精典文科数学高考试题1554
高考文科数学试题及答案
高考文科数学试题及答案一、选择题1、已知函数f(x)=3x+2,求f(2)的值。
A. 5B. 8C. 6D. 7答案: C2、如图,正方形ABCD的边长为6cm,O为中心,连接OA、OB、OC、OD,求△OAB的面积。
A. 9 cm²B. 12 cm²C. 18 cm²D. 36 cm²答案: C3、已知二次函数f(x)=ax²+bx+c的图象经过点(1,3),(2,1),(3,-1),求a、b、c的值。
A. a=2,b=-5,c=2B. a=1,b=2,c=3C. a=2,b=-3,c=1 D. a=3,b=-2,c=1答案: C二、填空题1、如图,矩形ABCD中,AE=AF=2cm,BE=3cm,求EC的长度。
答案: 1 cm2、已知平行四边形ABCD,∠BAD=60°,AB=6cm,BC=8cm,求CD的长度。
答案: 2√3 cm3、已知向量OA=<2, 3>,向量OB=<-1, 4>,求向量AB的坐标表示。
答案: <-3, 1>三、解答题1、已知集合A={1, 2, 3},集合B={3, 4, 5},求A∪B和A∩B。
答案: A∪B = {1, 2, 3, 4, 5},A∩B = {3}2、已知函数f(x)=2x+1,求f(3)和f(-2)的值。
答案: f(3) = 7,f(-2) = -33、已知三角形ABC,AB=6cm,AC=8cm,∠BAC=60°,求BC的长度。
答案: BC = 6 cm四、应用题某校高考文科数学考试,以下是A、B、C三位同学的试题得分情况:A同学:选择题30分,填空题10分,解答题40分,笔试题20分。
B同学:选择题35分,填空题12分,解答题38分,笔试题18分。
C同学:选择题28分,填空题8分,解答题36分,笔试题15分。
请回答以下问题:1、A同学的总分是多少?答案: A同学的总分是100分。
文科高考数学试卷及答案
一、选择题(每题5分,共40分)1. 已知函数f(x) = x^2 - 2x + 1,则f(3)的值为:A. 5B. 6C. 7D. 82. 若a,b是实数,且|a+b| ≤ 2,则|a-b|的最大值为:A. 2B. 3C. 4D. 53. 已知向量a = (2, 3),b = (1, -2),则|a+b|的值为:A. 3B. 4C. 5D. 64. 已知函数f(x) = log2(x+1),则f(3)的值为:A. 1B. 2C. 3D. 45. 若等差数列{an}的公差为d,首项为a1,则第10项与第15项之和为:A. 14a1 + 19dB. 15a1 + 19dC. 14a1 + 20dD. 15a1 + 20d6. 已知等比数列{bn}的公比为q,首项为b1,则第5项与第8项之积为:A. b1q^4B. b1q^7C. b1q^5D. b1q^87. 若三角形ABC的三边长分别为a,b,c,且满足a+b+c=12,则三角形ABC的面积最大值为:A. 18B. 24C. 36D. 488. 已知函数f(x) = e^x,则f(x)在x=0处的导数为:A. 1B. eC. e^2D. e^39. 已知函数f(x) = sin(x),则f'(π)的值为:A. 0B. 1C. -1D. sin(π)10. 若等差数列{an}的公差为d,首项为a1,则第n项与第2n项之差的平方为:A. n^2d^2B. (n+1)^2d^2C. (2n-1)^2d^2D. (n-1)^2d^2二、填空题(每题5分,共20分)11. 若函数f(x) = ax^2 + bx + c在x=1处的导数为0,则a+b+c=______。
12. 已知向量a = (2, 3),b = (1, -2),则a·b的值为______。
13. 若等差数列{an}的首项为a1,公差为d,则第n项an=______。
14. 已知等比数列{bn}的首项为b1,公比为q,则第n项bn=______。
高三数学(文科)试题.doc
高三数学(文科)试题(平面向量)本卷分第一卷和第二卷两部分,共21个小题.满分150分,时量120分钟第一卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将你认为正确选项的代号填在第二卷相应题号下的空格内 1、 设点P 在有向线段AB 的延长线上,P 分AB 所成的比为λ,则1.-<λA 01.<<-λB 10.<<λC 1.>λD2、 把函数542++=x x y 的图象按向量平移后得2x y =的图象,则=)1,2.(-A )1,2.(-B )1,2.(--C )1,2.(D3、 b a c +===,21,且⊥,则向量与的夹角为︒30.A ︒60.B ︒120.C ︒150.D4、 在ABC ∆中,),3,2(),1,(,90===∠︒AC k AB C 则k 的值是5.A 5.-B 23.C 23.-D5、 已知向量),5(),2,2(k =-=+不超过5,则k 的取值范围是]6,4.[-A ]4,6.[-B ]2,6.[-C ]6,2.[-D6、 O 是ABC ∆所在平面内一点,若=++,则O 是ABC ∆的.A 内心 .B 外心 .C 垂心 .D 重心7、ABC ∆中,B A >是B A sin sin >的.A 充分不必要条件 .B 必要不充分条件.C 充要条件 .D 既不充分也不必要条件8、已知向量)1,3(),sin ,(cos -==θθ,则-2的最大值、最小值分别是0,16.A 0,4.B 22,4.C 0,24.D 9、 已知ABC ∆及所在平面内一点P 满足=++,则点P 与ABC ∆的关系为P A . 在ABC ∆内部 P B .在ABC ∆外部P C .在AB 边所在直线上 P D .是AC 边的一个三等分点10、ABC ∆中,三个内角满足C B A +=2,且最大边与最小边分别是方程032122=+-x x的两个根,则ABC ∆外接圆面积为π16.A π64.B π124.C π156.D二、填空题11、函数x y 3sin =的图象按向量)1,6(π-=平移后的图象的解析式为12、在ABC ∆中,,2)sin()cos(=++-B A B A 则ABC ∆的形状是 13、已知两点)3,2(),2,1(21--P P ,点)1,(x P 分21P P 所成的比为λ,则=λ14、已知,均为单位向量,它们的夹角为︒60+=15、在ABC ∆中,︒︒=∠=∠=75.45,3C A AC ,BC 的长为高三数学(文科)试题(平面向量)第二卷一、选择题答题卡:每小题5分,共50分.二、填空题:每小题4分,共20分.11、 ;12、13、 ; 14、 ; 15、 .三、 解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程和演算步骤 16、(本小题满分12分) 在直角坐标系xoy 中,已知点)22cos 2,1cos 2(++x x P 和点)1,(cos -x Q ,其中],0[π∈x 若向量OP 与垂直,求x 的值。
高三文科数学试卷(含答案)经典题
高三文科数学试卷一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}24M x x =<,{}2230N x x x =--<,且M N =IA .{}2x x <-B .{}3x x >C .{}12x x -<<D .{}23x x << 2.若函数2()log f x x =,则下面必在()f x 反函数图像上的点是A .(2)a a ,B .1(2)2-, C .(2a a , D .1(2)2-,3.右图为某几何体三视图,按图中所给数据,该几何体的体积为 A .64+163 B . 16+334 C .163 D . 164.在各项都为正数的等比数列}{n a 中,首项为3,前3项和为 21,则=++543a a a ( )A .33B .72C .84D .189 5. 将函数)32sin(π+=x y 的图像向右平移12π=x 个单位后所得的图像的一个对称轴是:A. 6π=x B. 4π=x C. 3π=x D. 2π=x6. 若以连续抛掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆1022=+y x 内(含边界)的概率为A .61 B .41 C .92 D .3677.下列有关命题的说法正确的是A .“21x =”是“1-=x ”的充分不必要条件B .“2=x ”是“0652=+-x x ”的必要不充分条件.C .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈, 均有210x x ++<”. D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.P TMAOA B C D8.在约束条件⎧⎪⎪≤⎨⎪≤⎪⎩x>0y 12x-2y+10下,目标函数y x z +=2的值 A .有最大值2,无最小值 B .有最小值2,无最大值 C .有最小值21,最大值2 D .既无最小值,也无最大值 9.已知复数12z i =+,21z i =-,则12z z z =在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限10.将n 个连续自然数按规律排成右表,根据规律,从2008到2010,箭头方向依次是第二卷 非选择题(共110分)二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.11.若A(-2,3),B(3,-2),C(21,m)三点共线,则m的值为 .12.程序框图(即算法流程图)如图所示,其输出结果是 .13. 已知|a |=|b |=|b a -|=1,则|a +b 2|的值为 .14.(坐标系与参数方程选做题)在极坐标系中,曲线3=ρ截直线1)4cos(=+πθρ所得的弦长为 .15.(几何证明选讲选做题)如图PT 为圆O 的切线,T 为切点,3ATM π∠=,圆O 的面积为2π,则PA = .开始a =1 a =3a +1 a >100?结束是 否a =a +1输出a三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知31cos 32cos sin 2)(2--+=x x x x f ,]2,0[π∈x⑴ 求)(x f 的最大值及此时x 的值; ⑵ 求)(x f 在定义域上的单调递增区间。
文科高等数学试题及答案
文科高等数学试题及答案一、选择题(每题3分,共15分)1. 下列函数中,哪一个是周期函数?A. y = x^2B. y = sin(x)C. y = e^xD. y = ln(x)2. 已知函数f(x) = 2x - 1,求f(3)的值。
A. 5B. 4C. 3D. 23. 以下哪个选项是微分方程dy/dx + y = x的解?A. y = x - 1B. y = x + CC. y = e^xD. y = x^24. 函数y = x^3 - 6x^2 + 9x + 5在哪个点取得极值?A. x = 1B. x = 2C. x = 3D. x = 45. 积分∫(2x + 1)dx的结果是:A. x^2 + x + CB. 2x^2 + x + CC. x^2 + CD. 2x^2 + C答案:1. B2. A3. B4. C5. B二、填空题(每空2分,共10分)6. 若f(x) = 3x^2 + 2x - 5,则f'(x) = _______。
7. 函数y = cos(x)的导数是 _______。
8. 函数y = ln(x)的原函数是 _______。
9. 微分方程dy/dx - 2y = 4x的通解是 _______。
10. 曲线y = x^2在点(1,1)处的切线斜率是 _______。
答案:6. 6x + 27. -sin(x)8. xln(x)9. y = 2x + C10. 2三、解答题(共75分)11. 求函数f(x) = x^3 - 3x^2 + 2的极值点和极值。
(15分)12. 已知函数f(x) = 4x^3 - 3x^2 + 7x - 5,求其在区间[-1, 2]上的最大值和最小值。
(20分)13. 解微分方程dy/dx + 2y = 4x,且当x = 0时,y = 1。
(20分)14. 求曲线y = x^3 - 2x^2 + x与直线y = 4x - 5的交点坐标。
文科高考数学试卷历年真题
一、选择题1. 下列函数中,定义域为全体实数的函数是()A. $y = \sqrt{x}$B. $y = \frac{1}{x}$C. $y = \log_2x$D. $y = x^2$答案:D2. 已知函数$f(x) = x^3 - 3x^2 + 4x + 1$,则$f(-1)$的值为()A. -1B. 0C. 1D. 2答案:B3. 若等差数列$\{a_n\}$的前$n$项和为$S_n$,且$S_3 = 9$,$S_5 = 25$,则数列$\{a_n\}$的公差为()A. 1B. 2C. 3D. 4答案:B4. 已知向量$\overrightarrow{a} = (1, 2)$,$\overrightarrow{b} = (2, 3)$,则$\overrightarrow{a} \cdot \overrightarrow{b}$的值为()A. 5B. 6C. 7D. 8答案:C5. 若直线$y = 2x + 1$与圆$(x - 1)^2 + (y - 2)^2 = 4$相切,则该圆的半径为()A. 1B. 2C. 3D. 4答案:A二、填空题6. 已知函数$f(x) = x^2 - 2x + 1$,则$f(3)$的值为__________。
答案:27. 若等差数列$\{a_n\}$的首项为2,公差为3,则$a_{10}$的值为__________。
答案:298. 若向量$\overrightarrow{a} = (2, 3)$,$\overrightarrow{b} = (-1, 2)$,则$\overrightarrow{a} \cdot \overrightarrow{b}$的值为__________。
答案:19. 若直线$y = 3x - 1$与圆$(x - 1)^2 + (y - 2)^2 = 4$相切,则该圆的圆心坐标为__________。
答案:(1,2)10. 若函数$f(x) = \frac{x^2 - 1}{x - 1}$,则$f(2)$的值为__________。
文科数学高考试题及答案
文科数学高考试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = 2x + 3,则f(-1)的值为:A. 1B. -1C. -5D. 1答案:C2. 已知圆的方程为(x-2)^2 + (y-3)^2 = 9,圆心坐标为:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A3. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B4. 函数y = x^2 - 6x + 5的对称轴方程为:A. x = 3B. x = -3C. x = 6D. x = -6答案:A5. 已知等差数列{an}的首项a1 = 3,公差d = 2,则a5的值为:A. 13B. 11C. 9D. 7答案:A6. 已知sinθ = 1/2,θ∈(0, π),则cosθ的值为:A. √3/2B. -√3/2C. 1/2D. -1/2答案:B7. 已知向量a = (2, 3),向量b = (-1, 2),则向量a·向量b的值为:A. -1B. 1C. 5D. -5答案:B8. 已知复数z = 1 + i,则|z|的值为:A. √2B. 2C. 1D. √3答案:A9. 函数y = ln(x)的定义域为:A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)答案:A10. 已知函数f(x) = x^3 - 3x,求f'(x)的值为:A. 3x^2 - 3B. 3x^2 + 3C. -3x^2 + 3D. -3x^2 - 3答案:A二、填空题(每题4分,共20分)11. 若函数f(x) = x^2 + 2x + 1,则f'(x) = _______。
答案:2x + 212. 已知等比数列{bn}的首项b1 = 2,公比q = 3,则b3的值为_______。
答案:1813. 已知向量a = (3, -4),向量b = (-2, 5),则向量a·向量b = _______。
高考数学(文科)试题及答案
高考数学(文)试题及答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =Z ,集合M ={-1,0,1},N ={0,1,3},则(∁U M )∩N =(A ){-1} (B ){3} (C ){0,1} (D ){-1,3} 2.下列命题中的假命题是(A )∀x >0且x ≠1,都有x +1x>2(B )∀a ∈R ,直线ax +y -a =0恒过定点(1,0)(C )∃m ∈R ,使f (x )=(m -1)x m 2-4m +3是幂函数 (D )∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数3.在等差数列{a n }中,已知公差d =2,且a 1,a 3,a 4成等比数列,则a 2=(A )-4 (B )-6 (C )-8 (D )-104.函数y =12-x+lg x 的定义域是(A )(0,2] (B )(0,2) (C )(1,2) (D )[1,2)5.已知函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1,x 2-4x +3,x >1。
则函数y =f (x )-log 2x 的零点的个数是(A )4 (B )3 (C )2 (D )16.一个几何体的三视图如图所示,则这个几何体的体积等于(A )4 (B )6 (C )8 (D )127.已知函数f (x )=A sin(2x +φ)的部分图象如图所示,则f (0)=(A )-12(B )-1 (C )-32(D )- 38.设O 为△ABC 所在平面内一点.若实数x 、y 、z 满足x →OA +y →OB +z →OC =0(x 2+y 2+z 2≠0),则“xyz =0”是“点O 在△ABC 的边所在直线上”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 9.已知直线l :Ax +By +C =0(A ,B 不全为0),两点P 1(x 1,y 1),P 2(x 2,y 2),若(Ax 1+By 1+C )( Ax 2+By 2+C )>0,且|Ax 1+By 1+C |<|Ax 2+By 2+C |,则直线l (A )与直线P 1P 2不相交 (B )与线段P 2P 1的延长线相交 (C )与线段P 1P 2的延长线相交 (D )与线段P 1P 2相交10.已知圆M :x 2+y 2-8x -6y =0,过圆M 内定点P (1,2)作两条相互垂直的弦AC 和BD ,则四边形ABCD 面积的最大值为(A )2015 (B )16 6 (C )515 (D )40 1 2 3 4 5 6 7 8 9 10二、填空题:本大题共7小题,每小题5分,共35分. 11.若复数z 满足(2-i)z =1+i (i 为虚数单位),则复数z 在复平面内对应的点的坐标为 . 12.设F 1、F 2是双曲线x 216-y 220=1的两焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,则点P 到焦点F 2的距离等于 .13.已知某程序框图如图所示,若分别输入的x 的值为0,1,2,执行该程序后,输出的y 的值分别为a ,b ,c ,则a +b +c = .14.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为s 1、s 2、s 3,则它们的大小关系为 .(用“>”连接)15.若不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,则实数k 的取值范围是 . 16.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为 .17.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ),这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项,据此可得,最佳乐观系数x 的值等于 .三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知B =60°,cos(B +C )=-1114.(Ⅰ)求cos C 的值;(Ⅱ)若a =5,求△ABC 的面积. 19.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点.已知PD =2,CD =4,AD =3.(Ⅰ)若∠ADE =π6,求证:CE ⊥平面PDE ;(Ⅱ)当点A 到平面PDE 的距离为2217时,求三棱锥A -PDE的侧面积. 20.(本小题满分13分)某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:(Ⅰ)求频率分布表中未知量n ,x ,y ,z 的值;(Ⅱ)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率. 21.(本小题满分14分)设a ∈R ,函数f (x )=ln x -ax .(Ⅰ)讨论函数f (x )的单调区间和极值;(Ⅱ)已知x 1=e (e 为自然对数的底数)和x 2是函数f (x )的两个不同的零点,求a 的值并证明:x 2>e 23. 22.(本小题满分14分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为23,半焦距为c (c >0),且a -c =1.经过椭圆的左焦点F ,斜率为k 1(k 1≠0)的直线与椭圆交于A ,B 两点,O 为坐标原点.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)当k 1=1时,求S △AOB 的值; (Ⅲ)设R (1,0),延长AR ,BR 分别与椭圆交于C ,D 两点,直线CD 的斜率为k 2,求证:k 1k 2为定值.参考答案一、选择题:每小题5分,满分50分.1.B 2.D 3.B 4.D 5.B 6.A 7.B 8.C 9.B 10.D 二、填空题:每小题5分,满分35分.11.(15,35) 12.17 13.6 14.s 1>s 2>s 3 15.(-∞,2]16.433 17.5-12三、解答题:本大题共5小题,共65分.18.(本小题满分12分) 解:(Ⅰ)在△ABC 中,由cos(B +C )=-1114,得sin(B +C )=1-cos 2(B +C )=1-(-1114)2=5314,∴cos C =cos[(B +C )-B ]=cos(B +C ) cos B +sin(B +C ) sin B=-1114×12+5314×32=17.…………………………………………(6分)(Ⅱ)由(Ⅰ),得sin C =1-cos 2C =1-(17)2=437,sin A =sin(B +C )=5314.在△ABC 中,由正弦定理a sin A =csin C ,得5 5314=c 437,∴ c =8, 故△ABC 的面积为S =12ac sin B =12×5×8×32=103.…………………(12分)19.(本小题满分12分)解:(Ⅰ)在Rt △DAE 中,AD =3,∠ADE =π6,∴AE =AD ·tan ∠ADE =3·33=1. 又AB =CD =4,∴BE =3.在Rt △EBC 中,BC =AD =3,∴tan ∠CEB =BC BE =33,∴∠CEB =π6.又∠AED =π3,∴∠DEC =π2,即CE ⊥DE .∵PD ⊥底面ABCD ,CE ⊂底面ABCD , ∴PD ⊥CE .∴CE ⊥平面PDE .……………………………………………………………(6分) (Ⅱ)∵PD ⊥底面ABCD ,PD ⊂平面PDE ,∴平面PDE ⊥平面ABCD .如图,过A 作AF ⊥DE 于F ,∴AF ⊥平面PDE ,∴AF 就是点A 到平面PDE 的距离,即AF =2217.在Rt △DAE 中,由AD ·AE =AF ·DE ,得 3AE =2217·3+AE 2,解得AE =2.∴S △APD =12PD ·AD =12×2×3=62,S △ADE =12AD ·AE =12×3×2=3,∵BA ⊥AD ,BA ⊥PD ,∴BA ⊥平面P AD ,∵P A ⊂平面P AD ,∴BA ⊥P A .在Rt △P AE 中,AE =2,P A =PD 2+AD 2=2+3=5,∴S △APE =12P A ·AE =12×5×2=5.∴三棱锥A -PDE 的侧面积S 侧=62+3+5.…………………………(12分) 20.(本小题满分13分)解:(Ⅰ)由频率分布表可知,样本容量为n ,由2n=0.04,得n =50.∴x =2550=0.5,y =50-3-6-25-2=14,z =y n =1450=0.28.……………(6分)(Ⅱ)记样本中视力在(3.9,4.2]的3人为a ,b ,c ,在(5.1,5.4]的2人为d ,e . 由题意,从5人中随机抽取两人,所有可能的结果有:{a ,b },{a ,c },{a ,d },{a ,e },{b ,c },{b ,d },{b ,e },{c ,d },{c ,e },{d ,e },共10种. 设事件A 表示“两人的视力差的绝对值低于0.5”,则事件A 包含的可能的结果有:{a ,b },{a ,c },{b ,c },{d ,e },共4种.∴P (A )=410=25.故两人的视力差的绝对值低于0.5的概率为25.…………………………(13分)21.(本小题满分14分) 解:(Ⅰ)函数f (x )的定义域为(0,+∞).求导数,得f ′(x )=1x -a =1-ax x.①若a ≤0,则f ′(x )>0,f (x )是(0,+∞)上的增函数,无极值; ②若a >0,令f ′(x )=0,得x =1a.当x ∈(0,1a )时,f ′(x )>0,f (x )是增函数;当x ∈(1a,+∞)时,f ′(x )<0,f (x )是减函数.∴当x =1a 时,f (x )有极大值,极大值为f (1a )=ln 1a-1=-ln a -1.综上所述,当a ≤0时,f (x )的递增区间为(0,+∞),无极值;当a >0时,f (x )的递增区间为(0,1a ),递减区间为(1a ,+∞),极大值为-ln a -1.…(8分)(Ⅱ)∵x 1=e 是函数f (x )的零点,∴f (e )=0,即12-a e =0,解得a =12e =e2e .∴f (x )=ln x -12ex .∵f (e 23)=32-e 2>0,f (e 25)=52-e 22<0,∴f (e 23)f (e 25)<0.由(Ⅰ)知,函数f (x )在(2e ,+∞)上单调递减, ∴函数f (x )在区间(e 23,e 25)上有唯一零点,因此x 2>e 23.………………………………………………………………(14分)22.(本小题满分14分)解:(Ⅰ)由题意,得⎩⎪⎨⎪⎧c a =23,a -c =1。
大学文科数学试题(附答案)精选全文完整版
大学文科数学试题(附答案)一、 判断题(对画“√”,错画“×”, 共6题,每题3分,共18分)1.任意修改收敛数列{}n a 的前100项,数列{}n a 仍收敛,且极限不变. ( )2.若0lim[()()]0x x f x g x →−=,则必有00lim ()lim ()x x x x f x g x →→=. ( )3.函数()f x 在某个区间上的极大值一定大于极小值. ( )4.当0→x 时,无穷小量34x x −+是关于x 的4阶无穷小量. ( )5.概率的公理化定义虽然不能用来直接确定事件的概率,但它给了概率所必须满足 的最基本规律,为建立严格的概率理论提供了坚实的基础. ( )6.微分方程xyx y dx dy tan +=的通解是Cx x y =sin . ( ) 二、填空题(共6题,每题3分,共18分)1.已知(sin )cos 12x f x =+,则(cos )2xf =___________.2.直线L 与x 轴平行且与曲线y x e x=−相切,则切点坐标为_____________.3.已知()f x 的一个原函数是2x e −,则'()=xf x dx ⎰________________________.4.利用定积分的几何意义,计算0=⎰_________(0)a >,这个结果表示的是________________________的面积.5.函数1xy x =的极大值点是 ,极大值为 .6.三台机器在一天内正常工作的概率分别为:第一台0.9,第二台0.7,第三台0.6,且它们发生故障是相互独立的,则三台机器同时发生故障的概率________. 三、计算题(要求有计算过程,共6题,每题4分,共24分)1.102030(1)(35)lim (611)n n n n →∞−+−;2.301lim sin 3x x x →+;3.152lim ()1xx x x −→+∞++; 4. 设()y y x =是方程cos()0x y e xy +−=所确定的隐函数,求0x dy =;5.; 6.dxxee⎰1|ln|.四、应用题(共3题,第1题7分,第2题8分,第3题10分,共25分)1.把长度为l的线段分成两段,分别围成正方形和圆形,问如何分该线段可以使得正方形和圆的面积之和最小(即求此时正方形的周长和圆的周长)?2.求曲线3(03)y x x=≤≤分别绕x轴和y轴旋转所得到的旋转体的体积.3.甲、乙、丙三个分厂生产同一批次规格相同的灯管,产量之比为1:2:1.已知甲、乙、丙三个分厂产品的合格率依次是0.93,0.92,0.98.现任取一灯管,求(1) 取到不合格灯管的概率;(2) 若取到不合格灯管,求它是由乙分厂生产的概率.五、问答题(共3题,每题5分,共15分)1.叙述函数)(xfy=在],[ba上的拉格朗日中值定理的作用与几何意义,并画出几何示意图.2.简述古典概型的特点,并举一个古典概型在教育系统的应用实例.3.微分方程研究的内容是什么?举几个微分方程在现实应用中的成功实例.大学文科数学试题 答案一、判断题(对画“√”,错画“×”, 共6题,每题3分,共18分) 1.√ 2.× 3.× 4.× 5.√ 6.√ 二、填空题(共6题,每题3分,共18分)1.22sin 2x; 2. ()01,−; 3.22(21)x x e C −−++; 4. 24a π,半径为a 的四分之一的圆的面积; 5. 1,ee e ; 6. 0.012.三、计算题(要求有计算过程, 共6题,每题4分,共24分)1. 203036;2. 16; 3. 5e −; 4. dx −;5. ln 1|C −+;6. 22e−.四、应用题(共3题,第1题7分,第2题8分,第3题10分,共25分) 1. 正方形的周长为44lπ+,圆的周长为4l ππ+. 2.(1)3326021877x V y dx x dx πππ===⎰⎰; (2)22727237295y V x dy y dy πππ===⎰⎰. 3.(1)令B 为任取一件为不合格灯管,i A 分别为任取一件为甲、乙、丙分厂生产的灯管1,2,3i =, 则由全概率公式得)(B P =31()(|)i i i P A p B A ==∑0.250.070.50.080.250.020.0625⨯+⨯+⨯=.(2)利用贝叶斯公式 31()()(|)(|)()()(|)i i i i i i i P A B P A P B A P A B P B P A P B A ===∑, 1,2,3i =. 计算得2(|)P A B =0.50.08=64%0.0625⨯.五、问答题(共3题,每题5分,共15分)1.拉格朗日中值定理是联系函数局部性质与整体性质的纽带.其几何意义是:联结两点的一条光滑曲线上至少存在一条切线与这两点的连线平行(示意图从略).2. 古典概型的特点是:有限性(每次试验有有限个样本点);等可能性(每次试验,每个样本点出现的可能性相同).例如,主考教师从装有n道题的袋中随机抽一题进行测试,就属于古典概型.3. 微分方程研究含有未知函数的导数或微分的方程,然后从中求得这个未知函数.19世纪,天文学家利用微分方程发现海王星,20世纪,科学家利用微分方程推断出阿尔卑斯山肌肉丰满的冰人的遇难时间,如今微分方程更是广泛用于预测人口数量,进行天气预报等方面,这些都是微分方程的成功应用实例.。
高考数学文科试题及答案
高考数学文科试题及答案一、选择题:1. 已知函数f(x)=2x-3,若f(a)=4,则a的值为:A. 1B. 2C. 3D. 42. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形3. 已知等差数列{an}的前n项和为S,若S5=75,S10=225,求S15的值:A. 375B. 405C. 435D. 465二、填空题:1. 函数y=x^2-4x+3的顶点坐标是______。
2. 若圆心在原点的圆的方程为x^2+y^2=r^2,当半径r=4时,圆的面积为______。
三、解答题:1. 已知函数g(x)=x^3-3x^2-9x+5,求函数g(x)的极值点。
2. 已知某商品的总成本函数为C(x)=0.5x^2-100x+1000,其中x表示商品的数量,求商品的平均成本。
答案一、选择题:1. 根据题目,我们有f(a)=2a-3=4,解得a=3.5。
因此正确答案是B。
2. 根据勾股定理的逆定理,若a^2 + b^2 = c^2,则三角形为直角三角形。
因此正确答案是B。
3. 由S5=75,我们可以得到5a1+10d=75,其中a1是首项,d是公差。
同理,由S10=225,我们得到10a1+45d=225。
解这两个方程,我们可以得到a1=3,d=2。
因此S15=15*3+105*2=435。
正确答案是C。
二、填空题:1. 对于函数y=x^2-4x+3,我们可以将其转化为顶点式y=(x-2)^2-1,因此顶点坐标为(2, -1)。
2. 圆的面积公式为A=πr^2,当r=4时,面积A=π*4^2=16π。
三、解答题:1. 求导得g'(x)=3x^2-6x-9,令g'(x)=0,解得x=-1或x=3。
检验发现x=-1是极大值点,x=3是极小值点。
2. 平均成本为C(x)/x=(0.5x^2-100x+1000)/x=0.5x-100+1000/x。
高考数学试卷文科真题
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = 2x^2 - 3x + 1,若f(x)的图像关于x=1对称,则下列说法正确的是()A. f(x)在x=1处取得最小值B. f(x)在x=1处取得最大值C. f(x)的对称轴为x=1D. f(x)的顶点坐标为(1, 0)2. 若复数z满足|z+1|=2,则复数z在复平面内的对应点一定位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列各式中,能表示直角三角形斜边长度的是()A. a^2 + b^2 = c^2B. a^2 - b^2 = c^2C. a^2 + c^2 = b^2D. b^2 - c^2 = a^24. 若函数f(x) = ax^2 + bx + c(a≠0)的图像开口向上,且顶点坐标为(1, -2),则下列说法正确的是()A. a > 0,b > 0,c > 0B. a > 0,b < 0,c < 0C. a < 0,b > 0,c > 0D. a < 0,b < 0,c < 05. 已知等差数列{an}的前n项和为Sn,若S5 = 50,S10 = 150,则该等差数列的公差d等于()A. 2B. 3C. 4D. 56. 若向量a = (2, 3),向量b = (-1, 2),则向量a·b的值为()A. 1B. 2C. 3D. 47. 已知函数f(x) = log2(x+1),若函数g(x) = f(x) + k(k为常数)的图像与f(x)的图像平行,则k的值为()A. 0B. 1C. 2D. 38. 在等比数列{an}中,若首项a1 = 2,公比q = 3,则第5项a5等于()A. 18B. 54C. 162D. 4869. 若直线y = kx + b(k≠0)与圆x^2 + y^2 = 1相切,则k^2 + b^2的值为()A. 1B. 2C. 3D. 410. 若函数f(x) = (x-1)^2 + 2x在区间[0, 2]上的最大值为5,则f(x)在区间[2, 4]上的最小值为()A. 3B. 4C. 5D. 6二、填空题(本大题共5小题,每小题5分,共25分)11. 若复数z = 3 + 4i,则|z|的值为______。
全部高考文科数学试卷
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列各式中,正确的是()A. $a^2 - b^2 = (a + b)(a - b)$B. $(a + b)^2 = a^2 + 2ab + b^2$C. $(a - b)^2 = a^2 - 2ab + b^2$D. $(a - b)^2 = a^2 + 2ab - b^22. 若 $x^2 - 3x + 2 = 0$,则 $x^2 + 3x + 2 = $()A. 0B. 1C. 2D. 43. 已知函数 $f(x) = 2x + 1$,若 $f(a) = f(b)$,则 $a$ 和 $b$ 的关系是()A. $a = b$B. $a = b + 1$C. $a = b - 1$D. $a$ 和 $b$ 互为相反数4. 若 $\sin^2 x + \cos^2 x = 1$,则 $\sin x$ 和 $\cos x$ 的关系是()A. $\sin x = \cos x$B. $\sin x = -\cos x$C. $\sin x + \cos x = 0$D. $\sin x - \cos x = 0$5. 已知等差数列 $\{a_n\}$ 的前5项和为15,第3项为3,则首项 $a_1$ 为()A. 1B. 2C. 3D. 46. 若 $log_2 (3x - 1) = 3$,则 $x$ 的值为()A. 2B. 3C. 4D. 57. 已知函数 $f(x) = x^3 - 3x^2 + 4x - 1$,则 $f(2)$ 的值为()A. 3B. 4C. 5D. 68. 在三角形ABC中,$A = 60^\circ$,$AB = AC$,则 $BC$ 的长度是()A. $AB = AC$B. $AB = 2AC$C. $AC = 2AB$D. $AC = \sqrt{3}AB$9. 若 $|x - 2| + |x + 1| = 3$,则 $x$ 的取值范围是()A. $x \in (-\infty, -1] \cup [2, +\infty)$B. $x \in [-1, 2]$C. $x \in (-\infty, -1) \cup (2, +\infty)$D. $x \in (-\infty, -1) \cup (2, 3]$10. 已知等比数列 $\{a_n\}$ 的前4项和为24,第2项为6,则首项 $a_1$ 为()A. 2B. 3C. 4D. 611. 若 $log_3 (2x + 1) = 2$,则 $x$ 的值为()A. 1B. 2C. 3D. 412. 在直角坐标系中,点A(2, 3),点B(4, 5),则线段AB的中点坐标是()A. (3, 4)B. (3, 5)C. (4, 3)D. (4, 4)二、填空题(本大题共6小题,每小题5分,共30分。
2024年高考数学(文科)真题试卷(全国甲卷)
2024年高考数学(文科)真题试卷(全国甲卷)1.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
设,则( )A.B. C.2. D.2若集合,,则( )A. B. C. D.3.若满足约束条件,则的最小值为( )A. B. C.D.4.甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A. B. C. D.5.已知等差数列的前项和为,若,则( ) A. B.C.1 D.6.已知双曲线的两个焦点分别为,点B.3( )A.4C.在该双曲线上,则该双曲线的离心率为2 D.7.设函数,则曲线在点积为( )处的切线与两坐标轴所围成的三角形的面A.B.C. D.8.函数在区间的图象大致为( )A. B.C. D.9.已知,则( )A. B. C.D.10.已知直线与圆交于两点,则B.3D.的最小值为(6)A.2C.411.设为两个平面,为两条直线,且.下述四个命题:①若,则或②若,则或③若且,则 ④若与,所成的角相等,则 12. B.②④D.其中所有真命题的编号是( )A.①③C.①②③①③④在中,内角所对的边分别为,若,,则)(A. B. C. D.13.二、填空题:本题共4小题,每小题5分,共20分.函数在上的最大值是_______________.14.已知圆台甲、乙的上底面半径均为,下底面半径均为,圆台的母线长分别为,15.,则圆台甲与乙的体积之比为_______________.已知且,则16._______________.曲线与在上有两个不同的交点,则17._______________.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. 的取值范围为(一)必考题:共60分.已知等比数列的前项和为,且 17.1..求17.2.的通项公式;求数列18.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150的前n 项和.件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计9652215018.1.18.2.已知升级改造前该工厂产品的优级品率,设.为升级改造后抽取的n件产品的优级品率如果,则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?()附:0.0500.0100.001k 3.8416.63510.82819.如图,,,,,为的中点.19.1.证明:平面19.2.;求点到20.的距离.已知函数20.1..求 20.2.的单调区间;当时,证明:当时,21.恒成立.已知椭圆的右焦点为,点在上,且21.1.轴.求21.2.的方程;过点的直线交于两点,为线段的中点,直线交直线于点,证明:22.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B铅笔将所选题轴.号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为22.1..写出22.2.设直线l 的直角坐标方程;:(为参数),若与l相交于两点,若,求23..已知实数满足23.1..证明:23.2.;证明:.参考答案1.D 解析:先根据共轭复数的定义写出,然后根据复数的乘法计算.依题意得,,故故选:D2.C .解析:根据集合的定义先算出具体含有的元素,然后根据交集的定义计算.依题意得,对于集合中的元素,满足,则可能的取值为,即,于是故选:C3.D 解析:.画出可行域后,利用的几何意义计算即可得.实数满足,作出可行域如图:由可得,即的几何意义为的截距的,则该直线截距取最大值时,有最小值,此时直线过点,联立,解得,即,则故选:D.4.B 解析:解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解..解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法,其中丙不在排头,且甲或乙在排尾的排法共有8种,故所求概率.解法二:当甲排在排尾,乙排第一位,丙有种排法,丁就种,共种;当甲排在排尾,乙排第二位或第三位,丙有种排法,丁就种,共种;于是甲排在排尾共种方法,同理乙排在排尾共种方法,于是共种排法符合题意;基本事件总数显然是,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为故选:B5.D 解析:.可以根据等差数列的基本量,即将题目条件全转化成和理,或者特殊值法处理.来处理,亦可用等差数列的性质进行处方法一:利用等差数列的基本量由,根据等差数列的求和公式,,又故选:D方法二:利用等差数列的性质.根据等差数列的性质,,由,根据等差数列的求和公式,,故故选:D方法三:特殊值法.不妨取等差数列公差,则,则故选:D6.C 解析:.由焦点坐标可得焦距,结合双曲线定义计算可得由题意,,即可得离心率.设、、,则,,,则,则故选:.C.7.A 解析:借助导数的几何意义计算可得其在点其面积处的切线方程,即可得其与坐标轴的交点坐标,即可得.,则,即该切线方程为,即,令,则,令,则,故该切线与两坐标轴所围成的三角形面积故选:A.8.B 解析:利用函数的奇偶性可排除A、C .,代入可得,可排除D.,又函数定义域为,故该函数为偶函数,可排除A、C,又故可排除D.故选:B.9.B 解析:,先将弦化切求得,再根据两角和的正切公式即可求解.因为,所以,,所以故选:B.10.C 解析:,根据题意,由条件可得直线过定点,从而可得当时,定理代入计算,即可求解.的最小,结合勾股因为直线,即,令,则,所以直线过定点,设,将圆化为标准式为,所以圆心,半径,当时,的最小,此时故选:C11.A 解析:根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③..对①,当,因为,,则,当,因为,,则,当既不在也不在内,因为,,则且,故①正确;对②,若,则与不一定垂直,故②错误;对③,过直线分别作两平面与分别相交于直线和直线,因为,过直线的平面与平面的交线为直线,则根据线面平行的性质定理知,同理可得,则,因为平面,平面,则平面,因为平面,,则,又因为,则,故③正确;对④,若与和所成的角相等,如果,则综上只有①③正确,故选:A.12.C 解析:,故④错误;利用正弦定理得,再利用余弦定理有,由正弦定理得到的值,最后代入计算即可.因为,则由正弦定理得由余弦定理可得.:即,:,根据正弦定理得,所以,因为为三角形内角,则,则故选:C.13.2 解析:结合辅助角公式化简成正弦型函数,再求给定区间最值即可. .,当时,,当时,即时,故答案为:.214.先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得 解析:解.由题可得两个圆台的高分别为,,所以.故答案为:15.64 解析:.将利用换底公式转化成来表示即可求解.由题,整理得,或,又,所以,故故答案为:64.16. 解析:将函数转化为方程,令,分离参数,构造新函数结合导数求得单调区间,画出大致图形数形结合即可求解.令,即,令则,令得,当时,,单调递减,当时,,单调递增,,因为曲线与在上有两个不同的交点,所以等价于与有两个交点,所以.故答案为:17.1. 解析:因为,故,所以即故等比数列的公比为,故,故,故.17.2. 解析:由等比数列求和公式得,所以数列的前n项和18.1.答案见详解 解析:略18.2.答案见详解 解析:.由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为,用频率估计概率可得,又因为升级改造前该工厂产品的优级品率,则,可知,所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.19.1.证明见详解; 解析:由题意得,,且,所以四边形是平行四边形,所以,又平面平面,所以平面;19.2. 解析:取的中点,连接,,因为,且,所以四边形是平行四边形,所以,又,故是等腰三角形,同理是等腰三角形,可得,又,所以,故.又平面,所以平面,易知.在中,,所以.设点到平面的距离为,由,得,得,故点到平面的距离为.20.1.见解析 解析:定义域为,当时,,故在上单调递减;当时,时,,单调递增,当时,,单调递减.综上所述,当时,的单调递减区间为;时,的单调递增区间为,单调递减区间为20.2.见解析.解析:,且时,,令,下证即可.,再令,则,显然在上递增,则,即在上递增,故,即在上单调递增,故,问题得证21.1. 解析:设,由题设有且,故,故,故,故椭圆方程为21.2.证明见解析. 解析:直线的斜率必定存在,设,,,由可得,故,故,又,而,故直线,故,所以,故,即轴.22.1. 解析:由,将代入,故可得,两边平方后可得曲线的直角坐标方程为.22.2. 解析:对于直线的参数方程消去参数,得直线的普通方程为法1.:直线的斜率为,故倾斜角为,故直线的参数方程可设为,.将其代入中得设两点对应的参数分别为,则,且,故,,解得法2.:联立,得,,解得,设,,则,解得23.1.证明见解析 解析:因为,当时等号成立,则,因为,所以23.2.证明见解析;解析:。
高中数学文科试题及答案
高中数学文科试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = a(x - h)^2 + kC. y = ax^2 + bx + c + 1D. y = ax^2 + bx + c - 1答案:A2. 圆的面积公式是什么?A. A = πr^2B. A = 2πrC. A = πrD. A = r^2答案:A3. 函数f(x) = 2x - 1在点x=2处的导数是多少?A. 1B. 2C. 3D. 4答案:B4. 以下哪个是等差数列?A. 1, 3, 5, 7, 9B. 2, 4, 6, 8, 10C. 1, 4, 9, 16, 25D. 1, 2, 4, 8, 16答案:A5. 集合{1, 2, 3}与集合{2, 3, 4}的交集是什么?A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}答案:B6. 直线y = 3x + 2与x轴的交点坐标是?A. (0, 2)B. (-2/3, 0)C. (2/3, 0)D. (0, -2)答案:C7. 一个等腰三角形的底边长为6,腰长为5,那么它的高是多少?A. 4B. 3C. 2D. 1答案:B8. 函数f(x) = x^3 - 3x^2 + 4在x=1处的值是多少?A. 2B. 0C. -2D. 4答案:A9. 以下哪个选项是复数的标准形式?A. a + biB. a - biC. a + bi + cD. a - bi + c答案:A10. 一个圆的半径为5,那么它的周长是多少?A. 10πB. 20πC. 30πD. 40π答案:B二、填空题(每题4分,共20分)1. 如果一个数列的前三项为1, 4, 9,那么它的第四项是_________。
答案:162. 一个二次方程ax^2 + bx + c = 0的判别式为b^2 - 4ac,当判别式等于0时,方程有_________个实数解。
高考高分文科数学试卷
一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数f(x) = x^2 - 2x + 1,则f(x)的对称轴是:A. x = 1B. x = -1C. y = 1D. y = -12. 下列各式中,正确的是:A. sin^2 x + cos^2 x = 1B. tan x = sin x / cos xC. cot x = cos x / sin xD. sec x = 1 / cos x3. 若a > 0,b < 0,则下列不等式中正确的是:A. a^2 > b^2B. a^2 < b^2C. a < bD. a > b4. 下列函数中,是奇函数的是:A. f(x) = x^3B. f(x) = x^2C. f(x) = |x|D. f(x) = e^x5. 若log2 a + log2 b = log2 (ab),则a和b的关系是:A. a = bB. a > bC. a < bD. a 和 b 可能为任意正数6. 已知数列{an}的前n项和为Sn,若S5 = 10,S8 = 32,则S12 =:A. 56B. 64C. 80D. 967. 若复数z = 2 + 3i,则|z|^2等于:A. 13B. 5C. 7D. 118. 若等差数列{an}的公差为d,首项为a1,第n项为an,则an + an+1 + an+2等于:A. 3a1 + 6dB. 3a1 + 3dC. 3a1D. 3d9. 若三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,则这个三角形是:A. 等腰三角形B. 等边三角形C. 直角三角形D. 梯形10. 下列命题中,正确的是:A. 对于任意的实数x,x^2 ≥ 0B. 对于任意的实数x,x^3 ≥ 0C. 对于任意的实数x,x^4 ≥ 0D. 对于任意的实数x,x^5 ≥ 011. 已知函数f(x) = x^3 - 3x^2 + 4x - 1,则f(x)在x = 1时的导数f'(1)等于:A. -2B. -1C. 0D. 112. 下列函数中,在定义域内单调递增的是:A. f(x) = x^2B. f(x) = e^xC. f(x) = log2 xD. f(x) = 1/x二、填空题(本大题共6小题,每小题5分,共30分)13. 若复数z = 3 - 4i,则|z| = _______。
文科高考卷数学试卷
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 若函数f(x) = ax^2 + bx + c的图像开口向上,对称轴为x = -1,且f(0) = 3,则下列说法正确的是()A. a > 0,b = 0,c = 3B. a < 0,b = 0,c = 3C. a > 0,b ≠ 0,c = 3D. a < 0,b ≠ 0,c = 32. 已知等差数列{an}的首项为2,公差为3,则第10项an的值为()A. 29B. 30C. 31D. 323. 下列函数中,在其定义域内单调递减的是()A. y = 2x - 1B. y = x^2C. y = 1/xD. y = -x^34. 已知向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的点积为()A. 1B. -1C. 5D. -55. 若等比数列{an}的首项为a1,公比为q,且a1 + a2 + a3 = 6,a2 + a3 + a4 = 18,则q的值为()A. 2B. 3C. 4D. 66. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 下列函数中,在x = 0时,函数值为0的是()A. y = x^2 - 1B. y = 1/xC. y = x + 1D. y = x^38. 若等差数列{an}的前n项和为Sn,公差为d,首项为a1,则Sn的通项公式为()A. Sn = (n/2)(2a1 + (n - 1)d)B. Sn = (n/2)(2a1 - (n - 1)d)C. Sn = (n/2)(a1 + a1 + (n - 1)d)D. Sn = (n/2)(a1 - a1 + (n - 1)d)9. 若函数f(x) = |x - 2| + |x + 3|,则f(x)的最小值为()A. 1B. 2C. 3D. 410. 已知函数y = kx^2 + bx + c的图像开口向上,且与x轴有两个交点,若a1 = 1,a2 = 4,则k的值为()A. 1/2B. 1C. 2D. 4二、填空题(本大题共5小题,每小题5分,共25分。
高考全国卷文科数学试卷
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = 2x - 3,则f(-1)的值为:A. -4B. -2C. 0D. 22. 下列命题中正确的是:A. 若a > b,则a^2 > b^2B. 若a > b,则a + c > b + cC. 若a > b,则a - c > b - cD. 若a > b,则ac > bc3. 在△ABC中,∠A = 60°,∠B = 45°,则sinC的值为:A. $$ \frac{ \sqrt {3}}{2}$$B. $$ \frac{1}{2}$$C. $$ \frac{ \sqrt {2}}{2}$$D. $$ \frac{ \sqrt {3}}{3}$$4. 下列函数中,单调递增的是:A. y = 2x - 1B. y = -x^2 + 2x + 1C. y = x^3D. y = log2x5. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在:A. 虚轴上B. 实轴上C. 第一象限D. 第二象限6. 下列不等式中正确的是:A. x^2 - 2x + 1 > 0B. x^2 + 2x + 1 < 0C. x^2 - 2x + 1 < 0D. x^2 + 2x + 1 > 07. 下列方程中,解为x = 1的是:A. x^2 - 2x - 3 = 0B. x^2 + 2x - 3 = 0C. x^2 - 2x + 3 = 0D. x^2 + 2x + 3 = 08. 已知函数f(x) = x^3 - 3x + 2,则f(x)的极值点为:A. x = -1B. x = 1C. x = -2D. x = 29. 下列数列中,不是等比数列的是:A. 2, 4, 8, 16, ...B. 1, 2, 4, 8, ...C. 1, 3, 9, 27, ...D. 1, 3, 6, 10, ...10. 已知向量a = (1, 2),向量b = (2, 1),则向量a与向量b的夹角θ的余弦值为:A. $$ \frac{1}{2}$$B. $$ \frac{\sqrt{2}}{2}$$C. $$ \frac{1}{\sqrt{2}}$$D. $$ \frac{\sqrt{2}}{2}$$二、填空题(本大题共5小题,每小题5分,共25分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精典文科数学高考试题
单选题(共5道)
1、在△ABC中,若角A,B,C所对的三边a,b,c成等差数列,给出下列结论:
①b2≥ac;
②;
③;
④.其中正确的结论是()
A①②
B②③
C③④
D①④
2、在区间(0,+∞)上为增函数”是“a=3”的()
A充分不必要条件
B必要不充分条件
C充要条件
D既不充分也不必要条件
3、的最小正周期为()
A
B
C
D
4、将函数的图象向右平移个单位,再将图象上每一点的横坐标缩短到原来的倍,所得图象关于直线对称,则的最小正值为()
A
B
C
D
5、对集合A,如果存在x0使得对任意正数a,都存在x∈A,使0<|x﹣x0|<a,则称x0为集合A的“聚点”,给出下列四个集合:
①;②{x∈R|x≠0};
③;④Z。
其中以0为“聚点”的集合是()
A②③
B①②
C①③
D②④
简答题(共5道)
6、已知,。
(1)求的值;
(2)求的值。
7、中,分别是角的对边,,则等于多少?
(2)在中,分别是角的对边,若,求边上的高是多少?
8、已知数列是等差数列,;数列的前n项和是,且。
(1)求数列的通项公式;
(2)求证:数列是等比数列;
(3)记,求的前n项和。
9、已知圆c以原点为圆心且经过点A(1,),直线l经过点和,(1)求圆c的方程和直线l的一般方程;(2)求与圆c相切且平行直线l的直线方程。
10、(常数)的图像过点.两点。
(1)求的解析式;
(2)问:是否存在边长为正三角形,使点在函数图像上,.从左至右是正半轴上的两点?若存在,求直线的方程,若不存在,说明理由;
(3)若函数的图像与函数的图像关于直线对称,且不等式恒成立,求实数的取值范围。
填空题(共5道)
11、已知递增的等差数列的首项,且,,成等比数列,则数列的通项公式;____.
12、的解为_________
13、已知圆C的圆心坐标为,抛物线的准线被圆C截得的
弦长为2,则圆C的方程为_________;
14、若三阶行列式中第1行第2列的元素3的代数余子式的值是,则(其中是虚数单位,)的值是。
15、已知集合,,则。
-------------------------------------
1-答案:D
略
2-答案:B
解析已在路上飞奔,马上就到!
3-答案:A
解析已在路上飞奔,马上就到!
4-答案:B
略。
5-答案:A
①令f(n)=,则=,即f(n)=当n∈N时单调递增,则1为其“聚点”,下面给出证明:取x0=1,对任意正数a,要使成立,只要取正整数,故1是其“聚点”;②由
实数的稠密性可知:对任意正数a,都存在x=∈{x∈R|x≠0},使0<|x﹣0|<a成立,故0是此集合的“聚点”;③∵,由(1)可知:0为集合{},根据“聚点”的定义可知,0是其聚点;④∀n∈Z,且n≠0,则|n|≥1,故取0<a<1,则不存在x∈Z,使0<|x﹣x0|<a成立,根据“聚点”的定义可知:所给集合不存在聚点。
综上可知:只有②③正确;故选A。
-------------------------------------
1-答案:见解析。
(1)∵,∴
;
(2)∵∴。
2-答案:(1)或;
(2)
(1)由正弦定理:,则:,解得:
又由于是三角形中的角,且由于,于是:或(2)由余弦定理:,所以由面积公式
,解得:
3-答案:见解析。
(1)设的公差为,则:,,∵,,∴,∴,∴。
(2)当时,,由,得。
当时,,,∴,即,∴,∴是以为首项,为公比的等比数列,
(3)由(2)可知:。
∴,∴。
∴。
∴。
∴,
4-答案:略
解析已在路上飞奔,马上就到!
5-答案:(1)把和分别代入可得:
化简此方程组可得:即可得,,代入原方程组可得:
(2)由边长为可知:此三角形的高即点的纵坐标为
--5’点的坐标为点的横坐标为
,即,直线的倾斜角为
这样的正三角形存在,且点,直线的方程为即
(3)由题意知:为的反函数,
()即当
恒成立即当恒成立只需求函数在上的最小值即可,又
在单调递增,
解析已在路上飞奔,马上就到!
------------------------------------- 1-答案:,。
故此题答案为,。
2-答案:
解析已在路上飞奔,马上就到!
3-答案:
.根据抛物线几何性质可知准线方程,则圆心到直线的距离,根据相交弦公式所以圆的标准方程为
4-答案:2
略
5-答案:
略。