文科数学高考试题分类汇编

合集下载

广东高考文科数学 试题分类汇编 集合与简易逻辑

广东高考文科数学 试题分类汇编 集合与简易逻辑

1.集合与简易逻辑(2007年高考广东卷第1小题)已知集合1{10{0}1M x x N x x=+>=>-,,则M N =(C )A .{11}x x -<≤B .{1}x x >C .{11}x x -<<D .{1}x x -≥(2008年高考广东卷第1小题)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是(D ) A. A B ⊆B. B C ⊆C. B ∪C = AD. A∩B = C(2009年高考广东卷第1小题).已知全集U=R ,则正确表示集合M= {-1,0,1} 和N= { x |x 2+x=0} 关系的韦恩(Venn )图是【答案】B【解析】由N= { x |x 2+x=0}{1,0}-得N M ⊂,选B.(2010年高考广东卷第1小题)若集合A ={0,1,2,3},B ={1,2,4},则集合A B =( A.)A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0}(2010年高考广东卷第8小题) “x >0”是>0”成立的( A.)A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件(2011年高考广东卷第2小题)已知集{}{}22(,),1,(,),1A x y x y x y B x y x y x y =+==+=为实数,且为实数,且,则A B 的元素个数为(C)A .4 B.3 C.2 D. 1(2012年高考广东卷第2小题)2.设集合{}1,2,3,4,5,6U =,{}1,3,5M =,则U C M =(A)A .{}2,4,6B .{}1,3,5C .{}1,2,4D .U (2013年高考广东卷第1题)1.已知集合{}220,S x x x x R=+=∈,{}220,T x x x x R=-=∈,则ST =( A )A.{0}B.{0,2}C.{-2,0}D. {-2,0,2}(2014年高考广东卷第1小题)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( B )A. {}2,0B. {}3,2C. {}4,3D. {}5,3(2014年高考广东卷第7小题)在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是“B A sin sin ≤”的( A )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件。

全国高考文科数学历年试题分类汇编

全国高考文科数学历年试题分类汇编

全国高考文科数学历年试题分类汇编全国高考文科数学历年试题分类汇编(一)小题分类1.集合(2019卷1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2 (2019卷2)已知集合A={}{}=<<=<<-B A x x B x x Y 则,30,21 A.(-1,3) B.(-1,0 ) C.(0,2) D.(2,3)(2019卷1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则M B =I ( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(-(2019卷2)已知集合A=﹛-2,0,2﹜,B=﹛x |2x -x -20=﹜,则A B ⋂=( )(A) ∅ (B ){}2 (C ){}0 (D) {}2-(2019卷1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =I ( ) (A ){0} (B ){-1,,0} (C ){0,1} (D ){-1,,0,1} (2019卷2)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ). A .{-2,-1,0,1} B .{-3,-2,-1,0} C .{-2,-1,0} D .{-3,-2,-1} (2018卷1)已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2018卷2)☆已知集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形},则(A )A B ⊆ (B )C B ⊆ (C )D C ⊆ (D )A D ⊆ (2017卷1)已知集合M={0,1,2,3,4},N={1,3,5},P=M N I ,则P 的子集共有A .2个B .4个C .6个D .8个(2016卷1)已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}(2015卷1)已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则A B =IA .{3,5}B .{3,6}C .{3,7}D .{3,9}(2014卷1)已知集合M ={ x|(x + 2)(x -1) < 0 },N ={ x| x + 1 < 0 },则M ∩N =( ) A. (-1,1)B. (-2,1)C. (-2,-1)D. (1,2)(2016卷1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =I (A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}(2016卷2)已知集合{123}A =,,,2{|9}B x x =<,则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},,(D ){12},(2017卷1)已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A ∩B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A ∩B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R(2017II 卷1).设集合{}{}123234A B ==,,, ,,, 则=A B U A. {}123,4,, B. {}123,, C. {}234,, D. {}134,,2.复数(2019卷1)已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +(2019卷2)若a 实数,且=+=++a i iai则,312( ) A.-4 B. -3 C. 3 D. 4 (2019卷1)设i iz ++=11,则=||z ( ) A.21B. 22C. 23D. 2(2019卷2)131ii+=-( ) (A )12i + (B )12i -+ (C )1-2i (D) 1-2i -(2019卷1)212(1)ii +=-( )(A )112i --(B )112i -+(C )112i +(D )112i -(2019卷2)21i+=( ).A .B .2CD ..1(2018卷1)复数z =-3+i2+i的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i (2017卷1)复数512ii=-( )A .2i -B .12i -C . 2i -+D .12i -+(2016卷1)已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =( )A.14B.12C .1D .2(2015卷1)复数3223ii+=- A .1 B .1- C .i (D)i -(2014卷1)已知复数1z i =-,则21z z =-( ) A. 2B. -2C. 2iD. -2i(2016卷1)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3(B )-2(C )2(D )3(2016卷2)设复数z 满足i 3i z +=-,则z =(A )12i -+(B )12i -(C )32i +(D )32i - (2017II 卷2)(1+i )(2+i )=A.1-iB. 1+3iC. 3+iD.3+3i (2017卷3)下列各式的运算结果为纯虚数的是 A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)3.向量(2019卷1)已知点(0,1),(3,2)A B ,向量(4,3)AC =--u u u r,则向量BC =u u u r ( )(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)(2019卷2)已知向量=•+-=-=则(2),2,1(),1,0(( )A. -1B. 0C. 1D. 2(2019卷1)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+( ) A. B.21 C. 21D.(2019卷2)设向量a ,b 满足a b?( )(A )1 (B ) 2 (C )3 (D) 5(2017卷2)设非零向量a ,b 满足+=-b b a a 则 A a ⊥b B. =b a C. a ∥b D. >b a(2019卷1)已知两个单位向量a ,b 的夹角为60o,(1)=+-c ta t b ,若0⋅=b c ,则t =_____。

2022年数学文高考真题分类汇编专题07概率与统计

2022年数学文高考真题分类汇编专题07概率与统计

2022年数学文高考真题分类汇编专题07概率与统计1.【2022高考新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.1125B.C.D.3236【答案】A【解析】考点:古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.2.【2022高考新课标2文数】某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.7533B.C.D.108810【答案】B【解析】试题分析:因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为故选B.考点:几何概型.【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.3.[2022高考新课标Ⅲ文数]某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C,B点表示四月的平均最低气温约为5C.下面叙述不正确的是()40155,408A.各月的平均最低气温都在0C以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均气温高于20C的月份有5个【答案】D【解析】考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.学优高考网4.[2022高考新课标Ⅲ文数]小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.8111B.C.D.1581530【答案】C【解析】试题分析:开机密码的可能有(M,1),M(,2)M,(,3)M,(,M,4),(I,5)I,(,1)I,((,,4I2)),,((,I,53)(N,1),(N,2),(N,3),(N,4),(N, 5),共15种可能,所以小敏输入一次密码能够成功开机的概率是选C.考点:古典概型.1,故15【解题反思】对古典概型必须明确判断两点:①对于每个随机试验来说,所有可能出现的试验结果数n必须是有限个;②出现的各个不同的试验结果数m其可能性大小必须是相同的.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)m得出的结果才是正确的.n5.【2022高考山东文数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140【答案】D【解析】考点:频率分布直方图【名师点睛】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的视图、用图能力,以及应用数学解决实际问题的能力.6.【2022高考天津文数】甲、乙两人下棋,两人下成和棋的概率是率为()(A)11,甲获胜的概率是,则甲不输的概2356(B)25(C)16(D)13【答案】A【解析】试题分析:甲不输概率为115.选A.236考点:概率【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.运用概率加法的前提是事件互斥,不输包含赢与和,两种互斥,可用概率加法.对古典概型概率考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件.7.【2022高考北京文数】从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.1289B.C.D.552525【答案】B考点:古典概型【名师点睛】如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A中的基本事件数,利用公式P(A)但列举时必须按照某一顺序做到不重不漏.如果基本事件个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识直接计算m,n,再运用公式P(A)m求出事件A的概率,这是一个形象直观的好方法,nm求概率.学优高考网n8.【2022高考北京文数】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.【名师点睛】本题将统计与实际应用结合,创新味十足,是能力立意的好题,根据表格中数据分析排名的多种可能性,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏,另外注意条件中数据的特征.9.【2022高考北京文数】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.【答案】①16;②29【解析】考点:统计分析【名师点睛】本题将统计与实际情况结合,创新味十足,是能力立意的好题,关键在于分析商品出售的所有可能的情况,分类讨论做到不重复不遗漏,另外,注意数形结合思想的运用.学优高考网10.【2022高考四川文科】从2、3、8、9任取两个不同的数值,分别记为a、b,则oglab为整数的概率=.【答案】【解析】16考点:古典概型.【名师点睛】本题考查古典概型,解题关键是求出基本事件的总数,本题中所给数都可以作为对数的底面,4因此所有对数的个数就相当于4个数中任取两个的全排列,个数为A4,而满足题意的只有2个,由概率公式可得概率.在求事件个数时,涉及到排列组合的应用,涉及到两个有理的应用,解题时要善于分析.11.【2022高考上海文科】某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.【答案】161.6【解析】试题分析:将4种水果每两种分为一组,有C246种方法,则甲、乙两位同学各自所选的两种水果相同的概率为考点:.古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好的考查考生数学应用意识、基本运算求解能力等.12.【2022高考上海文科】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.13.【2022高考新课标1文数】(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:频数2420221060161718192022更换的易损零件数记某表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(I)若n=19,求y与某的函数解析式;(II)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【答案】(I)y【解析】,某19,3800(某N)(II)19(III)19,某19,500某5700(Ⅱ)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为【名师点睛】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.学优高考网14.【2022高考新课标2文数】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数保费0123452a0.85aa1.25a1.5a1.75a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数频数060150230330420510(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(III)求续保人本年度的平均保费估计值.【答案】(Ⅰ)由公式求解.【解析】60503030求P(A)的估计值;(Ⅱ)由求P(B)的估计值;(III)根据平均值得计算200200(Ⅱ)事件B发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为30300.3,200故P(B)的估计值为0.3.(Ⅲ)由题所求分布列为:保费频率0.85a0.30a0.251.25a0.151.5a0.151.75a0.102a0.05调查200名续保人的平均保费为0.85a0.30a0.251.25a0.151.5a0.151.75a0.302a0.101.1925a,因此,续保人本年度平均保费估计值为 1.1925a.考点:样本的频率、平均值的计算.【名师点睛】样本的数字特征常见的命题角度有:(1)样本的数字特征与直方图交汇;(2)样本的数字特征与茎叶图交汇;(3)样本的数字特征与优化决策问题.15.[2022高考新课标Ⅲ文数]下图是我国2022年至2022年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(II)建立y关于t的回归方程(系数精确到0.01),预测2022年我国生活垃圾无害化处理量.附注:参考数据:yi9.32,tiyi40.17,i1i1772(yy)0.55,7≈2.646.ii17参考公式:相关系数r(tt)(yy)iii1n(tt)(y2ii1i1nn,iy)2b中斜率和截距的最小二乘估计公式分别为:回归方程yab(ti1nit)(yiy)i(ti1nybt.,at)2【答案】(Ⅰ)理由见解析;(Ⅱ)1.82亿吨.【解析】考点:线性相关与线性回归方程的求法与应用.【方法点拨】(1)判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数r公式求出r,然后根据r的大小进行判断.求线性回归方程时在严格按照公式求解时,一定要注意计算的准确性.学优高考网16.【2022高考北京文数】(本小题13分)某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.【答案】(Ⅰ)3;(Ⅱ)10.5元.【解析】所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.考点:频率分布直方图求频率,频率分布直方图求平均数的估计值.【名师点睛】1.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观.2.频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.17.【2022高考山东文数】(本小题满分12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为某,y.奖励规则如下:①若某y3,则奖励玩具一个;②若某y8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(I)求小亮获得玩具的概率;(II)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【答案】()【解析】5.()小亮获得水杯的概率大于获得饮料的概率.16所以,PB63.168则事件C包含的基本事件共有5个,即1,4,2,2,2,3,3,2,4,1,所以,PC因为5.1635,816所以,小亮获得水杯的概率大于获得饮料的概率.考点:古典概型学优高考网【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题较易,能较好的考查考生数学应用意识、基本运算求解能力等.18.【2022高考四川文科】(12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.【答案】(Ⅰ)a0.30;(Ⅱ)36000;(Ⅲ)2.04.【解析】试题分析:(Ⅰ)由高某组距=频率,计算每组中的频率,因为所有频率之和为1,计算出a的值;(Ⅱ)利用高某组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率某样本总数=频数,计算所求人数;(Ⅲ)将前5组的频率之和与前4组的频率之和进行比较,得出2≤某<2.5,再进行计算.试题解析:(Ⅰ)由频率分布直方图,可知:月用水量在[0,0.5]的频率为0.08某0.5=0.04.同理,在[0.5,1),(1.5,2],[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+.025+0.06+0.04+0.02)=0.5某a+0.5某a,解得a=0.30.考点:频率分布直方图、频率、频数的计算公式【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题解决问题的能力.在频率分布直方图中,第个小矩形面积就是相应的频率或概率,所有小矩形面积之和为1,这是解题的关键,也是识图的基础.。

专题04 导数解答题2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)

专题04  导数解答题2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)
设 , ,
当 时, ,当 时, ,
故 在 上为减函数,在 上为增函数,
所以 ,
而 , ,
有两个不同的零点即 的解的个数为2.
当 ,由(1)讨论可得 、 仅有一个零点,
当 时,由(1)讨论可得 、 均无零点,
故若存在直线 与曲线 、 有三个不同的交点,
则 .
设 ,其中 ,故 ,
设 , ,则 ,
故 在 上为增函数,故 即 ,
【题目栏目】导数\导数的综合应用
【题目来源】2021年高考全国甲卷文科·第20题
10.(2021年全国高考乙卷文科·第21题)已知函数 .
(1)讨论 的单调性;
(2)求曲线 过坐标原点的切线与曲线 的公共点的坐标.
【答案】(1)答案见解析;(2) .
解析:(1)由函数的解析式可得: ,
导函数的判别式 ,
即曲线 过坐标原点的切线与曲线 的公共点的坐标为 .
【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.
故 为方程 的解,同理 也为方程 的解,
所以 ,而 ,
故 即 .
【题目栏目】导数\导数的综合应用
【题目来源】2022新高考全国I卷·第22题
5.(2021年新高考全国Ⅱ卷·第22题)已知函数 .
(1)讨论 的单调性;
(2)从下面两个条件中选一个,证明: 有一个零点

十年(2014-2023)高考数学真题分项汇编文科专题5 数列小题(文科)(解析版)

十年(2014-2023)高考数学真题分项汇编文科专题5  数列小题(文科)(解析版)

n 项和
Sn,公差
d≠0, a1 d
1 .记
b1=S2,
bn+1=Sn+2–S2n, n N ,下列等式不可能成立的是
( )
A.2a4=a2+a6
B.2b4=b2+b6
C. a42 a2a8
D. b42 b2b8
【答案】D
解析:对于 A,因为数列an 为等差数列,所以根据等差数列的下标和性质,由 4 4 2 6 可得,
由 an
a1
n
1 d
0
可得 n
1
a1 d
,取
N0
1
a1 d
1 ,则当 n
N0
时, an
0,
所以,“an 是递增数列” “存在正整数 N0 ,当 n N0 时, an 0 ”;
若存在正整数 N0 ,当 n N0 时, an 0 ,取 k N 且 k N0 , ak 0 ,
假设 d
0 ,令 an
Sn =
1 2
An An+1 ×tan q Bn Bn+1 ,都为定值,所以 Sn+1 - Sn 为定值.故选 A.
3.(2022 高考北京卷·第 15 题)己知数列an 各项均为正数,其前 n 项和 Sn 满足 an Sn 9(n 1, 2,) .给
出下列四个结论:
①an 的第 2 项小于 3; ②an 为等比数列;
2a4 a2 a6 ,A 正确;
对于 B,由题意可知, bn1 S2n2 S2n a2n1 a2n2 , b1 S2 a1 a2 ,
∴ b2 a3 a4 , b4 a7 a8 , b6 a11 a12 , b8 a15 a16 .
∴ 2b4 2 a7 a8 , b2 b6 a3 a4 a11 a12 .

高考数学真题2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—9.数列

高考数学真题2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—9.数列

2011年—2018年新课标全国卷文科数学分类汇编9.数列一、选择题(2015·新课标Ⅰ,文7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=()A .172B .192C .10D .12(2015·新课标Ⅱ,文5)设n S 是等差数列}{n a 的前n 项和,若3531=++a a a ,则=5S ()A.5B.7C.9D.11(2015·新课标Ⅱ,文9)已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a ()A.2B.1C.21 D.81(2014·新课标Ⅱ,文5)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项S n =()A .(1)n n +B .(1)n n -C .(1)2n n +D .(1)2n n -(2013·新课标Ⅰ,文6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则().A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n(2012·新课标Ⅰ,文12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为()A .3690B .3660C .1845D .1830二、填空题(2015·新课标Ⅰ,文13)数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n =.(2014·新课标Ⅱ,文16)数列}{n a 满足nn a a -=+111,2a =2,则1a =_________.(2012·新课标Ⅰ,文14)等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =_____.三、解答题(2018·新课标Ⅰ,文17)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=.(1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式.(2018·新课标Ⅱ,文17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.(2018·新课标Ⅲ,文17)等比数列{}n a 中,15314a a a ==,.(1){}n a 的通项公式;⑵记n S 为{}n a 的前n 项和.若63m S =,求m .(2017·新课标Ⅰ,文17)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-.(1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.(2017·新课标Ⅱ,文17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.(2017·新课标Ⅲ,文17)设数列{}n a 满足()123212n a a n a n +++-= .(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.(2016·新课标Ⅰ,文17)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.(2016·新课标Ⅱ,文17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =[lg a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.(2016·新课标Ⅲ,文17)已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(1)求23,a a ;(2)求{}n a 的通项公式.(2014·新课标Ⅰ,文17)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

最新文科数学高考分类汇编1117

最新文科数学高考分类汇编1117

最新文科数学高考分类汇编单选题(共5道)1、复数(1+i)2(1-i)=()A-2-2iB2+2iC-2+2iD2-2i2、曲线在点处的切线方程是()ABCD3、已知两不共线向量,,则下列说法不正确的是AB与的夹角等于CD与在方向上的投影相等4、已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是()A5B4C3D25、对集合A,如果存在x0使得对任意正数a,都存在x∈A,使0<|x﹣x0|<a,则称x0为集合A的“聚点”,给出下列四个集合:①;②{x∈R|x≠0};③;④Z。

其中以0为“聚点”的集合是()A②③B①②C①③D②④简答题(共5道)6、设函数的图象经过点.(Ⅰ)求的解析式,并求函数的最小正周期和最值.(Ⅱ)若,其中是面积为的锐角的内角,且,求和的长.7、已知.(1)若,求的值;(2)若函数,求的单调增区间.8、如图所示,在三棱锥中,,平面⊥平面,.(1)求证:平面;(2)求直线与平面所成角的正弦值.9、如图:四棱柱-中,侧棱垂直与底面,,E为CD上一点,DE=1,EC=3,(1)证明:;(2)求点到平面的距离。

10、(常数)的图像过点.两点。

(1)求的解析式;(2)问:是否存在边长为正三角形,使点在函数图像上,.从左至右是正半轴上的两点?若存在,求直线的方程,若不存在,说明理由;(3)若函数的图像与函数的图像关于直线对称,且不等式恒成立,求实数的取值范围。

填空题(共5道)11、x,y满足约束条件,则z=3x+y的最大值为.()12、=1,则x+2y的最小值().13、已知,各项均为正数的数列满足,,若,则的值是.14、某足球队共有11名主力队员和3名替补队员参加一场足球比赛,其中有2名主力和1名替补队员不慎误服违禁药物,依照比赛规定,比赛后必须随机抽取2名队员的尿样化验,则能查到服用违禁药物的主力队员的概率为()。

(结果用分数表示)15、已知集合,,则。

-------------------------------------1-答案:B解析已在路上飞奔,马上就到!2-答案:C略3-答案:B略4-答案:C解析已在路上飞奔,马上就到!5-答案:A①令f(n)=,则=,即f(n)=当n∈N时单调递增,则1为其“聚点”,下面给出证明:取x0=1,对任意正数a,要使成立,只要取正整数,故1是其“聚点”;②由实数的稠密性可知:对任意正数a,都存在x=∈{x∈R|x≠0},使0<|x﹣0|<a成立,故0是此集合的“聚点”;③∵,由(1)可知:0为集合{},根据“聚点”的定义可知,0是其聚点;④∀n∈Z,且n≠0,则|n|≥1,故取0<a<1,则不存在x∈Z,使0<|x﹣x0|<a成立,根据“聚点”的定义可知:所给集合不存在聚点。

2023年高考文科数学真题汇编圆锥曲线老师版

2023年高考文科数学真题汇编圆锥曲线老师版

直线AE 旳方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -. 因此直线BM 旳斜率112131BM y y k -+==-.17.(安徽文)设椭圆E 旳方程为22221(0),x y a b a b+=>>点O 为坐标原点,点A 旳坐标为(,0)a ,点B 旳坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 旳斜率为510。

(1)求E 旳离心率e;(2)设点C 旳坐标为(0,-b ),N 为线段AC 旳中点,证明:MN ⊥AB 。

∴a b 3231=5525451511052222222=⇒=⇒=-⇒=⇒e a c a c a a b (Ⅱ)由题意可知N 点旳坐标为(2,2b a -)∴a b a ba a bb K MN 56652322131==-+= abK AB-=∴1522-=-=⋅a b K K AB MN ∴MN ⊥AB18.(福建文)已知椭圆2222:1(0)x y E a b a b+=>>旳右焦点为F .短轴旳一种端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 旳距离不不不小于45,则椭圆E 旳离心率旳取值范围是( A ) A . 3(0,]2 B .3(0,]4 C .3[,1)2 D .3[,1)4119.(新课标2文)已知双曲线过点()4,3,且渐近线方程为12y x =±,则该双曲线旳原则方程为 .2214x y -= 20.(陕西文)已知抛物线22(0)y px p =>旳准线通过点(1,1)-,则抛物线焦点坐标为( B ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 【解析】试题分析:由抛物线22(0)y px p =>得准线2px =-,由于准线通过点(1,1)-,因此2p =, 因此抛物线焦点坐标为(1,0),故答案选B 考点:抛物线方程.21.(陕西文科)如图,椭圆2222:1(0)x y E a b a b+=>>通过点(0,1)A -,且离心率为22.(I)求椭圆E 旳方程;2212x y += 22.(天津文)已知双曲线22221(0,0)x y a b ab 旳一种焦点为(2,0)F ,且双曲线旳渐近线与圆222y 3x 相切,则双曲线旳方程为( D )(A)221913x y (B) 221139x y (C)2213x y(D) 2213y x23.(广东文)已知中心在原点旳椭圆C 旳右焦点为(1,0)F ,离心率等于21,则C 旳方程是( D )30旳等腰三角形,则122文) 设椭圆221y b 0,0a b 旳一条渐近线平行于直线210x ,双曲线旳上,则双曲线旳方程为( A )2120y (B )221205x y (C )2331100y D )223310025x y 1) 已知双曲线C :221x y (0,0a b >>)旳离心率为52,则C 14x B .13y =±12x ± D .y x[9,)+∞ [9,)+∞ [4,)+∞[4,)+∞【解析】当0m <上存在点M 满足120,则603ab=即33m≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603a b ≥=,即33m ≥,得9m ≥,故m 旳取值范围为(0,1][9,)⋃+∞,选A. 41、(·全国Ⅱ文,5)若a >1,则双曲线x 2a 2-y 2=1旳离心率旳取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)3.【答案】C 【解析】由题意得双曲线旳离心率e =a 2+1a .∴e 2=a 2+1a 2=1+1a 2.∵a >1,∴0<1a 2<1,∴1<1+1a2<2,∴1<e < 2.故选C.42.(·全国Ⅱ文,12)过抛物线C :y 2=4x 旳焦点F ,且斜率为3旳直线交C 于点M (M 在x 轴上方),l 为C 旳准线,点N 在l 上且MN ⊥l ,则M 到直线NF 旳距离为( )A. 5 B .2 2 C .2 3 D .3 34.【答案】C 【解析】抛物线y 2=4x 旳焦点为F (1,0),准线方程为x =-1.由直线方程旳点斜式可得直线MF旳方程为y =3(x -1).联立得方程组⎩⎨⎧y =3(x -1),y 2=4x ,解得⎩⎨⎧x =13,y =-233或⎩⎨⎧x =3,y =2 3.∵点M 在x 轴旳上方,∴M (3,23).∵MN ⊥l ,∴N (-1,23).∴|NF |=(1+1)2+(0-23)2=4, |MF |=|MN |=3-(-1)=4.∴△MNF 是边长为4旳等边三角形.∴点M 到直线NF 旳距离为2 3. 故选C.43.(·全国Ⅲ文,11)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)旳左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径旳圆与直线bx -ay +2ab =0相切,则椭圆C 旳离心率为( ) A .63 B .33 C .23 D .135.【答案】A 【解析】由题意知以A 1A 2为直径旳圆旳圆心坐标为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切,∴圆心到直线旳距离d =2aba 2+b 2=a ,解得a =3b , ∴b a =13,∴e =c a =a 2-b 2a = 1-⎝⎛⎭⎫b a 2=1-⎝⎛⎭⎫132=63.44.(·天津文,5)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)旳右焦点为F ,点A 在双曲线旳渐近线上,△OAF 是边长为2旳等边三角形(O 为原点),则双曲线旳方程为( ) A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 2=1D .x 2-y 23=16.【答案】D 【解析】根据题意画出草图如图所示⎝⎛⎭⎫不妨设点A 在渐近线y =ba x 上.由△AOF 是边长为2旳等边三角形得到∠AOF =60°,c =|OF |=2.又点A 在双曲线旳渐近线y =b a x 上,∴ba =tan 60°= 3.又a 2+b 2=4,∴a =1,b =3,∴双曲线旳方程为x 2-y 23=1.故选D. 45.(·全国Ⅲ文,14)双曲线x 2a 2-y 29=1(a >0)旳一条渐近线方程为y =35x ,则a =________.1.【答案】5【解析】∵双曲线旳原则方程为x 2a 2-y 29=1(a >0),∴双曲线旳渐近线方程为y =±3a x .又双曲线旳一条渐近线方程为y =35x ,∴a =5.46、(·北京文,10)若双曲线x 2-y 2m=1旳离心率为3,则实数m =________. 【答案】2【解析】由双曲线旳原则方程知a =1,b 2=m ,c =1+m ,故双曲线旳离心率e =ca =1+m =3,∴1+m =3,∴m =2.47、(·全国Ⅱ理,16)已知F 是抛物线C :y 2=8x 旳焦点,M 是C 上一点,FM 旳延长线交y 轴于点N .若M 为FN 旳中点,则|FN |=________.【解析】如图,不妨设点M 位于第一象限内,抛物线C 旳准线交x 轴于点A ,过点M 作准线旳垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2.∵点M 为FN 旳中点,PM ∥OF ,∴|MP |=12|FO |=1.1212121111442222BMy y K x x x x ----==---- (1x +=()12200x x ++= 又设AB :y=x +m 代入2x +20=0∴m=7故AB :x +y=7新课标Ⅱ文)设O 为坐标原点,动点M 在椭圆C :x 22+。

高考文科数学导数真题汇编(带答案)

高考文科数学导数真题汇编(带答案)

高考文科数学导数真题汇编(带答案)高考数学文科导数真题汇编答案一、客观题组4.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf'(x)的图象可能是。

5.设函数f(x)=x^2-2x,则f(x)的单调递减区间为。

7.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=2处取得极大值,则函数y=xf'(x)的图象可能是。

8.设函数f(x)=1/(2x-lnx),则x=2为f(x)的极小值点。

9.函数y=1/(2x-lnx)的单调递减区间为(0,1]。

11.已知函数f(x)=x^2+bx+c的图象经过点(1,2),且在点(2,3)处的切线斜率为4,则b=3.12.已知函数f(x)=ax^2+bx+c的图象过点(1,1),且在点(2,3)处的切线斜率为5,则a=2.二、大题组2011新课标】21.已知函数f(x)=aln(x/b)+2,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1) 求a、b的值;(2) 证明:当x>1,且x≠b时,f(x)>2ln(x/b)。

解析】1) f'(x)=a/(xlnb)+2/x,由于直线x+2y-3=0的斜率为-1/2,且过点(1,f(1)),解得a=1,b=1.2) 由(1)知f(x)=ln(x)+1,所以f(x)-2ln(x/b)=ln(x/b)+1>0,当x>1,且x≠b时,f(x)>2ln(x/b)成立。

2012新课标】21.设函数f(x)=ex-ax-2.(1) 求f(x)的单调区间;(2) 若a=1,k为整数,且当x>0时,(x-k)f'(x)+x+1>0,求k的最大值。

解析】1) f(x)的定义域为(-∞,+∞),f'(x)=ex-a,若a≤0,则f'(x)>0,所以f(x)在(-∞,+∞)单调递增。

五年(2018-22)高考文科数学真题类汇编(全国卷新高考卷卷等)专题19 立体几何单选题(练习版)

五年(2018-22)高考文科数学真题类汇编(全国卷新高考卷卷等)专题19 立体几何单选题(练习版)
A. B. C. D.
41.(2018年高考数学课标卷Ⅰ(文)·第10题)在长方体 中, , 与平面 所成的角为 ,则该长方体的体积为( )
A.8B. C. D.
42.(2018年高考数学课标卷Ⅰ(文)·第9题)某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点 在正视图上的对应点为 ,圆柱表面上的点 在左视图上的对应点为 ,则在此圆柱侧面上,从 到 的路径中,最短路径的长度为( )
2018-2022五年全国各省份高考数学真题分类汇编
专题19立体几何单选题
一、选择题
1.(2022高考北京卷·第9题)已知正三棱锥 的六条棱长均为6,S是 及其内部的点构成的集合.设集合 ,则T表示的区域的面积为( )
A. B. C. D.
2.(2022年浙江省高考数学试题·第8题)如图,已知正三棱柱 ,E,F分别是棱 上的点.记 与 所成的角为 , 与平面 所成的角为 ,二面角 的平面角为 ,则( )
A. B.3C. D.
14.(2021年新高考全国Ⅱ卷·第5题)正四棱台 上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )
A. B. C. D.
15.(2021年新高考全国Ⅱ卷·第4题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为 (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为 的球,其上点A的纬度是指 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为 ,记卫星信号覆盖地球表面的表面积为 (单位: ),则S占地球表面积的百分比约为( )
A. , B. , C. , D. ,
31.(2019年高考浙江文理·第4题)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到

三角函数—高考真题文科数学分项汇编(解析版)

三角函数—高考真题文科数学分项汇编(解析版)

y
f
(x)的图象.
其中所有正确结论的序号是
A.①
B.①③
【答案】B
C.②③
D.①②③
2
【解析】因为 f (x) sin(x ),所以周期T 2 2,故①正确;
3
f ( ) sin( ) sin5 1 1,故②不正确;
2
23
62
将函数 y sin x的图象上所有点向左平移 个单位长度,得到 y sin(x )的图象,
2
D.2
【答案】C
sin x
【解析】 f (x)
tan x 1 tan2 x
cos 1(sin
x sin xcos x 1sin2x,
x) 2
2
cos x
故所求的最小正周期为T 2π π,故选 C. 2
【名师点睛】函数 y Asin(x ) B(A 0, 0)的性质:
(1) ymax=B+A,ymin B A.
对应的函数为
gx.若
g
π4
2
,则
f
3π 8
A.−2
B. 2
C. 2
D.2
【答案】C
【解析】∵ f (x)为奇函数,∴ f (0) Asin 0,=kπ,k Z,k 0, 0;
∵ f x的最小正周期为π,T

π,∴
2,
∴ g(x) Asin 1x Asin x,
2
又 g(π) 2,∴ A 2,
f x max
3
2
5 2
4,故选
B.
【名师点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质, 在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.

2011-2019高考文科数学全国卷真题分类汇编(含答案)专题:第2章 集合与常用逻辑用语

2011-2019高考文科数学全国卷真题分类汇编(含答案)专题:第2章 集合与常用逻辑用语

第2章 集合与常用逻辑用语1.(2011全国1文1)已知集合,,,则的子集共有( ).A.个B.个C.个D.个2.(2012全国文1)已知集合,,则( ).A. B. C. D. 3.(2013全国I 文1)已知集合,则( ). A. B. C. D. 4.(2013全国II 文1)已知集合,,则( ). A. B. C. D.5(2014新课标Ⅰ文1)已知集合,,则( )A. B. C. D.6.(2014新课标Ⅱ文1)已知集合,,则( )A. B. C. D.7. (2015全国I 文1)已知集合,则集合中元素的个数为( ).A. 5B. 4C. 3D. 28. (2015全国II 文1)已知集合,,则( ).A. B. C. D.9. (2016全国I 文1)设集合,,则(B )A.{1,3}B.{3,5}C.{5,7}D.{1,7} 10.(2016全国II 文1)已知集合,则(D ) (A ) (B ) (C ) (D )11.(2017全国I 文1)已知集合A ={}|2x x <,B ={}|320x x ->,则 ( A ){}0,1,2,3,4M ={}1,3,5N =P MN =P 2468{}220A x x x =<--{}11B x x =<<-A B ⊂≠B A ⊂≠A B =A B =∅{}{}21234A B x x n n A ===∈,,,,,A B ={}14,{}23,{}916,{}12,{}|31M x x =-<<{}3,2,1,0,1N =---MN ={}2,1,0,1--{}3,2,1,0---{}2,1,0--{}3,2,1---{|13}M x x =-<<{|21}N x x =-<<MN =(2,1)-(1,1)-(1,3))3,2(-{}2,0,2A =-{}2|20B x x x =--=A B =∅{}2{}0{}2-{32,},{6,8,10,12,14}A x x n n B ==+∈=N A B {|12}A x x =-<<{}03B x x =<<=B A ()13,-()10,-()02,()23,{1,3,5,7}A ={|25}B x x =≤≤A B ={123}A =,,,2{|9}B x x =<A B ={210123}--,,,,,{21012}--,,,,{123},,{12},A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭ D .A B=R12(2017全国II 文1设集合{}{}123234A B ==,,, ,,, 则=A B (A ) A. {}123,4,, B. {}123,, C. {}234,, D. {}134,,13.【2018全国一文1】已知集合{}02A =,,{}21012B =--,,,,,则A B =(A ) A .{}02, B .{}12, C .{}0 D .{}21012--,,,, 14.【2018全国二文2】已知集合,,则(C )A .B .C .D .15.【2018全国三1】已知集合,,则(C )A .B .C .D .16.(2014新课标Ⅱ文3)函数在处导数存在,若;是的极值点,则( )A.是的充分必要条件B.是的充分条件,但不是的必要条件C.是的必要条件,但不是的充分条件D.既不充分也不必要17.(2013全国I 文5)已知命题;命题,则下列命题中为真命题的是( ).A. B. C. D.18.(2014新课标Ⅰ文14)甲.乙.丙三位同学被问到是否去过,,三个城市时, 甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.19.【2019年高考全国Ⅰ卷文数】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则=A C B UA .{}1,6B .{}1,7C .{}6,7D .{}1,6,720.【2019年高考全国Ⅱ卷文数】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B ={}1,3,5,7A ={}2,3,4,5B =A B ={}3{}5{}3,5{}1,2,3,4,5,7{|10}A x x =-≥{0,1,2}B =A B ={0}{1}{1,2}{0,1,2}()f x 0x x =0:()0p f x '=0:q x x =()f x p q p q q p q q :2<3x x p x ∀∈R ,32:1q x x x ∃∈=-R ,p q ∧p q ⌝∧p q ∧⌝p q ⌝∧⌝A B C B CA .(-1,+∞)B .(-∞,2)C .(-1,2)D .∅ 21.【2019年高考全国Ⅲ卷文数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2 22.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面第2章 答案BBACB BDABD AAACCCBA C C AB。

高考文科数学试题分类汇编复数精品

高考文科数学试题分类汇编复数精品

2009-20年高考文科数学试题分类汇编——复数一、选择题1.(20年广东卷文)下列n的取值中,使=1(i是虚数单位)的是()(A)n=2 (B)n=3 (C)n=4 (D)n=52.(2009浙江卷文)设z=1+i(i是虚数单位),则+z2=()(A)1+i(B)-1+i (C) 1-i (D)-1-i3.(2009山东卷文)复数等于()(A)1+2i(B)1-2i(C)2+i(D)2-i4. (2009安徽卷文)i是虚数单位,i(1+i)等于()(A)1+i (B)-1-i (C)1-i (D)-1+i5.(2009天津卷文)i是虚数单位,=()(A)1+2i (B)-1-2i (C)1-2i (D)-1+2i6. (2009宁夏海南卷文)复数=()(A)1 (B)-1 (C)i (D)-i7. (2009辽宁卷文)已知复数z=1-2i,则=()(A)+i(B)-i(C)+i(D)-i8.(2010湖南文数1)复数等于()(A) 1+i(B) 1-i (C)-1+i (D)-1-i9.(2010浙江理数)对随意复数z=x+(x R,y R),i为虚数单位,则下列结论正确的是()(A)-|=2y(B)z2=x2+y2(C)-|≥2x(D)≤+10.(2010全国卷2理数)复数()2=()(A)-3-4i(B)-3+4i(C)3-4i(D)3+4i11.(2010陕西文数)复数z=在复平面上对应的点位于()(A)第一象限(B)其次象限(C)第三象限(D)第四象限12.(2010辽宁理数(2))设a,b为实数,若复数=1+i,则()(A)a=,b=(B)a=3,b=1(C)a=,b=(D)a=1,b=313.(2010江西理数)已知(x+i)(1-i)=y,则实数x,y分别为()(A)x=-1,y=1 (B)x=-1,y=2(C)x=1,y=1 (D)x=1,y=214.(2010安徽文数(2))已知i2=-1,则i(1-i)=()(A)-i(B)+i (C)--i (D)-+i15.(2010浙江文数)设i为虚数单位,则=()(A)-2-3i (B)-2+3i(C)2-3i (D)2+3i16.(2010山东文数)已知=b+i(a,b R),其中i为虚数单位,则a+b=()(A)-1(B) 1 (C)2 (D) 317.(2010北京文数(2))在复平面内,复数6+5i,-2+3i 对应的点分别为A,B,若C为线段的中点,则点C对应的复数是()(A)4+8i (B)8+2i (C)2+4i (D)4+i18.(2010四川理数(1))i是虚数单位,计算i+i2+i3=()(A)-1 (B)1 (C)-i(D)i19.(2010天津文数)i是虚数单位,复数=()(A)1+2i (B)2+4i (C)-1-2i (D)2-i20.(2010天津理数)i 是虚数单位,复数=()(A)1+i (B)5+5i (C)-5-5i (D)-1-i21.(2010广东理数)若复数z1=1+i,z2=3-i,则z1·z2=()(A)4+2 i (B) 2+ i (C) 2+2 i (D)322.(2010福建文数)i是虚数单位,()4等于()(A)i (B)-i (C)1 (D)-123.(2010全国卷1理数(1))复数=()(A)i (B)-i(C)12-13i(D) 12+13i24.(2010山东理)已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()(A)-1 (B)1 (C)2 (D)325.(2010安徽理数1)i是虚数单位,+3i) =()(A)-,12) I(B)+,12) i(C)+,6) i(D)-,6) i26. (20年北京理)复数=()(A)i (B)-i (C)--i (D)-+i27.(20年福建理)i是虚数单位,若集合S={-1,0,1},则()(A)i S(B)i2S(C)i3S(D)S28.(2010湖北理数)若i为虚数单位,图中复平面内点Z表示复数Z,则表示复数的点是()(A)E(B)F(C)G(D)H29.(20年安徽理(1))设i是虚数单位,复数为纯虚数,则实数a为()(A)2 (B)-2 (C)-(D)30.(20年福建文)i是虚数单位,1+i3等于()(A)i (B)-i (C)1+i (D)1-i31.(20年广东理1)设复数z满意(1+i)z=2,其中i为虚数单位,则Z=()(A)1+i (B)1-i (C)2+2i (D)2-2i 32.(20年广东文1)设复数z满意=1,其中i为虚数单位,则z=()(A)-i(B)i(C)-1(D)133.(20年湖北理1)i为虚数单位,则()2011=()(A)-i(B)-1(C)i(D)134.(20年湖南理1)若a,b R,i为虚数单位,且(a+i)i=b+i,则()(A)a=1,b=1(B)a=-1,b=1(C)a=-1,b=-1(D)a=1,b=-135.(20年江西理1)设z=i) ,则复数=()(A)-2-i(B)-2+i(C)2-i(D)2+i36.(20年江西文1)若(x-i)i=y+2i,x,y R,则复数x+=()(A)-2+i (B) 2+i (C)1-2i(D)1+2i37.(20年辽宁理1)a为正实数,i为虚数单位,||=2,则a=()(A)2 (B)(C)(D)138.(20年辽宁文2)i为虚数单位,+++=()(A)0 (B)2i(C)-2i(D)4i39.(20年全国Ⅰ理(1))复数的共轭复数是()(A)-i(B)i(C)-i(D)i40.(20年全国Ⅰ文(3))已知复数z=+i,(1-i)2) ,则=()(A)(B)(C)1 (D)241.(20年全国Ⅱ理(1))复数z=1+i,为z的共轭复数,则z-z-1=()(A)-2i(B)-i(C)i(D)2i42.(20年山东理)复数z=(i为虚数单位)在复平面内对应的点所在象限为()(A)第一象限(B)其次象限(C)第三象限(D)第四象限43.(20年四川理2)复数-i+=()(A)-2i(B)i(C)0 (D)2i44.(20年天津理1)i是虚数单位,复数=()(A)1+i(B)5+5i(C)-5-5i(D)-1-i45.(20年天津文1)i是虚数单位,复数()(A)1+2i(B)2+4i(C)-1-2i(D)2-i46.(20年浙江文)若复数z=1+i,i为虚数单位,则(1+i)z=()(A)1+3i(B)3+3i(C)3-i(D)347.(20年重庆理(1))复数=()(A)--i (B)-+i (C)-i(D)+i48.【2012安徽文1】复数z满意(z-i)i=2+i,则z=()(A)-1-i(B)1-I(C)-1+3i(D)1-2i49.【2012新课标文2】复数z=的共轭复数是()(A)2+i (B)2-i (C)-1+i (D)-1-i50.【2012山东文1】若复数z满意z(2-i)=11+7i(i为虚数单位),则为()(A)3+5i (B)3-5i (C)-3+5i(D)-3-5i51.【2012浙江文2】已知i是虚数单位,则=()(A)1-2i (B)2-i (C)2+i (D)1+2i52.【2012上海文】若1+i是关于x的实系数方程x2++c=0的一个复数根,则()(A)b=2,c=3(B)b=2,c=-1(C)b=-2,c=-1(D)b=-2,c=353.【2012辽宁文3】复数=()(A)-i (B)+i(C)1-i(D)1+i54.【2012江西文1】若复数z=1+i(i为虚数单位)是z的共轭复数,则z2+2的虚部为()(A)0 (B)-1 (C)1 (D)-255.【2012湖南文2】复数z=i(i+1)(i为虚数单位)的共轭复数是()(A)-1-i (B)-1+i (C)1-i (D)1+i56.【2012广东文1】设i为虚数单位,则复数=()(A)-4-3i(B)-4+3i(C)4+3i(D)4-3i57.【2102福建文1】复数(2+i)2等于()(A)3+4i (B)5+4i (C)3+2i (D)5+2i58.【2102北京文2】在复平面内,复数对应的点的坐标为()(A)(1 ,3)(B)(3,1)(C)(-1,3)(D)(3 ,-1)59.【2012天津文科1】i是虚数单位,复数i)=(A)1-i (B)-1+i(C)1+i(D)-1-i60.(20年辽宁卷(文))复数的z=i-1)模为()(A)(B),2)(C)(D)261.(20年课标Ⅱ卷(文))||=()(A)2(B)2 (C)(D)162.(20年北京卷(文))在复平面内,复数i(2-i)对应的点位于()(A)第一象限(B)其次象限(C)第三象限(D)第四象限63.(20年山东卷(文))复数z=(i为虚数单位),则=()(A)25 (B)(C)5 (D)64.(20年课标Ⅰ卷(文))=()(A)-1-i (B)-1+i(C)1+i (D)1-i65.(20年福建卷)复数z=-1-2i (i为虚数单位)在复平面内对应的点位于()(A)第一象限(B)其次象限(C)第三象限(D)第四象限66.(20年广东卷(文))若i(x+)=3+4i,x,y R,则复数x+的模是()(A)2 (B)3 (C)4 (D)567.(20年江西卷)复数z=i(-2-i)(i为虚数单位)在复平面内所对应的点在()(A)第一象限(B)其次象限(C)第三象限(D)第四象限68.(20年四川卷(文))如图,在复平面内,点A表示复数z,则图中表示z的共轭复数的点是()(A)A (B)B(C)C(D)D69.(20年浙江卷(文))已知i是虚数单位,则(2+i)(3+i)=()(A)5-5i (B)7-5i (C)5+5i (D)7+5i70.(20年安徽)设i是虚数单位,若复数a-(a R)是纯虚数,则a的值为()(A)-3 (B)-1 (C)1 (D)3二、填空题71.(2009江苏卷)若复数z1=4+29i,z2=6+9i,其中i是虚数单位,则复数(z1-z2)i的实部为.72.(2009福建卷文)复数i2(1+i)的实部是.73.(20年江苏3)设复数i满意i(z+1)=-3+2i(i是虚数单位),则z 的实部是74.(20年浙江理2)已知复数z=,其中i是虚数单位,则=.75.【2012湖北文12】若=a+(a,b为实数,i为虚数单位),则a+b=.76.【2012江苏3】设a,b为实数,a+=(i为虚数单位),则a+b的值为.77.【2012上海文1】计算:=(i为虚数单位)78.(20年湖南)复数z=i·(1+i)(i为虚数单位)在复平面上对应的点位于.79.(20年天津卷(文))i是虚数单位. 复数(3+i)(1-2i)= .80.(20年重庆卷(文))已知复数z=1+2i (i是虚数单位),则=.81.(20年上海卷(文科))设m R,m2+m-2(m2-1)i,是纯虚数,其中i 是虚数单位,则m=.82.(20年湖北卷(文))i为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i,则z2=.三、解答题83.(20年上海理19)已知复数z1满意(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,求z2.。

2021年—2021年新课标全国卷1文科数学分类汇编—7.不等式、推理与证明

2021年—2021年新课标全国卷1文科数学分类汇编—7.不等式、推理与证明

新课标全国卷Ⅰ文科数学分类汇编7.不等式、推理与证明(含解析)一、选择题【2017,7】设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为()A.0 B.1 C.2 D.3【2014,11】11.设x,y满足约束条件,1,x y ax y+≥⎧⎨-≤-⎩且z=x+ay的最小值为7,则a= ( )A.-5 B.3 C.-5或3 D.5或-3【2012,5】5.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z x y=-+的取值范围是()A.(1-2)B.(0,2)C.1-,2)D.(0,1+二、填空题【2016,16】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.【2015,15】15.若x,y满足约束条件20210220x yx yx y+-≤⎧⎪-+≤⎨⎪-+≥⎩,则z=3x+y的最大值为.【2014,14】甲、乙、丙三位同学被问到是否去过A、B、C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.【2013,14】设x,y满足约束条件13,10,xx y≤≤⎧⎨-≤-≤⎩则z=2x-y的最大值为______.【2011,14】若变量x,y满足约束条件32969x yx y≤+≤⎧⎨≤-≤⎩,则2z x y=+的最小值为.新课标全国卷Ⅰ文科数学分类汇编 7.不等式、推理与证明(解析版)一、选择题【2017,7】设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为( )A .0B .1C .2D .3【考点】线性规划求目标函数最值问题 【答案】D【解法】如图,目标函数z x y =+经过(3,0)A 时最大,故max 303z =+=,故选D .【2014,11】11.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z=x+ay 的最小值为7,则a= ( )BA .-5B .3C .-5或3D .5或-3 解:联立x+y=a 与x-y =-1解得交点M 11(,)22a a -+,z 取得最值11722a a a -++⨯=,解之得a =-5或a =3. 但a =-5时,z 取得最大值,舍去,所以a =3,故选B .【2012,5】5.已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z x y =-+的取值范围是( )A .(13-,2)B .(0,2)C .(31-,2)D .(0,13+)【解析】正△ABC 内部如图所示,A (1,1),B (1,3),C (13+,2).将目标函数z x y =-+化为y x z =+, 显然在B (1,3)处,max 132z =-+=;在C(1+2)处,min (121z =-+=.因为区域不包括端点,所以12z <,故选择A .二、填空题【2016,16】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 解析:216000. 设生产产品A ,B 的件数分别为,x y ,获得利润为z 元,则,x y 满足约束条件为:,1.50.51500.39053600x y x y x y x y ∈⎧⎪+⎪⎨+⎪⎪+⎩N,目标函数为()210090030073z x y x y =+=+,画出满足不等式组的可行域,如图所示.联立536000.390x y x y +=⎧⎨+=⎩,得60100x y =⎧⎨=⎩,即()60,100A .移动目标函数73900z y x =-+,可得到当其经过点()60,100A 时,z 有最大值216000.故填216000.【2015,15】15.若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 解:作出可行域四边形ABC ,如图.画出直线l 0:3x +y =0,平移l 0到l ,当l 经过点A 时z 最大,联立x+y -2=0与x -2y +2=0 解得交点A (1,1),所以 z max =4.【2014,14】14.甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________. A解:∵丙说:三人同去过同一个城市,甲说没去过B 城市,乙说:我没去过C 城市,∴三人同去过同一个城市应为A,∴乙至少去过A,若乙再去城市B ,甲去过的城市至多两个,不可能比乙多,∴可判断乙去过的城市为A .【2013,14】设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______.答案:3解析:画出可行域如图所示.画出直线2x -y =0,并平移,当直线经过点A (3,3)时,z 取最大值,且最大值为z =2×3-3=3.【2011,14】若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为.【解析】在坐标系中画出可行域,如下图.可知当直线过点A 时取得最小值,由230(4,5)90x y A x y +-=⎧⇒-⎨--=⎩,可得A 的坐标为(4,5)-,故2z x y =+的最小值为6-. 故答案为6-.。

专题01 集合-2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)

专题01 集合-2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)

2013-2022十年全国高考数学真题分类汇编专题01 集合一、选择题1.(2022年全国高考甲卷(文)·第1题)设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B =( )A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}【答案】A【解析】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2022年全国高考甲卷(文)·第1题2.(2022年高考全国乙卷(文)·第1题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N =( )A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A解析:因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2022年高考全国乙卷(文)·第1题3.(2022新高考全国II 卷·第1题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则AB =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B解析: {}|02B x x =≤≤,故{}1,2AB =. 故选 B .【题目栏目】集合\集合的基本运算【题目来源】2022新高考全国II 卷·第1题4.(2022新高考全国I 卷·第1题)若集合{4},{31}M x x N x x =<=≥∣∣,则M N =( )A .{}02x x ≤<B .123xx ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163xx ⎧⎫≤<⎨⎬⎩⎭【答案】D解析:1{16},{}3M x x N x x =≤<=≥∣0∣,故1163MN x x ⎧⎫=≤<⎨⎬⎩⎭, 故选:D【题目栏目】集合\集合的基本运算【题目来源】2022新高考全国I 卷·第1题5.(2021年新高考全国Ⅱ卷·第2题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UAB =( )A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B解析:由题设可得{}U1,5,6B =,故(){}U 1,6A B⋂=,故选B .【题目栏目】集合\集合的基本运算【题目来源】2021年新高考全国Ⅱ卷·第2题6.(2021年新高考Ⅱ卷·第1题)设集合{}24A x x =-<<,{}2,3,4,5B =,则AB =( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B解析:由题设有{}2,3A B ⋂=,故选B .【题目栏目】集合\集合的基本运算【题目来源】2021年新高考Ⅱ卷·第1题7.(2020年新高考I 卷(山东卷)·第1题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C解析:[1,3](2,4)[1,4)A B ==故选:C【题目栏目】集合\集合的基本运算【题目来源】2020年新高考I 卷(山东卷)·第1题 8.(2020新高考II 卷(海南卷)·第1题)设集合A={2,3,5,7},B ={1,2,3,5,8},则AB=( )A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8} 【答案】C解析:因为{2,3,5,7},{1,2,3,5,8}A B == ,所以{2,3,5}A B = ,故选:C【题目栏目】集合\集合的基本运算【题目来源】2020新高考II 卷(海南卷)·第1题9.(2021年高考全国甲卷文科·第1题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B解析:7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B .【题目栏目】集合\集合的基本运算【题目来源】2021年高考全国甲卷文科·第1题10.(2021年全国高考乙卷文科·第1题)已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A解析:由题意可得:{}1,2,3,4M N =,则(){}5UM N =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2021年全国高考乙卷文科·第1题 11.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D .【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题 12.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D【解析】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2AB =-.故选:D .【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题. 【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题13.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .5【答案】B【解析】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题14.(2019年高考数学课标Ⅱ卷文科·第1题)已知集合{|1012}A x =-,,,,2{|1}B x x =≤,则A ∩B =( )A .{1,0,1}-B .{0,1}C .{1,1}-D .{0,1,2}【答案】A【解析】因为{1A =-,0,1,2},2{|1}{|11}B x x x x ==-,所以{1,0,1}A B =-,故选:A .【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第1题15.(2019年高考数学课标Ⅱ卷文科·第1题)已知集合={|1}A x x >-,{|2}B x x =<,则A B =( )A .()1,-+∞B .(),2-∞C .()1,2-D .φ【答案】C【解析】由题知,{}{}|1|2(1,2)AB x x x x =>-<=-,故选C .【点评】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题. 【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第1题16.(2019年高考数学课标Ⅱ卷文科·第2题)已知集合{}1,2,3,4,5,6,7U =,{}2,3,4,5A =,{}2,3,6,7B =,则UBA =()( )A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C【解析】 }7,6,5,4,3,2,1{=U ,5}43{2,,,=A ,则7}6{1,,=A C U 又 7}63{2,,,=B ,则7}{6,=A C B U . 【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第2题17.(2018年高考数学课标Ⅱ卷文科·第1题)已知集合{}|10A x x =-≥,{}012,,B =,则A B =( )A .{}0B .{}1C .{}12,D .{}012,, 【答案】C解析:{}{}|10|1A x x x x =-=≥≥,{}0,1,2B =,故{}1,2A B =.故选C .【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第1题 18.(2018年高考数学课标Ⅱ卷文科·第2题)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =( ) A .{}3 B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C解析:∵集合{}{}1,3,5,7,2,3,4,5A B ==,∴{}3,5AB =.故选C .【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第2题19.(2018年高考数学课标Ⅱ卷文科·第1题)已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B =( )A .{0,2}B .{1,2}C .{0}D .{2,1,0,1,2}--【答案】A解析:因为{0,2}A =,{2,1,0,1,2}B =--,则{0,2}A B =. 【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第1题 20.(2017年高考数学课标Ⅱ卷文科·第1题)已知集合,则中元素的个数为( )A .1B .2C .3D .4【答案】 【解析】由题意可得: ,中元素的个数为2,所以选.【考点】集合运算【点评】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题21.(2017年高考数学课标Ⅱ卷文科·第1题)设集合A=,B=,则=( )1,2,3,42,4,6,8AB ,A B B {}2,4AB =A B B {}123,,{}234,,A BA .B .C .D . 【答案】 A【解析】由题意得.故选A .【考点】集合并集的运算.【点评】掌握集合的基本运算即可. 【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题22.(2017年高考数学课标Ⅱ卷文科·第1题)已知集合,,则( ) A .B .C .D .【答案】 A【解析】由得,所以,故选A【考点】集合运算【点评】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题23.(2016年高考数学课标Ⅱ卷文科·第1题)设集合{0,2,4,6,8,10},{4,8}A B ==,则AB =( )A .{48},B .{026},,C .{02610},,,D .{0246810},,,,, 【答案】C 【解析】根据补集的定义,从集合{0,2,4,6,8,10}A =中去掉集合B 中的元素4,8,剩下的四个元素为0,2,6,10,故{0,2,6,10}AC B =,故选C .【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题24.(2016年高考数学课标Ⅱ卷文科·第1题)已知集合{123}A =,,,2{|9}B x x =<,则A B =( ).A .{210123}--,,,,,B .{21012}--,,,,C .{123},,D .{12},【答案】D 【解析】由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =.【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题25.(2016年高考数学课标Ⅱ卷文科·第1题)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =( ) A .{}1,3 B .{}3,5C .{}5,7D .{}1,7【答案】B 【解析】集合A 与集合B 公共元素有3,5,故{3,5}A B =,选B .【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题26.(2015年高考数学课标Ⅱ卷文科·第1题)已知集合{}|12A x x =-<<,{}123,4,,{}123,,{}23,4,{}13,4,{}1,2,3,4AB ={}2A x x =<{}320B x x =->3=2AB x x ⎧⎫<⎨⎬⎩⎭A B =∅3=2A B x x ⎧⎫<⎨⎬⎩⎭=A B R 320x ->32x <33{|2}||22A B x x x x x x ⎧⎫⎧⎫=<<=<⎨⎬⎨⎬⎩⎭⎩⎭{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3【答案】A 解析:因为{}|12A x x =-<<,{}|03B x x =<<,所以{}|13.A B x x =-<<故选A .考点:本题主要考查不等式基础知识及集合的交集运算. 【题目栏目】集合\集合的基本运算【题目来源】2015年高考数学课标Ⅱ卷文科·第1题27.(2015年高考数学课标Ⅱ卷文科·第1题)已知集合{32,},{6,8,10,12,14}A x x n n B ==+∈=N ,则集合A B 中的元素个数为( )A .5B .4C .3D .2 【答案】D分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A∩B={8,14},故选D . 考点:集合运算【题目栏目】集合\集合的基本运算【题目来源】2015年高考数学课标Ⅱ卷文科·第1题28.(2014年高考数学课标Ⅱ卷文科·第1题)已知集合A={-2,0,2},B={x |220x x --=},则A B =( )A.∅B.{2}C.{0}D.{-2} 【答案】B解析:∵B={x |220x x --=}={-1,2},∴A B ={2}.∴选B . 考点:集合的运算 难度:A备注:常考题.【题目栏目】集合\集合的基本运算【题目来源】2014年高考数学课标Ⅱ卷文科·第1题 29.(2014年高考数学课标Ⅱ卷文科·第1题)已知集合M ={|13}x x -<<,N ={|21}x x -<<,则M ∩N =( ) A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3)【答案】B解析: 在数轴上表示出对应的集合,可得()1,1MN =- ,选B考点:1.集合的基本运算。

山东省各地市2024年高考数学(文科)最新试题分类大汇编24:复数-推理与证明

山东省各地市2024年高考数学(文科)最新试题分类大汇编24:复数-推理与证明

【山东省济宁市邹城二中2024届高三其次次月考文】1.已知i 是虚数单位,=-+i i21( )A .i 5151+ B .i 5351+C .i 5153+D .i 5353-【答案】B【山东省济宁市邹城二中2024届高三其次次月考文】13.给出下列命题:命题1:点(1,1)是直线y = x 与双曲线y = x1的一个交点; 命题2:点(2,4)是直线y = 2x 与双曲线y = x8的一个交点; 命题3:点(3,9)是直线y = 3x 与双曲线y = x27的一个交点; … … .请视察上面命题,猜想出命题n (n 是正整数)为: .【答案】),(2n n ) 是直线y=nx 与双曲线yn y 3=的一个交点【山东省济宁市鱼台二中2024届高三11月月考文】6.设i z -=1(为虚数单位),则=+zz 22( )A .i --1B .i +-1C .i +1D . i -1【答案】D【山东省济宁市汶上一中2024届高三11月月考文】7、计算=+-i i13( )A 、i 21+B 、i 21-C 、i +2D 、 i -2【答案】B【山东省济南市2024届高三12月考】6.复数z 满意(12)7i z i -=+,则复数z 的共轭复数z =A.i 31+B. i 31-C. i +3D. i -3【答案】B【山东省济南市2024届高三12月考】16. )(x f 是定义在R 上恒不为0的函数,对随意x 、R ∈y 都有)()()(y x f y f x f +=,若))((,21*1N n n f a a n ∈==,则数列{}n a 的前n 项和n S 为A .12121+-=n n SB .1211+-=n n S C.n n S 211-= D .n n S 2121-=【答案】C【山东省济宁市重点中学2024届高三上学期期中文】11. 若复数3(R,12a iz a i i+=∈-是虚数单位),且z 是纯虚数,则|2|a i +等于( )A .5B .210C .25D .40 【答案】B【山东省济宁一中2024届高三第三次定时检测文】2.复数123,1z i z i =+=-,则复数12z z 在复平面内对应的点位于 ( ) A .第一象限 B .其次象限 C .第三象限 D .第四象限 【答案】A【山东省莱州一中2024届高三其次次质量检测】对于连续函数)(x f 和)(x g ,函数|)()(|x g x f -在闭区间[b a ,]上的最大值为)(x f 与)(x g 在闭区间[b a ,]上的“肯定差”,记为b x a x g x f ≤≤∆)).(),((则322221331≤≤-+∆x x)x ,x (= 【答案】103【山东省青州市2024届高三2月月考数学(文)】13.若复数312a ii-+(,a R i ∈为虚数单位)是纯虚数,则实数a 的值为 . 【答案】6【山东省青州市2024届高三2月月考数学(文)】15.在一次演讲竞赛中,10位评委对一名选手打分的茎叶图如下所示,若去掉一个最高分和一个最低分,得到一组数据(18)i x i ≤≤,在如图所示的程序框图中,x 是这8个数据中的平均数,则输出的2S 的值为_ ____【答案】15【山东省青州市2024届高三上学期期中文16.已知数列{}n a 中,11211,241n n a a a n +==+-,则n a = 。

全国高考文科数学历年试题分类汇编

全国高考文科数学历年试题分类汇编

全国高考文科数学历年试题分类汇编〔一〕小题分类1.集合〔2021 卷1〕集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,那么集合A B 中的元素个数为〔 〕〔A 〕 5 〔B 〕4 〔C 〕3 〔D 〕2 〔2021 卷2〕集合A={}{}=<<=<<-B A x x B x x 则,30,21A.(-1,3)B.(-1,0 )C.(0,2)D.(2,3) 〔2021卷1〕集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,那么M B =〔 〕A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(-〔2021卷2〕集合A=﹛-2,0,2﹜,B=﹛x |2x-x -20=﹜,那么A B ⋂=〔 〕 (A) ∅ 〔B 〕{}2 〔C 〕{}0 (D) {}2-〔2021卷1〕集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,那么A B =〔 〕 〔A 〕{0} 〔B 〕{-1,,0} 〔C 〕{0,1} 〔D 〕{-1,,0,1}〔2021卷2〕集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},那么M ∩N =( ).A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1}〔2021卷1〕集合A={x |x 2-x -2<0},B={x |-1<x <1},那么 〔A 〕A B 〔B 〕B A 〔C 〕A=B 〔D 〕A ∩B=〔2021卷2〕☆集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形},那么〔A 〕A B ⊆ 〔B 〕C B ⊆ 〔C 〕D C ⊆ 〔D 〕A D ⊆〔2021卷1〕集合M={0,1,2,3,4},N={1,3,5},P=M N ,那么P 的子集共有A .2个B .4个C .6个D .8个〔2021卷1〕集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},那么A ∩B =( )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}〔2021卷1〕集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,那么A B =A .{3,5}B .{3,6}C .{3,7}D .{3,9}〔2021卷1〕集合M ={ x|(x + 2)(x -1) < 0 },N ={ x| x + 1 < 0 },那么M ∩N =〔 〕A. (-1,1)B. (-2,1)C. (-2,-1)D.(1,2)〔2021 卷1〕复数z 满足(1)1z i i -=+,那么z =〔 〕〔A 〕 2i -- 〔B 〕2i -+ 〔C 〕2i - 〔D 〕2i + 〔2021 卷2〕假设a 实数,且〔 〕A.-4B. -3C. 3D. 4〔2021卷1〕设,那么=||z 〔 〕 A. 21 B. 22 C. 23 D. 2〔2021卷2〕〔 〕〔A 〕12i + 〔B 〕12i -+ 〔C 〕1-2i (D) 1-2i -〔2021卷1〕〔 〕〔A 〕 〔B 〕 〔C 〕 〔D 〕〔2021卷2〕21i +=( ). A .22 B .2 C .2 D ..1〔2021卷1〕复数z =-3+i 2+i的共轭复数是 〔A 〕2+i 〔B 〕2-i 〔C 〕-1+i 〔D 〕-1-i〔2021卷1〕复数( )A .2i -B .12i -C . 2i -+D .12i -+〔2021卷1〕复数z =3+i1-3i 2,z 是z 的共轭复数,那么z ·z =( )A.14B.12 C .1 D .2〔2021卷1〕复数A .1B .1-C .i (D)i -〔2021卷1〕复数1z i =-,那么〔 〕A. 2B. -2C. 2iD. -2i〔2021 卷1〕点(0,1),(3,2)A B ,向量(4,3)AC =--,那么向量BC = ( )〔A 〕 (7,4)-- 〔B 〕(7,4) 〔C 〕(1,4)- 〔D 〕(1,4)〔2021 卷2〕向量=•+-=-=a b a b a )则(2),2,1(),1,0(( )A. -1B. 0C. 1D. 2〔2021卷1〕设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,那么=+FC EB ( ) A. AD B. C. D. BC〔2021卷2〕设向量a ,b 满足那么a b 〔 〕〔A 〕1 〔B 〕 2 〔C 〕3 (D) 5〔2021卷1〕两个单位向量a ,b 的夹角为60,(1)=+-c ta t b ,假设0⋅=b c ,那么t =_____。

全国各地高考文科数学试题分类汇编:集合

全国各地高考文科数学试题分类汇编:集合

2009-2019年全国各地高考文科数学试题分类汇编一、选择题:1. 【2009年安徽理2】若集合A ={x ||2x -1|<3},B ={x |2x +13-x<0},则A ∩B 是( )(A ){x |-1<x <-12 或2<x <3}(B ) {x |2<x <3} (C ){x |-12<x <2}(D ) {x |-1<x <-12}2. 【2009年安徽文.2】若集合A ={x |(2x +1)(x -3)<0},B ={x N +|x ≤5},则A ∩B 是( )(A ) {1,2,3,}(B ) {1,2, }(C ) {4,5} (D ) {1,2,3,4,5}3.【2009年北京文.1】设集合A ={x |-12<x <2} ,B ={x |x 2≤1},A ∪B =( )(A ){x |-1≤x <2} (B ){x |-12 <x ≤1}(C ){x |—x <2}(D ){x |1≤x <2}4. 【2009年福建理.2】已知全集U =R ,集合A ={x |x 2-2x >0},则C U A 等于( )(A ){ x |0≤x ≤2}(B ){ x |0<x <2} (C ) { x |x <0或x >2}(D ) { x |x ≤0或x ≤2}5. 【2009年福建文.1】若集合A ={x |x >0},B ={x |x <3},则A ∩B 等于( )(A ){x |x <0} (B ){x |0<x <3} (C ){x |x >4}(D )R6. 【2009年广东理.1】 已知全集U =R ,集合M ={x |-2≤x ≤2}和N ={x |x =2k -1,k =1,2,…}的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有( )(A ) 3个 (B ) 2个 (C ) 1个(D ) 无穷多个7. 【2009年广东文.1】已知全集U =R ,则正确表示集合M = {-1,0,1} 和N = { x |x 2+x =0} 关系的韦恩(Ve nn )图是 ( )8. 【2009年江西理.3】已知全集U =A ∪B 中有m 个元素,C U A ∪C U B 中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )(A )mn (B )m +n(C )n -m (D )m -n9. 【2009年辽宁理.1】已知集合M ={x |-3<x ≤5},N ={x |-5<x <5},则集合M ∩N =( )(A ) {x |-5<x <5} (B ) {x |-3<x <5} (C ) {x |-5<x ≤5}(D ) {x |-3<x ≤5}10.【2009年辽宁文.1】已知集合M ={x |-3<x ≤5},N ={x |x <-5或x >5},则M ∪N =( )(A ) {x |x <-5或x >-3} (B ) {x |-5<x <5} (C ) {x |-3<x <5}(D ) {x |x <-3或x >5}11. 【2009年宁夏海南理.1】已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩C N B =( )(A ){1,5,7} (B ){3,5,7} (C ) {1,3,9}(D ){1,2,3}12. 【2009年宁夏海南文.1】 已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩B =( )(A ){3,5} (B ) {3,6} (C ) {3,7}(D ){3,9}13. 【2009年全国1理.1】设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合C U (A ∩B )中的元素共有( )(A )3个(B )4个(C )5个(D )6个14.【2009年全国2理.2】设集合A = {x |x >3},B ={x |x -1x -4<0},则A ∩B =( )(A )∅(B ) (3,4)(C ) (-2,1) (D )(4,+∞)15.【2009年全国2文.1】已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7}, N ={5,6,7},则CU (M ∪N ) =( )(A ){5,7}(B ) {2,4}(C ) {2,4,8}(D ){1,3,5,7}16.【2009年山东理,文.1】 集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )(A )0(B ) 1(C ) 2(D )417. 【2009年陕西理,文.1】设不等式x 2-x ≤0的解集为M ,函数f(x )=ln(1-|x |)的定义域为N ,则M ∪N 为( )(A )[0,1)(B )(0,1)(C )[0,1](D )(-1,0]18.【2009年四川理.1】设集合S ={x ||x |<5},T ={x |x 2+4x -21<0},则S ∩T =( )(A ){x |-7<x <-5} (B ){x |3<x <5} (C ){x |-5<x <3}(D ){x |-7<x <5}19.【2009年四川文.1】 设集合S ={x ||x |<5},T ={x |(x +7)(x -3)<0},则S ∩T =( )(A ){x |-7<x <-5} (B ){x |3<x <5} (C ){x |-5<x <3}(D ){x |-7<x <5}20. 【2009年浙江理,文.1】设U=R,A={x|x>0},B={x|x>1},则A∩C U B=( )(A){x|0≤x<1} (B){x|0<x≤1} (C){x|x<0} (D){x|x>1} 21.【2019浙江理数(1)】设P={x︱x<4},Q={x︱x2<4},则( )(A)P⊆Q(B)Q⊆P(C)P⊆C R Q(D)Q⊆C R P 22.【2019陕西文数】集合A={x|-1≤x≤2},B={x|x<1},则A∩B=( )(A){x|x<1} (B){x|-1≤x≤2}(C){x|-1≤x≤1} (D){x|-1≤x<1}23.【2019辽宁文数(1)】已知集合U={1,3,5,7,9},A={1,5,7},则C U A=( )(A){1,3} (B){3,7,9} (C){3,5,9} (D){3,9} 24.【2019全国卷2文数1】设全集U={x∈N*|x<6},集合A={1,3},B={3,5},则C U(A∪B)=( )(A){1,4} (B){1,5} (C){2,4} (D){2,5} 25.【2019江西理数2.】若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R },则A∩B=()(A){x|-1≤x≤1} (B){x|x≥0}(C){x|0≤x≤1} (D)∅26.【2019安徽文数1】若A={x|x+1>0},B={x|x-3<0},则A∩B=()(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3) 27.【2019浙江文数(1)】设P={x|x<1},Q={x|x2<4},则P∩Q=()(A){x|-1<x<2} (B){x|-3<x<-1}(C){x|1<x<-4} (D){x|-2,x<1}28.【2019山东文数(1)】已知全集U=R,集合M={x|x2-4≤0},则C U M=()(A){x|-2<x<2} (B){x|-2 ≤x≤2}(C){x|x<-2或x>2} (D){x|x≤-2或x≥2}29.【2019北京文数(1)】集合P={x∈Z|0≤x<3},M={x∈Z|x2≤9},则P∩M=()(A){1,2} (B){0,1,2}(C){1,2,3} (D){0,1,2,3}30.【2019北京理数(1)】集合P={x∈Z|0≤x<3},M={x∈Z|x2≤9},则P∩M=()(A){1,2} (B){0,1,2}(C){x|0≤x<3} (D){x|0≤x≤3}31.【2019天津文数(7))设集合A={x||x-a|<1,x∈R},B={x|1<x<5,x∈R},若A∩B =∅,则实数a的取值范围是()(A){a|0≤a≤6} (B){a|a≤2或a≥4}(C){a|a≤0或a≥6} (D){a|2≤a≤4}32.【2019广东理数1.)若集合A={x|-2<x<1},B={x|0<x<2},则集合A∩B=()(A){x|-1<x<1} (B){x|-2<x<1}(C){x|-2<x<2} (D){x|0<x<1}33.【2019广东文数10.)在集合{a,b,c,d}上定义两种运算○+和○*如下,那么(A)a(B)b(C)c(D)d34.【2019广东文数1.)若集合A={0,1,2,3},B={1,2,4},则集合A∪B=()(A){0,1,2,3,4} (B){1,2,3,4}(C){1,2} (D){0}35.【2019福建文数1】若集合A={x|1≤x≤3},B={x|x>2},则A∩B等于()(A){x|2<x≤3} (B){x|x≥1}(C){x|2≤x<3} (D){x|x>2}36.【2019全国卷1文数(2))设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩C U M=( )(A){1,3} (B){1,5} (C){3,5} (D){4,5} 37.【2019四川文数1】设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B等于(A){3,4,5,6,7,8} (B){3,6}(C){4,7} (D){5,8}38.【2019湖北文数1.)设集合M={1,2,4,8},N={x|x是2的倍数},则M∩N=(A){2,4} (B){1,2,4}(C){2,4,8} (D){1,2,8}39.【2019山东理数1.)已知全集U=R,集合M={x||x-1|≤2},则C U M=( )(A){x|-1<x<3} (B){x|-1≤x≤3}(C){x|x<-1或x>3} (D){x|x≤-1或x≥3}40.【2019上海文17.)若三角方程sin x=0与sin2x=0的解集分别为E和F,则()(A)E⊆F(B)E⊇F(C)E=F(D)E∩F=∅41.【2019重庆文2】设U=R,M={x|x2-2x>0},则C U M=( )(A)[0,2] (B)(0,2)(C)(-∞,0)∪(2,+∞)(D)(-∞,0]∪[2,+∞)42.【2019全国大纲文1】设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则C U(M∩N)=( )(A){1,2} (B){2,3} (C){2,4} (D){1,4} 43.【2019辽宁文(1)】已知集合A={x|x>1},B={x|-1<x<2},则A∩B=( )(A){x|-1<x<2} (B){x|x>-1}(C){x|-1<x<1} (D){x|1<x<2}44.【2019湖北文1】已知U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,4,5},则C U(A∪B)=( )(A){6,8} (B){5,7}(C){4,6,7} (D){1,3,5,6,8}45.【2019福建文1】若集合M={-1,0,1},N={0,1,2},则M∩N等于( )(A){0,1}(B){-1,0,1}(C){0,1,2}(D){-1,0,1,2}46.【2019浙江文1.)若P={x|x<1},Q={x|x>1},则()(A)P⊆Q(B)Q⊆P(C)P⊆C R Q(D)Q⊆C R P 47.若全集M={1,2,3,4,5},N={2,4},则C U N=()(A)∅(B){1,3,5}(C){2,4} (D){1,2,3,4,5}48.【2019山东文1.)设集合M={x|(x+3)(x-2)<0},N={x|1≤x≤3},则M∩N=()(A)[1,2) (B)[1,2] (C)( 2,3] (D)[2,3] 49.【2019全国大纲文1】设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则C U(M∩N)=()(A){1,2} (B){2,3} (C){2,4} (D){1,4} 50.【2019江西文2.)若全集U={1,2,3,4,5,6},M={2,3},N={1,4} ,则集合{5,6}等于()(A)M∪N(B)M∩N(C)C U M∪C U N(D)C U M∩C U N51.【2019湖南文1】设全集U=M∪N={1,2,3,4,5},M∩C U N={2,4},则N=()(A){1,2,3} (B){1,3,5}(C){1,4,5}(D){2,3,4}52.【2019广东文2】已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()(A)4 (B)3 (C)2 (D)153.【2019北京文(1)】已知全集U=R,集合P={x|x2≤1},那么C U P=( )(A)(-∞,-1) (B)(1,+∞)(C)(-1,1) (D)(-∞,-1) ∪(1,+∞)54.【2019安徽文(2)】集合U={1,2,3,4,5,6},S={1,4,5},T={2,3,4},则S∩C U T等于( )(A){1,4,5,6} (B){1,5}(C){4} (D){1,2,3,4,5}55.【2019高考安徽文2】设集合A={x|-3≤2x-1≤3},集合B为函数y=lg(x-1)的定义域,则A∩B=( )(A)(1,2)(B)[1,2] (C)[ 1,2)(D)(1,2 ] 56.【2019高考新课标文1】已知集合A={x|x2-x-2<0},B={x|-1<x<1},则( )(A)A⊂≠B(B)B⊂≠A(C)A=B(D)A∩B=∅57.【2019高考山东文2】已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则C U A∪B为( )(A){1,2,4} (B){2,3,4}(C){0,2,4} (D){0,2,3,4}58.【2019高考全国文1】已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则( )(A)A⊆B(B)C⊆B(C)D⊆C(D)A⊆D59.【2019高考浙江文1】设全集U={1,2,3,4,5,6} ,设集合P={1,2,3,4} ,Q={3,4,5},则P∩(C U Q)=()(A){1,2,3,4,6} (B){1,2,3,4,5}(C){1,2,5} (D){1,2}60.【2019高考四川文1】设集合A={a,b},B={b,c,d},则A∪B=()(A){b} (B){b,c,d}(C){a,c,d} (D){a,b,c,d}61.【2019高考陕西文1】集合M={x|lg x>0},N={x|x2≤4},则M∩N=()(A)(1,2) (B)[1,2) (C)(1,2] (D)[1,2] 【2019高考辽宁文2】已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则C U A∩C U B=()(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 62.【2019高考江西文2】若全集U={x∈R|x2≤4},A={x∈R||x+1|≤1}的补集C U A为()(A){x∈R |0<x<2} (B){x∈R |0≤x<2}(C ){x ∈R |0<x ≤2} (D ){x ∈R |0≤x ≤2}63.【2019高考湖南文1】设集合M ={-1,0,1},N ={x |x 2=x },则M ∩N =( )(A ) {-1,0,1} (B ) {0,1}(C ) {1}(D ) {0}64.【2019高考湖北文1】已知集合A ={x |x 2-3x +2=0,x ∈R } , B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆ B 的集合C 的个数为( )(A ) 1(B ) 2(C ) 3(D ) 465.【2019高考广东文2】设集合U ={1,2,3,4,5,6},M ={1,3,5},则C U M =( )(A ) {2,4,6} (B ) {1,3,5} (C ) {1,2,4}(D ) U66.【2102高考福建文2】已知集合M ={1,2,3,4},N ={-2,2},下列结论成立的是( )(A ) N ⊆M (B ) M ∪N =M (C ) M ∩N =N(D ) M ∩N ={2}67.【2102高考北京文1】已知集合A ={x ∈R |3x +2>0} B ={x ∈R |(x +1)(x -3)>0} 则A ∩B =( )(A )(-∞,-1) (B )(-1,-23 ) (C )(-23 ,3) (D ) (3,+ ∞)68.【2019年上海高考数学试】设常数a ∈R ,集合A ={x |(x -1)(x -a )≥0},B ={x |x ≥a -1},若A ∪B =R ,则a 的取值范围为( ) (A )(-∞,2)(B )(-∞,2](C )(2,+ ∞)(D )[2,+ ∞)69.【2019年高考重庆卷】已知集合U ={1,2,3,4},集合A ={1,2},B ={2,3},则C U (A ∪B ) =( ) (A ){1,3,4}(B ){3,4}(C ){3}(D ){4}70.【2019年高考浙江卷(文)】设集合S ={x |x >-2},T ={x |-4≤x ≤1},则S ∩T =( )(A )[-4,+∞)(B )(-2, +∞)(C )[-4,1](D )(-2,1]71.【2019年高考天津卷(文)】已知集合A = {x ∈R | |x |≤2}, B = {x ∈R | x ≤1}, 则A ∩B=( ) (A )(-∞,2](B )[1,2](C )[-2,2](D )[-2,1]72.【2019年高考四川卷(文)】设集合A ={1,2,3},集合B ={-2,2},则A ∩B =( )(A )∅(B ){2}(C ){-2,2}(D ){-2,1,2,3}73.【2019年高考山东卷(文)】已知集合A 与B 均为全集U ={1,2,3,4}的子集,且C U (A ∪B )={4}, B ={1,2},则A ∩C U B =( ) (A ){3}(B ){4}(C ){3,4}(D )∅74.【2019年高考辽宁卷(文)】已知集合A ={1,2,3,4},B ={x |x <2},则A ∩B =( )(A){0} (B){0,1} (C){0,2} (D){0,1,2} 75.【2019年高考课标Ⅱ卷】已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()(A){-2,-1,0,1} (B){-3,-2,-1,0}(C){-2,-1,0} (D){-3,-2,-1 }76.【2019年高考课标Ⅰ卷(文)】已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()(A){0} (B){-1,,0}(C){0,1} (D){-1,,0,1}77.【2019年高考江西卷(文)】若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a=()(A)4 (B)2 (C)0 (D)0或478.【2019年高考湖北卷(文)】已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩C U A=()(A){2} (B){3,4}(C){1,4,5} (D){2,3,4,5}79.【2019年高考广东卷(文)】设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0},则S∩T =()(A){0} (B){0,2}(C){-2,0} (D){-2,0,2}A 的子集个80.【2019年高考福建卷(文)】若集合A={1,2,3},B={1,3,4},则B数为()(A)2 (B)3 (C)4 (D)1681.【2019年高考大纲卷(文)】设集合U={1,2,3,4,5},集合A={1,2},则C U A=()(A){1,2} (B){3,4,5}(C){1,2,3,4,5} (D)∅82.【2019年高考北京卷】已知集合A={-1,0,1} ,B={x|-1≤x<1},则A∩B=()(A){0} (B){-1,0}(C){0,1} (D){-1,0,1}83.【2019年高考安徽】已知A={x|x+1>0},B={-2,-1,0,1},则(C R A) ∩B=()(A){-2,-1} (B){-2}(C){-1,0,1} (D){0,1}二.填空题:1.【2009年湖北文.13】设集合A={x|log2x<1},B={x|x-1x+2<1),则A∩B=. 2. 【2009年湖南文.9】某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.3.【2019陕西文14】设n∈N+,一元二次方程x2-4x+n=0有整数..根的充要条件是n =.4. 【2009年上海理,文.2】已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a 的取值范围是___________ .5. 【2009年天津文.13】设全集U=A∪B={x∈N*|lg x<1},若A∩C U B={m|m=2n+1,n =0,1,2,3,4},则集合B=.6.【2009年重庆理.11】若A={x∈R||x|<3},B={ x∈R|2x>1},则A∩B=.7. 【2009年重庆文.11】设U={n|n是小于9的正整数},A={n∈U|n是奇数},B={{n∈U|n 是3的倍数},则C U(A∪B)=.8.【2019上海文数1】已知集合A={1,3,m},B={3,4},A∪B={1,2,3,4},则m =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012——2014(全国卷,新课标1卷,新课标2卷)数学高考真题分类训练(二) 班级 姓名
一、三角函数
1、若函数()sin
([0,2])3
x f x ϕϕπ+=∈是偶函数,则=ϕ( ) (A )2π (B )3
2π (C )23π (D )35π 2、已知α为第二象限角,3sin 5
α=,则sin 2α=( ) (A )2524- (B )2512- (C )2512 (D )2524 3、当函数sin 3cos (02)y x x x π=-≤<取得最大值时,x =___________.
4、已知ω>0,0<φ<π,直线x =π4和x =5π4
是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=( )
(A )π4 (B )π3 (C )π2 (D )3π4
5、设函数f (x )=(x +1)2+sin x x 2+1
的最大值为M ,最小值为m ,则M+m =____ 6、已知a 是第二象限角,5sin ,cos 13
a a ==则( ) (A )1213- (B )513- (C )513 (D )1213
7、若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则
(A )5 (B )4 (C )3 (D )2
(B )
8、函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )
9、设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=
10、已知sin2a 3
2=,则cos2(a+4π)=( ) (A ) (B ) (C ) (D )
11、函数)()2cos(y πϕπϕ<≤-+=,x 的图像向右平移
2π个单位后,与函数y=sin (2x+3
π)的图像重合,则ϕ=___________.
12、若0tan >α,则( ) A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α
13、在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+
=x y ,④)42tan(π
-=x y 中,最小正周期为π的所有函数为
A.①②③
B. ①③④
C. ②④
D. ①③
14、函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为_________.
二、解三角形
1、已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )
(A )10 (B )9 (C )8 (D )5
2、已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,
6c =,则b =( )
(A )10 (B )9 (C )8 (D )5
2、△ABC 的内角A,B,C 的对边分别为a,b,c,已知b=2,B=,C=,则△ABC 的面积为
(A )2+2 (B ) (C )2 (D )-1
3、如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .
4、ABC ∆中,内角A 、B 、C 成等差数列,其对边a 、b 、c 满足223b ac =,求A 。

5、已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c = 3a sinC -c cosA
(1) 求A
(2) 若a =2,△ABC 的面积为3,求b ,c
6、设()(),,,,,.ABC A B C a b c a b c a b c ac ∆++-+=的内角的对边分别为
(I )求;B
(II
)若sin sin C.
A C =求
7、四边形ABCD 的内角A 与C 互补,AB=1,BC=3, CD=DA=2.
(I)求C 和BD;
(II)求四边形ABCD 的面积。

相关文档
最新文档