浅谈特高压直流转换开关的结构与原理

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈特高压直流转换开关的结构与原理

在特高压输电工程直流场的设备中,直流转换开关是一个非常重要的设备,和交流输电相比,直流输电具有控制能力高、调节容易快速、地面占用面积小、线路损耗低、稳定性高等方面的特点。主要用于距离较长的架空线路、海底电缆的输电、交流系统间的异步互联等场合中,±800千伏锦屏-苏南特高压直流输电工程的额定电流将为4500A左右,对直流电流转换开关的要求也更高,不仅要分段更大的直流电源,而且在进行转换时,还需要吸收更多的能量。本文重点对特高压直流系统中直流转换开关的结构和原理进行分析。

1 特高压直流输电系统中的直流转换开关系统

1.1 直流转换开关的结构与原理

通常情况下,在高压直流输电系统中,故障的切除或运行方式的转换需要采用直流断路器。常见的直流断路器如金属回路转换开关(MRTB,Metallic Return Transfer Breaker)、大地回线转换开关(GRTS,Ground Return Transfer Switch)、中性母线开关(NBS,Neutral Bus Switch)以及中性母线接地开关(NBGS,Neutral Bus Ground Switch)等。由于开断直流电流并不能像交流电流那样,可以在交流电流过零时进行操作,因此开断直流电流就必须将直流电流“强迫过零”,比较常用的电路为LC串联振荡电路。在直流电流强迫过零时,由于直流系统蕴含的巨大能量需要释放,而释放的能量又会在回路上造成过电压,引起断路器断口间的电弧重燃,造成开断失败。所以如何快速吸收这些释放的能量就成为断路器能否成功开断直流电流的关键因素。在我国已建成的高压直流换流站中,主要使用的直流断路器形式有无源型和有源型叠加振荡电流方式两种,其基本结构原理图如图1所示,主要由三部分组成:(1)转换开关,由交流断路器改造而成,用于电流的接通和断开;(2)振荡回路,由LC串联振荡电路构成,目的是形成2次以上的电流过零点;(3)耗能元件,由金属氧化物避雷器构成,目的是吸收直流回路中储存的巨大能量。

(a)有源型(b)无源型

图1 叠加振荡电流方式直流断路器原理图

有源型叠加振荡电流方式是由外部电源先向振荡回路的电容C充电,紧接着电容C和电感L组成LC振荡电路向断路器QB的断口间隙放电,产生振荡电

流叠加在原直流电流之上,在总电流中形成电流过零点。因此,这种方式在完成一次开断的过程是:外部电源充电开关QD1合闸向C充电,紧接着QD1断开,直流断路器的转换开关QB开断直流电流产生电弧。与此同时,合上振荡回路开关QD2产生振荡电流,在断路器断口处的总电流形成电流过零点。由此可见,有源型叠加振荡电流方式采用了多个控制步骤,对可靠性有一定影响。但有源型叠加振荡电流方式容易产生足够大的振荡电流,开断的成功率也较高。

而无源叠加振荡电流方式是利用电弧电压随电流增大而下降的非线性负电阻效应的原理进行工作,在与电弧间隙并联的LC回路中产生自激振荡(因此,无源叠加振荡电流方式又被称为无源自激振荡方式),使电弧电流叠加上振荡电流,当总电流过零时实现遮断。因此,这种方式是根据断口间隙电弧的不稳定性,利用电弧电压波动使电弧与LC振荡回路之间存在一个充放电过程,并且电弧的非线性负电阻效应又使充放电电流的振幅不断增大,从而实现总电流强迫过零。由于这种方式的控制过程较为简单,从而回路的可靠性较高。鉴于其工作原理,断路器与LC回路的参数必须要较好地配合。这种方式的断路器在开断过程中电流过零后即使发生电弧重燃现象,也不会影响之后电流过零点的二次形成。所以,目前我国在特高压直流输电系统中主要使用的是无源自激振荡型的直流转换开关。

当电弧电流过零后,断路器触头之间的灭弧介质(通常是六氟化硫气体)绝缘性能开始逐步恢复,不过由于直流系统仍旧储存着非常巨大的能量,这些能量将使断口间的电压(该电压称之为恢复电压)快速上升。当断路器的灭弧介质绝缘水平恢复速度高于断口间恢复电压上升速度时,就不会发生电弧重燃的现象。当恢复电压上升至耗能装置(金属氧化物避雷器MOA)的最大持续运行电压(金属氧化物避雷器在不导通状态下持续运行所能承受的最大电压)时,MOA进入导通状态,会将这部分能量全部吸收,使断路器完成开断过程。

由此可以看出,直流断路器的开断工作主要包含以下三个阶段,具体为:(1)强迫电流过零阶段,断路器断口间应存在不少于一个电流过零点;(2)介质恢复阶段,要求断路器要有较快的灭弧介质绝缘水平恢复速度,并且要高于灭弧触头间恢复电压的上升速度,即触头间的耐压高快于恢复电压,达到金属氧化物MOA的最大持续运行电压,当恢复电压高于MOA的最大持续运行电压时,MOA 导通吸能;(3)能量吸收阶段,要求耗能装置MOA的放电负荷能力应大于直流系统中残留的能量,并且要考虑至少有二次灭弧耗能的要求。

1.2 直流转换开关的配置

金属回路转换开关(MRTB),大地回线转换开关(GRTS),中性母线开关(NBS),中性母线接地开关(NBGS)在特高压直流输电系统中的配置见图2所示:

图2 特高压直流输电系统结构简图

2 常见直流转换开关的结构及原理

2.1 金属回路转换开关(MRTB)

金属回路转换开关(MRTB)装设于接地极极线回路中,主要是用来将直流电流从单极大地回线倒换到单极金属回线,从而来保证转换过程中直流功率的不中断输送。在此特别要强调的是MRTB与GRTS必须联合使用。

2.2 大地回线转换开关(GRTS)

大地回线转换开关(GRTS)安装于接地极极线与高端极线之间,用于在不停运的情况下,将直流电流从单极金属回线倒换至单极大地回线。

2.3 中性母线开关(NBS)

中性母线开关(NBS)安装于中性母线回路中,用于开断中性母线直流电流。其主要元件见表1所示:

表1 中性母线开关(NBS)主要元件表

序号设备名称代号备注

1 交流断路器Q1

2 氧化锌避雷器F1

3 电容器C1

2.4 运行方式

因为特高压直流输电系统两侧采用的接线方式都是“双十二脉动”,所以造成直流系统可能的运行方式多达77种之多,而常用的就有21种,其运行方式较为复杂。而其运行状态的转换只需通过操作各开关改变极、接地极线路、直流线路和转换中性母线的组合即可完成。在双极停运或备用状态下,直流系统可以进行运行接线方式的任何改变;在双极解锁状态下,直流系统不能进行任何接线方

相关文档
最新文档