回归与相关
简要说明相关分析与回归分析的区别
相关分析与回归分析的区别和联系
一、回归分析和相关分析主要区别是:
1、在回归分析中,y被称为因变量,处在被解释的特殊地位,而在相关分析中,x与y处于平等的地位,即研究x与y的密切程度和研究y与x的密切程度是一致的;
2、相关分析中,x与y都是随机变量,而在回归分析中,y是随机变量,x 可以是随机变量,也可以是非随机的,通常在回归模型中,总是假定x是非随机的;
3、相关分析的研究主要是两个变量之间的密切程度,而回归分析不仅可以揭示x对y的影响大小,还可以由回归方程进行数量上的预测和控制.
二、回归分析与相关分析的联系:
1、回归分析和相关分析都是研究变量间关系的统计学课题。
2、在专业上研究上:
有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题,需进行直线相关分析和回归分析。
3、从研究的目的来说:
若仅仅为了了解两变量之间呈直线关系的密切程度和方向,宜选用线性相关分析;若仅仅为了建立由自变量推算因变量的直线回归方程,宜选用直线回归分析.
三、扩展资料:
1、相关分析是研究两个或两个以上处于同等地位的随机变量间的相关关系的统计分析方法。
例如,人的身高和体重之间;空气中的相对湿度与降雨量之间的相关关系都是相关分析研究的问题。
2、回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。
运用十分广泛。
回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
相关和回归
1.意义:相关反映两变量的相互关种双向变化的关系。回归是反映两个变量的依存关系,一个变量的改变会引起另一个变量的变化,是一种单向的关系。
2.应用:研究两个变量的相互关系用相关分析。研究两个变量的依存关系用回归分析。
3.研究性质:相关是对两个变量之间的关系进行描述,看两个变量是否有关,关系是否密切,关系的性质是什么,是正相关还是负相关。回归是对两个变量做定量描述,研究两个变量的数量关系,已知一个变量值可以预测出另一个变量值,可以得到定量结果。
4.相关系数r与回归系数b:r与b的绝对值反映的意义不同。r的绝对值越大,散点图中的点越趋向于一条直线,表明两变量的关系越密切,相关程度越高。b的绝对值越大,回归直线越陡,说明当X变化一个单位时,Y的平均变化就越大。反之也是一样。
第七章相关与回归分析
第七章 相关与回归分析一、本章学习要点(一)相关分析就是研究两个或两个以上变量之间相关程度大小以及用一定函数来表达现象相互关系的方法。
现象之间的相互关系可以分为两种,一种是函数关系,一种是相关关系。
函数关系是一种完全确定性的依存关系,相关关系是一种不完全确定的依存关系。
相关关系是相关分析的研究对象,而函数关系则是相关分析的工具。
相关按其程度不同,可分为完全相关、不完全相关和不相关。
其中不完全相关关系是相关分析的主要对象;相关按方向不同,可分为正相关和负相关;相关按其形式不同,可分为线性相关和非线性相关;相关按影响因素多少不同,可分为单相关和复相关。
(二)判断现象之间是否存在相关关系及其程度,可以根据对客观现象的定性认识作出,也可以通过编制相关表、绘制相关图的方式来作出,而最精确的方式是计算相关系数。
相关系数是测定变量之间相关密切程度和相关方向的代表性指标。
相关系数用符号“γ”表示,其特点表现在:参与相关分析的两个变量是对等的,不分自变量和因变量,因此相关系数只有一个;相关系数有正负号反映相关系数的方向,正号反映正相关,负号反映负相关;计算相关系数的两个变量都是随机变量。
相关系数的取值区间是[-1,+1],不同取值有不同的含义。
当1||=γ时,x 与y 的变量为完全相关,即函数关系;当1||0<<γ时,表示x 与y 存在一定的线性相关,||γ的数值越大,越接近于1,表示相关程度越高;反之,越接近于0,相关程度越低,通常判别标准是:3.0||<γ称为微弱相关,5.0||3.0<<γ称为低度相关,8.0||5.0<<γ称为显著相关,1||8.0<<γ称为高度相关;当0||=γ时,表示y 的变化与x 无关,即不相关;当0>γ时,表示x 与y 为线性正相关,当0<γ时,表示x 与y 为线性负相关。
皮尔逊积距相关系数计算的基本公式是: ∑∑∑∑∑∑∑---==])(][)([22222y y n x x n y x xy n y x xy σσσγ 斯皮尔曼等级相关系数和肯特尔等级相关系数是测量两个等级变量(定序测度)之间相关密切程度的常用指标。
相关分析及回归分析的异同
问:请详细说明相关分析与回归分析的相同与不同的地方相关分析与回归分析都是研究变量彼此关系的分析方式,相关分析是回归分析的基础,而回归分析则是熟悉变量之间相关程度的具体形式。
下面分为三个部份详细描述两种分析方式的异同:第一部份:相关分析一、相关的含义与种类(一)相关的含义相关是指自然与社会现象等客观现象数量关系的一种表现。
相关关系是指现象之间确实存在的必然的联系,但数量关系表现为不严格彼此依存关系。
即对一个变量或几个变量定必然值时,另一变量值表现为在必然范围内随机波动,具有非肯定性。
如:产品销售收入与广告费用之间的关系。
(二)相关的种类1. 按照自变量的多少划分,可分为单相关和复相关2. 按照有关关系的方向划分,可分为正相关和负相关3. 按照变量间彼此关系的表现形式划分,线性相关和非线性相关4.按照有关关系的程度划分,可分为不相关、完全相关和不完全相关二、相关分析的意义与内容(一)相关分析的意义相关分析是研究变量之间关系的紧密程度,并用相关系数或指数来表示。
其目的是揭露现象之间是不是存在相关关系,肯定相关关系的表现形式和肯定现象变量间相关关系的密切程度和方向。
(二)相关分析的内容1. 明确客观事物之间是不是存在相关关系2. 肯定相关关系的性质、方向与密切程度三、直线相关的测定(一)相关表与相关图1. 相关表在定性判断的基础上,把具有相关关系的两个量的具体数值依照必然顺序平行排列在一张表上,以观察它们之间的彼此关系,这种表就称为相关表。
2. 相关图把相关表上一一对应的具体数值在直角坐标系顶用点标出来而形成的散点图则称为相关图。
利用相关图和相关表,可以更直观、更形象地表现变量之间的彼此关系。
(二)相关系数1. 相关系数的含义与计算相关系数是直线相关条件下说明两个变量之间相关关系密切程度的统计分析指标。
相关系数的理论公式为:y x xy r δδδ2= (1)xy 2δ 协方差 x δ x 的标准差 y δ y 的标准差(2)xy 2δ 协方差对相关系数r 的影响,决定:⎩⎨⎧<>数值的大小正、负)或r r r (00简化式()()2222∑∑∑∑∑∑∑-⋅--=y y n x x n y x xy n r变形:分子分母同时除以2n 得 r =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⨯-∑∑∑∑∑∑∑2222n y n y n x n x n y n x n xy =()[]()[]2222y y x xy x xy -*-⨯-=y x y x xy δδ-⨯-nx x x ∑-=2)(δ=()[]n x x x x ∑+⋅-222=()222x n x x n x +⋅⋅-∑∑ =()22x x -2. 相关系数的性质(1)r取值范围:r≤1 -1≤r≤1(2)r=1 r=±1 表明x与y之间存在着肯定的函数关系。
第六章-相关与回归
间相关程度的比较。
(2)1≤r≤1,0≤|r|≤1。 |r|越接近于1,说明两变量的相关程度越强; |r|越接近于0,两变量的相关程度越差。
(3)r=0表示x与y无相关, r<0表示负相关, r>0表示正相关, |r|=1为完全相关。
二、样本相关系数的计算
(x1,y1),(x2,y2),…,(xn,yn)。
前面已经指出,要研究两种变量间的关系,最简单的方 法是把一系列观测数据在坐标中用散点图表示,如果散点 大致分布在一条直线附件,就可以判断两者为直线回归关 系。这种关系可用直线回归方程表示。则总体直线回归方 程为:
yi xi i (i=1,2,…,n) i服 N 0 从 ,2,且相互独
相关变量间的关系一般分为两种: 一种是平行关系,是研究变量间关系的强弱程度,此
时我们不关心在它们之间是谁影响了谁,谁是因,谁是果, 变量间的地位是平等的。如黄牛的体长和胸围之间的关系, 猪的背膘厚度和眼肌面积之间的关系等都属于平行关系。
另一种是因果关系,即一个变量的变化受另一个或几 个变量的影响。如仔猪的生长速度受遗传特性、营养水平、 饲养管理条件等因素的影响,子代的体高受亲本体高的影 响。
N 1N 1 (XX X)Y ( Y Y)
(XX)Y (Y) (XX)2 (YY)2
r SP xy
xy(x)n(y)
SSxSSy
x2(nx)2y2(ny)2
其中:
SPxy— 变量x和变量y的离均差乘积和简称乘积和 SSx — 变量x 的离均差平方和 SSy — 变量y 的离均差平方和
相关系数r 的特点:
变量。
例如,进行药物疗效试验 时,应用不同的剂量 (x),分析疗效(y)如 何受到药物剂量的影响及 其变化规律。这里规定的
相关分析和回归分析
相关分析和回归分析相关分析和回归分析是统计学中最基础的两种分析方法,它们都用于研究数据变量之间的关系。
因为它们都是研究两个变量之间关系的,所以它们常常会被混淆起来,但它们其实在原理上是不同的,有不同的应用场景。
一、相关分析相关分析是一种简单的统计分析,用来检验不同变量之间是否存在相互关系。
它可以通过计算出变量之间的相关系数,来判断变量之间是线性关系还是非线性关系。
另外,它还可以度量两个变量的线性关系的相关程度,用来度量不同变量之间的关系强度。
相关分析的应用非常广泛,它可以帮助研究者了解数据之间的关系,也可以用来预测数据的变化趋势。
比如,可以用相关分析来研究一个地区的薪水水平和就业水平之间的关系,用来预测未来就业水平和薪资水平会有怎样的变化趋势。
二、回归分析回归分析是一种统计分析,用以研究两个变量之间的数量关系,并建立起变量之间的数量模型。
它用于预测和分析数据,从而探索数据之间的关系。
比如,从客户收入、购买频率等多个因素来建立一个回归模型,从而预测客户的未来购买意愿。
回归分析也是一种非常有用的统计方法,它可以用来研究数据之间的关系,并预测数据未来的变化趋势。
另外,它还可以用来预测特定变量的值,比如预测未来股市的涨跌情况。
总结以上就是相关分析和回归分析的基本内容介绍。
相关分析用于研究数据变量之间的关系,可以帮助研究者了解数据之间的关系,并预测数据的变化趋势;而回归分析是一种统计分析,用以研究两个变量之间的数量关系,可以用来预测特定变量的值,也可以研究数据之间的关系,并预测数据未来的变化趋势。
相关分析和回归分析可以说是统计学中最基础的两种分析方法,它们都具有重要的应用价值,广泛用于各种数据分析工作。
统计学中直线相关与回归的区别与联系
统计学中直线相关与回归的区别与联系在统计学中,直线相关和回归是两个相关的概念,但又有一些区别和联系。
区别:
1. 定义:直线相关是指两个变量之间的线性关系,即随着一个变量的增加,另一个变量也以一定的比例增加或减少。
回归分析是一种统计方法,用于建立一个或多个自变量与因变量之间的关系模型。
2. 目的:直线相关主要关注变量之间的关系和相关程度,通过相关系数来衡量。
而回归分析旨在通过建立数学模型来预测或解释因变量的变化,以及评估自变量对因变量的影响。
3. 变量角色:在直线相关中,两个变量没有明确的自变量和因变量的区分,它们之间的关系是对称的。
而在回归分析中,通常有一个或多个自变量作为预测因变量的因素。
联系:
1. 线性关系:直线相关和回归分析都假设变量之间存在线性关系,即可以用直线或线性模型来描述它们之间的关系。
2. 相关系数:直线相关中使用相关系数来度量变量之间的相关程度。
回归分析中也使用相关系数,但更多地关注回归模型的参数估计和显著性检验。
3. 数据分析:直线相关和回归分析都是常用的数据分析方法,在实际应用中经常同时使用。
直线相关可以帮助我们了解变量之间的关系和趋势,而回归分析可以进一步建立模型和进行预测。
总之,直线相关和回归分析是统计学中两个相关但又有区别的概念。
直线相关关注变量之间的线性关系和相关程度,而回归分析则更关注建立模型和预测变量之间的关系。
在实际应用中,它们常常相互补充使用,以帮助我们理解和解释数据。
直线回归与相关
• 回归分析时的假定:
• (1) Y 变数是随机变数,而X 变数则是没有误差的固定变数,至 少和Y 变数比较起来X 的误差小到可以忽略。
• (2) 在任一X 上都存在着一个Y 总体(可称为条件总体),它是作
正态分布的,其平均数 Y / X 是X 的线性函数:
Y / X X
• Y / X的样本估计值,与X 的关系就是线性回归
相关分析研究X与Y两个随机变量之间的 共同变化规律,例如当X增大时Y如何变化, 以及这种共变关系的强弱。
原则上Y含有试验误差,而X不含试验 误差时着重回归分析;Y和x均含有试验 误差时着重相关分析。
但讨论X为非随机变量的情况,所得到 的参数估计式也可用于X为随机144.6356
SSy=∑y2-(∑y)2/n=794-(70)2/9=249.5556 SPxy=∑xy-∑x∑y/n=2436.4-(333.7×70)/9=-159.0444 X =∑x/n=333.7/9=37.0778
Y =∑y/n=70/9=7.7778 因而有:b=SPxy/SSx=-159.0444/144.6356
对x、y进行考察的简便方法是将n对观察值 (x1,y1)、(x2,,y2)、…、(xn,yn) 于同一直 角坐标平面上制作散点图:
① X和Y的相关的性质(正或负)和密切程度; ② X和Y的关系是直线型的还是非直线型的; ③ 是否有一些特殊的点表示其他因素的干扰等。
图9.1B 每平方米土地上 的总颖花数(X) 和结实率(Y)
a
bxi
)
0
n
n
n
( xi ) ( yi ) n
b
xi yi
i 1 n
i 1 n
i 1
n
相关系数与回归系数为相反数
相关系数与回归系数为相反数
这个正常
相关系数和回归系数都表示了变量之间的一种相关关系。
但二者有所不同。
pearson相关分析的作用就是单纯考量变量两两之间的关系,虽然你可以在分析时一次放入多个变量,但出来的结果都是两个变量的简单的相关,也就是不在求两变量相关时考虑其他的控制变量。
然而回归不同,回归的结果是综合所有进入回归方程的自变量对因变量的结果而成的,也就是说,在回归当中你所看到的相关,是在控制了其他进入回归方程的变量之后的。
因此,普通相关与回归之中的回归系数会有比较大的差别。
举个例子,比如你考查变量a,b,c之间的关系,如果你使用一般的相关,那么其结果呈现的是a和b的简单相关,b和c 的简单相关,a和c的简单相关,每一个相关都只涉及到两个变量,而与第三个变量无关,但如果是回归,回归里a和b的相关(即回归系数)是在减去c变量的效应之后的,b和c 的相关是在减去a的效应后的,a和c的相关是减去b的效应后的。
计算方法不同,得出的结果就不同。
所以相关性分析时两变量关系为正,回归分析却为负这很正常。
相关系数与回归系数
相关系数与回归系数
一、相关系数和回归系数的区别
1、含义不同
相关系数:是研究变量之间线性相关程度的量。
回归系数:在回归方程中表示自变量x 对因变量y 影响大小的参数。
2、应用不同
相关系数:说明两变量间的相关关系。
回归系数:说明两变量间依存变化的数量关系。
3、单位不同
相关系数:一般用字母r表示,r没有单位。
回归系数:一般用斜率b表示,b有单位。
二、回归系数与相关系数的联系:
1、回归系数大于零则相关系数大于零
2、回归系数小于零则相关系数小于零。
第七章__相关与回归分析
第九章 相关与回归分析
第一节 相关分析的一般问题 第二节 相关关系的判断 第三节 回归分析的一般问题 第四节 回归模型的建立与检测
2019年7月30日2时18
分
1
统 计
学 第一节 相关分析
一、相关分析的意义 二、相关关系的测定
2019年7月30日2时18
分
2
变量间的关系
变量间的关系有两种类型:函数关系和相关关系。 函数关系—— 是一一对应的确定关系。
按模型形态分,有线性回归和非线性回归。
2019年7月30日2时18
分
19
二、一元线性回归方程的确定
具有线性相关关系的两个变量的关系可 表示为:
y = α+ bx
线性部分反映了由于 x 的变化而引起的 y 的变化.
α 和 b 称为模型的两个待定参数。
2019年7月30日2时18
分
20
(总体)回归方程
x
y
a
x
+
b
x
2
b
nxy x y n x 2 ( x)2
a
y
bx
y n
b
x n
2019年7月30日2时18
分
24
三、回归估计标准误差 S yx
(一)回归估计标准误差的概念
实际观察值y与估计值 yˆ 之间差异的平
均程度,是用来说明回归方程推算结果
分
4
相关关系的例子
商品的消费量(y)与居民收入(x)之间的关系 商品销售额(y)与广告费支出(x)之间的关系 粮食亩产量(y)与施肥量(x1) 、降雨量(x2) 、
第九章 相关与回归分析 《统计学原理》PPT课件
[公式9—4]
r xy n • xy
x y
[公式9—5]
返回到内容提要
第三节 回归分析的一般问题
一、回归分析的概念与特点
(一)回归分析的概念
现象之间的相关关系,虽然不是严格 的函数关系,但现象之间的一般关系值, 可以通过函数关系的近似表达式来反映, 这种表达式根据相关现象的实际对应资料, 运用数学的方法来建立,这类数学方法称 回归分析。
单相关是指两个变量间的相关关系,如 自变量x和因变量y的关系。
复相关是指多个自变量与因变量间的相关 关系。
(二)相关关系从表现形态上划分,可分为 直线相关和曲线相关
直线相关是指两个变量的对应取值在坐标 图中大致呈一条直线。
曲线相关是指两个变量的对应取值在坐 标图中大致呈一条曲线,如抛物线、指数曲线、 双曲线等。
0.578
a y b x 80 0.578 185 3.844
n
n7
7
yˆ 3.844 0.578x
二、估计标准误差 (一)估计标准误差的概念与计算 估计标准误差是用来说明回归直线方程 代表性大小的统计分析指标。其计算公式为:
Syx
y yˆ 2
n
[公式9—8]
实践中,在已知直线回归方程的情况下, 通常用下面的简便公式计算估计标准误差:
[例9—2] 根据相关系数的简捷公式计算有:
r
n xy x y
n x2 x2 n y2 y2
7 218018580
0.978
7 5003 1852 7 954 802
再求回归直线方程:
yˆ a bx
b
n xy x y
n x2 x2
7 2180 18580 7 50031852
生物统计学第7章 回归与相关
检验统计量为
t
b1 b2 sb1 b2
~ t(n1 n2
4)
s b1b2
s2 y/x
s2 y/x
SSx1 SSx2
s2 y/x
(n1
Q1 Q2 2) (n2
2)
t t 当
α(n1n2 4 ) 时,接受HA,即两样本所属总体的回归系数不相等
样本相关系数:从随机样本的数据计算得来的相关系数,用符号r代表
对某一定的总体来说, ρ是一个常量。
从同一总体中随机抽取的各样本的r值是随机变动的,不是一个常量,且可 以通过实验或测量的样本数据来计算它。
将SP除以n-1,消除了样本容量 的影响,得样本的协方差
(xi x)( yi y)
MP i n 1
i
U
SS y
Q
SP2 SSx
bSP b2SSx
F
MSU MSQ
~
F(dfU,dfQ )
例7.5 用F测验对例7.2所求回归方程作回归显著性测验。
F
MSU MSQ
b2SSx Q (n 2)
b2
s2 y/x
SSx
( b )2 sb
t2
7.2.3.2 两个回归系数相比较的显著性检验
由两个样本的回归系数b1,b2,测验其所属总体的回归系数β1、β2是否相等
7.1.2 回归的概念
两个相关变量之间,有时表现为一个变量依赖于另一个变量的从属关系。 对于这种情况的两个变量可以区分为自变量(记为X)和依变量(记为Y)。
回归关系:一般自变量X是固定的(试验时预先确定的),并且没有试验 误差或试验误差很小,依变量Y则是随自变量X的变化而变化,且受试验误 差的影响较大。这种关系称为回归关系,
相关系数和回归系数的意义
相关系数和回归系数的意义相关系数和回归系数是统计学中两个非常重要的概念,它们都是用来描述数据之间的关系的。
在实际分析中,这两个系数非常常见,特别是在经济学和金融学之类的领域中会大量使用。
下面就来详细介绍一下这两个系数的意义和用法。
相关系数是用来衡量两个变量之间的线性关系强度的,它是一个介于-1和1之间的数。
如果相关系数接近1,说明两个变量之间存在非常强的正向线性关系,如果接近-1,则说明两个变量之间存在非常强的负向线性关系,如果接近0,则说明两个变量之间几乎没有线性关系。
相关系数的计算公式为:cov(x,y)/(sd(x)*sd(y)),其中cov(x,y)是x和y的协方差,sd(x)和sd(y)分别是x和y的标准差。
回归系数是用来衡量自变量对因变量的影响的,它是回归分析中的一个重要参数。
回归系数的计算方法是通过一定的回归分析方法来计算出来的,通常用最小二乘法来计算。
回归系数的含义是对于每一个自变量的单位变化,因变量会发生的变化量。
在线性回归模型中,回归系数可以通过简单的公式直接计算出来。
回归模型的一般形式为:y = β0 + β1*x1 + β2*x2 + ... + βn*xn,其中y是因变量,x1,x2,...,xn是自变量,β0,β1,...,βn是回归系数。
这两个系数的意义和用法可以通过以下例子来说明。
假设我们想研究一个国家的GDP对股市指数的影响。
我们可以收集某段时间内每日的GDP数据和同期股市指数数据,然后计算它们的相关系数和回归系数。
首先我们可以计算它们的相关系数,如果相关系数接近1,说明两者之间存在非常强的正向线性关系,即当GDP增长时,股市指数也会增长。
如果相关系数接近-1,说明两者之间存在非常强的负向线性关系,即当GDP增长时,股市指数会下跌。
如果相关系数接近0,说明两者之间几乎没有线性关系,即GDP的变化几乎不会影响股市指数的变化。
然后我们可以计算它们的回归系数,回归系数可以告诉我们,当GDP每增加一个单位时,股市指数会发生多大的变化。
统计学第7章相关与回归分析PPT课件
利用回归分析,基于历史GDP数据和其他经济指标,预测未来GDP 的增长趋势。
预测通货膨胀率
通过分析通货膨胀率与货币供应量、利率等经济指标的关系,利用回 归分析预测未来通货膨胀率的变化。
市场研究
消费者行为研究
通过回归分析研究消费者购买决策的影响因素, 如价格、品牌、广告等。
市场细分
利用回归分析对市场进行细分,识别不同消费者 群体的特征和需求。
线性回归模型假设因变量和自变量之间 存在一种线性关系,即当一个自变量增 加时,因变量也以一种可预测的方式增
加或减少。
参数估计
参数估计是用样本数据来估计线性回 归模型的参数β0, β1, ..., βp。
最小二乘法的结果是通过解线性方程 组得到的,该方程组包含n个方程(n 是样本数量)和p+1个未知数(p是 自变量的数量,加上截距项)。
回归模型的评估
残差分析
分析残差与自变量之间的关系, 判断模型的拟合程度和是否存在
异常值。
R方值
用于衡量模型解释因变量变异的 比例,值越接近于1表示模型拟
合越好。
F检验和t检验
用于检验回归系数是否显著,判 断自变量对因变量的影响是否显
著。
05 回归分析的应用
经济预测
预测股票市场走势
通过分析历史股票数据,利用回归分析建立模型,预测未来股票价 格的走势。
回归模型的评估是通过各种统计 量来检验模型的拟合优度和预测 能力。
诊断检验(如Durbin Watson检 验)可用于检查残差是否存在自 相关或其他异常值。
03 非线性回归分析
非线性回归模型
线性回归模型的局限性
线性回归模型假设因变量和自变量之间的关系是线性的,但在实 际应用中,这种关系可能并非总是成立。
第7章 相关与回归
Q
b
( X X )(Y Y (X X )2
)
( X
X
)(Y
Y
)
b( X
X
)2
判定系数r2与相关系数r的关系 Q r2 (Yˆ Y )2 (Y Y )2 且 :Yˆ a bX Y a bX (Yˆ Y )2 (a bX a bX )2 b2( X X )2
r2
(Yˆ Y )2
假设1:解释变量X是确定性变量,不是随机变量; 模 假设2:随机误差项 具有零均值、同方差和不序列相关性: 型 的 基 假设3:随机误差项 与解释变量X之间不相关: 本 假 设 假设4: 服从零均值、同方差、零协方差的正态分布
推论1: 推论2:
(总体理论回归直线)
为同方差,但不同分布的随机变量
(二)样本一元线性回归方程(一元线性经验回归方程)
129.5
X2
1122.25 2570.49 4044.96 6162.25 7726.41 9761.44 11513.29 10465.29 14568.49 19768.36
87703.23
Y2
30.25
25 144 88.36 65.61 289 256 237.16
345.96 506.25 1987.59
因果关系 互为因果关系 共变关系
确定性依存关系
随机性依存关系
二、 相关的种类
正相关 负相关
一元相关 多元相关
线性相关 曲线相关
y
y
y
y
x 线性正相关
x 线性负相关
x 曲线相关
x 不相关
三、简单线性相关
(一)相关系数(皮尔逊积矩相关系数、动差相关系数)
对两变量之间简单线性相关程度和方向的测定。
第七章 相关与回归分析
总体一元线性 回归方程:
Yˆ EY X
以样本统计量估计总体参数
(估计的回归方程)
样本一元线性回归方程: yˆ a bx
(一元线性回归方程)
截距 斜率(回归系数)
截距a 表示在没有自变量x的影响时,其它各 种因素对因变量y的平均影响;回归系数b 表
明自变量x每变动一个单位,因变量y平均变 动b个单位。
n x2 x2 n y2 ( y)2
1637887 916 625
0.9757
16 55086 9162 16 26175 6252
r 2 0.97572 0.9520
第七章 回归分析与相关分析
第七章 相关与回归分析
STAT
★ 第一节 相关分析概述 ★ 第二节 一元线性回归分析
第七章 回归分析与相关分析
yˆ a bx是理论模型,表明x与y变量 之间的平均变动关系,而变量y的实际
值应为yi (a bxi ) i yˆ i
X对y的线性影响而形 成的系统部分,反映两 变量的平均变动关系, 即本质特征。
随机干扰:各种偶然 因素、观察误差和其 他被忽视因素的影响
体重(Y)
75 70 65 60 55 50 45 40
b
n xy x y
n x2 x2
16 37887 916 625 16 55086 9162
0.7961
a y bx 625 0.7961 916 6.5142
16
16
即线性回归方程为:
yˆ 6.5142 0.7961x
计算结果表明,在其他条件不变时,能源消耗 量每增加一个单位(十万吨),工业总产值将 增加0.7961个单位(亿元)。
函数关系 相关关系
回归与相关分析PPT课件
yi y 2
(dfT=
i
• 离回归平方和SSE(剩余平方和,残差平 方和):
SSE yi yˆi 2
i
n-2)
第23页/共93页
(dfE=
•回归平方和SSR:
SS=R 1) i yˆi y 2
(dfR
SSR的意义:根据等式SSy=SSE+SSR可知, 如果SSR的值较大,SSE的数值便比较小,说 明回归的效果好;反之,如果SSR的值较小, SSE的数值便比较大,说明回归的效果差。
yˆ 1散点图和回归直线图
y ( ug / kg )
21 20 19 18 17 16 15
3
y = 10.987+1.5508x R2 = 0.6516
x ( ug / L )
4
5
6
7
某农药的水中含量与
鱼体中含量的关系
第21页/共93页
三、线性回归的显著性检验
第17页/共93页
(四)一元线性回归方程建立的基本步 骤(4步)
• 根据资料计算8个一级数据
• Σx , Σx2, x , Σy , Σy2 , y , Σxy , n
• 计算3个二级数据:SSx , SSy , SP
• 计算参数的估计值a和b,并写出回归方程
a y bx b SP SSx
yˆ a bx
第31页/共93页
• 2、β的置信区间
• b 的标准误为:sb se SSx
•而
b
t
sb
t (n 2)
• 所以 β的置信区间为:
(b t sb , b t sb )
第32页/共93页
•(二)对α+βx的区间估计 • 对α+βx的区间估计,即是对总体 均值(期望值)的区间估计。 • 当x=xi 时,估计标准误为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、散点图
x y
x y
1
1
x y
2
2
x y
3 3
…… ……
x y
n
n
y
x
1
x
3、回归方程与线性回归方程 1)回归方程
E yi = f xi
自变量不同取值时,因变量y平均值的变化。
2)线性回归方程(一元)
当因变量y的平均值与自变量x呈线性关系时
Ey = x
( 为归回常数, 为回归系数)
解释(回归)平方和 被解释的变差 残差平方和 未被解释的变差
TSS =Lyy RSSR =L2xy / Lxx RSS = Lyy - L2xy / Lxx
3、统计量:
F=
TSS
2SSR 2 1 2 ~ RSS ~ n - 2
2
2、最小二乘法 设总体中抽取一样本,围绕n个观测点画 一条直线 y = a bx ,与各点都比较接近 的直线为最佳。要求:各点到待估直线 的铅直距离之和为最小。利用微分学中 求极值的原理,求得: L xy b= a = y - bx (公式见P345) Lxx 将a、b代入线性回归方程:
yˆ = a bx
n
b=
Lxy Lxx
代入求得:
=2.92
a = y - bx=70 - 2.92*13=32.04
将a、b代入线性回归方程:
yˆ = a bx=32.04+2.92x
第三节 回归方程的假定与检验
一、线性回归模型基本假定 1、自变量x可以是随机变量,也可以是非随机变量,x值 可以认为是无误差的,或误差忽略不计。 2、由于x和y之间存在非确定性的相关关系,因此要求y 的所有子总体的方差都相等: Dy1= Dy2 = Dyi = Dyn 3、y的所有子总体,其均值都在一条直线上,称做线性 假定。 Eyi = xi 4、要求随机变量 yi 是统计独立的
第十二章 回归与相关
第一节 回归研究的对象
1、研究定距变量与定距变量之间的非确定关系 相关关系: 1)变量之间存在关系 2)这种关系是非确定性的 两个变量x和y,当x变化时会引起y相应变化,但 他们之间的变化关系是不确定的。如果当x取任何 一可能值xi 时,y相应地服从一定的概率分布,则 称随机变量y和变量x之间存在着相关。
5、出于检验的需要,要求y值的每一个子 总体都满足正态分布。
二、回归方程的检验 1、原假设:x与y不存在线性关系
H : = 0
0
H : 0
1
2、线性回归的平方和分解 1)总偏差平方和:反映观察值 值 y 的总分散程度。
y 围绕均
i
TSS = E1 ,不知x与y有关系时估计y的总误差。
2)剩余平方和:反映观测值 yi 偏离回 归线 yˆ i 的程度。也称残差平方和。
每个真实的yi与回归线的关系是: yi= xi+ei
(yi是随机变量,ei是随机误差)
问题:用 y = x 这个方程表示的回归线性 方程应该在坐标图上的哪一个位置,才使预 测时所犯错误最小?
第二节 回归直线的建立与最小二乘法
1、直线回归方程的建立 通过样本值作散点图,由散点图估计出 总体回归直线的系数 、 ,建立直线 回归方程。 但:抽样误差存在,样本均值并不等于 总体均值,要获得一条最佳的估计直 线,用最小二乘法。
2
~ n -1
2
如果 F > F 拒绝 H 0 。
P345:例:研究受教育年限和职业声望之间的关系:
1 n Lxx = xi - ( xi ) 2 n i =1 i =1
2
n 1 n Lxy = xi yi - ( xi )( yi ) n i =1 i =1 i =1 n 1 n 2 Lyy = yi - ( yi ) 2 n i =1 i =1 n
yˆ = a bx=32.04+2.92x
例:妇女受教育的年限与家务劳动时间调查资料:验证其线性有意义
F=
RSSR RSS n-2
~F 1, n - 2
yˆ = a bx=5.33-0.83x
F0.05(1,9-2)= 5.59
F =20.83*9-2/11.17=13.05 >
RSS =
yˆ i 由回归直线 yˆ = a+ bx 确定 RSS= E2 ,知道x与y有关后,估计y所产生的误差。 为回归直线估计后,仍未消除的误差
3)回归平方和:通过回归直线解释 掉的误差。
RSSR =
i =1
n
yˆi -y
2
TSS = (Yi -Y)2 ˆ )2 ˆ – Y)2 + (Y - Y =(Y = RSSR + RSS
以上假定用两组数据结构来表达: 1)随机变量 yi 是独立的,且有: 均值:E yi = xi 方差: D yi = 2 2)yi 与 xi 有如下关系: yi = xi i i 是随机变量,它们相互独立,且有
E i = 0
D i = 2
所以拒绝原假设,认为回归直线是有意义的。
【例】分析某商场批发价与零售价之间的关系。
(3)分析检验结果: 公式:y=5.6824+ 1.0688x 判定系数约为0.7,说明拟合程度尚可。P《0.05,应该拒绝原假设, 说明自变量批发价对因变量零售价有显著影响。
n
F=
RSSR RSS n-2
~F 1, n - 2
yˆ = a bx=32.04+2.92x
F =1705.28*8-2/176.72=57.8 >
F0.05(1,8-2)= 5.99
2.92的含义是:受教育年限每 所以拒绝原假设,认为回归直线是有意义的。 增加1年,平均职业声望增加 2.92单位。
它是总体线性回归方程 y = x 的最佳 估计方程
P345:例:研究受教育年限和职业声望之间的关系:
1 n Lxx = xi - ( xi ) 2 n i =1 i =1
2
n
n 1 n Lxy = xi yi - ( xi )( yi ) n i =1 i =1 i =1