【精编】2017-2018年广西贺州市昭平县九年级(上)数学期中试卷和参考答案
2017年广西省贺州市中考数学试卷(含解析版)
2017年广西贺州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共30分)1.(3分)的倒数是()A.﹣2 B.2 C.D.2.(3分)下列各图中,∠1与∠2互为邻补角的是()A. B.C.D.3.(3分)下列式子中是分式的是()A.B.C. D.4.(3分)一条关于数学学习方法的微博在一周内转发了318000次,将318000用科学记数法可以表示为()A.3.18×105B.31.8×105C.318×104D.3.18×1045.(3分)现有相同个数的甲、乙两组数据,经计算得:甲=乙,且S甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定B.乙比较稳定C.甲、乙一样稳定D.无法确定6.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形 B.平行四边形C.矩形 D.等边三角形7.(3分)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为()A.1:1 B.1:2 C.1:3 D.1:48.(3分)小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()A. B.C.D.9.(3分)不等式组<的解集在数轴上表示正确的是()A.B.C.D.10.(3分)一次函数y=ax+a(a为常数,a≠0)与反比例函数y=(a为常数,a≠0)在同一平面直角坐标系内的图象大致为()A.B.C.D.11.(3分)如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB 的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1 B.2 C.3 D.412.(3分)将一组数,2,,2,,…,2,按下列方式进行排列:,2,,2,;2,,4,3,2;…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4)B.(4,4)C.(4,5)D.(3,5)二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)要使代数式有意义,则x的取值范围是.14.(3分)为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是.(填“全面调查”或“抽样调查”)15.(3分)将多项式2mx2﹣8mx+8m分解因式的结果是.16.(3分)如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,求点A从开始到结束所经过的路径长为(结果保留π).17.(3分)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有.18.(3分)如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣1)2017+﹣(π﹣3)0+2cos30°.20.(6分)先化简,再求值:÷(1+),其中x=+1.21.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中分摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.22.(8分)如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B处测得探测线与地面的夹角为60°,求该生命迹象C处于地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)23.(8分)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.24.(8分)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2,求四边形ABCD的面积.25.(10分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙O的半径.26.(12分)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.2017年广西贺州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共30分)1.(3分)(2017•贺州)的倒数是()A.﹣2 B.2 C.D.【考点】17:倒数.【分析】根据倒数的定义求解.【解答】解:﹣的倒数是﹣2.故选:A.【点评】本题主要考查了倒数的定义,解题的关键是熟记定义.2.(3分)(2017•贺州)下列各图中,∠1与∠2互为邻补角的是()A. B.C.D.【考点】J2:对顶角、邻补角.【分析】根据邻补角的定义作出判断即可.【解答】解:根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选:D.【点评】本题考查了邻补角的定义,正确把握定义:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.3.(3分)(2017•贺州)下列式子中是分式的是()A.B.C.D.【考点】61:分式的定义.【分析】根据分式的定义求解即可.【解答】解:、、的分母中不含有字母,属于整式,的分母中含有字母,属于分式.故选:C.【点评】本题考查了分式的定义,分母中含有字母的式子是分式.4.(3分)(2017•贺州)一条关于数学学习方法的微博在一周内转发了318000次,将318000用科学记数法可以表示为()A.3.18×105B.31.8×105C.318×104D.3.18×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将318000用科学记数法可以表示为3.18×105,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2017•贺州)现有相同个数的甲、乙两组数据,经计算得:甲=乙,且S甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定B.乙比较稳定C.甲、乙一样稳定D.无法确定【考点】W7:方差.【分析】根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立解答即可.【解答】解:∵S甲2<S乙2,∴乙比较稳定,故选:B.【点评】本题考查的是平均数和方差,掌握方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立是解题的关键.6.(3分)(2017•贺州)下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形 B.平行四边形C.矩形 D.等边三角形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【解答】解:A、正五边形,不是中心对称图形,是轴对称图形,故本选项错误;B、平行四边形,是中心对称图形,不是轴对称图形,故本选项错误;C、矩形,既是中心对称图形又是轴对称图形,故本选项正确;D、等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(3分)(2017•贺州)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为()A.1:1 B.1:2 C.1:3 D.1:4【考点】S9:相似三角形的判定与性质;KX:三角形中位线定理.【分析】证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,DE=BC,证出△ADE ∽△ABC,由相似三角形的性质得出△ADE的面积:△ABC的面积=1:4,即可得出结果.【解答】解:∵D、E分别为△ABC的边AB、AC上的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面积:△ABC的面积=()2=1:4,∴△ADE的面积:四边形BCED的面积=1:3;故选:C.【点评】本题考查了相似三角形的判定与性质、三角形中位线定理;熟记三角形中位线定理,证明三角形相似是解决问题的关键.8.(3分)(2017•贺州)小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()A.B.C.D.【考点】U5:平行投影;KK:等边三角形的性质.【分析】根据看等边三角形木框的方向即可得出答案.【解答】解:竖直向下看可得到线段,沿与平面平行的方向看可得到C,沿与平面不平行的方向看可得到D,不论如何看都得不到一点.故选:B.【点评】本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键.9.(3分)(2017•贺州)不等式组<的解集在数轴上表示正确的是()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x+4≤13,得:x≤3,解不等式﹣x<1,得:x>﹣1,则不等式组的解集为﹣1<x≤3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(3分)(2017•贺州)一次函数y=ax+a(a为常数,a≠0)与反比例函数y=(a为常数,a≠0)在同一平面直角坐标系内的图象大致为()A.B.C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】分为a>0和a<0两种情况,然后依据一次函数和反比例函数的图象的性质进行判断即可.【解答】解:当a>0时,一次函数y=ax+a,经过一二三象限,反比例函数图象位于一、三象限,当a<0时,一次函数y=ax+a,经过二、三、四象限,反比例函数图象位于二、四象限.故选:C.【点评】本题主要考查的是一次函数、反比例函数的图象和性质,熟练掌握相关性质是解题的关键.11.(3分)(2017•贺州)如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1 B.2 C.3 D.4【考点】M5:圆周角定理;PA:轴对称﹣最短路线问题.【分析】根据==和点E是点D关于AB的对称点,求出∠DOB=∠COD=∠BOE=60°,求出∠CED,即可判断①②;根据圆周角定理求出当M和A重合时∠MDE=60°即可判断③;求出M点的位置,根据圆周角定理得出此时DF是直径,即可求出DF长,即可判断④.【解答】解:∵==,点E是点D关于AB的对称点,∴=,∴∠DOB=∠BOE=∠COD=°=60°,∴①正确;∠CED=∠COD=°=30°=∠,∴②正确;∵的度数是60°,∴的度数是120°,∴只有当M和A重合时,∠MDE=60°,∵∠CED=30°,∴只有M和A重合时,DM⊥CE,∴③错误;做C关于AB的对称点F,连接CF,交AB于M,此时CM+DM的值最短,等于DF长,连接CD,∵===,并且弧的度数都是60°,∴∠D=°=60°,∠CFD=°=30°,∴∠FCD=180°﹣60°﹣30°=90°,∴DF是⊙O的直径,即DF=AB=10,∴CM+DM的最小值是10,∴④正确;故选C.【点评】本题考查了圆周角定理,轴对称﹣最短问题等知识点,能灵活运用圆周角定理求出各个角的度数和求出M的位置是解此题的关键.12.(3分)(2017•贺州)将一组数,2,,2,,…,2,按下列方式进行排列:,2,,2,;2,,4,3,2;…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4)B.(4,4)C.(4,5)D.(3,5)【考点】22:算术平方根.【分析】先找出被开放数的规律,然后再求得的位置即可.【解答】解:这组数据可表示为:、、、、;、、、、;…∵19×2=38,∴为第4行,第4个数字.故选:B.【点评】本题主要考查的是数字的变化规律,找出其中的规律是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•贺州)要使代数式有意义,则x的取值范围是x≥且x≠1 .【考点】72:二次根式有意义的条件.【分析】直接利用二次根式的定义、分式的有意义的条件分析得出答案.【解答】解:由题意可得:2x﹣1>0,x﹣1≠0,解得:x≥且x≠1.故答案为:x≥且x≠1.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.14.(3分)(2017•贺州)为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:了调查某市中小学生对“营养午餐”的满意程度,因为人员多、所费人力、物力和时间较多所以适合采用的调查方式是抽样调查,故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.15.(3分)(2017•贺州)将多项式2mx2﹣8mx+8m分解因式的结果是2m(x﹣2)2.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取2m,再利用完全平方公式分解即可.【解答】解:原式=2m(x2﹣4x+4)=2m(x﹣2)2,故答案为:2m(x﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.(3分)(2017•贺州)如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,求点A从开始到结束所经过的路径长为(结果保留π)π.【考点】O4:轨迹;R2:旋转的性质.【分析】利用正切的概念求出AC,根据弧长公式计算即可.【解答】解:Rt△ABC中,∠A=60°,=2,∠ACB=30°,AC=°∴∠ACA′=150°,点A从开始到结束所经过的路径长为以C为圆心、2为半径的弧,即=π,故答案为:π.【点评】本题考查的是点的轨迹以及弧长的计算,掌握弧长公式、旋转变换的性质、正确找出点的运动轨迹是解题的关键.17.(3分)(2017•贺州)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有①④⑤.【考点】H4:二次函数图象与系数的关系.【分析】根据图象的开口可确定a,结合对称轴可确定b,根据图象与y轴的交点位置可确定c,根据图象与x轴的交点个数可确定△;根据当x=﹣2时,y<0;抛物线与x轴的另一个交点的坐标是(3,0),即可得出结论.【解答】解:①∵开口向下∴a<0∵与y轴交于正半轴∴c>0∵对称轴在y轴右侧∴b>0∴abc<0,故①正确;∵二次函数的对称轴是直线x=1,即二次函数的顶点的横坐标为x=﹣=1,∴2a+b=0,故②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③错误;∵b=﹣2a,∴可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y<0;即4a﹣(﹣4a)+c=8a+c<0,故④正确;∵二次函数的图象和x轴的一个交点时(﹣1,0),对称轴是直线x=1,∴另一个交点的坐标是(3,0),∴设y=ax2+bx+c=a(x﹣3)(x+1)=ax2﹣2ax﹣3a,即a=a,b=﹣2a,c=﹣3a,∴a:b:c=a:(﹣2a):(﹣3a)=﹣1:2:3,故⑤正确;故答案为:①④⑤.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.18.(3分)(2017•贺州)如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD 于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为 6 .【考点】R2:旋转的性质;LE:正方形的性质.【分析】由旋转的性质可知:AF=AG,∠DAF=∠BAG,接下来在证明∠GAE=∠FAE,由全等三角形的性质可知:AB=AH,GE=EF=5.设正方形的边长为x,接下来,在Rt△EFC中,依据勾股定理列方程求解即可.【解答】解:由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中∠∠,∴△GAE≌△FAE.∵AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.故答案为:6.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了旋转的性质、全等三角形的性质和判定、勾股定理的应用,正方形的性质,依据旋转的性质构造全等三角形和直角三角形是解题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2017•贺州)计算:(﹣1)2017+﹣(π﹣3)0+2cos30°.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】直接利用算术平方根的性质以及零指数幂的性质和特殊角的三角函数值分别化简求出答案.【解答】解:原式=﹣1+3﹣1+2×=1+.【点评】此题主要考查了算术平方根的性质以及零指数幂的性质和特殊角的三角函数值,正确化简各数是解题关键.20.(6分)(2017•贺州)先化简,再求值:÷(1+),其中x=+1.【考点】6D:分式的化简求值.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=当x=+1时,原式==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.(8分)(2017•贺州)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中分摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.【考点】X7:游戏公平性;X6:列表法与树状图法.【分析】(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.【解答】解:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴规则不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)(2017•贺州)如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B处测得探测线与地面的夹角为60°,求该生命迹象C处于地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】过C点作AB的垂线交AB的延长线于点D,由三角形外角的性质可得出∠ACB=30°,进而可得出BC=AB=4米,在Rt△CDB中利用锐角三角函数的定义即可求出CD的值.【解答】解:过C点作AB的垂线交AB的延长线于点D,∵∠CAD=30°,∠CBD=60°,∴∠ACB=30°,∴∠CAB=∠ACB=30°,∴BC=AB=4米,在Rt△CDB中,BC=4米,∠CBD=60°,sin∠CBD=,∴sin60°=,∴CD=4sin60°=4×=2≈3.5(米),故该生命迹象所在位置的深度约为3.5米.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(8分)(2017•贺州)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.【考点】B7:分式方程的应用.【分析】可设乙工程队单独完成这项工程需要x天,根据等量关系:甲、乙两个工程队合作10天完成了剩余的工程,即工程总量的1﹣,依此列出方程求解即可.【解答】解:设乙工程队单独完成这项工程需要x天,依题意有(+)×10=1﹣,解得x=20,经检验,x=20是原方程的解.答:乙工程队单独完成这项工程需要20天.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.24.(8分)(2017•贺州)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2,求四边形ABCD的面积.【考点】LA:菱形的判定与性质.【分析】(1)根据等腰三角形的性质得到∠ABD=∠ADB,根据角平分线的定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠CBD,根据全等三角形的性质得到AO=OC,于是得到结论;(2)根据菱形的性质得到OD=BD=,根据勾股定理得到OC==2,于是得到结论.【解答】(1)证明:∵AB=AD,∴∠ABD=∠ADB,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠CBD,∵AC⊥BD,AB=AD,∴BO=DO,∠∠,在△AOD与△COB中,∠∠∴△AOD≌△COB,∴AO=OC,∵AC⊥BD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OD=BD=,∴OC==2,∵AC=4,∴S菱形ABCD=AC•BD=4.【点评】本题考查了菱形的性质和判定,勾股定理,菱形的面积的计算,全等三角形的判定与性质,角平分线的定义,熟练掌握菱形的判定和性质定理是解题的关键.25.(10分)(2017•贺州)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O 于点D,过点D的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙O的半径.【考点】MC:切线的性质;M5:圆周角定理.【分析】(1)连接OD,由切线的性质和已知条件可证得OD∥EF,则可证得结论;(2)过D作DG⊥AE于点G,连接CD,则可证得△ADF≌△ADG、△CDF≌△BDG,则可求得AB的长,可求得圆的半径.【解答】(1)证明:如图1,连接OD,∵EF是⊙O的切线,且点D在⊙O上,∴OD⊥EF,∵OA=OD,∴∠DAB=∠ADO,∵AD平分∠BAC,∴∠DAB=∠DAC,∴∠ADO=∠DAC,∴AF∥OD,∴AF⊥EF;(2)解:如图2,过D作DG⊥AE于点G,连接CD,∵∠BAD=∠DAF,AF⊥EF,DG⊥AE,∴BD=CD,DG=DF,在Rt△ADF和Rt△ADG中∴Rt△ADF≌Rt△ADG(HL),同理可得Rt△CDF≌Rt△BDG,∴BG=CF=2,AG=AF=AC+CF=6+2=8,∴AB=AG+BG=8+2=10,∴⊙O的半径OA=AB=5.【点评】本题主要考查切线的性质及圆周角定理,掌握过切点的半径与切线垂直是解题的关键,注意全等三角形的应用.26.(12分)(2017•贺州)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)首先依据等腰直角三角形的性质求得点B的坐标,然后将点A和点B的坐标代入抛物线的解析式求解即可;(2)设直线AB的解析式为y=kx+b,将点A和点B的坐标代入可求得直线AB的解析式,设点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),然后列出EF关于t的函数关系式,最后利用配方法求得EF的最大值即可;(3)过点F作直线a⊥EF,交抛物线与点P,过点E作直线b⊥EF,交抛物线P′、P″,先求得点E和点F的纵坐标,然后将点E和点F的纵坐标代入抛物线的解析式求得对应的x 的值,从而可求得点P、P′、P″的坐标.【解答】解:(1)∵A,C的坐标分别为(1,0),(﹣4,0),∴AC=5.∵△ABC为等腰直角三角形,∠C=90°,∴BC=AC=5.∴B(﹣4,﹣5).将点A和点B的坐标代入得:,解得:,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)如图1所示:设直线AB的解析式为y=kx+b,将点A和点B的坐标代入得:,解得:k=1,b=﹣1.所以直线AB的解析式为y=x﹣1.设点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3).∴EF=﹣t2﹣2t+3﹣(t﹣1)=﹣t2﹣3t+4=(t+)2+.∴当t=﹣时,FE取最大值,此时,点E的坐标为(﹣,﹣).(3)存在点P,能使△PEF是以EF为直角边的直角三角形.理由:如图所示:过点F作直线a⊥EF,交抛物线与点P,过点E作直线b⊥EF,交抛物线P′、P″.由(2)可知点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),t=﹣,∴点E(﹣,﹣)、F(﹣,).①当﹣t2﹣2t+3=时,解得:x=﹣或x=﹣(舍去).∴点P的坐标为(﹣,).②当﹣t2﹣2t+3=﹣时,解得:x=﹣1+或x=﹣1﹣.∴点P′(﹣1﹣,﹣),P″(﹣1+,﹣).综上所述,点P的坐标为(﹣,)或(﹣1﹣,﹣)或P″(﹣1+,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、等腰直角三角形的性质、二次函数的性质,列出EF的长关于t的函数关系式是解题的关键.第21页(共21页)。
2018年广西贺州市中考数学试卷(带解析答案)
A.( )n﹣1 B.2n﹣1 C.( )n D.2n 【解答】解:第一个正方形的面积为 1=20, 第二个正方形的面积为( )2=2=21, 第三个正方形的边长为 22, … 第 n 个正方形的面积为 2n﹣1, 故选:B.
第 5页(共 15页)
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分;请把答案填在答題卡对
4.(3 分)下列图形中,属于中心对称图形的是( )
A.
B.
C.
D.
【解答】解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
第 1页(共 15页)
C、不是中心对称图形,故此选项错误; D、是中心对称图形,故此选项正确, 故选:D.
5.(3 分)若一组数据:1、2、x、4、5 的众数为 5,则这组数据的中位数是 () A.1 B.2 C.4 D.5 【解答】解:∵数据 1、2、x、4、5 的众数为 5, ∴x=5, 将数据从小到大重新排列为 1、2、4、5、5, 所以中位数为 4, 故选:C.
15.(3 分)从﹣1、0、 、π、5.1、7 这 6 个数中随机抽取一个数,抽到无理数 的概率是 . 【解答】解:∵在﹣1、0、 、π、5.1、7 这 6 个数中无理数有 、π这 2 个, ∴抽到无理数的概率是 = , 故答案为: .
16.(3 分)如图,将 Rt△ABC 绕直角顶点 C 顺时针旋转 90°,得到△A′B′C,连接 BB',若∠A′B′B=20°,则∠A 的度数是 65° .
【解答】解:过点 C 作 CM⊥AB,垂足为 M,
在 Rt△ACM 中,∠MAC=90°﹣45°=45°,则∠MCA=45°,
∴AM=MC,
由勾股定理得:AM2+MC2=AC2=(20 ×2)2,
2017-2018学年第一学期期中质量调研模拟检测·九年级数学试题[PDF版含答案解析]
20. 解:(1)如图 1,点 M 就是要找的圆
心. 正确即可 (2)证明:由 A(0,4),可得小正方形 的边长为 1,从而 B(4,4)、C(6,2)
(2) ∵m>-t, ∴取 m=0, 方程为 x2-2x=0,
解得 x1=0,x2=2. 19. 解:(1)由图可知,花圃的面积为 (100-2a)(60-2a)=4a2-320a+6000; (2) 由已知可列式: 100×60(100-2a) (60-2a) = ×100×60, 解得:a1=5,a2=75(舍去), 所以通道的宽为 5 米;
A.
m
B.
期中模考·九年级数学(解析卷) 第 1 页 共 15 页
t
m
C.
t
m
D. 1m
8. 如图(见第 1 页),在直角梯形 ABCD 中,AB∥CD,AB⊥BC,以 BC 为直径的⊙O 与 AD 相切,点 E 为 AD 的中点,下列结论正确 的个数是( ) .. (1)AB+CD=AD; (3)AB•CD=
期中模考·九年级数学(解析卷) 第 5 页 共 15 页
23. (12 分)已知:△ABC 内接于⊙O,D 是 上一点,OD⊥BC,垂足为 H. (1)如图 1,当圆心 O 在 AB 边上时,求证:AC=2OH; (2)如图 2,当圆心 O 在△ABC 外部时,连接 AD、CD,AD 与 BC 交于点 P,请你证 明:∠ACD=∠APB; (3)在(2)的条件下,如图 3,连接 BD,E 为⊙O 上一点,连接 DE 交 BC 于点 Q、 交 AB 于点 N,连接 OE,BF 为⊙O 的弦,BF⊥OE 于点 R 交 DE 于点 G,若 ∠ACD-∠ABD=2∠BDN,AC=5 ,BN=3 ,tan∠ABC=t,求 BF 的长.
2017-2018年广西贺州市昭平县九年级(上)期中数学试卷和答案
2017-2018学年广西贺州市昭平县九年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)如果线段a=2cm,b=10cm,那么的值为()A.B.5 C.2 D.2.(3分)已知2x=3y,则下列比例式成立的是()A.=B.=C.=D.=3.(3分)二次函数y=2(x﹣1)2+3的图象的顶点坐标是()A.(1,3) B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)4.(3分)反比例函数y=的图象,当x>0时,y随x的值增大而减小,则k 的取值范围是()A.k≥1 B.k≤1 C.k<1 D.k>15.(3分)已知二次函数y=x2﹣3x﹣4与x轴的交点为A(﹣1,0),B(4,0),则一元二次方程x2﹣3x﹣4=0的解为()A.x1=1,x2=﹣4 B.x1=﹣1,x2=4 C.x1=﹣1,x2=0 D.x1=4,x2=0 6.(3分)二次函数y=x2﹣1的图象可由下列哪个函数图象向右平移1个单位,向下平移2个单位得到()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=(x﹣1)2﹣3 D.y=(x+1)2+3 7.(3分)在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣18.(3分)如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若EC=1,AC=3,则DE:BC的值为()A.B.C.D.9.(3分)如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A.B.BC2=AB•BC C.D.10.(3分)正比例函数y=x与反比例函数y=的图象相交于A、C两点.AB⊥x 轴于B,CD⊥x轴于D(如图),则四边形ABCD的面积为()A.1 B.C.2 D.11.(3分)小敏在某次投篮中,球的运动线路是抛物线y=﹣x2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离l是()A.3.5m B.4m C.4.5m D.4.6m12.(3分)一次函数y=ax+b和反比例函数y=在同一个平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)1和4的比例中项是.14.(3分)当m≠时,函数y=(m﹣1)x2+3x﹣5是二次函数.15.(3分)若反比例函数的图象经过点(﹣1,2),则k的值是.16.(3分)已知甲、乙两地之间的距离为10千米,画在一张地图上的距离为5厘米,那么在这张地图上量得距离为2厘米的A、B两地的实际距离为千米.17.(3分)如图,以O为顶点的两条抛物线分别经过正方形的四个顶点A、B、C、D,则阴影部分的面积为.18.(3分)如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=在l上取点A,过点A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l 于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,…记点A n 的横坐标为a n,若a1=3,则a2017=.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣1)2017+(π﹣3)0+(﹣)﹣1+.20.(6分)已知:==,且x﹣y+z=3,求代数式3x﹣2y+z的值.21.(8分)如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)22.(8分)如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?23.(8分)如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B 两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.24.(8分)已知反比例函数y=的图象与二次函数y=ax2+x﹣1的图象相交于点(2,2)(1)求a和k的值;(2)判断反比例函数的图象是否经过二次函数图象的顶点并说明理由.25.(10分)一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式及t值的取值范围;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇,求两车的平均速度.26.(12分)如图,二次函数y=x2+bx+c的图象交x轴于A,D两点,并经过B 点,对称轴交x轴于点C,连接BD,BC,已知A点坐标是(2,0),B点的坐标是(8,6)(1)求二次函数的解析式.(2)求该函数图象的顶点坐标及D点的坐标.(3)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S=S△BCD?△ADP若存在,直接写出所有符合条件的点P的坐标;若不存在.请说明理由.2017-2018学年广西贺州市昭平县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)如果线段a=2cm,b=10cm,那么的值为()A.B.5 C.2 D.【解答】解:因为线段a=2cm,b=10cm,所以的值=,故选:A.2.(3分)已知2x=3y,则下列比例式成立的是()A.=B.=C.=D.=【解答】解:A、变成等积式是:xy=6,故错误;B、变成等积式是:3x=2y,故错误;C、变成等积式是:2x=3y,故正确;D、变成等积式是:3x=2y,故错误.故选:C.3.(3分)二次函数y=2(x﹣1)2+3的图象的顶点坐标是()A.(1,3) B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【解答】解:二次函数y=2(x﹣1)2+3为顶点式,其顶点坐标为(1,3).故选:A.4.(3分)反比例函数y=的图象,当x>0时,y随x的值增大而减小,则k 的取值范围是()A.k≥1 B.k≤1 C.k<1 D.k>1【解答】解:∵反比例函数y=中,当x>0时,y随x的增大而减小,∴k﹣1>0,解得k>1.故选:D.5.(3分)已知二次函数y=x2﹣3x﹣4与x轴的交点为A(﹣1,0),B(4,0),则一元二次方程x2﹣3x﹣4=0的解为()A.x1=1,x2=﹣4 B.x1=﹣1,x2=4 C.x1=﹣1,x2=0 D.x1=4,x2=0【解答】解:∵二次函数y=x2﹣3x﹣4与x轴的交点为A(﹣1,0),B(0,4),∴一元二次方程x2﹣3x﹣4=0的解为:x1=﹣1,x2=4.故选:B.6.(3分)二次函数y=x2﹣1的图象可由下列哪个函数图象向右平移1个单位,向下平移2个单位得到()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=(x﹣1)2﹣3 D.y=(x+1)2+3【解答】解:此题实际上是求y=x2﹣1向左平移1个单位,向上平移2个单位后抛物线的解析式.则y=x2﹣1向左平移1个单位后抛物线的解析式是:y=(x+1)2﹣1+2=y=(x+1)2+1.故选:B.7.(3分)在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣1【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大增大.8.(3分)如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若EC=1,AC=3,则DE:BC的值为()A.B.C.D.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵EC=1,AC=3,∴AE=AC﹣EC=2,∴=.∴=.故选:A.9.(3分)如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A.B.BC2=AB•BC C.D.【解答】解:∵AC>BC,∴AC是较长的线段,根据黄金分割的定义可知:AB:AC=AC:BC,故A正确,不符合题意;AC2=AB•BC,故B错误,,故C正确,不符合题意;≈0.618,故D正确,不符合题意.10.(3分)正比例函数y=x 与反比例函数y=的图象相交于A 、C 两点.AB ⊥x 轴于B ,CD ⊥x 轴于D (如图),则四边形ABCD 的面积为( )A .1B .C .2D .【解答】解:根据反比例函数的对称性可知:OB=OD ,AB=CD ,∴四边形ABCD 的面积=S △AOB +S △ODA +S △ODC +S △OBC =1×2=2.故选:C .11.(3分)小敏在某次投篮中,球的运动线路是抛物线y=﹣x 2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m【解答】解:当y=3.05时,﹣x 2+3.5=3.05,解得x 1=﹣1.5(舍去),x 2=1.5, ∴l=2.5+1.5=4m .故选:B .12.(3分)一次函数y=ax +b 和反比例函数y=在同一个平面直角坐标系中的图象如图所示,则二次函数y=ax 2+bx +c 的图象可能是( )A.B.C.D.【解答】解:观察函数图象可知:a<0,b>0,c<0,∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣>0,与y轴的交点在y 轴负半轴.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)1和4的比例中项是±2.【解答】解:设a是1和4的比例中项,则a2=1×4,解得:a=±2;故答案为:±2.14.(3分)当m≠1时,函数y=(m﹣1)x2+3x﹣5是二次函数.【解答】解:∵函数y=(m﹣1)x2+3x﹣5是二次函数,∴m﹣1≠0,解得m≠1.故答案为:m≠1.15.(3分)若反比例函数的图象经过点(﹣1,2),则k的值是﹣2.【解答】解:∵图象经过点(﹣1,2),∴k=xy=﹣1×2=﹣2.故答案为:﹣2.16.(3分)已知甲、乙两地之间的距离为10千米,画在一张地图上的距离为5厘米,那么在这张地图上量得距离为2厘米的A、B两地的实际距离为4千米.【解答】解:设A、B两地的实际距离为x千米.根据题意得到:=.解得x=4千米.17.(3分)如图,以O为顶点的两条抛物线分别经过正方形的四个顶点A、B、C、D,则阴影部分的面积为1.【解答】解:根据图示及抛物线、正方形的性质,S阴影=S正方形=×2×2=1.故答案为:1.18.(3分)如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=在l上取点A,过点A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l 于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,…记点A n 的横坐标为a n,若a1=3,则a2017=3.【解答】解:当a1=3时,B1的纵坐标为,B1的纵坐标和A2的纵坐标相同,则A2的横坐标为a2=﹣,A2的横坐标和B2的横坐标相同,则B2的纵坐标为b2=﹣,B2的纵坐标和A3的纵坐标相同,则A3的横坐标为a3=﹣,A3的横坐标和B3的横坐标相同,则B3的纵坐标为b3=﹣4,B3的纵坐标和A4的纵坐标相同,则A4的横坐标为a4=3,A4的横坐标和B4的横坐标相同,则B4的纵坐标为b4=,即当a1=3时,a2=﹣,a3=﹣,a4=3,a5=﹣,b1=,b2=﹣,b3=﹣4,b4=,b5=﹣,∵=672…1,∴a2017=a4=3.故答案为3.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣1)2017+(π﹣3)0+(﹣)﹣1+.【解答】解:原式=﹣1+1﹣3+2=﹣1.20.(6分)已知:==,且x﹣y+z=3,求代数式3x﹣2y+z的值.【解答】解:设===k,则x=2k,y=3k,z=4k,∵x﹣y+z=3,∴2k﹣3k+4k=3,解得k=1,∴x=2,y=3,z=4,∴3x﹣2y+z=3×2﹣2×3+4=6﹣6+4=4.21.(8分)如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)【解答】解:(1)∵四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2,∴CD=EF=AB=3,BC=AD=6.5,CF=BC﹣BF=4.5,∴==,==,=;(2)成比例线段有=.22.(8分)如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?【解答】解:(1)根据题意,得S=x(24﹣3x),即所求的函数解析式为:S=﹣3x2+24x,又∵0<24﹣3x≤10,∴定义域为{x|≤x<8};(2)根据题意,设AB长为x,则BC长为24﹣3x∴﹣3x2+24x=45.整理,得x2﹣8x+15=0,解得x=3或5,当x=3时,BC=24﹣9=15>10不成立,当x=5时,BC=24﹣15=9<10成立,∴AB长为5m.23.(8分)如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B 两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.【解答】解:(1)把x=3代入y=2x﹣4,可得y=2×3﹣4=2,∴A(3,2),把(3,2)代入y=,可得k=3×2=6,∴反比例函数的解析式为y=;(2)根据题意可得:2x﹣4=,解得x1=3,x2=﹣1,把x2=﹣1,代入y=2x﹣4,可得y=﹣6,∴点B的坐标为(﹣1,﹣6).24.(8分)已知反比例函数y=的图象与二次函数y=ax2+x﹣1的图象相交于点(2,2)(1)求a和k的值;(2)判断反比例函数的图象是否经过二次函数图象的顶点并说明理由.【解答】解:(1)因为二次函数y=ax2+x﹣1与反比例函数y=交于点(2,2),所以2=4a+2﹣1,解之得a=,2=,所以k=4;(2)反比例函数的图象经过二次函数图象的顶点;由(1)知,二次函数和反比例函数的关系式分别是y=x2+x﹣1和y=;因为y=x2+x﹣1=y=(x2+4x﹣4)=(x2+4x+4﹣8)=[(x+2)2﹣8]=(x+2)2﹣2,所以二次函数图象的顶点坐标是(﹣2,﹣2);因为x=﹣2时,y==﹣2,所以反比例函数图象经过二次函数图象的顶点.25.(10分)一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式及t值的取值范围;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇,求两车的平均速度.【解答】解:(1)设v与t的函数关系式为v=,将(5,120)代入v=,得:120=,解得:k=600,∴v与t的函数关系式为v=(5≤t≤10).(2)设客车的平均速度为v千克/小时,则货车的速度为(v﹣20)千米/小时,根据题意得:3(v+v﹣20)=600,解得:v=110,v﹣20=90.答:客车的平均速度为110千米/小时,货车的平均速度为90千米/小时.26.(12分)如图,二次函数y=x2+bx+c的图象交x轴于A,D两点,并经过B 点,对称轴交x轴于点C,连接BD,BC,已知A点坐标是(2,0),B点的坐标是(8,6)(1)求二次函数的解析式.(2)求该函数图象的顶点坐标及D点的坐标.=S△BCD?(3)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP若存在,直接写出所有符合条件的点P的坐标;若不存在.请说明理由.【解答】解:(1)把A(2,0),B(8,6)代入y=x2+bx+c得,解得,∴抛物线的解析式为y=x2﹣4x+6;(2)∵y=x2﹣4x+6=(x﹣4)2+6,∴抛物线的顶点坐标为(4,6),∵抛物线的对称轴为直线x=4,A(2,0),∴D(6,0);(3)存在.设P(x,x2﹣4x+6),=S△BCD,∵S△ADP∴•(6﹣2)•|x2﹣4x+6|=••(6﹣4)•6,∴x2﹣8x+9=0或x2﹣8x+15=0,解方程x2﹣8x+9=0得x1=4+,x2=4﹣,此时P点坐标为(4+,)或(4﹣,);解方程x2﹣8x+15=0得x1=3,x2=5,此时P点坐标为(3,﹣)或(5,﹣);综上所述,P点坐标为(4+,)或(4﹣,)或(3,﹣)或(5,﹣).。
2017年广西贺州市中考数学试卷和解析答案
2017年广西贺州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共30分)1.(3分)的倒数是()A.﹣2 B.2 C.D.2.(3分)下列各图中,∠1与∠2互为邻补角的是()A.B.C.D.3.(3分)下列式子中是分式的是()A.B.C. D.4.(3分)一条关于数学学习方法的微博在一周内转发了318000次,将318000用科学记数法可以表示为()A.3.18×105B.31.8×105C.318×104D.3.18×1045.(3分)现有相同个数的甲、乙两组数据,经计算得:=,且S 甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定 B.乙比较稳定C.甲、乙一样稳定 D.无法确定6.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形C.矩形 D.等边三角形7.(3分)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为()A.1:1 B.1:2 C.1:3 D.1:48.(3分)小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()A.B.C.D.9.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.10.(3分)一次函数y=ax+a(a为常数,a≠0)与反比例函数y=(a为常数,a≠0)在同一平面直角坐标系内的图象大致为()A.B.C.D.11.(3分)如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1 B.2 C.3 D.412.(3分)将一组数,2,,2,,…,2,按下列方式进行排列:,2,,2,;2,,4,3,2;…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4)B.(4,4)C.(4,5)D.(3,5)二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)要使代数式有意义,则x的取值范围是.14.(3分)为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是.(填“全面调查”或“抽样调查”)15.(3分)将多项式2mx2﹣8mx+8m分解因式的结果是.16.(3分)如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,求点A从开始到结束所经过的路径长为(结果保留π).17.(3分)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc <0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有.18.(3分)如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH 的长为.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣1)2017+﹣(π﹣3)0+2cos30°.20.(6分)先化简,再求值:÷(1+),其中x=+1.21.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.22.(8分)如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B 处测得探测线与地面的夹角为60°,求该生命迹象C处与地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)23.(8分)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.24.(8分)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2,求四边形ABCD的面积.25.(10分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙O的半径.26.(12分)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.2017年广西贺州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共30分)1.(3分)(2017•贺州)的倒数是()A.﹣2 B.2 C.D.【分析】根据倒数的定义求解.【解答】解:﹣的倒数是﹣2.故选:A.【点评】本题主要考查了倒数的定义,解题的关键是熟记定义.2.(3分)(2017•贺州)下列各图中,∠1与∠2互为邻补角的是()A.B.C.D.【分析】根据邻补角的定义作出判断即可.【解答】解:根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选:D.【点评】本题考查了邻补角的定义,正确把握定义:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.3.(3分)(2017•贺州)下列式子中是分式的是()A.B.C. D.【分析】根据分式的定义求解即可.【解答】解:、、的分母中不含有字母,属于整式,的分母中含有字母,属于分式.故选:C.【点评】本题考查了分式的定义,分母中含有字母的式子是分式.4.(3分)(2017•贺州)一条关于数学学习方法的微博在一周内转发了318000次,将318000用科学记数法可以表示为()A.3.18×105B.31.8×105C.318×104D.3.18×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将318000用科学记数法可以表示为3.18×105,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2017•贺州)现有相同个数的甲、乙两组数据,经计算得:=,且S 甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定 B.乙比较稳定C.甲、乙一样稳定 D.无法确定【分析】根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立解答即可.【解答】解:∵S甲2>S乙2,∴乙比较稳定,故选:B.【点评】本题考查的是平均数和方差,掌握方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立是解题的关键.6.(3分)(2017•贺州)下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形C.矩形 D.等边三角形【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【解答】解:A、正五边形,不是中心对称图形,是轴对称图形,故本选项错误;B、平行四边形,是中心对称图形,不是轴对称图形,故本选项错误;C、矩形,既是中心对称图形又是轴对称图形,故本选项正确;D、等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(3分)(2017•贺州)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为()A.1:1 B.1:2 C.1:3 D.1:4【分析】证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,DE=BC,证出△ADE∽△ABC,由相似三角形的性质得出△ADE的面积:△ABC的面积=1:4,即可得出结果.【解答】解:∵D、E分别为△ABC的边AB、AC上的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面积:△ABC的面积=()2=1:4,∴△ADE的面积:四边形BCED的面积=1:3;故选:C.【点评】本题考查了相似三角形的判定与性质、三角形中位线定理;熟记三角形中位线定理,证明三角形相似是解决问题的关键.8.(3分)(2017•贺州)小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()A.B.C.D.【分析】根据看等边三角形木框的方向即可得出答案.【解答】解:竖直向下看可得到线段,沿与平面平行的方向看可得到C,沿与平面不平行的方向看可得到D,不论如何看都得不到一点.故选:B.【点评】本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键.9.(3分)(2017•贺州)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x+4≤13,得:x≤3,解不等式﹣x<1,得:x>﹣1,则不等式组的解集为﹣1<x≤3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(3分)(2017•贺州)一次函数y=ax+a(a为常数,a≠0)与反比例函数y=(a为常数,a≠0)在同一平面直角坐标系内的图象大致为()A.B.C.D.【分析】分为a>0和a<0两种情况,然后依据一次函数和反比例函数的图象的性质进行判断即可.【解答】解:当a>0时,一次函数y=ax+a,经过一二三象限,反比例函数图象位于一、三象限,当a<0时,一次函数y=ax+a,经过二、三、四象限,反比例函数图象位于二、四象限.故选:C.【点评】本题主要考查的是一次函数、反比例函数的图象和性质,熟练掌握相关性质是解题的关键.11.(3分)(2017•贺州)如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D 关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1 B.2 C.3 D.4【分析】根据==和点E是点D关于AB的对称点,求出∠DOB=∠COD=∠BOE=60°,求出∠CED,即可判断①②;根据圆周角定理求出当M和A重合时∠MDE=60°即可判断③;求出M点的位置,根据圆周角定理得出此时DF是直径,即可求出DF长,即可判断④.【解答】解:∵==,点E是点D关于AB的对称点,∴=,∴∠DOB=∠BOE=∠COD==60°,∴①正确;∠CED=∠COD==30°=,∴②正确;∵的度数是60°,∴的度数是120°,∴只有当M和A重合时,∠MDE=60°,∵∠CED=30°,∴只有M和A重合时,DM⊥CE,∴③错误;做C关于AB的对称点F,连接CF,交AB于N,连接DF交AB于M,此时CM+DM的值最短,等于DF长,连接CD,∵===,并且弧的度数都是60°,∴∠D==60°,∠CFD==30°,∴∠FCD=180°﹣60°﹣30°=90°,∴DF是⊙O的直径,即DF=AB=10,∴CM+DM的最小值是10,∴④正确;故选C.【点评】本题考查了圆周角定理,轴对称﹣最短问题等知识点,能灵活运用圆周角定理求出各个角的度数和求出M的位置是解此题的关键.12.(3分)(2017•贺州)将一组数,2,,2,,…,2,按下列方式进行排列:,2,,2,;2,,4,3,2;…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4)B.(4,4)C.(4,5)D.(3,5)【分析】先找出被开方数的规律,然后再求得的位置即可.【解答】解:这组数据可表示为:、、、、;、、、、;…∵19×2=38,∴为第4行,第4个数字.故选:B.【点评】本题主要考查的是数字的变化规律,找出其中的规律是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•贺州)要使代数式有意义,则x的取值范围是x≥且x≠1 .【分析】直接利用二次根式的定义、分式的有意义的条件分析得出答案.【解答】解:由题意可得:2x﹣1≥0,x﹣1≠0,解得:x≥且x≠1.故答案为:x≥且x≠1.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.14.(3分)(2017•贺州)为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:了调查某市中小学生对“营养午餐”的满意程度,因为人员多、所费人力、物力和时间较多所以适合采用的调查方式是抽样调查,故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.15.(3分)(2017•贺州)将多项式2mx2﹣8mx+8m分解因式的结果是2m(x﹣2)2.【分析】原式提取2m,再利用完全平方公式分解即可.【解答】解:原式=2m(x2﹣4x+4)=2m(x﹣2)2,故答案为:2m(x﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.(3分)(2017•贺州)如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,求点A从开始到结束所经过的路径长为(结果保留π)π.【分析】利用余弦的概念求出AC,根据弧长公式计算即可.【解答】解:Rt△ABC中,∠A=60°,AC==2,∠ACB=30°,∴∠ACA1=150°,点A从开始到结束所经过的路径长为以C为圆心、2为半径的弧,即=π,故答案为:π.【点评】本题考查的是点的轨迹以及弧长的计算,掌握弧长公式、旋转变换的性质、正确找出点的运动轨迹是解题的关键.17.(3分)(2017•贺州)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有①④⑤.【分析】根据图象的开口可确定a,结合对称轴可确定b,根据图象与y轴的交点位置可确定c,根据图象与x轴的交点个数可确定△;根据当x=﹣2时,y<0;抛物线与x轴的另一个交点的坐标是(3,0),即可得出结论.【解答】解:①∵开口向下∴a<0∵与y轴交于正半轴∴c>0∵对称轴在y轴右侧∴b>0∴abc<0,故①正确;∵二次函数的对称轴是直线x=1,即二次函数的顶点的横坐标为x=﹣=1,∴2a+b=0,故②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③错误;∵b=﹣2a,∴可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y<0;即4a﹣(﹣4a)+c=8a+c<0,故④正确;∵二次函数的图象和x轴的一个交点是(﹣1,0),对称轴是直线x=1,∴另一个交点的坐标是(3,0),∴设y=ax2+bx+c=a(x﹣3)(x+1)=ax2﹣2ax﹣3a,即a=a,b=﹣2a,c=﹣3a,∴a:b:c=a:(﹣2a):(﹣3a)=﹣1:2:3,故⑤正确;故答案为:①④⑤.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.18.(3分)(2017•贺州)如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为 6 .【分析】由旋转的性质可知:AF=AG,∠DAF=∠BAG,接下再证明∠GAE=∠FAE,由全等三角形的性质可知:AB=AH,GE=EF=5.设正方形的边长为x,接下,在Rt△EFC中,依据勾股定理列方程求解即可.【解答】解:由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△FAE.∵AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.故答案为:6.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了旋转的性质、全等三角形的性质和判定、勾股定理的应用,正方形的性质,依据旋转的性质构造全等三角形和直角三角形是解题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2017•贺州)计算:(﹣1)2017+﹣(π﹣3)0+2cos30°.【分析】直接利用算术平方根的性质以及零指数幂的性质和特殊角的三角函数值分别化简求出答案.【解答】解:原式=﹣1+3﹣1+2×=1+.【点评】此题主要考查了算术平方根的性质以及零指数幂的性质和特殊角的三角函数值,正确化简各数是解题关键.20.(6分)(2017•贺州)先化简,再求值:÷(1+),其中x=+1.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=当x=+1时,原式==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.(8分)(2017•贺州)在“植树节”期间,小王、小李两人想通过摸球的方式决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.【分析】(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.【解答】解:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴规则不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)(2017•贺州)如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B处测得探测线与地面的夹角为60°,求该生命迹象C处与地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)【分析】过C点作AB的垂线交AB的延长线于点D,由三角形外角的性质可得出∠ACB=30°,进而可得出BC=AB=4米,在Rt△CDB中利用锐角三角函数的定义即可求出CD的值.【解答】解:过C点作AB的垂线交AB的延长线于点D,∵∠CAD=30°,∠CBD=60°,∴∠ACB=30°,∴∠CAB=∠ACB=30°,∴BC=AB=4米,在Rt△CDB中,BC=4米,∠CBD=60°,sin∠CBD=,∴sin60°=,∴CD=4sin60°=4×=2≈3.5(米),故该生命迹象所在位置的深度约为3.5米.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(8分)(2017•贺州)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.【分析】可设乙工程队单独完成这项工程需要x天,根据等量关系:甲、乙两个工程队合作10天完成了剩余的工程,即工程总量的1﹣,依此列出方程求解即可.【解答】解:设乙工程队单独完成这项工程需要x天,依题意有(+)×10=1﹣,解得x=20,经检验,x=20是原方程的解.答:乙工程队单独完成这项工程需要20天.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.24.(8分)(2017•贺州)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2,求四边形ABCD的面积.【分析】(1)根据等腰三角形的性质得到∠ABD=∠ADB,根据角平分线的定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠CBD,根据全等三角形的性质得到AO=OC,于是得到结论;(2)根据菱形的性质得到OD=BD=,根据勾股定理得到OC==2,于是得到结论.【解答】(1)证明:∵AB=AD,∴∠ABD=∠ADB,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠CBD,∵AC⊥BD,AB=AD,∴BO=DO,在△AOD与△COB中,,∴△AOD≌△COB,∴AO=OC,∵AC⊥BD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OD=BD=,∴OC==2,∵AC=4,∴S菱形ABCD=AC•BD=4.【点评】本题考查了菱形的性质和判定,勾股定理,菱形的面积的计算,全等三角形的判定与性质,角平分线的定义,熟练掌握菱形的判定和性质定理是解题的关键.25.(10分)(2017•贺州)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙O的半径.【分析】(1)连接OD,由切线的性质和已知条件可证得OD∥EF,则可证得结论;(2)过D作DG⊥AE于点G,连接CD,则可证得△ADF≌△ADG、△CDF≌△BDG,则可求得AB的长,可求得圆的半径.【解答】(1)证明:如图1,连接OD,∵EF是⊙O的切线,且点D在⊙O上,∴OD⊥EF,∵OA=OD,∴∠DAB=∠ADO,∵AD平分∠BAC,∴∠DAB=∠DAC,∴∠ADO=∠DAC,∴AF∥OD,∴AF⊥EF;(2)解:如图2,过D作DG⊥AE于点G,连接CD,∵∠BAD=∠DAF,AF⊥EF,DG⊥AE,∴BD=CD,DG=DF,在Rt△ADF和Rt△ADG中∴Rt△ADF≌Rt△ADG(HL),同理可得Rt△CDF≌Rt△BDG,∴BG=CF=2,AG=AF=AC+CF=6+2=8,∴AB=AG+BG=8+2=10,∴⊙O的半径OA=AB=5.【点评】本题主要考查切线的性质及圆周角定理,掌握过切点的半径与切线垂直是解题的关键,注意全等三角形的应用.26.(12分)(2017•贺州)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【分析】(1)首先依据等腰直角三角形的性质求得点B的坐标,然后将点A和点B的坐标代入抛物线的解析式求解即可;(2)设直线AB的解析式为y=kx+b,将点A和点B的坐标代入可求得直线AB的解析式,设点E 的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),然后列出EF关于t的函数关系式,最后利用配方法求得EF的最大值即可;(3)过点F作直线a⊥EF,交抛物线于点P,过点E作直线b⊥EF,交抛物线P′、P″,先求得点E和点F的纵坐标,然后将点E和点F的纵坐标代入抛物线的解析式求得对应的x的值,从而可求得点P、P′、P″的坐标.【解答】解:(1)∵A,C的坐标分别为(1,0),(﹣4,0),∴AC=5.∵△ABC为等腰直角三角形,∠C=90°,∴BC=AC=5.∴B(﹣4,﹣5).将点A和点B的坐标代入得:,解得:,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)如图1所示:设直线AB的解析式为y=kx+b,将点A和点B的坐标代入得:,解得:k=1,b=﹣1.所以直线AB的解析式为y=x﹣1.设点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3).∴EF=﹣t2﹣2t+3﹣(t﹣1)=﹣t2﹣3t+4=(t+)2+.∴当t=﹣时,FE取最大值,此时,点E的坐标为(﹣,﹣).(3)存在点P,能使△PEF是以EF为直角边的直角三角形.理由:如图所示:过点F作直线a⊥EF,交抛物线于点P,过点E作直线b⊥EF,交抛物线P′、P″.由(2)可知点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),t=﹣,∴点E(﹣,﹣)、F(﹣,).①当﹣t2﹣2t+3=时,解得:x=﹣或x=﹣(舍去).∴点P的坐标为(﹣,).②当﹣t2﹣2t+3=﹣时,解得:x=﹣1+或x=﹣1﹣.∴点P′(﹣1﹣,﹣),P″(﹣1+,﹣).综上所述,点P的坐标为(﹣,)或(﹣1﹣,﹣)或P″(﹣1+,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、等腰直角三角形的性质、二次函数的性质,列出EF的长关于t的函数关系式是解题的关键.。
人教版2017-2018学年九年级(上)期中考试数学试卷(含答案)
2017-2018学年上学期期中考试九年级数学试卷(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色签字笔完成;一、选择题 (本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑。
1、在﹣5,0,﹣2,1这四个数中,最小的数是( )A .﹣5B .﹣2C .0D .12、下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3、下列计算正确的是( )A .532x x x =+B .2x ·63x x =C .()532x x =D .235x x x =÷4、下列调査中,适合采用全面调査(普査)方式的是 ( )A .对嘉陵江水质情况的调査B .对端午节期间市场上粽子质量情况的调査C .对某班50名同学体重情况的调査D .对某类烟花爆竹燃放安全情况的调査5、对于二次函数2(1)2y x =-+的图象,下列说法正确的是( ).A .开口向下B .对称轴是1x =-C .顶点坐标是(1,2)D .与x 轴有两个交点 6、若m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( )A.1-B.1C.21-D.21 7、将抛物线y =(x -4)2+2向右平移1个单位,再向下平移3个单位,则平移后抛物线的 表达式为( )A .y =(x -3)2+5B .y =(x -3)2-1C .y =(x -5)2+5D .y =(x -5)2-18、共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .21000(1)1000440x +=+B .21000(1)440x +=C .2440(1)1000x +=D .1000(12)1000440x +=+9、在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是( )A B C D10、下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为( )A .50B .60C .64D .7211、如图,在Rt △ABC 中,∠ABC =90°,AB =BC =2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连结BM ,则BM 的长是( )A.4B. 13+C. 23+D. 712、在﹣2、﹣1、0、1、2、3这六个数中,随机取出一个数,记为a ,若数 a 使关于x 的分式方程3233ax x x+=---的解是正实数,且使得二次函数y =﹣x 2+(2 a ﹣1)x +1的图象,在x >2时,y 随x 的增大而减小,则满足条件的所有a 之和是( )A .﹣2B .﹣1C .1D .2二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13、据报道,西部地区最大的客运枢纽系统﹣﹣重庆西站,一期工程已经完成90%,预计在年内建成投入使用。
2017-2018学年人教版九年级(上册)期中数学试卷及答案
2017-2018学年人教版九年级(上册)期中数学试卷及答案2017-2018学年九年级(上册)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.一元二次方程x^2-2(3x-2)+(x+1)=0的一般形式是()A。
x^2-5x+5=0B。
x^2+5x-5=0C。
x^2+5x+5=0D。
x^2+5=02.目前我国建立了比较完善的经济困难学生资助体系。
某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A。
438(1+x)^2=389B。
389(1+x)^2=438C。
389(1+2x)^2=438D。
438(1+2x)^2=3893.观察下列图案,既是中心对称图形又是轴对称图形的是()A。
B。
C。
D。
4.把二次函数y=-x^2-x+3用配方法化成y=a(x-h)^2+k的形式时,应为()A。
y=-(x-2)^2+2B。
y=-(x-2)^2+4C。
y=-(x+2)^2+4D。
y=-(x+2)^2+35.二次函数y=ax^2+bx+c(a≠0)的图像如图所示,下列结论正确的是()A。
a<0___<0C。
当-12D。
-2<c<06.对抛物线:y=-x^2+2x-3而言,下列结论正确的是()A。
与x轴有两个交点B。
开口向上C。
与y轴的交点坐标是(0,-3)D。
顶点坐标是(1,-2)7.以3和-1为两根的一元二次方程是()A。
x^2+2x-3=0B。
x^2+2x+3=0C。
x^2-2x-3=0D。
x^2-2x+3=08.在同一坐标系内,一次函数y=ax+b与二次函数y=ax^2+8x+b的图像可能是()A。
B。
C。
D。
9.将抛物线y=3x^2向左平移2个单位,再向下平移1个单位,所得抛物线为()A。
y=3(x-2)^2-1B。
y=3(x-2)^2+1C。
y=3(x+2)^2-1D。
2017年广西贺州市中考数学试卷及解析答案
2017年广西贺州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共30分)1.(3分)的倒数是()A.﹣2 B.2 C.D.2.(3分)下列各图中,∠1与∠2互为邻补角的是()A.B.C.D.3.(3分)下列式子中是分式的是()A.B.C.D.4.(3分)一条关于数学学习方法的微博在一周内转发了318000次,将318000用科学记数法可以表示为()A.3.18×105B.31.8×105C.318×104D.3.18×1045.(3分)现有相同个数的甲、乙两组数据,经计算得:=,且S 甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定 B.乙比较稳定C.甲、乙一样稳定D.无法确定6.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形 C.矩形D.等边三角形7.(3分)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为()A.1:1 B.1:2 C.1:3 D.1:48.(3分)小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()A. B.C.D.9.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.10.(3分)一次函数y=ax+a(a为常数,a≠0)与反比例函数y=(a为常数,a≠0)在同一平面直角坐标系内的图象大致为()A.B.C.D.11.(3分)如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1 B.2 C.3 D.412.(3分)将一组数,2,,2,,…,2,按下列方式进行排列:,2,,2,;2,,4,3,2;…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4)B.(4,4)C.(4,5)D.(3,5)二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)要使代数式有意义,则x的取值范围是.14.(3分)为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是.(填“全面调查”或“抽样调查”)15.(3分)将多项式2mx2﹣8mx+8m分解因式的结果是.16.(3分)如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,求点A从开始到结束所经过的路径长为(结果保留π).17.(3分)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有.18.(3分)如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣1)2017+﹣(π﹣3)0+2cos30°.20.(6分)先化简,再求值:÷(1+),其中x=+1.21.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.22.(8分)如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B处测得探测线与地面的夹角为60°,求该生命迹象C处与地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)23.(8分)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.24.(8分)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2,求四边形ABCD的面积.25.(10分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O 于点D,过点D的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙O的半径.26.(12分)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.2017年广西贺州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共30分)1.(3分)(2017•贺州)的倒数是()A.﹣2 B.2 C.D.【分析】根据倒数的定义求解.【解答】解:﹣的倒数是﹣2.故选:A.【点评】本题主要考查了倒数的定义,解题的关键是熟记定义.2.(3分)(2017•贺州)下列各图中,∠1与∠2互为邻补角的是()A.B.C.D.【分析】根据邻补角的定义作出判断即可.【解答】解:根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选:D.【点评】本题考查了邻补角的定义,正确把握定义:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.3.(3分)(2017•贺州)下列式子中是分式的是()A.B.C.D.【分析】根据分式的定义求解即可.【解答】解:、、的分母中不含有字母,属于整式,的分母中含有字母,属于分式.故选:C.【点评】本题考查了分式的定义,分母中含有字母的式子是分式.4.(3分)(2017•贺州)一条关于数学学习方法的微博在一周内转发了318000次,将318000用科学记数法可以表示为()A.3.18×105B.31.8×105C.318×104D.3.18×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将318000用科学记数法可以表示为3.18×105,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2017•贺州)现有相同个数的甲、乙两组数据,经计算得:=,且S甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定 B.乙比较稳定C.甲、乙一样稳定D.无法确定【分析】根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立解答即可.【解答】解:∵S甲2>S乙2,∴乙比较稳定,故选:B.【点评】本题考查的是平均数和方差,掌握方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立是解题的关键.6.(3分)(2017•贺州)下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形 C.矩形D.等边三角形【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【解答】解:A、正五边形,不是中心对称图形,是轴对称图形,故本选项错误;B、平行四边形,是中心对称图形,不是轴对称图形,故本选项错误;C、矩形,既是中心对称图形又是轴对称图形,故本选项正确;D、等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(3分)(2017•贺州)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为()A.1:1 B.1:2 C.1:3 D.1:4【分析】证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,DE=BC,证出△ADE∽△ABC,由相似三角形的性质得出△ADE的面积:△ABC 的面积=1:4,即可得出结果.【解答】解:∵D、E分别为△ABC的边AB、AC上的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面积:△ABC的面积=()2=1:4,∴△ADE的面积:四边形BCED的面积=1:3;故选:C.【点评】本题考查了相似三角形的判定与性质、三角形中位线定理;熟记三角形中位线定理,证明三角形相似是解决问题的关键.8.(3分)(2017•贺州)小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()A. B.C.D.【分析】根据看等边三角形木框的方向即可得出答案.【解答】解:竖直向下看可得到线段,沿与平面平行的方向看可得到C,沿与平面不平行的方向看可得到D,不论如何看都得不到一点.故选:B.【点评】本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键.9.(3分)(2017•贺州)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x+4≤13,得:x≤3,解不等式﹣x<1,得:x>﹣1,则不等式组的解集为﹣1<x≤3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(3分)(2017•贺州)一次函数y=ax+a(a为常数,a≠0)与反比例函数y=(a为常数,a≠0)在同一平面直角坐标系内的图象大致为()A.B.C.D.【分析】分为a>0和a<0两种情况,然后依据一次函数和反比例函数的图象的性质进行判断即可.【解答】解:当a>0时,一次函数y=ax+a,经过一二三象限,反比例函数图象位于一、三象限,当a<0时,一次函数y=ax+a,经过二、三、四象限,反比例函数图象位于二、四象限.故选:C.【点评】本题主要考查的是一次函数、反比例函数的图象和性质,熟练掌握相关性质是解题的关键.11.(3分)(2017•贺州)如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1 B.2 C.3 D.4【分析】根据==和点E是点D关于AB的对称点,求出∠DOB=∠COD=∠BOE=60°,求出∠CED,即可判断①②;根据圆周角定理求出当M和A重合时∠MDE=60°即可判断③;求出M点的位置,根据圆周角定理得出此时DF是直径,即可求出DF长,即可判断④.【解答】解:∵==,点E是点D关于AB的对称点,∴=,∴∠DOB=∠BOE=∠COD==60°,∴①正确;∠CED=∠COD==30°=,∴②正确;∵的度数是60°,∴的度数是120°,∴只有当M和A重合时,∠MDE=60°,∵∠CED=30°,∴只有M和A重合时,DM⊥CE,∴③错误;做C关于AB的对称点F,连接CF,交AB于N,连接DF交AB于M,此时CM+DM的值最短,等于DF长,连接CD,∵===,并且弧的度数都是60°,∴∠D==60°,∠CFD==30°,∴∠FCD=180°﹣60°﹣30°=90°,∴DF是⊙O的直径,即DF=AB=10,∴CM+DM的最小值是10,∴④正确;故选C.【点评】本题考查了圆周角定理,轴对称﹣最短问题等知识点,能灵活运用圆周角定理求出各个角的度数和求出M的位置是解此题的关键.12.(3分)(2017•贺州)将一组数,2,,2,,…,2,按下列方式进行排列:,2,,2,;2,,4,3,2;…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4)B.(4,4)C.(4,5)D.(3,5)【分析】先找出被开方数的规律,然后再求得的位置即可.【解答】解:这组数据可表示为:、、、、;、、、、;…∵19×2=38,∴为第4行,第4个数字.故选:B.【点评】本题主要考查的是数字的变化规律,找出其中的规律是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•贺州)要使代数式有意义,则x的取值范围是x≥且x≠1 .【分析】直接利用二次根式的定义、分式的有意义的条件分析得出答案.【解答】解:由题意可得:2x﹣1≥0,x﹣1≠0,解得:x≥且x≠1.故答案为:x≥且x≠1.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.14.(3分)(2017•贺州)为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:了调查某市中小学生对“营养午餐”的满意程度,因为人员多、所费人力、物力和时间较多所以适合采用的调查方式是抽样调查,故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.15.(3分)(2017•贺州)将多项式2mx2﹣8mx+8m分解因式的结果是2m(x﹣2)2.【分析】原式提取2m,再利用完全平方公式分解即可.【解答】解:原式=2m(x2﹣4x+4)=2m(x﹣2)2,故答案为:2m(x﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.(3分)(2017•贺州)如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC 绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,求点A从开始到结束所经过的路径长为(结果保留π)π.【分析】利用余弦的概念求出AC,根据弧长公式计算即可.【解答】解:Rt△ABC中,∠A=60°,AC==2,∠ACB=30°,∴∠ACA1=150°,点A从开始到结束所经过的路径长为以C为圆心、2为半径的弧,即=π,故答案为:π.【点评】本题考查的是点的轨迹以及弧长的计算,掌握弧长公式、旋转变换的性质、正确找出点的运动轨迹是解题的关键.17.(3分)(2017•贺州)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有①④⑤.【分析】根据图象的开口可确定a,结合对称轴可确定b,根据图象与y轴的交点位置可确定c,根据图象与x轴的交点个数可确定△;根据当x=﹣2时,y<0;抛物线与x轴的另一个交点的坐标是(3,0),即可得出结论.【解答】解:①∵开口向下∴a<0∵与y轴交于正半轴∴c>0∵对称轴在y轴右侧∴b>0∴abc<0,故①正确;∵二次函数的对称轴是直线x=1,即二次函数的顶点的横坐标为x=﹣=1,∴2a+b=0,故②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③错误;∵b=﹣2a,∴可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y<0;即4a﹣(﹣4a)+c=8a+c<0,故④正确;∵二次函数的图象和x轴的一个交点是(﹣1,0),对称轴是直线x=1,∴另一个交点的坐标是(3,0),∴设y=ax2+bx+c=a(x﹣3)(x+1)=ax2﹣2ax﹣3a,即a=a,b=﹣2a,c=﹣3a,∴a:b:c=a:(﹣2a):(﹣3a)=﹣1:2:3,故⑤正确;故答案为:①④⑤.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.18.(3分)(2017•贺州)如图,在正方形ABCD内作∠EAF=45°,AE交BC 于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF 绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为 6 .【分析】由旋转的性质可知:AF=AG,∠DAF=∠BAG,接下再证明∠GAE=∠FAE,由全等三角形的性质可知:AB=AH,GE=EF=5.设正方形的边长为x,接下,在Rt△EFC中,依据勾股定理列方程求解即可.【解答】解:由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△FAE.∵AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.故答案为:6.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了旋转的性质、全等三角形的性质和判定、勾股定理的应用,正方形的性质,依据旋转的性质构造全等三角形和直角三角形是解题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2017•贺州)计算:(﹣1)2017+﹣(π﹣3)0+2cos30°.【分析】直接利用算术平方根的性质以及零指数幂的性质和特殊角的三角函数值分别化简求出答案.【解答】解:原式=﹣1+3﹣1+2×=1+.【点评】此题主要考查了算术平方根的性质以及零指数幂的性质和特殊角的三角函数值,正确化简各数是解题关键.20.(6分)(2017•贺州)先化简,再求值:÷(1+),其中x=+1.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=当x=+1时,原式==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.(8分)(2017•贺州)在“植树节”期间,小王、小李两人想通过摸球的方式决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.【分析】(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.【解答】解:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴规则不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)(2017•贺州)如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B处测得探测线与地面的夹角为60°,求该生命迹象C处与地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)【分析】过C点作AB的垂线交AB的延长线于点D,由三角形外角的性质可得出∠ACB=30°,进而可得出BC=AB=4米,在Rt△CDB中利用锐角三角函数的定义即可求出CD的值.【解答】解:过C点作AB的垂线交AB的延长线于点D,∵∠CAD=30°,∠CBD=60°,∴∠ACB=30°,∴∠CAB=∠ACB=30°,∴BC=AB=4米,在Rt△CDB中,BC=4米,∠CBD=60°,sin∠CBD=,∴sin60°=,∴CD=4sin60°=4×=2≈3.5(米),故该生命迹象所在位置的深度约为3.5米.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(8分)(2017•贺州)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.【分析】可设乙工程队单独完成这项工程需要x天,根据等量关系:甲、乙两个工程队合作10天完成了剩余的工程,即工程总量的1﹣,依此列出方程求解即可.【解答】解:设乙工程队单独完成这项工程需要x天,依题意有(+)×10=1﹣,解得x=20,经检验,x=20是原方程的解.答:乙工程队单独完成这项工程需要20天.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.24.(8分)(2017•贺州)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2,求四边形ABCD的面积.【分析】(1)根据等腰三角形的性质得到∠ABD=∠ADB,根据角平分线的定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠CBD,根据全等三角形的性质得到AO=OC,于是得到结论;(2)根据菱形的性质得到OD=BD=,根据勾股定理得到OC==2,于是得到结论.【解答】(1)证明:∵AB=AD,∴∠ABD=∠ADB,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠CBD,∵AC⊥BD,AB=AD,∴BO=DO,在△AOD与△COB中,,∴△AOD≌△COB,∴AO=OC,∵AC⊥BD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OD=BD=,∴OC==2,∵AC=4,∴S菱形ABCD=AC•BD=4.【点评】本题考查了菱形的性质和判定,勾股定理,菱形的面积的计算,全等三角形的判定与性质,角平分线的定义,熟练掌握菱形的判定和性质定理是解题的关键.25.(10分)(2017•贺州)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC 的平分线交⊙O于点D,过点D的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙O的半径.【分析】(1)连接OD,由切线的性质和已知条件可证得OD∥EF,则可证得结论;(2)过D作DG⊥AE于点G,连接CD,则可证得△ADF≌△ADG、△CDF≌△BDG,则可求得AB的长,可求得圆的半径.【解答】(1)证明:如图1,连接OD,∵EF是⊙O的切线,且点D在⊙O上,∴OD⊥EF,∵OA=OD,∴∠DAB=∠ADO,∵AD平分∠BAC,∴∠DAB=∠DAC,∴∠ADO=∠DAC,∴AF∥OD,∴AF⊥EF;(2)解:如图2,过D作DG⊥AE于点G,连接CD,∵∠BAD=∠DAF,AF⊥EF,DG⊥AE,∴BD=CD,DG=DF,在Rt△ADF和Rt△ADG中∴Rt△ADF≌Rt△ADG(HL),同理可得Rt△CDF≌Rt△BDG,∴BG=CF=2,AG=AF=AC+CF=6+2=8,∴AB=AG+BG=8+2=10,∴⊙O的半径OA=AB=5.【点评】本题主要考查切线的性质及圆周角定理,掌握过切点的半径与切线垂直是解题的关键,注意全等三角形的应用.26.(12分)(2017•贺州)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【分析】(1)首先依据等腰直角三角形的性质求得点B的坐标,然后将点A和点B的坐标代入抛物线的解析式求解即可;(2)设直线AB的解析式为y=kx+b,将点A和点B的坐标代入可求得直线AB 的解析式,设点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),然后列出EF关于t的函数关系式,最后利用配方法求得EF的最大值即可;(3)过点F作直线a⊥EF,交抛物线于点P,过点E作直线b⊥EF,交抛物线P′、P″,先求得点E和点F的纵坐标,然后将点E和点F的纵坐标代入抛物线的解析式求得对应的x的值,从而可求得点P、P′、P″的坐标.【解答】解:(1)∵A,C的坐标分别为(1,0),(﹣4,0),∴AC=5.∵△ABC为等腰直角三角形,∠C=90°,∴BC=AC=5.∴B(﹣4,﹣5).将点A和点B的坐标代入得:,解得:,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)如图1所示:设直线AB的解析式为y=kx+b,将点A和点B的坐标代入得:,解得:k=1,b=﹣1.所以直线AB的解析式为y=x﹣1.设点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3).∴EF=﹣t2﹣2t+3﹣(t﹣1)=﹣t2﹣3t+4=(t+)2+.∴当t=﹣时,FE取最大值,此时,点E的坐标为(﹣,﹣).(3)存在点P,能使△PEF是以EF为直角边的直角三角形.理由:如图所示:过点F作直线a⊥EF,交抛物线于点P,过点E作直线b⊥EF,交抛物线P′、P″.由(2)可知点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),t=﹣,∴点E(﹣,﹣)、F(﹣,).①当﹣t2﹣2t+3=时,解得:x=﹣或x=﹣(舍去).∴点P的坐标为(﹣,).②当﹣t2﹣2t+3=﹣时,解得:x=﹣1+或x=﹣1﹣.∴点P′(﹣1﹣,﹣),P″(﹣1+,﹣).综上所述,点P的坐标为(﹣,)或(﹣1﹣,﹣)或P″(﹣1+,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、等腰直角三角形的性质、二次函数的性质,列出EF的长关于t的函数关系式是解题的关键.。
广西贺州市九年级上学期数学期中试卷
广西贺州市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2016九下·赣县期中) 二次函数的顶点坐标是()A . (3,2)B . (3,﹣2)C . (﹣3,﹣2)D . (﹣3,2)2. (2分)(2019·河池模拟) 如图,线段是的直径,弦,,则等于()A . 160°B . 150°C . 140°D . 120°3. (2分)如图,△ABC中,∠C=90°,AB=5,BC=3,CA=4,那么sinA等于()A .B .C .D .4. (2分) (2020八下·海勃湾期末) 如图,平行四边形ABCD中,∠B=60°.G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F ,连结CE , DF ,下列说法错误的是()A . 四边形CEDF是平行四边形B . 当CE⊥AD时,四边形CEDF是矩形C . 当∠AEC=120°时,四边形CEDF是菱形D . 当AE=ED时,四边形CEDF是菱形5. (2分)(2019·萧山模拟) 如图,AB是⊙O 的直径,点D是半径OA的中点,过点D作CD⊥AB,交⊙O 于点C,点E为弧BC的中点,连结ED并延长ED交⊙O于点F,连结AF、BF,则()A . sin∠AFE=B . cos∠BFE=C . tan∠EDB=D . tan∠BAF=6. (2分)(2019·利辛模拟) 如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A . ∠a+∠β=180°B . ∠β-∠α=90°C . ∠β=3∠αD . ∠a+∠β=90°7. (2分) (2019九上·汕头月考) 将抛物线y=(x﹣3)2﹣4向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A . y=(x﹣4)2﹣6B . y=(x﹣2)2﹣2C . y=(x﹣1)2﹣3D . y=(x﹣4)2﹣28. (2分) (2019九上·思明期中) 二次函数y=ax2+bx+c的x , y的部分对应值如表所示,则下列判断错误的是()x﹣2﹣1012y﹣2.50 1.52 1.5A . 当x<0时,y随x的增大而增大B . 对称轴是直线x=1C . 当x=4时,y=﹣2D . 方程ax2+bx+c=0有一个根是3二、填空题 (共8题;共9分)9. (1分) (2019九上·邗江月考) 已知抛物线图象的顶点为,且过,则抛物线的关系式为________.10. (1分)△ABC中,∠BAC=90°AD⊥BC于D,若AB=2,BC=3,则CD的长=________。
广西昭平县九年级数学上学期期中试题(扫描版)新人教版(new)
广西昭平县2017-2018学年九年级数学上学期期中试题
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
广西贺州市九年级上学期数学期中考试试卷
广西贺州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)下列图形中,既是轴对称图形,又是中心对称图形的是()A . 等腰梯形B . 平行四边形C . 正三角形D . 矩形2. (1分)(2017·深圳模拟) 下列命题为真命题的是A . 有两边及一角对应相等的两个三角形全等B . 方程x2+2x+3=0有两个不相等的实数根C . 面积之比为1∶2的两个相似三角形的周长之比是1∶4D . 顺次连接任意四边形各边中点得到的四边形是平行四边形3. (1分)已知x=1是方程x2+bx +b -3=0的一个根,那么此方程的另一个根为()A . -2B . -1C . 1D . 24. (1分)抛物线的顶点坐标是A . (1,3)B . (-1,-3)C . (-2,3)D . (-1,3)5. (1分)点A在数轴上距原点5个单位长度,将A点先向左移动2个单位长度,再向右移动6个单位长度,此时A点所表示的数是()A . – 1B . 9C . – 1或9D . 1或– 96. (1分) (2019九上·宜兴期末) 将抛物线向上平移2个单位后,得到的函数表达式是()A .B .C .D .7. (1分)(2017·历下模拟) 如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1 ,当点C1、B1、C三点共线时,旋转角为α,连接BB1 ,交AC于点D.下列结论:①△AC1C为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1 ,其中正确的是()A . ①③④B . ①②④C . ②③④D . ①②③④8. (1分)方程的解是().A . x=4B . x=2C . x=4或x=0D . x=09. (1分)某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x,则可列方程为().A . 25(1+x)2=64B . 25(1-x)2=64C . 64(1+x)2=25D . 64(1-x)2=2510. (1分)二次函数y=x2-2x-3的图象如图所示,当y<0时,自变量 x的取值范围为()A . -1<x<3B . x<-1C . x>3D . x<-1或x>3二、填空题 (共6题;共6分)11. (1分)(2016·丹阳模拟) 将一元二次方程(x+1)(x+2)=0化成一般形式后的常数项是________.12. (1分)已知m , n满足│m+1│+( n-3)2=0,化简(x-m)(x-n)=________.13. (1分) (2018九上·丽水期中) 抛物线y=(x-1)2-2与y轴的交点坐标是________14. (1分)(2020·枣阳模拟) 目前甲型H1N1流感病毒在全球已有蔓延趋势,世界卫生组织提出各国要严加防控,因为曾经有一种流感病毒,若一人患了流感,经过两轮传染后共有81人患流感.如果设每轮传染中平均一个人传染x个人,那么可列方程为________.15. (1分)如图,一座抛物线型拱桥,桥下水面宽度是4m时,拱高为2m,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m,那么木船的高不得超过 ________m.16. (1分) (2017八上·深圳期中) 如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A ﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是________三、解答题 (共7题;共15分)17. (2分)综合题。
广西贺州市九年级上学期数学期中模拟试卷
广西贺州市九年级上学期数学期中模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)观察下列图形,是中心对称图形的是()A .B .C .D .2. (2分)(2017·芜湖模拟) 已知x=1是方程x2+bx=2的一个根,则方程的另一个根是()A . 1B . 2C . ﹣2D . ﹣13. (2分) (2018九上·安定期末) 将抛物线y=x2-4x-4向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为()A . y=(x+1)2-13B . y=(x-5)2-3C . y=(x-5)2-13D . y=(x+1)2-34. (2分)方程配方后,下列正确的是()A .B .C .D .5. (2分)已知抛物线y=x2+x﹣1经过点P(m,5),则代数式m2+m+2016的值为()A . 2021B . 2022C . 2023D . 20246. (2分)西宁中心广场有各种音乐喷泉,其中一个喷水管的最大高度为3米,此时距喷水管的水平距离为米,在如图3所示的坐标系中,这个喷泉的函数关系式是A . y=-(x-)x2+3B . y=-3(x+)x2+3C . y=-12(x-)x2+3D . y=-12(x+)x2+37. (2分)(2013·玉林) 在数轴上表示不等式x+5≥1的解集,正确的是()A .B .C .D .8. (2分)下列说法正确的是()A . 平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B . 平移和旋转的共同点是改变了图形的位置,而图形的形状大小没有变化C . 图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D . 在平移和旋转图形中,对应角相等,对应线段相等且平行9. (2分)关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2 ,且有x1-x1x2+x2=1-a,则a的值是()A . 1B . -1C . 1或-1D . 210. (2分)二次函数y=x2+2x-5有A . 最大值-5B . 最小值-5C . 最大值-6D . 最小值-6二、填空题 (共8题;共9分)11. (1分) (2019九上·东台期中) 一元二次方程4x2= 3x 的解是________.12. (1分) (2017八下·宝安期中) 如图,在Rt△ABC中,已知∠C=90°,∠A=60°,AC=3cm,以斜边AB 的中点P为旋转中心,把这个三角形按逆时针方向旋转90°得到Rt△A′B′C′,则旋转前后两个直角三角形重叠部分的面积为________.13. (1分)若关于x的方程(k﹣2)x +2k=0是一元二次方程,则k=________.14. (1分)设a,b是方程x2+x﹣2013=0的两个不相等的实数根,则a2+2a+b的值为________ .15. (1分) (2018七下·浦东期中) 平面直角坐标系xoy中,将点A(2,3)绕(-2,-1)旋转90°后的坐标是________.16. (2分) (2015九上·崇州期末) 已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为________.17. (1分)一元二次方程x2﹣3=0的根为________.18. (1分) (2016九下·农安期中) 如图,在平面直角坐标系中,抛物线y=a(x﹣3)2+2(a>0)的顶点为A,过点A作y轴的平行线交抛物线y=﹣ x2﹣2于点B,则A、B两点间的距离为________.三、作图题 (共1题;共5分)19. (5分)将下面的图案绕点O顺时针方向旋转90度,作出旋转后的图形.四、综合题 (共7题;共75分)20. (5分)证明定理:等腰三角形的两个底角相等.(画出图形、写出已知、求证并证明)21. (5分)一元二次方程x2+7x+9=1的根与二次函数y=x2+7x+9的图象有什么关系?试把方程的根在图象上表示出来.22. (10分) (2019九上·辽源期末) 一名同学推铅球,铅球出手后行进过程中离地面的高度 (单位: )与水平距离 (单位: )近似满足函数关系,其图象如图所示.已知铅球落地时的水平距离为.(1)求铅球出手时离地面的高度;(2)在铅球行进过程中,当它离地面的高度为时,求此时铅球的水平距离.23. (15分) (2016九下·吉安期中) 如图,在平面直角坐标系中,已知点B的坐标是(﹣1,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,写出点P的坐标(不要求写解题过程).24. (10分) (2012八下·建平竞赛) 如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D 在同一条直线上,且点C与点F重合.(在图3至图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请说明:AH=DH.25. (15分)(2018·潮南模拟) 随着“一带一路”的进一步推进,我国瓷器(“china”)更为“一带一路”沿线人民所推崇,一外国商户看准这一商机,向我国一瓷器经销商咨询工艺品茶具,得到如下信息:①每个茶壶的批发价比茶杯多110元;②一套茶具包括一个茶壶与四个茶杯;③600元批发茶壶的数量与160元批发茶杯的数量相同.根据以上信息:(1)求茶壶与茶杯的批发价;(2)若该商户购进茶杯的数量是茶壶数量的5倍还多20个,并且总数不超过200个,该商户打算将一半的茶具按每套500元成套销售,其余按每个茶壶270元,每个茶杯70元零售,请帮助他设计一种获取利润最大的方案,并求出最大利润.26. (15分)(2018·成都模拟) 如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2 ,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x 轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为________;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、作图题 (共1题;共5分)19-1、四、综合题 (共7题;共75分) 20-1、21-1、22-1、22-2、23-1、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。
广西贺州市九年级上学期数学期中考试试卷
广西贺州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共8分)1. (1分) (2019九下·温州竞赛) 二次函数y=-(x-1)2+2图象的对称轴是()A . 直线x=2B . 直线x=1C . 直线x=-1D . 直线x=-22. (1分)在平面直角坐标系中,点(3,-2)关于原点对称点的坐标是()A . (3,2)B . (3,-2)C . (-3,2)D . (-3,-2)3. (1分)(2017·哈尔滨) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (1分) (2020九上·铁锋期末) 用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A .B .C .D .5. (1分)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB 的长为()A .B .C .D .6. (1分)把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A . y=﹣(x+1)2+2B . y=﹣(x+1)2﹣2C . y=(x+1)2﹣2D . y=﹣(x﹣1)2+27. (1分) (2020七上·嘉定期末) 下面四个车标图案中,既不是旋转对称图形又不是轴对称图形的是()A .B .C .D .8. (1分) (2020九上·嘉兴月考) 一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC 于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A . 3B . 3C .D .二、填空题 (共8题;共8分)9. (1分) (2019九上·鼓楼期中) 若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则2019﹣a﹣b的值是________.10. (1分)如图,已知二次函数y=ax2+bx+c(a≠0)的图形经过点(1,2),且与x轴交点的横坐标分别为x1 , x2 ,其中﹣1<x1<0,1<x2<2,下列结论:①abc<0;②a<b<﹣2a;③b2+8a<4ac;④﹣1<a<0.其中正确结论的序号是________11. (1分) (2018九上·江苏月考) 已知方程组有两组不相等的实数解,则的取值范围________.12. (1分)(2019·驻马店模拟) 如图,直线,,,且,则的度数为________.13. (1分)以下四个命题:①若一个角的两边和另一个角的两边分别互相垂直,则这两个角互补;②边数相等的两个正多边形一定相似;③等腰三角形ABC中,D是底边BC上一点,E是一腰AC上的一点,若∠BAD=60°且AD=AE,则∠EDC=30°;④任意三角形的外接圆的圆心一定是三角形三条边的垂直平分线的交点.其中正确命题的序号为________.14. (1分) (2019九上·丽江期末) 某大型超市连锁集团元月份销售额为300万元,三月份达到了720万元,若二、三月份两个月平均每月增长率为x,则根据题意列出方程是________.15. (1分) (2018九上·黄冈月考) 若抛物线的对称轴是直线,则它的顶点坐标是________.16. (1分)(2019·赣县模拟) 如图,AC经过⊙O的圆心O , AB与⊙O相切于点B ,若∠A=50°,则∠C =________度.三、计算题 (共1题;共1分)17. (1分) (2020八上·松江月考) 解方程:四、解答题 (共11题;共21分)18. (1分) (2019八上·长安月考) 已知:如图,OC=OD,AD⊥OB于D,BC⊥OA于C,求证:EA=EB.19. (2分) (2016九上·通州期末) 小明四等分弧AB,他的作法如下:①连接AB(如图);作AB的垂直平分线CD交弧AB于点M,交AB于点T;②分别作AT,TB的垂直平分线EF,GH,交弧AB于N,P两点,则N,M,P三点把弧AB四等分。
广西昭平县九年级思品上学期期中试题(扫描版)新人教版(new)
广西昭平县2017-2018学年九年级思品上学期期中试题
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
广西贺州市九年级上学期期中数学试卷
广西贺州市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)若x=1是方程的一个根,则方程的另一个根与k的值是()A . 2,3B . -2,3C . -2,-3D . 2,-32. (2分) (2017九上·琼中期中) 对于抛物线y=3(x﹣3)2+5,下列说法正确的是()A . 对称轴为x=3,顶点坐标(3,5)B . 对称轴为x=﹣3,顶点坐标(﹣3,5)C . 对称轴为x=5,顶点坐标(5,3)D . 对称轴为x=﹣5,顶点坐标(﹣5,3)3. (2分)如果两个图形可通过旋转而相互得到,则下列说法中正确的有().①对应点连线的中垂线必经过旋转中心.②这两个图形大小、形状不变.③对应线段一定相等且平行.④将一个图形绕旋转中心旋转某个定角后必与另一个图形重合.A . 1个B . 2个C . 3个D . 4个4. (2分) (2017九上·深圳期中) 一元二次方程x2﹣6x﹣5=0配方可变形为()A . (x+3)2=14B . (x﹣3)2=4C . (x﹣3)2=14D . (x+3)2=45. (2分) (2019九上·丹东月考) 一元二次方程x2+x+1=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 无实数根D . 无法确定6. (2分)点M(1,)关于原点对称的点的坐标是()A . (-1,-2)B . (1,2)C . (-1,2)D . (-2,1)7. (2分)如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠ABO的度数是()A . 25°B . 30°C . 40°D . 50°8. (2分)已知二次函数y=ax2+bx+c的图象如图,则a、b、c满足()A . a<0,b<0,c>0;B . a<0,b<0,c<0;C . a<0,b>0,c>0;D . a>0,b<0,c>0。
贺州市九年级上学期期中数学试卷
贺州市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=,则△ABC 的边长是()A . 3B . 4C . 5D . 62. (2分)已知α是锐角,且点A(, a),B(sinα+cosα,b), C(-m2+2m-2,c)都在二次函数y=-x2+x+3的图象上,那么a、b、c的大小关系是()A . a<b<cB . a<c<C . b<c<aD . c<b<a3. (2分) (2019九上·宝安期末) 下列说法正确的是A . 两条对角线互相垂直且相等的四边形是正方形B . 任意两个等腰三角形相似C . 一元二次方程,无论a取何值,一定有两个不相等的实数根D . 关于反比例函数,y的值随x值的增大而减小4. (2分)如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a 的值为()A . ﹣B . ﹣C . ﹣1D . ﹣25. (2分) (2011七下·广东竞赛) 将点B(5,-1)向上平移2个单位得到点A(a+b, a-b)。
则()A . a=2, b=3B . a=3, b=2C . a=-3, b=-2D . a=- 2, b=-36. (2分)(2017·日照) 下列说法正确的是()A . 圆内接正六边形的边长与该圆的半径相等B . 在平面直角坐标系中,不同的坐标可以表示同一点C . 一元二次方程ax2+bx+c=0(a≠0)一定有实数根D . 将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等7. (2分)下列说法正确的是()A . 圆内接正六边形的边长与该圆的半径相等B . 在平面直角坐标系中,不同的坐标可以表示同一点C . 一元二次方程ax2+bx+c=0(a≠0)一定有实数根D . 将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等8. (2分) (2016九上·江岸期中) 九年级某班在期中考试前,每个同学都向全班其他同学各送一张写有祝福的卡片,全班共送了1190张卡片,设全班有x名学生,根据题意列出方程为()A . x(x﹣1)=1190B . x(x+1)=1190C . x(x+1)=1190D . x(x﹣1)=11909. (2分) (2016九上·江岸期中) 如图,△ABC内接于⊙O,AB是⊙O的直径,CE平分∠ACB交⊙O于点E,∠E=30°,交AB于点D,连接AE,则SADC:S△ADE的比值为()A .B .C .D . 110. (2分) (2016九上·江岸期中) 二次函数y=ax2+bx+c(a≠0)的大致图象如图所示(1<x=h<2,0<xA <1).下列结论:①2a+b>0;②abc<0;③若OC=2OA,则2b﹣ac=4;④3a﹣c<0.其中正确的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分) A,B的坐标分别为(1,0),(0,2),若将线段AB平移到A1B1 , A1 , B1的坐标分别为(﹣2,a),(b,5),则a+b的立方根是________.12. (1分)如图,在直角坐标系中放入一个边长OC为9的矩形纸片ABCO.将纸片翻折后,点B恰好落在x 轴上,记为B′,折痕为CE,已知tan∠OB′C= .则点B′点的坐标为________.13. (1分)已知点,现将点先向左平移个单位,之后又向下平移个单位,得到点,则 ________.14. (1分)(2019·资阳) 给出以下命题:①平分弦的直径垂直于这条弦;②已知点、、均在反比例函数的图象上,则;③若关于x的不等式组无解,则;④将点向左平移3个单位到点,再将绕原点逆时针旋转90°到点,则的坐标为.其中所有真命题的序号是________.15. (1分) (2016九上·江岸期中) 将函数y=x2的图象向右平移2个单位得函数y1的图象,将y与y1合起来构成新图象,直线y=m被新图象依次截得三段的长相等,则________.16. (1分) (2016九上·江岸期中) 在△ABC中,∠BAC=90°,AB=AC=2cm,线段BC上一动点P从C点开始运动,到B点停止,以AP为边在AC的右侧作等边△APQ,则Q点运动的路径为________ cm.三、解答题 (共8题;共75分)17. (5分)《孙子算经》中有一道题目:“今有木,不知长短。
贺州市九年级上学期数学期中考试试卷
贺州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018九上·江苏月考) 用配方法解一元二次方程时,下列变形正确的为()A .B .C .D .2. (2分)已知函数y=(m﹣2)是反比例函数,则m的值为()A . 2B . ﹣2C . 2或﹣2D . 任意实数3. (2分) (2018九上·娄底期中) 若反比例函数y= 的图象经过点(﹣1,﹣2),则k的值为()A . ﹣2B . ﹣1C . 1D . 24. (2分)下列图形一定是相似图形的是()A . 两个矩形B . 两个正方形C . 两个直角三角形D . 两个等腰三角形5. (2分) (2018九上·娄底期中) 反比例函数y= 的图象如图,则函数y=﹣kx+2的图象可能是()A .B .C .D .6. (2分) (2018九上·娄底期中) 如果x2﹣x﹣1=(x+1)0 ,那么x的值为()A . 2或﹣1B . 0或1C . 2D . ﹣17. (2分)(2018·威海) 若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y= (k<0)上,则y1 , y2 ,y3的大小关系是()A . y1<y2<y3B . y3<y2<y1C . y2<y1<y3D . y3<y1<y28. (2分) (2018九上·乌鲁木齐期末) 关于的一元二次方程有实数根,则的取值范围是()A .B .C .D .9. (2分) (2018九上·娄底期中) 如果两个相似三角形对应高的比是4:9,那么它们的面积比是()A . 4:9B . 2:3C . 16:81D . 9:410. (2分) (2018九上·娄底期中) A,B两城间的距离为15千米,一人行路的平均速度每小时不少于3千米,也不多于5千米,则表示此人由A到B的行路速度x(千米/小时)与所用时间y(小时)的关系y= 的函数图象是()A .B .C .D .11. (2分)(2018·嘉兴模拟) 如图,在正方形ABCD中,AD=6,点E是边CD上的动点(点E不与端点C,D 重合),AE的垂直平分线FG分别交AD,AE,BC于点F,H,G.当时,DE的长为()A . 2B .C .D . 412. (2分) (2018九上·娄底期中) 观察下表,第()个图形中“●”的个数与“★”的个数相等.序号123…n图形……●的个数81624……★的个数149……A . 5B . 6C . 7D . 8二、填空题 (共6题;共7分)13. (1分)(2017·江东模拟) 如图,直线y1=k1x+b和直线y2=k2x+b分别与x轴交于A(﹣1,0)和B(3,0)两点.则不等式组k1x+b>k2x+b>0的解集为________.14. (1分) (2017八上·西安期末) 设直线nx+(n+1)y= (n为自然数)与两坐标轴围成的三角形面积为Sn ,则S1+S2+…+S2016的值为________15. (1分) (2017九下·梁子湖期中) 如图,已知点A是双曲线y= 在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y= (k<0)上运动,则k的值是________.16. (1分)(2017·临高模拟) 将边长为2的正方形OABC如图放置,O为原点.若∠α=15°,则点B的坐标为________.17. (1分)(2019·资阳) 给出以下命题:①平分弦的直径垂直于这条弦;②已知点、、均在反比例函数的图象上,则;③若关于x的不等式组无解,则;④将点向左平移3个单位到点,再将绕原点逆时针旋转90°到点,则的坐标为.其中所有真命题的序号是________.18. (2分) (2016八上·海门期末) 若点P(1﹣m,2+m)关于x轴对称的点的坐标在第一象限,则m的取值范围是________.三、解答题 (共8题;共64分)19. (10分)已知方程是关于x的一元一次方程,求a的值.20. (2分)如图,AB•AE=AD•AC,且∠1=∠2,求证:△ABC∽△ADE.21. (2分)(2018·官渡模拟) 为了方便孩子入学,小王家购买了一套学区房,交首付款15万元,剩余部分向银行贷款,贷款及贷款利息按月分期还款,每月还款数相同.计划每月还款y万元,x个月还清贷款,若y是x的反比例函数,其图象如图所示:(1)求y与x的函数解析式;(2)若小王家计划180个月(15年)还清贷款,则每月应还款多少万元?22. (10分) (2018九上·乐东月考) 已知关于x的方程 .(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.23. (5分) (2018九上·娄底期中) 某商场销售一批某品牌衬衫,衬衫进货单价为80元,销售单价为120元时,每天可售出20件.为了扩大销售,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫降价1元,商场平均每天就可多售出2件,若商场销售这种衬衫平均每天盈利1200元,售价应定为多少元?24. (10分) (2018九上·娄底期中) 如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y= (x>0)和y= (x<0)的图象交于点P、点Q.(1)求点P的坐标;(2)若△POQ的面积为8,求k的值.25. (15分) (2018九上·娄底期中) 如图,一次函数y=k1x+b与反比例函数的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2 ,求实数p的取值范围.26. (10分) (2018九上·娄底期中) 如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第ts时,△E FG的面积为Scm2 .(1)当t=1s时,S的值是多少?(2)写出S与t之间的函数解析式,并指出自变量t的取值范围;参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共64分)19-1、20-1、21-1、21-2、22-1、22-2、23-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、第11 页共11 页。
2017年广西贺州市中学考试数学试卷
2017年广西贺州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共30分)1.(3分)的倒数是()A.﹣2 B.2 C.D.2.(3分)下列各图中,∠1与∠2互为邻补角的是()A. B.C.D.3.(3分)下列式子中是分式的是()A.B.C. D.4.(3分)一条关于数学学习方法的微博在一周内转发了318000次,将318000用科学记数法可以表示为()A.3.18×105B.31.8×105C.318×104D.3.18×1045.(3分)现有相同个数的甲、乙两组数据,经计算得:=,且S 甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定B.乙比较稳定C.甲、乙一样稳定 D.无法确定6.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形C.矩形D.等边三角形7.(3分)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为()A.1:1 B.1:2 C.1:3 D.1:48.(3分)小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()A.B.C.D.9.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.10.(3分)一次函数y=ax+a(a为常数,a≠0)与反比例函数y=(a为常数,a≠0)在同一平面直角坐标系内的图象大致为()A.B.C.D.11.(3分)如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1 B.2 C.3 D.412.(3分)将一组数,2,,2,,…,2,按下列方式进行排列:,2,,2,;2,,4,3,2;…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4) B.(4,4) C.(4,5) D.(3,5)二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)要使代数式有意义,则x的取值范围是.14.(3分)为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是.(填“全面调查”或“抽样调查”)15.(3分)将多项式2mx2﹣8mx+8m分解因式的结果是.16.(3分)如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,求点A从开始到结束所经过的路径长为(结果保留π).17.(3分)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有.18.(3分)如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣1)2017+﹣(π﹣3)0+2cos30°.20.(6分)先化简,再求值:÷(1+),其中x=+1.21.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.22.(8分)如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B处测得探测线与地面的夹角为60°,求该生命迹象C处与地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)23.(8分)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.24.(8分)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2,求四边形ABCD的面积.25.(10分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O 于点D,过点D的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙O的半径.26.(12分)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E 作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.2017年广西贺州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共30分)1.(3分)(2017•贺州)的倒数是()A.﹣2 B.2 C.D.【分析】根据倒数的定义求解.【解答】解:﹣的倒数是﹣2.故选:A.【点评】本题主要考查了倒数的定义,解题的关键是熟记定义.2.(3分)(2017•贺州)下列各图中,∠1与∠2互为邻补角的是()A. B.C.D.【分析】根据邻补角的定义作出判断即可.【解答】解:根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选:D.【点评】本题考查了邻补角的定义,正确把握定义:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.3.(3分)(2017•贺州)下列式子中是分式的是()A.B.C. D.【分析】根据分式的定义求解即可.【解答】解:、、的分母中不含有字母,属于整式,的分母中含有字母,属于分式.故选:C.【点评】本题考查了分式的定义,分母中含有字母的式子是分式.4.(3分)(2017•贺州)一条关于数学学习方法的微博在一周内转发了318000次,将318000用科学记数法可以表示为()A.3.18×105B.31.8×105C.318×104D.3.18×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将318000用科学记数法可以表示为3.18×105,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2017•贺州)现有相同个数的甲、乙两组数据,经计算得:=,且S甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定B.乙比较稳定C.甲、乙一样稳定 D.无法确定【分析】根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立解答即可.【解答】解:∵S甲2>S乙2,∴乙比较稳定,故选:B.【点评】本题考查的是平均数和方差,掌握方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立是解题的关键.6.(3分)(2017•贺州)下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形C.矩形D.等边三角形【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【解答】解:A、正五边形,不是中心对称图形,是轴对称图形,故本选项错误;B、平行四边形,是中心对称图形,不是轴对称图形,故本选项错误;C、矩形,既是中心对称图形又是轴对称图形,故本选项正确;D、等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(3分)(2017•贺州)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为()A.1:1 B.1:2 C.1:3 D.1:4【分析】证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,DE=BC,证出△ADE∽△ABC,由相似三角形的性质得出△ADE的面积:△ABC的面积=1:4,即可得出结果.【解答】解:∵D、E分别为△ABC的边AB、AC上的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面积:△ABC的面积=()2=1:4,∴△ADE的面积:四边形BCED的面积=1:3;故选:C.【点评】本题考查了相似三角形的判定与性质、三角形中位线定理;熟记三角形中位线定理,证明三角形相似是解决问题的关键.8.(3分)(2017•贺州)小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()A.B.C.D.【分析】根据看等边三角形木框的方向即可得出答案.【解答】解:竖直向下看可得到线段,沿与平面平行的方向看可得到C,沿与平面不平行的方向看可得到D,不论如何看都得不到一点.故选:B.【点评】本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键.9.(3分)(2017•贺州)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x+4≤13,得:x≤3,解不等式﹣x<1,得:x>﹣1,则不等式组的解集为﹣1<x≤3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(3分)(2017•贺州)一次函数y=ax+a(a为常数,a≠0)与反比例函数y=(a为常数,a≠0)在同一平面直角坐标系内的图象大致为()A.B.C.D.【分析】分为a>0和a<0两种情况,然后依据一次函数和反比例函数的图象的性质进行判断即可.【解答】解:当a>0时,一次函数y=ax+a,经过一二三象限,反比例函数图象位于一、三象限,当a<0时,一次函数y=ax+a,经过二、三、四象限,反比例函数图象位于二、四象限.故选:C.【点评】本题主要考查的是一次函数、反比例函数的图象和性质,熟练掌握相关性质是解题的关键.11.(3分)(2017•贺州)如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1 B.2 C.3 D.4【分析】根据==和点E是点D关于AB的对称点,求出∠DOB=∠COD=∠BOE=60°,求出∠CED,即可判断①②;根据圆周角定理求出当M和A重合时∠MDE=60°即可判断③;求出M点的位置,根据圆周角定理得出此时DF是直径,即可求出DF长,即可判断④.【解答】解:∵==,点E 是点D 关于AB 的对称点, ∴=, ∴∠DOB=∠BOE=∠COD==60°,∴①正确;∠CED=∠COD==30°=,∴②正确; ∵的度数是60°, ∴的度数是120°, ∴只有当M 和A 重合时,∠MDE=60°,∵∠CED=30°,∴只有M 和A 重合时,DM ⊥CE ,∴③错误;做C 关于AB 的对称点F ,连接CF ,交AB 于N ,连接DF 交AB 于M ,此时CM +DM 的值最短,等于DF 长,连接CD ,∵===,并且弧的度数都是60°,∴∠D==60°,∠CFD==30°, ∴∠FCD=180°﹣60°﹣30°=90°,∴DF 是⊙O 的直径,即DF=AB=10,∴CM +DM 的最小值是10,∴④正确;故选C .【点评】本题考查了圆周角定理,轴对称﹣最短问题等知识点,能灵活运用圆周角定理求出各个角的度数和求出M 的位置是解此题的关键.12.(3分)(2017•贺州)将一组数,2,,2,,…,2,按下列方式进行排列:,2,,2,;2,,4,3,2;…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4) B.(4,4) C.(4,5) D.(3,5)【分析】先找出被开方数的规律,然后再求得的位置即可.【解答】解:这组数据可表示为:、、、、;、、、、;…∵19×2=38,∴为第4行,第4个数字.故选:B.【点评】本题主要考查的是数字的变化规律,找出其中的规律是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•贺州)要使代数式有意义,则x的取值范围是x≥且x≠1.【分析】直接利用二次根式的定义、分式的有意义的条件分析得出答案.【解答】解:由题意可得:2x﹣1≥0,x﹣1≠0,解得:x≥且x≠1.故答案为:x≥且x≠1.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.14.(3分)(2017•贺州)为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:了调查某市中小学生对“营养午餐”的满意程度,因为人员多、所费人力、物力和时间较多所以适合采用的调查方式是抽样调查,故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.15.(3分)(2017•贺州)将多项式2mx2﹣8mx+8m分解因式的结果是2m(x ﹣2)2.【分析】原式提取2m,再利用完全平方公式分解即可.【解答】解:原式=2m(x2﹣4x+4)=2m(x﹣2)2,故答案为:2m(x﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.(3分)(2017•贺州)如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,求点A从开始到结束所经过的路径长为(结果保留π)π.【分析】利用余弦的概念求出AC,根据弧长公式计算即可.【解答】解:Rt△ABC中,∠A=60°,AC==2,∠ACB=30°,∴∠ACA1=150°,点A从开始到结束所经过的路径长为以C为圆心、2为半径的弧,即=π,故答案为:π.【点评】本题考查的是点的轨迹以及弧长的计算,掌握弧长公式、旋转变换的性质、正确找出点的运动轨迹是解题的关键.17.(3分)(2017•贺州)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有①④⑤.【分析】根据图象的开口可确定a,结合对称轴可确定b,根据图象与y轴的交点位置可确定c,根据图象与x轴的交点个数可确定△;根据当x=﹣2时,y<0;抛物线与x轴的另一个交点的坐标是(3,0),即可得出结论.【解答】解:①∵开口向下∴a<0∵与y轴交于正半轴∴c>0∵对称轴在y轴右侧∴b>0∴abc<0,故①正确;∵二次函数的对称轴是直线x=1,即二次函数的顶点的横坐标为x=﹣=1,∴2a+b=0,故②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③错误;∵b=﹣2a,∴可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y<0;即4a﹣(﹣4a)+c=8a+c<0,故④正确;∵二次函数的图象和x轴的一个交点是(﹣1,0),对称轴是直线x=1,∴另一个交点的坐标是(3,0),∴设y=ax2+bx+c=a(x﹣3)(x+1)=ax2﹣2ax﹣3a,即a=a,b=﹣2a,c=﹣3a,∴a:b:c=a:(﹣2a):(﹣3a)=﹣1:2:3,故⑤正确;故答案为:①④⑤.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.18.(3分)(2017•贺州)如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为6.【分析】由旋转的性质可知:AF=AG,∠DAF=∠BAG,接下来再证明∠GAE=∠FAE,由全等三角形的性质可知:AB=AH,GE=EF=5.设正方形的边长为x,接下来,在Rt△EFC中,依据勾股定理列方程求解即可.【解答】解:由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△FAE.∵AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.故答案为:6.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了旋转的性质、全等三角形的性质和判定、勾股定理的应用,正方形的性质,依据旋转的性质构造全等三角形和直角三角形是解题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2017•贺州)计算:(﹣1)2017+﹣(π﹣3)0+2cos30°.【分析】直接利用算术平方根的性质以及零指数幂的性质和特殊角的三角函数值分别化简求出答案.【解答】解:原式=﹣1+3﹣1+2×=1+.【点评】此题主要考查了算术平方根的性质以及零指数幂的性质和特殊角的三角函数值,正确化简各数是解题关键.20.(6分)(2017•贺州)先化简,再求值:÷(1+),其中x=+1.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=当x=+1时,原式==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.(8分)(2017•贺州)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.【分析】(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.【解答】解:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴规则不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)(2017•贺州)如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B处测得探测线与地面的夹角为60°,求该生命迹象C处与地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)【分析】过C点作AB的垂线交AB的延长线于点D,由三角形外角的性质可得出∠ACB=30°,进而可得出BC=AB=4米,在Rt△CDB中利用锐角三角函数的定义即可求出CD的值.【解答】解:过C点作AB的垂线交AB的延长线于点D,∵∠CAD=30°,∠CBD=60°,∴∠ACB=30°,∴∠CAB=∠ACB=30°,∴BC=AB=4米,在Rt△CDB中,BC=4米,∠CBD=60°,sin∠CBD=,∴sin60°=,∴CD=4sin60°=4×=2≈3.5(米),故该生命迹象所在位置的深度约为3.5米.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(8分)(2017•贺州)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.【分析】可设乙工程队单独完成这项工程需要x天,根据等量关系:甲、乙两个工程队合作10天完成了剩余的工程,即工程总量的1﹣,依此列出方程求解即可.【解答】解:设乙工程队单独完成这项工程需要x天,依题意有(+)×10=1﹣,解得x=20,经检验,x=20是原方程的解.答:乙工程队单独完成这项工程需要20天.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.24.(8分)(2017•贺州)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC ⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2,求四边形ABCD的面积.【分析】(1)根据等腰三角形的性质得到∠ABD=∠ADB,根据角平分线的定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠CBD,根据全等三角形的性质得到AO=OC,于是得到结论;(2)根据菱形的性质得到OD=BD=,根据勾股定理得到OC==2,于是得到结论.【解答】(1)证明:∵AB=AD,∴∠ABD=∠ADB,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠CBD,∵AC⊥BD,AB=AD,∴BO=DO,在△AOD与△COB中,,∴△AOD≌△COB,∴AO=OC,∵AC⊥BD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OD=BD=,∴OC==2,∵AC=4,=AC•BD=4.∴S菱形ABCD【点评】本题考查了菱形的性质和判定,勾股定理,菱形的面积的计算,全等三角形的判定与性质,角平分线的定义,熟练掌握菱形的判定和性质定理是解题的关键.25.(10分)(2017•贺州)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙O的半径.【分析】(1)连接OD,由切线的性质和已知条件可证得OD∥EF,则可证得结论;(2)过D作DG⊥AE于点G,连接CD,则可证得△ADF≌△ADG、△CDF≌△BDG,则可求得AB的长,可求得圆的半径.【解答】(1)证明:如图1,连接OD,∵EF是⊙O的切线,且点D在⊙O上,∴OD⊥EF,∵OA=OD,∴∠DAB=∠ADO,∵AD平分∠BAC,∴∠DAB=∠DAC,∴∠ADO=∠DAC,∴AF∥OD,∴AF⊥EF;(2)解:如图2,过D作DG⊥AE于点G,连接CD,∵∠BAD=∠DAF,AF⊥EF,DG⊥AE,∴BD=CD,DG=DF,在Rt△ADF和Rt△ADG中∴Rt△ADF≌Rt△ADG(HL),同理可得Rt△CDF≌Rt△BDG,∴BG=CF=2,AG=AF=AC+CF=6+2=8,∴AB=AG+BG=8+2=10,∴⊙O的半径OA=AB=5.【点评】本题主要考查切线的性质及圆周角定理,掌握过切点的半径与切线垂直是解题的关键,注意全等三角形的应用.26.(12分)(2017•贺州)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E 作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【分析】(1)首先依据等腰直角三角形的性质求得点B的坐标,然后将点A和点B的坐标代入抛物线的解析式求解即可;(2)设直线AB的解析式为y=kx+b,将点A和点B的坐标代入可求得直线AB的解析式,设点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),然后列出EF关于t的函数关系式,最后利用配方法求得EF的最大值即可;(3)过点F作直线a⊥EF,交抛物线于点P,过点E作直线b⊥EF,交抛物线P′、P″,先求得点E和点F的纵坐标,然后将点E和点F的纵坐标代入抛物线的解析式求得对应的x的值,从而可求得点P、P′、P″的坐标.【解答】解:(1)∵A,C的坐标分别为(1,0),(﹣4,0),∴AC=5.∵△ABC为等腰直角三角形,∠C=90°,∴BC=AC=5.∴B(﹣4,﹣5).将点A和点B的坐标代入得:,解得:,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)如图1所示:设直线AB的解析式为y=kx+b,将点A和点B的坐标代入得:,解得:k=1,b=﹣1.所以直线AB的解析式为y=x﹣1.设点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3).∴EF=﹣t2﹣2t+3﹣(t﹣1)=﹣t2﹣3t+4=(t+)2+.∴当t=﹣时,FE取最大值,此时,点E的坐标为(﹣,﹣).(3)存在点P,能使△PEF是以EF为直角边的直角三角形.理由:如图所示:过点F作直线a⊥EF,交抛物线于点P,过点E作直线b⊥EF,交抛物线P′、P″.由(2)可知点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),t=﹣,∴点E(﹣,﹣)、F(﹣,).①当﹣t2﹣2t+3=时,解得:x=﹣或x=﹣(舍去).∴点P的坐标为(﹣,).②当﹣t2﹣2t+3=﹣时,解得:x=﹣1+或x=﹣1﹣.∴点P′(﹣1﹣,﹣),P″(﹣1+,﹣).综上所述,点P的坐标为(﹣,)或(﹣1﹣,﹣)或P″(﹣1+,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、等腰直角三角形的性质、二次函数的性质,列出EF的长关于t的函数关系式是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年广西贺州市昭平县九年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)如果线段a=2cm ,b=10cm ,那么的值为( )A .B .5C .2D .2.(3分)已知2x=3y ,则下列比例式成立的是( )A .=B .=C .=D .=3.(3分)二次函数y=2(x ﹣1)2+3的图象的顶点坐标是( )A .(1,3)B .(﹣1,3)C .(1,﹣3)D .(﹣1,﹣3)4.(3分)反比例函数y=的图象,当x >0时,y 随x 的值增大而减小,则k的取值范围是( )A .k ≥1B .k ≤1C .k <1D .k >1 5.(3分)已知二次函数y=x 2﹣3x ﹣4与x 轴的交点为A (﹣1,0),B (4,0),则一元二次方程x 2﹣3x ﹣4=0的解为( )A .x 1=1,x 2=﹣4B .x 1=﹣1,x 2=4C .x 1=﹣1,x 2=0D .x 1=4,x 2=06.(3分)二次函数y=x 2﹣1的图象可由下列哪个函数图象向右平移1个单位,向下平移2个单位得到( )A .y=(x ﹣1)2+1B .y=(x +1)2+1C .y=(x ﹣1)2﹣3D .y=(x +1)2+37.(3分)在二次函数y=﹣x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是( )A .x <1B .x >1C .x <﹣1D .x >﹣18.(3分)如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若EC=1,AC=3,则DE :BC 的值为( )A.B.C.D.9.(3分)如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A.B.BC2=AB•BC C.D.10.(3分)正比例函数y=x与反比例函数y=的图象相交于A、C两点.AB⊥x 轴于B,CD⊥x轴于D(如图),则四边形ABCD的面积为()A.1 B.C.2 D.11.(3分)小敏在某次投篮中,球的运动线路是抛物线y=﹣x2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离l是()A.3.5m B.4m C.4.5m D.4.6m12.(3分)一次函数y=ax+b和反比例函数y=在同一个平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)1和4的比例中项是.14.(3分)当m≠时,函数y=(m﹣1)x2+3x﹣5是二次函数.15.(3分)若反比例函数的图象经过点(﹣1,2),则k的值是.16.(3分)已知甲、乙两地之间的距离为10千米,画在一张地图上的距离为5厘米,那么在这张地图上量得距离为2厘米的A、B两地的实际距离为千米.17.(3分)如图,以O为顶点的两条抛物线分别经过正方形的四个顶点A、B、C、D,则阴影部分的面积为.18.(3分)如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=在l上取点A,过点A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l 于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,…记点A n 的横坐标为a n,若a1=3,则a2017=.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣1)2017+(π﹣3)0+(﹣)﹣1+.20.(6分)已知:==,且x﹣y+z=3,求代数式3x﹣2y+z的值.21.(8分)如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)22.(8分)如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?23.(8分)如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B 两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.24.(8分)已知反比例函数y=的图象与二次函数y=ax2+x﹣1的图象相交于点(2,2)(1)求a和k的值;(2)判断反比例函数的图象是否经过二次函数图象的顶点并说明理由.25.(10分)一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式及t值的取值范围;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇,求两车的平均速度.26.(12分)如图,二次函数y=x2+bx+c的图象交x轴于A,D两点,并经过B 点,对称轴交x轴于点C,连接BD,BC,已知A点坐标是(2,0),B点的坐标是(8,6)(1)求二次函数的解析式.(2)求该函数图象的顶点坐标及D点的坐标.(3)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S=S△BCD?△ADP若存在,直接写出所有符合条件的点P的坐标;若不存在.请说明理由.2017-2018学年广西贺州市昭平县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)如果线段a=2cm,b=10cm,那么的值为()A.B.5 C.2 D.【解答】解:因为线段a=2cm,b=10cm,所以的值=,故选:A.2.(3分)已知2x=3y,则下列比例式成立的是()A.=B.=C.=D.=【解答】解:A、变成等积式是:xy=6,故错误;B、变成等积式是:3x=2y,故错误;C、变成等积式是:2x=3y,故正确;D、变成等积式是:3x=2y,故错误.故选:C.3.(3分)二次函数y=2(x﹣1)2+3的图象的顶点坐标是()A.(1,3) B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【解答】解:二次函数y=2(x﹣1)2+3为顶点式,其顶点坐标为(1,3).故选:A.4.(3分)反比例函数y=的图象,当x>0时,y随x的值增大而减小,则k 的取值范围是()A.k≥1 B.k≤1 C.k<1 D.k>1【解答】解:∵反比例函数y=中,当x>0时,y随x的增大而减小,∴k﹣1>0,解得k>1.故选:D.5.(3分)已知二次函数y=x2﹣3x﹣4与x轴的交点为A(﹣1,0),B(4,0),则一元二次方程x2﹣3x﹣4=0的解为()A.x1=1,x2=﹣4 B.x1=﹣1,x2=4 C.x1=﹣1,x2=0 D.x1=4,x2=0【解答】解:∵二次函数y=x2﹣3x﹣4与x轴的交点为A(﹣1,0),B(0,4),∴一元二次方程x2﹣3x﹣4=0的解为:x1=﹣1,x2=4.故选:B.6.(3分)二次函数y=x2﹣1的图象可由下列哪个函数图象向右平移1个单位,向下平移2个单位得到()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=(x﹣1)2﹣3 D.y=(x+1)2+3【解答】解:此题实际上是求y=x2﹣1向左平移1个单位,向上平移2个单位后抛物线的解析式.则y=x2﹣1向左平移1个单位后抛物线的解析式是:y=(x+1)2﹣1+2=y=(x+1)2+1.故选:B.7.(3分)在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣1【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大增大.8.(3分)如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若EC=1,AC=3,则DE:BC的值为()A.B.C.D.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵EC=1,AC=3,∴AE=AC﹣EC=2,∴=.∴=.故选:A.9.(3分)如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A.B.BC2=AB•BC C.D.【解答】解:∵AC>BC,∴AC是较长的线段,根据黄金分割的定义可知:AB:AC=AC:BC,故A正确,不符合题意;AC2=AB•BC,故B错误,,故C正确,不符合题意;≈0.618,故D正确,不符合题意.10.(3分)正比例函数y=x 与反比例函数y=的图象相交于A 、C 两点.AB ⊥x 轴于B ,CD ⊥x 轴于D (如图),则四边形ABCD 的面积为( )A .1B .C .2D .【解答】解:根据反比例函数的对称性可知:OB=OD ,AB=CD ,∴四边形ABCD 的面积=S △AOB +S △ODA +S △ODC +S △OBC =1×2=2.故选:C .11.(3分)小敏在某次投篮中,球的运动线路是抛物线y=﹣x 2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m【解答】解:当y=3.05时,﹣x 2+3.5=3.05,解得x 1=﹣1.5(舍去),x 2=1.5, ∴l=2.5+1.5=4m .故选:B .12.(3分)一次函数y=ax +b 和反比例函数y=在同一个平面直角坐标系中的图象如图所示,则二次函数y=ax 2+bx +c 的图象可能是( )A.B.C.D.【解答】解:观察函数图象可知:a<0,b>0,c<0,∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣>0,与y轴的交点在y 轴负半轴.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)1和4的比例中项是±2.【解答】解:设a是1和4的比例中项,则a2=1×4,解得:a=±2;故答案为:±2.14.(3分)当m≠1时,函数y=(m﹣1)x2+3x﹣5是二次函数.【解答】解:∵函数y=(m﹣1)x2+3x﹣5是二次函数,∴m﹣1≠0,解得m≠1.故答案为:m≠1.15.(3分)若反比例函数的图象经过点(﹣1,2),则k的值是﹣2.【解答】解:∵图象经过点(﹣1,2),∴k=xy=﹣1×2=﹣2.故答案为:﹣2.16.(3分)已知甲、乙两地之间的距离为10千米,画在一张地图上的距离为5厘米,那么在这张地图上量得距离为2厘米的A、B两地的实际距离为4千米.【解答】解:设A、B两地的实际距离为x千米.根据题意得到:=.解得x=4千米.17.(3分)如图,以O为顶点的两条抛物线分别经过正方形的四个顶点A、B、C、D,则阴影部分的面积为1.【解答】解:根据图示及抛物线、正方形的性质,S阴影=S正方形=×2×2=1.故答案为:1.18.(3分)如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=在l上取点A,过点A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l 于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,…记点A n 的横坐标为a n,若a1=3,则a2017=3.【解答】解:当a1=3时,B1的纵坐标为,B1的纵坐标和A2的纵坐标相同,则A2的横坐标为a2=﹣,A2的横坐标和B2的横坐标相同,则B2的纵坐标为b2=﹣,B2的纵坐标和A3的纵坐标相同,则A3的横坐标为a3=﹣,A 3的横坐标和B3的横坐标相同,则B3的纵坐标为b3=﹣4,B 3的纵坐标和A4的纵坐标相同,则A4的横坐标为a4=3,A4的横坐标和B4的横坐标相同,则B4的纵坐标为b4=,即当a1=3时,a2=﹣,a3=﹣,a4=3,a5=﹣,b1=,b2=﹣,b3=﹣4,b4=,b5=﹣,∵=672…1,∴a2017=a4=3.故答案为3.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣1)2017+(π﹣3)0+(﹣)﹣1+.【解答】解:原式=﹣1+1﹣3+2=﹣1.20.(6分)已知:==,且x﹣y+z=3,求代数式3x﹣2y+z的值.【解答】解:设===k,则x=2k,y=3k,z=4k,∵x﹣y+z=3,∴2k﹣3k+4k=3,解得k=1,∴x=2,y=3,z=4,∴3x﹣2y+z=3×2﹣2×3+4=6﹣6+4=4.21.(8分)如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)【解答】解:(1)∵四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2,∴CD=EF=AB=3,BC=AD=6.5,CF=BC﹣BF=4.5,∴==,==,=;(2)成比例线段有=.22.(8分)如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?【解答】解:(1)根据题意,得S=x(24﹣3x),即所求的函数解析式为:S=﹣3x2+24x,又∵0<24﹣3x≤10,∴定义域为{x|≤x<8};(2)根据题意,设AB长为x,则BC长为24﹣3x∴﹣3x2+24x=45.整理,得x2﹣8x+15=0,解得x=3或5,当x=3时,BC=24﹣9=15>10不成立,当x=5时,BC=24﹣15=9<10成立,∴AB长为5m.23.(8分)如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B 两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.【解答】解:(1)把x=3代入y=2x﹣4,可得y=2×3﹣4=2,∴A(3,2),把(3,2)代入y=,可得k=3×2=6,∴反比例函数的解析式为y=;(2)根据题意可得:2x﹣4=,解得x1=3,x2=﹣1,把x2=﹣1,代入y=2x﹣4,可得y=﹣6,∴点B的坐标为(﹣1,﹣6).24.(8分)已知反比例函数y=的图象与二次函数y=ax2+x﹣1的图象相交于点(2,2)(1)求a和k的值;(2)判断反比例函数的图象是否经过二次函数图象的顶点并说明理由.【解答】解:(1)因为二次函数y=ax2+x﹣1与反比例函数y=交于点(2,2),所以2=4a+2﹣1,解之得a=,2=,所以k=4;(2)反比例函数的图象经过二次函数图象的顶点;由(1)知,二次函数和反比例函数的关系式分别是y=x2+x﹣1和y=;因为y=x2+x﹣1=y=(x2+4x﹣4)=(x2+4x+4﹣8)=[(x+2)2﹣8]=(x+2)2﹣2,所以二次函数图象的顶点坐标是(﹣2,﹣2);因为x=﹣2时,y==﹣2,所以反比例函数图象经过二次函数图象的顶点.25.(10分)一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式及t值的取值范围;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇,求两车的平均速度.【解答】解:(1)设v与t的函数关系式为v=,将(5,120)代入v=,得:120=,解得:k=600,∴v与t的函数关系式为v=(5≤t≤10).(2)设客车的平均速度为v千克/小时,则货车的速度为(v﹣20)千米/小时,根据题意得:3(v+v﹣20)=600,解得:v=110,v﹣20=90.答:客车的平均速度为110千米/小时,货车的平均速度为90千米/小时.26.(12分)如图,二次函数y=x2+bx+c的图象交x轴于A,D两点,并经过B 点,对称轴交x轴于点C,连接BD,BC,已知A点坐标是(2,0),B点的坐标是(8,6)(1)求二次函数的解析式.(2)求该函数图象的顶点坐标及D点的坐标.=S△BCD?(3)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP若存在,直接写出所有符合条件的点P的坐标;若不存在.请说明理由.【解答】解:(1)把A(2,0),B(8,6)代入y=x2+bx+c得,解得,∴抛物线的解析式为y=x 2﹣4x +6;(2)∵y=x 2﹣4x +6=(x ﹣4)2+6,∴抛物线的顶点坐标为(4,6),∵抛物线的对称轴为直线x=4,A (2,0),∴D (6,0);(3)存在.设P (x ,x 2﹣4x +6),∵S △ADP =S △BCD , ∴•(6﹣2)•|x 2﹣4x +6|=••(6﹣4)•6,∴x 2﹣8x +9=0或x 2﹣8x +15=0,解方程x 2﹣8x +9=0得x 1=4+,x 2=4﹣,此时P 点坐标为(4+,)或(4﹣,); 解方程x 2﹣8x +15=0得x 1=3,x 2=5,此时P 点坐标为(3,﹣)或(5,﹣); 综上所述,P 点坐标为(4+,)或(4﹣,)或(3,﹣)或(5,﹣).赠送:初中数学几何模型举例 【模型四】几何最值模型:图形特征: PA Bl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。