→=34-12-14×1×1×12=18.二、填空题13.在△ABC 中,点O 在线段BC 的延长线上,且||BO ―→=3||CO―→,当AO ―→=x AB ―→+y AC ―→时,则x -y =________.解析:∵AO ―→=AB ―→+BO ―→=AB ―→+32BC ―→=AB ―→+32(AC ―→-AB ―→)=-12AB ―→+32AC ―→,∴x -y =-2.答案:-214.已知a ,b 是非零向量,f (x )=(ax +b )·(bx -a )的图象是一条直线,|a +b |=2,|a |=1,则f (x )=________.解析:由f (x )=a ·bx 2-(a 2-b 2)x -a ·b 的图象是一条直线,可得a ·b =0.因为|a +b |=2,所以a 2+b 2=4.因为|a |=1,所以a 2=1,b 2=3,所以f (x )=2x . 答案:2x15.(2017·天津高考)在△ABC 中,∠A =60°,AB =3,AC =2.若BD ―→=2DC ―→,AE ―→=λAC ―→-AB ―→ (λ∈R),且AD ―→·AE ―→=-4,则λ的值为________.解析:法一:AD ―→=AB ―→+BD ―→=AB ―→+23BC ―→=AB ―→+23(AC ―→-AB ―→)=13AB ―→+23AC ―→.又AB ―→·AC ―→=3×2×12=3,所以AD ―→·AE ―→=⎝⎛⎭⎫13AB ―→+23AC ―→·(-AB ―→+λAC ―→) =-13AB ―→2+⎝⎛⎭⎫13λ-23AB ―→·AC ―→+23λAC ―→2 =-3+3⎝⎛⎭⎫13λ-23+23λ×4=113λ-5=-4, 解得λ=311.法二:以点A 为坐标原点,AB ―→的方向为x 轴正方向,建立平面直角坐标系,不妨假设点C 在第一象限,则A (0,0),B (3,0),C (1,3). 由BD ―→=2DC ―→,得D ⎝⎛⎭⎫53,233, 由AE ―→=λAC ―→-AB ―→,得E (λ-3,3λ),则AD ―→·AE ―→=⎝⎛⎭⎫53,233·(λ-3,3λ)=53(λ-3)+233×3λ=113λ-5=-4,解得λ=311.答案:31116.定义平面向量的一种运算a ⊙b =|a +b |·|a -b |·sin 〈a ,b 〉,其中〈a ,b 〉是a 与b 的夹角,给出下列命题:①若〈a ,b 〉=90°,则a ⊙b =a 2+b 2;②若|a |=|b |,则(a +b )⊙(a -b )=4a ·b ;③若|a |=|b |,则a ⊙b ≤2|a |2;④若a =(1,2),b =(-2,2),则(a +b )⊙b =10.其中真命题的序号是________.解析:①中,因为〈a ,b 〉=90°,则a ⊙b =|a +b |·|a -b |=a 2+b 2,所以①成立;②中,因为|a |=|b |,所以〈(a +b ),(a -b )〉=90°,所以(a +b )⊙(a -b )=|2a |·|2b |=4|a ||b |,所以②不成立;③中,因为|a |=|b |,所以a ⊙b =|a +b |·|a -b |·sin 〈a ,b 〉≤|a +b |·|a -b |≤|a +b |2+|a -b |22=2|a |2,所以③成立;④中,因为a =(1,2),b =(-2,2),所以a +b =(-1,4),sin 〈(a +b ),b 〉=33434,所以(a +b )⊙b =35×5×33434=453434,所以④不成立.故①③正确.答案:①③送分专题(四) 不等式[全国卷3年考情分析][题点·考法·全练]1.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( )A .2B .-2C .-12D .12解析:选B 根据一元二次不等式与之对应方程的关系知-1,-12是一元二次方程ax 2+(a -1)x -1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2. 2.若x >y >0,m >n ,则下列不等式正确的是( ) A .xm >ymB .x -m ≥y -nC.x n >y mD .x >xy解析:选D A 不正确,因为同向同正不等式相乘,不等号方向不变,m 可能为0或负数;B 不正确,因为同向不等式相减,不等号方向不确定;C 不正确,因为m ,n 的正负不确定.故选D.3.(2017·云南第一次统一检测)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≥1,21-x -2,x <1,则不等式f (x -1)≤0的解集为( )A .{x |0≤x ≤2}B .{x |0≤x ≤3}C .{x |1≤x ≤2}D .{x |1≤x ≤3}解析:选D 由题意,得f (x -1)=⎩⎪⎨⎪⎧2x -2-2,x ≥2,22-x -2,x <2.当x ≥2时,由2x -2-2≤0,解得2≤x ≤3;当x <2时,由22-x -2≤0,解得1≤x <2.综上所述,不等式f (x -1)≤0的解集为{x |1≤x ≤3}.4.已知x ∈(-∞,1],不等式1+2x +(a -a 2)·4x >0恒成立,则实数a 的取值范围为( ) A.⎝⎛⎭⎫-2,14 B .⎝⎛⎦⎤-∞,14 C.⎝⎛⎭⎫-12,32 D .(-∞,6]解析:选C 根据题意,由于1+2x +(a -a 2)·4x >0对于一切的x ∈(-∞,1]恒成立,令2x =t (0<t ≤2),则可知1+t +(a -a 2)t 2>0⇔a -a 2>-1+t t 2,故只要求解h (t )=-1+tt2(0<t ≤2)的最大值即可,h (t )=-1t 2-1t =-⎝⎛⎭⎫1t +122+14,又1t ≥12,结合二次函数图象知,当1t =12,即t =2时,h (x )取得最大值-34,即a -a 2>-34,所以4a 2-4a -3<0,解得-12<a <32,故实数a的取值范围为⎝⎛⎭⎫-12,32. [准解·快解·悟通]。
专题24 数学思想方法(教学案)-2018年高考理数二轮复习精品资料(解析版)
函数与方程思想在高考中也是必考内容,特别是在函数、解析几何、三角函数等处都可能考到,几乎大多数年份高考中大题都会涉及到.因此认真体会函数与方程思想是成功高考的关键.在高考题中,数形结合的题目出现在高中数学知识的方方面面上,把图象作为工具、载体,以此寻求解题思路或制定解题方案,真正体现数形结合的简捷、灵活特点的多是填空小题。
因为对数形结合等思想方法的考查,是对数学知识在更高层次的抽象和概括能力的考查,是对学生思维品质和数学技能的考查,是新课标高考明确的一个命题方向。
分类讨论思想是历年高考的必考内容,它不仅是高考的重点和热点,也是高考的考点,高考中经常会有一道解答题,解题思路直接依赖于分类讨论.预测以后的高考,将会一如既往地考查分类讨论思想,特别在解答题中(尤其导数与函数),将有一道进行分类、求解的把关题,选择题、填空题也会出现不同情形的分类讨论求解题.化归与转化的思想在高考中必然考到,主要可能出现在立体几何的大题中,将空间立体几何的问题转化为平面几何问题,解析几何大题中求范围问题的题转化为求函数值域范围问题等,总之将复杂问题转化为简单问题是高考中解决问题的重要思想方法.一、函数与方程思想一般地,函数思想就是构造函数从而利用函数的图象与性质解题,经常利用的性质是:单调性、奇偶性、周期性、最大值和最小值、图象变换等.在解题中,善于挖掘题目的隐含条件,构造出函数解析式和巧用函数的性质,是应用函数思想的关键,它广泛地应用于方程、不等式、数列等问题.1.方程思想就是将所求的量(或与所求的量相关的量)设成未知数,用它表示问题中的其他各量,根据题中的已知条件列出方程(组),通过解方程(组)或对方程(组)进行研究,使问题得到解决.2.方程思想与函数思想密切相关:方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标;函数y=f(x)也可以看作二元方程f(x)-y=0,通过方程进行研究,方程f(x)=a有解,当且仅当a属于函数f(x)的值域.函数与方程的这种相互转化关系十分重要.可用函数与方程思想解决的相关问题.1.函数思想在解题中的应用主要表现在两个方面:(1)借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;(2)在研究问题中通过建立函数关系式或构造中间函数,把研究的问题化为讨论函数的有关性质,达到化难为易、化繁为简的目的.2.方程思想在解题中的应用主要表现在四个方面:(1)解方程或解不等式;(2)带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识的应用;(3)需要转化为方程的讨论,如曲线的位置关系等;(4)构造方程或不等式求解问题.二、数形结合的数学思想数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.。
2018年高考理科数学三维二轮专题复习教学案:第二部分 板块二 系统热门考点以点带面 含解析 精品
[速解技法——学一招]函数性质主要指函数的单调性、奇偶性、周期性、对称性,要深刻理解并加以巧妙地运用.以对称性为例,若函数f (x )满足f (a +x )=f (b -x ),则函数图象关于直线x =a +b2对称;若函数f (x )满足f (a +x )+f (b -x )=c ,则函数图象关于点⎝⎛⎭⎫a +b 2,c 2对称.[例1] 定义在R 上的奇函数f (x )满足f (x -2)=-f (x ),且在[0,1]上是增函数,则有( ) A .f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫32 B .f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫32 C .f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫-14 D .f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫14 [解析] 选B 由题设知f (x )=-f (x -2)=f (2-x ),所以函数f (x )的图象关于直线x =1对称.由于奇函数f (x )在[0,1]上是增函数,故f (x )在[-1,0]上也是增函数, 综上,函数f (x )在[-1,1]上是增函数,在[1,3]上是减函数. 又f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-32=f ⎝⎛⎭⎫12, 所以f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32. [例2] 已知函数f (x )=x 3+sin x 的定义域为[-1,1],若f (log 2m )<f (log 4(m +2))成立,则实数m 的取值范围为________.[解析] 由f (x )=x 3+sin x 的定义域为[-1,1], 易知f (x )在[-1,1]上单调递增, 由f (log 2m )<f (log 4(m +2)),可得⎩⎪⎨⎪⎧-1≤log 2m ≤1,-1≤log 4(m +2)≤1,log 2m <log 4(m +2),m >0,m +2>0,解得⎩⎪⎨⎪⎧12≤m ≤2,-74≤m ≤2,0<m <2,m >0,m >-2,故12≤m <2. 综上可知,实数m 的取值范围为⎣⎡⎭⎫12,2. [答案] ⎣⎡⎭⎫12,2[经典好题——练一手]1.已知定义在R 上的函数f (x )满足f (2+x )=-f (2-x ),当x <2时,f (x )单调递增,如果x 1+x 2<4,且(x 1-2)·(x 2-2)<0,则f (x 1)+f (x 2)的值为( )A .可正可负B .可能为0C .恒大于0D .恒小于0解析:选D 由f (2+x )=-f (2-x )可知,函数图象关于点(2,0)中心对称.因为x <2时,f (x )单调递增,所以x >2时,f (x )单调递增.因为x 1+x 2<4且(x 1-2)·(x 2-2)<0,设x 1<2<x 2,则x 2<4-x 1,所以f (x 2)<f (4-x 1).又因为f (4-x 1)=-f (x 1),所以f (x 2)<-f (x 1),即f (x 1)+f (x 2)<0.2.已知定义在R 上的函数f (x )=2|x-m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a解析:选C 由函数f (x )=2|x-m |-1为偶函数可知,m =0,故f (x )=2|x |-1.当x >0时,f (x )为增函数,log 0.53=-log 23,∴log 25>|-log 0.53|>0.∴b =f (log 25)>a =f (log 0.53)>c =f (2m ).3.已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________. 解析:由题意得g (-1)=f (-1)+2.又f (-1)+(-1)2=-[f (1)+12]=-2,所以f (-1)=-3.故f (-1)+2=-3+2=-1,即g (-1)=-1. 答案:-14.函数f (x )是定义在R 上的偶函数,且满足f (x +2)=f (x ).当x ∈[0,1]时,f (x )=2x .若在区间[-2,3]上方程ax +2a -f (x )=0恰有四个不相等的实数根,则实数a 的取值范围是________.解析:由f (x +2)=f (x ),得函数的周期是2.由ax +2a -f (x )=0, 得f (x )=ax +2A .设y =f (x ),则y =ax +2a ,作出函数y =f (x ),y =ax +2a 的图象,如图.要使方程ax +2a -f (x )=0恰有四个不相等的实数根,则直线y =ax +2a =a (x +2)的斜率满足k AH <a <k AG ,由题意可知,G (1,2),H (3,2),A (-2,0), 所以k AH =25,k AG =23,所以25<a <23.答案:⎝⎛⎭⎫25,23[常用结论——记一番]1.函数的单调性 在公共定义域内:(1)若函数f (x )是增函数,函数g (x )是增函数,则f (x )+g (x )是增函数; (2)若函数f (x )是减函数,函数g (x )是减函数,则f (x )+g (x )是减函数; (3)若函数f (x )是增函数,函数g (x )是减函数,则f (x )-g (x )是增函数; (4)若函数f (x )是减函数,函数g (x )是增函数,则f (x )-g (x )是减函数. [提示] 在利用函数单调性解不等式时,易忽略函数定义域这一限制条件. 2.函数的奇偶性(1)判断函数的奇偶性有时可以用定义的等价形式:f (x )±f (-x )=0,f (x )f (-x )=±1;(2)设f (x ),g (x )的定义域分别是D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.3.有关函数f (x )周期性的常用结论:(1)若f (x +a )=f (x -a ),则函数f (x )的周期为2|a |; (2)若f (x +a )=-f (x ),则函数f (x )的周期为2|a |;(3)若f (x +a )=1f (x ),则函数f (x )的周期为2|a |; (4)若f (x +a )=-1f (x ),则函数f (x )的周期为2|a |. (二)最值函数 大显身手 [速解技法——学一招][例1] 对于任意x ∈R ,函数f (x )表示y =-x +3,y =32x +12,y =x 2-4x +3中的最大者,则f (x )的最小值是( )A .2B .3C .8D .-1[解析] 选A 如图,分别画出函数y =-x +3,y =32x +12,y=x 2-4x +3的图象,得到三个交点A (0,3),B (1,2),C (5,8). 由图象可得函数f (x )的表达式为f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x +3,0<x ≤1,32x +12,1<x ≤5,x 2-4x +3,x >5,所以f (x )的图象是图中的实线部分,图象的最低点是B (1,2),所以函数f (x )的最小值是2.[例2] 已知函数f (x )=x 2-x +m -12,g (x )=-log 2x ,min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),则当函数h(x )有三个零点时,实数m 的取值范围为( )A .⎝⎛⎭⎫0,34 B .⎝⎛⎦⎤-∞,34 C .⎝⎛⎭⎫12,34D .⎝⎛⎭⎫12,+∞ [解析] 选C 在同一直角坐标系中,作出函数y =f (x )和y =g (x )的图象如图所示.当两函数图象交于点A (1,0)时,即有1-1+m -12=0,解得m =12,所以当函数h (x )有三个零点时, 即为点A 和y =f (x )与x 轴的两个交点, 若满足条件,则需⎩⎪⎨⎪⎧f (0)>0,f ⎝⎛⎭⎫12<0,f (1)>0,解得12<m <34.所以实数m 的取值范围是⎝⎛⎭⎫12,34.[经典好题——练一手]1.设a ,b 为平面向量,则( ) A .min{|a +b |,|a -b |}≤min{|a |,|b |} B .min{|a +b |,|a -b |}≥min{|a |,|b |} C .max{|a +b |2,|a -b |2}≤|a |2+|b |2 D .max{|a +b |2,|a -b |2}≥|a |2+|b |2解析:选D max{|a +b |2,|a -b |2}≥|a +b |2+|a -b |22=|a |2+|b |2,故选D.2.(2017·兰州模拟)记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b b ,a <b,已知向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c =λa +μb (λ≥0,μ≥0,且λ+μ=1),则当max{c ·a ,c ·b }取最小值时,|c |=( )A .255B .223C .1D .52解析:选A 如图,设OA ―→=a ,OB ―→=b , 则a =(1,0),b =(0,2),∵λ≥0,μ≥0,λ+μ=1,∴0≤λ≤1. 又c =λa +μb ,∴c ·a =(λa +b -λb )·a =λ; c ·b =(λa +b -λb )·b =4-4λ. 由λ=4-4λ,得λ=45.∴max{c ·a ,c ·b }=⎩⎨⎧λ,45≤λ≤1,4-4λ,0≤λ<45.令f (λ)=⎩⎨⎧λ,45≤λ≤1,4-4λ,0≤λ<45.则f (λ)∈⎣⎡⎦⎤45,4.∴f (λ)min =45,此时λ=45,μ=15,∴c =45a +15b =⎝⎛⎭⎫45,25. ∴|c |=⎝⎛⎭⎫452+⎝⎛⎭⎫252=255. 3.设x ,y 为实数,且5x 2+4y 2=10x ,则x 2+y 2的最大值为________. 解析:法一:5x 2+4y 2=10x ⇒4y 2=10x -5x 2≥0⇒0≤x ≤2. 4(x 2+y 2)=10x -x 2=25-(5-x )2≤25-9=16⇒x 2+y 2≤4. 法二:5x 2-4y 2=10x ⇒(x -1)2+45y 2=1,令x -1=sin θ,255y =cos θ,θ∈[0,2π], 则x 2+y 2=(sin θ+1)2+⎝⎛⎭⎫52cos θ2 =94-14(sin θ-4)2+4, ∵-1≤sin θ≤1,∴当sin θ=1时,x 2+y 2取得最大值,即(x 2+y 2)max =4. 答案:4(三)应用导数 开阔思路 [速解技法——学一招]1.函数的单调性与导数的关系 ①f ′(x )>0⇒f (x )为增函数; ②f ′(x )<0⇒f (x )为减函数; ③f ′(x )=0⇒f (x )为常数函数. 2.求函数f (x )极值的方法求函数的极值应先确定函数的定义域,解方程f ′(x )=0,再判断f ′(x )=0的根是否是极值点,可通过列表的形式进行分析,若遇极值点含参数不能比较大小时,则需分类讨论.[例1] 若函数f (x )=2sin x (x ∈[0,π))的图象在切点P 处的切线平行于函数g (x )=2x⎝⎛⎭⎫x 3+1的图象在切点Q 处的切线,则直线PQ 的斜率为( ) A .83B .2C .73D .33[解析] 选A 由题意得f ′(x )=2cos x ,g ′(x )=x 12+x -12.设P (x 1,f (x 1)),Q (x 2,g (x 2)),又f ′(x 1)=g ′(x 2),即2cos x 1=x 122+x -122,故4cos 2x 1=x 2+x -12+2,所以-4+4cos 2x 1=x 2+x -12-2,即-4sin 2x 1=(x 122-x -122)2,所以sin x 1=0,x 1=0,x 122=x -122,x 2=1,故P (0,0),Q ⎝⎛⎭⎫1,83,故k PQ =83.[例2] 已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.[解析] 设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减,∴x 2>1,即x ∈(-∞,-1)∪(1,+∞).[答案] (-∞,-1)∪(1,+∞)[例3] 已知函数f (x )=(ax +b )ln x -bx +3在(1,f (1))处的切线方程为y =2. (1)求a ,b 的值; (2)求函数f (x )的极值;(3)若g (x )=f (x )+kx 在(1,3)上是单调函数,求k 的取值范围.[解] (1)因为f (1)=-b +3=2,所以b =1. 又f ′(x )=b x +a ln x +a -b =1x +a ln x +a -1, 而函数f (x )在(1,f (1))处的切线方程为y =2, 所以f ′(1)=1+a -1=0,所以a =0.(2)由(1)得f (x )=ln x -x +3,f ′(x )=1x -1(x >0).令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0, 所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 故f (x )的极大值为f (1)=2,无极小值.(3)由g (x )=f (x )+kx ,得g (x )=ln x +(k -1)x +3(x >0),g ′(x )=1x +k -1, 又g (x )在x ∈(1,3)上是单调函数, 若g (x )为增函数,有g ′(x )≥0,即g ′(x )=1x +k -1≥0,即k ≥1-1x 在x ∈(1,3)上恒成立. 又1-1x ∈⎝⎛⎭⎫0,23,所以k ≥23. 若g (x )为减函数,有g ′(x )≤0,即g ′(x )=1x +k -1≤0,即k ≤1-1x 在x ∈(1,3)上恒成立,又1-1x ∈⎝⎛⎭⎫0,23,所以k ≤0. 综上,k 的取值范围为(-∞,0]∪⎣⎡⎭⎫23,+∞.[经典好题——练一手]1.f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0=( ) A .e 2 B .1 C .ln 2D .e解析:选B f ′(x )=2 016+ln x +x ·1x =2 017+ln x ,由f ′(x 0)=2 017,得2 017+ln x 0=2 017,所以ln x 0=0,解得x 0=1.2.定义:如果函数f (x )在[m ,n ]上存在x 1,x 2(m <x 1<x 2<n )满足f ′(x 1)=f (n )-f (m )n -m,f ′(x 2)=f (n )-f (m )n -m.则称函数f (x )是[m ,n ]上的“双中值函数”,已知函数f (x )=x 3-x 2+a 是[0,a ]上的“双中值函数”,则实数a 的取值范围是( )A .⎝⎛⎭⎫13,12B .⎝⎛⎭⎫32,3 C .⎝⎛⎭⎫12,1D .⎝⎛⎭⎫13,1解析:选C 因为f (x )=x 3-x 2+a ,所以f ′(x )=3x 2-2x 在区间[0,a ]上存在x 1,x 2(0<x 1<x 2<a ),满足f ′(x 1)=f ′(x 2)=f (a )-f (0)a -0=a 2-a ,所以方程3x 2-2x =a 2-a 在区间(0,a )上有两个不相等的实根.令g (x )=3x 2-2x -a 2+a (0<x <a ), 则⎩⎪⎨⎪⎧Δ=4-12(-a 2+a )>0,g (0)=-a 2+a >0,g (a )=2a 2-a >0,解得12<a <1,所以实数a 的取值范围是⎝⎛⎭⎫12,1.3.已知函数f (x )=x 33-b 2x 2+ax +1(a >0,b >0),则函数g (x )=a ln x +f ′(x )a 在点(b ,g (b ))处的切线斜率的最小值是________.解析:因为f ′(x )=x 2-bx +a , 所以g (x )=a ln x +x 2-bxa +1. 所以g ′(x )=a x +2x -ba (x >0),因为a >0,b >0,则g ′(b )=a b +2b -b a =a b +ba ≥2,当且仅当a =b =1时取“=”, 所以斜率的最小值为2. 答案:24.已知函数f (x )=(x +1)2ln(x +1)-x ,φ(x )=mx 2. (1)当m =12时,求函数g (x )=f (x )-φ(x )的极值;(2)当m =1且x ≥0时,证明:f (x )≥φ(x );(3)若x ≥0,f (x )≥φ(x )恒成立,求实数m 的取值范围.解:(1)当m =12时,g (x )=f (x )-φ(x )=(x +1)2·ln(x +1)-x -x 22,x >-1,所以g ′(x )=2(x +1)ln(x +1)+(x +1)2·1x +1-1-x =2(x +1)ln(x +1).由⎩⎪⎨⎪⎧x >-1,g ′(x )=0,解得x =0, 当x 变化时,g ′(x ),g (x )的变化情况如下表:所以函数g (x )的极小值为g (0)=0,无极大值.(2)证明:当m =1时,令p (x )=f (x )-φ(x )=(x +1)2·ln(x +1)-x -x 2(x ≥0), 所以p ′(x )=2(x +1)ln(x +1)+(x +1)2·1x +1-1-2x =2(x +1)ln(x +1)-x .设p ′(x )=G (x ),则G ′(x )=2ln(x +1)+1>0, 所以函数p ′(x )在[0,+∞)上单调递增, 所以p ′(x )≥p ′(0)=0,所以函数p (x )在[0,+∞)上单调递增, 所以p (x )≥p (0)=0. 所以f (x )≥φ(x ).(3)设h (x )=(x +1)2ln(x +1)-x -mx 2(x ≥0), 所以h ′(x )=2(x +1)ln(x +1)+x -2mx .由(2)知当x ≥0时,(x +1)2ln(x +1)≥x 2+x =x (x +1), 所以(x +1)ln(x +1)≥x ,所以h ′(x )≥3x -2mx . ①当3-2m ≥0,即m ≤32时,h ′(x )≥0,所以h (x )在[0,+∞)上单调递增, 所以h (x )≥h (0)=0,满足题意. ②当3-2m <0,即m >32时,设H (x )=h ′(x )=2(x +1)ln(x +1)+(1-2m )x , 则H ′(x )=2ln(x +1)+3-2m , 令H ′(x )=0,得x 0=e 2m -32-1>0,故h ′(x )在[0,x 0)上单调递减,在[x 0,+∞)上单调递增. 当x ∈[0,x 0)时,h ′(x )<h ′(0)=0, 所以h (x )在[0,x 0)上单调递减, 所以h (x )<h (0)=0,不满足题意. 综上,实数m 的取值范围为⎝⎛⎦⎤-∞,32. [常用结论——记一番]1.函数极值的判别的易错点(1)可导函数极值点的导数为0,但导数为0的点不一定是极值点,如函数f (x )=x 3,f ′(0)=0,但x =0不是极值点.(2)极值点不是一个点,而是一个数x 0,当x =x 0时,函数取得极值.在x 0处有f ′(x 0)=0是函数f (x )在x 0处取得极值的必要不充分条件.2.函数最值的判别方法(1)求函数f (x )在闭区间[a ,b ]上最值的关键是求出f ′(x )=0的根的函数值,再与f (a ),f (b )作比较,其中最大的一个是最大值,最小的一个是最小值.(2)求函数f (x )在非闭区间上的最值,只需利用导数法判断函数f (x )的单调性,即可得结论.(四)三角问题 重在三变[速解技法——学一招]“三变”是指变角、变数与变式.(1)变角如2α=(α+β)+(α-β),α=(α+β)-β.(2)变数特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等.(3)变式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.tan α±tan β=tan (α±β)(1∓tan αtan β),sin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1.[例1] 对于锐角α,若sin ⎝⎛⎭⎫α-π12=35,则cos ⎝⎛⎭⎫2α+π3=( ) A .2425B .38C .28D .-2425[解析] 选D 由α为锐角,且sin ⎝⎛⎭⎫α-π12=35, 可得cos ⎝⎛⎭⎫α-π12=45, 所以cos ⎝⎛⎭⎫2α+π3=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫2α+π3 =sin ⎝⎛⎭⎫π6-2α=-2sin ⎝⎛⎭⎫α-π12cos ⎝⎛⎭⎫α-π12 =-2×35×45=-2425.[例2] 若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( )A .7π4B .9π4C .5π4或7π4D .5π4或9π4[解析] 选A 因为α∈⎣⎡⎦⎤π4,π,所以2α∈⎣⎡⎦⎤π2,2π, 又sin 2α=55,故2α∈⎣⎡⎦⎤π2,π,α∈⎣⎡⎦⎤π4,π2, 所以cos 2α=-255. 又β∈⎣⎡⎦⎤π,3π2,故β-α∈⎣⎡⎦⎤π2,5π4, 于是cos(β-α)=-31010,所以cos(α+β)=cos [2α+(β-α)] =cos 2αcos(β-α)-sin 2αsin(β-α) =-255×⎝⎛⎭⎫-31010-55×1010=22,且α+β∈⎣⎡⎦⎤5π4,2π,故α+β=7π4. [经典好题——练一手]1.已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线y =2x 上,则sin ⎝⎛⎭⎫2θ+π4的值为( ) A .-7210B .7210C .-210D .210解析:选D 由题意可得tan θ=2,cos θ=±55,所以tan 2θ=2tan θ1-tan 2θ=-43,cos 2θ=2cos 2θ-1=-35, 所以sin 2θ=cos 2θ·tan 2θ=45,所以sin ⎝⎛⎭⎫2θ+π4=22(sin 2θ+cos 2θ)=22×⎝⎛⎭⎫45-35=210. 2.(2017·沈阳质检)已知f (x )=2sin 2x +2sin x cos x ,则f (x )的最小正周期和一个单调递减区间分别为( )A .2π,⎣⎡⎦⎤3π8,7π8 B .π,⎣⎡⎦⎤3π8,7π8 C .2π,⎣⎡⎦⎤-π8,3π8 D .π,⎣⎡⎦⎤-π8,3π8 解析:选B ∵f (x )=2sin 2x +2sin x cos x =1-cos 2x +sin 2x =2sin ⎝⎛⎭⎫2x -π4+1,∴T =2π2=π,由π2+2k π≤2x -π4≤3π2+2k π(k ∈Z),得3π8+k π≤x ≤7π8+k π(k ∈Z),令k =0得f (x )在⎣⎡⎦⎤3π8,7π8上单调递减.3.已知α为锐角,若sin ⎝⎛⎭⎫α+π6=35,则cos ⎝⎛⎭⎫2α-π6=________. 解析:cos ⎝⎛⎭⎫2α-π6=cos ⎝⎛⎭⎫2α+π3-π2=sin ⎝⎛⎭⎫2α+π3=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6=2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6,因为α为锐角,sin ⎝⎛⎭⎫α+π6=35<32,所以π6<α+π6<π3,故cos ⎝⎛⎭⎫α+π6=45,所以cos ⎝⎛⎭⎫2α-π6=2×35×45=2425. 答案:24254.若0<α<π2,0<β<π2,sin ⎝⎛⎭⎫π3-α=35,cos ⎝⎛⎭⎫β2-π3=255,则cos ⎝⎛⎭⎫β2-α的值为________. 解析:由题易知-π6<π3-α<π3,-π3<β2-π3<-π12,所以cos ⎝⎛⎭⎫π3-α=1-⎝⎛⎭⎫352=45,sin ⎝⎛⎭⎫β2-π3=-1-⎝⎛⎭⎫2552=-55,所以cos ⎝⎛⎭⎫β2-α=cos ⎣⎡⎦⎤⎝⎛⎭⎫π3-α+⎝⎛⎭⎫β2-π3=45×255+35×55=11525. 答案:11525[常用结论——记一番]三角公式中常用的变形:(1)对于含有sin α±cos α,sin αcos α的问题,利用(sin α±cos α)2=1±2sin αcos α,建立sin α±cos α与sin αcos α的关系.(2)对于含有sin α,cos α的齐次式⎝ ⎛如sin α+cos αsin α-cos α,)sin αcos α,利用tan α=sin αcos α转化为含tan α的式子. (3)对于形如cos 2α+sin α与cos 2α+sin αcos α的变形,前者用平方关系sin 2α+cos 2α=1化为二次型函数,而后者用降幂公式化为一个角的三角函数.(4)含tan α+tan β与tan αtan β时考虑tan(α+β)=tan α+tan β1-tan αtan β.(五)正弦余弦 相得益彰 [速解技法——学一招] 三角函数求值的解题策略(1)寻求角与角关系的特殊性,化非特殊角为特殊角,熟练准确地应用公式; (2)注意切化弦、异角化同角、异名化同名、角的变换等常规技巧的运用;(3)对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,对于很难入手的问题,可利用分析法.(4)求角的大小,应注意角的范围.[例1] (2017·福州质检)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c tan C =3(a cos B +b cos A ).(1)求角C ;(2)若c =23,求△ABC 面积的最大值. [解] (1)∵c tan C =3(a cos B +b cos A ), ∴sin C tan C =3(sin A cos B +sin B cos A ), ∴sin C tan C =3sin(A +B )=3sin C , ∵0<C <π,∴sin C ≠0, ∴tan C =3,∴C =60°. (2)∵c =23,C =60°,由余弦定理c 2=a 2+b 2-2ab cos C , 得12=a 2+b 2-ab ≥2ab -ab , ∴ab ≤12,∴S △ABC =12ab sin C ≤33,当且仅当a =b =23时取“=”,所以△ABC 的面积的最大值为3 3.[例2] 已知向量m =(2sin ωx ,cos 2ωx -sin 2ωx ),n =(3cos ωx,1),其中ω>0,x ∈R.函数f (x )=m ·n 的最小正周期为π.(1)求ω的值;(2)在△ABC 中,若f (B )=-2,BC =3,sin B =3sin A ,求BA ―→·BC ―→的值. [解] (1)f (x )=m ·n =23sin ωx cos ωx +cos 2ωx -sin 2ωx =3sin 2ωx +cos 2ωx =2sin ⎝⎛⎭⎫2ωx +π6. 因为f (x )的最小正周期为π,所以T =2π2|ω|=π. 因为ω>0,所以ω=1.(2)设△ABC 中内角A ,B ,C 所对的边分别是a ,b ,C . 因为f (B )=-2,所以2sin ⎝⎛⎭⎫2B +π6=-2, 即sin ⎝⎛⎭⎫2B +π6=-1,得B =2π3. 因为BC =3,所以a = 3.因为sin B =3sin A ,所以b =3a ,得b =3. 由正弦定理有3sin A =3sin 2π3,解得sin A =12.因为0<A <π3,所以A =π6.得C =π6,c =a = 3.所以BA ―→·BC ―→=ca cos B =3×3×cos 2π3=-32.[经典好题——练一手]1.已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若cos A cos B =ba=2,则该三角形的形状是( )A .直角三角形B .等腰三角形C .等边三角形D .钝角三角形解析:选A 因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又A ,B ∈(0,π),所以2A =180°-2B ,即A +B =90°,所以C =90°,于是△ABC 是直角三角形.故选A .2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a cos C +c cos A =2b sin A ,则A 的值为( )A .5π6B .π6C .2π3D .π6或5π6解析:选D 由a cos C +c cos A =2b sin A 结合正弦定理可得sin A cos C +sin C cos A =2sin B sin A ,即sin(A +C )=2sin B sin A ,故sin B =2sin B sin A .又sin B ≠0,可得sin A =12,故A =π6或5π6.3.非直角△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知c =1,C =π3.若sin C+sin(A -B )=3sin 2B ,则△ABC 的面积为( )A .1534B .154C .2134或36D .3328解析:选D 因为sin C +sin(A -B )=sin(A +B )+sin(A -B )=2sin A cos B =6sin B cos B ,因为△ABC 非直角三角形,所以cos B ≠0, 所以sin A =3sin B ,即a =3b .又c =1,C =π3,由余弦定理得a 2+b 2-ab =1,结合a =3b ,可得b 2=17,所以S △ABC =12ab sin C =32b 2sin π3=3328.4.(2017·陕西质检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,已知2a cos 2C 2+2c cos 2A 2=52b .(1)求证:2(a +c )=3b ; (2)若cos B =14,S =15,求b .解:(1)证明:由已知得, a (1+cos C )+c (1+cos A )=52b .在△ABC 中,由余弦定理,得a cos C +c cos A =a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc =2b 22b=b .∴a +c =32b ,即2(a +c )=3b .(2)∵cos B =14,∴sin B =154.∵S =12ac sin B =158ac =15,∴ac =8.又b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B ), 2(a +c )=3b ,∴b 2=9b 24-16×⎝⎛⎭⎫1+14,解得b 2=16, ∴b =4.[常用结论——记一番]1.解三角形中常用结论:(1)三角形中正弦、余弦、正切满足的关系式有:a sin A =b sin B =csin C=2R ,c 2=a 2+b 2-2ab cos C ,tan A +tan B +tan C =tan A tan B tan C ,a >b ⇔A >B ⇔sin A >sin B ⇔cos A <cos B .(2)三角形形状判断(一般用余弦定理): 直角三角形⇔a 2+b 2=c 2;锐角三角形⇔a 2+b 2>c 2(c 为最大边); 钝角三角形⇔a 2+b 2<c 2(c 为最大边). (3)在锐角三角形ABC 中: ①A +B >π2,C +B >π2,A +C >π2;②任意角的正弦值都大于其他角的余弦值.(4)在△ABC 中,A ,B ,C 成等差数列⇔B =60°;在△ABC 中,A ,B ,C 成等差数列,且a ,b ,c 成等比数列⇔三角形为等边三角形.2.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,其面积为S . (1)S =12ah a =12bh b =12ch c (h a ,h b ,h c 分别表示a ,b ,c 边上的高).(2)S =12ab sin C =12bc sin A =12ca sin B .(3)S =12r (a +b +c )(r 为三角形ABC 内切圆的半径).(六)向量小题 三招搞定 [速解技法——学一招]解决与向量有关的小题,一般用三招,即“构图、分解、建系”,就能突破难点,顺利解决问题.[例1] 已知AB ―→·BC ―→=0,|AB ―→|=1,|BC ―→|=2,AD ―→·DC ―→=0,则|BD ―→|的最大值为( ) A .255B .2C . 5D .2 5[解析] 选C 由AB ―→·BC ―→=0可知,AB ―→⊥BC ―→.故以B 为坐标原点,分别以BA ,BC 所在的直线为x 轴,y 轴建立如图所示的平面直角坐标系,则由题意,可得B (0,0),A (1,0),C (0,2).设D (x ,y ),则AD ―→=(x -1,y ),DC ―→=(-x,2-y ). 由AD ―→·DC ―→=0,可得(x -1)(-x )+y (2-y )=0, 整理得⎝⎛⎭⎫x -122+(y -1)2=54. 所以点D 在以E ⎝⎛⎭⎫12,1为圆心,半径r =52的圆上. 因为|BD ―→|表示B ,D 两点间的距离, 而|EB ―→|=52,所以|BD ―→|的最大值为|EB ―→|+r =52+52= 5.[例2] 已知点C 为线段AB 上一点,P 为直线AB 外一点,PC 是∠APB 的平分线,I 为PC 上一点,满足BI ―→=BA ―→+λAC ―→⎝ ⎛⎭⎪⎪⎫AC ―→|AC―→|+AP ―→|AP ―→|(λ>0),|PA ―→|-|PB ―→|=4,|PA ―→-PB ―→|=10,则BI ―→·BA―→| BA ―→|的值为( )A .2B .3C .4D .5[解析] 选B因为|PA ―→-PB ―→|=|BA ―→|=10,PC 是∠APB 的平分线,又BI ―→=BA ―→+λ⎝ ⎛⎭⎪⎪⎫AC ―→|AC―→|+AP ―→|AP ―→|(λ>0),即AI ―→=λ⎝ ⎛⎭⎪⎪⎫AC ―→|AC―→|+AP ―→|AP ―→|, 所以I 在∠BAP 的平分线上, 由此得I 是△ABP 的内心.如图,过I 作IH ⊥AB 于H ,以I 为圆心,IH 为半径作△PAB 的内切圆,分别切PA ,PB 于E ,F ,因为|PA ―→|-|PB ―→|=4,|PA ―→-PB ―→|=10, |BH ―→|=|FB ―→|=12(|PB ―→|+|AB ―→|-|PA ―→|)=12[|AB ―→|-(|PA ―→|-|PB ―→|)]=3. 在Rt △BIH 中,cos ∠IBH =|BH ―→||BI ―→|,所以BI ―→·BA ―→|BA ―→|=|BI ―→|cos ∠IBH =|BH ―→|=3.[经典好题——练一手]1.(2017·宝鸡质检)在等腰直角△ABC 中,∠ABC =90°,|AB |=|BC |=2,M ,N (不与A ,C 重合)为AC 边上的两个动点,且满足|MN ―→|=2,则BM ―→·BN ―→的取值范围为( )A .⎣⎡⎦⎤32,2 B .⎝⎛⎭⎫32,2 C .⎣⎡⎭⎫32,2D .⎣⎡⎭⎫32,+∞解析:选C 以等腰直角三角形的直角边BC 为x 轴,BA 为y 轴,建立平面直角坐标系如图所示,则B (0,0),直线AC 的方程为x +y =2.设M (a,2-a ),0<a <1,N (b,2-b ),∵MN =2,∴(a -b )2+(2-a -2+b )2=2, 即(a -b )2=1,解得b =a +1或b =a -1(舍去), 则N (a +1,1-a ),∴BM ―→=(a,2-a ),BN ―→=(a +1,1-a ), ∴BM ―→·BN ―→=a (a +1)+(2-a )(1-a )=2a 2-2a +2=2⎝⎛⎫a -122+32, ∵0<a <1,∴当a =12时,BM ―→·BN ―→取得最小值32,又BM ―→·BN ―→<2,故BM ―→·BN ―→的取值范围为⎣⎡⎭⎫32,2.2.已知向量a ,b 满足a ·(a +2b )=0,|a |=|b |=1,且|c -a -2b |=1,则|c |的最大值为( ) A .2 B .4 C .5+1D .3+1解析:选D 设a =OA ―→,a +2b =OB ―→,c =OC ―→,且设点A 在x 轴上,则点B 在y 轴上,由|c -a -2b |=1,可知|c -(a +2b )|=|OC ―→-OB ―→|=|BC ―→|=1,所以点C 在以B 为圆心,1为半径的圆上,如图所示.法一:因为a ·(a +2b )=0,所以2a ·b =-|a |2.又|a |=|b |=1,所以|a +2b |=|a |2+4|b |2+4a ·b =4|b |2-|a |2=3, 所以|c |max =|OB ―→|+1=|a +2b |+1=3+1. 法二:连接AB ,因为OB ―→=OA ―→+AB ―→=a +2b , 所以AB ―→=2b .因为|a |=|b |=1,所以|AB ―→|=2,|OA ―→|=1, 所以|OB ―→|=|AB ―→|2-|OA ―→|2=3,所以|c |max =|OB ―→|+1=3+1.3.(2017·福州质检)正方形ABCD 中,E 为BC 的中点,向量AE ―→,BD ―→的夹角为θ,则cos θ=________.解析:法一:设正方形的边长为a , 则|AE ―→|=52a ,|BD ―→|=2a ,又AE ―→·BD ―→=⎝⎛⎭⎫AB ―→+12AD ―→·(AD ―→-AB ―→) =12AD ―→2-AB ―→2+12AD ―→·AB ―→=-12a 2,所以cos θ=AE ―→·BD ―→|AE ―→|·|BD ―→|=-12a 25a 2·2a=-1010.法二:设正方形的边长为2,建立如图所示的平面直角坐标系.则A (0,0),B (2,0),D (0,2),E (2,1), ∴AE ―→=(2,1),BD ―→=(-2,2), ∴AE ―→·BD ―→=2×(-2)+1×2=-2, 所以cos θ=AE ―→·BD ―→| AE ―→|·|BD ―→|=-25×22=-1010. 答案:-10104.在Rt △ABC 中,D 是斜边AB 的中点,点P 为线段CD 的中点,则|PA |2+|PB |2|PC |2=________.解析:法一:(坐标法)将直角△ABC 放入直角坐标系中,如图. 设A (a,0),B (0,b ),a >0,b >0, 则D ⎝⎛⎭⎫a 2,b 2,P ⎝⎛⎭⎫a 4,b 4, 所以|PC |2=⎝⎛⎭⎫a 42+⎝⎛⎭⎫b 42=a 216+b 216,|PB |2=⎝⎛⎭⎫a 42+⎝⎛⎭⎫b 4-b 2=a 216+9b 216,|PA |2=⎝⎛⎭⎫a 4-a 2+⎝⎛⎭⎫b 42=9a 216+b 216,所以|PA |2+|PB |2=a 216+9b 216+9a 216+b 216=10⎝⎛⎭⎫a 216+b 216=10|PC |2,所以|PA |2+|PB |2|PC |2=10.法二:(特殊值法)令|AC |=|CB |=1,则|PC |=14|AB |=24,|PA |2=|PB |2=58,易得|PA |2+|PB |2|PC |2=10.答案:10[常用结论——记一番]1.在四边形ABCD 中:(1)AB ―→=DC ―→,则四边形ABCD 为平行四边形;(2)AB ―→=DC ―→且(AB ―→+AD ―→)·(AB ―→-AD ―→)=0,则四边形ABCD 为菱形; (3)AB ―→=DC ―→且|AB ―→+AD ―→|=|AB ―→-AD ―→|,则四边形ABCD 为矩形; (4)若AB ―→=λDC ―→(λ>0,λ≠1),则四边形ABCD 为梯形.2.设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边长分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔OA ―→2=OB ―→2=OC ―→2. (2)O 为△ABC 的重心⇔OA ―→+OB ―→+OC ―→=0.(3)O 为△ABC 的垂心⇔OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→. (4)O 为△ABC 的内心⇔a OA ―→+b OB ―→+c OC ―→=0. (5)O 为△ABC 的A 的旁心⇔a OA ―→=b OB ―→+c OC ―→.(七)玩转通项 搞定数列 [速解技法——学一招] 几种常见的数列类型及通项的求法(1)递推公式为a n +1=a n +f (n )解法:把原递推公式转化为a n +1-a n =f (n ),利用累加法(逐差相加法)求解. (2)递推公式为a n +1=f (n )a n解法:把原递推公式转化为a n +1a n =f (n ),利用累乘法(逐商相乘法)求解.(3)递推公式为a n +1=pa n +q解法:通过待定系数法,将原问题转化为特殊数列{a n +k }的形式求解. (4)递推公式为a n +1=pa n +f (n )解法:利用待定系数法,构造数列{b n },消去f (n )带来的差异. [例1] 已知数列{a n }满足a 1=23,a n +1=n n +1a n,求a n .[解] 由条件知a n +1a n=nn +1,分别令n =1,2,3,…,(n -1),代入上式得(n -1)个等式累乘,即a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…×n -1n ⇒a n a 1=1n .又∵a 1=23,∴a n =23n .[例2] 已知数列{a n }的首项a 1=1,a n +1=a n2a n +1,求数列⎩⎨⎧⎭⎬⎫1a n a n +1的前10项和. [解] 因为a n +1=a n2a n +1, 所以1a n +1=2a n +1a n =2+1a n,即1a n +1-1a n =2, 所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为2的等差数列,所以1a n =2n -1,所以a n =12n -1, 而1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,所以1a 1a 2+1a 2a 3+…+1a 10a 11=12⎝⎛1-13+13-15+…+⎭⎫119-121=12⎝⎛⎭⎫1-121=1021. [经典好题——练一手]1.已知数列{a n }的首项a 1=2,且a n +1=a n +n +1,则数列{a n }的通项公式a n =( ) A .n (n -1)2B .n (n +1)2 C .n (n +1)2-1D .n (n +1)2+1 解析:选D 因为a n +1=a n +n +1, 所以a n +1-a n =n +1,分别把n =1,2,3,…,n -1代入上式,得到(n -1)个等式, a n -a n -1=(n -1)+1, a n -1-a n -2=(n -2)+1, a n -2-a n -3=(n -3)+1,…a 2-a 1=1+1. 又a 1=2=1+1,故将上述n 个式子相加得a n =[(n -1)+(n -2)+(n -3)+…+2+1]+n +1=[n +(n -1)+(n -2)+…+2+1]+1=n (n +1)2+1.2.已知数列{a n }满足a 1=1,a n =12a n -1+1(n ≥2),则数列{a n }的通项公式a n =________.解析:由a n =12a n -1+1(n ≥2),得a n -2=12(a n -1-2),而a 1-2=1-2=-1,∴数列{a n -2}是首项为-1,公比为12的等比数列.∴a n -2=-⎝⎛⎭⎫12n -1,∴a n =2-⎝⎛⎭⎫12n -1. 答案:2-⎝⎛⎭⎫12n -13.设{a n }是首项为1的正项数列,且a 2n -a 2n -1-na n -na n -1=0(n ∈N *,n ≥2),则数列的通项公式a n =________.解析:由题设得(a n +a n -1)(a n -a n -1-n )=0, 由a n >0,a n -1>0知a n +a n -1>0,于是a n -a n -1=n ,所以a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2. 答案:n (n +1)24.在数列{a n }中,已知a 1=-1,a n +1=2a n +4·3n -1,求通项公式a n . 解:原递推式可化为a n +1+λ·3n =2(a n +λ·3n -1),比较系数得λ=-4,即a n +1-4·3n =2(a n -4·3n -1),则数列{a n -4·3n -1}是首项为a 1-4·31-1=-5,公比为2的等比数列,故a n -4·3n -1=-5·2n -1,即a n =4·3n -1-5·2n -1.[常用结论——记一番]等差(比)数列的重要结论(1)数列{a n }是等差数列⇔数列{c a n }是等比数列;数列{a n }是等比数列,则数列{log a |a n |}是等差数列.(2){a n },{b n }是等差数列,S n ,T n 分别为它们的前n 项和,若b m ≠0,则a m b m=S 2m -1T 2m -1.(3)首项为正(或为负)递减(或递增)的等差数列前n 项和最大(或最小)问题转化为解不等式⎩⎪⎨⎪⎧a n ≥0,a n +1≤0⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧a n ≤0,a n +1≥0,也可化为二次型函数S n =An 2+Bn 来分析,注意n ∈N *. (4)等差(比)数列中,S m ,S 2m -S m ,S 3m -S 2m ,…(各项均不为0)仍是等差(比)数列.(八)掌握规律 巧妙求和 [速解技法——学一招] 求数列的前n 项和的主要方法(1)公式法:对于等差数列或等比数列可用公式法.(2)裂项相消法:将数列的每一项分解为两项的差,在求和时中间的一些项可以相互抵消,从而累加相消.(3)错位相减法:若{a n }为等差数列,{b n }为等比数列,则对于数列{a n b n }的前n 项和可用错位相减法.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和等于同一个常数,那么求这个数列前n 项和即可用倒序相加法.(5)分组求和法:将原数列分解成可用公式法求和的若干个数列. [例1] 已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)求数列{a n ·2a n }的前n 项和.[解] (1)设等差数列{a n }的公差为d ,由已知得 ⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2, 所以{a n }的通项公式为a n =1+2(n -1)=2n -1.(2)令b n =2a n ,由(1)可知a n ·b n =(2n -1)×22n -1,设T n 为数列{a n ·b n }的前n 项和,所以T n =1×21+3×23+5×25+…+(2n -3)×22n -3+(2n -1)×22n -1,①4T n =1×23+3×25+5×27+…+(2n -3)×22n -1+(2n -1)×22n +1,②①-②得:-3T n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1,所以T n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1-3=2+2×8(1-4n -1)1-4-(2n -1)×22n +1-3=-6+2×8(1-4n -1)+(6n -3)×22n +19=10+(6n -5)×22n +19.[例2] 已知数列{a n }满足a 1=12,a n +1=a 2n +a n ,b n =11+a n(n ∈N *),S n =b 1+b 2+…+b n ,P n =b 1b 2·…·b n ,求2P n +S n 的值.[解] 因为a 1=12,a n +1=a 2n +a n ,n ∈N *, 所以a n +1>a n >0,a n +1=a n (a n +1),所以b n =11+a n =a 2n a n a n +1=a n +1-a n a n a n +1=1a n -1a n +1.P n =b 1b 2·…·b n =a 1a 2·a 2a 3·…·a n a n +1=12a n +1,S n =b 1+b 2+…+b n =⎝⎛⎭⎫1a 1-1a 2+⎝⎛⎭⎫1a 2-1a 3+…+⎝⎛⎭⎫1a n -1a n +1=2-1a n +1, 故2P n +S n =1a n +1+⎝⎛⎭⎫2-1an +1=2.[经典好题——练一手]1.(2018届高三·湖南十校联考)数列112,314,518,7116,…的前n 项和S n =________.解析:利用分组求和法,可得S n =(1+3+5+…+2n -1)+⎝⎛⎭⎫12+122+…+12n =n 2+1-12n . 答案:n 2+1-12n2.(2017·武汉调研)设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前9项和为________.解析:设数列{a n }的公差为d ,由S n ≤S 5,得⎩⎪⎨⎪⎧ a 5≥0,a 6≤0,即⎩⎪⎨⎪⎧a 1+4d ≥0,a 1+5d ≤0,得-94≤d ≤-95,又a 2为整数,∴d =-2,a n =a 1+(n -1)×d =11-2n , 故1a n a n +1=1d ⎝⎛⎭⎫1a n -1a n +1, ∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和T n =1d ⎝⎛⎭⎫1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1d ⎝⎛⎭⎫1a 1-1a n +1, ∴T 9=-12×⎣⎡⎦⎤19-⎝⎛⎭⎫-19=-19. 答案:-193.(2018届高三·安徽名校阶段性测试)已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n +1·log 12a n ,求数列{b n }的前n 项和S n .解:(1)设等比数列{a n }的首项为a 1,公比为q . 依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,得a 3=8.因此a 2+a 4=20,即有⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8,解得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32,又数列{a n }单调递增,则⎩⎪⎨⎪⎧q =2,a 1=2,故a n =2n .(2)∵b n =2n +1·log 122n =-n ·2n +1,∴-S n =1×22+2×23+3×24+…+n ×2n +1,①-2S n =1×23+2×24+3×25+…+(n -1)×2n +1+n ×2n +2.②①-②,得S n =22+23+24+…+2n +1-n ·2n +2=4(1-2n )1-2-n ·2n +2=(1-n )2n +2-4.4.在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差为d . ∵a 3+a 8-(a 2+a 7)=2d =-6. ∴d =-3,∴a 2+a 7=2a 1+7d =-23,解得a 1=-1, ∴数列{a n }的通项公式为a n =-3n +2.(2)∵数列{a n +b n }是首项为1,公比为q 的等比数列, ∴a n +b n =q n -1,即-3n +2+b n =q n -1,∴b n =3n -2+q n -1.∴S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n (3n -1)2+(1+q +q 2+…+q n-1),故当q =1时,S n =n (3n -1)2+n =3n 2+n2;当q ≠1时,S n =n (3n -1)2+1-q n1-q.[常用结论——记一番]常用裂项公式(1)1n (n +1)=1n -1n +1; (2)1n +1+n=n +1-n ;(3)a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=a n a n -1·a n -1a n -2·…·a 2a 1·a 1;(4)n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)];(5)1n (n +1)(n +2)=12⎡⎦⎤1n (n +1)-1(n +1)(n +2);(6)(2n )2(2n -1)(2n +1)=1+12⎝⎛⎭⎫12n -1-12n +1.(九)求得通项 何愁放缩 [速解技法——学一招]错误![例1] 已知数列{a n }满足a 1=8,(n +1)a n +1=(n +3)a n +8n +8, (1)求a n ; (2)求证:1a 1-1+1a 2-1+…+1a n -1<27. [解] (1)(n +1)a n +1=(n +3)a n +8n +8两边同除以(n +1)(n +2)(n +3), 得a n +1(n +3)(n +2)=a n (n +2)(n +1)+8(n +3)(n +2),即a n +1(n +3)(n +2)-a n(n +2)(n +1)=8⎝⎛⎭⎫1n +2-1n +3.利用累加法,可得a n +1(n +3)(n +2)-a 13×2=8⎝⎛⎭⎫13-1n +3,化简求得a n +1=4(n +1)(n +2),所以a n =4n (n +1). (2)证明:法一:14n 2+4n -1<14n 2-1=12⎝⎛⎭⎫12n -1-12n +1,通过计算,当n ≥4时,17+123+147+…+14n 2+4n -1<17+123+147+12⎣⎢⎡⎝⎛⎭⎫17-19+⎝⎛⎭⎫19-111+…+⎝⎛ 12n -1-⎦⎥⎤⎭⎫12n +1<17+123+147+114<27.法二:14n 2+4n -1<14n 2+4n -3=1(2n -1)(2n +3)=14⎝⎛⎭⎫12n -1-12n +3.当n ≥3时,17+123+…+14n 2+4n -1<17+123+14⎣⎡⎦⎤⎝⎛⎭⎫15-19+⎝⎛⎭⎫17-111+…+⎝⎛⎭⎫12n -1-12n +3<17+123+14⎝⎛⎭⎫15+17<17+121+221=27. [例2] 设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1(n ∈N *),且a 1,a 2+5,a 3成等差数列.(1)求数列{a n }的通项公式;(2)求证:对一切正整数n ,有1a 1+1a 2+…+1a n <32.[解] (1)由2S n =a n +1-2n +1+1,得2S n +1=a n +2-2n +2+1,两式相减得a n +2=3a n +1+2n +1,2S 1=a 2-3⇔a 2=2a 1+3,a 3=3a 2+4=6a 1+13, a 1,a 2+5,a 3成等差数列⇔a 1+a 3=2(a 2+5)⇔a 1=1.。
【通用版】2019年高考理科数学三维二轮专题复习教学案 第二部分板块一 系统思想方法——融会贯通 含解析
(一)小题小做巧妙选择高考数学选择题历来都是兵家必争之地,因其涵盖的知识面较宽,既有基础性,又有综合性,解题方法灵活多变,分值又高,既考查了同学们掌握基础知识的熟练程度,又考查了一定的数学能力和数学思想,试题区分度极佳.这就要求同学们掌握迅速、准确地解答选择题的方法与技巧,为全卷得到高分打下坚实的基础.一般来说,对于运算量较小的简单选择题,都是采用直接法来解题,即从题干条件出发,利用基本定义、性质、公式等进行简单分析、推理、运算,直接得到结果,与选项对比得出正确答案;对于运算量较大的较复杂的选择题,往往采用间接法来解题,即根据选项的特点、求解的要求,灵活选用数形结合、验证法、排除法、割补法、极端值法、估值法等不同方法技巧,通过快速判断、简单运算即可求解.下面就解选择题的常见方法分别举例说明.一、直接法直接从题目条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,得出正确的结论.涉及概念、性质的辨析或运算较简单的题目常用直接法.[典例] (2017·全国卷Ⅱ)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A .2B . 3C . 2D .233[技法演示] 由圆截得渐近线的弦长求出圆心到渐近线的距离,利用点到直线的距离公式得出a 2,b 2的关系求解.依题意,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为bx -ay =0.因为直线bx-ay =0被圆(x -2)2+y 2=4所截得的弦长为2,所以|2b |b 2+a 2=4-1,所以3a 2+3b 2=4b 2,所以3a 2=b 2,所以e =1+b 2a2=1+3=2.[答案] A[应用体验]1.(2016·全国卷Ⅲ)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( ) A .[2,3] B .(-∞,2]∪[3,+∞) C .[3,+∞)D .(0,2]∪[3,+∞)解析:选D 由题意知S ={x |x ≤2或x ≥3}, 则S ∩T ={x |0<x ≤2或x ≥3}.故选D.2.(2017·全国卷Ⅱ)执行如图所示的程序框图,如果输入的a =-1,则输出的S =( )A .2B .3C .4D .5解析:选B 运行程序框图, a =-1,S =0,K =1,K ≤6成立;S =0+(-1)×1=-1,a =1,K =2,K ≤6成立; S =-1+1×2=1,a =-1,K =3,K ≤6成立; S =1+(-1)×3=-2,a =1,K =4,K ≤6成立; S =-2+1×4=2,a =-1,K =5,K ≤6成立; S =2+(-1)×5=-3,a =1,K =6,K ≤6成立;S =-3+1×6=3,a =-1,K =7,K ≤6不成立,输出S =3. 二、数形结合法根据题目条件作出所研究问题的有关图形,借助几何图形的直观性作出正确的判断.[典例] (2013·全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0][技法演示]作出函数图象,数形结合求解.当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a +2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=ln(x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,选择D.[答案] D[应用体验]3.(2016·全国卷Ⅱ)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A . 2B .32C . 3D .2解析:选A 作出示意图,如图,离心率e =c a =2c 2a =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2.故选A .4.(2014·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤03x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2解析:选B 作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点B (5,2)时,对应的z 值最大.故z max =2×5-2=8.三、验证法将选项或特殊值,代入题干逐一去验证是否满足题目条件,然后选择符合题目条件的选项的一种方法.在运用验证法解题时,若能根据题意确定代入顺序,则能提高解题速度.[典例] (2016·全国卷Ⅰ)若a >b >1,0<c <1,则( ) A .a c <b c B .ab c <ba c C .a log b c <b log a cD .log a c<log bc[技法演示] 法一:(特殊值验证法)根据a ,b ,c 满足的条件,取特殊值求解. ∵a >b >1,0<c <1,∴不妨取a =4,b =2,c =12,对于A,412=2,212=2,2>2,∴选项A 不正确.对于B,4×212=42,2×412=4,42>4,∴选项B 不正确.对于C,4×log 212=-4,2×log 412=-1,-4<-1,∴选项C 正确.对于D ,log 412=-12,log 212=-1,-12>-1,∴选项D 不正确. 故选C .法二:(直接法)根据待比较式的特征构造函数,直接利用函数单调性及不等式的性质进行比较.∵y =x α,α∈(0,1)在(0,+∞)上是增函数, ∴当a >b >1,0<c <1时,a c >b c ,选项A 不正确. ∵y =x α,α∈(-1,0)在(0,+∞)上是减函数, ∴当a >b >1,0<c <1,即-1<c -1<0时, a c -1<b c -1,即ab c >ba c ,选项B 不正确. ∵a >b >1,∴lg a >lg b >0,∴a lg a >b lg b >0, ∴a lg b >blg a.又∵0<c <1,∴lg c <0. ∴a lg c lg b <b lg c lg a,∴a log b c <b log a c ,选项C 正确. 同理可证log a c >log b c ,选项D 不正确. [答案] C[应用体验]5.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B .⎣⎡⎦⎤-1,13 C .⎣⎡⎦⎤-13,13 D .⎣⎡⎦⎤-1,-13 解析:选C 法一:(特殊值验证法)取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C .法二:(直接法)函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.故选C .四、排除法排除法也叫筛选法或淘汰法,使用排除法的前提是答案唯一,具体的做法是从条件出发,运用定理、性质、公式推演,根据“四选一”的指令,对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰项逐一排除,从而获得正确结论.[典例] (2017·全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )[技法演示] 根据函数的性质研究函数图象,利用排除法求解.令函数f (x )=sin 2x1-cos x,其定义域为{x|x≠2kπ,k∈Z},又f(-x)=sin(-2x)1-cos(-x)=-sin 2x1-cos x=-f(x),所以f(x)=sin 2x1-cos x为奇函数,其图象关于原点对称,故排除B;因为f(1)=sin 21-cos 1>0,f(π)=sin 2π1-cos π=0,故排除A、D,选C.[答案] C[应用体验]6.(2016·全国卷Ⅰ)函数y=2x2-e|x|在[-2,2]的图象大致为()解析:选D∵f(x)=2x2-e|x|,x∈[-2,2]是偶函数,又f(2)=8-e2∈(0,1),故排除A,B.设g(x)=2x2-e x,则g′(x)=4x-e x.又g′(0)<0,g′(2)>0,∴g(x)在(0,2)内至少存在一个极值点,∴f(x)=2x2-e|x|在(0,2)内至少存在一个极值点,排除C.故选D.7.(2015·全国卷Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()解析:选B 当x ∈⎣⎡⎦⎤0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A 、C .当x ∈⎣⎡⎦⎤π4,3π4时,f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4=1+5,f ⎝⎛⎭⎫π2=2 2.∵22<1+5,∴f ⎝⎛⎭⎫π2<f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4,从而排除D ,故选B.五、割补法“能割善补”是解决几何问题常用的方法,巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题时间.[典例] (2016·全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π[技法演示] 由三视图还原为直观图后计算求解.由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A .[答案] A[应用体验]8.(2015·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A .18B .17C .16D .15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D.六、极端值法选择运动变化中的极端值,往往是动静转换的关键点,可以起到降低解题难度的作用,因此是一种较高层次的思维方法.从有限到无限,从近似到精确,从量变到质变,运用极端值法解决某些问题,可以避开抽象、复杂的运算,降低难度,优化解题过程.[典例] (2016·全国卷Ⅲ)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3[技法演示] 根据直三棱柱的性质找出最大球的半径,再求球的体积.由题意得,要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B.[答案] B[应用体验]9.如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q 满足A 1P =BQ ,过P ,Q ,C 三点的截面把棱柱分成两部分,则其体积之比为( )A .3∶1B .2∶1C .4∶1D .3∶1解析:选B 将P ,Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有VC -AA 1B =VA 1-ABC =VABC -A 1B 1C 13.故过P ,Q ,C 三点的截面把棱柱分成的两部分体积之比为2∶1(或1∶2).七、估值法由于选择题提供了唯一正确的选择项,解答又无需过程,因此可通过猜测、合情推理、估算而获得答案,这样往往可以减少运算量,避免“小题大做”.[典例] (2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π[技法演示] 由题意,知12V 圆柱<V 几何体<V 圆柱.又V 圆柱=π×32×10=90π, ∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B. [答案] B[应用体验]10.若双曲线x 2a 2-y 2b 2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A .73B .54C .43D .53解析:选D 因为双曲线的一条渐近线经过点(3,-4),所以b a =43.因为e =c a >b a ,所以e >43.故选D.(二)快稳细活 填空稳夺绝大多数的填空题都是依据公式推理计算型和依据定义、定理等进行分析判断型,解答时必须按规则进行切实的计算或者合乎逻辑的推理和判断.求解填空题的基本策略是要在“准”“巧”“快”上下功夫.常用的方法有直接法、特殊值法、数形结合法、等价转化法、构造法、分析法等.解答填空题时,由于不反映过程,只要求结果,故对正确性的要求更高、更严格.解答时应遵循“快”“细”“稳”“活”“全”5个原则.填空题解答“五字诀” 快——运算要快,力戒小题大做 细——审题要细,不能粗心大意 稳——变形要稳,不可操之过急 活——解题要活,不要生搬硬套 全——答案要全,避免残缺不齐 一、直接法直接法就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等得出正确的结论.[典例] (2016·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________. [技法演示] 先求出sin A ,sin C 的值,进而求出sin B 的值,再利用正弦定理求b 的值.因为A ,C 为△ABC 的内角,且cos A =45,cos C =513,所以sin A =35,sin C =1213,所以sin B =sin(π-A -C )=sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又a =1,所以由正弦定理得b =a sin B sin A =6365×53=2113. [答案]2113[应用体验]1.(2015·全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )为偶函数,∴f (-x )-f (x )=0恒成立,∴-x ln(-x +a +x 2)-x ln(x +a +x 2)=0恒成立,∴x ln a =0恒成立,∴ln a =0,即a=1.答案:12.(2014·全国卷Ⅰ)(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案)解析:(x +y )8中,T r +1=C r 8x 8-r y r ,令r =7,再令r =6,得x 2y 7的系数为C 78-C 68=8-28=-20.答案:-20 二、特殊值法当填空结论唯一或题设条件中提供的信息暗示答案是一个定值时,我们只需把题材中的参变量用特殊值代替即可得到结论.[典例] (2016·山东高考)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.[技法演示] 法一:(特殊值法)利用双曲线的性质,设特殊值求解. 如图,由题意知|AB |=2b 2a,|BC |=2c ,又2|AB |=3|BC |,∴设|AB |=6,|BC |=4,则|AF 1|=3,|F 1F 2|=4, ∴|AF 2|=5.由双曲线的定义可知,a =1,c =2,∴e =ca =2.故填2. 法二:(直接法)利用双曲线的性质,建立关于a ,b ,c 的等式求解. 如图,由题意知|AB |=2b 2a ,|BC |=2C . 又2|AB |=3|BC |,∴2×2b 2a =3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2并整理得2e 2-3e -2=0,解得e =2(负值舍去). [答案] 2[应用体验]3.(2014·安徽高考)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.解析:法一:(特殊值法)由题意知a 1,a 3,a 5成等差数列,a 1+1,a 3+3,a 5+5成等比数列,所以观察可设a 1=5,a 3=3,a 5=1,所以q =1.故填1.法二:(直接法)因为数列{a n }是等差数列,所以可设a 1=t -d ,a 3=t ,a 5=t +d ,故由已知得(t +3)2=(t -d +1)(t +d +5),得d 2+4d +4=0,即d =-2,所以a 3+3=a 1+1,即q =1.答案:1 三、数形结合法根据题目条件,画出符合题意的图形,以形助数,通过对图形的直观分析、判断,往往可以快速简捷地得出正确的结果,它既是方法,也是技巧,更是基本的数学思想.[典例] (2016· 全国卷Ⅲ)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.[技法演示] 根据直线与圆的位置关系先求出m 的值,再结合图象求|CD |.由直线l :mx +y +3m -3=0知其过定点(-3,3),圆心O 到直线l 的距离为d =|3m -3|m 2+1. 由|AB |=23得⎝ ⎛⎭⎪⎪⎫3m -3m 2+12+(3)2=12, 解得m =-33. 又直线l 的斜率为-m =33, 所以直线l 的倾斜角α=π6.画出符合题意的图形如图所示,过点C 作CE ⊥BD ,则∠DCE =π6.在Rt △CDE 中,可得|CD |=|AB |cos π6=23×23=4. [答案] 4[应用体验]4.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y +1≤0,2x -y +2≥0,则z =3x +y 的最大值为________.解析:画出可行域(如图所示). ∵z =3x +y , ∴y =-3x +z .∴直线y =-3x +z 在y 轴上截距最大时,即直线过点B 时,z 取得最大值.由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +1=0,解得⎩⎪⎨⎪⎧x =1,y =1,即B (1,1), ∴z max =3×1+1=4. 答案:45.(2014·全国卷Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.解析:∵f (x )是偶函数,∴图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)上单调递减,则f (x )的大致图象如图所示,由f (x -1)>0,得-2<x -1<2,即-1<x <3.答案:(-1,3) 四、等价转化法通过“化复杂为简单,化陌生为熟悉”将问题等价转化为便于解决的问题,从而得到正确的结果.[典例] (2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.[技法演示] 利用等比数列通项公式求出首项a 1与公比q ,再将a 1a 2…a n 的最值问题利用指数幂的运算法则转化为二次函数最值问题.设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q 1+2+…+(n -1)=23n ·⎝⎛⎭⎫12(n -1)n 2=23n -n 22+n 2=2-n 22+72n .记t =-n 22+7n 2=-12(n 2-7n )=-12⎝⎛⎭⎫n -722+498, 结合n ∈N *可知n =3或4时,t 有最大值6.又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. [答案] 64[应用体验]6.(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a-1|)>f (-2),则a 的取值范围是________.解析:∵f (x )是偶函数,且在(-∞,0)上单调递增, ∴f (x )在(0,+∞)上单调递减,f (-2)=f (2), ∴f (2|a -1|)>f (2),∴2|a -1|<2=212,∴|a -1|<12,即-12<a -1<12,即12<a <32.答案:⎝⎛⎭⎫12,327.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx 的最大值为________.解析:画出可行域如图阴影部分所示,∵yx 表示过点(x ,y )与原点(0,0)的直线的斜率,∴点(x ,y )在点A 处时yx最大.由⎩⎪⎨⎪⎧ x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴A (1,3).∴yx 的最大值为3. 答案:3 五、构造法根据题设条件与结论的特殊性,构造出一些新的数学形式,并借助它来认识和解决问题.[典例] (2016·浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.[技法演示] 先构造等比数列,再进一步利用通项公式求解. ∵a n +1=2S n +1,∴S n +1-S n =2S n +1, ∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎫S n +12, ∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1, ∴S 5+12=⎝⎛⎭⎫S 1+12×34=32×34=2432, ∴S 5=121. [答案] 1 121[应用体验]8.(2016·浙江高考)已知向量a ,b ,|a|=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由于e 是任意单位向量,可设e =a +b|a +b |,则|a ·e |+|b ·e |=⎪⎪⎪⎪⎪⎪a ·(a +b )|a +b |+⎪⎪⎪⎪⎪⎪b ·(a +b )|a +b |≥⎪⎪⎪⎪⎪⎪a ·(a +b )|a +b |+b ·(a +b )|a +b |=⎪⎪⎪⎪⎪⎪(a +b )·(a +b )|a +b |=|a +b |.∵|a·e|+|b·e|≤6,∴|a+b|≤6,∴(a+b)2≤6,∴|a|2+|b|2+2a·b≤6. ∵|a|=1,|b|=2,∴1+4+2a·b≤6,∴a·b≤12,∴a·b的最大值为12.答案:1 2六、分析法根据题设条件的特征进行观察、分析,从而得出正确的结论.[典例](2016·全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.[技法演示]先确定丙的卡片上的数字,再确定乙的卡片上的数字,进而确定甲的卡片上的数字.因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.[答案]1和3[应用体验]9.(2014·全国卷Ⅰ)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一个城市.由此可判断乙去过的城市为________.解析:由甲、丙的回答易知甲去过A城市和C城市,乙去过A城市或C城市,结合乙的回答可得乙去过A城市.答案:A[考前热身训练]“12+4”小题提速练(共3套)“12+4”小题提速练(一)(限时:40分钟满分:80分)一、选择题1.集合A ={1,3,5,7},B ={x |x 2-4x ≤0},则A ∩B =( ) A .(1,3) B .{1,3} C .(5,7)D .{5,7}解析:选B 因为集合A ={1,3,5,7},B ={x |x 2-4x ≤0}={x |0≤x ≤4},所以A ∩B ={1,3}. 2.已知z =1-3i3+i(i 为虚数单位),则z 的共轭复数的虚部为( ) A .-i B .i C .-1D .1解析:选D ∵z =1-3i 3+i =(1-3i )(3-i )(3+i )(3-i )=-10i 10=-i ,∴z 的共轭复数z -=i ,其虚部为1.3.已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +a ),|x |≤1,-10|x |+3,|x |>1,若f (0)=2,则a +f (-2)=( ) A .-2 B .0 C .2D .4解析:选C∵函数f (x )=⎩⎨⎧log 2(x +a ),|x |≤1,-10|x |+3,|x |>1,由f (0)=2,可得log 2(0+a )=2,∴a =4. ∴a +f (-2)=4-105=2.4.如图,圆C 内切于扇形AOB ,∠AOB =π3,若向扇形AOB 内随机投掷600个点,则落入圆内的点的个数估计值为( )A .100B .200C .400D .450解析:选C 如图所示,作CD ⊥OA 于点D ,连接OC 并延长交扇形于点E ,设扇形半径为R ,圆C 半径为r ,∴R =r +2r =3r ,∴落入圆内的点的个数估计值为600·πr 216π(3r )2=400.5.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与圆(x -3)2+(y -1)2=1相切,则此双曲线的离心率为( )A .2B . 5C . 3D . 2解析:选A 由题可知双曲线的渐近线方程为bx ±ay =0,与圆相切,∴圆心(3,1)到渐近线的距离为|3b -a |a 2+b 2=1或|3b +a |a 2+b 2=1,又a >0,b >0,解得3a =b ,∴c 2=a 2+b 2=4a 2,即c =2a ,∴e =ca =2.6.某程序框图如图所示,该程序运行后输出S 的值是( )A .-3B .-12C .13D .2解析:选A 模拟程序框图的运算结果如下: 开始S =2,i =1.第一次循环,S =-3,i =2;第二次循环,S =-12,i =3;第三次循环,S =13,i =4;第四次循环,S =2,i =5;第五次循环,S =-3,i =6;……,可知S 的取值呈周期性出现,且周期为4,∵跳出循环的i 值2 018=504×4+2,∴输出的S =-3.7.在△ABC 中,|AB ―→+AC ―→|=3|AB ―→-AC ―→|,|AB ―→|=|AC ―→|=3,则CB ―→·CA ―→的值为( ) A .3 B .-3 C .-92D .92解析:选D 由|AB ―→+AC ―→|=3|AB ―→-AC ―→|,两边平方可得|AB ―→|2+|AC ―→|2+2AB ―→·AC ―→=3|AB ―→|2+3|AC ―→|2-6AB ―→·AC ―→,又|AB ―→|=|AC ―→|=3,∴AB ―→·AC ―→=92,∴CB ―→·CA ―→=(CA ―→+AB ―→)·CA ―→=CA ―→2+AB ―→·CA ―→=CA ―→2-AB ―→·AC ―→=9-92=92.8.设{a n }是公差不为0的等差数列,满足a 24+a 25=a 26+a 27,则{a n }的前10项和S 10=( ) A .-10 B .-5 C .0D .5解析:选C 由a 24+a 25=a 26+a 27,可得(a 26-a 24)+(a 27-a 25)=0,即2d (a 6+a 4)+2d (a 7+a 5)=0,∵d ≠0,∴a 6+a 4+a 7+a 5=0,∵a 5+a 6=a 4+a 7,∴a 5+a 6=0, ∴S 10=10(a 1+a 10)2=5(a 5+a 6)=0. 9.函数f (x )=⎝⎛⎭⎫21+e x -1cos x 的图象的大致形状是( )解析:选B ∵f (x )=⎝ ⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=⎝ ⎛⎭⎪⎫2e x1+e x -1cos x =-⎝ ⎛⎭⎪⎫21+e x -1cos x =-f (x ),故函数f (x )为奇函数,函数图象关于原点对称,可排除A ,C ;又由当x ∈⎝⎛⎭⎫0,π2时,f (x )<0,函数图象位于第四象限,可排除D ,故选B. 10.已知过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点(点A 在第一象限),若AF ―→=3FB ―→,则直线AB 的斜率为( )A .B .12C .32D . 3解析:选D 作出抛物线的准线l :x =-1,设A ,B 在l 上的投影分别是C ,D ,连接AC ,BD ,过B 作BE ⊥AC 于E ,如图所示.∵AF ―→=3FB ―→,∴设|AF |=3m , |BF |=m ,则|AB |=4m ,由点A ,B 分别在抛物线上,结合抛物线的定义,得|AC |=|AF |=3m ,|BD |=|BF |=m ,则|AE |=2m .因此在Rt △ABE 中,cos ∠BAE =|AE ||AB |=2m 4m =12, 得∠BAE =60°.所以直线AB 的倾斜角∠AFx =60°,故直线AB 的斜率为k =tan 60°= 3.11.某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为( )A .4πB .28π3C .44π3D .20π解析:选B 由三视图知,该几何体是一个三棱柱,三棱柱的底面是边长为2的正三角形,侧棱长是2,则三棱柱的两个底面的中心连线的中点到三棱柱的顶点的距离就是其外接球的半径r ,所以r =⎝⎛⎭⎫23×32+12=73,则球面的表面积为4πr 2=4π×73=28π3. 12.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当 xy z 取得最大值时,2x +1y -2z的最大值为( )A .0B .1C .94D .3解析:选B ∵x 2-3xy +4y 2-z =0,∴z =x 2-3xy +4y 2,又x ,y ,z 均为正实数,∴xyz =xyx 2-3xy +4y 2=1x y +4y x -3≤12x y ×4yx-3=1(当且仅当x =2y 时等号成立),∴⎝⎛⎭⎫xy z max =1,此时x =2y ,则z =x 2-3xy +4y 2=(2y )2-3×2y ×y +4y 2=2y 2, ∴2x +1y -2z =1y +1y -1y 2=-⎝⎛⎭⎫1y -12+1≤1, 当且仅当y =1时等号成立,满足题意. ∴2x +1y -2z 的最大值为1. 二、填空题13.已知等比数列{a n }中,a 1+a 3=52,a 2+a 4=54,则a 6=________.解析:∵a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52,a 1q +a 1q 3=54,解得⎩⎪⎨⎪⎧q =12,a 1=2,∴a 6=2×⎝⎛⎭⎫125=116. 答案:11614.已知sin ⎝⎛⎭⎫θ-π6=33,则cos ⎝⎛⎭⎫π3-2θ=________. 解析:cos ⎝⎛⎭⎫π3-2θ=cos ⎝⎛⎭⎫2θ-π3=cos ⎣⎡⎦⎤2⎝⎛⎭⎫θ-π6 =1-2sin 2⎝⎛⎭⎫θ-π6=1-2×⎝⎛⎭⎫332=13. 答案:1315.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________.解析:由z =ax +by (a >0,b >0)得y =-a b x +z b ,∵a >0,b >0,∴直线y =-a b x +zb 的斜率为负.作出不等式组表示的可行域如图,平移直线y =-a b x +z b ,由图象可知当y =-a b x +zb 经过点A 时,直线在y 轴上的截距最大,此时z 也最大.由⎩⎪⎨⎪⎧ 3x -y -6=0,x -y +2=0,解得⎩⎪⎨⎪⎧x =4,y =6,即A (4,6). 此时z =4a +6b =10,即2a +3b -5=0,即点(a ,b )在直线2x +3y -5=0上,因为a 2+b 2的几何意义为直线上的点到原点距离的平方,又原点到直线的距离d =|-5|22+32=513,故a 2+b 2的最小值为d 2=2513.答案:251316.已知函数f (x )=|x e x |-m (m ∈R)有三个零点,则m 的取值范围为________. 解析:函数f (x )=|x e x |-m (m ∈R)有三个零点,即y =|x e x |与y =m 的图象有三个交点.令g (x )=x e x ,则g ′(x )=(1+x )e x ,当x <-1时,g ′(x )<0,当x >-1时,g ′(x )>0,故g (x )=x e x 在(-∞,-1)上为减函数,在(-1,+∞)上是增函数,g (-1)=-1e ,又由x <0时,g (x )<0,当x >0时,g (x )>0,故函数y =|x e x |的图象如图所示:由图象可知y =m 与函数y =|x e x |的图象有三个交点时,m ∈⎝⎛⎭⎫0,1e ,故m 的取值范围是⎝⎛⎭⎫0,1e .答案:⎝⎛⎭⎫0,1e“12+4”小题提速练(二) (限时:40分钟 满分:80分)一、选择题1.(2017·西安模拟)已知集合A ={x |log 2x ≥1},B ={x |x 2-x -6<0},则A ∩B =( ) A .∅ B .{x |2<x <3} C .{x |2≤x <3}D .{x |-1<x ≤2}解析:选C 化简集合得A ={x |x ≥2},B ={x |-2<x <3},则A ∩B ={x |2≤x <3}.2.(2017·福州模拟)已知复数z =2+i ,则zz =( ) A .35-45iB .-35+45iC .53-43iD .-53+43i解析:选A 因为z =2+i ,所以zz =2-i 2+i =(2-i )25=35-45i.3.设a =log 32,b =ln 2,c =5-12,则a ,b ,c 的大小关系为( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a解析:选C 因为a =log 32=1log 23,b =ln 2=1log 2e,而log 23>log 2e >1,所以a <b ,又c =5-12=15,5>2=log 24>log 23,所以c <a ,故c <a <b .4.(2018届高三·兰州一中月考)在电视台举办的一次智力答题中,规定闯关者从图中任选一题开始,必须连续答对能连成一条线的3道题目,闯关才能成功,则闯关成功的答题方法有( )A .3种B .8种C .30种D .48种解析:选D 能连成横着的一条线的有123,456,789,共3种,能连成竖着的一条线的有147,258,369,共3种,能连成对角线的有159,357,共2种,故共有8种.又因为每种选择的答题顺序是任意的,故每种选择都有6种答题方法:如答题为1,2,3时,答题方法有:1→2→3,1→3→2,2→1→3,2→3→1,3→1→2,3→2→1.所以共有8×6=48(种)答题方法.5.(2017·合肥模拟)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤4,y ≥2,则目标函数z =x +2y 的最大值为( )A .5B .6C .132D .7解析:选C 作出不等式组表示的可区域如图中阴影部分所示,由图易知,当直线z =x +2y 经过直线x -y =-1与x +y =4的交点,即A ⎝⎛⎭⎫32,52时,z 取得最大值,z max =x +2y =132. 6.(2018届高三·宝鸡调研)阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出S 的值为( )A .64B .73C .512D .585解析:选B 依题意,执行题中的程序框图,当输入x 的值为1时,进行第一次循环,S =1<50,x =2;进行第二次循环,S =1+23=9<50,x =4;进行第三次循环,S =9+43=73>50,此时结束循环,输出S 的值为73.7.(2017·衡阳三模)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n =( )A .2n +1-2B .3nC .2nD .3n -1解析:选C 因为数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2q n -1,因为数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n+2⇒a n +a n +2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n .8.点A ,B ,C ,D 在同一个球的球面上,AB =BC =AC =3,若四面体ABCD 体积的最大值为3,则这个球的表面积为( )A .16916πB .8πC .28916πD .2516π 解析:选C 如图所示,当点D 位于球的正顶部时四面体的体积最大,设球的半径为R ,则四面体的高为h =R +R 2-1,四面体的体积为V =13×12×(3)2×sin 60°×(R +R 2-1)=34×(R +R 2-1)=3,解得R =178,所以球的表面积S =4πR 2=4π⎝⎛⎭⎫1782=289π16,故选C .9.(2018届高三·湖北七校联考)已知圆C :(x -1)2+y 2=r 2(r >0).设条件p :0<r <3,条件q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -3y +3=0的距离d =|1-3×0+3|12+(-3)2=2.当0<r <1时,直线在圆外,圆上没有点到直线的距离为1; 当r =1时,直线在圆外,圆上只有1个点到直线的距离为1; 当1<r <2时,直线在圆外,此时圆上有2个点到直线的距离为1; 当r =2时,直线与圆相切,此时圆上有2个点到直线的距离为1; 当2<r <3时,直线与圆相交,此时圆上有2个点到直线的距离为1.综上,当0<r <3时,圆C 上至多有2个点到直线x -3y +3=0的距离为1,由圆C 上至多有2个点到直线x -3y +3=0的距离为1可得0<r <3,故p 是q 的充要条件,故选C .10.(2017·合肥模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e .P 是椭圆上一点,满足PF 2⊥F 1F 2,点Q 在线段PF 1上,且F 1Q ―→=2 QP ―→.若F 1P ―→·F 2Q ―→=0,则e 2=( )A .2-1B .2- 2C .2- 3D .5-2解析:选C 由题意可知,在Rt △PF 1F 2中,F 2Q ⊥PF 1,所以|F 1Q |·|F 1P |=|F 1F 2|2,又|F 1Q |=23|F 1P |,所以有23|F 1P |2=|F 1F 2|2=4c 2,即|F 1P |=6c ,进而得出|PF 2|=2C .又由椭圆定义可知,|PF 1|+|PF 2|=6c +2c =2a ,解得e =c a =26+2=6-22,所以e 2=2-3.11.(2017·广州模拟)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝⎛⎭⎫0,π4上单调递减 B .f (x )在⎝⎛⎭⎫π8,3π8上单调递减 C .f (x )在⎝⎛⎭⎫0,π4上单调递增 D .f (x )在⎝⎛⎭⎫π8,3π8上单调递增解析:选D f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin ωx +φ+π4,因为0<φ<π且f (x )为奇函数,所以φ=3π4,即f (x )=-2sin ωx ,又直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f (x )的最小正周期为π2,由2πω=π2,可得ω=4,故f (x )=-2sin 4x ,由2k π+π2≤4x ≤2k π+3π2,k ∈Z ,即k π2+π8≤x ≤k π2+3π8,k ∈Z ,令k =0,得π8≤x ≤3π8,此时f (x )在⎝⎛⎭⎫π8,3π8上单调递增,故选D. 12.(2017·贵阳模拟)已知函数f (x )=ln(x 2-4x -a ),若对任意的m ∈R ,均存在x 0使得f (x 0)=m ,则实数a 的取值范围是( )A .(-∞,-4)B .(-4,+∞)C .(-∞,-4]D .[-4,+∞)解析:选D 依题意得,函数f (x )的值域为R ,令函数g (x )=x 2-4x -a ,其值域A 包含(0,+∞),因此对方程x 2-4x -a =0,有Δ=16+4a ≥0,解得a ≥-4,即实数a 的取值范围是[-4,+∞).二、填空题13.(2017·兰州模拟)已知菱形ABCD 的边长为a ,∠ABC =π3,则BD ―→·CD ―→=________.解析:由菱形的性质知|BD ―→|=3a ,|CD ―→|=a ,且〈BD ―→,CD ―→〉=π6,∴BD ―→·CD ―→=3a ×a ×cos π6=32a 2.答案:32a 214.(2017·石家庄模拟)若⎝⎛⎭⎫x 2+1x n 的展开式的二项式系数之和为64,则含x 3项的系数为________.解析:由题意,得2n =64,所以n =6, 所以⎝⎛⎭⎫x 2+1x n =⎝⎛⎭⎫x 2+1x 6, 其展开式的通项公式为T r +1=C r 6(x 2)6-r ⎝⎛⎭⎫1x r =C r 6x12-3r. 令12-3r =3,得r =3,所以展开式中含x 3项的系数为C 36=20. 答案:2015.某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出三箱,再从每箱中任意抽取2件产品进行检验,设取出的三箱中分别有0件、1件、2件二等品,其余为一等品.用ξ表示抽检的6件产品中二等品的件数,则ξ的数学期望E (ξ)=________.解析:由题意知,ξ的所有可能取值为0,1,2,3,P (ξ=0)=C 24C 25·C 23C 25=950,P (ξ=1)=C 14C 25·C 23C 25+C 24C 25·C 13C 12C 25=1225,P (ξ=2)=C 14C 25·C 13C 12C 25+C 24C 25·C 22C 25=310,P (ξ=3)=C 14C 25·C 22C 25=125,所以ξ的数学期望为 E (ξ)=0×950+1×1225+2×310+3×125=65. 答案:6516.(2018届高三·云南调研)已知三棱锥P -ABC 的所有顶点都在表面积为289π16的球面上,底面ABC 是边长为3的等边三角形,则三棱锥P -ABC 体积的最大值为________.解析:依题意,设球的半径为R ,则有4πR 2=289π16,R =178,△ABC 的外接圆半径为r =32sin 60°=1,球心到截 面ABC 的距离h =R 2-r 2=⎝⎛⎭⎫1782-12=158,因此点P 到截面ABC 的距离的最大值等于h +R =178+158=4,因此三棱锥P -ABC 体积的最大值为13×⎣⎡⎦⎤34×(3)2×4= 3.答案: 3“12+4”小题提速练(三) (限时:40分钟 满分:80分)一、选择题1.已知集合M ={x |16-x 2≥0},集合N ={y |y =|x |+1},则M ∩N =( ) A .{x |-2≤x ≤4} B .{x |x ≥1} C .{x |1≤x ≤4}D .{x |x ≥-2}解析:选C 由M 中16-x 2≥0,即(x -4)(x +4)≤0,解得-4≤x ≤4,所以M ={x |-4≤x ≤4},集合N ={y |y =|x |+1}=[1,+∞),则M ∩N ={x |1≤x ≤4}.2.若复数z 满足z (4-i)=5+3i(i 为虚数单位),则复数z 的共轭复数为( ) A .1-i B .-1+i C .1+iD .-1-i解析:选A 由z (4-i)=5+3i ,得z =5+3i 4-i =(5+3i )(4+i )(4-i )(4+i )=17+17i17=1+i ,则复数z 的共轭复数为 1-i. 3.由变量x 与y 的一组数据:得到的线性回归方程为y =2x +45,则y =( ) A .135 B .90 C .67D .63解析:选D 根据表中数据得x -=15×(1+5+7+13+19)=9,线性回归方程y ^=2x +45过点(x -,y -),则y -=2×9+45=63.4.如图给出一个算法的程序框图,该程序框图的功能是( )A .输出a ,b ,c 三个数中的最大数B .输出a ,b ,c 三个数中的最小数C .将a ,b ,c 按从小到大排列D .将a ,b ,c 按从大到小排列解析:选B 由程序框图知:第一个判断框是比较a ,b 大小,a 的值是a ,b 之间的较小数;第二个判断框是比较a ,c 大小,输出的a 是a ,c 之间的较小数.∴该程序框图的功能是输出a ,b ,c 三个数中的最小数.故选B.5.函数y =sin ⎝⎛⎭⎫2x +π3的图象经过下列平移,可以得到函数y =cos ⎝⎛⎭⎫2x +π6图象的是( )A .向右平移π6个单位B .向左平移π6个单位C .向右平移π3个单位D .向左平移π3个单位解析:选B 把函数y =sin ⎝⎛⎭⎫2x +π3=cos π2-⎝⎛⎭⎫2x +π3=cos ⎝⎛⎭⎫2x -π6的图象向左平移π6个单位,可得y =cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=cos ⎝⎛⎭⎫2x +π6的图象. 6.已知f (x )是定义在R 上的偶函数且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C ∵f (x )是定义在R 上的偶函数,∴若f (x )为[0,1]上的增函数,则f (x )在[-1,0]上是减函数,又∵f (x )是定义在R 上的以2为周期的函数,且[3,4]与[-1,0]相差两个周期, ∴两区间上的单调性一致,所以可以得出f (x )为[3,4]上的减函数,故充分性成立. 若f (x )为[3,4]上的减函数,同样由函数周期性可得出f (x )在[-1,0]上是减函数, 再由函数是偶函数可得出f (x )为[0,1]上的增函数,故必要性成立.综上,“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的充要条件.7.某三棱锥的三视图如图所示,其三个视图都是直角三角形,则该三棱锥的体积为( )A .13B .23C .1D .6解析:选A 由已知中的三视图可得,该三棱锥的底面面积S =12×2×1=1,高h =1,故体积V =13Sh =13.8.已知向量a 与b 的夹角为60°,|a |=4,|b |=1,且b ⊥(a -xb ),则实数x 为( ) A .4 B .2 C .1D .12解析:选B ∵b ⊥(a -xb ),∴b ·(a -xb )=0,即a ·b -xb 2=4×1×cos 60°-x =0,解得x =2.9.已知点P 在直线x =-1上移动,过点P 作圆(x -2)2+(y -2)2=1的切线,相切于点Q ,则切线长|PQ |的最小值为( )A .2B .2 2C .3D .10解析:选B 圆心(2,2)到直线x =-1的距离为d =3>r =1,故直线和圆相离.故切线。
2019高考理科数学通用版3维2轮专题复习教学案:第2部分 板块(1) 系统思想方法——融会贯通 Word版含解析-
(一)小题小做巧妙选择高考数学选择题历来都是兵家必争之地,因其涵盖的知识面较宽,既有基础性,又有综合性,解题方法灵活多变,分值又高,既考查了同学们掌握基础知识的熟练程度,又考查了一定的数学能力和数学思想,试题区分度极佳.这就要求同学们掌握迅速、准确地解答选择题的方法与技巧,为全卷得到高分打下坚实的基础.一般来说,对于运算量较小的简单选择题,都是采用直接法来解题,即从题干条件出发,利用基本定义、性质、公式等进行简单分析、推理、运算,直接得到结果,与选项对比得出正确答案;对于运算量较大的较复杂的选择题,往往采用间接法来解题,即根据选项的特点、求解的要求,灵活选用数形结合、验证法、排除法、割补法、极端值法、估值法等不同方法技巧,通过快速判断、简单运算即可求解.下面就解选择题的常见方法分别举例说明.一、直接法直接从题目条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,得出正确的结论.涉及概念、性质的辨析或运算较简单的题目常用直接法.[典例] (2017·全国卷Ⅱ)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A .2B . 3C . 2D .233[技法演示] 由圆截得渐近线的弦长求出圆心到渐近线的距离,利用点到直线的距离公式得出a 2,b 2的关系求解.依题意,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为bx -ay =0.因为直线bx-ay =0被圆(x -2)2+y 2=4所截得的弦长为2,所以|2b |b 2+a2=4-1,所以3a 2+3b 2=4b 2,所以3a 2=b 2,所以e =1+b 2a2=1+3=2. [答案] A[应用体验]1.(2016·全国卷Ⅲ)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( ) A .[2,3] B .(-∞,2]∪[3,+∞) C .[3,+∞)D .(0,2]∪[3,+∞)解析:选D 由题意知S ={x |x ≤2或x ≥3}, 则S ∩T ={x |0<x ≤2或x ≥3}.故选D.2.(2017·全国卷Ⅱ)执行如图所示的程序框图,如果输入的a =-1,则输出的S =( )A .2B .3C .4D .5解析:选B 运行程序框图, a =-1,S =0,K =1,K ≤6成立;S =0+(-1)×1=-1,a =1,K =2,K ≤6成立; S =-1+1×2=1,a =-1,K =3,K ≤6成立; S =1+(-1)×3=-2,a =1,K =4,K ≤6成立; S =-2+1×4=2,a =-1,K =5,K ≤6成立; S =2+(-1)×5=-3,a =1,K =6,K ≤6成立;S =-3+1×6=3,a =-1,K =7,K ≤6不成立,输出S =3. 二、数形结合法根据题目条件作出所研究问题的有关图形,借助几何图形的直观性作出正确的判断.[典例] (2013·全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0][技法演示]作出函数图象,数形结合求解.当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a +2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=ln(x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,选择D.[答案] D[应用体验]3.(2016·全国卷Ⅱ)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A . 2B .32C . 3D .2解析:选A 作出示意图,如图,离心率e =c a =2c 2a =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2.故选A .4.(2014·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤03x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2解析:选B 作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点B (5,2)时,对应的z 值最大.故z max =2×5-2=8.三、验证法将选项或特殊值,代入题干逐一去验证是否满足题目条件,然后选择符合题目条件的选项的一种方法.在运用验证法解题时,若能根据题意确定代入顺序,则能提高解题速度.[典例] (2016·全国卷Ⅰ)若a >b >1,0<c <1,则( ) A .a c <b c B .ab c <ba c C .a log b c <b log a cD .log a c <log b c[技法演示] 法一:(特殊值验证法)根据a ,b ,c 满足的条件,取特殊值求解. ∵a >b >1,0<c <1,∴不妨取a =4,b =2,c =12,对于A,412=2,212=2,2>2,∴选项A不正确.对于B,4×212=42,2×412=4,42>4,∴选项B 不正确.对于C,4×log 212=-4,2×log 412=-1,-4<-1,∴选项C 正确.对于D ,log 412=-12,log 212=-1,-12>-1,∴选项D 不正确. 故选C .法二:(直接法)根据待比较式的特征构造函数,直接利用函数单调性及不等式的性质进行比较.∵y =x α,α∈(0,1)在(0,+∞)上是增函数, ∴当a >b >1,0<c <1时,a c >b c ,选项A 不正确. ∵y =x α,α∈(-1,0)在(0,+∞)上是减函数, ∴当a >b >1,0<c <1,即-1<c -1<0时, a c -1<b c -1,即ab c >ba c ,选项B 不正确.∵a >b >1,∴lg a >lg b >0,∴a lg a >b lg b >0, ∴a lg b >blg a.又∵0<c <1,∴lg c <0. ∴a lg c lgb <b lg clg a,∴a log b c <b log a c ,选项C 正确. 同理可证log a c >log b c ,选项D 不正确. [答案] C[应用体验]5.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B .⎣⎡⎦⎤-1,13 C .⎣⎡⎦⎤-13,13 D .⎣⎡⎦⎤-1,-13 解析:选C 法一:(特殊值验证法)取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C .法二:(直接法)函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.故选C .四、排除法排除法也叫筛选法或淘汰法,使用排除法的前提是答案唯一,具体的做法是从条件出发,运用定理、性质、公式推演,根据“四选一”的指令,对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰项逐一排除,从而获得正确结论.[典例] (2017·全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )[技法演示] 根据函数的性质研究函数图象,利用排除法求解.令函数f (x )=sin 2x1-cos x ,其定义域为{x |x ≠2k π,k ∈Z},又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 21-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C .[答案] C[应用体验]6.(2016·全国卷Ⅰ)函数y =2x 2-e |x |在[-2,2]的图象大致为( )解析:选D ∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数, 又f (2)=8-e 2∈(0,1),故排除A ,B. 设g (x )=2x 2-e x ,则g ′(x )=4x -e x . 又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C .故选D.7.(2015·全国卷Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析:选B 当x ∈⎣⎡⎦⎤0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A 、C .当x ∈⎣⎡⎦⎤π4,3π4时,f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4=1+5,f ⎝⎛⎭⎫π2=2 2.∵22<1+5,∴f ⎝⎛⎭⎫π2<f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4,从而排除D ,故选B.五、割补法“能割善补”是解决几何问题常用的方法,巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题时间.[典例] (2016·全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π[技法演示] 由三视图还原为直观图后计算求解.由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A .[答案] A[应用体验]8.(2015·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A .18B .17C .16D .15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D.六、极端值法选择运动变化中的极端值,往往是动静转换的关键点,可以起到降低解题难度的作用,因此是一种较高层次的思维方法.从有限到无限,从近似到精确,从量变到质变,运用极端值法解决某些问题,可以避开抽象、复杂的运算,降低难度,优化解题过程.[典例] (2016·全国卷Ⅲ)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3[技法演示] 根据直三棱柱的性质找出最大球的半径,再求球的体积.由题意得,要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B.[答案] B[应用体验]9.如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q 满足A 1P =BQ ,过P ,Q ,C 三点的截面把棱柱分成两部分,则其体积之比为( )A .3∶1B .2∶1C .4∶1D .3∶1解析:选B 将P ,Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有VC -AA 1B =VA 1-ABC =VABC -A 1B 1C 13.故过P ,Q ,C 三点的截面把棱柱分成的两部分体积之比为2∶1(或1∶2).七、估值法由于选择题提供了唯一正确的选择项,解答又无需过程,因此可通过猜测、合情推理、估算而获得答案,这样往往可以减少运算量,避免“小题大做”.[典例] (2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π[技法演示] 由题意,知12V 圆柱<V 几何体<V 圆柱.又V 圆柱=π×32×10=90π, ∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B. [答案] B[应用体验]10.若双曲线x 2a 2-y 2b 2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A .73B .54C .43D .53解析:选D 因为双曲线的一条渐近线经过点(3,-4),所以b a =43.因为e =c a >b a ,所以e >43.故选D.(二)快稳细活 填空稳夺绝大多数的填空题都是依据公式推理计算型和依据定义、定理等进行分析判断型,解答时必须按规则进行切实的计算或者合乎逻辑的推理和判断.求解填空题的基本策略是要在“准”“巧”“快”上下功夫.常用的方法有直接法、特殊值法、数形结合法、等价转化法、构造法、分析法等.解答填空题时,由于不反映过程,只要求结果,故对正确性的要求更高、更严格.解答时应遵循“快”“细”“稳”“活”“全”5个原则.填空题解答“五字诀” 快——运算要快,力戒小题大做 细——审题要细,不能粗心大意 稳——变形要稳,不可操之过急 活——解题要活,不要生搬硬套 全——答案要全,避免残缺不齐 一、直接法直接法就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等得出正确的结论.[典例] (2016·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________. [技法演示] 先求出sin A ,sin C 的值,进而求出sin B 的值,再利用正弦定理求b 的值.因为A ,C 为△ABC 的内角,且cos A =45,cos C =513,所以sin A =35,sin C =1213,所以sin B =sin(π-A -C )=sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又a =1,所以由正弦定理得b =a sin B sin A =6365×53=2113.[答案]2113[应用体验]1.(2015·全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )为偶函数,∴f (-x )-f (x )=0恒成立,∴-x ln(-x +a +x 2)-x ln(x +a +x 2)=0恒成立,∴x ln a =0恒成立,∴ln a =0,即a =1.答案:12.(2014·全国卷Ⅰ)(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案)解析:(x +y )8中,T r +1=C r 8x 8-r y r ,令r =7,再令r =6,得x 2y 7的系数为C 78-C 68=8-28=-20.答案:-20 二、特殊值法当填空结论唯一或题设条件中提供的信息暗示答案是一个定值时,我们只需把题材中的参变量用特殊值代替即可得到结论.[典例] (2016·山东高考)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.[技法演示] 法一:(特殊值法)利用双曲线的性质,设特殊值求解. 如图,由题意知|AB |=2b 2a ,|BC |=2c ,又2|AB |=3|BC |,∴设|AB |=6,|BC |=4,则|AF 1|=3,|F 1F 2|=4,∴|AF 2|=5.由双曲线的定义可知,a =1,c =2,∴e =ca =2.故填2.法二:(直接法)利用双曲线的性质,建立关于a ,b ,c 的等式求解. 如图,由题意知|AB |=2b 2a ,|BC |=2C . 又2|AB |=3|BC |,∴2×2b 2a=3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2并整理得2e 2-3e -2=0,解得e =2(负值舍去). [答案] 2[应用体验]3.(2014·安徽高考)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.解析:法一:(特殊值法)由题意知a 1,a 3,a 5成等差数列,a 1+1,a 3+3,a 5+5成等比数列,所以观察可设a 1=5,a 3=3,a 5=1,所以q =1.故填1.法二:(直接法)因为数列{a n }是等差数列,所以可设a 1=t -d ,a 3=t ,a 5=t +d ,故由已知得(t +3)2=(t -d +1)(t +d +5),得d 2+4d +4=0,即d =-2,所以a 3+3=a 1+1,即q =1.答案:1 三、数形结合法根据题目条件,画出符合题意的图形,以形助数,通过对图形的直观分析、判断,往往可以快速简捷地得出正确的结果,它既是方法,也是技巧,更是基本的数学思想.[典例] (2016· 全国卷Ⅲ)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.[技法演示] 根据直线与圆的位置关系先求出m 的值,再结合图象求|CD |.由直线l :mx +y +3m -3=0知其过定点(-3,3),圆心O 到直线l 的距离为d =|3m -3|m 2+1.由|AB |=23得⎝ ⎛⎭⎪⎫3m -3m 2+12+(3)2=12, 解得m =-33. 又直线l 的斜率为-m =33, 所以直线l 的倾斜角α=π6.画出符合题意的图形如图所示,过点C 作CE ⊥BD ,则∠DCE =π6.在Rt △CDE 中,可得|CD |=|AB |cos π6=23×23=4.[答案] 4[应用体验]4.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y +1≤0,2x -y +2≥0,则z =3x +y 的最大值为________.解析:画出可行域(如图所示). ∵z =3x +y , ∴y =-3x +z .∴直线y =-3x +z 在y 轴上截距最大时,即直线过点B 时,z 取得最大值.由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +1=0,解得⎩⎪⎨⎪⎧x =1,y =1,即B (1,1), ∴z max =3×1+1=4. 答案:45.(2014·全国卷Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.解析:∵f (x )是偶函数,∴图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)上单调递减,则f (x )的大致图象如图所示,由f (x -1)>0,得-2<x -1<2,即-1<x <3.答案:(-1,3) 四、等价转化法通过“化复杂为简单,化陌生为熟悉”将问题等价转化为便于解决的问题,从而得到正确的结果.[典例] (2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.[技法演示] 利用等比数列通项公式求出首项a 1与公比q ,再将a 1a 2…a n 的最值问题利用指数幂的运算法则转化为二次函数最值问题.设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n ·⎝⎛⎭⎫12(n -1)n 2=23n -n 22+n 2=2-n 22+72n .记t =-n 22+7n 2=-12(n 2-7n )=-12⎝⎛⎭⎫n -722+498, 结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. [答案] 64[应用体验]6.(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a-1|)>f (-2),则a 的取值范围是________.解析:∵f (x )是偶函数,且在(-∞,0)上单调递增, ∴f (x )在(0,+∞)上单调递减,f (-2)=f (2), ∴f (2|a-1|)>f (2),∴2|a-1|<2=212,∴|a -1|<12,即-12<a -1<12,即12<a <32.答案:⎝⎛⎭⎫12,327.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx 的最大值为________.解析:画出可行域如图阴影部分所示,∵yx 表示过点(x ,y )与原点(0,0)的直线的斜率, ∴点(x ,y )在点A 处时yx 最大.由⎩⎪⎨⎪⎧ x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴A (1,3). ∴yx 的最大值为3. 答案:3 五、构造法根据题设条件与结论的特殊性,构造出一些新的数学形式,并借助它来认识和解决问题.[典例] (2016·浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.[技法演示] 先构造等比数列,再进一步利用通项公式求解. ∵a n +1=2S n +1,∴S n +1-S n =2S n +1, ∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎫S n +12, ∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1, ∴S 5+12=⎝⎛⎭⎫S 1+12×34=32×34=2432, ∴S 5=121. [答案] 1 121[应用体验]8.(2016·浙江高考)已知向量a ,b ,|a|=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由于e 是任意单位向量,可设e =a +b|a +b |, 则|a ·e |+|b ·e |=⎪⎪⎪⎪⎪⎪a ·(a +b )|a +b |+⎪⎪⎪⎪⎪⎪b ·(a +b )|a +b |≥⎪⎪⎪⎪⎪⎪a ·(a +b )|a +b |+b ·(a +b )|a +b |=⎪⎪⎪⎪⎪⎪(a +b )·(a +b )|a +b |=|a +b |. ∵|a ·e |+|b ·e |≤6,∴|a +b |≤6,∴(a +b )2≤6,∴|a |2+|b |2+2a ·b ≤6. ∵|a |=1,|b |=2,∴1+4+2a ·b ≤6, ∴a ·b ≤12,∴a ·b 的最大值为12.答案:12六、分析法根据题设条件的特征进行观察、分析,从而得出正确的结论.[典例] (2016·全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.[技法演示] 先确定丙的卡片上的数字,再确定乙的卡片上的数字,进而确定甲的卡片上的数字.因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.[答案] 1和3[应用体验]9.(2014·全国卷Ⅰ)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为________.解析:由甲、丙的回答易知甲去过A 城市和C 城市,乙去过A 城市或C 城市,结合乙的回答可得乙去过A 城市.答案:A[考前热身训练] “12+4”小题提速练(共3套)“12+4”小题提速练(一) (限时:40分钟 满分:80分)一、选择题1.集合A ={1,3,5,7},B ={x |x 2-4x ≤0},则A ∩B =( ) A .(1,3)B .{1,3}C .(5,7)D .{5,7}解析:选B 因为集合A ={1,3,5,7},B ={x |x 2-4x ≤0}={x |0≤x ≤4},所以A ∩B ={1,3}. 2.已知z =1-3i3+i(i 为虚数单位),则z 的共轭复数的虚部为( ) A .-i B .i C .-1D .1解析:选D ∵z =1-3i 3+i =(1-3i )(3-i )(3+i )(3-i )=-10i 10=-i ,∴z 的共轭复数z -=i ,其虚部为1.3.已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +a ),|x |≤1,-10|x |+3,|x |>1,若f (0)=2,则a +f (-2)=( ) A .-2 B .0 C .2D .4解析:选C ∵函数f (x )=⎩⎪⎨⎪⎧log 2(x +a ),|x |≤1,-10|x |+3,|x |>1, 由f (0)=2,可得log 2(0+a )=2,∴a =4. ∴a +f (-2)=4-105=2.4.如图,圆C 内切于扇形AOB ,∠AOB =π3,若向扇形AOB 内随机投掷600个点,则落入圆内的点的个数估计值为( )A .100B .200C .400D .450解析:选C 如图所示,作CD ⊥OA 于点D ,连接OC 并延长交扇形于点E ,设扇形半径为R ,圆C 半径为r ,∴R =r +2r =3r ,∴落入圆内的点的个数估计值为600·πr 216π(3r )2=400.5.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与圆(x -3)2+(y -1)2=1相切,则此双曲线的离心率为( )A .2B . 5C . 3D . 2解析:选A 由题可知双曲线的渐近线方程为bx ±ay =0,与圆相切,∴圆心(3,1)到渐近线的距离为|3b -a |a 2+b 2=1或|3b +a |a 2+b 2=1,又a >0,b >0,解得3a =b ,∴c 2=a 2+b 2=4a 2,即c =2a ,∴e =ca =2.6.某程序框图如图所示,该程序运行后输出S 的值是( )A .-3B .-12C .13D .2解析:选A 模拟程序框图的运算结果如下: 开始S =2,i =1.第一次循环,S =-3,i =2;第二次循环,S =-12,i =3;第三次循环,S =13,i =4;第四次循环,S =2,i =5;第五次循环,S =-3,i =6;……,可知S 的取值呈周期性出现,且周期为4,∵跳出循环的i 值2 018=504×4+2,∴输出的S =-3.7.在△ABC 中,|AB ―→+AC ―→|=3|AB ―→-AC ―→|,|AB ―→|=|AC ―→|=3,则CB ―→·CA ―→的值为( ) A .3 B .-3 C .-92D .92解析:选D 由|AB ―→+AC ―→|=3|AB ―→-AC ―→|,两边平方可得|AB ―→|2+|AC ―→|2+2AB ―→·AC ―→=3|AB ―→|2+3|AC ―→|2-6AB ―→·AC ―→,又|AB ―→|=|AC ―→|=3,∴AB ―→·AC ―→=92,∴CB ―→·CA ―→=(CA ―→+AB ―→)·CA ―→=CA ―→2+AB ―→·CA ―→=CA ―→2-AB ―→·AC ―→=9-92=92.8.设{a n }是公差不为0的等差数列,满足a 24+a 25=a 26+a 27,则{a n }的前10项和S 10=( ) A .-10 B .-5 C .0D .5解析:选C 由a 24+a 25=a 26+a 27,可得(a 26-a 24)+(a 27-a 25)=0,即2d (a 6+a 4)+2d (a 7+a 5)=0,∵d ≠0,∴a 6+a 4+a 7+a 5=0,∵a 5+a 6=a 4+a 7,∴a 5+a 6=0, ∴S 10=10(a 1+a 10)2=5(a 5+a 6)=0.9.函数f (x )=⎝⎛⎭⎫21+e x -1cos x 的图象的大致形状是( )解析:选B ∵f (x )=⎝⎛⎭⎫21+e x -1cos x ,∴f (-x )=⎝⎛⎭⎫21+e -x -1cos(-x )=⎝⎛⎭⎫2e x1+e x -1cos x =-⎝⎛⎭⎫21+e x -1cos x =-f (x ),故函数f (x )为奇函数,函数图象关于原点对称,可排除A ,C ;又由当x ∈⎝⎛⎭⎫0,π2时,f (x )<0,函数图象位于第四象限,可排除D ,故选B. 10.已知过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点(点A 在第一象限),若AF ―→=3FB ―→,则直线AB 的斜率为( )A .B .12C .32D . 3解析:选D 作出抛物线的准线l :x =-1, 设A ,B 在l 上的投影分别是C ,D ,连接AC ,BD ,过B 作BE ⊥AC 于E ,如图所示.∵AF ―→=3FB ―→,∴设|AF |=3m , |BF |=m ,则|AB |=4m ,由点A ,B 分别在抛物线上,结合抛物线的定义,得|AC |=|AF |=3m ,|BD |=|BF |=m ,则|AE |=2m .因此在Rt △ABE 中,cos ∠BAE =|AE ||AB |=2m 4m =12, 得∠BAE =60°.所以直线AB 的倾斜角∠AFx =60°,故直线AB 的斜率为k =tan 60°= 3.11.某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为( )A .4πB .28π3C .44π3D .20π解析:选B 由三视图知,该几何体是一个三棱柱,三棱柱的底面是边长为2的正三角形,侧棱长是2,则三棱柱的两个底面的中心连线的中点到三棱柱的顶点的距离就是其外接球的半径r ,所以r =⎝⎛⎭⎫23×32+12=73,则球面的表面积为4πr 2=4π×73=28π3. 12.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当 xy z 取得最大值时,2x +1y -2z 的最大值为( )A .0B .1C .94D .3解析:选B ∵x 2-3xy +4y 2-z =0,∴z =x 2-3xy +4y 2,又x ,y ,z 均为正实数,∴xyz =xy x 2-3xy +4y 2=1x y +4yx -3≤12x y ×4yx -3=1(当且仅当x =2y 时等号成立),∴⎝⎛⎭⎫xy z max =1,此时x =2y ,则z =x 2-3xy +4y 2=(2y )2-3×2y ×y +4y 2=2y 2, ∴2x +1y -2z =1y +1y -1y 2=-⎝⎛⎭⎫1y -12+1≤1, 当且仅当y =1时等号成立,满足题意. ∴2x +1y -2z 的最大值为1. 二、填空题13.已知等比数列{a n }中,a 1+a 3=52,a 2+a 4=54,则a 6=________.解析:∵a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52,a 1q +a 1q 3=54,解得⎩⎪⎨⎪⎧q =12,a 1=2,∴a 6=2×⎝⎛⎭⎫125=116. 答案:11614.已知sin ⎝⎛⎭⎫θ-π6=33,则cos ⎝⎛⎭⎫π3-2θ=________. 解析:cos ⎝⎛⎭⎫π3-2θ=cos ⎝⎛⎭⎫2θ-π3=cos ⎣⎡⎦⎤2⎝⎛⎭⎫θ-π6 =1-2sin 2⎝⎛⎭⎫θ-π6=1-2×⎝⎛⎭⎫332=13. 答案:1315.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________.解析:由z =ax +by (a >0,b >0)得y =-a b x +z b ,∵a >0,b >0,∴直线y =-a bx +zb 的斜率为负.作出不等式组表示的可行域如图,平移直线y =-a b x +z b ,由图象可知当y =-a b x +zb 经过点A 时,直线在y 轴上的截距最大,此时z 也最大.由⎩⎪⎨⎪⎧ 3x -y -6=0,x -y +2=0,解得⎩⎪⎨⎪⎧x =4,y =6,即A (4,6). 此时z =4a +6b =10,即2a +3b -5=0,即点(a ,b )在直线2x +3y -5=0上,因为a 2+b 2的几何意义为直线上的点到原点距离的平方,又原点到直线的距离d =|-5|22+32=513,故a 2+b 2的最小值为d 2=2513.答案:251316.已知函数f (x )=|x e x |-m (m ∈R)有三个零点,则m 的取值范围为________. 解析:函数f (x )=|x e x |-m (m ∈R)有三个零点,即y =|x e x |与y =m 的图象有三个交点.令g (x )=x e x ,则g ′(x )=(1+x )e x ,当x <-1时,g ′(x )<0,当x >-1时,g ′(x )>0,故g (x )=x e x 在(-∞,-1)上为减函数,在(-1,+∞)上是增函数,g (-1)=-1e ,又由x <0时,g (x )<0,当x >0时,g (x )>0,故函数y =|x e x |的图象如图所示:由图象可知y =m 与函数y =|x e x |的图象有三个交点时,m ∈⎝⎛⎭⎫0,1e ,故m 的取值范围是⎝⎛⎭⎫0,1e . 答案:⎝⎛⎭⎫0,1e “12+4”小题提速练(二) (限时:40分钟 满分:80分)一、选择题1.(2017·西安模拟)已知集合A ={x |log 2x ≥1},B ={x |x 2-x -6<0},则A ∩B =( ) A .∅ B .{x |2<x <3} C .{x |2≤x <3}D .{x |-1<x ≤2}解析:选C 化简集合得A ={x |x ≥2},B ={x |-2<x <3},则A ∩B ={x |2≤x <3}. 2.(2017·福州模拟)已知复数z =2+i ,则zz =( ) A .35-45iB .-35+45iC .53-43iD .-53+43i解析:选A 因为z =2+i ,所以zz =2-i 2+i =(2-i )25=35-45i.3.设a =log 32,b =ln 2,c =5-12,则a ,b ,c 的大小关系为( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a解析:选C 因为a =log 32=1log 23,b =ln 2=1log 2e,而log 23>log 2e >1,所以a <b ,又c =5-12=15,5>2=log 24>log 23,所以c <a ,故c <a <b .4.(2018届高三·兰州一中月考)在电视台举办的一次智力答题中,规定闯关者从图中任选一题开始,必须连续答对能连成一条线的3道题目,闯关才能成功,则闯关成功的答题方法有( )A .3种B .8种C .30种D .48种解析:选D 能连成横着的一条线的有123,456,789,共3种,能连成竖着的一条线的有147,258,369,共3种,能连成对角线的有159,357,共2种,故共有8种.又因为每种选择的答题顺序是任意的,故每种选择都有6种答题方法:如答题为1,2,3时,答题方法有:1→2→3,1→3→2,2→1→3,2→3→1,3→1→2,3→2→1.所以共有8×6=48(种)答题方法.5.(2017·合肥模拟)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤4,y ≥2,则目标函数z =x +2y 的最大值为( )A .5B .6C .132D .7解析:选C 作出不等式组表示的可区域如图中阴影部分所示,由图易知,当直线z =x +2y 经过直线x -y =-1与x +y =4的交点,即A ⎝⎛⎭⎫32,52时,z 取得最大值,z max =x +2y =132. 6.(2018届高三·宝鸡调研)阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出S 的值为( )A .64B .73C .512D .585解析:选B 依题意,执行题中的程序框图,当输入x 的值为1时,进行第一次循环,S =1<50,x =2;进行第二次循环,S =1+23=9<50,x =4;进行第三次循环,S =9+43=73>50,此时结束循环,输出S 的值为73.7.(2017·衡阳三模)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n =( )A .2n +1-2B .3nC .2nD .3n -1解析:选C 因为数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2q n -1,因为数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n +2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n .8.点A ,B ,C ,D 在同一个球的球面上,AB =BC =AC =3,若四面体ABCD 体积的最大值为3,则这个球的表面积为( )A .16916πB .8πC .28916πD .2516π 解析:选C 如图所示,当点D 位于球的正顶部时四面体的体积最大,设球的半径为R ,则四面体的高为h =R +R 2-1,四面体的体积为V =13×12×(3)2×sin 60°×(R +R 2-1)=34×(R +R 2-1)=3,解得R =178, 所以球的表面积S =4πR 2=4π⎝⎛⎭⎫1782=289π16,故选C .9.(2018届高三·湖北七校联考)已知圆C :(x -1)2+y 2=r 2(r >0).设条件p :0<r <3,条件q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -3y +3=0的距离d =|1-3×0+3|12+(-3)2=2.当0<r <1时,直线在圆外,圆上没有点到直线的距离为1; 当r =1时,直线在圆外,圆上只有1个点到直线的距离为1; 当1<r <2时,直线在圆外,此时圆上有2个点到直线的距离为1; 当r =2时,直线与圆相切,此时圆上有2个点到直线的距离为1; 当2<r <3时,直线与圆相交,此时圆上有2个点到直线的距离为1.综上,当0<r <3时,圆C 上至多有2个点到直线x -3y +3=0的距离为1,由圆C 上至多有2个点到直线x -3y +3=0的距离为1可得0<r <3,故p 是q 的充要条件,故选C .10.(2017·合肥模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e .P 是椭圆上一点,满足PF 2⊥F 1F 2,点Q 在线段PF 1上,且F 1Q ―→=2 QP ―→.若F 1P ―→·F 2Q ―→=0,则e 2=( )A .2-1B .2- 2C .2- 3D .5-2解析:选C 由题意可知,在Rt △PF 1F 2中,F 2Q ⊥PF 1,所以|F 1Q |·|F 1P |=|F 1F 2|2,又|F 1Q |=23|F 1P |,所以有23|F 1P |2=|F 1F 2|2=4c 2,即|F 1P |=6c ,进而得出|PF 2|=2C .又由椭圆定义可知,|PF 1|+|PF 2|=6c +2c =2a ,解得e =c a =26+2=6-22,所以e 2=2-3.11.(2017·广州模拟)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝⎛⎭⎫0,π4上单调递减 B .f (x )在⎝⎛⎭⎫π8,3π8上单调递减 C .f (x )在⎝⎛⎭⎫0,π4上单调递增 D .f (x )在⎝⎛⎭⎫π8,3π8上单调递增解析:选D f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin ωx +φ+π4,因为0<φ<π且f (x )为奇函数,所以φ=3π4,即f (x )=-2sin ωx ,又直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f (x )的最小正周期为π2,由2π=π2,可得ω=4,故f (x )=-2sin 4x ,由2k π+π2≤4x ≤2k π+3π2,k ∈Z ,即k π2+π8≤x ≤k π2+3π8,k ∈Z ,令k =0,得π8≤x ≤3π8,此时f (x )在⎝⎛⎭⎫π8,3π8上单调递增,故选D. 12.(2017·贵阳模拟)已知函数f (x )=ln(x 2-4x -a ),若对任意的m ∈R ,均存在x 0使得f (x 0)=m ,则实数a 的取值范围是( )A .(-∞,-4)B .(-4,+∞)C .(-∞,-4]D .[-4,+∞)解析:选D 依题意得,函数f (x )的值域为R ,令函数g (x )=x 2-4x -a ,其值域A 包含(0,+∞),因此对方程x 2-4x -a =0,有Δ=16+4a ≥0,解得a ≥-4,即实数a 的取值范围是[-4,+∞).二、填空题13.(2017·兰州模拟)已知菱形ABCD 的边长为a ,∠ABC =π3,则BD ―→·CD ―→=________.解析:由菱形的性质知|BD ―→|=3a ,|CD ―→|=a ,且〈BD ―→,CD ―→〉=π6,∴BD ―→·CD ―→=3a ×a ×cos π6=32a 2.答案:32a 214.(2017·石家庄模拟)若⎝⎛⎭⎫x 2+1x n 的展开式的二项式系数之和为64,则含x 3项的系数为________.解析:由题意,得2n =64,所以n =6, 所以⎝⎛⎭⎫x 2+1x n =⎝⎛⎭⎫x 2+1x 6, 其展开式的通项公式为T r +1=C r 6(x 2)6-r ⎝⎛⎭⎫1x r =C r 6x 12-3r. 令12-3r =3,得r =3,所以展开式中含x 3项的系数为C 36=20. 答案:2015.某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出三箱,再从每箱中任意抽取2件产品进行检验,设取出的三箱中分别有0件、1件、2件二等品,其余为一等品.用ξ表示抽检的6件产品中二等品的件数,则ξ的数学期望E (ξ)=________.解析:由题意知,ξ的所有可能取值为0,1,2,3,P (ξ=0)=C 24C 25·C 23C 25=950,P (ξ=1)=C 14C 25·C 23C 25+C 24C 25·C 13C 12C 25=1225,P (ξ=2)=C 14C 25·C 13C 12C 25+C 24C 25·C 22C 25=310,P (ξ=3)=C 14C 25·C 22C 25=125,所以ξ的数学期望为E (ξ)=0×950+1×1225+2×310+3×125=65.答案:6516.(2018届高三·云南调研)已知三棱锥P -ABC 的所有顶点都在表面积为289π16的球面上,底面ABC 是边长为3的等边三角形,则三棱锥P -ABC 体积的最大值为________.解析:依题意,设球的半径为R ,则有4πR 2=289π16,R =178,△ABC 的外接圆半径为r =32sin 60°=1,球心到截 面ABC 的距离h =R 2-r 2=⎝⎛⎭⎫1782-12=158,因此点P 到截面ABC 的距离的最大值等于h +R =178+158=4,因此三棱锥P -ABC 体积的最大值为13×⎣⎡⎦⎤34×(3)2×4= 3.答案: 3“12+4”小题提速练(三) (限时:40分钟 满分:80分)一、选择题1.已知集合M ={x |16-x 2≥0},集合N ={y |y =|x |+1},则M ∩N =( ) A .{x |-2≤x ≤4} B .{x |x ≥1} C .{x |1≤x ≤4}D .{x |x ≥-2}解析:选C 由M 中16-x 2≥0,即(x -4)(x +4)≤0,解得-4≤x ≤4,所以M ={x |-4≤x ≤4},集合N ={y |y =|x |+1}=[1,+∞),则M ∩N ={x |1≤x ≤4}.2.若复数z 满足z (4-i)=5+3i(i 为虚数单位),则复数z 的共轭复数为( ) A .1-i B .-1+i C .1+iD .-1-i解析:选A 由z (4-i)=5+3i , 得z =5+3i 4-i =(5+3i )(4+i )(4-i )(4+i )=17+17i17=1+i ,则复数z 的共轭复数为 1-i. 3.由变量x 与y 的一组数据:得到的线性回归方程为y =2x +45,则y =( ) A .135 B .90 C .67D .63解析:选D 根据表中数据得x -=15×(1+5+7+13+19)=9,线性回归方程y ^=2x +45过点(x -,y -),则y -=2×9+45=63.4.如图给出一个算法的程序框图,该程序框图的功能是( )A .输出a ,b ,c 三个数中的最大数B .输出a ,b ,c 三个数中的最小数C .将a ,b ,c 按从小到大排列D .将a ,b ,c 按从大到小排列解析:选B 由程序框图知:第一个判断框是比较a ,b 大小,a 的值是a ,b 之间的较小数;第二个判断框是比较a ,c 大小,输出的a 是a ,c 之间的较小数.∴该程序框图的功能是输出a ,b ,c 三个数中的最小数.故选B.5.函数y =sin ⎝⎛⎭⎫2x +π3的图象经过下列平移,可以得到函数y =cos ⎝⎛⎭⎫2x +π6图象的是( )A .向右平移π6个单位B .向左平移π6个单位C .向右平移π3个单位D .向左平移π3个单位解析:选B 把函数y =sin ⎝⎛⎭⎫2x +π3=cos π2-⎝⎛⎭⎫2x +π3=cos ⎝⎛⎭⎫2x -π6的图象向左平移π6个单位,可得y =cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=cos ⎝⎛⎭⎫2x +π6的图象. 6.已知f (x )是定义在R 上的偶函数且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C ∵f (x )是定义在R 上的偶函数,∴若f (x )为[0,1]上的增函数,则f (x )在[-1,0]上是减函数,又∵f (x )是定义在R 上的以2为周期的函数,且[3,4]与[-1,0]相差两个周期, ∴两区间上的单调性一致,所以可以得出f (x )为[3,4]上的减函数,故充分性成立. 若f (x )为[3,4]上的减函数,同样由函数周期性可得出f (x )在[-1,0]上是减函数,。
高考数学二轮复习第二部分板块一系统思想方法融会贯通三函数方程稳妥实用课件文
函数与方程思想在解析几何中的应用
[典例]
已知椭圆C:
x2 a2
+
y2 b2
=
1(a>b>0)的右焦点为F(1,0),如图所
示,设左顶点为A,上顶点为B,且
―O→F ·―F→B =―A→B ·―F .
(1)求椭圆C的方程;
(2)若过F的直线l交椭圆于M,N两点,试确定
―→ FM
―→ ·FN
的取值范围.
(2)已知a,b,c为平面上三个向量,又a,b是两个相互 垂直的单位向量,向量c满足|c|=3,c·a=2,c·b=1,则对于 任意实数x,y,|c-xa-yb|的最小值为________.
[解析] 由题意可知|a|=|b|=1,a·b=0, 又|c|=3,c·a=2,c·b=1, 所以|c-xa-yb|2=|c|2+x2|a|2+y2|b|2-2xc·a-2yc·b+2xya·b =9+x2+y2-4x-2y =(x-2)2+(y-1)2+4, 当且仅当x=2,y=1时,(|c-xa-yb|2)min=4, 所以|c-xa-yb|的最小值为2. [答案] 2
根据函数y=ex与y=
1 x
的图象可知两函数图象交点x0∈(0,1),
因此函数f(x)在(0,1)上不是单调函数,故A、B选项不正确.
设g(x)=exx(0<x<1),则g′(x)=exxx-2 1. 又0<x<1,∴g′(x)<0. ∴函数g(x)在(0,1)上是减函数. 又0<x1<x2<1,∴g(x1)>g(x2), ∴x2ex1>x1ex2,故选C. 答案:C
15 ,b-c=2,cos
A=-
1 4
,则a=
2018年高三数学(理科)二轮复习完整版
专题限时集训 (一)A
基础演练
[ 第 1 讲 集合与常用逻辑用语 ] (时间: 5 分钟+ 30 分钟 )
1.设 U= {1 , 2, 3, 4, 5} , A= {1 , 5} , B={2 , 4} ,则 B∩ (?UA)= ( )
A . {2 , 3, 4}
B . { 2}
C. {2 , 4}
专题限时集训 (一 )B
[ 第 1 讲 集合与常用逻辑用语 ] (时间: 5 分钟+ 30 分钟 )
基础演练
1.已知全集 U= R ,A= { x|x≤ 0} ,B= { x|x≥ 1} ,则集合 ?U(A∪ B) =( )
A . { x|x≥ 0}
B . { x|x≤ 1}
C. { x|0≤ x≤ 1}
A .充分不必要条件 B .必要不充分条件
C .充要条件 D .既不充分也不必要条件
4.已知集合 M = { x|- 2≤ x<2} ,N={ x|y= log 2(x- 1)} ,则 M ∩ N= ( )
A . { x|- 2≤ x<0}
B . { x|- 1< x<0}
C. { x|1<x<2}
形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度 适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法. 二、时间安排:
1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段, 月 30 日。
时间为 3 月 10—— 4
2.第二阶段是进行各种题型的解题方法和技能专项训练,时间为
7.试卷讲评随意,对答案式的讲评。对答案式的讲评是影响讲评课效益的大敌。评讲的较好 做法应该为,讲评前认真阅卷,讲评时将归类、纠错、变式、辩论等方式相结合,抓错误点、 失分点、模糊点,剖析根源,彻底矫正。 四、在第二轮复习过程中,我们安排如下: 1. 继续抓好集体备课。 每周一次的集体备课必须抓落实, 发挥集体智慧的力量研究数学高考 的动向,学习与研究《考试大纲》 ,注意哪些内容降低要求,哪些内容成为新的高考热点,每 周一次研究课。 2.安排好复习内容。 3.精选试题,命题审核。 4.测试评讲,滚动训练。 5.精讲精练:以中等题为主。
2018年高考理科数学通用版三维二轮专题复习教学案:第二部分 板块(二) 系统热门考点——以点带面 Word版
[速解技法——学一招]函数性质主要指函数的单调性、奇偶性、周期性、对称性,要深刻理解并加以巧妙地运用.以对称性为例,若函数f (x )满足f (a +x )=f (b -x ),则函数图象关于直线x =a +b2对称;若函数f (x )满足f (a +x )+f (b -x )=c ,则函数图象关于点⎝⎛⎭⎫a +b 2,c 2对称.[例1] 定义在R 上的奇函数f (x )满足f (x -2)=-f (x ),且在[0,1]上是增函数,则有( ) A .f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫32 B .f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫32 C .f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫-14 D .f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫14 [解析] 选B 由题设知f (x )=-f (x -2)=f (2-x ),所以函数f (x )的图象关于直线x =1对称.由于奇函数f (x )在[0,1]上是增函数,故f (x )在[-1,0]上也是增函数, 综上,函数f (x )在[-1,1]上是增函数,在[1,3]上是减函数. 又f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-32=f ⎝⎛⎭⎫12, 所以f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32. [例2] 已知函数f (x )=x 3+sin x 的定义域为[-1,1],若f (log 2m )<f (log 4(m +2))成立,则实数m 的取值范围为________.[解析] 由f (x )=x 3+sin x 的定义域为[-1,1], 易知f (x )在[-1,1]上单调递增, 由f (log 2m )<f (log 4(m +2)),可得⎩⎪⎨⎪⎧-1≤log 2m ≤1,-1≤log 4(m +2)≤1,log 2m <log 4(m +2),m >0,m +2>0,解得⎩⎪⎨⎪⎧12≤m ≤2,-74≤m ≤2,0<m <2,m >0,m >-2,故12≤m <2. 综上可知,实数m 的取值范围为⎣⎡⎭⎫12,2. [答案] ⎣⎡⎭⎫12,2[经典好题——练一手]1.已知定义在R 上的函数f (x )满足f (2+x )=-f (2-x ),当x <2时,f (x )单调递增,如果x 1+x 2<4,且(x 1-2)·(x 2-2)<0,则f (x 1)+f (x 2)的值为( )A .可正可负B .可能为0C .恒大于0D .恒小于0解析:选D 由f (2+x )=-f (2-x )可知,函数图象关于点(2,0)中心对称.因为x <2时,f (x )单调递增,所以x >2时,f (x )单调递增.因为x 1+x 2<4且(x 1-2)·(x 2-2)<0,设x 1<2<x 2,则x 2<4-x 1,所以f (x 2)<f (4-x 1).又因为f (4-x 1)=-f (x 1),所以f (x 2)<-f (x 1),即f (x 1)+f (x 2)<0.2.已知定义在R 上的函数f (x )=2|x-m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a解析:选C 由函数f (x )=2|x-m |-1为偶函数可知,m =0,故f (x )=2|x |-1.当x >0时,f (x )为增函数,log 0.53=-log 23,∴log 25>|-log 0.53|>0.∴b =f (log 25)>a =f (log 0.53)>c =f (2m ).3.已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________. 解析:由题意得g (-1)=f (-1)+2.又f (-1)+(-1)2=-[f (1)+12]=-2,所以f (-1)=-3.故f (-1)+2=-3+2=-1,即g (-1)=-1. 答案:-14.函数f (x )是定义在R 上的偶函数,且满足f (x +2)=f (x ).当x ∈[0,1]时,f (x )=2x .若在区间[-2,3]上方程ax +2a -f (x )=0恰有四个不相等的实数根,则实数a 的取值范围是________.解析:由f (x +2)=f (x ),得函数的周期是2.由ax +2a -f (x )=0, 得f (x )=ax +2A .设y =f (x ),则y =ax +2a ,作出函数y =f (x ),y =ax +2a 的图象,如图.要使方程ax +2a -f (x )=0恰有四个不相等的实数根,则直线y =ax +2a =a (x +2)的斜率满足k AH <a <k AG ,由题意可知,G (1,2),H (3,2),A (-2,0), 所以k AH =25,k AG =23,所以25<a <23.答案:⎝⎛⎭⎫25,23[常用结论——记一番]1.函数的单调性 在公共定义域内:(1)若函数f (x )是增函数,函数g (x )是增函数,则f (x )+g (x )是增函数; (2)若函数f (x )是减函数,函数g (x )是减函数,则f (x )+g (x )是减函数; (3)若函数f (x )是增函数,函数g (x )是减函数,则f (x )-g (x )是增函数; (4)若函数f (x )是减函数,函数g (x )是增函数,则f (x )-g (x )是减函数. [提示] 在利用函数单调性解不等式时,易忽略函数定义域这一限制条件. 2.函数的奇偶性(1)判断函数的奇偶性有时可以用定义的等价形式:f (x )±f (-x )=0,f (x )f (-x )=±1;(2)设f (x ),g (x )的定义域分别是D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.3.有关函数f (x )周期性的常用结论:(1)若f (x +a )=f (x -a ),则函数f (x )的周期为2|a |; (2)若f (x +a )=-f (x ),则函数f (x )的周期为2|a |;(3)若f (x +a )=1f (x ),则函数f (x )的周期为2|a |; (4)若f (x +a )=-1f (x ),则函数f (x )的周期为2|a |.(二)最值函数 大显身手 [速解技法——学一招][例1] 对于任意x ∈R ,函数f (x )表示y =-x +3,y =32x +12,y =x 2-4x +3中的最大者,则f (x )的最小值是( )A .2B .3C .8D .-1[解析] 选A 如图,分别画出函数y =-x +3,y =32x +12,y=x 2-4x +3的图象,得到三个交点A (0,3),B (1,2),C (5,8). 由图象可得函数f (x )的表达式为f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x +3,0<x ≤1,32x +12,1<x ≤5,x 2-4x +3,x >5,所以f (x )的图象是图中的实线部分,图象的最低点是B (1,2),所以函数f (x )的最小值是2.[例2] 已知函数f (x )=x 2-x +m -12,g (x )=-log 2x ,min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),则当函数h (x)有三个零点时,实数m 的取值范围为( )A .⎝⎛⎭⎫0,34 B .⎝⎛⎦⎤-∞,34 C .⎝⎛⎭⎫12,34D .⎝⎛⎭⎫12,+∞ [解析] 选C 在同一直角坐标系中,作出函数y =f (x )和y =g (x )的图象如图所示.当两函数图象交于点A (1,0)时,即有1-1+m -12=0,解得m =12,所以当函数h (x )有三个零点时, 即为点A 和y =f (x )与x 轴的两个交点, 若满足条件,则需⎩⎪⎨⎪⎧f (0)>0,f ⎝⎛⎭⎫12<0,f (1)>0,解得12<m <34.所以实数m 的取值范围是⎝⎛⎭⎫12,34.[经典好题——练一手]1.设a ,b 为平面向量,则( ) A .min{|a +b |,|a -b |}≤min{|a |,|b |} B .min{|a +b |,|a -b |}≥min{|a |,|b |} C .max{|a +b |2,|a -b |2}≤|a |2+|b |2 D .max{|a +b |2,|a -b |2}≥|a |2+|b |2解析:选D max{|a +b |2,|a -b |2}≥|a +b |2+|a -b |22=|a |2+|b |2,故选D.2.(2017·兰州模拟)记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,已知向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c =λa +μb (λ≥0,μ≥0,且λ+μ=1),则当max{c ·a ,c ·b }取最小值时,|c |=( )A .255B .223C .1D .52解析:选A 如图,设OA ―→=a ,OB ―→=b , 则a =(1,0),b =(0,2),∵λ≥0,μ≥0,λ+μ=1,∴0≤λ≤1. 又c =λa +μb ,∴c ·a =(λa +b -λb )·a =λ; c ·b =(λa +b -λb )·b =4-4λ. 由λ=4-4λ,得λ=45.∴max{c ·a ,c ·b }=⎩⎨⎧λ,45≤λ≤1,4-4λ,0≤λ<45.令f (λ)=⎩⎨⎧λ,45≤λ≤1,4-4λ,0≤λ<45.则f (λ)∈⎣⎡⎦⎤45,4.∴f (λ)min =45,此时λ=45,μ=15,∴c =45a +15b =⎝⎛⎭⎫45,25. ∴|c |=⎝⎛⎭⎫452+⎝⎛⎭⎫252=255. 3.设x ,y 为实数,且5x 2+4y 2=10x ,则x 2+y 2的最大值为________. 解析:法一:5x 2+4y 2=10x ⇒4y 2=10x -5x 2≥0⇒0≤x ≤2. 4(x 2+y 2)=10x -x 2=25-(5-x )2≤25-9=16⇒x 2+y 2≤4. 法二:5x 2-4y 2=10x ⇒(x -1)2+45y 2=1,令x -1=sin θ,255y =cos θ,θ∈[0,2π],则x 2+y 2=(sin θ+1)2+⎝⎛⎭⎫52cos θ2=94-14(sin θ-4)2+4, ∵-1≤sin θ≤1,∴当sin θ=1时,x 2+y 2取得最大值,即(x 2+y 2)max =4. 答案:4(三)应用导数 开阔思路 [速解技法——学一招]1.函数的单调性与导数的关系 ①f ′(x )>0⇒f (x )为增函数; ②f ′(x )<0⇒f (x )为减函数; ③f ′(x )=0⇒f (x )为常数函数. 2.求函数f (x )极值的方法求函数的极值应先确定函数的定义域,解方程f ′(x )=0,再判断f ′(x )=0的根是否是极值点,可通过列表的形式进行分析,若遇极值点含参数不能比较大小时,则需分类讨论.[例1] 若函数f (x )=2sin x (x ∈[0,π))的图象在切点P 处的切线平行于函数g (x )=2x⎝⎛⎭⎫x 3+1的图象在切点Q 处的切线,则直线PQ 的斜率为( ) A .83B .2C .73D .33[解析] 选A 由题意得f ′(x )=2cos x ,g ′(x )=x 12+x -12.设P (x 1,f (x 1)),Q (x 2,g (x 2)),又f ′(x 1)=g ′(x 2),即2cos x 1=x 122+x -122,故4cos 2x 1=x 2+x -12+2,所以-4+4cos 2x 1=x 2+x -12-2,即-4sin 2x 1=(x 122-x -122)2,所以sin x 1=0,x 1=0,x 122=x -122,x 2=1,故P (0,0),Q ⎝⎛⎭⎫1,83,故k PQ =83.[例2] 已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.[解析] 设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减,∴x 2>1,即x ∈(-∞,-1)∪(1,+∞).[答案] (-∞,-1)∪(1,+∞)[例3] 已知函数f (x )=(ax +b )ln x -bx +3在(1,f (1))处的切线方程为y =2. (1)求a ,b 的值; (2)求函数f (x )的极值;(3)若g (x )=f (x )+kx 在(1,3)上是单调函数,求k 的取值范围. [解] (1)因为f (1)=-b +3=2,所以b =1.又f ′(x )=b x +a ln x +a -b =1x +a ln x +a -1,而函数f (x )在(1,f (1))处的切线方程为y =2, 所以f ′(1)=1+a -1=0,所以a =0.(2)由(1)得f (x )=ln x -x +3,f ′(x )=1x -1(x >0).令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0, 所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 故f (x )的极大值为f (1)=2,无极小值.(3)由g (x )=f (x )+kx ,得g (x )=ln x +(k -1)x +3(x >0),g ′(x )=1x +k -1,又g (x )在x ∈(1,3)上是单调函数, 若g (x )为增函数,有g ′(x )≥0,即g ′(x )=1x +k -1≥0,即k ≥1-1x 在x ∈(1,3)上恒成立.又1-1x ∈⎝⎛⎭⎫0,23,所以k ≥23. 若g (x )为减函数,有g ′(x )≤0,即g ′(x )=1x +k -1≤0,即k ≤1-1x 在x ∈(1,3)上恒成立,又1-1x ∈⎝⎛⎭⎫0,23,所以k ≤0. 综上,k 的取值范围为(-∞,0]∪⎣⎡⎭⎫23,+∞.[经典好题——练一手]1.f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0=( ) A .e 2 B .1 C .ln 2D .e解析:选B f ′(x )=2 016+ln x +x ·1x =2 017+ln x ,由f ′(x 0)=2 017,得2 017+ln x 0=2 017,所以ln x 0=0,解得x 0=1.2.定义:如果函数f (x )在[m ,n ]上存在x 1,x 2(m <x 1<x 2<n )满足f ′(x 1)=f (n )-f (m )n -m ,f ′(x 2)=f (n )-f (m )n -m .则称函数f (x )是[m ,n ]上的“双中值函数”,已知函数f (x )=x 3-x 2+a 是[0,a ]上的“双中值函数”,则实数a 的取值范围是( )A .⎝⎛⎭⎫13,12B .⎝⎛⎭⎫32,3 C .⎝⎛⎭⎫12,1D .⎝⎛⎭⎫13,1解析:选C 因为f (x )=x 3-x 2+a ,所以f ′(x )=3x 2-2x 在区间[0,a ]上存在x 1,x 2(0<x 1<x 2<a ),满足f ′(x 1)=f ′(x 2)=f (a )-f (0)a -0=a 2-a ,所以方程3x 2-2x =a 2-a 在区间(0,a )上有两个不相等的实根.令g (x )=3x 2-2x -a 2+a (0<x <a ), 则⎩⎪⎨⎪⎧Δ=4-12(-a 2+a )>0,g (0)=-a 2+a >0,g (a )=2a 2-a >0,解得12<a <1,所以实数a 的取值范围是⎝⎛⎭⎫12,1.3.已知函数f (x )=x 33-b 2x 2+ax +1(a >0,b >0),则函数g (x )=a ln x +f ′(x )a 在点(b ,g (b ))处的切线斜率的最小值是________.解析:因为f ′(x )=x 2-bx +a , 所以g (x )=a ln x +x 2-bxa +1.所以g ′(x )=a x +2x -ba(x >0),因为a >0,b >0,则g ′(b )=a b +2b -b a =a b +ba ≥2,当且仅当a =b =1时取“=”,所以斜率的最小值为2. 答案:24.已知函数f (x )=(x +1)2ln(x +1)-x ,φ(x )=mx 2. (1)当m =12时,求函数g (x )=f (x )-φ(x )的极值;(2)当m =1且x ≥0时,证明:f (x )≥φ(x );(3)若x ≥0,f (x )≥φ(x )恒成立,求实数m 的取值范围. 解:(1)当m =12时,g (x )=f (x )-φ(x )=(x +1)2·ln(x +1)-x -x 22,x >-1,所以g ′(x )=2(x +1)ln(x +1)+(x +1)2·1x +1-1-x =2(x +1)ln(x +1).由⎩⎪⎨⎪⎧x >-1,g ′(x )=0,解得x =0, 当x 变化时,g ′(x ),g (x )的变化情况如下表:所以函数g (x )的极小值为g (0)=0,无极大值.(2)证明:当m =1时,令p (x )=f (x )-φ(x )=(x +1)2·ln(x +1)-x -x 2(x ≥0), 所以p ′(x )=2(x +1)ln(x +1)+(x +1)2·1x +1-1-2x =2(x +1)ln(x +1)-x .设p ′(x )=G (x ),则G ′(x )=2ln(x +1)+1>0, 所以函数p ′(x )在[0,+∞)上单调递增, 所以p ′(x )≥p ′(0)=0,所以函数p (x )在[0,+∞)上单调递增, 所以p (x )≥p (0)=0. 所以f (x )≥φ(x ).(3)设h (x )=(x +1)2ln(x +1)-x -mx 2(x ≥0), 所以h ′(x )=2(x +1)ln(x +1)+x -2mx .由(2)知当x ≥0时,(x +1)2ln(x +1)≥x 2+x =x (x +1), 所以(x +1)ln(x +1)≥x ,所以h ′(x )≥3x -2mx . ①当3-2m ≥0,即m ≤32时,h ′(x )≥0,所以h (x )在[0,+∞)上单调递增, 所以h (x )≥h (0)=0,满足题意. ②当3-2m <0,即m >32时,设H (x )=h ′(x )=2(x +1)ln(x +1)+(1-2m )x , 则H ′(x )=2ln(x +1)+3-2m , 令H ′(x )=0,得x 0=e 2m -32-1>0,故h ′(x )在[0,x 0)上单调递减,在[x 0,+∞)上单调递增.当x ∈[0,x 0)时,h ′(x )<h ′(0)=0, 所以h (x )在[0,x 0)上单调递减, 所以h (x )<h (0)=0,不满足题意. 综上,实数m 的取值范围为⎝⎛⎦⎤-∞,32. [常用结论——记一番]1.函数极值的判别的易错点(1)可导函数极值点的导数为0,但导数为0的点不一定是极值点,如函数f (x )=x 3,f ′(0)=0,但x =0不是极值点.(2)极值点不是一个点,而是一个数x 0,当x =x 0时,函数取得极值.在x 0处有f ′(x 0)=0是函数f (x )在x 0处取得极值的必要不充分条件.2.函数最值的判别方法(1)求函数f (x )在闭区间[a ,b ]上最值的关键是求出f ′(x )=0的根的函数值,再与f (a ),f (b )作比较,其中最大的一个是最大值,最小的一个是最小值.(2)求函数f (x )在非闭区间上的最值,只需利用导数法判断函数f (x )的单调性,即可得结论.(四)三角问题 重在三变[速解技法——学一招]“三变”是指变角、变数与变式.(1)变角如2α=(α+β)+(α-β),α=(α+β)-β.(2)变数特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等.(3)变式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.tan α±tan β=tan (α±β)(1∓tan αtan β),sin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1.[例1] 对于锐角α,若sin ⎝⎛⎭⎫α-π12=35,则cos ⎝⎛⎭⎫2α+π3=( ) A .2425B .38C .28D .-2425[解析] 选D 由α为锐角,且sin ⎝⎛⎭⎫α-π12=35, 可得cos ⎝⎛⎭⎫α-π12=45, 所以cos ⎝⎛⎭⎫2α+π3=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫2α+π3 =sin ⎝⎛⎭⎫π6-2α=-2sin ⎝⎛⎭⎫α-π12cos ⎝⎛⎭⎫α-π12 =-2×35×45=-2425.[例2] 若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( )A .7π4B .9π4C .5π4或7π4D .5π4或9π4[解析] 选A 因为α∈⎣⎡⎦⎤π4,π,所以2α∈⎣⎡⎦⎤π2,2π, 又sin 2α=55,故2α∈⎣⎡⎦⎤π2,π,α∈⎣⎡⎦⎤π4,π2, 所以cos 2α=-255.又β∈⎣⎡⎦⎤π,3π2,故β-α∈⎣⎡⎦⎤π2,5π4, 于是cos(β-α)=-31010,所以cos(α+β)=cos[2α+(β-α)] =cos 2αcos(β-α)-sin 2αsin(β-α) =-255×⎝⎛⎭⎫-31010-55×1010=22,且α+β∈⎣⎡⎦⎤5π4,2π,故α+β=7π4. [经典好题——练一手]1.已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线y =2x 上,则sin ⎝⎛⎭⎫2θ+π4的值为( ) A .-7210B .7210C .-210D .210解析:选D 由题意可得tan θ=2,cos θ=±55,所以tan 2θ=2tan θ1-tan 2θ=-43,cos 2θ=2cos 2θ-1=-35, 所以sin 2θ=cos 2θ·tan 2θ=45,所以sin ⎝⎛⎭⎫2θ+π4=22(sin 2θ+cos 2θ)=22×⎝⎛⎭⎫45-35=210. 2.(2017·沈阳质检)已知f (x )=2sin 2x +2sin x cos x ,则f (x )的最小正周期和一个单调递减区间分别为( )A .2π,⎣⎡⎦⎤3π8,7π8 B .π,⎣⎡⎦⎤3π8,7π8 C .2π,⎣⎡⎦⎤-π8,3π8 D .π,⎣⎡⎦⎤-π8,3π8 解析:选B ∵f (x )=2sin 2x +2sin x cos x =1-cos 2x +sin 2x =2sin ⎝⎛⎭⎫2x -π4+1,∴T =2π2=π,由π2+2k π≤2x -π4≤3π2+2k π(k ∈Z),得3π8+k π≤x ≤7π8+k π(k ∈Z),令k =0得f (x )在⎣⎡⎦⎤3π8,7π8上单调递减.3.已知α为锐角,若sin ⎝⎛⎭⎫α+π6=35,则cos ⎝⎛⎭⎫2α-π6=________. 解析:cos ⎝⎛⎭⎫2α-π6=cos ⎝⎛⎭⎫2α+π3-π2=sin ⎝⎛⎭⎫2α+π3=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6=2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6,因为α为锐角,sin ⎝⎛⎭⎫α+π6=35<32,所以π6<α+π6<π3,故cos ⎝⎛⎭⎫α+π6=45,所以cos ⎝⎛⎭⎫2α-π6=2×35×45=2425. 答案:24254.若0<α<π2,0<β<π2,sin ⎝⎛⎭⎫π3-α=35,cos ⎝⎛⎭⎫β2-π3=255,则cos ⎝⎛⎭⎫β2-α的值为________. 解析:由题易知-π6<π3-α<π3,-π3<β2-π3<-π12,所以cos ⎝⎛⎭⎫π3-α=1-⎝⎛⎭⎫352=45,sin ⎝⎛⎭⎫β2-π3=-1-⎝⎛⎭⎫2552=-55,所以cos ⎝⎛⎭⎫β2-α=cos ⎣⎡⎦⎤⎝⎛⎭⎫π3-α+⎝⎛⎭⎫β2-π3=45×255+35×55=11525. 答案:11525[常用结论——记一番]三角公式中常用的变形:(1)对于含有sin α±cos α,sin αcos α的问题,利用(sin α±cos α)2=1±2sin αcos α,建立sinα±cos α与sin αcos α的关系.(2)对于含有sin α,cos α的齐次式⎝ ⎛如sin α+cos αsin α-cos α,)sin αcos α,利用tan α=sin αcos α转化为含tan α的式子. (3)对于形如cos 2α+sin α与cos 2α+sin αcos α的变形,前者用平方关系sin 2α+cos 2α=1化为二次型函数,而后者用降幂公式化为一个角的三角函数.(4)含tan α+tan β与tan αtan β时考虑tan(α+β)=tan α+tan β1-tan αtan β.(五)正弦余弦 相得益彰 [速解技法——学一招] 三角函数求值的解题策略(1)寻求角与角关系的特殊性,化非特殊角为特殊角,熟练准确地应用公式; (2)注意切化弦、异角化同角、异名化同名、角的变换等常规技巧的运用;(3)对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,对于很难入手的问题,可利用分析法.(4)求角的大小,应注意角的范围.[例1] (2017·福州质检)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c tan C =3(a cos B +b cos A ).(1)求角C ;(2)若c =23,求△ABC 面积的最大值. [解] (1)∵c tan C =3(a cos B +b cos A ), ∴sin C tan C =3(sin A cos B +sin B cos A ), ∴sin C tan C =3sin(A +B )=3sin C , ∵0<C <π,∴sin C ≠0, ∴tan C =3,∴C =60°. (2)∵c =23,C =60°,由余弦定理c 2=a 2+b 2-2ab cos C , 得12=a 2+b 2-ab ≥2ab -ab , ∴ab ≤12,∴S △ABC =12ab sin C ≤33,当且仅当a =b =23时取“=”, 所以△ABC 的面积的最大值为3 3.[例2] 已知向量m =(2sin ωx ,cos 2ωx -sin 2ωx ),n =(3cos ωx,1),其中ω>0,x ∈R.函数f (x )=m ·n 的最小正周期为π.(1)求ω的值;(2)在△ABC 中,若f (B )=-2,BC =3,sin B =3sin A ,求BA ―→·BC ―→的值.[解] (1)f (x )=m ·n =23sin ωx cos ωx +cos 2ωx -sin 2ωx =3sin 2ωx +cos 2ωx =2sin ⎝⎛⎭⎫2ωx +π6. 因为f (x )的最小正周期为π,所以T =2π2|ω|=π.因为ω>0,所以ω=1.(2)设△ABC 中内角A ,B ,C 所对的边分别是a ,b ,C . 因为f (B )=-2,所以2sin ⎝⎛⎭⎫2B +π6=-2, 即sin ⎝⎛⎭⎫2B +π6=-1,得B =2π3. 因为BC =3,所以a = 3.因为sin B =3sin A ,所以b =3a ,得b =3. 由正弦定理有3sin A =3sin 2π3,解得sin A =12.因为0<A <π3,所以A =π6.得C =π6,c =a = 3.所以BA ―→·BC ―→=ca cos B =3×3×cos 2π3=-32.[经典好题——练一手]1.已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若cos A cos B =ba =2,则该三角形的形状是( )A .直角三角形B .等腰三角形C .等边三角形D .钝角三角形解析:选A 因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又A ,B ∈(0,π),所以2A =180°-2B ,即A +B =90°,所以C =90°,于是△ABC 是直角三角形.故选A .2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a cos C +c cos A =2b sin A ,则A 的值为( )A .5π6B .π6C .2π3D .π6或5π6解析:选D 由a cos C +c cos A =2b sin A 结合正弦定理可得sin A cos C +sin C cos A =2sin B sin A ,即sin(A +C )=2sin B sin A ,故sin B =2sin B sin A .又sin B ≠0,可得sin A =12,故A=π6或5π6. 3.非直角△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知c =1,C =π3.若sin C+sin(A -B )=3sin 2B ,则△ABC 的面积为( )A .1534B .154C .2134或36D .3328解析:选D 因为sin C +sin(A -B )=sin(A +B )+sin(A -B )=2sin A cos B =6sin B cos B , 因为△ABC 非直角三角形,所以cos B ≠0, 所以sin A =3sin B ,即a =3b .又c =1,C =π3,由余弦定理得a 2+b 2-ab =1,结合a =3b ,可得b 2=17,所以S △ABC =12ab sin C =32b 2sin π3=3328.4.(2017·陕西质检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,已知2a cos 2C 2+2c cos 2A 2=52b .(1)求证:2(a +c )=3b ; (2)若cos B =14,S =15,求b .解:(1)证明:由已知得, a (1+cos C )+c (1+cos A )=52b .在△ABC 中,由余弦定理,得a cos C +c cos A =a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc =2b 22b =b .∴a +c =32b ,即2(a +c )=3b .(2)∵cos B =14,∴sin B =154.∵S =12ac sin B =158ac =15,∴ac =8.又b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B ), 2(a +c )=3b ,∴b 2=9b 24-16×⎝⎛⎭⎫1+14,解得b 2=16, ∴b =4.[常用结论——记一番]1.解三角形中常用结论:(1)三角形中正弦、余弦、正切满足的关系式有:a sin A =b sin B =csin C=2R ,c 2=a 2+b 2-2ab cos C ,tan A +tan B +tan C =tan A tan B tan C ,a >b ⇔A >B ⇔sin A >sin B ⇔cos A <cos B .(2)三角形形状判断(一般用余弦定理): 直角三角形⇔a 2+b 2=c 2;锐角三角形⇔a 2+b 2>c 2(c 为最大边); 钝角三角形⇔a 2+b 2<c 2(c 为最大边). (3)在锐角三角形ABC 中: ①A +B >π2,C +B >π2,A +C >π2;②任意角的正弦值都大于其他角的余弦值.(4)在△ABC 中,A ,B ,C 成等差数列⇔B =60°;在△ABC 中,A ,B ,C 成等差数列,且a ,b ,c 成等比数列⇔三角形为等边三角形.2.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,其面积为S . (1)S =12ah a =12bh b =12ch c (h a ,h b ,h c 分别表示a ,b ,c 边上的高).(2)S =12ab sin C =12bc sin A =12ca sin B .(3)S =12r (a +b +c )(r 为三角形ABC 内切圆的半径).(六)向量小题 三招搞定 [速解技法——学一招]解决与向量有关的小题,一般用三招,即“构图、分解、建系”,就能突破难点,顺利解决问题.[例1] 已知AB ―→·BC ―→=0,|AB ―→|=1,|BC ―→|=2,AD ―→·DC ―→=0,则|BD ―→|的最大值为( ) A .255B .2C . 5D .2 5[解析] 选C 由AB ―→·BC ―→=0可知,AB ―→⊥BC ―→.故以B 为坐标原点,分别以BA ,BC 所在的直线为x 轴,y 轴建立如图所示的平面直角坐标系,则由题意,可得B (0,0),A (1,0),C (0,2).设D (x ,y ),则AD ―→=(x -1,y ),DC ―→=(-x,2-y ). 由AD ―→·DC ―→=0,可得(x -1)(-x )+y (2-y )=0, 整理得⎝⎛⎭⎫x -122+(y -1)2=54. 所以点D 在以E ⎝⎛⎭⎫12,1为圆心,半径r =52的圆上. 因为|BD ―→|表示B ,D 两点间的距离, 而|EB ―→|=52,所以|BD ―→|的最大值为|EB ―→|+r =52+52= 5.[例2] 已知点C 为线段AB 上一点,P 为直线AB 外一点,PC 是∠APB 的平分线,I 为PC 上一点,满足BI ―→=BA ―→+λAC ―→⎝ ⎛⎭⎪⎪⎫AC ―→|AC―→|+AP ―→|AP ―→|(λ>0),|P A ―→|-|PB ―→|=4,|P A ―→-PB ―→|=10,则BI ―→·BA―→| BA ―→|的值为( )A .2B .3C .4D .5[解析] 选B因为|P A ―→-PB ―→|=|BA ―→|=10,PC 是∠APB 的平分线,又BI ―→=BA ―→+λ⎝ ⎛⎭⎪⎪⎫AC ―→|AC ―→|+AP ―→|AP ―→|(λ>0),即AI ―→=λ⎝ ⎛⎭⎪⎪⎫AC ―→|AC―→|+AP ―→|AP ―→|, 所以I 在∠BAP 的平分线上, 由此得I 是△ABP 的内心.如图,过I 作IH ⊥AB 于H ,以I 为圆心,IH 为半径作△P AB 的内切圆,分别切P A ,PB 于E ,F ,因为|P A ―→|-|PB ―→|=4,|P A ―→-PB ―→|=10, |BH ―→|=|FB ―→|=12(|PB ―→|+|AB ―→|-|P A ―→|)=12[|AB ―→|-(|P A ―→|-|PB ―→|)]=3. 在Rt △BIH 中,cos ∠IBH =|BH ―→||BI ―→|,所以BI ―→·BA ―→|BA ―→|=|BI ―→|cos ∠IBH =|BH ―→|=3.[经典好题——练一手]1.(2017·宝鸡质检)在等腰直角△ABC 中,∠ABC =90°,|AB |=|BC |=2,M ,N (不与A ,C 重合)为AC 边上的两个动点,且满足|MN ―→|=2,则BM ―→·BN ―→的取值范围为( )A .⎣⎡⎦⎤32,2 B .⎝⎛⎭⎫32,2 C .⎣⎡⎭⎫32,2D .⎣⎡⎭⎫32,+∞ 解析:选C 以等腰直角三角形的直角边BC 为x 轴,BA 为y 轴,建立平面直角坐标系如图所示,则B (0,0),直线AC 的方程为x +y =2.设M (a,2-a ),0<a <1,N (b,2-b ),∵MN =2,∴(a -b )2+(2-a -2+b )2=2, 即(a -b )2=1,解得b =a +1或b =a -1(舍去), 则N (a +1,1-a ),∴BM ―→=(a,2-a ),BN ―→=(a +1,1-a ), ∴BM ―→·BN ―→=a (a +1)+(2-a )(1-a )=2a 2-2a +2=2⎝⎛⎭⎫a -122+32, ∵0<a <1,∴当a =12时,BM ―→·BN ―→取得最小值32,又BM ―→·BN ―→<2,故BM ―→·BN ―→的取值范围为⎣⎡⎭⎫32,2.2.已知向量a ,b 满足a ·(a +2b )=0,|a |=|b |=1,且|c -a -2b |=1,则|c |的最大值为( ) A .2 B .4 C .5+1D .3+1解析:选D 设a =OA ―→,a +2b =OB ―→,c =OC ―→,且设点A 在x 轴上,则点B 在y 轴上,由|c -a -2b |=1,可知|c -(a +2b )|=|OC ―→-OB ―→|=|BC ―→|=1,所以点C 在以B 为圆心,1为半径的圆上,如图所示.法一:因为a ·(a +2b )=0,所以2a ·b =-|a |2.又|a |=|b |=1,所以|a +2b |=|a |2+4|b |2+4a ·b =4|b |2-|a |2=3, 所以|c |max =|OB ―→|+1=|a +2b |+1=3+1. 法二:连接AB ,因为OB ―→=OA ―→+AB ―→=a +2b , 所以AB ―→=2b .因为|a |=|b |=1,所以|AB ―→|=2,|OA ―→|=1, 所以|OB ―→|=|AB ―→|2-|OA ―→|2=3,所以|c |max =|OB ―→|+1=3+1.3.(2017·福州质检)正方形ABCD 中,E 为BC 的中点,向量AE ―→,BD ―→的夹角为θ,则cos θ=________.解析:法一:设正方形的边长为a , 则|AE ―→|=52a ,|BD ―→|=2a ,又AE ―→·BD ―→=⎝⎛⎭⎫AB ―→+12AD ―→·(AD ―→-AB ―→)=12AD ―→2-AB ―→2+12AD ―→·AB ―→=-12a 2,所以cos θ=AE ―→·BD ―→|AE ―→|·|BD ―→|=-12a 25a 2·2a=-1010.法二:设正方形的边长为2,建立如图所示的平面直角坐标系.则A (0,0),B (2,0),D (0,2),E (2,1), ∴AE ―→=(2,1),BD ―→=(-2,2), ∴AE ―→·BD ―→=2×(-2)+1×2=-2, 所以cos θ=AE ―→·BD ―→| AE ―→|·|BD ―→|=-25×22=-1010.答案:-10104.在Rt △ABC 中,D 是斜边AB 的中点,点P 为线段CD 的中点,则|P A |2+|PB |2|PC |2=________.解析:法一:(坐标法)将直角△ABC 放入直角坐标系中,如图. 设A (a,0),B (0,b ),a >0,b >0, 则D ⎝⎛⎭⎫a 2,b 2,P ⎝⎛⎭⎫a 4,b 4, 所以|PC |2=⎝⎛⎭⎫a 42+⎝⎛⎭⎫b 42=a 216+b 216,|PB |2=⎝⎛⎭⎫a 42+⎝⎛⎭⎫b 4-b 2=a 216+9b 216,|P A |2=⎝⎛⎭⎫a 4-a 2+⎝⎛⎭⎫b 42=9a 216+b 216,所以|P A |2+|PB |2=a 216+9b 216+9a 216+b 216=10⎝⎛⎭⎫a 216+b 216=10|PC |2,所以|P A |2+|PB |2|PC |2=10.法二:(特殊值法)令|AC |=|CB |=1,则|PC |=14|AB |=24,|P A |2=|PB |2=58,易得|P A |2+|PB |2|PC |2=10.答案:10[常用结论——记一番]1.在四边形ABCD 中:(1)AB ―→=DC ―→,则四边形ABCD 为平行四边形;(2)AB ―→=DC ―→且(AB ―→+AD ―→)·(AB ―→-AD ―→)=0,则四边形ABCD 为菱形; (3)AB ―→=DC ―→且|AB ―→+AD ―→|=|AB ―→-AD ―→|,则四边形ABCD 为矩形; (4)若AB ―→=λDC ―→(λ>0,λ≠1),则四边形ABCD 为梯形.2.设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边长分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔OA ―→2=OB ―→2=OC ―→2. (2)O 为△ABC 的重心⇔OA ―→+OB ―→+OC ―→=0.(3)O 为△ABC 的垂心⇔OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→. (4)O 为△ABC 的内心⇔a OA ―→+b OB ―→+c OC ―→=0. (5)O 为△ABC 的A 的旁心⇔a OA ―→=b OB ―→+c OC ―→.(七)玩转通项 搞定数列 [速解技法——学一招] 几种常见的数列类型及通项的求法(1)递推公式为a n +1=a n +f (n )解法:把原递推公式转化为a n +1-a n =f (n ),利用累加法(逐差相加法)求解. (2)递推公式为a n +1=f (n )a n 解法:把原递推公式转化为a n +1a n=f (n ),利用累乘法(逐商相乘法)求解. (3)递推公式为a n +1=pa n +q解法:通过待定系数法,将原问题转化为特殊数列{a n +k }的形式求解. (4)递推公式为a n +1=pa n +f (n )解法:利用待定系数法,构造数列{b n },消去f (n )带来的差异. [例1] 已知数列{a n }满足a 1=23,a n +1=nn +1a n,求a n .[解] 由条件知a n +1a n =nn +1,分别令n =1,2,3,…,(n -1),代入上式得(n -1)个等式累乘,即a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…×n -1n ⇒a n a 1=1n .又∵a 1=23,∴a n =23n .[例2] 已知数列{a n }的首项a 1=1,a n +1=a n2a n +1,求数列⎩⎨⎧⎭⎬⎫1a n a n +1的前10项和.[解] 因为a n +1=a n2a n +1, 所以1a n +1=2a n +1a n =2+1a n ,即1a n +1-1a n=2,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为2的等差数列,所以1a n =2n -1,所以a n =12n -1,而1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,所以1a 1a 2+1a 2a 3+…+1a 10a 11=12⎝⎛1-13+13-15+…+⎭⎫119-121=12⎝⎛⎭⎫1-121=1021. [经典好题——练一手]1.已知数列{a n }的首项a 1=2,且a n +1=a n +n +1,则数列{a n }的通项公式a n =( ) A .n (n -1)2B .n (n +1)2C .n (n +1)2-1D .n (n +1)2+1解析:选D 因为a n +1=a n +n +1, 所以a n +1-a n =n +1,分别把n =1,2,3,…,n -1代入上式,得到(n -1)个等式, a n -a n -1=(n -1)+1, a n -1-a n -2=(n -2)+1, a n -2-a n -3=(n -3)+1, …a 2-a 1=1+1.又a 1=2=1+1,故将上述n 个式子相加得a n =[(n -1)+(n -2)+(n -3)+…+2+1]+n +1=[n +(n -1)+(n -2)+…+2+1]+1=n (n +1)2+1.2.已知数列{a n }满足a 1=1,a n =12a n -1+1(n ≥2),则数列{a n }的通项公式a n =________.解析:由a n =12a n -1+1(n ≥2),得a n -2=12(a n -1-2),而a 1-2=1-2=-1,∴数列{a n -2}是首项为-1,公比为12的等比数列.∴a n -2=-⎝⎛⎭⎫12n -1,∴a n=2-⎝⎛⎭⎫12n -1. 答案:2-⎝⎛⎭⎫12n -13.设{a n }是首项为1的正项数列,且a 2n -a 2n -1-na n -na n -1=0(n ∈N *,n ≥2),则数列的通项公式a n =________.解析:由题设得(a n +a n -1)(a n -a n -1-n )=0, 由a n >0,a n -1>0知a n +a n -1>0,于是a n -a n -1=n ,所以a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2.答案:n (n +1)24.在数列{a n }中,已知a 1=-1,a n +1=2a n +4·3n -1,求通项公式a n .解:原递推式可化为a n +1+λ·3n =2(a n +λ·3n -1),比较系数得λ=-4,即a n +1-4·3n =2(a n -4·3n -1),则数列{a n -4·3n -1}是首项为a 1-4·31-1=-5,公比为2的等比数列,故a n -4·3n -1=-5·2n -1,即a n =4·3n -1-5·2n -1.[常用结论——记一番]等差(比)数列的重要结论(1)数列{a n }是等差数列⇔数列{c a n }是等比数列;数列{a n }是等比数列,则数列{log a |a n |}是等差数列.(2){a n },{b n }是等差数列,S n ,T n 分别为它们的前n 项和,若b m ≠0,则a m b m =S 2m -1T 2m -1.(3)首项为正(或为负)递减(或递增)的等差数列前n 项和最大(或最小)问题转化为解不等式⎩⎪⎨⎪⎧a n ≥0,a n +1≤0⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧a n ≤0,a n +1≥0,也可化为二次型函数S n =An 2+Bn 来分析,注意n ∈N *. (4)等差(比)数列中,S m ,S 2m -S m ,S 3m -S 2m ,…(各项均不为0)仍是等差(比)数列.(八)掌握规律 巧妙求和 [速解技法——学一招] 求数列的前n 项和的主要方法(1)公式法:对于等差数列或等比数列可用公式法.(2)裂项相消法:将数列的每一项分解为两项的差,在求和时中间的一些项可以相互抵消,从而累加相消.(3)错位相减法:若{a n }为等差数列,{b n }为等比数列,则对于数列{a n b n }的前n 项和可用错位相减法.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和等于同一个常数,那么求这个数列前n 项和即可用倒序相加法.(5)分组求和法:将原数列分解成可用公式法求和的若干个数列. [例1] 已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)求数列{a n ·2a n }的前n 项和.[解] (1)设等差数列{a n }的公差为d ,由已知得 ⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2, 所以{a n }的通项公式为a n =1+2(n -1)=2n -1.(2)令b n =2a n ,由(1)可知a n ·b n =(2n -1)×22n -1,设T n 为数列{a n ·b n }的前n 项和,所以T n =1×21+3×23+5×25+…+(2n -3)×22n -3+(2n -1)×22n -1,①4T n =1×23+3×25+5×27+…+(2n -3)×22n -1+(2n -1)×22n +1,②①-②得:-3T n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1,所以T n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1-3=2+2×8(1-4n -1)1-4-(2n -1)×22n +1-3=-6+2×8(1-4n -1)+(6n -3)×22n +19=10+(6n -5)×22n +19.[例2] 已知数列{a n }满足a 1=12,a n +1=a 2n +a n ,b n =11+a n(n ∈N *),S n =b 1+b 2+…+b n ,P n =b 1b 2·…·b n ,求2P n +S n 的值.[解] 因为a 1=12,a n +1=a 2n +a n ,n ∈N *, 所以a n +1>a n >0,a n +1=a n (a n +1),所以b n =11+a n =a 2n a n a n +1=a n +1-a n a n a n +1=1a n -1a n +1.P n =b 1b 2·…·b n =a 1a 2·a 2a 3·…·a n a n +1=12a n +1,S n =b 1+b 2+…+b n =⎝⎛⎭⎫1a 1-1a 2+⎝⎛⎭⎫1a 2-1a 3+…+⎝⎛⎭⎫1a n -1a n +1=2-1a n +1, 故2P n +S n =1a n +1+⎝⎛⎭⎫2-1a n +1=2.[经典好题——练一手]1.(2018届高三·湖南十校联考)数列112,314,518,7116,…的前n 项和S n =________.解析:利用分组求和法,可得S n =(1+3+5+…+2n -1)+⎝⎛⎭⎫12+122+…+12n =n 2+1-12n . 答案:n 2+1-12n2.(2017·武汉调研)设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前9项和为________.解析:设数列{a n }的公差为d ,由S n ≤S 5,得⎩⎪⎨⎪⎧ a 5≥0,a 6≤0,即⎩⎪⎨⎪⎧a 1+4d ≥0,a 1+5d ≤0,得-94≤d ≤-95,又a 2为整数,∴d =-2,a n =a 1+(n -1)×d =11-2n , 故1a n a n +1=1d ⎝⎛⎭⎫1a n -1a n +1, ∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和T n =1d ⎝⎛⎭⎫1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1d ⎝⎛⎭⎫1a 1-1a n +1, ∴T 9=-12×⎣⎡⎦⎤19-⎝⎛⎭⎫-19=-19. 答案:-193.(2018届高三·安徽名校阶段性测试)已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n +1·log 12a n ,求数列{b n }的前n 项和S n .解:(1)设等比数列{a n }的首项为a 1,公比为q . 依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,得a 3=8.因此a 2+a 4=20,即有⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8,解得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32,又数列{a n }单调递增,则⎩⎪⎨⎪⎧q =2,a 1=2,故a n =2n .(2)∵b n =2n +1·log 122n =-n ·2n +1,∴-S n =1×22+2×23+3×24+…+n ×2n +1,①-2S n =1×23+2×24+3×25+…+(n -1)×2n +1+n ×2n +2.②①-②,得S n =22+23+24+…+2n +1-n ·2n +2=4(1-2n )1-2-n ·2n +2=(1-n )2n +2-4.4.在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差为d . ∵a 3+a 8-(a 2+a 7)=2d =-6. ∴d =-3,∴a 2+a 7=2a 1+7d =-23,解得a 1=-1, ∴数列{a n }的通项公式为a n =-3n +2.(2)∵数列{a n +b n }是首项为1,公比为q 的等比数列, ∴a n +b n =q n -1,即-3n +2+b n =q n -1,∴b n =3n -2+q n -1.∴S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n (3n -1)2+(1+q +q 2+…+q n-1),故当q =1时,S n =n (3n -1)2+n =3n 2+n2;当q ≠1时,S n =n (3n -1)2+1-q n1-q.[常用结论——记一番]常用裂项公式(1)1n (n +1)=1n -1n +1; (2)1n +1+n=n +1-n ;(3)a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=a n a n -1·a n -1a n -2·…·a 2a 1·a 1;(4)n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)];(5)1n (n +1)(n +2)=12⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2);(6)(2n )2(2n -1)(2n +1)=1+12⎝⎛⎭⎫12n -1-12n +1.(九)求得通项 何愁放缩 [速解技法——学一招]错误![例1] 已知数列{a n }满足a 1=8,(n +1)a n +1=(n +3)a n +8n +8, (1)求a n ; (2)求证:1a 1-1+1a 2-1+…+1a n -1<27. [解] (1)(n +1)a n +1=(n +3)a n +8n +8两边同除以(n +1)(n +2)(n +3), 得a n +1(n +3)(n +2)=a n (n +2)(n +1)+8(n +3)(n +2),即a n +1(n +3)(n +2)-a n(n +2)(n +1)=8⎝⎛⎭⎫1n +2-1n +3.利用累加法,可得a n +1(n +3)(n +2)-a 13×2=8⎝⎛⎭⎫13-1n +3,化简求得a n +1=4(n +1)(n +2),所以a n =4n (n +1). (2)证明:法一:14n 2+4n -1<14n 2-1=12⎝⎛⎭⎫12n -1-12n +1,通过计算,当n ≥4时,17+123+147+…+14n 2+4n -1<17+123+147+12⎣⎢⎡⎝⎛⎭⎫17-19+⎝⎛⎭⎫19-111+…+⎝⎛ 12n -1-⎦⎥⎤⎭⎫12n +1<17+123+147+114<27.法二:14n 2+4n -1<14n 2+4n -3=1(2n -1)(2n +3)=14⎝⎛⎭⎫12n -1-12n +3.当n ≥3时,17+123+…+14n 2+4n -1<17+123+14⎣⎡⎦⎤⎝⎛⎭⎫15-19+⎝⎛⎭⎫17-111+…+⎝⎛⎭⎫12n -1-12n +3<17+123+14⎝⎛⎭⎫15+17<17+121+221=27. [例2] 设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1(n ∈N *),且a 1,a 2+5,a 3成等差数列.(1)求数列{a n }的通项公式;(2)求证:对一切正整数n ,有1a 1+1a 2+…+1a n <32.[解] (1)由2S n =a n +1-2n +1+1,得2S n +1=a n +2-2n +2+1,两式相减得a n +2=3a n +1+2n+1,2S 1=a 2-3⇔a 2=2a 1+3,a 3=3a 2+4=6a 1+13, a 1,a 2+5,a 3成等差数列⇔a 1+a 3=2(a 2+5)⇔a 1=1. a n +1=3a n +2n ⇔a n +1+2n +1=3(a n +2n ),。
通用版高考理科数学三维二轮专题复习教学案:第二部分_板块(一)_系统思想方法—融会贯通_含解析
(一)小题小做巧妙选择高考数学选择题历来都是兵家必争之地,因其涵盖的知识面较宽,既有基础性,又有综合性,解题方法灵活多变,分值又高,既考查了同学们掌握基础知识的熟练程度,又考查了一定的数学能力和数学思想,试题区分度极佳.这就要求同学们掌握迅速、准确地解答选择题的方法与技巧,为全卷得到高分打下坚实的基础.一般来说,对于运算量较小的简单选择题,都是采用直接法来解题,即从题干条件出发,利用基本定义、性质、公式等进行简单分析、推理、运算,直接得到结果,与选项对比得出正确答案;对于运算量较大的较复杂的选择题,往往采用间接法来解题,即根据选项的特点、求解的要求,灵活选用数形结合、验证法、排除法、割补法、极端值法、估值法等不同方法技巧,通过快速判断、简单运算即可求解.下面就解选择题的常见方法分别举例说明.一、直接法直接从题目条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,得出正确的结论.涉及概念、性质的辨析或运算较简单的题目常用直接法.[典例] (2017·全国卷Ⅱ)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A .2B . 3C . 2D .233[技法演示] 由圆截得渐近线的弦长求出圆心到渐近线的距离,利用点到直线的距离公式得出a 2,b 2的关系求解.依题意,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为bx -ay =0.因为直线bx -ay =0被圆(x -2)2+y 2=4所截得的弦长为2,所以|2b |b 2+a2=4-1,所以3a 2+3b 2=4b 2,所以3a 2=b 2,所以e =1+b 2a2=1+3=2.[答案] A[应用体验]1.(2016·全国卷Ⅲ)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( ) A .[2,3] B .(-∞,2]∪[3,+∞) C .[3,+∞)D .(0,2]∪[3,+∞)解析:选D 由题意知S ={x |x ≤2或x ≥3}, 则S ∩T ={x |0<x ≤2或x ≥3}.故选D.2.(2017·全国卷Ⅱ)执行如图所示的程序框图,如果输入的a =-1,则输出的S =( )A .2B .3C .4D .5解析:选B 运行程序框图, a =-1,S =0,K =1,K ≤6成立;S =0+(-1)×1=-1,a =1,K =2,K ≤6成立; S =-1+1×2=1,a =-1,K =3,K ≤6成立; S =1+(-1)×3=-2,a =1,K =4,K ≤6成立; S =-2+1×4=2,a =-1,K =5,K ≤6成立; S =2+(-1)×5=-3,a =1,K =6,K ≤6成立;S =-3+1×6=3,a =-1,K =7,K ≤6不成立,输出S =3. 二、数形结合法根据题目条件作出所研究问题的有关图形,借助几何图形的直观性作出正确的判断.[典例] (2013·全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0][技法演示]作出函数图象,数形结合求解.当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a +2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=ln(x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,选择D.[答案] D[应用体验]3.(2016·全国卷Ⅱ)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A . 2B .32C . 3D .2解析:选A 作出示意图,如图,离心率e =c a =2c 2a =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2.故选A .4.(2014·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤03x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2解析:选B 作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点B (5,2)时,对应的z 值最大.故z max =2×5-2=8.三、验证法将选项或特殊值,代入题干逐一去验证是否满足题目条件,然后选择符合题目条件的选项的一种方法.在运用验证法解题时,若能根据题意确定代入顺序,则能提高解题速度.[典例] (2016·全国卷Ⅰ)若a >b >1,0<c <1,则( ) A .a c <b c B .ab c <ba c C .a log b c <b log a cD .log a c <log b c[技法演示] 法一:(特殊值验证法)根据a ,b ,c 满足的条件,取特殊值求解. ∵a >b >1,0<c <1,∴不妨取a =4,b =2,c =12,对于A,412=2,212=2,2>2,∴选项A 不正确.对于B,4×212=42,2×412=4,42>4,∴选项B 不正确.对于C,4×log 212=-4,2×log 412=-1,-4<-1,∴选项C 正确.对于D ,log 412=-12,log 212=-1,-12>-1,∴选项D 不正确. 故选C .法二:(直接法)根据待比较式的特征构造函数,直接利用函数单调性及不等式的性质进行比较. ∵y =x α,α∈(0,1)在(0,+∞)上是增函数, ∴当a >b >1,0<c <1时,a c >b c ,选项A 不正确. ∵y =x α,α∈(-1,0)在(0,+∞)上是减函数, ∴当a >b >1,0<c <1,即-1<c -1<0时, a c -1<b c -1,即ab c >ba c ,选项B 不正确.∵a >b >1,∴lg a >lg b >0,∴a lg a >b lg b >0, ∴a lg b >b lg a.又∵0<c <1,∴lg c <0. ∴a lg c lgb <b lg clg a,∴a log b c <b log a c ,选项C 正确. 同理可证log a c >log b c ,选项D 不正确. [答案] C[应用体验]5.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B .⎣⎡⎦⎤-1,13 C .⎣⎡⎦⎤-13,13 D .⎣⎡⎦⎤-1,-13 解析:选C 法一:(特殊值验证法)取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C .法二:(直接法)函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos 2x +a cosx =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.故选C .四、排除法排除法也叫筛选法或淘汰法,使用排除法的前提是答案唯一,具体的做法是从条件出发,运用定理、性质、公式推演,根据“四选一”的指令,对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰项逐一排除,从而获得正确结论.[典例] (2017·全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )[技法演示]根据函数的性质研究函数图象,利用排除法求解.令函数f(x)=sin 2x1-cos x,其定义域为{x|x≠2kπ,k∈Z},又f(-x)=sin(-2x)1-cos(-x)=-sin 2x1-cos x=-f(x),所以f(x)=sin 2x1-cos x为奇函数,其图象关于原点对称,故排除B;因为f(1)=sin 21-cos 1>0,f(π)=sin 2π1-cos π=0,故排除A、D,选C.[答案] C[应用体验]6.(2016·全国卷Ⅰ)函数y=2x2-e|x|在[-2,2]的图象大致为()解析:选D∵f(x)=2x2-e|x|,x∈[-2,2]是偶函数,又f(2)=8-e2∈(0,1),故排除A,B.设g(x)=2x2-e x,则g′(x)=4x-e x.又g′(0)<0,g′(2)>0,∴g(x)在(0,2)内至少存在一个极值点,∴f(x)=2x2-e|x|在(0,2)内至少存在一个极值点,排除C.故选D.7.(2015·全国卷Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P 沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()解析:选B 当x ∈⎣⎡⎦⎤0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A 、C . 当x ∈⎣⎡⎦⎤π4,3π4时,f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4=1+5,f ⎝⎛⎭⎫π2=2 2.∵22<1+5,∴f ⎝⎛⎭⎫π2<f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4,从而排除D ,故选B.五、割补法“能割善补”是解决几何问题常用的方法,巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题时间.[典例] (2016·全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π[技法演示] 由三视图还原为直观图后计算求解.由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A .[答案] A[应用体验]8.(2015·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A .18B .17C .16D .15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D.六、极端值法选择运动变化中的极端值,往往是动静转换的关键点,可以起到降低解题难度的作用,因此是一种较高层次的思维方法.从有限到无限,从近似到精确,从量变到质变,运用极端值法解决某些问题,可以避开抽象、复杂的运算,降低难度,优化解题过程.[典例] (2016·全国卷Ⅲ)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3[技法演示] 根据直三棱柱的性质找出最大球的半径,再求球的体积.由题意得,要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B. [答案] B[应用体验]9.如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q 满足A 1P =BQ ,过P ,Q ,C 三点的截面把棱柱分成两部分,则其体积之比为( )A .3∶1B .2∶1C .4∶1D .3∶1解析:选B 将P ,Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有VC -AA 1B=VA 1-ABC =VABC -A 1B 1C 13.故过P ,Q ,C 三点的截面把棱柱分成的两部分体积之比为2∶1(或1∶2).七、估值法由于选择题提供了唯一正确的选择项,解答又无需过程,因此可通过猜测、合情推理、估算而获得答案,这样往往可以减少运算量,避免“小题大做”.[典例] (2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π[技法演示] 由题意,知12V 圆柱<V 几何体<V 圆柱.又V 圆柱=π×32×10=90π, ∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B. [答案] B[应用体验]10.若双曲线x 2a 2-y 2b 2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A .73B .54C .43D .53解析:选D 因为双曲线的一条渐近线经过点(3,-4),所以b a =43.因为e =c a >b a ,所以e >43.故选D.(二)快稳细活 填空稳夺绝大多数的填空题都是依据公式推理计算型和依据定义、定理等进行分析判断型,解答时必须按规则进行切实的计算或者合乎逻辑的推理和判断.求解填空题的基本策略是要在“准”“巧”“快”上下功夫.常用的方法有直接法、特殊值法、数形结合法、等价转化法、构造法、分析法等.解答填空题时,由于不反映过程,只要求结果,故对正确性的要求更高、更严格.解答时应遵循“快”“细”“稳”“活”“全”5个原则.填空题解答“五字诀” 快——运算要快,力戒小题大做 细——审题要细,不能粗心大意 稳——变形要稳,不可操之过急 活——解题要活,不要生搬硬套 全——答案要全,避免残缺不齐 一、直接法直接法就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等得出正确的结论.[典例] (2016·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.[技法演示] 先求出sin A ,sin C 的值,进而求出sin B 的值,再利用正弦定理求b 的值. 因为A ,C 为△ABC 的内角,且cos A =45,cos C =513,所以sin A =35,sin C =1213,所以sin B =sin(π-A -C )=sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又a =1,所以由正弦定理得b =a sin B sin A =6365×53=2113.[答案]2113[应用体验]1.(2015·全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )为偶函数,∴f (-x )-f (x )=0恒成立,∴-x ln(-x +a +x 2)-x ln(x +a +x 2)=0恒成立,∴x ln a =0恒成立,∴ln a =0,即a =1. 答案:12.(2014·全国卷Ⅰ)(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案)解析:(x +y )8中,T r +1=C r 8x 8-r y r ,令r =7,再令r =6,得x 2y 7的系数为C 78-C 68=8-28=-20.答案:-20 二、特殊值法当填空结论唯一或题设条件中提供的信息暗示答案是一个定值时,我们只需把题材中的参变量用特殊值代替即可得到结论.[典例] (2016·山东高考)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.[技法演示] 法一:(特殊值法)利用双曲线的性质,设特殊值求解.如图,由题意知|AB |=2b 2a,|BC |=2c ,又2|AB |=3|BC |,∴设|AB |=6,|BC |=4,则|AF 1|=3,|F 1F 2|=4, ∴|AF 2|=5.由双曲线的定义可知,a =1,c =2,∴e =ca =2.故填2.法二:(直接法)利用双曲线的性质,建立关于a ,b ,c 的等式求解. 如图,由题意知|AB |=2b 2a ,|BC |=2C .又2|AB |=3|BC |,∴2×2b 2a=3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2并整理得2e 2-3e -2=0,解得e =2(负值舍去). [答案] 2[应用体验]3.(2014·安徽高考)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.解析:法一:(特殊值法)由题意知a 1,a 3,a 5成等差数列,a 1+1,a 3+3,a 5+5成等比数列,所以观察可设a 1=5,a 3=3,a 5=1,所以q =1.故填1.法二:(直接法)因为数列{a n }是等差数列,所以可设a 1=t -d ,a 3=t ,a 5=t +d ,故由已知得(t +3)2=(t -d +1)(t +d +5),得d 2+4d +4=0,即d =-2,所以a 3+3=a 1+1,即q =1.答案:1 三、数形结合法根据题目条件,画出符合题意的图形,以形助数,通过对图形的直观分析、判断,往往可以快速简捷地得出正确的结果,它既是方法,也是技巧,更是基本的数学思想.[典例] (2016· 全国卷Ⅲ)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.[技法演示] 根据直线与圆的位置关系先求出m 的值,再结合图象求|CD |.由直线l :mx +y +3m -3=0知其过定点(-3,3),圆心O 到直线l 的距离为d =|3m -3|m 2+1.由|AB |=23得⎝ ⎛⎭⎪⎫3m -3m 2+12+(3)2=12, 解得m =-33. 又直线l 的斜率为-m =33, 所以直线l 的倾斜角α=π6.画出符合题意的图形如图所示,过点C 作CE ⊥BD ,则∠DCE =π6.在Rt △CDE中,可得|CD |=|AB |cos π6=23×23=4. [答案] 4[应用体验]4.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y +1≤0,2x -y +2≥0,则z =3x +y 的最大值为________.解析:画出可行域(如图所示). ∵z =3x +y , ∴y =-3x +z .∴直线y =-3x +z 在y 轴上截距最大时,即直线过点B 时,z 取得最大值.由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +1=0,解得⎩⎪⎨⎪⎧x =1,y =1,即B (1,1), ∴z max =3×1+1=4. 答案:45.(2014·全国卷Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.解析:∵f (x )是偶函数,∴图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)上单调递减,则f (x )的大致图象如图所示,由f (x -1)>0,得-2<x -1<2,即-1<x <3.答案:(-1,3) 四、等价转化法通过“化复杂为简单,化陌生为熟悉”将问题等价转化为便于解决的问题,从而得到正确的结果. [典例] (2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________. [技法演示] 利用等比数列通项公式求出首项a 1与公比q ,再将a 1a 2…a n 的最值问题利用指数幂的运算法则转化为二次函数最值问题.设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n ·⎝⎛⎭⎫12(n -1)n 2=23n -n 22+n 2=2-n 22+72n .记t =-n 22+7n 2=-12(n 2-7n )=-12⎝⎛⎭⎫n -722+498, 结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. [答案] 64[应用体验]6.(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a-1|)>f (-2),则a 的取值范围是________.解析:∵f (x )是偶函数,且在(-∞,0)上单调递增, ∴f (x )在(0,+∞)上单调递减,f (-2)=f (2), ∴f (2|a -1|)>f (2),∴2|a -1|<2=212,∴|a -1|<12,即-12<a -1<12,即12<a <32.答案:⎝⎛⎭⎫12,327.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.解析:画出可行域如图阴影部分所示,∵yx 表示过点(x ,y )与原点(0,0)的直线的斜率,∴点(x ,y )在点A 处时yx最大.由⎩⎪⎨⎪⎧ x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴A (1,3). ∴yx 的最大值为3. 答案:3 五、构造法根据题设条件与结论的特殊性,构造出一些新的数学形式,并借助它来认识和解决问题.[典例] (2016·浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.[技法演示] 先构造等比数列,再进一步利用通项公式求解.∵a n +1=2S n +1,∴S n +1-S n =2S n +1, ∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎫S n +12, ∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1, ∴S 5+12=⎝⎛⎭⎫S 1+12×34=32×34=2432, ∴S 5=121. [答案] 1 121[应用体验]8.(2016·浙江高考)已知向量a ,b ,|a|=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由于e 是任意单位向量,可设e =a +b|a +b |,则|a ·e |+|b ·e |=⎪⎪⎪⎪⎪⎪a ·(a +b )|a +b |+⎪⎪⎪⎪⎪⎪b ·(a +b )|a +b |≥⎪⎪⎪⎪⎪⎪a ·(a +b )|a +b |+b ·(a +b )|a +b |=⎪⎪⎪⎪⎪⎪(a +b )·(a +b )|a +b |=|a +b |.∵|a ·e |+|b ·e |≤6,∴|a +b |≤6, ∴(a +b )2≤6,∴|a |2+|b |2+2a ·b ≤6. ∵|a |=1,|b |=2,∴1+4+2a ·b ≤6, ∴a ·b ≤12,∴a ·b 的最大值为12.答案:12六、分析法根据题设条件的特征进行观察、分析,从而得出正确的结论.[典例] (2016·全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.[技法演示] 先确定丙的卡片上的数字,再确定乙的卡片上的数字,进而确定甲的卡片上的数字. 因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.[答案] 1和3[应用体验]9.(2014·全国卷Ⅰ)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为________.解析:由甲、丙的回答易知甲去过A 城市和C 城市,乙去过A 城市或C 城市,结合乙的回答可得乙去过A 城市.答案:A[考前热身训练] “12+4”小题提速练(共3套)“12+4”小题提速练(一) (限时:40分钟 满分:80分)一、选择题1.集合A ={1,3,5,7},B ={x |x 2-4x ≤0},则A ∩B =( ) A .(1,3) B .{1,3} C .(5,7)D .{5,7}解析:选B 因为集合A ={1,3,5,7},B ={x |x 2-4x ≤0}={x |0≤x ≤4},所以A ∩B ={1,3}. 2.已知z =1-3i 3+i (i 为虚数单位),则z 的共轭复数的虚部为( )A .-iB .iC .-1D .1解析:选D ∵z =1-3i 3+i =(1-3i )(3-i )(3+i )(3-i )=-10i 10=-i ,∴z 的共轭复数z -=i ,其虚部为1.3.已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +a ),|x |≤1,-10|x |+3,|x |>1,若f (0)=2,则a +f (-2)=( ) A .-2 B .0 C .2D .4解析:选C ∵函数f (x )=⎩⎪⎨⎪⎧log 2(x +a ),|x |≤1,-10|x |+3,|x |>1, 由f (0)=2,可得log 2(0+a )=2,∴a =4.∴a +f (-2)=4-105=2.4.如图,圆C 内切于扇形AOB ,∠AOB =π3,若向扇形AOB 内随机投掷600个点,则落入圆内的点的个数估计值为( )A .100B .200C .400D .450解析:选C 如图所示,作CD ⊥OA 于点D ,连接OC 并延长交扇形于点E ,设扇形半径为R ,圆C 半径为r ,∴R =r +2r =3r ,∴落入圆内的点的个数估计值为600·πr 216π(3r )2=400.5.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与圆(x -3)2+(y -1)2=1相切,则此双曲线的离心率为( )A .2B . 5C . 3D . 2解析:选A 由题可知双曲线的渐近线方程为bx ±ay =0,与圆相切,∴圆心(3,1)到渐近线的距离为|3b -a |a 2+b 2=1或|3b +a |a 2+b 2=1,又a >0,b >0,解得3a =b ,∴c 2=a 2+b 2=4a 2,即c =2a ,∴e =c a =2.6.某程序框图如图所示,该程序运行后输出S 的值是( )A .-3B .-12C .13D .2解析:选A 模拟程序框图的运算结果如下: 开始S =2,i =1.第一次循环,S =-3,i =2;第二次循环,S =-12,i =3;第三次循环,S =13,i =4;第四次循环,S=2,i =5;第五次循环,S =-3,i =6;……,可知S 的取值呈周期性出现,且周期为4,∵跳出循环的i 值2 018=504×4+2,∴输出的S =-3.7.在△ABC 中,|AB ―→+AC ―→|=3|AB ―→-AC ―→|,|AB ―→|=|AC ―→|=3,则CB ―→·CA ―→的值为( ) A .3 B .-3 C .-92D .92解析:选D 由|AB ―→+AC ―→|=3|AB ―→-AC ―→|,两边平方可得|AB ―→|2+|AC ―→|2+2AB ―→·AC ―→=3|AB ―→|2+3|AC ―→|2-6AB ―→·AC ―→,又|AB ―→|=|AC ―→|=3,∴AB ―→·AC ―→=92,∴CB ―→·CA ―→=(CA ―→+AB ―→)·CA ―→=CA ―→2+AB ―→·CA ―→=CA ―→2-AB ―→·AC ―→=9-92=92.8.设{a n }是公差不为0的等差数列,满足a 24+a 25=a 26+a 27,则{a n }的前10项和S 10=( )A .-10B .-5C .0D .5解析:选C 由a 24+a 25=a 26+a 27,可得(a 26-a 24)+(a 27-a 25)=0,即2d (a 6+a 4)+2d (a 7+a 5)=0,∵d ≠0,∴a 6+a 4+a 7+a 5=0,∵a 5+a 6=a 4+a 7,∴a 5+a 6=0, ∴S 10=10(a 1+a 10)2=5(a 5+a 6)=0.9.函数f (x )=⎝⎛⎭⎫21+e x -1cos x 的图象的大致形状是( )解析:选B ∵f (x )=⎝⎛⎭⎫21+e x -1cos x ,∴f (-x )=⎝⎛⎭⎫21+e -x -1cos(-x )=⎝⎛⎭⎫2e x1+e x -1cos x =-⎝⎛⎭⎫21+e x -1cos x =-f (x ),故函数f (x )为奇函数,函数图象关于原点对称,可排除A ,C ;又由当x ∈⎝⎛⎭⎫0,π2时,f (x )<0,函数图象位于第四象限,可排除D ,故选B. 10.已知过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点(点A 在第一象限),若AF ―→=3FB ―→,则直线AB 的斜率为( )A .B .12C .32D . 3解析:选D 作出抛物线的准线l :x =-1, 设A ,B 在l 上的投影分别是C ,D ,连接AC ,BD ,过B 作BE ⊥AC 于E ,如图所示.∵AF ―→=3FB ―→,∴设|AF |=3m , |BF |=m ,则|AB |=4m ,由点A ,B 分别在抛物线上,结合抛物线的定义,得|AC |=|AF |=3m ,|BD |=|BF |=m ,则|AE |=2m . 因此在Rt △ABE 中,cos ∠BAE =|AE ||AB |=2m 4m =12,得∠BAE =60°.所以直线AB 的倾斜角∠AFx =60°,故直线AB 的斜率为k =tan 60°= 3.11.某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为( )A .4πB .28π3C .44π3D .20π解析:选B 由三视图知,该几何体是一个三棱柱,三棱柱的底面是边长为2的正三角形,侧棱长是2,则三棱柱的两个底面的中心连线的中点到三棱柱的顶点的距离就是其外接球的半径r ,所以r =⎝⎛⎭⎫23×32+12=73,则球面的表面积为4πr 2=4π×73=28π3. 12.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当 xy z 取得最大值时,2x +1y -2z的最大值为( ) A .0 B .1 C .94D .3解析:选B ∵x 2-3xy +4y 2-z =0,∴z =x 2-3xy +4y 2,又x ,y ,z 均为正实数,∴xy z =xyx 2-3xy +4y 2=1x y +4yx-3≤12x y ×4y x-3=1(当且仅当x =2y 时等号成立),∴⎝⎛⎭⎫xy z max =1,此时x =2y ,则z =x 2-3xy +4y 2=(2y )2-3×2y ×y +4y 2=2y 2, ∴2x +1y -2z =1y +1y -1y 2=-⎝⎛⎭⎫1y -12+1≤1, 当且仅当y =1时等号成立,满足题意. ∴2x +1y -2z 的最大值为1. 二、填空题13.已知等比数列{a n }中,a 1+a 3=52,a 2+a 4=54,则a 6=________.解析:∵a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52,a 1q +a 1q 3=54,解得⎩⎪⎨⎪⎧q =12,a 1=2,∴a 6=2×⎝⎛⎭⎫125=116. 答案:11614.已知sin ⎝⎛⎭⎫θ-π6=33,则cos ⎝⎛⎭⎫π3-2θ=________. 解析:cos ⎝⎛⎭⎫π3-2θ=cos ⎝⎛⎭⎫2θ-π3=cos ⎣⎡⎦⎤2⎝⎛⎭⎫θ-π6 =1-2sin 2⎝⎛⎭⎫θ-π6=1-2×⎝⎛⎭⎫332=13. 答案:1315.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________.解析:由z =ax +by (a >0,b >0)得y =-a b x +z b ,∵a >0,b >0,∴直线y =-ab x +zb 的斜率为负.作出不等式组表示的可行域如图,平移直线y =-a b x +z b ,由图象可知当y =-a b x +zb 经过点A 时,直线在y 轴上的截距最大,此时z 也最大.由⎩⎪⎨⎪⎧ 3x -y -6=0,x -y +2=0,解得⎩⎪⎨⎪⎧x =4,y =6,即A (4,6). 此时z =4a +6b =10,即2a +3b -5=0,即点(a ,b )在直线2x +3y -5=0上,因为a 2+b 2的几何意义为直线上的点到原点距离的平方,又原点到直线的距离d =|-5|22+32=513,故a 2+b 2的最小值为d 2=2513.答案:251316.已知函数f (x )=|x e x |-m (m ∈R)有三个零点,则m 的取值范围为________.解析:函数f (x )=|x e x |-m (m ∈R)有三个零点,即y =|x e x |与y =m 的图象有三个交点.令g (x )=x e x ,则g ′(x )=(1+x )e x ,当x <-1时,g ′(x )<0,当x >-1时,g ′(x )>0,故g (x )=x e x 在(-∞,-1)上为减函数,在(-1,+∞)上是增函数,g (-1)=-1e ,又由x <0时,g (x )<0,当x >0时,g (x )>0,故函数y =|x e x |的图象如图所示:由图象可知y =m 与函数y =|x e x |的图象有三个交点时,m ∈⎝⎛⎭⎫0,1e ,故m 的取值范围是⎝⎛⎭⎫0,1e . 答案:⎝⎛⎭⎫0,1e “12+4”小题提速练(二) (限时:40分钟 满分:80分)一、选择题1.(2017·西安模拟)已知集合A ={x |log 2x ≥1},B ={x |x 2-x -6<0},则A ∩B =( ) A .∅ B .{x |2<x <3} C .{x |2≤x <3}D .{x |-1<x ≤2}解析:选C 化简集合得A ={x |x ≥2},B ={x |-2<x <3},则A ∩B ={x |2≤x <3}. 2.(2017·福州模拟)已知复数z =2+i ,则z z=( )A .35-45iB .-35+45iC .53-43iD .-53+43i解析:选A 因为z =2+i ,所以zz =2-i 2+i =(2-i )25=35-45i.3.设a =log 32,b =ln 2,c =5-12,则a ,b ,c 的大小关系为( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a解析:选C 因为a =log 32=1log 23,b =ln 2=1log 2e ,而log 23>log 2e >1,所以a <b ,又c =5-12=15,5>2=log 24>log 23,所以c <a ,故c <a <b .4.(2018届高三·兰州一中月考)在电视台举办的一次智力答题中,规定闯关者从图中任选一题开始,必须连续答对能连成一条线的3道题目,闯关才能成功,则闯关成功的答题方法有( )A .3种B .8种C .30种D .48种解析:选D 能连成横着的一条线的有123,456,789,共3种,能连成竖着的一条线的有147,258,369,共3种,能连成对角线的有159,357,共2种,故共有8种.又因为每种选择的答题顺序是任意的,故每种选择都有6种答题方法:如答题为1,2,3时,答题方法有:1→2→3,1→3→2,2→1→3,2→3→1,3→1→2,3→2→1.所以共有8×6=48(种)答题方法.5.(2017·合肥模拟)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤4,y ≥2,则目标函数z =x +2y 的最大值为( )A .5B .6C .132D .7解析:选C 作出不等式组表示的可区域如图中阴影部分所示,由图易知,当直线z =x +2y 经过直线x -y =-1与x +y =4的交点,即A ⎝⎛⎭⎫32,52时,z 取得最大值,z max =x +2y =132.6.(2018届高三·宝鸡调研)阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出S 的值为( )A .64B .73C .512D .585解析:选B 依题意,执行题中的程序框图,当输入x 的值为1时,进行第一次循环,S =1<50,x =2;进行第二次循环,S =1+23=9<50,x =4;进行第三次循环,S =9+43=73>50,此时结束循环,输出S 的值为73.7.(2017·衡阳三模)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n =( ) A .2n +1-2B .3nC .2nD .3n -1解析:选C 因为数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2q n -1,因为数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n +2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n .8.点A ,B ,C ,D 在同一个球的球面上,AB =BC =AC =3,若四面体ABCD 体积的最大值为3,则这个球的表面积为( )A .16916πB .8πC .28916πD .2516π解析:选C 如图所示,当点D 位于球的正顶部时四面体的体积最大,设球的半径为R ,则四面体的高为h =R +R 2-1,四面体的体积为V =13×12×(3)2×sin60°×(R+R 2-1)=34×(R +R 2-1)=3,解得R =178, 所以球的表面积S =4πR 2=4π⎝⎛⎭⎫1782=289π16,故选C .9.(2018届高三·湖北七校联考)已知圆C :(x -1)2+y 2=r 2(r >0).设条件p :0<r <3,条件q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -3y +3=0的距离d =|1-3×0+3|12+(-3)2=2. 当0<r <1时,直线在圆外,圆上没有点到直线的距离为1; 当r =1时,直线在圆外,圆上只有1个点到直线的距离为1; 当1<r <2时,直线在圆外,此时圆上有2个点到直线的距离为1; 当r =2时,直线与圆相切,此时圆上有2个点到直线的距离为1; 当2<r <3时,直线与圆相交,此时圆上有2个点到直线的距离为1.综上,当0<r <3时,圆C 上至多有2个点到直线x -3y +3=0的距离为1,由圆C 上至多有2个点到直线x -3y +3=0的距离为1可得0<r <3,故p 是q 的充要条件,故选C .10.(2017·合肥模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e .P 是椭圆上一点,满足PF 2⊥F 1F 2,点Q 在线段PF 1上,且F 1Q ―→=2 QP ―→.若F 1P ―→·F 2Q ―→=0,则e 2=( )A .2-1B .2- 2C .2- 3D .5-2解析:选C 由题意可知,在Rt △PF 1F 2中,F 2Q ⊥PF 1,所以|F 1Q |·|F 1P |=|F 1F 2|2,又|F 1Q |=23|F 1P |,所以有23|F 1P |2=|F 1F 2|2=4c 2,即|F 1P |=6c ,进而得出|PF 2|=2C .又由椭圆定义可知,|PF 1|+|PF 2|=6c +2c =2a ,解得e =c a =26+2=6-22,所以e 2=2- 3.11.(2017·广州模拟)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝⎛⎭⎫0,π4上单调递减 B .f (x )在⎝⎛⎭⎫π8,3π8上单调递减 C .f (x )在⎝⎛⎭⎫0,π4上单调递增 D .f (x )在⎝⎛⎭⎫π8,3π8上单调递增解析:选D f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin ωx +φ+π4,因为0<φ<π且f (x )为奇函数,所以φ=3π4,即f (x )=-2sin ωx ,又直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f (x )的最小正周期为π2,由2πω=π2,可得ω=4,故f (x )=-2sin 4x ,由2k π+π2≤4x ≤2k π+3π2,k ∈Z ,即k π2+π8≤x ≤k π2+3π8,k ∈Z ,令k =0,得π8≤x ≤3π8,此时f (x )在⎝⎛⎭⎫π8,3π8上单调递增,故选D. 12.(2017·贵阳模拟)已知函数f (x )=ln(x 2-4x -a ),若对任意的m ∈R ,均存在x 0使得f (x 0)=m ,则实数a 的取值范围是( )A .(-∞,-4)B .(-4,+∞)C .(-∞,-4]D .[-4,+∞)解析:选D 依题意得,函数f (x )的值域为R ,令函数g (x )=x 2-4x -a ,其值域A 包含(0,+∞),因此对方程x 2-4x -a =0,有Δ=16+4a ≥0,解得a ≥-4,即实数a 的取值范围是[-4,+∞).二、填空题13.(2017·兰州模拟)已知菱形ABCD 的边长为a ,∠ABC =π3,则BD ―→·CD ―→=________.解析:由菱形的性质知|BD ―→|=3a ,|CD ―→|=a ,且〈BD ―→,CD ―→〉=π6,∴BD ―→·CD ―→=3a ×a ×cos π6=32a 2.答案:32a 214.(2017·石家庄模拟)若⎝⎛⎭⎫x 2+1x n 的展开式的二项式系数之和为64,则含x 3项的系数为________. 解析:由题意,得2n =64,所以n =6, 所以⎝⎛⎭⎫x 2+1x n =⎝⎛⎭⎫x 2+1x 6, 其展开式的通项公式为T r +1=C r 6(x 2)6-r ⎝⎛⎭⎫1x r =C r 6x 12-3r. 令12-3r =3,得r =3,所以展开式中含x 3项的系数为C 36=20. 答案:2015.某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出三箱,再从每箱中任意抽取2件产品进行检验,设取出的三箱中分别有0件、1件、2件二等品,其余为一等品.用ξ表示抽检的6件产品中二等品的件数,则ξ的数学期望E (ξ)=________.解析:由题意知,ξ的所有可能取值为0,1,2,3,P (ξ=0)=C 24C 25·C 23C 25=950,P (ξ=1)=C 14C 25·C 23C 25+C 24C 25·C 13C 12C 25=1225,P (ξ=2)=C 14C 25·C 13C 12C 25+C 24C 25·C 22C 25=310,P (ξ=3)=C 14C 25·C 22C 25=125,所以ξ的数学期望为E (ξ)=0×950+1×1225+2×310+3×125=65.答案:6516.(2018届高三·云南调研)已知三棱锥P -ABC 的所有顶点都在表面积为289π16的球面上,底面ABC 是边长为3的等边三角形,则三棱锥P -ABC 体积的最大值为________.解析:依题意,设球的半径为R ,则有4πR 2=289π16,R =178,△ABC 的外接圆半径为r =32sin 60°=1,球心到截面ABC 的距离h =R 2-r 2=⎝⎛⎭⎫1782-12=158,因此点P 到截面ABC 的距离的最大值等于h +R =178+158=4,因此三棱锥P -ABC 体积的最大值为13×⎣⎡⎦⎤34×(3)2×4= 3.答案: 3“12+4”小题提速练(三) (限时:40分钟 满分:80分)一、选择题1.已知集合M ={x |16-x 2≥0},集合N ={y |y =|x |+1},则M ∩N =( ) A .{x |-2≤x ≤4} B .{x |x ≥1} C .{x |1≤x ≤4}D .{x |x ≥-2}解析:选C 由M 中16-x 2≥0,即(x -4)(x +4)≤0,解得-4≤x ≤4,所以M ={x |-4≤x ≤4},集合N ={y |y =|x |+1}=[1,+∞),则M ∩N ={x |1≤x ≤4}.2.若复数z 满足z (4-i)=5+3i(i 为虚数单位),则复数z 的共轭复数为( ) A .1-i B .-1+i C .1+iD .-1-i解析:选A 由z (4-i)=5+3i ,得z =5+3i 4-i =(5+3i )(4+i )(4-i )(4+i )=17+17i 17=1+i ,则复数z 的共轭复数为 1-i. 3.由变量x 与y 的一组数据:得到的线性回归方程为y ^=2x +45,则y =( ) A .135 B .90 C .67D .63解析:选D 根据表中数据得x -=15×(1+5+7+13+19)=9,线性回归方程y ^=2x +45过点(x -,y -),则y -=2×9+45=63.4.如图给出一个算法的程序框图,该程序框图的功能是( )A .输出a ,b ,c 三个数中的最大数B .输出a ,b ,c 三个数中的最小数C .将a ,b ,c 按从小到大排列D .将a ,b ,c 按从大到小排列解析:选B 由程序框图知:第一个判断框是比较a ,b 大小,a 的值是a ,b 之间的较小数;第二个判断框是比较a ,c 大小,输出的a 是a ,c 之间的较小数.∴该程序框图的功能是输出a ,b ,c 三个数中的最小数.故选B.5.函数y =sin ⎝⎛⎭⎫2x +π3的图象经过下列平移,可以得到函数y =cos ⎝⎛⎭⎫2x +π6图象的是( ) A .向右平移π6个单位B .向左平移π6个单位C .向右平移π3个单位D .向左平移π3个单位解析:选B 把函数y =sin ⎝⎛⎭⎫2x +π3=cos π2-⎝⎛⎭⎫2x +π3=cos ⎝⎛⎭⎫2x -π6的图象向左平移π6个单位,可得y =cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=cos ⎝⎛⎭⎫2x +π6的图象. 6.已知f (x )是定义在R 上的偶函数且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C ∵f (x )是定义在R 上的偶函数,∴若f (x )为[0,1]上的增函数,则f (x )在[-1,0]上是减函数,又∵f (x )是定义在R 上的以2为周期的函数,且[3,4]与[-1,0]相差两个周期, ∴两区间上的单调性一致,所以可以得出f (x )为[3,4]上的减函数,故充分性成立. 若f (x )为[3,4]上的减函数,同样由函数周期性可得出f (x )在[-1,0]上是减函数, 再由函数是偶函数可得出f (x )为[0,1]上的增函数,故必要性成立.综上,“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的充要条件.7.某三棱锥的三视图如图所示,其三个视图都是直角三角形,则该三棱锥的体积为( )A .13B .23C .1D .6解析:选A 由已知中的三视图可得,该三棱锥的底面面积S =12×2×1=1,高h =1,故体积V =13Sh=13. 8.已知向量a 与b 的夹角为60°,|a |=4,|b |=1,且b ⊥(a -xb ),则实数x 为( ) A .4 B .2 C .1D .12解析:选B ∵b ⊥(a -xb ),∴b ·(a -xb )=0,即a ·b -xb 2=4×1×cos 60°-x =0,解得x =2. 9.已知点P 在直线x =-1上移动,过点P 作圆(x -2)2+(y -2)2=1的切线,相切于点Q ,则切线长|PQ |的最小值为( )A .2B .2 2C .3D .10解析:选B 圆心(2,2)到直线x =-1的距离为d =3>r =1,故直线和圆相离.故切线长|PQ |的最小值为9-1=2 2.10.(2017·太原三模)已知等比数列{a n }的各项均为不等于1的正数,数列{b n }满足b n =lg a n ,b 3=18,b 6=12,则数列{b n }的前n 项和的最大值为( )。
高考数学二轮复习第二部分板块一系统思想方法__融会贯通六转化化归峰回路转课件文
4
在解决数列问题时,常将一般数列转化为等差数列或等比数列求 解.
5
在利用导数研究函数问题时,常将函数的单调性、极值(最值)、切 线问题,转化为其导函数f′(x)构成的方程、不等式问题求解.
6 在解决解析几何、立体几何问题时,常常在数与形之间进行转化.
数与形的相互转化 [典例] 某工件的三视图如图所
在三角函数中,涉及三角式的变形,一般通过转化与化归将复杂的
1
三角问题转化为已知或易解的三角问题,以起到化暗为明的作用, 主要的方法有公式的“三用”(顺用、逆用、变形用)、角度的转化、
函数的转化等.
将一些复杂的或陌生的函数、方程、不等式转化为简单的或熟悉的 2 函数、方程、不等式问题求解.
在解决平面向量与三角函数、平面几何、解析几何等知识的交汇题 3 目时,常将平面向量语言与三角函数、平面几何、解析几何语言进
[技法领悟] (1)一般与特殊之间的转化法是在解题的过程中将某些一
般问题进行特殊化处理或是将某些特殊问题进行一般化处理 的方法.此方法多用于选择题和填空题的解答.
(2)破解此类题的关键点: ①确立转化对象,一般将要解决的问题作为转化对象. ②寻找转化元素,由一般问题转化为特殊问题时,寻找 “特殊元素”;由特殊问题转化为一般问题时,寻找“一般 元素”. ③转化为新问题,根据转化对象与“特殊元素”或“一 般元素”的关系,将其转化为新的需要解决的问题. ④得出结论,求解新问题,根据所得结果求解原问题, 得出结论.
[应用体验]
1.已知D是由不等式组xx-+yy≥≥00, 所确定的平面区域,
则圆x2+y2=9在区域D内的弧长为
()
A.34π
B.π2
C.π
D.32π
系统集成2018高考数学理一轮总复习教案:第二章 函数 含解析
第二章函数高考导航结合二次函数的图象,了解函数的零点与方程的根的知识网络2.1 函数的概念及表示法考点诠释重点:理解函数的模型化思想,用集合语言来表示函数,函数的定义域、解析式的求法. 难点:(1)函数概念的整体认识,即函数具有三个要素:定义域、对应法则、值域;(2)符号“y =f (x )”的含义,函数定义域和值域的区间表示;(3)分段函数和复合函数的意义及其定义域的求法,函数解析式的求法等.典例精析题型一 求函数的定义域【例1】(1)函数f (x )=1ln(x +1)+4-x 2的定义域为( )A.[-2,0)∪(0,2]B.(-1,0)∪(0,2]C.[-2,2]D.(-1,2](2)已知函数f (x )的定义域是[0,1],求函数f (x 2-1)的定义域.【思路分析】(1)这是对给出解析式的函数求定义域,严格按照求定义域的法则列出不等式,解不等式组即可;(2)对于复合函数f (x 2-1),若函数f (x )的定义域是[0,1],即0≤x ≤1,那么函数g (x )= f (x 2-1)中x 2-1的值域是[0,1],即0≤x 2-1≤1,从而得到x 的取值范围.【解析】(1)B.x 满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎪⎨⎪⎧x >-1,x ≠0,-2≤x ≤2,解得-1<x <0或0<x ≤2.即x ∈(-1,0)∪(0,2].(2)f (x 2-1)以x 2-1为自变量,f (x )的定义域是[0,1], 所以0≤x 2-1≤1,即1≤x 2≤2,所以1≤|x |≤ 2. 所以-2≤x ≤-1或1≤x ≤ 2.故函数f (x 2-1)的定义域是[-2,-1]∪[1,2].【方法归纳】(1)对于给出解析式的函数定义域的求法,关键是根据求定义域的法则列不等式,求得解集即可;(2)若已知复合函数f (g (x ))的定义域,求f (x )的定义域,可令t =g (x ),由x 的范围推出t 的范围,再以x 代替t 即得f (x )的定义域;若已知f (x )的定义域求复合函数f (φ(x ))的定义域,可将f (x )的定义域写成关于x 的不等式,然后将x 换成中间变量φ(x ),再解不等式即可得到复合函数f (φ(x ))的定义域.32则函数y =lg f (x )的定义域为 .【解析】结合三次函数的图象和已知表格可知f (x )>0的解集为(-1,1)∪(2,+∞),即为y =lg f (x )的定义域.题型二 求函数的解析式【例2】(1)已知f (x )=x 2,求f (2x +1); (2)已知f (x +1)=x +2x ,求f (x );(3)设一次函数y =f (x ),且f (f (x ))=4x +3,求f (x );(4)设函数f (x )满足f (x )+2f ⎝⎛⎭⎫1x =x (x ≠0),求f (x ).【思路分析】(1)(2)中对应法则“f ”实际上就是对“x ”的一种程序或方法,因此要把“2x +1”及“x +1”看成一个整体来求解;(3)中函数f (x )是一次函数,可以利用待定系数法来解决;(4)中有个明显的特征就是“x ”与“1x ”互为倒数,把其中的“x ”换成“1x”,就可得到另一个方程,利用消元的方法即可解得f (x )的解析式.【解析】(1)(代入法)f (2x +1)=(2x +1)2=4x 2+4x +1,x ∈R . (2)(换元法)令x +1=t ,则t ≥1,且x =t 2-2t +1, 所以f (t )=t 2-2t +1+2(t -1)=t 2-1. 所以f (x )=x 2-1,x ∈[1,+∞).(3)(待定系数法)设f (x )=kx +b ,则f (f (x ))=k (kx +b )+b =k 2x +kb +b , 又因为f (f (x ))=4x +3,所以⎩⎪⎨⎪⎧ k 2=4,kb +b =3,解得⎩⎪⎨⎪⎧ k =-2,b =-3或⎩⎪⎨⎪⎧k =2,b =1. 所以f (x )=-2x -3或f (x )=2x +1.(4)(解方程组法)用1x 代替条件方程中的x 得f ⎝⎛⎭⎫1x +2f (x )=1x,把它与原条件式联立, 即得②-①×2得f (x )=2-x 23x,x ∈(-∞,0)∪(0,+∞).【方法归纳】求函数解析式的常用方法 (1)代入法:求f (g (x ))的解析式,将g (x )看作自变量,将f (x )的解析式中的“x ”换成g (x ); (2)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(3)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(4)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(5)解方程组法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另一个等式组成方程组,通过解方程求出f (x ).【举一反三】2.(1)函数f (x )是偶函数,g (x )是奇函数,若f (x )+g (x )=1x -1,求f (x );(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试求出f (x )的解析式.【解析】(1)由题意可得⎩⎨⎧f (x )+g (x )=1x -1,f (x )-g (x )=1-x -1,解得2f (x )=1x -1-1x +1,所以f (x )=1x 2-1(x ≠±1). (2)设f (x )=ax 2+bx +c (a ≠0),又因为f (0)=c =3. 所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.所以⎩⎪⎨⎪⎧ 4a =4,4a +2b =2,解得⎩⎪⎨⎪⎧a =1,b =-1.所以f (x )=x 2-x +3. 题型三 分段函数【例3】设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a = .【解析】 2.解法一:f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0,所以当x ≤0时,f (x )>0;当x >0时,f (x )<0.由已知f (f (a ))=2>0, 所以f (a )≤0,所以a >0. 所以f (a )=-a 2<0,所以f (f (a ))=f (-a 2)=(1-a 2)2+1=2, 解得a 2=0或2.又因为a >0,所以a = 2.解法二:①若a >0,则f (f (a ))=f (-a 2)=(1-a 2)2+1=2,解得a =2; ②若a ≤0,则f (f (a ))=f (a 2+2a +2)=-[(a +1)2+1]2=2,无解. 综上所述,a = 2.【方法归纳】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.【举一反三】3.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为.【解析】当a >0时,1-a <1,1+a >1.此时f (1-a )=2(1-a )+a =2-a , f (1+a )=-(1+a )-2a =-1-3a . 由f (1-a )=f (1+a ),得2-a =-1-3a ,解得a =-32(舍去).当a <0时,1-a >1,1+a <1,此时f (1-a )=-(1-a )-2a =-1-a , f (1+a )=2(1+a )+a =2+3a . 由f (1-a )=f (1+a ),得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.体验高考(2015新课标Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )等于( )A.-74B.-54C.-34D.-14【解析】A.当a ≤1时,f (a )=2a -1-2=-3,即2a -1=-1,不成立,舍去;当a >1时,f (a )=-log 2(a +1)=-3,即log 2(a +1)=3,得a +1=23=8,所以a =7,此时f (6-a )=f (-1)=2-2-2=-74.故选A.【举一反三】(2015山东)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( C )A.⎣⎡⎦⎤23,1B.[0,1]C.⎣⎡⎦⎤23,+∞D.[1,+∞) 【解析】①当a <23时,f (a )=3a -1<1,f (f (a ))=3(3a -1)-1=9a -4,2f (a )=23a -1,显然f (f (a ))≠2f (a ).②当23≤a <1时,f (a )=3a -1≥1,f (f (a ))=23a -1,2f (a )=23a -1,故f (f (a ))=2f (a ).③当a ≥1时,f (a )=2a >1,f (f (a ))=2,2f (a )=2,故f (f (a ))=2f (a ).综合①②③知,a ≥23.2.2 函数的单调性考点诠释重点:函数的单调性、函数的最大(小)值及其几何意义.难点:对函数单调性的理解,利用函数的单调性定义判断、证明函数的单调性,利用函数的单调性求函数的最大(小)值.典例精析题型一 函数单调性的判断与证明【例1】已知函数f (x )=x 2+1-ax ,其中a >0. (1)若2f (1)=f (-1),求a 的值;(2)证明:当a ≥1时,函数f (x )在区间[0,+∞)上为减函数. 【思路分析】(1)代入求值;(2)利用单调性的定义证明. 【解析】(1)由2f (1)=f (-1),可得22-2a =2+a ,所以a =23.(2)证明:任取x 1,x 2∈[0,+∞),且x 1<x 2,f (x 1)-f (x 2)=x 21+1-ax 1-x 22+1+ax 2=x 21+1-x 22+1-a (x 1-x 2)=x 21-x 22x 21+1+x 22+1-a (x 1-x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎫x 1+x 2x 21+1+x 22+1-a . 因为0≤x 1<x 21+1,0<x 2<x 22+1,所以0<x 1+x 2x 21+1+x 22+1<1.又因为a ≥1,所以f (x 1)-f (x 2)>0, 所以f (x )在[0,+∞)上单调递减.【方法归纳】判断函数单调性的常用方法(1)定义法:一般步骤为设元→作差→变形→判断符号→得出结论.其关键是作差变形,为了便于判断差的符号,通常将差变成因式连乘(除)或平方和的形式,再结合变量的范围、假定的两个自变量的大小关系及不等式的性质作出判断.若在给定区间上,f (x 1)-f (x 2)与x 1-x 2同号,则该函数是增函数;f (x 1)-f (x 2)与x 1-x 2异号,则该函数是减函数.(2)复合函数单调性的判断法则:“同增异减”,即对于y =f (g (x ))型的复合函数,我们令t =g (x ),则可以把它看成由y =f (t )和t =g (x )复合而成的,若它们的单调性相同,则复合后的函数为增函数;若它们的单调性相反,则复合后的函数为减函数.(3)利用函数的运算性质:若f (x ),g (x )为增函数,则 ①f (x )+g (x )为增函数; ②1f (x )为减函数(f (x )>0); ③f (x )为增函数(f (x )≥0); ④f (x )·g (x )为增函数(f (x )>0,g (x )>0); ⑤-f (x )为减函数.(4)图象法:根据图象上升或下降来确定函数的单调性.(5)导数法:利用导数研究函数的单调性.【举一反三】1.已知函数f (x )=ax -1x +1.(1)若a =-2,试证f (x )在(-∞,-2)上单调递减.(2)函数f (x )在(-∞,-1)上单调递减,求实数a 的取值范围. 【解析】(1)证明:任取x 1,x 2∈(-∞,-2),且x 1<x 2,则f (x 1)-f (x 2)=-2x 1-1x 1+1--2x 2-1x 2+1=-x 1-x 2(x 1+1)(x 2+1). 因为(x 1+1)(x 2+1)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)>0, 所以f (x 1)>f (x 2),所以f (x )在(-∞,-2)上单调递减.(2)解法一:f (x )=ax -1x +1=a -a +1x +1,任取x 1,x 2∈(-∞,-1),且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫a -a +1x 1+1-⎝ ⎛⎭⎪⎫a -a +1x 2+1=a +1x 2+1-a +1x 1+1=(a +1)(x 1-x 2)(x 1+1)(x 2+1), 又函数f (x )在(-∞,-1)上是减函数, 所以f (x 1)-f (x 2)>0. 由于x 1<x 2<-1,所以x 1-x 2<0,x 1+1<0,x 2+1<0, 所以a +1<0,即a <-1.故实数a 的取值范围是(-∞,-1).解法二:由f (x )=ax -1x +1,得f (x )=a +1(x +1)2,又因为f (x )=ax -1x +1在(-∞,-1)上是减函数,所以f (x )=a +1(x +1)2≤0在(-∞,-1)上恒成立,解得a ≤-1,而当a =-1时,f (x )=-1在(-∞,-1)上不具有单调性,故实数a 的取值范围是(-∞,-1).题型二 求函数的单调区间【例2】求下列函数的单调区间: (1)f (x )=-x 2+3x -2; (2)f (x )=3|x |;(3)f (x )=-x 2+2|x |+3;(4)f (x )=x +9x(x >0).【思路分析】求给定函数的单调区间通常采用以下方法:①利用已知函数的单调性;②图象法;③定义法(利用单调性的定义探讨);④导数法.【解析】(1)f (x )=-x 2+3x -2=-⎝⎛⎭⎫x -322+14,对称轴为x =32,所以f (x )在⎝⎛⎦⎤-∞,32上是增函数,在⎣⎡⎭⎫32,+∞上是减函数. (2)因为f (x )=3|x |=⎩⎪⎨⎪⎧3x ,x ≥0,-3x ,x <0.由一次函数的单调性可得,f (x )在(-∞,0]上是减函数,在[0,+∞)上是增函数.(3)因为f (x )=⎩⎪⎨⎪⎧-x 2+2x +3,x ≥0,-x 2-2x +3,x <0.其图象如图所示:由图象可知,y =f (x )在(-∞,-1],[0,1]上是增函数; y =f (x )在[-1,0],[1,+∞)上是减函数.(4)由f (x )=x +9x ,得f ′(x )=1-9x 2,令f ′(x )=1-9x2=0,得x =±3.当x >3或x <-3时,f ′(x )>0, 所以f (x )在(3,+∞)上是增函数; 当0<x <3时,f ′(x )<0,所以f (x )在(0,3]上是减函数. 【方法归纳】函数的单调区间是函数定义域的子集或真子集,求函数的单调区间必须首先确定函数的定义域,求函数的单调区间的运算应该在函数的定义域内进行.【举一反三】2.函数f (x )=log 5(2x +1)的单调增区间是.【解析】要使y =log 5(2x +1)有意义,需满足2x +1>0,即x >-12,令u =2x +1,则y =log 5u为(0,+∞)上的增函数,当x >-12时,u =2x +1也为增函数,故原函数的单调增区间是⎝⎛⎭⎫-12,+∞. 题型三 函数单调性的应用【例3】(1)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是 ;(2)函数f (x )=⎩⎪⎨⎪⎧(x +a )2,x ≤0,x +1x +a ,x >0,若f (0)是f (x )的最小值,则a 的取值范围为( )A.[]-1,2B.[]-1,0C.[]1,2D.[]0,2【思路分析】解题(1)的关键是结合图象利用单调性将“f ”脱掉;解题(2)的方法是先判断单调性,再利用单调性求解.【解析】(1)(-1,2-1).(数形结合法)画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象如下,由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧ 1-x 2>0,1-x 2>2x ,即⎩⎨⎧-1<x <1,-1-2<x <-1+2,所以x ∈(-1,2-1).(2)B.当a >0时,f (x )在(-∞,-a )上单调递减,在[-a ,0]上单调递增,显然f (0)不是f (x )的最小值;当a ≤0时,f (0)=a 2,欲使结论成立,只需a 2≤⎝⎛⎭⎫x +1x +a min =a +2, 解得-1≤a ≤2,所以-1≤a ≤0.故选B. 【方法归纳】含“f ”号不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.【举一反三】3.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln(x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( D )A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1)【解析】因为f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln(x +1),x >0,所以函数y =f (x )在(-∞,0]和(0,+∞)上单调递增,且当x ∈(0,+∞)时,y =f (x )>0;当x ∈(-∞,0]时,y =f (x )≤0;这表明函数y =f (x )在整个定义域内均单调递增,所以由f (2-x 2)>f (x ),得2-x 2>x ,解得-2<x <1.故选D.题型四 函数的最值及应用【例4】已知函数f (x )=x 2+2x +ax,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.【思路分析】(1)代入a 的值,利用函数单调性求最值;(2)先求f (x )的最小值,只要f (x )的最小值大于零,即可求解.【解析】(1)当a =12时,f (x )=x +12x+2,所以f (x )在[1,+∞)上为增函数,所以f (x )min =f (1)=72.(2)f (x )=x +ax+2,x ∈[1,+∞).①当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在[1,+∞)上恒成立,只需a +3>0,即a >-3,所以-3<a ≤0. ②当0<a ≤1时,f (x )在[1,+∞)上为增函数, f (x )min =f (1)=a +3.所以a +3>0,即a >-3,所以0<a ≤1.③当a >1时,f (x )在[1,a ]上为减函数,在(a ,+∞)上为增函数,所以f (x )在[1,+∞)上的最小值是f (a )=2a +2,2a +2>0显然成立,所以a >1满足题意.综上所述,f (x )在[1,+∞)上恒大于零时,实数a 的取值范围是(-3,+∞). 【方法归纳】1.求函数最值的常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值; (5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. 2.恒成立问题的解法(1)m >f (x )恒成立⇔m >f (x )max ; (2)m <f (x )恒成立⇔m <f (x )min .【举一反三】4.设函数f (x )=x 2-1,对任意x ∈⎣⎡⎭⎫32,+∞,f ⎝⎛⎭⎫x m -4m 2f (x )≤f (x -1)+4f (m )恒成立,求实数m 的取值范围.【解析】由题意知,x 2m2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在⎣⎡⎭⎫32,+∞上恒成立,即1m 2-4m 2≤-3x 2-2x+1在⎣⎡⎭⎫32,+∞上恒成立, 令y =-3x 2-2x +1=-3⎝⎛⎭⎫1x +132+43,因为x ∈⎣⎡⎭⎫32,+∞,所以1x ∈⎝⎛⎦⎤0,23,故当1x =23,即x =32时,函数y =-3x 2-2x +1取得最小值-53,所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0,解得m ≤-32或m ≥32.即实数m 的取值范围为⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞.体验高考(2014北京)下列函数中,在区间(0,+∞)上为增函数的是( )A.y =x +1B.y =(x -1)2C.y =2xD.y =log 0.5(x +1)【解析】A.y =(x -1)2仅在[1,+∞)上为增函数,排除B ;y =2-x =⎝⎛⎭⎫12x 为减函数,排除C ;因为y =log 0.5t 为减函数,t =x +1为增函数,所以y =log 0.5(x +1)为减函数,排除D ;y =t 和t =x +1均为增函数,所以y =x +1为增函数,故选A.【举一反三】(2015浙江)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg(x 2+1),x <1,则f (f (-3))= 0 ,f (x )的最小值是. 【解析】因为-3<1,所以f (-3)=lg[(-3)2+1]=lg 10=1,所以f (f (-3))=f (1)=1+21-3=0.当x ≥1时,f (x )=x +2x-3≥22-3(当且仅当x =2时,等号成立);当x <1时,x 2+1≥1, 所以f (x )=lg(x 2+1)≥0. 又因为22-3<0, 所以f (x )min =22-3.2.3 函数的奇偶性与周期性考点诠释重点:函数的奇偶性及其图象特征,周期函数的意义.难点:判断函数的奇偶性的方法与步骤,周期性与奇偶性的综合应用.典例精析题型一 函数奇偶性的判断【例1】讨论下列函数的奇偶性:(1)f (x )=(x +1)1-x1+x;(2)f (x )=⎩⎪⎨⎪⎧-x 2+2x +1(x >0),x 2+2x -1(x <0);(3)f (x )=4-x 2|x +3|-3;(4)f (x )=3-x 2+x 2-3.【思路分析】判断函数的奇偶性,首先要检验其定义域是否关于原点对称,若是,再严格按照奇偶性定义进行推理判断,否则是非奇非偶函数.【解析】(1)由题意知1-x1+x≥0且x ≠-1,所以-1<x ≤1,所以f (x )的定义域不关于原点对称, 所以f (x )不存在奇偶性.(2)当x >0时,-x <0,f (x )=-x 2+2x +1,f (-x )=x 2-2x -1,所以f (-x )=-f (x ). 同理可得,当x <0时,f (-x )=-f (x ).又函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,所以f (x )是奇函数.(3)因为⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3,所以-2≤x ≤2且x ≠0,所以函数定义域关于原点对称.因为f (x )=4-x 2x +3-3=4-x 2x ,又f (-x )=4-(-x )2-x=-4-x 2x ,所以f (-x )=-f (x ),所以函数f (x )是奇函数.(4)由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x =-3或x = 3.所以函数f (x )的定义域为{-3,3}.又因为对任意的x ∈{-3,3},-x ∈{-3,3}, 且f (-x )=-f (x )=f (x )=0.所以f (x )既是奇函数,又是偶函数. 【方法归纳】1.判断函数奇偶性的程序2.复合函数奇偶性的判断有两种基本思路,一是直接利用奇函数、偶函数的定义,二是根据复合函数的内、外层函数来分析判断.【举一反三】1.判断下列函数的奇偶性: (1)f (x )=x -1+1-x ;(2)已知g (x )为偶函数,且f (x )=g (x )·⎝⎛ 12x -1+⎫12,判断f (x )的奇偶性; (3)f (x )=lg 1x 2+1-x.【解析】(1)由⎩⎪⎨⎪⎧x -1≥0,1-x ≥0,得x =1,所以函数f (x )的定义域不关于原点对称.所以f (x )既不是奇函数,也不是偶函数.(2)令h (x )=12x -1+12.因为h (-x )=-h (x )(x ≠0),且h (x )的定义域关于原点对称,所以h (x )是奇函数. 又g (x )为偶函数,所以f (x )为奇函数.(3)函数f (x )的定义域为R ,关于原点对称,因为f (x )=lg 1x 2+1-x =lg(x 2+1+x ),所以f (-x )=lg(x 2+1-x ).所以f (x )+f (-x )=lg(x 2+1-x 2)=0, 所以f (x )为奇函数.题型二 函数的奇偶性的应用【例2】(1)已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( )A.4B.3C.2D.1(2)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为 .【思路分析】(1)根据函数的奇偶性列出关于f (1),g (1)的方程组求解;(2)先求出f (x )的解析式,然后分段解不等式.【解析】(1)B.由函数的奇偶性可得f (-1)=-f (1),g (-1)=g (1),则⎩⎪⎨⎪⎧-f (1)+g (1)=2,f (1)+g (1)=4,解得g (1)=3.(2)(-5,0)∪(5,+∞).因为f (x )是定义在R 上的奇函数,所以f (0)=0. 又当x <0时,-x >0,所以f (-x )=x 2+4x . 又f (x )为奇函数,所以f (-x )=-f (x ), 所以f (x )=-x 2-4x (x <0),所以f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.①当x >0时,由f (x )>x ,得x 2-4x >x ,解得x >5;②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x ,得-x 2-4x >x ,解得-5<x <0. 综上,不等式f (x )>x 的解集为(-5,0)∪(5,+∞).【方法归纳】应用函数奇偶性可解决的四类问题及解题方法 (1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解. (2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值 利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.【举一反三】2.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m = 2 .【解析】将函数化简,利用函数的奇偶性求解.f (x )=(x +1)2+sin x x 2+1=1+2x +sin x x 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),因此g (x )是奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0, 则M +m =[g (x )+1]max +[g (x )+1]min =2+g (x )max +g (x )min =2. 题型三 函数的周期性及其应用【例3】已知函数y =f (x )(x ∈R )满足f (x +1)=f (x -1),且x ∈[-1,1]时,f (x )=x 2,则方程f (x )=log 6 x 的根的个数为( )A.3个B.4个C.5个D.6个 【思路分析】利用函数的周期性并结合数形结合思想可求解.【解析】C.由题意可得,函数y =f (x )的周期为2,画出函数图象,如图所示.又f (6)=log 6 6=1,利用数形结合可得y =f (x )与y =log 6 x 的图象的交点个数为5个,故有5个根.故选C.【方法归纳】判断函数周期性的三个常用结论 若对于函数f (x )定义域内的任意一个x 都有:(1)f (x +a )=-f (x )(a ≠0),则函数f (x )必为周期函数,2|a |是它的一个周期;(2)f (x +a )=1f (x )(a ≠0),则函数f (x )必为周期函数,2|a |是它的一个周期;(3)f (x +a )=-1f (x ),则函数f (x )必为周期函数,2|a |是它的一个周期.【举一反三】3.设偶函数f (x )对任意x ∈R ,都有f (x +3)=-1f (x ),且当x ∈[-3,-2]时,f (x )=4x ,则f (107.5)等于( B )A.10B.110C.-10D.-110【解析】因为f (x +3)=-1f (x ),所以f (x +6)=-1f (x +3)=f (x ),所以f (x )是周期为6的函数. 又f (x )是偶函数,所以f (107.5)=f (5.5)=-1f (2.5)=-1f (-2.5)=-14×(-2.5)=110.体验高考(2015新课标Ⅱ)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝⎛⎭⎫13,1B.⎝⎛⎭⎫-∞,13∪(1,+∞) C.⎝⎛⎭⎫-13,13D.⎝⎛⎭⎫-∞,-13∪⎝⎛⎭⎫13,+∞ 【解析】A.当x >0时,f (x )=ln(1+x )-11+x 2,所以f ′(x )=11+x +2x(1+x 2)2>0,所以f (x )在(0,+∞)上为增函数.因为f (-x )=f (x ),所以f (x )为偶函数. 由f (x )>f (2x -1)得f (|x |)>f (|2x -1|), 所以|x |>|2x -1|,即3x 2-4x +1<0,解得13<x <1,故选A.【举一反三】(2015山东)若函数f (x )=2x +12x -a是奇函数,则使f (x )>3成立的x 的取值范围为( C )A.(-∞,-1)B.(-1,0)C.(0,1)D.(1,+∞)【解析】因为f (x )=2x+12x -a是奇函数,所以对定义域内的任意x ,都有f (-x )=-f (x )恒成立,即2-x+12-x -a =-2x +12x -a ,即1+2x 1-a ·2x =2x +1a -2x ,所以1-a ·2x =a -2x ,即(a -1)(2x +1)=0对任意x 恒成立,所以a =1.所以f (x )=2x +12x -1=1+22x -1.由f (x )>3,得1+22x -1>3,解得0<x <1,故选C.2.4 二次函数与幂函数考点诠释重点:二次函数的图象与性质,二次函数、二次方程与二次不等式的关系,幂函数的概念及性质.难点:二次函数的图象与性质的灵活应用,一元二次方程的实根分布及二次函数最值问题;从幂函数的图象概括其性质.典例精析题型一 求二次函数的解析式【例1】已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数.【思路分析】在已知f (x )是二次函数的情况下,待定系数法是通法,也可根据条件选择合适的形式表示二次函数,然后求其系数.【解析】利用二次函数一般式. 设f (x )=ax 2+bx +c (a ≠0),由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数为f (x )=-4x 2+4x +7.【方法归纳】求二次函数的解析式时,要根据已知条件选择恰当的形式,三种形式可以相互转化,若二次函数的图象与x 轴相交,则两点间的距离为|x 1-x 2|=b 2-4ac|a |.【举一反三】1.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式.【解析】因为f (2-x )=f (2+x )对x ∈R 恒成立, 所以f (x )的对称轴为x =2.又因为f (x )图象被x 轴截得的线段长为2, 所以f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0). 又因为f (x )的图象过点(4,3), 所以3a =3,a =1.所以所求f (x )的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.题型二 二次函数的图象与性质【例2】已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (3)当a =1时,求f (|x |)的单调区间.【思路分析】对于(1)和(2)可根据对称轴与区间的关系直接求解;对于(3),应先将函数化为分段函数,再求单调区间,注意函数定义域的限制作用.【解析】(1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], 所以f (x )在[-4,2]上单调递减,在[2,6]上单调递增,所以f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.故所求实数a 的取值范围为(-∞,-6]∪[4,+∞). (3)当a =1时,f (x )=x 2+2x +3,所以f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且所以f (|x |)的单调递增区间是(0,6],单调递减区间是[-6,0].【方法归纳】(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分类讨论求解.【举一反三】2.求函数f (x )=x 2-2ax ,x ∈[0,1]上的最小值. 【解析】因为f (x )=x 2-2ax =(x -a )2-a 2,对称轴为x =a . ①当a <0时,f (x )在[0,1]上是增函数, 所以f (x )min =f (0)=0.②当0≤a ≤1时,f (x )min =f (a )=-a 2. ③当a >1时,f (x )在[0,1]上是减函数, 所以f (x )min =f (1)=1-2a ,综上所述,f (x )min =⎩⎪⎨⎪⎧0,a <0,-a 2,0≤a ≤1,1-2a ,a >1.题型三 幂函数的图象及性质【例3】(1)设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是( ) A.a >c >b B.a >b >c C.c >a >b D.b >c >a(2)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,(x -1)3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是 .【思路分析】(1)利用幂函数或指数函数的性质求解;(2)作出函数图象,利用数形结合的思想求解.【解析】(1)A.因为35>25,所以⎝⎛⎭⎫3525>⎝⎛⎭⎫2525,即a >c . 因为0<25<1,所以⎝⎛⎭⎫2535<⎝⎛⎭⎫2525,即b <c ,所以a >c >b . (2)(0,1).作出函数y =f (x )的图象如图.则当0<k <1时,关于x 的方程f (x )=k 有两个不同的实根. 【方法归纳】1.比较幂值大小的常见类型及解决方法 (1)同底不同指,可以利用指数函数单调性进行比较; (2)同指不同底,可以利用幂函数单调性进行比较;(3)既不同底又不同指,常常找到一个中间值,通过比较两个幂值与中间值的大小来判断两个幂值的大小.2.在解决幂函数与其他函数的图象的交点个数、对应方程根的个数及近似解等问题时,常用数形结合的思想方法,即在同一坐标系下面画出两函数的图象,数形结合求解.【举一反三】3.如图的曲线是幂函数y =x n 在第一象限内的图象.已知n 分别取±2,±12四个值,与曲线c 1,c 2,c 3,c 4对应的n 依次为( A )A.2,12,-12,-2B.2,12,-2,-12C.-12,-2,2,12D.-2,-12,12,2【解析】令x =2时,则22>2>2>2-2, 由图象,得y 1>y 2>y 3>y 4,故选A.体验高考(2015四川)如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎡⎦⎤12,2上单调递减,那么mn 的最大值为( )A.16B.18C.25D.812【解析】B.当m =2时,f (x )=(n -8)x +1在区间⎣⎡⎦⎤12,2上单调递减,则n -8<0⇒n <8,于是mn <16,则mn 无最大值.当m ∈[0,2)时,f (x )的图象开口向下,要使f (x )在区间⎣⎡⎦⎤12,2上单调递减,需-n -8m -2≤12,即2n +m ≤18,又n ≥0,则mn ≤m ⎝⎛⎭⎫9-m 2=-12m 2+9m . 而g (m )=-12m 2+9m 在[0,2)上为增函数,所以m ∈[0,2)时,g (m )<g (2)=16,故m ∈[0,2)时,mn 无最大值.当m >2时,f (x )的图象开口向上,要使f (x )在区间⎣⎡⎦⎤12,2上单调递减,需-n -8m -2≥2,即2m +n ≤12,而2m +n ≥22m ·n ,所以mn ≤18,当且仅当⎩⎪⎨⎪⎧ 2m +n =12,2m =n ,即⎩⎪⎨⎪⎧m =3,n =6时,等号成立,此时满足m >2. 故(mn )max =18.故选B.【举一反三】(2014浙江)在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图象可能是( D )【解析】因为a >0,所以f (x )=x a在(0,+∞)上为增函数,故A 错.在B 中,由f (x )的图象知a >1,由g (x )的图象知0<a <1,矛盾,故B 错.在C 中,由f (x )的图象知0<a <1,由g (x )的图象知a >1,矛盾,故C 错.在D 中,由f (x )的图象知0<a <1,由g (x )的图象知0<a <1,相符,故选D.2.5 指数与指数函数考点诠释重点:指数幂的运算,指数函数的概念、图象和性质. 难点:指数函数性质的归纳、概括及其应用.典例精析题型一 指数幂的运算【例1】化简下列各式(其中各字母均为正数).【思路分析】当化简的式子中既有根式又有分数指数幂时,应该把根式统一化成分数指数幂的形式,以便于运算.【解析】(1)原式==.(2)原式=0.4-1-1+(-2) -4+2-3+0.1= 104-1+116+18+110=14380. 【方法归纳】根式运算或根式与指数式混合运算时,将根式化为指数运算较为方便,对于计算的结果,不强求统一形式,如果有特殊要求,要根据要求写出结果,但结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.【举一反三】1.计算下列各题:【解析】(2)原式=⎝⎛⎭⎫271 000-(-7)2+⎝⎛⎭⎫259-1=103-49+53-1=-45.题型二 指数函数的图象【例2】(1)函数y =a x -1a(a >0,且a ≠1)的图象可能是( )(2)若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是 .【思路分析】(1)分a >1和0<a <1两种情况进行讨论,然后逐次排除;(2)利用数形结合的思想求解.【解析】(1)D.函数y =a x -1a 由函数y =a x 的图象向下平移1a个单位长度得到,A 项显然错误;当a >1时,0<1a <1,平移距离小于1,所以B 项错误;当0<a <1时,1a>1,平移距离大于1,所以C 项错误,故选D.(2)[-1,1].曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可知,如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].【方法归纳】有关指数函数图象问题的解题思路(1)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时,应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.【举一反三】2.设f (x )=|3x -1|,c <b <a 且f (c )>f (a )>f (b ),则下列关系式中一定成立的是( D )A.3c >3bB.3b >3aC.3c +3a >2D.3c +3a <2 【解析】作f (x )=|3x -1|的图象如图所示.由图可知,要使c <b <a 且f (c )>f (a )>f (b )成立, 则有c <0且a >0,所以3c <1<3a , 所以f (c )=1-3c ,f (a )=3a -1, 又f (c )>f (a ),所以1-3c >3a -1, 即3a +3c <2,故选D.题型三 指数函数的性质及应用【例3】已知函数f (x )=⎝⎛⎭⎫13 (1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值;(3)若f (x )的值域是(0,+∞),求a 的值.【思路分析】(1)根据复合函数的单调性可求解;(2)由f (x )有最大值可知ax 2-4x +3有最小值-1,从而使问题得以解决;(3)由f (x )的值域是(0,+∞),可知ax 2-4x +3的值域为R ,再求a 的值.【解析】(1)当a =-1时,f (x )=⎝⎛⎭⎫13, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝⎛⎭⎫13t 在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令h (x )=ax 2-4x +3,则f (x )=⎝⎛⎭⎫13h (x ),因为f (x )有最大值3,所以h (x )应有最小值-1,因此必有⎝⎛a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.(3)由指数函数的性质知,要使y =⎝⎛⎭⎫13h (x )的值域为(0,+∞),应使h (x )=ax 2-4x +3的值域为R .因此只能a =0(因为若a ≠0,则h (x )为二次函数,其值域不可能为R ).故a 的值为0. 【方法归纳】(1)函数奇偶性与单调性是高考考查的热点问题,常以指数函数为载体考查函数的性质与恒成立问题;(2)求参数的范围也是常考内容,难度不大,但极易造成失分,因此要对题目进行认真分析,必要的过程不可少,这也是高考阅卷中十分强调的问题.【举一反三】3.已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)解关于t 的不等式f (t 2-2t )+f (2t 2-1)<0.【解析】(1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b2+a=0,解得b =1,所以f (x )=-2x +12x +1+a.又由f (1)=-f (-1)知,-2+14+a =--12+11+a,解得a =2.(2)由(1)知f (x )=-2x +12x +1+2=-12+12x +1.由上式易知f (x )在(-∞,+∞)上为减函数(可用定义法或导数法证明函数f (x )在R 上是减函数).又因为f (x )是奇函数,所以不等式f (t 2-2t )+f (2t 2-1)<0等价于f (t 2-2t )<-f (2t 2-1)=f (-2t 2+1).因为f (x )是减函数,由上式推得t 2-2t >-2t 2+1,即3t 2-2t -1>0,解不等式可得.体验高考(2015天津)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数.记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A.a <b <cB.a <c <bC.c <a <bD.c <b <a【解析】C.因为f (x )=2|x -m |-1为偶函数,所以m =0.因为a =f (log 3)=f (log 23),b =f (log 25),c =f (0),log 25>log 23>0,而函数f (x )=2|x |-1在(0,+∞)上为增函数,所以f (log 25)>f (log 23)>f (0),即b >a >c ,故选C.【举一反三】(2015山东)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =.【解析】①当a >1时,f (x )在[-1,0]上单调递增, 则无解.②当0<a <1时,f (x )在[-1,0]上单调递减,则解得⎩⎪⎨⎪⎧a =12,b =-2.所以a +b =-32.2.6 对数与对数函数考点诠释重点:理解对数函数的定义,掌握对数函数的图象和性质,了解对数函数与指数函数的内在联系.难点:底数a 对对数函数图象的影响及对对数函数性质的作用.典例精析题型一 对数式的化简与计算 【例1】计算下列各题: (1)lg 2+lg 5-lg 8lg 50-lg 40;(2);(3)2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1.【思路分析】对数式的化简和求值,要严格按照对数的运算法则进行,同式中不同底的对数式应先化为同底再计算.【解析】(1)原式=lg 2×58lg 5040=lg 54lg 54=1.(2)原式==⎝⎛⎭⎫34log 33-log 33·log 5(10-3-2) =⎝⎛⎭⎫34-1·log 55=-14. (3)原式=lg 2(2lg 2+lg 5)+(lg 2)2-2lg 2+1 =lg 2(lg 2+lg 5)+|lg 2-1| =lg 2·lg(2×5)+1-lg 2=1.【方法归纳】(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底和指数与对数互化;(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧.【举一反三】1.求值:(1)log 2748+log 212-12log 242-1;(2)(lg 2)2+lg 2·lg 50+lg 25; (3)(log 32+log 92)(log 43+log 83).【解析】(1)原式=log 2748+log 212-log 242-log 22=log 27×1248×42×2=log 2122=log 22=-32.(2)原式=lg 2·(lg 2+lg 50)+lg 25=2lg 2+lg 25=lg 100=2.(3)原式=⎝⎛⎭⎫lg 2lg 3+lg 22lg 3⎝⎛⎭⎫lg 32lg 2+lg 33lg 2 =3lg 22lg 3·5lg 36lg 2=54. 题型二 对数函数的图象及应用【例2】已知函数f (x )=log a (2x +b -1)(a >0,且a ≠1)的图象如图所示,则a ,b 满足的关系是( )A.0<a -1<b <1B.0<b <a -1<1C.0<b -1<a <1D.0<a -1<b -1<1【思路分析】根据函数的图象的变化趋势及图象与y 轴的交点的纵坐标的范围求解. 【解析】A.令g (x )=2x +b -1,这是一个增函数,而由图象可知函数f (x )=log a g (x )是单调递增的,所以必有a >1.又由图象知函数图象与y 轴交点的纵坐标介于-1和0之间,即-1<f (0)<0,所以-1<log a b <0,故a -1<b <1,因此0<a -1<b <1.【方法归纳】由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及所含参数的取值范围.【举一反三】2.当0<x ≤12时,4x <log a x ,则a 的取值范围是( B )A.⎝⎛⎭⎫0,22B.⎝⎛⎭⎫22,1C.(1,2)D.(2,2)【解析】由题意得,0<a <1,要使当0<x ≤12时,4x <log a x ,即当0<x ≤12时,函数y =4x 的图象在函数y =log a x 图象的下方.。
高三数学(理科)二轮复习教案专题二第四讲思想方法与规范解答
第四讲 思想方法与规范解答(一)思想方法1.数形结合思想所谓数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.数形结合思想的应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质;(2)“以数解形”,把直观图形数量化,使形更加精确.本专题中集合的运算、求二次函数的最值,确定函数零点问题、求不等式恒成立中参数等都经常用到数形结合思想.[例1] (___高考辽宁卷)设函数f (x )(x ∈R)满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x cos (πx )|,则函数h (x )=g (x )-f (x )在[-12,32]上的零点个数为( )A .5B .6C .7D .8 [解析] 根据函数y =f (x )的特点确定其性质,然后根据定义域分别作出图象求解.根据题意,函数y =f (x )是周期为2的偶函数且0≤x ≤1时,f (x )=x 3,则当-1≤x ≤0时,f (x )=-x 3,且g (x )=|x cos (πx )|,所以当x =0时,f (x )=g (x ).当x ≠0时,若0<x ≤12,则x 3=x cos (πx ),即x 2= |cos πx |.同理可以得到在区间[-12,0), (12,1],(1,32]上的关系式都是上式,在同一个坐标系中作出所得关系式等号两边函数的图象,如图所示,有5个根.所以总共有6个.[答案] B跟踪训练已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.其中正确结论的序号是()A.①③B.①④C.②③D.②④解析:利用函数的单调性及数形结合思想求解.∵f′(x)=3x2-12x+9=3(x-1)(x-3),由f′(x)<0,得1<x<3,由f′(x)>0,得x<1或x>3,∴f(x)在区间(1,3)上是减函数,在区间(-∞,1),(3,+∞)上是增函数.又a<b<c,f(a)=f(b)=f(c)=0,∴y极大值=f(1)=4-abc>0,y极小值=f(3)=-abc<0,∴0<abc<4.∴a,b,c均大于零,或者a<0,b<0,c>0.又x=1,x=3为函数f(x)的极值点,后一种情况不可能成立,如图.∴f(0)<0,∴f(0)f(1)<0,f(0)f(3)>0,∴正确结论的序号是②③.答案:C2.分类讨论思想分类讨论思想是由问题的不确定性而引起的,需要按照问题的条件划分为几类,从而解决问题,在本专题中常见的分类讨论思想的运用有以下两个方面:(1)二次函数在给定区间的最值求法,注意对称轴与区间关系;(2)含参数的函数的单调性的判断,极值、最值的求法.[例2](___高考课标全国卷)设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.[解析](1)f(x)的定义域为(-∞,+∞),f′(x)=e x-a.若a≤0,则f′(x)>0,所以f(x)在(-∞,+∞)上单调递增.若a>0,则当x∈(-∞,ln a)时,f′(x)<0;当x∈(ln a,+∞)时,f′(x)>0.所以,f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.(2)由于a=1,所以(x-k)f′(x)+x+1=(x-k)(e x-1)+x+1.故当x>0时,(x-k)f′(x)+x+1>0等价于k<x+1e x-1+x(x>0).①令g(x)=x+1e x-1+x,则g′(x)=-x e x-1(e x-1)2+1=e x(e x-x-2)(e x-1)2.由(1)知,函数h(x)=e x-x-2在(0,+∞)上单调递增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2).当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(xg(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2,所以g(α)=α+1∈(2,3).由于①式等价于k<g(α),故整数k的最大值为2.跟踪训练(___济南模拟)已知函数f(x)=x2e-ax,a R.(1)当a=1时,求函数y=f(x)的图象在点(-1,f(-1))处的切线方程;(2)讨论f(x)的单调性.解析:(1)因为当a=1时,f(x)=x2e-x,f′(x)=2x e-x-x2e-x=(2x-x2)e-x,所以f(-1)=e,f′(-1)=-3e.从而y=f(x)的图象在点(-1,f(-1))处的切线方程为y-e=-3e(x+1),即y=-3e x-2e.(2)f′(x)=2x e-ax-ax2e-ax=(2x-ax2)e-ax.①当a=0时,若x<0,则f′(x)<0,若x>0,则f′(x)>0.所以当a=0时,函数f(x)在区间(-∞,0)上为减函数,在区间(0,+∞)上为增函数.②当a >0时,由2x -ax 2<0,解得x <0或x >2a , 由2x -ax 2>0,解得0<x <2a .所以当a >0时,函数f (x )在区间(-∞,0),(2a ,+∞)上为减函数,在区间(0,2a )上为增函数.③当a <0时,由2x -ax 2<0,解得2a <x <0, 由2x -ax 2>0,解得x <2a 或x >0.所以,当a <0时,函数f (x )在区间(-∞,2a ),(0,+∞)上为增函数,在区间(2a ,0)上为减函数.综上所述,当a =0时,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增;当a >0时,f (x )在(-∞,0),(2a ,+∞)上单调递减,在(0,2a )上单调递增当a <0时,f (x )在(2a ,0)上单调递减,在(-∞,2a ),(0,+∞)上单调递增.考情展望高考对本专题的考查主要是两个方面:一是在选择填空题中考查函数图象与性质及应用,二是在解答题中考查导数的应用,常与不等式联系,难度较大,多涉及含参数问题.名师押题【押题】 设函数f (x )=ln x -p (x -1),p ∈R. (1)当p =1时,求函数f (x )的单调区间;(2)设函数g (x )=xf (x )+p (2x 2-x -1),对任意x ≥1都有g (x )≤0成立,求p 的取值范围.【解析】 (1)当p =1时,f (x )=ln x -x +1,其定义域为(0,+∞).所以f ′(x )=1x-1.由f ′(x )=1x -1>0得0<x <1, 由f ′(x )<0得x >1.所以函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)由函数g (x )=xf (x )+p (2x 2-x -1)=x ln x +p (x 2-1)(x >0),得g ′(x )=ln x +1+2px . 由(1)知,当p =1时,f (x )≤f (1)=0,即不等式ln x ≤x -1成立.①当p ≤-12时,g ′(x )=ln x +1+2px ≤(x -1)+1+2px =(1+2p )x ≤0. 即函数g (x )在[1,+∞)上单调递减,从而g (x )≤g (1)=0,满足题意;②当-12<p <0时,存在x ∈(1,-12p )使得ln x >0,1+2px >0,从而g ′(x )=ln x +1+2px >0,即函数g (x )在(1,-12p )上单调递增,从而存在x 0∈(1,-12p )使得g (x 0)>g (1)=0,不满足题意;③当p ≥0时,由x ≥1知g (x )=x ln x +p (x 2-1)≥0恒成立,此时不满足题意.综上所述,实数p 的取值范围为1(,].2-∞-第二讲 空间中的平行与垂直研热点(聚焦突破)类型一 空间线线、线面位置关系1.线面平行的判定定理:a ⊄α,b ⊂α,a ∥b ⇒a ∥α.2.线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b .3.线面垂直的判定定理:m ⊂α,n ⊂α,m ∩n =P ,l ⊥m ,l ⊥n ⇒l ⊥α. 4.线面垂直的性质定理:a ⊥α,b ⊥α a ∥b .[例1] (___高考山东卷)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF . (1)求证:BD ⊥平面AED ; (2)求二面角FBDC 的余弦值.[解析] (1)证明:因为四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,所以∠ADC =∠BCD =120°. 又CB =CD ,所以∠CDB =30°, 因此∠ADB =90°,即AD ⊥BD .又AE ⊥BD ,且AE ∩AD =A ,AE ,AD 平面AED , 所以BD ⊥平面AED .(2)解法一 由(1)知AD ⊥BD ,所以AC ⊥BC .又FC ⊥平面ABCD ,因此CA ,CB ,CF 两两垂直.以C 为坐标原点,分别以CA ,CB ,CF 所在的直线为x 轴,y 轴,z 轴,建立如图(1)所示的空间直角坐标系.不妨设CB =1,则C (0,0,0),B (0,1,0),D (32,-12,0),F (0,0,1).(1)因此BD →=(32,-32,0),BF →=(0,-1,1). 设平面BDF 的一个法向量为m =(x ,y ,z ), 则m ·BD →=0,m ·BF →=0, 所以x =3y =3z ,取z =1,则m =(3,1,1).由于CF →=(0,0,1)是平面BDC 的一个法向量,则cos 〈m ,CF →〉=m ·CF →|m ||CF →|=15=55,所以二面角F -BD -C 的余弦值为55.解法二 如图(2),取BD 的中点G ,连接CG ,FG , 由于CB =CD ,因此CG ⊥BD .又FC ⊥平面ABCD ,BD ⊂平面ABCD , 所以FC ⊥BD .由于FC ∩CG =C ,FC ,CG ⊂平面FCG , 所以BD ⊥平面FCG , 故BD ⊥FG ,所以∠FGC 为二面角F -BD -C 的平面角.(2)在等腰三角形BCD 中,由于∠BCD =120°, 因此CG =12CB .又CB =CF , 所以CF =CG 2+CF 2=5CG ,故cos ∠FGC =55,因此二面角F -BD -C 的余弦值为55.跟踪训练(___济南摸底)如图,在正三棱柱ABC-A1B1C1中,底面ABC为正三角形,M、N、G分别是棱CC1、AB、BC的中点.且CC1=2AC.(1)求证:CN∥平面AMB1;(2)求证:B1M⊥平面AMG.证明:(1)设线段AB1的中点为P,连接NP、MP,∵CM∥12AA1,NP∥12AA1,∴CM∥NP,∴四边形CNPM是平行四边形,∴CN∥MP,∵CN⊄平面AMB1,MP⊂平面AMB1,∴CN∥平面AMB1.(2)∵CC 1⊥平面ABC , ∴平面CC 1B 1B ⊥平面ABC ,∵AG ⊥BC ,∴AG ⊥平面CC 1B 1B ,∴B 1M ⊥AG . ∵CC 1⊥平面ABC ,平面A 1B 1C 1∥平面ABC , ∴CC 1⊥AC ,CC 1⊥B 1C 1, 设AC =2a ,则CC 1=22a , 在Rt △MCA 中,AM = CM 2+AC 2=6a ,在Rt △B 1C 1M 中,B 1M =B 1C 21+C 1M 2=6a .∵BB 1∥CC 1,∴BB 1⊥平面ABC ,∴BB 1⊥AB , ∴AB 1=B 1B 2+AB 2=C 1C 2+AB 2=23a ,注意到AM 2+B 1M 2=AB 21,∴B 1M ⊥AM , 类型二 空间面面位置关系1.面面垂直的判定定理:a ⊂β,a ⊥α⇒α⊥β.2.面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l α⊥β. 3.面面平行的判定定理:a ⊂β,b ⊂β,a ∩b =A ,a ∥α,b ∥α⇒α∥β. 4.面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒α∥b . 5.面面平行的证明还有其它方法(1),,,a b a b A c d c d B a c b d αβαβ⊂=⎫⎪⊂=⇒⎬⎪⎭且且∥∥∥(2),a a ααββ⊥⊥⇒∥[例2](___高考江苏卷)如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.[证明](1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.又AD⊂平面ABC,所以CC1⊥AD.又因为AD⊥DE,CC1,DE⊂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1.又AD⊂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,所以CC1⊥A1F.又因为CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1.由(1)知AD⊥平面BCC1B1,所以A1F∥AD.又AD⊂平面ADE,A1F⊄平面ADE,所以A1F∥平面ADE.跟踪训练(___大同模拟)如图,菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD 沿对角线AC折起,得到三棱锥,点M是棱BC的中点,DM=3 2.(1)求证:平面ABC⊥平面MDO;(2)求三棱锥M-ABD的体积.解析:(1)证明:由题意得OM=OD=3,因为DM=32,所以∠DOM=90°,OD⊥OM.又因为四边形ABCD为菱形,所以OD⊥AC.因为OM∩AC=O,所以OD⊥平面ABC,因为OD 平面MDO,所以平面ABC⊥平面MDO.(2)三棱锥M-ABD的体积等于三棱锥D-ABM的体积.由(1)知,OD⊥平面ABC,所以OD为三棱锥D-ABM的高.又△ABM的面积为12BA×BM×sin 120°=12×6×3×32=932,所以M-ABD的体积等于13×S△ABM ×OD=932.类型三折叠中的位置关系将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称之为平面图形翻折问题.平面图形经过翻折成为空间图形后,原有的性质有的发生了变化、有的没有发生变化,弄清它们是解决问题的关键.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.[例3](___高考浙江卷)已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直[解析]找出图形在翻折过程中变化的量与不变的量.对于选项A,过点A作AE⊥BD,垂足为E,过点C作CF⊥BD,垂足为F,在图(1)中,由边AB,BC不相等可知点E,F不重合.在图(2)中,连接CE,若直线AC与直线BD垂直,又∵AC∩AE=A,∴BD⊥面ACE,∴BD⊥CE,与点E,F不重合相矛盾,故A错误.对于选项B,若AB⊥CD,又∵AB⊥AD,AD∩CD=D,∴AB⊥面ADC,∴AB⊥AC,由AB<BC可知存在这样的等腰直角三角形,使得直线AB与直线CD垂直,故B正确.对于选项C,若AD⊥BC,又∵DC⊥BC,AD∩DC=D,∴BC⊥面ADC,∴BC⊥AC.已知BC=2,AB=1,BC >AB,∴不存在这样的直角三角形.∴C错误.由上可知D错误,故选B.[答案] B跟踪训练如图1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E,F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4.将四边形EFCD沿EF折起成如图2的形状,使AD=AE.(1)求证:BC∥平面DAE;(2)求四棱锥DAEFB的体积.解析:(1)证明:∵BF∥AE,CF∥DE,BF∩CF=F,AE∩DE=E.∴平面CBF∥平面DAE,又BC⊂平面CBF,∴BC∥平面DAE.(2)取AE的中点H,连接DH.∵EF⊥DE,EF⊥EA,∴EF⊥平面DAE.又DH⊂平面DAE,∴EF⊥DH.∵AE=DE=AD=2,∴DH⊥AE,DH= 3.∴DH⊥平面AEFB.四棱锥D-AEFB的体积V=13×3×2×2=43 3.析典题(预测高考)高考真题【真题】(___高考陕西卷)(1)如图所示,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).【解析】(1)证明:证法一如图(1),过直线b上任一点作平面π的垂线n,设直线a,b,c,n的方向向量分别是a,b,c,n,则b,c,n共面.根据平面向量基本定理,存在实数λ,μ使得c=λb+μn,则a·c=a·(λb+μn)=λ(a·b)+μ(a·n).因为a⊥b,所以a·b=0.又因为aπ,n⊥π,所以a·n=0.故a·c=0,从而a⊥c.证法二如图(2),记c∩b=A,P为直线b上异于点A的任意一点,过P作PO⊥π,垂足为O,则O∈c.因为PO⊥π,aπ,所以直线PO⊥a.又a⊥b,b平面P AO,PO∩b=P,所以a⊥平面P AO.又c平面P AO,所以a⊥c.(2)逆命题为:a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥c ,则a ⊥b . 逆命题为真命题.【名师点睛】 本题实际上考查了三垂线定理逆定理的证明,命题创意新颖,改变了多数高考命题以空间几何体为载体考查线面位置关系的证明.着重考查推理论证能力. 考情展望 名师押题【押题】 一个空间几何体的三视图及部分数据如图所示,其正视图、俯视图均为矩形,侧视图为直角三角形.(1)请画出该几何体的直观图,并求出它的体积; (2)证明:A 1C ⊥平面AB 1C 1;(3)若D 是棱CC 1的中点,E 是棱AB 的中点,判断DE 是否平行于平面AB 1C 1,并证明你的结论.【解析】 (1)几何体的直观图如图所示,四边形BB 1C 1C 是矩形,BB 1=CC 1=3,BC =B 1C 1=1,四边形AA 1C 1C 是边长为3的正方形,且平面AA 1C 1C 垂直于底面BB 1C 1C ,故该几何体是直三棱柱,其体积 V =S △ABC ·BB 1=12×1×3×3=32.(2)证明:由(1)知平面AA 1C 1C ⊥平面BB 1C 1C 且B 1C 1⊥CC 1,所以B 1C 1⊥平面ACC 1A 1,所以B 1C 1⊥A 1C .因为四边形ACC1A1为正方形,所以A1C⊥AC1,而B1C1∩AC1=C1,所以A1C⊥平面AB1C1.(3)DE∥平面AB1C1,证明如下:如图,取BB1的中点F,连接EF,DF,DE.因为D,E,F分别为CC1,AB,BB1的中点,所以EF∥AB1,DF∥B1C1.又AB1 ⊂平面AB1C1,EF ⊂平面AB1C1,所以EF∥平面AB1C1.同理,DF∥平面AB1C1,又EF∩DF=F,则平面DEF∥平面AB1C1.而DE⊂平面DEF,所以DE∥平面AB1C1.。
2018年高考数学理二轮复习 讲学案:考前数学思想领航
高考试题一是着眼于知识点新颖巧妙的组合;二是着眼于对数学思想方法、数学能力的考查.如果说数学知识是数学内容,可用文字和符号来记录与描述,那么数学思想方法则是数学意识,重在领会、运用,属于思维的范畴,用以对数学问题的认识、处理和解决.高考中常用到的数学思想主要有函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想.这些在一轮复习中都有所涉及,建议二轮复习前应先学习此部分.带着方法去复习,这样可以使理论指导实践,“一法一练”“一练一过”,既节省了复习时间又能起到事半功倍的效果.一、函数与方程思想方法一点坐标代入函数(方程)法模型解法点坐标代入函数(方程)法是指把点“放到”函数图象中去“入套”,通过构造方程求解参数的方法.此方法适用于已知函数或函数图象,给出满足条件的点坐标,求其中的参数问题.破解此类题的关键点:①点代入函数,把所给点坐标代入已知函数的解析式中,得到关于参数的方程或不等式.②解含参方程,求解关于参数的方程或不等式.③检验得结论,得出参数的值或取值范围,最后代入方程或不等式进行检验.典例1 函数y =a x(a >0,且a ≠1)的反函数的图象过点(a ,a ),则a 的值为( ) A .2 B .3 C .2或12 D.12解析 因为函数y =a x(a >0,且a ≠1)的反函数为y =log a x (a >0,且a ≠1),且y =log a x 的图象过点(a ,a ),所以a =log a a ,所以a a=a ,所以a =12,检验易知当a =12时,函数有意义.故选D.答案 D思维升华 应用此方法的易错点是忘记检验,在解出方程后,一定要回头望,把所求的解代入原函数中检验是否有意义.跟踪演练1 函数y =log a x (a >0,且a ≠1)的反函数的图象过点(a ,3a ),则a 的值为_____. 答案 13解析 因为函数y =log a x (a >0,且a ≠1)的反函数y =a x(a >0,且a ≠1)的图象过点(a ,3a ),所以3a =a a,即13a =a a,所以a =13.经检验知a =13符合要求.方法二 平面向量问题的函数(方程)法 模型解法平面向量问题的函数(方程)法是把平面向量问题,通过模、数量积等转化为关于相应参数的函数(方程)问题,从而利用相关知识结合函数或方程思想来处理有关参数值问题.破解此类题的关键点:①向量代数化,利用平面向量中的模、数量积等结合向量的位置关系、数量积公式等进行代数化,得到含有参数的函数(方程).②代数函数(方程)化,利用函数(方程)思想,结合相应的函数(方程)的性质求解问题. ③得出结论,根据条件建立相应的关系式,并得到对应的结论.典例2 已知a ,b ,c 为平面上的三个向量,又a ,b 是两个相互垂直的单位向量,向量c 满足|c |=3,c·a =2,c·b =1,则对于任意实数x ,y ,|c -x a -y b |的最小值为______. 解析 由题意可知|a |=|b |=1,a·b =0,又|c |=3,c·a =2,c·b =1,所以|c -x a -y b |2=|c |2+x 2|a |2+y 2|b |2-2x c·a -2y c·b +2xy a·b=9+x 2+y 2-4x -2y =(x -2)2+(y -1)2+4, 当且仅当x =2,y =1时,|c -x a -y b |2min =4, 所以|c -x a -y b |的最小值为2. 答案 2思维升华 平面向量中含函数(方程)的相关知识,对平面向量的模进行平方处理,把模问题转化为数量积问题,再利用函数与方程思想来分析与处理,这是解决此类问题一种比较常见的思维方式.跟踪演练2 已知e 1,e 2是平面上两相互垂直的单位向量,若平面向量b 满足|b |=2,b·e 1=1,b·e 2=1,则对于任意x ,y ∈R ,|b -(x e 1+y e 2)|的最小值为________. 答案2解析 |b -(x e 1+y e 2)|2=b 2+x 2e 21+y 2e 22-2x b·e 1-2y b·e 2+2xy e 1·e 2=22+x 2+y 2-2x -2y=(x -1)2+(y -1)2+2≥2,当且仅当x =1,y =1时,|b -(x e 1+y e 2)|2取得最小值, 此时|b -(x e 1+y e 2)|取得最小值 2. 方法三 不等式恰成立问题函数(方程)法 模型解法含参不等式恰成立问题函数(方程)法是指通过构造函数,把恰成立问题转化为函数的值域问题,从而得到关于参数的方程的方法.破解此类题的关键点:①灵活转化,即“关于x 的不等式f (x )<g (a )在区间D 上恰成立”转化为“函数y =f (x )在D 上的值域是(-∞,g (a ))”;“不等式f (x )>g (a )在区间D 上恰成立”转化为“函数y =f (x )在D 上的值域是(g (a ),+∞)”.②求函数值域,利用函数的单调性、导数、图象等求函数的值域. ③得出结论,列出参数a 所满足的方程,通过解方程,求出a 的值.典例3 关于x 的不等式e x-x 22-1-⎝ ⎛⎭⎪⎫a -94x ≥0在⎣⎢⎡⎭⎪⎫12,+∞上恰成立,则a 的取值集合为________.解析 关于x 的不等式e x-x 22-1-⎝ ⎛⎭⎪⎫a -94x ≥0在⎣⎢⎡⎭⎪⎫12,+∞上恰成立⇔函数g (x )=e x-12x 2-1x 在⎣⎢⎡⎭⎪⎫12,+∞上的值域为⎣⎢⎡⎭⎪⎫a -94,+∞. 因为g ′(x )=e x(x -1)-12x 2+1x2,令φ(x )=e x(x -1)-12x 2+1,x ∈⎣⎢⎡⎭⎪⎫12,+∞,则φ′(x )=x (e x-1). 因为x ≥12,所以φ′(x )>0,故φ(x )在⎣⎢⎡⎭⎪⎫12,+∞上单调递增, 所以φ(x )≥φ⎝ ⎛⎭⎪⎫12=78-e 2>0.因此g ′(x )>0,故g (x )在⎣⎢⎡⎭⎪⎫12,+∞上单调递增, 则g (x )≥g ⎝ ⎛⎭⎪⎫12=e 12-18-112=2e -94, 所以a -94=2e -94,解得a =2e ,所以a 的取值集合为{2e}. 答案 {2e}思维升华 求解此类含参不等式恰成立问题时注意与含参不等式恒成立问题区分开,含参不等式恰成立问题一般转化为求函数的值域,得参数的方程;而含参不等式恒成立问题一般转化为最值问题.跟踪演练3 关于x 的不等式x +4x-1-a 2+2a >0在(2,+∞)上恰成立,则a 的取值集合为__________. 答案 {-1,3}解析 关于x 的不等式x +4x -1-a 2+2a >0在(2,+∞)上恰成立⇔函数f (x )=x +4x在(2,+∞)上的值域为(a 2-2a +1,+∞). 由f (x )=x +4x,x ∈(2,+∞),可得f ′(x )=1-4x 2=x 2-4x2>0,所以f (x )=x +4x在(2,+∞)上为单调递增函数,所以f (x )>f (2)=4.又关于x 的不等式x +4x>a 2-2a +1在(2,+∞)上恰成立,所以a 2-2a +1=4,解得a =-1或a=3.方法四 解析几何问题的函数(方程)法 模型解法解析几何问题的函数(方程)法是解决解析几何问题中比较常见的一种方法,通过函数(方程)法把解析几何问题代数化,利用函数或方程进行求解,其关键是根据题意,构造恰当的函数或建立相应的方程解决问题.破解此类题的关键点:①代数化,把直线、圆、圆锥曲线以及直线与圆、直线与圆锥曲线的位置关系等转化为代数问题,构造函数解析式或方程.②函数(方程)应用,利用函数的相关性质或方程思想来求解含有参数的解析几何问题. ③得出结论,结合解析几何中的限制条件和函数(方程)的结论得出最终结论.典例4 已知直线l 过定点S (4,0),与x 24+y 23=1(x ≠±2)交于P ,Q 两点,点P 关于x 轴的对称点为P ′,连接P ′Q 交x 轴于点T ,当△PQT 的面积最大时,直线l 的方程为_____. 解析 设直线l 的方程为x =ky +4(k ≠0),联立⎩⎪⎨⎪⎧x =ky +4,x 24+y23=1,消去x 得(3k 2+4)y 2+24ky +36=0,Δ=576k 2-4×36(3k 2+4)=144(k 2-4)>0,即k 2>4. 设P (x 1,y 1),Q (x 2,y 2),则P ′(x 1,-y 1). 由根与系数的关系,得⎩⎪⎨⎪⎧y 1+y 2=-24k3k 2+4, ①y 1y 2=363k 2+4,②直线P ′Q 的方程为y =y 2+y 1x 2-x 1(x -x 1)-y 1, 令y =0,得x =x 1y 2+x 2y 1y 1+y 2=(ky 1+4)y 2+y 1(ky 2+4)y 1+y 2=2ky 1y 2+4(y 1+y 2)y 1+y 2,将①②代入上式得x =1, 即T (1,0),所以|ST |=3, 所以S △PQT =|S △STQ -S △STP |=12|ST ||y 1-y 2|=32(y 1+y 2)2-4y 1y 2 =32·⎝ ⎛⎭⎪⎫-24k 3k 2+42-4×363k 2+4 =18k 2-43k 2+4=18k 2-43(k 2-4)+16 =183k 2-4+16k 2-4≤334,当且仅当k 2=283,即k =±2213时取等号.故所求直线l 的方程为x =2213y +4或x =-2213y +4. 答案 x =2213y +4或x =-2213y +4思维升华 直线与圆锥曲线的综合问题,通常借助根的判别式和根与系数的关系进行求解,这是方程思想在解析几何中的重要应用.解析几何问题的方程(函数)法可以拓展解决解析几何问题的思维,通过代数运算、方程判定等解决解析几何中的位置关系、参数取值等问题. 跟踪演练4 椭圆C 1:x 29+y 24=1和圆C 2:x 2+(y +1)2=r 2(r >0),若两条曲线没有公共点,则r 的取值范围是______________. 答案 (0,1)∪⎝⎛⎭⎪⎫3305,+∞ 解析 方法一 联立C 1和C 2的方程,消去x , 得到关于y 的方程-54y 2+2y +10-r 2=0, ①方程①可变形为r 2=-54y 2+2y +10,把r 2=-54y 2+2y +10看作关于y 的函数.由椭圆C 1可知,-2≤y ≤2,因此,求使圆C 2与椭圆C 1有公共点的r 的集合,等价于在定义域为y ∈[-2,2]的情况下,求函数r 2=f (y )=-54y 2+2y +10的值域.由f (-2)=1,f (2)=9,f ⎝ ⎛⎭⎪⎫45=545,可得f (y )的值域是r 2∈⎣⎢⎡⎦⎥⎤1,545,即r ∈⎣⎢⎡⎦⎥⎤1,3305,它的补集就是圆C 2与椭圆C 1没有公共点的r 的集合,因此,两条曲线没有公共点的r 的取值范围是(0,1)∪⎝⎛⎭⎪⎫3305,+∞. 方法二 联立C 1和C 2的方程消去x ,得到关于y 的方程-54y 2+2y +10-r 2=0.①两条曲线没有公共点,等价于方程-54y 2+2y +10-r 2=0要么没有实数根,要么有两个根y 1,y 2∉[-2,2].若没有实数根,则Δ=4-4×⎝ ⎛⎭⎪⎫-54×(10-r 2)<0,解得r >3305或r <-3305⎝ ⎛⎭⎪⎫由于r >0,则r <-3305舍去.若两个根y 1,y 2∉[-2,2],设φ(y )=-54y 2+2y +10-r 2,其图象的对称轴方程为y =45∈[-2,2].则⎩⎪⎨⎪⎧φ(2)=9-r 2>0,φ(-2)=1-r 2>0,又r >0,解得0<r <1.因此,两条曲线没有公共点的r 的取值范围是(0,1)∪⎝ ⎛⎭⎪⎫3305,+∞.。
专题24 数学思想方法(教学案)-2018年高考理数二轮复习精品资料(原卷版)
函数与方程思想在高考中也是必考内容,特别是在函数、解析几何、三角函数等处都可能考到,几乎大多数年份高考中大题都会涉及到.因此认真体会函数与方程思想是成功高考的关键.在高考题中,数形结合的题目出现在高中数学知识的方方面面上,把图象作为工具、载体,以此寻求解题思路或制定解题方案,真正体现数形结合的简捷、灵活特点的多是填空小题。
因为对数形结合等思想方法的考查,是对数学知识在更高层次的抽象和概括能力的考查,是对学生思维品质和数学技能的考查,是新课标高考明确的一个命题方向。
分类讨论思想是历年高考的必考内容,它不仅是高考的重点和热点,也是高考的考点,高考中经常会有一道解答题,解题思路直接依赖于分类讨论.预测以后的高考,将会一如既往地考查分类讨论思想,特别在解答题中(尤其导数与函数),将有一道进行分类、求解的把关题,选择题、填空题也会出现不同情形的分类讨论求解题.化归与转化的思想在高考中必然考到,主要可能出现在立体几何的大题中,将空间立体几何的问题转化为平面几何问题,解析几何大题中求范围问题的题转化为求函数值域范围问题等,总之将复杂问题转化为简单问题是高考中解决问题的重要思想方法.一、函数与方程思想一般地,函数思想就是构造函数从而利用函数的图象与性质解题,经常利用的性质是:单调性、奇偶性、周期性、最大值和最小值、图象变换等.在解题中,善于挖掘题目的隐含条件,构造出函数解析式和巧用函数的性质,是应用函数思想的关键,它广泛地应用于方程、不等式、数列等问题.1.方程思想就是将所求的量(或与所求的量相关的量)设成未知数,用它表示问题中的其他各量,根据题中的已知条件列出方程(组),通过解方程(组)或对方程(组)进行研究,使问题得到解决.2.方程思想与函数思想密切相关:方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标;函数y=f(x)也可以看作二元方程f(x)-y=0,通过方程进行研究,方程f(x)=a有解,当且仅当a属于函数f(x)的值域.函数与方程的这种相互转化关系十分重要.可用函数与方程思想解决的相关问题.1.函数思想在解题中的应用主要表现在两个方面:(1)借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;(2)在研究问题中通过建立函数关系式或构造中间函数,把研究的问题化为讨论函数的有关性质,达到化难为易、化繁为简的目的.2.方程思想在解题中的应用主要表现在四个方面:(1)解方程或解不等式;(2)带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识的应用;(3)需要转化为方程的讨论,如曲线的位置关系等;(4)构造方程或不等式求解问题.二、数形结合的数学思想数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.。
2018届高考数学二轮复习 第2部分 专题一 思想方法突破 2-1-2 数形结合思想教案 文
当 x>0 时,由 f(x)>0,得 g(x)>0,由图知 0<x<1, 当 x<0 时,由 f(x)>0,得 g(x)<0,由图知 x<-1, ∴使得 f(x)>0 成立的 x 的取值范围是(-∞,-1)∪(0,1),故 选 A.
1.本例利用了数形结合思想,由条件判断函数的单调性,再 结合 f(-1)=0 可作出函数的图象,利用图象即可求出 x 的取值范 围.
由题意可得,|PM|2-|PN|2=(|PC1|2-4)-(|PC2|2-1)=|PC1|2- |PC2|2 - 3 = (|PC1| - |PC2|)(|PC1| + |PC2|) - 3 = 2(|PC1| + |PC2|) - 3≥2|C1C2|-3=13.
角度一 利用数形结合研究零点、方程的根
[ 典 例 1] (2016·高 考 山 东 卷 ) 已 知 函 数 f(x) =
|x|,x≤m, x2-2mx+4m,x>m,
其中 m>0.若存在实数 b,使得关于 x 的
方程 f(x)=b 有三个不同的根,则 m 的取值范围是________.
解析:x2-2mx+4m=(x-m)2+4m-m2.由题意画出函数图象 为下图时才符合,要满足存在实数 b,使得关于 x 的方程 f(x)=b 有三个不同的根,应 4m-m2<m,解得 m>3,即 m 的取值范围为 (3,+∞).
解析:作出 y=|x-2a|和 y=12x+a-1 的简图,依题意知应有 2a≤2-2a,故 a≤12.
答案:-∞,12
角度三3)2+(y-4)2=1 和两点 A(-m,0),
B(m,0)(m>0).若圆 C 上存在点 P,使得∠APB=90°,则 m 的最
大值为( B )
A.7
B.6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)小题小做巧妙选择高考数学选择题历来都是兵家必争之地,因其涵盖的知识面较宽,既有基础性,又有综合性,解题方法灵活多变,分值又高,既考查了同学们掌握基础知识的熟练程度,又考查了一定的数学能力和数学思想,试题区分度极佳.这就要求同学们掌握迅速、准确地解答选择题的方法与技巧,为全卷得到高分打下坚实的基础.一般来说,对于运算量较小的简单选择题,都是采用直接法来解题,即从题干条件出发,利用基本定义、性质、公式等进行简单分析、推理、运算,直接得到结果,与选项对比得出正确答案;对于运算量较大的较复杂的选择题,往往采用间接法来解题,即根据选项的特点、求解的要求,灵活选用数形结合、验证法、排除法、割补法、极端值法、估值法等不同方法技巧,通过快速判断、简单运算即可求解.下面就解选择题的常见方法分别举例说明.一、直接法直接从题目条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,得出正确的结论.涉及概念、性质的辨析或运算较简单的题目常用直接法.[典例] (2017·全国卷Ⅱ)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A .2B . 3C . 2D .233[技法演示] 由圆截得渐近线的弦长求出圆心到渐近线的距离,利用点到直线的距离公式得出a 2,b 2的关系求解.依题意,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为bx -ay =0.因为直线bx-ay =0被圆(x -2)2+y 2=4所截得的弦长为2,所以|2b |b 2+a 2=4-1,所以3a 2+3b 2=4b 2,所以3a 2=b 2,所以e =1+b 2a2=1+3=2.[答案] A[应用体验]1.(2016·全国卷Ⅲ)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( ) A .[2,3] B .(-∞,2]∪[3,+∞) C .[3,+∞)D .(0,2]∪[3,+∞)解析:选D 由题意知S ={x |x ≤2或x ≥3},则S ∩T ={x |0<x ≤2或x ≥3}.故选D.2.(2017·全国卷Ⅱ)执行如图所示的程序框图,如果输入的a =-1,则输出的S =( )A .2B .3C .4D .5解析:选B 运行程序框图, a =-1,S =0,K =1,K ≤6成立;S =0+(-1)×1=-1,a =1,K =2,K ≤6成立; S =-1+1×2=1,a =-1,K =3,K ≤6成立; S =1+(-1)×3=-2,a =1,K =4,K ≤6成立; S =-2+1×4=2,a =-1,K =5,K ≤6成立; S =2+(-1)×5=-3,a =1,K =6,K ≤6成立;S =-3+1×6=3,a =-1,K =7,K ≤6不成立,输出S =3. 二、数形结合法根据题目条件作出所研究问题的有关图形,借助几何图形的直观性作出正确的判断.[典例] (2013·全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0][技法演示]作出函数图象,数形结合求解.当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a +2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=ln(x +1)>0,所以|f (x )|≥ax 化简为ln(x+1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,选择D.[答案] D[应用体验]3.(2016·全国卷Ⅱ)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A . 2B .32C . 3D .2解析:选A 作出示意图,如图,离心率e =c a =2c 2a =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2.故选A .4.(2014·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤03x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2解析:选B 作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点B (5,2)时,对应的z 值最大.故z max =2×5-2=8.三、验证法将选项或特殊值,代入题干逐一去验证是否满足题目条件,然后选择符合题目条件的选项的一种方法.在运用验证法解题时,若能根据题意确定代入顺序,则能提高解题速度.[典例] (2016·全国卷Ⅰ)若a >b >1,0<c <1,则( ) A .a c <b c B .ab c <ba c C .a log b c <b log a cD .log a c <log b c[技法演示] 法一:(特殊值验证法)根据a ,b ,c 满足的条件,取特殊值求解. ∵a >b >1,0<c <1,∴不妨取a =4,b =2,c =12,对于A,412=2,212=2,2>2,∴选项A 不正确.对于B,4×212=42,2×412=4,42>4,∴选项B 不正确.对于C,4×log 212=-4,2×log 412=-1,-4<-1,∴选项C 正确.对于D ,log 412=-12,log 212=-1,-12>-1,∴选项D 不正确. 故选C .法二:(直接法)根据待比较式的特征构造函数,直接利用函数单调性及不等式的性质进行比较.∵y =x α,α∈(0,1)在(0,+∞)上是增函数, ∴当a >b >1,0<c <1时,a c >b c ,选项A 不正确. ∵y =x α,α∈(-1,0)在(0,+∞)上是减函数, ∴当a >b >1,0<c <1,即-1<c -1<0时, a c -1<b c -1,即ab c >ba c ,选项B 不正确. ∵a >b >1,∴lg a >lg b >0,∴a lg a >b lg b >0, ∴a lg b >blg a.又∵0<c <1,∴lg c <0. ∴a lg c lg b <b lg c lg a,∴a log b c <b log a c ,选项C 正确.同理可证log a c >log b c ,选项D 不正确. [答案] C[应用体验]5.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B .⎣⎡⎦⎤-1,13 C .⎣⎡⎦⎤-13,13 D .⎣⎡⎦⎤-1,-13 解析:选C 法一:(特殊值验证法)取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C .法二:(直接法)函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.故选C .四、排除法排除法也叫筛选法或淘汰法,使用排除法的前提是答案唯一,具体的做法是从条件出发,运用定理、性质、公式推演,根据“四选一”的指令,对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰项逐一排除,从而获得正确结论.[典例] (2017·全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )[技法演示]根据函数的性质研究函数图象,利用排除法求解.令函数f(x)=sin 2x1-cos x,其定义域为{x|x≠2kπ,k∈Z},又f(-x)=sin(-2x)1-cos(-x)=-sin 2x1-cos x=-f(x),所以f(x)=sin 2x1-cos x为奇函数,其图象关于原点对称,故排除B;因为f(1)=sin 21-cos 1>0,f(π)=sin 2π1-cos π=0,故排除A、D,选C.[答案] C[应用体验]6.(2016·全国卷Ⅰ)函数y=2x2-e|x|在[-2,2]的图象大致为()解析:选D∵f(x)=2x2-e|x|,x∈[-2,2]是偶函数,又f(2)=8-e2∈(0,1),故排除A,B.设g(x)=2x2-e x,则g′(x)=4x-e x.又g′(0)<0,g′(2)>0,∴g(x)在(0,2)内至少存在一个极值点,∴f(x)=2x2-e|x|在(0,2)内至少存在一个极值点,排除C.故选D.7.(2015·全国卷Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析:选B 当x ∈⎣⎡⎦⎤0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A 、C .当x ∈⎣⎡⎦⎤π4,3π4时,f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4=1+5,f ⎝⎛⎭⎫π2=2 2.∵22<1+5,∴f ⎝⎛⎭⎫π2<f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4,从而排除D ,故选B.五、割补法“能割善补”是解决几何问题常用的方法,巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题时间.[典例] (2016·全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π[技法演示] 由三视图还原为直观图后计算求解.由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A . [答案] A[应用体验]8.(2015·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A .18B .17C .16D .15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D.六、极端值法选择运动变化中的极端值,往往是动静转换的关键点,可以起到降低解题难度的作用,因此是一种较高层次的思维方法.从有限到无限,从近似到精确,从量变到质变,运用极端值法解决某些问题,可以避开抽象、复杂的运算,降低难度,优化解题过程.[典例] (2016·全国卷Ⅲ)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3[技法演示] 根据直三棱柱的性质找出最大球的半径,再求球的体积.由题意得,要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B.[答案] B[应用体验]9.如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q 满足A 1P =BQ ,过P ,Q ,C 三点的截面把棱柱分成两部分,则其体积之比为( )A .3∶1B .2∶1C .4∶1D .3∶1解析:选B 将P ,Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有VC -AA 1B =VA 1-ABC =VABC -A 1B 1C 13.故过P ,Q ,C 三点的截面把棱柱分成的两部分体积之比为2∶1(或1∶2).七、估值法由于选择题提供了唯一正确的选择项,解答又无需过程,因此可通过猜测、合情推理、估算而获得答案,这样往往可以减少运算量,避免“小题大做”.[典例] (2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π[技法演示] 由题意,知12V 圆柱<V 几何体<V 圆柱.又V 圆柱=π×32×10=90π,∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B. [答案] B[应用体验]10.若双曲线x 2a 2-y 2b 2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A .73B .54C .43D .53解析:选D 因为双曲线的一条渐近线经过点(3,-4),所以b a =43.因为e =c a >b a ,所以e >43.故选D.(二)快稳细活 填空稳夺绝大多数的填空题都是依据公式推理计算型和依据定义、定理等进行分析判断型,解答时必须按规则进行切实的计算或者合乎逻辑的推理和判断.求解填空题的基本策略是要在“准”“巧”“快”上下功夫.常用的方法有直接法、特殊值法、数形结合法、等价转化法、构造法、分析法等.解答填空题时,由于不反映过程,只要求结果,故对正确性的要求更高、更严格.解答时应遵循“快”“细”“稳”“活”“全”5个原则.填空题解答“五字诀” 快——运算要快,力戒小题大做 细——审题要细,不能粗心大意 稳——变形要稳,不可操之过急 活——解题要活,不要生搬硬套 全——答案要全,避免残缺不齐 一、直接法直接法就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等得出正确的结论.[典例] (2016·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________. [技法演示] 先求出sin A ,sin C 的值,进而求出sin B 的值,再利用正弦定理求b 的值.因为A ,C 为△ABC 的内角,且cos A =45,cos C =513,所以sin A =35,sin C =1213,所以sin B =sin(π-A -C )=sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又a =1,所以由正弦定理得b =a sin B sin A =6365×53=2113. [答案]2113[应用体验]1.(2015·全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )为偶函数,∴f (-x )-f (x )=0恒成立, ∴-x ln(-x +a +x 2)-x ln(x +a +x 2)=0恒成立,∴x ln a =0恒成立,∴ln a =0,即a=1.答案:12.(2014·全国卷Ⅰ)(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案)解析:(x +y )8中,T r +1=C r 8x 8-r y r ,令r =7,再令r =6,得x 2y 7的系数为C 78-C 68=8-28=-20.答案:-20 二、特殊值法当填空结论唯一或题设条件中提供的信息暗示答案是一个定值时,我们只需把题材中的参变量用特殊值代替即可得到结论.[典例] (2016·山东高考)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.[技法演示] 法一:(特殊值法)利用双曲线的性质,设特殊值求解. 如图,由题意知|AB |=2b 2a ,|BC |=2c ,又2|AB |=3|BC |,∴设|AB |=6,|BC |=4,则|AF 1|=3,|F 1F 2|=4, ∴|AF 2|=5.由双曲线的定义可知,a =1,c =2,∴e =ca =2.故填2.法二:(直接法)利用双曲线的性质,建立关于a ,b ,c 的等式求解. 如图,由题意知|AB |=2b 2a ,|BC |=2C . 又2|AB |=3|BC |,∴2×2b 2a=3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2并整理得2e 2-3e -2=0,解得e =2(负值舍去). [答案] 2[应用体验]3.(2014·安徽高考)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.解析:法一:(特殊值法)由题意知a 1,a 3,a 5成等差数列,a 1+1,a 3+3,a 5+5成等比数列,所以观察可设a 1=5,a 3=3,a 5=1,所以q =1.故填1.法二:(直接法)因为数列{a n }是等差数列,所以可设a 1=t -d ,a 3=t ,a 5=t +d ,故由已知得(t +3)2=(t -d +1)(t +d +5),得d 2+4d +4=0,即d =-2,所以a 3+3=a 1+1,即q =1.答案:1 三、数形结合法根据题目条件,画出符合题意的图形,以形助数,通过对图形的直观分析、判断,往往可以快速简捷地得出正确的结果,它既是方法,也是技巧,更是基本的数学思想.[典例] (2016· 全国卷Ⅲ)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.[技法演示] 根据直线与圆的位置关系先求出m 的值,再结合图象求|CD |.由直线l :mx +y +3m -3=0知其过定点(-3,3),圆心O 到直线l 的距离为d =|3m -3|m 2+1. 由|AB |=23得⎝ ⎛⎭⎪⎪⎫3m -3m 2+12+(3)2=12, 解得m =-33. 又直线l 的斜率为-m =33,所以直线l 的倾斜角α=π6.画出符合题意的图形如图所示,过点C 作CE ⊥BD ,则∠DCE =π6.在Rt △CDE 中,可得|CD |=|AB |cos π6=23×23=4. [答案] 4[应用体验]4.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y +1≤0,2x -y +2≥0,则z =3x +y 的最大值为________.解析:画出可行域(如图所示). ∵z =3x +y , ∴y =-3x +z .∴直线y =-3x +z 在y 轴上截距最大时,即直线过点B 时,z 取得最大值.由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +1=0,解得⎩⎪⎨⎪⎧x =1,y =1,即B (1,1), ∴z max =3×1+1=4. 答案:45.(2014·全国卷Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.解析:∵f (x )是偶函数,∴图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)上单调递减,则f (x )的大致图象如图所示,由f (x -1)>0,得-2<x -1<2,即-1<x <3.答案:(-1,3)四、等价转化法通过“化复杂为简单,化陌生为熟悉”将问题等价转化为便于解决的问题,从而得到正确的结果.[典例] (2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.[技法演示] 利用等比数列通项公式求出首项a 1与公比q ,再将a 1a 2…a n 的最值问题利用指数幂的运算法则转化为二次函数最值问题.设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n ·⎝⎛⎭⎫12(n -1)n 2=23n -n 22+n 2=2-n 22+72n .记t =-n 22+7n 2=-12(n 2-7n )=-12⎝⎛⎭⎫n -722+498, 结合n ∈N *可知n =3或4时,t 有最大值6.又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. [答案] 64[应用体验]6.(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a-1|)>f (-2),则a 的取值范围是________.解析:∵f (x )是偶函数,且在(-∞,0)上单调递增, ∴f (x )在(0,+∞)上单调递减,f (-2)=f (2), ∴f (2|a -1|)>f (2),∴2|a -1|<2=212,∴|a -1|<12,即-12<a -1<12,即12<a <32.答案:⎝⎛⎭⎫12,327.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx 的最大值为________.解析:画出可行域如图阴影部分所示,∵yx 表示过点(x ,y )与原点(0,0)的直线的斜率,∴点(x ,y )在点A 处时yx 最大.由⎩⎪⎨⎪⎧ x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴A (1,3). ∴yx 的最大值为3. 答案:3 五、构造法根据题设条件与结论的特殊性,构造出一些新的数学形式,并借助它来认识和解决问题.[典例] (2016·浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.[技法演示] 先构造等比数列,再进一步利用通项公式求解. ∵a n +1=2S n +1,∴S n +1-S n =2S n +1, ∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎫S n +12, ∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1, ∴S 5+12=⎝⎛⎭⎫S 1+12×34=32×34=2432, ∴S 5=121. [答案] 1 1218.(2016·浙江高考)已知向量a ,b ,|a|=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由于e 是任意单位向量,可设e =a +b|a +b |,则|a ·e |+|b ·e |=⎪⎪⎪⎪⎪⎪a ·(a +b )|a +b |+⎪⎪⎪⎪⎪⎪b ·(a +b )|a +b |≥⎪⎪⎪⎪⎪⎪a ·(a +b )|a +b |+b ·(a +b )|a +b | =⎪⎪⎪⎪⎪⎪(a +b )·(a +b )|a +b |=|a +b |.∵|a ·e |+|b ·e |≤6,∴|a +b |≤6, ∴(a +b )2≤6,∴|a |2+|b |2+2a ·b ≤6. ∵|a |=1,|b |=2,∴1+4+2a ·b ≤6, ∴a ·b ≤12,∴a ·b 的最大值为12.答案:12六、分析法根据题设条件的特征进行观察、分析,从而得出正确的结论.[典例] (2016·全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.[技法演示] 先确定丙的卡片上的数字,再确定乙的卡片上的数字,进而确定甲的卡片上的数字.因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.[答案] 1和39.(2014·全国卷Ⅰ)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为________.解析:由甲、丙的回答易知甲去过A 城市和C 城市,乙去过A 城市或C 城市,结合乙的回答可得乙去过A 城市.答案:A[考前热身训练] “12+4”小题提速练(共3套)“12+4”小题提速练(一) (限时:40分钟 满分:80分)一、选择题1.集合A ={1,3,5,7},B ={x |x 2-4x ≤0},则A ∩B =( ) A .(1,3) B .{1,3} C .(5,7)D .{5,7}解析:选B 因为集合A ={1,3,5,7},B ={x |x 2-4x ≤0}={x |0≤x ≤4},所以A ∩B ={1,3}. 2.已知z =1-3i3+i(i 为虚数单位),则z 的共轭复数的虚部为( ) A .-i B .i C .-1D .1解析:选D ∵z =1-3i 3+i =(1-3i )(3-i )(3+i )(3-i )=-10i 10=-i ,∴z 的共轭复数z -=i ,其虚部为1.3.已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +a ),|x |≤1,-10|x |+3,|x |>1,若f (0)=2,则a +f (-2)=( ) A .-2 B .0 C .2D .4解析:选C∵函数f (x )=⎩⎨⎧log 2(x +a ),|x |≤1,-10|x |+3,|x |>1,由f (0)=2,可得log 2(0+a )=2,∴a =4. ∴a +f (-2)=4-105=2.4.如图,圆C 内切于扇形AOB ,∠AOB =π3,若向扇形AOB 内随机投掷600个点,则落入圆内的点的个数估计值为( )A .100B .200C .400D .450解析:选C 如图所示,作CD ⊥OA 于点D ,连接OC 并延长交扇形于点E ,设扇形半径为R ,圆C 半径为r ,∴R =r +2r =3r ,∴落入圆内的点的个数估计值为600·πr 216π(3r )2=400.5.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与圆(x -3)2+(y -1)2=1相切,则此双曲线的离心率为( )A .2B . 5C . 3D . 2解析:选A 由题可知双曲线的渐近线方程为bx ±ay =0,与圆相切,∴圆心(3,1)到渐近线的距离为|3b -a |a 2+b 2=1或|3b +a |a 2+b 2=1,又a >0,b >0,解得3a =b ,∴c 2=a 2+b 2=4a 2,即c =2a ,∴e =ca=2.6.某程序框图如图所示,该程序运行后输出S 的值是( )A .-3B .-12C .13D .2解析:选A 模拟程序框图的运算结果如下: 开始S =2,i =1.第一次循环,S =-3,i =2;第二次循环,S =-12,i =3;第三次循环,S =13,i =4;第四次循环,S =2,i =5;第五次循环,S =-3,i =6;……,可知S 的取值呈周期性出现,且周期为4,∵跳出循环的i 值2 018=504×4+2,∴输出的S =-3.7.在△ABC 中,|AB ―→+AC ―→|=3|AB ―→-AC ―→|,|AB ―→|=|AC ―→|=3,则CB ―→·CA ―→的值为( ) A .3 B .-3 C .-92D .92解析:选D 由|AB ―→+AC ―→|=3|AB ―→-AC ―→|,两边平方可得|AB ―→|2+|AC ―→|2+2AB ―→·AC ―→=3|AB ―→|2+3|AC ―→|2-6AB ―→·AC ―→,又|AB ―→|=|AC ―→|=3,∴AB ―→·AC ―→=92,∴CB ―→·CA ―→=(CA ―→+AB ―→)·CA ―→=CA ―→2+AB ―→·CA ―→=CA ―→2-AB ―→·AC ―→=9-92=92.8.设{a n }是公差不为0的等差数列,满足a 24+a 25=a 26+a 27,则{a n }的前10项和S 10=( ) A .-10 B .-5 C .0D .5解析:选C 由a 24+a 25=a 26+a 27,可得(a 26-a 24)+(a 27-a 25)=0,即2d (a 6+a 4)+2d (a 7+a 5)=0,∵d ≠0,∴a 6+a 4+a 7+a 5=0,∵a 5+a 6=a 4+a 7,∴a 5+a 6=0, ∴S 10=10(a 1+a 10)2=5(a 5+a 6)=0.9.函数f (x )=⎝⎛⎭⎫21+e x -1cos x 的图象的大致形状是( )解析:选B ∵f (x )=⎝ ⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=⎝ ⎛⎭⎪⎫2e x1+e x -1cos x =-⎝ ⎛⎭⎪⎫21+e x -1cos x =-f (x ),故函数f (x )为奇函数,函数图象关于原点对称,可排除A ,C ;又由当x ∈⎝⎛⎭⎫0,π2时,f (x )<0,函数图象位于第四象限,可排除D ,故选B. 10.已知过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点(点A 在第一象限),若AF ―→=3FB ―→,则直线AB 的斜率为( )A .B .12C .32D . 3解析:选D 作出抛物线的准线l :x =-1, 设A ,B 在l 上的投影分别是C ,D ,连接AC ,BD ,过B 作BE ⊥AC 于E ,如图所示.∵AF ―→=3FB ―→,∴设|AF |=3m , |BF |=m ,则|AB |=4m ,由点A ,B 分别在抛物线上,结合抛物线的定义,得|AC |=|AF |=3m ,|BD |=|BF |=m ,则|AE |=2m .因此在Rt △ABE 中,cos ∠BAE =|AE ||AB |=2m 4m =12, 得∠BAE =60°.所以直线AB 的倾斜角∠AFx =60°,故直线AB 的斜率为k =tan 60°= 3.11.某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为( )A .4πB .28π3C .44π3D .20π解析:选B 由三视图知,该几何体是一个三棱柱,三棱柱的底面是边长为2的正三角形,侧棱长是2,则三棱柱的两个底面的中心连线的中点到三棱柱的顶点的距离就是其外接球的半径r ,所以r =⎝⎛⎭⎫23×32+12=73,则球面的表面积为4πr 2=4π×73=28π3. 12.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当 xy z 取得最大值时,2x +1y -2z 的最大值为( )A .0B .1C .94D .3解析:选B ∵x 2-3xy +4y 2-z =0,∴z =x 2-3xy +4y 2,又x ,y ,z 均为正实数,∴xyz =xyx 2-3xy +4y 2=1x y +4y x -3≤12x y ×4yx -3=1(当且仅当x =2y 时等号成立),∴⎝⎛⎭⎫xy z max =1,此时x =2y ,则z =x 2-3xy +4y 2=(2y )2-3×2y ×y +4y 2=2y 2, ∴2x +1y -2z =1y +1y -1y 2=-⎝⎛⎭⎫1y -12+1≤1, 当且仅当y =1时等号成立,满足题意. ∴2x +1y -2z 的最大值为1. 二、填空题13.已知等比数列{a n }中,a 1+a 3=52,a 2+a 4=54,则a 6=________.解析:∵a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52,a 1q +a 1q 3=54,解得⎩⎪⎨⎪⎧q =12,a 1=2,∴a 6=2×⎝⎛⎭⎫125=116. 答案:11614.已知sin ⎝⎛⎭⎫θ-π6=33,则cos ⎝⎛⎭⎫π3-2θ=________. 解析:cos ⎝⎛⎭⎫π3-2θ=cos ⎝⎛⎭⎫2θ-π3=cos ⎣⎡⎦⎤2⎝⎛⎭⎫θ-π6 =1-2sin 2⎝⎛⎭⎫θ-π6=1-2×⎝⎛⎭⎫332=13. 答案:1315.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________.解析:由z =ax +by (a >0,b >0)得y =-a b x +z b ,∵a >0,b >0,∴直线y =-a bx +zb 的斜率为负.作出不等式组表示的可行域如图,平移直线y =-a b x +z b ,由图象可知当y =-a b x +zb 经过点A 时,直线在y 轴上的截距最大,此时z 也最大.由⎩⎪⎨⎪⎧ 3x -y -6=0,x -y +2=0,解得⎩⎪⎨⎪⎧x =4,y =6,即A (4,6). 此时z =4a +6b =10,即2a +3b -5=0,即点(a ,b )在直线2x +3y -5=0上,因为a 2+b 2的几何意义为直线上的点到原点距离的平方,又原点到直线的距离d =|-5|22+32=513,故a 2+b 2的最小值为d 2=2513.答案:251316.已知函数f (x )=|x e x |-m (m ∈R)有三个零点,则m 的取值范围为________. 解析:函数f (x )=|x e x |-m (m ∈R)有三个零点,即y =|x e x |与y =m 的图象有三个交点.令g (x )=x e x ,则g ′(x )=(1+x )e x ,当x <-1时,g ′(x )<0,当x >-1时,g ′(x )>0,故g (x )=x e x 在(-∞,-1)上为减函数,在(-1,+∞)上是增函数,g (-1)=-1e ,又由x <0时,g (x )<0,当x >0时,g (x )>0,故函数y =|x e x |的图象如图所示:由图象可知y =m 与函数y =|x e x |的图象有三个交点时,m ∈⎝⎛⎭⎫0,1e ,故m 的取值范围是⎝⎛⎭⎫0,1e .答案:⎝⎛⎭⎫0,1e “12+4”小题提速练(二) (限时:40分钟 满分:80分)一、选择题1.(2017·西安模拟)已知集合A ={x |log 2x ≥1},B ={x |x 2-x -6<0},则A ∩B =( ) A .∅ B .{x |2<x <3} C .{x |2≤x <3}D .{x |-1<x ≤2}解析:选C 化简集合得A ={x |x ≥2},B ={x |-2<x <3},则A ∩B ={x |2≤x <3}.2.(2017·福州模拟)已知复数z =2+i ,则z z=( )A .35-45iB .-35+45iC .53-43iD .-53+43i解析:选A 因为z =2+i ,所以zz =2-i 2+i =(2-i )25=35-45i.3.设a =log 32,b =ln 2,c =5-12,则a ,b ,c 的大小关系为( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a解析:选C 因为a =log 32=1log 23,b =ln 2=1log 2e,而log 23>log 2e >1,所以a <b ,又c =5-12=15,5>2=log 24>log 23,所以c <a ,故c <a <b .4.(2018届高三·兰州一中月考)在电视台举办的一次智力答题中,规定闯关者从图中任选一题开始,必须连续答对能连成一条线的3道题目,闯关才能成功,则闯关成功的答题方法有( )A .3种B .8种C .30种D .48种解析:选D 能连成横着的一条线的有123,456,789,共3种,能连成竖着的一条线的有147,258,369,共3种,能连成对角线的有159,357,共2种,故共有8种.又因为每种选择的答题顺序是任意的,故每种选择都有6种答题方法:如答题为1,2,3时,答题方法有:1→2→3,1→3→2,2→1→3,2→3→1,3→1→2,3→2→1.所以共有8×6=48(种)答题方法.5.(2017·合肥模拟)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤4,y ≥2,则目标函数z =x +2y 的最大值为( )A .5B .6C .132D .7解析:选C 作出不等式组表示的可区域如图中阴影部分所示,由图易知,当直线z =x +2y 经过直线x -y =-1与x +y =4的交点,即A ⎝⎛⎭⎫32,52时,z 取得最大值,z max =x +2y =132. 6.(2018届高三·宝鸡调研)阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出S 的值为( )A .64B .73C .512D .585解析:选B 依题意,执行题中的程序框图,当输入x 的值为1时,进行第一次循环,S =1<50,x =2;进行第二次循环,S =1+23=9<50,x =4;进行第三次循环,S =9+43=73>50,此时结束循环,输出S 的值为73.7.(2017·衡阳三模)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n =( )A .2n +1-2B .3nC .2nD .3n -1解析:选C 因为数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2q n -1,因为数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n+2⇒a n +a n +2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n .8.点A ,B ,C ,D 在同一个球的球面上,AB =BC =AC =3,若四面体ABCD 体积的最大值为3,则这个球的表面积为( )A .16916πB .8πC .28916πD .2516π 解析:选C 如图所示,当点D 位于球的正顶部时四面体的体积最大,设球的半径为R ,则四面体的高为h =R +R 2-1,四面体的体积为V =13×12×(3)2×sin 60°×(R +R 2-1)=34×(R +R 2-1)=3,解得R =178,所以球的表面积S =4πR 2=4π⎝⎛⎭⎫1782=289π16,故选C .9.(2018届高三·湖北七校联考)已知圆C :(x -1)2+y 2=r 2(r >0).设条件p :0<r <3,条件q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -3y +3=0的距离d =|1-3×0+3|12+(-3)2=2.当0<r <1时,直线在圆外,圆上没有点到直线的距离为1; 当r =1时,直线在圆外,圆上只有1个点到直线的距离为1; 当1<r <2时,直线在圆外,此时圆上有2个点到直线的距离为1; 当r =2时,直线与圆相切,此时圆上有2个点到直线的距离为1; 当2<r <3时,直线与圆相交,此时圆上有2个点到直线的距离为1.综上,当0<r <3时,圆C 上至多有2个点到直线x -3y +3=0的距离为1,由圆C 上至多有2个点到直线x -3y +3=0的距离为1可得0<r <3,故p 是q 的充要条件,故选C .10.(2017·合肥模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e .P 是椭圆上一点,满足PF 2⊥F 1F 2,点Q 在线段PF 1上,且F 1Q ―→=2 QP ―→.若F 1P ―→·F 2Q ―→=0,则e 2=( )A .2-1B .2- 2C .2- 3D .5-2解析:选C 由题意可知,在Rt △PF 1F 2中,F 2Q ⊥PF 1,所以|F 1Q |·|F 1P |=|F 1F 2|2,又|F 1Q |=23|F 1P |,所以有23|F 1P |2=|F 1F 2|2=4c 2,即|F 1P |=6c ,进而得出|PF 2|=2C .又由椭圆定义可知,|PF 1|+|PF 2|=6c +2c =2a ,解得e =c a =26+2=6-22,所以e 2=2-3.11.(2017·广州模拟)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝⎛⎭⎫0,π4上单调递减 B .f (x )在⎝⎛⎭⎫π8,3π8上单调递减 C .f (x )在⎝⎛⎭⎫0,π4上单调递增 D .f (x )在⎝⎛⎭⎫π8,3π8上单调递增解析:选D f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin ωx +φ+π4,因为0<φ<π且f (x )为奇函数,所以φ=3π4,即f (x )=-2sin ωx ,又直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f (x )的最小正周期为π2,由2πω=π2,可得ω=4,故f (x )=-2sin 4x ,由2k π+π2≤4x ≤2k π+3π2,k ∈Z ,即k π2+π8≤x ≤k π2+3π8,k ∈Z ,令k =0,得π8≤x ≤3π8,此时f (x )在⎝⎛⎭⎫π8,3π8上单调递增,故选D. 12.(2017·贵阳模拟)已知函数f (x )=ln(x 2-4x -a ),若对任意的m ∈R ,均存在x 0使得f (x 0)=m ,则实数a 的取值范围是( )A .(-∞,-4)B .(-4,+∞)C .(-∞,-4]D .[-4,+∞)解析:选D 依题意得,函数f (x )的值域为R ,令函数g (x )=x 2-4x -a ,其值域A 包含(0,+∞),因此对方程x 2-4x -a =0,有Δ=16+4a ≥0,解得a ≥-4,即实数a 的取值范围是[-4,+∞).二、填空题13.(2017·兰州模拟)已知菱形ABCD 的边长为a ,∠ABC =π3,则BD ―→·CD ―→=________.解析:由菱形的性质知|BD ―→|=3a ,|CD ―→|=a ,且〈BD ―→,CD ―→〉=π6,∴BD ―→·CD ―→=3a ×a ×cos π6=32a 2.答案:32a 214.(2017·石家庄模拟)若⎝⎛⎭⎫x 2+1x n 的展开式的二项式系数之和为64,则含x 3项的系数为________.解析:由题意,得2n =64,所以n =6, 所以⎝⎛⎭⎫x 2+1x n =⎝⎛⎭⎫x 2+1x 6, 其展开式的通项公式为T r +1=C r 6(x 2)6-r ⎝⎛⎭⎫1x r =C r 6x12-3r. 令12-3r =3,得r =3,所以展开式中含x 3项的系数为C 36=20. 答案:2015.某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出三箱,再从每箱中任意抽取2件产品进行检验,设取出的三箱中分别有0件、1件、2件二等品,其余为一等品.用ξ表示抽检的6件产品中二等品的件数,则ξ的数学期望E (ξ)=________.解析:由题意知,ξ的所有可能取值为0,1,2,3,P (ξ=0)=C 24C 25·C 23C 25=950,P (ξ=1)=C 14C 25·C 23C 25+C 24C 25·C 13C 12C 25=1225,P (ξ=2)=C 14C 25·C 13C 12C 25+C 24C 25·C 22C 25=310,P (ξ=3)=C 14C 25·C 22C 25=125,所以ξ的数学期望为 E (ξ)=0×950+1×1225+2×310+3×125=65. 答案:6516.(2018届高三·云南调研)已知三棱锥P -ABC 的所有顶点都在表面积为289π16的球面上,底面ABC 是边长为3的等边三角形,则三棱锥P -ABC 体积的最大值为________.解析:依题意,设球的半径为R ,则有4πR 2=289π16,R =178,△ABC 的外接圆半径为r =32sin 60°=1,球心到截 面ABC 的距离h =R 2-r 2=⎝⎛⎭⎫1782-12=158,因此点P 到截面ABC 的距离的最大值等于h +R =178+158=4,因此三棱锥P -ABC 体积的最大值为13×⎣⎡⎦⎤34×(3)2×4= 3.答案: 3“12+4”小题提速练(三) (限时:40分钟 满分:80分)一、选择题1.已知集合M ={x |16-x 2≥0},集合N ={y |y =|x |+1},则M ∩N =( ) A .{x |-2≤x ≤4} B .{x |x ≥1} C .{x |1≤x ≤4}D .{x |x ≥-2}解析:选C 由M 中16-x 2≥0,即(x -4)(x +4)≤0,解得-4≤x ≤4,所以M ={x |-4≤x ≤4},集合N ={y |y =|x |+1}=[1,+∞),则M ∩N ={x |1≤x ≤4}.2.若复数z 满足z (4-i)=5+3i(i 为虚数单位),则复数z 的共轭复数为( ) A .1-i B .-1+i C .1+iD .-1-i解析:选A 由z (4-i)=5+3i ,得z =5+3i 4-i =(5+3i )(4+i )(4-i )(4+i )=17+17i 17=1+i ,则复数z 的共轭复数为 1-i. 3.由变量x 与y 的一组数据:得到的线性回归方程为y =2x +45,则y =( ) A .135 B .90 C .67D .63解析:选D 根据表中数据得x -=15×(1+5+7+13+19)=9,线性回归方程y ^=2x +45过点(x -,y -),则y -=2×9+45=63.4.如图给出一个算法的程序框图,该程序框图的功能是( )A .输出a ,b ,c 三个数中的最大数B .输出a ,b ,c 三个数中的最小数C .将a ,b ,c 按从小到大排列D .将a ,b ,c 按从大到小排列解析:选B 由程序框图知:第一个判断框是比较a ,b 大小,a 的值是a ,b 之间的较小数;第二个判断框是比较a ,c 大小,输出的a 是a ,c 之间的较小数.∴该程序框图的功能是输出a ,b ,c 三个数中的最小数.故选B.5.函数y =sin ⎝⎛⎭⎫2x +π3的图象经过下列平移,可以得到函数y =cos ⎝⎛⎭⎫2x +π6图象的是( )A .向右平移π6个单位B .向左平移π6个单位C .向右平移π3个单位D .向左平移π3个单位解析:选B 把函数y =sin ⎝⎛⎭⎫2x +π3=cos π2-⎝⎛⎭⎫2x +π3=cos ⎝⎛⎭⎫2x -π6的图象向左平移π6个单位,可得y =cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=cos ⎝⎛⎭⎫2x +π6的图象. 6.已知f (x )是定义在R 上的偶函数且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C ∵f (x )是定义在R 上的偶函数,∴若f (x )为[0,1]上的增函数,则f (x )在[-1,0]上是减函数,又∵f (x )是定义在R 上的以2为周期的函数,且[3,4]与[-1,0]相差两个周期, ∴两区间上的单调性一致,所以可以得出f (x )为[3,4]上的减函数,故充分性成立. 若f (x )为[3,4]上的减函数,同样由函数周期性可得出f (x )在[-1,0]上是减函数, 再由函数是偶函数可得出f (x )为[0,1]上的增函数,故必要性成立.综上,“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的充要条件.7.某三棱锥的三视图如图所示,其三个视图都是直角三角形,则该三棱锥的体积为( )A .13B .23C .1D .6。