多晶体的塑性变形机制
多晶体塑性变形
一般在室温使用的结构材料都希望获得细小而均
匀的晶粒。 因为细晶粒不仅使材料具有较高的强度、硬度, 而且也使它具有良好的塑性和韧性,即具有良好的 综合力学性能。
细晶强化是唯一的一种在增加材料强度的同时
也增加材料塑性的强化方式。 但是由于细晶强化所依赖的前提条件是晶界阻 碍位错滑移,这在温度较低的情况下是存在的。
扩散性蠕变和晶界滑动是多晶体高温时的主要变形方式。
问题:说明多晶体金属变形过程的特点?
• (1)多晶体可以通过多种方式发生塑性变形,除了滑移和 孪生外,在高温下,还有晶界滑动和迁移、点缺陷的扩散性 蠕变。 • (2)多晶体变形需要至少开动5个滑移系,变形过程中出现
交滑移。
• (3)与单晶体相比,多晶体的塑性变形更加不均匀,由于 晶界的约束作用,晶粒中心区域的滑移量大于晶界附近区域 的滑移量。 • (4)晶界对塑性变形有一定的影响。
同的各个晶体所受应力并不一致。
处于有利位向的晶粒首先发生滑移,处于不利方位的晶
粒却还未开始滑移。
但多晶体中每个晶粒都处于其他晶粒包围之中,它的变 形必然与其邻近晶粒相互协调配合,不然就难以进行变形, 甚至不能保持晶粒之间的连续性,会造成空隙而导致材料的 破裂 。
为了使多晶体中各晶粒之间的变形得到相互协调与配合,
由于晶界可以阻碍位错运动,因此晶界的存在可以使多晶体抵
抗塑性变形的外力也增加,即增加材料的强度。 晶界数量直接决定于晶粒的大小,晶粒越小,晶界越多。
实践证明,多晶体的强度随其晶粒细化而提高。多晶体的屈
服强与晶粒平均直径d的关系可用著名的霍尔—佩奇(Hall-Petch) 公式表示:
式中 0 反映晶内对变形的阻力,相当于单晶的屈服强度; K反映晶界对变形的影响系数,与晶界结构有关。
《材料加工成型原理》思考题参考答案
《材料加工成型原理》思考题参考答案1、金属塑性变形的主要机制有哪些?单晶体的塑性变形:滑移和孪生;多晶体的塑性变形:晶内变形和晶界变形通过各种位错运动而实现的晶内一部分相对于另一部分的剪切运动,就是晶内变形。
剪切运动有不同的机理,其中最基本的是滑移、孪生和扭析。
其中滑移变形是主要的;而孪生变形是次时,可能出现晶间变形。
这类变形不仅同位错运动要的,一般仅起调节作用。
在T》0.5T熔有关,而且扩散机理起着很重要的作用。
扩散蠕变机理又包括扩散-位错机理、溶质原子定向溶解机理、定向空位流机理。
在金属和合金的塑性变形过程中,常常同时有几种机理起作用。
具体的塑性变形过程中各种机理的具体作用要受许多因素的影响。
例如晶体结构、化学成分、相状态、组织、温度、应变量和应变速率等因素的影响。
在冷态条件下,由于晶界强度高于晶内,多晶体的塑性变形主要是晶内变形,晶间变形只起次要作用,而且需要有其它变形机制相协调。
变形机理主要有:晶内滑移与孪生、晶界滑移和扩散蠕变。
热塑性变形时,通常的热塑性变形速度较快,而且高温下,由于晶界的强度低于晶内,使得晶界滑动易于进行,所以晶粒相互滑移和转动起着尤为重要的作用。
温度越高,原子动能和扩散能力就越大,扩散蠕变既直接为塑性变形作贡献,也对晶界滑移其调节作用。
热塑性变形的主要机理是晶内滑移。
2. 滑移和孪生塑性变形机制的主要区别滑移是指在力的作用下晶体的一部分沿一定的晶面和晶向相对于晶体的另一部分发生相对移动或切变,滑移总是沿着原子密度最大的晶面和晶向发生。
孪生是指晶体在切应力作用下沿着一定的晶面和一定的晶向发生均匀切变。
滑移和孪生是单晶体的主要变形机制,都是通过位错运动而实现晶内的一部分相对于另一部分的剪切运动。
但是他们也明显的区别,如下:由孪生的变形过程可知,孪生所发生的切变均匀地波及整个孪生变形区,而滑移变形只集中在滑移面上,切变是不均匀的;孪生切变时原子移动的距离不是孪生方向原子间距的整数倍(而是几分之一原子间距),而滑移时原子移动的距离是滑移方向原子间距的整数倍;孪生变形后,孪晶面两边晶体位向不同,成镜像对称;而滑移时,滑移面两边晶体位向不变;由于孪生改变了晶体的取向,因此孪晶经抛光浸蚀后仍可观察到,而滑移所造成的台阶经抛光浸蚀后不会重现;孪生的临界分切应力要比滑移的临界分切应力大得多,常萌发于滑移受阻引起的局部应力集中区;孪生变形的速度极大,常引起冲击波,发出声响;滑移时全位错运动的结果,孪生是不全位错运动。
材料成形技术基础第4章
§4-3 塑性成形的力学基础
一、点的应力状态分析
1. 基本概念—外力、内力和应力 1)外力 • 体积力:作用于变形体内部的力,如重力、磁力 和惯性力等 • 表面力:作用于变形体表面上的力,包括工模具 对变形体的作用力和约束反力等。分析塑性成形 过程时,体积力一般可以不考虑,若不加特殊说 明,外力即指表面力 2)内力 在外力作用下,为保持变形体的连续性,其内部 各质点之间必然会产生相互作用的力,叫做内力。
§4-2 金属热态下的塑性变形
二、热塑性变形机理 1)晶内滑移 高温时原子间距加大,热振动和扩散速度增加,位 错滑移、攀移、交滑移及节点脱锚比低温容易;滑 移系增多,滑移灵便性提高,各晶粒之间变形更加 协调;晶界对位错运动阻碍作用减弱,因此,其主 要机理仍然是晶内滑移。 2)晶界滑移 热塑性变形时,由于晶界强度降低,使得晶界滑动 易于进行;温度越高,原子动能和扩散能力就越大, 扩散蠕变既直接为塑性变形作贡献,也对晶界滑移 其调节作用。
§4-2 金属热态下的塑性变形
3)扩散蠕变 应力作用下,空位发生定向移动,引起蠕变
图4-11 扩散蠕变示意 a)空位和原子的移动方向 b)晶内扩散 c)晶界扩散
§4-2 金属热态下的塑性变形
三、热塑性变形对金属组织和性能的影响
1)对组织的影响 改善晶粒组织,细化晶粒 对于铸态金属,粗大的树枝状晶经塑性变形及再 结晶而变成等轴(细)晶粒组织;对于经轧制、 锻造或挤压的钢坯或型材,在以后的热加工中通 过塑性变形与再结晶,其晶粒组织一般也可得到 改善。
§4-1 金属冷态下的塑性变形
图4-4 面心立方晶体孪生变形示意
§4-1 金属冷态下的塑性变形
二、冷塑性变形特点 冷塑性变形时,多晶体主要是晶内滑移变形;实 质上是位错的移动和增殖的过程;由于位错的交互作 用,塑性变形时 产生了加工硬化。存在三个特点: (1)各晶粒变形的不同时性 塑性变形首先在位向有利的晶粒内发生,位错源 开动,但其中的位错却无法移出此晶粒,而是在晶界处 塞积。位错塞积产生的应力场越过晶界作用到相邻 晶粒上,使其得到附加应力。随外加应力的增大,最终 使相邻位向不利的晶粒中滑移系的剪应力分量达到 临界值而开动起来,同时也使原来的位错塞积得到释 放,位错运动移出晶粒。如此持续运作,使更多晶粒参 与变形。
多晶体的塑性变形
两个晶粒的试样拉伸时的变形
• 除晶界对滑移变形有 影响,由于多晶体晶 粒位向不同,任意晶 粒滑移时,受到不同 位向的晶粒阻碍,变 形抗力增大。 • 因此,多晶体的变形 抗力高于单晶体。
因此,金属材料的晶粒大小对力学性能有很大 的影响,晶粒俞细的金属强度俞高。
金属材料的晶粒愈细,不仅强度 高,塑形和任性也愈好。 因为晶粒愈细,单位体积晶粒数愈 多,金属的总变形量可分散到更多晶 粒中,使变形俞均匀
多晶体的塑性变形
由于晶界的存在和各个晶粒的位向不同, 所以多晶体的塑性变形过程比单晶体复杂得多
多晶体变形由晶内变形和晶间变形共同形成
(一)晶界和晶粒位向的影响
(二)多晶体的塑性变形过程
两个晶粒的试样拉伸时的变形
两个晶粒的试样拉伸时的变形
• 试样经拉伸变形后, 出现明显的“竹节” 现象 • 试样在远离夹头和晶 界的晶粒中间部分出 现明显地缩颈,而晶 界附近的截面几乎不 变 • 金属的晶界比晶粒自 身具有更高的变形能 力
THE阻碍裂纹扩展。所以洗细晶粒的金属 材料具有良好的韧性和塑性
(二)多晶体的塑性变形过程
多晶体中由于晶界的存在及各晶 粒位向不同,则各晶粒都处于不同 的应力状态。 多晶体的塑性变形就极不均匀地, 有先有后的进行着。
(二)多晶体的塑性变形过程
最先产生滑移的将是那些滑移面 和滑移方向与外力成软未向的晶粒。 同时,激发临近出于次软位的晶粒 中的滑移系移动,产生塑性变形, 是变形过程不断继续下去。此外, 晶粒滑移时发生位向转动,使已变 形晶粒中原来的软位向逐渐转到硬 位向,所以,多警惕的变形实质上 是晶粒一批批地进行塑形变形,直 至所有晶粒都发生变形为止。晶粒 俞细, 变形的不均匀性就愈小。
多晶体的塑性变形机制
多晶体的塑性变形机制在固体力学中,塑性变形指的是材料在受力作用下发生永久形变的过程。
对于多晶体材料,其晶粒的排列会对塑性变形机制产生较大影响。
本文将介绍多晶体塑性变形机制的基本原理,并探讨晶界、位错和滑移等因素在多晶体塑性变形中的作用。
1. 多晶体的结构特点多晶体是由许多晶粒组成的材料,每个晶粒是由同一个晶体结构的晶体单元组成。
晶粒之间的结合称为晶界,晶界的存在对塑性变形机制具有重要的影响。
2. 晶界的作用晶界是晶粒之间的界面,其结构与晶体内部的结构存在差异。
晶界可以阻碍晶体的滑移,限制晶体的塑性变形。
晶界的特殊结构使得晶粒在受力作用下不易发生滑移,从而增加了材料的强度。
此外,晶界还会影响晶体的晶粒生长和晶界迁移,在材料加工和成形过程中起到重要的作用。
3. 位错的作用位错是晶体中的一种缺陷,是晶体结构中的原子偏差或错配。
位错的运动可以引起晶格的畸变和滑移,进而导致材料的塑性变形。
在多晶体材料中,位错在晶粒之间传播并产生滑移,从而实现材料的塑性变形。
位错对材料的强度和韧性有重要影响,是塑性变形机制中不可忽略的因素。
4. 滑移的机制滑移是在晶粒内的位错运动引起的晶体形变。
晶体中存在多个滑面和滑矢量,滑面是晶格面,滑矢量是晶体内位错移动的方向。
当外力作用于晶体时,位错从一个滑面滑移到另一个滑面,这样就实现了晶体的塑性变形。
滑移是晶格错配的唯一处理方式,也是多晶体材料的主要塑性变形机制之一。
5. 多晶体塑性变形的机制综合在多晶体材料中,晶界、位错和滑移是相互关联的,共同作用于塑性变形过程中。
晶界的存在会阻碍滑移,从而提高材料的强度。
位错则通过滑移在晶粒内传播,使得晶体发生塑性变形。
滑移的方向和滑面的选择对材料的塑性变形具有重要影响。
通过合理控制晶粒结构、晶界性质和位错密度等因素,可以调控多晶体材料的塑性变形机制,从而提高材料的塑性和韧性。
总结:多晶体材料的塑性变形机制是一个复杂的过程,涉及晶界、位错和滑移等因素。
基于多晶塑性模型的多晶体材料大变形行为研究
基于多晶塑性模型的多晶体材料大变形行为研究随着材料加工工艺的发展,金属材料塑性变形机制的研究成为当前最热的课题之一。
从数值计算角度研究金属材料的大变形行为,为深入了解材料塑性变形机制奠定了基础。
本文以具有FCC和HCP晶体学结构的金属材料为研究对象,利用弹粘塑性自洽(EVPSC)模型中的不同自洽模型,通过数值模拟方法,对多晶塑性模型在多晶体材料大变形行为中的作用进行了系统的研究。
主要工作和研究成果如下:(1)基于已有的EVPSC模型,考虑孪晶形成时引起的应力松弛,通过引入两个新参数来描述孪晶临界分解剪切应力的变化规律,建立了新的孪晶成核、扩展和生长的模型,实现了对孪晶形成过程的完整描述。
(2)利用Taylor模型和EVPSC模型中的多种自洽模型,对初始各向同性的OFHC铜在多种加载方式下(单轴拉伸、压缩、平面应变和简单剪切)的流变行为和微观织构演化规律进行了研究,并讨论了潜在硬化系数对织构演化预测结果的影响。
从应力-应变和织构演化两方面对不同模型的表现进行了评价,结果表明相互作用刚度介于Secant(硬)和Tangent(软)模型之间的自洽模型能比Taylor模型更好地预测出FCC材料的大变形行为。
(3)借助于考虑弹粘塑性自洽模型的有限元计算程序,对OFHC铜在扭转大变形中的行为进行了预测。
得到了应力-应变响应、Swift效应和织构演化的规律,揭示了多晶塑性模型在FCC材料扭转大变形中的作用机制,给出了初始剪切应变对扭转变形中织构演化的影响规律。
研究表明对铜的扭转大变形,Tangent模型的预测结果跟其他模型有明显的差异,不建议用于FCC材料的扭转大变形行为模拟预测。
(4)从晶格应变角度,分析了多晶体塑性模型对标准316奥氏体不锈钢在单轴拉伸加载下的塑性变形影响,评价了不同自洽模型的预测能力;将不同模型的预测结果与中子衍射实验测得的数据对比,发现晶格应变预测结果对多晶塑性模型的选择较敏感,Tangent 模型的预测结果与实验值偏离的最多,而介于“最硬”Secant模型和“最软”Tangent模型之间的自洽模型,即Affine模型和Meff模型,结果与实验值吻合得最好。
多晶体的塑性变形
要为弹性相互作用和化学相互作用。
弹性相互作用是溶质原子在刃型位错周围聚集分布,形成 柯氏气团。 化学相互作用是溶质原子在层错中的偏聚形成铃木气团。 柯氏气团和铃木气团都对位错的运动起到钉扎作用,阻碍 了位错运动,因此起到了强化合金作用。
(2)屈服现象与应变时效
图为低碳钢拉伸应力应变曲线,在这根曲线上出现了明显
的上下屈服点和屈服伸长。
产生吕德斯带后,应力应变曲线正常规律变化。
屈服现象及原因
屈服现象是指某些金属尤其是体心立方金属在拉伸时,存 在明显的、确定的上、下屈服极限。 在拉伸应力小于上屈服极限时完全是弹性变形,应力应变
曲线成直线。
而在拉伸应力达到上屈服极限时发生明显的塑性变形,且
多晶体试样经拉伸后,每一晶粒中的滑移带都终止
在晶界附近。
因此对多晶体而言,要使第二晶粒滑移,外加应力
必须大至足以激发大量晶粒中的位错源动作,产生
滑移,才能觉察到宏观的塑性变形。
由于晶界可以阻碍位错运动,因此晶界的存在可以使多 晶体抵抗塑性变形的外力也增加,即增加材料的强度。 晶界数量直接决定于晶粒的大小,晶粒越小,晶界越多。 实践证明,多晶体的强度随其晶粒细化而提高。多晶体
此外在高温时,多晶体还可能出现另一种称为扩散性蠕
变的变形机制,这个过程与空位的扩散有关。多晶体的晶粒 越细,扩散蠕变速度就越大。 扩散性蠕变和晶界滑动是多晶体高温时的主要变形方式。
问题:说明多晶体金属变形过程的特点?
(1)多晶体可以通过多种方式发生塑ห้องสมุดไป่ตู้变形,除了滑移和 孪生外,在高温下,还有晶界滑动和迁移、点缺陷的扩散性 蠕变。
吕德斯带与滑移带不
金属单晶体与多晶体的塑性变形
1. 弹性变形与塑性变形弹性变形金属如果受应力较低,金属内原子间的方位与距离只产生微小的变化,当外力去除后原子会自行返回原位,变形随即消失。
塑性变形:当金属所受应力达到和超过某临界值(屈服强度),除了产生弹性变形外,还会产生卸载后不可恢复的永久变形。
滑移在外力作用下,晶体中一部分晶体相对于另一部分晶体沿着一定晶面产生相对滑动。
金属最重要的塑性变形机制。
滑移孪生孪生在外力作用下,晶体中一部分晶体相对于另一部分晶体沿着一定晶面产生相对转动。
1)滑移在超过某临界值的切应力下发生。
2)滑移常常沿晶体中最密排面及最密排方向发生。
此时原子间距最大,结合力最弱。
晶面间距示意图有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)滑移系: 滑移面(密排晶面)+滑移方向(密排晶向)较多的滑移系意味着有较好的塑性实际晶体的滑移机制: 依靠位错滑移。
如果晶体中存在位错,那么塑性变形 依靠位错的滑移进行,比依靠滑移面两侧晶体的整体滑动,阻力小得多。
塑性变形的位错滑移机制示意图3)滑移在晶体表面形成滑移线和滑移带滑移线和滑移带示意图滑移带金相照片有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)2. 单晶体塑性变形:孪生机制孪生孪生面孪晶密排立方和体心立方的金属容易发生孪生变形;一般金属在低温和冲击载荷下容易发生孪生变形。
3. 多晶体的塑性变形•各晶粒在变形过程中相互约束;•大量晶界的存在对位错运动形成障碍。
3. 多晶体的塑性变形:晶粒取向对塑性变形的影响•软取向晶粒在一定的外加应力下能够滑移变形的晶粒;•硬取向晶粒在一定的外加应力下不能滑移变形的晶粒多晶体的塑性变形存在很大的微观不均匀性,并且变形抗力明显高于单晶体。
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)3. 多晶体的塑性变形:晶界对塑性变形的影响细晶强化(晶界强化)晶界阻碍位错的通过,产生强化效果。
晶界越多,即晶粒越细小,不仅材料强度越高,而且由于增加晶粒数量,使得软取向晶粒更多,分布更均匀,改善微观变形的不均匀性,从而改善材料的塑性。
第六章 多晶体的塑性变形
强化手段,可提高材料抗突然超载的能力。
意义:
1)是一种材料强化手段—形变强化;
2)有利于塑性变形均匀进行; 3)有利于金属构件的工作安全性。
28
3.加工硬化的不利
1)影响材料力学性能
不利:使得再变形困难;
使得金属的切削加工,冲压加工带来困难。 解决办法: 在冷加工之间进行中间热处理——再结晶退火。 2)影响材料物理性能和化学性能 不利:电阻增加,导电、导磁性下降; 化学活性增大;耐腐蚀性下降。
b
式中:
Fb S0
MP a
Fb— 指试样被拉断前所承受的最大外力, 即拉伸曲线上b点所对应的外力(N)。 S0 — 试样原始横截面面积(mm2)
37
二、塑性指标( δ%;Ψ %)
定义: 塑性—材料受力后在断裂之前产生塑性变形的能力。 (1)断后伸长率
公式: δ% = (Lu- L0)/L0 ×100%
自由锻
模锻
19
5)冷冲压
(低碳钢、合金钢板材)
20
一、塑性变形的基本概念
1.载荷
(1)定义
金属材料在加工及使用过程中所受的外力。
(2)类型
根据载荷作用性质不同:
a)静载荷 b)动载荷 —没有变化; —瞬间变化;
c)交变载荷—不断变化。
21
根据载荷作用性质不同:
a)拉深载荷 --拉力
b)压缩载荷 —压力
塑性变形前 塑性变形后
3、形变织构产生
金属塑性变形到很大程度(70%以上)时, 由于晶粒发生转动, 使各晶粒的位向 趋近于一致, 形成特殊的择优取向, 这种有序化的结构叫做形变织构。
6.4.2. 塑性变形对金属性能的影响
• (1)形变强化 金属发生塑性变形, 随变形度的增大, 金属 的强度和硬度显著提高, 塑性和韧性明显下降。 • (2)产生各向异性 由于纤维组织和形变织构的形成, 使 金属的性能产生各向异性。
§9-3 多晶体的塑性变形
2. 多晶体的加工硬化
多晶体晶粒各取向不同, 不可能一个滑移系滑移, 所以,没有典型单晶体的 第Ⅰ阶段--易滑移阶段。 因为多晶体各晶粒变形需 相互协调,至少有5个独 立的滑移系开动,滑移系 启动困难,加工硬化率明 显高于单晶体。
锌的单晶与多晶的应力-应变曲线
K
n
n=0.1-0.5:加工硬化指数
金属强度与位错密度的关系
1. 单晶体的加工硬化 应力-应变曲线明显可分为 三个阶段: I. 易滑移阶段:发生单 滑移,位错移动和增殖所遇 到的阻力很小,θI 很低, 约为10-4G数量级。 II.线性硬化阶段:发生多 系滑移,位错运动困难,θII 远大于θI约为 G/100G/300 ,并接近于常数。
fcc金属
轧制极图 (a)经95%轧制纯铜的{111}极图 (b)Cu-30%Al黄铜经96%轧制的{111}极图
bcc金属
纯铁经98.5%轧制的{200}极图
hcp金属
基面平行于轧面的{0002}极图 (a)镁 (b)锌 (c)钛
无织构 制耳的形成
有织构
Thanks
2. 阻塞作用
晶界90%以上是大角度晶界,其结构复杂,由 约几个纳米厚的原子排列紊乱的区域与原子排列较 整齐的区域交替相间而成,这种晶界本身特性使滑 移受阻而不易直接传到相邻晶粒。现象是竹节效应, 原因是位错滑移不能穿过晶界。
竹节效应
Ni3Al+0.1%B合金拉伸 时滑移带终止于晶界
二. 多晶体变形的特点 不同时性:在外力作用下,软取向晶粒首先达到 临界分切应力,开始变形,随着晶体的转动,软硬 取向易位,硬取向晶粒开始变形。
§9-3 多晶体的塑性变形 一. 多晶体变形时晶界的作用 1. 协调作用 多晶体的变形中要保持晶界处的连续性,即晶界处的 原子既不能堆积也不能出现空隙或裂缝,晶界两边的变形 需要达到互相协调。 为了满足变形协调,理论计算本应有6个独立的滑移 系,以保证6个独立的应变分量使晶粒的形状自由变化, 在体积不变的情况下,有实际只有5个变量是独立的。 为了适应变形协调,要求多系滑移,对fcc和bcc, 容易满足,hcp有两种方式:一种是在晶界附近区域,基 面滑移加柱面或棱锥面等较难滑移的晶面滑移;另一种是 孪晶,孪晶和滑移结合起来,连续地进行变形。
第三章塑性变形
商洛学院 常亮亮
3.1 金属材料塑性变形机制与特点
塑性变形是永久性变形。常温或低温下,单晶体 的塑性变形主要有滑移、孪生,还有扭折。 滑移是晶体在切应力作用下沿一定的晶面和晶向 进行切变的过程,如面心立方结构的(111)面[101] 方向等。滑移系统越多,材料的塑性越大。
(1) 滑移的显微观察 由大量位错移动而导致晶体的一部分相对于另一部分,
3. 形变织构 (1)形变织构(deformation texture):是晶粒在空间上的择 优取向(preferred orientation), 如右上图。 (2)类型及特征 ①丝织构 ② 板织构 右图是因形变织构造成的制 耳
(二)加工硬化:金属材料在塑性变形过程中,随着变形量的增 加,强度和硬度不断上升,而塑性和韧性不断下降的现象。
10钢σs与晶粒大小的关系
晶粒直径(μm)
400
50
10
5
2
下屈服点(KN/m2) 86
121
180
242 345
锌的单晶和多晶的拉伸曲线比较
由上图锌的拉伸曲线可以看出: 比较:同一材料多晶体的强度高,但塑性较低。
单晶塑性高。
原因:多晶中各个晶粒的取向不同。在外力作用
下,某些晶粒的滑移面处于有利的位向,受到大于σk
低碳钢的σb与晶粒直径的关系
晶界对硬度的影响
3、多晶体塑性变形的特点
1)各晶粒变形的非同时性和非均匀性 ➢材料表面优先 ➢与切应力取向最佳的滑移系变形的相互协调 晶粒内不同滑移系滑移的相互协调
保证材料整体的统一
3.1.3塑性变形的特点
滑移时不仅滑移面发生转动,而滑移方向也逐渐改变, 滑移面上的分切应力也随之改变。φ=45º时分切应力最大。
多晶体的塑性变形
多晶体的塑性变形塑性变形过程由于各晶粒间存在位相差,在外力作用下,位向最有利的少数晶粒开始发生塑形变形,随后这些已变形晶粒中的平面位错群在晶界塞积导致应力集中,这一应力集中和外力叠加,使相邻晶粒的位错源开动,驱动相邻晶粒进行协调的(多滑移)塑形变形。
多晶体塑性变形特点:①各晶粒的变形不是同时进行的;②为了协调先发生塑性变形的晶粒形状的改变,相邻各晶粒必须进行多滑移,其中包括取向并不有利的滑移系上同时进行滑移,这样才能保证其形状作各种相应地改变.根据理论计算,每个晶粒至少需要5个独立的滑移系启动;③受晶界及各晶粒位向不同的影响,各晶粒间、晶粒内的变形是不均匀的。
细晶强化①由于晶界的存在,使变形晶粒中的位错在晶界处受阻,滑移带终止于晶界;②由于各晶粒间存在位相差,为了协调变形,要求每个晶粒必须进行多滑移,而滑移时必然要发生位错的相互交割.这两者均将大大提高金属材料的强度.显然,晶界越多,即晶粒越细小,则其强化效果越显著。
这种用细化晶粒增加晶界提高金属强度的方法称为细晶强化。
多晶体的塑性变形与单晶体塑性变形的区别单晶体产生塑性变形,只与其晶体内部位错滑移有关;多晶体不仅需要考虑晶粒内部的位错滑移,还要考虑晶粒之间的变形协调,即要考虑晶间变形。
晶界在塑性变形中的作用可分2个部分来说:协调作用,多晶体在塑性变形时,各晶粒都要通过滑移或孪生而变形,而个晶粒的变形不能是任意的,必须相互协调,以保证晶界处变形的连续;阻碍作用,晶界之间存在位相差,阻碍位错的运动;多晶体的塑性变形受到晶界的阻碍和不同位向晶粒的影响,使得其变形抗力比单晶体高得多。
但是归根到底,其塑性变形方式仍是滑移和孪生。
细化晶粒的方法1、增加过冷度:过冷度增加,形核率与长大速度都增加,但两者的增加速度不同,形核率的增长率大于长大速度的增长率。
在一般金属结晶时的过冷范围内,过冷度越大,晶粒越细小。
2、变质处理:向金属液中添加少量活性物质,促进液体金属内部生核或改变晶体成长过程的一种方法,生产中常用的变质剂有形核变质剂和吸附变质剂。
多晶体金属的塑性变形
多晶体金属的塑性变形本质上,与单晶体无区别。
实际上,存在晶界及晶粒之间的位向差,变形过程复杂,变形抗力高的多。
一、晶粒取向的影响多晶体相邻晶粒位向不同,导致多晶体金属塑性变形有以下两个特点: 各晶粒变形的不同时性;各晶粒变形的相互协调性。
各晶粒变形的不同时性软取向的晶粒,首先开始滑移;周围晶粒位向不同,滑移系取向不同,运动的位错不能越过晶界,在晶界处产生位错塞积。
位错塞积造成很高的应力集中,使相邻晶粒中某些滑移系开动,使应力集中松弛,变形从一个晶粒传向另一个晶粒。
随着变形,各晶粒发生转动和旋转,原软取向→硬取向,而停止滑移,同时原硬取向→软取向,而发生滑移。
随外力的持续,多晶体金属中的晶粒分批地、逐步地发生塑性变形。
各晶粒变形的相互协调性多晶体的每个晶粒都处于其他晶粒的包围之中。
要保持晶粒之间的结合和整个晶体的连续性,其变形必须与周围的晶粒相互协调,就使多晶体的塑性变形较单晶体困难,其屈服应力也高于单晶体。
独立滑移系多晶体塑性变形时,要求晶粒至少能在5个独立的滑移系上进行滑移,才能使各晶粒间的变形得到很好的协调。
独立滑移系:指它所产生的晶体形状改变是不能借别的滑移系组合作用而同样得到。
任何变形都可用6个应变分量来表示。
由于塑性变形时体积不变,只有5个独立的应变分量。
独立的应变分量由一个独立的滑移系来产生,需要5个独立滑移系产生5个独立应变分量,以保证晶粒间变形的协调和晶体的连续。
面心立方和体心立方金属滑移系多,能满足,有较好的塑性。
而密排六方金属滑移系少,晶粒间的应变协调性差。
密排六方单晶体处于软取向时,应变可达100% ~200%,但多晶体塑性都很差,强度则较高。
二、晶界(晶粒大小)的影响双晶粒试样变形后,晶界处呈竹节状。
晶界附近滑移受阻,变形量较小。
晶界阻碍位错的通过,即晶界对塑性变形起阻碍作用。
多晶体的强度随晶粒细化而提高。
细晶强化:用细化晶粒来提高材料强度的方法。
细晶强化本质:晶界提高了位错运动的阻力,晶界越多,即晶粒越细,材料的强度越高。
多晶体的塑性变形
滑移
孪生
相同点 晶体位向
1 切变;2 沿一定的晶面、晶向进行;3 不改变结 构。
不改变
改变,形成镜面对称关系
位移量
滑移方向上原子间距的 小于孪生方向上的原子间
整数倍,较大。
距,较小。
不
同 对塑变的贡献 很大,总变形量大。 点
有限,总变形量小。
变形应力
有一定的临界分切压力 所需临界分切应力远高于
滑移
变形条件
多晶体的塑性变形
28
晶界对塑性变形的影响
Cu-4.5Al合金晶 界的位错塞积
多晶体的塑性变形
29
晶粒大小对塑性变形的影响
实验表明,多晶体的 强度随其晶粒的细化 而增加。
Hall-Patch关系:
1
s 0 kd 2
屈服强度与晶粒尺寸的关系图
多晶体的塑性变形
30
(2)多晶体金属的塑性变形过程
多晶体中首先发生滑移的是滑移系与外力夹角等于或接近 于45°的晶粒。当塞积位错前端的应力达到一定程度,加上相邻 晶粒的转动,使相邻晶粒中原来处于不利位向滑移系上的位错 开动,从而使滑移由一批晶粒传递到另一批晶粒,当有大量晶 粒发生滑移后,金属便显示出明显的塑性变形。
因为晶粒越细,单位体积内晶粒数目越多,参与变
形的晶粒数目也越
多,变形越均匀,
脆性 材料
使在断裂前发生较
塑性材料
大的塑性变形。强
度和塑性同时增加,
金属在断裂前消耗
的功也大,因而其
韧性也比较好。
应变
多晶体的塑性变形
35
通过细化晶粒来同时 提高金属的强度、硬 度、塑性和韧性的方 法称细晶强化。
多晶体的塑性变形
多晶体的塑性变形
多晶体、单晶体金属的塑性变形
当 φ=45o时( 也为45o),取向因子有最大值1/2,此 时,得到最大分切应力。 (2)能使晶体滑移的力是外力在滑移系上的分切应力。通 常把给定滑移系上开始产生滑移所需分切应力称为临界 分切应力。 (3)在拉伸时,可以粗略认为金属单晶体在外力作用下, 滑移系一开动就相当于晶体开始屈服,此时,对应于临界 分切应力的外加应力就相当于屈服强度σs 。
多晶体的塑性变形
一、晶界阻滞效应和取向差效应 1.晶界阻滞效应:90%以上的晶界是大角度晶界, 其结构复杂,由约几个纳米厚的原子排列紊乱的 区域与原子排列较整齐的区域交替相间而成,这 种晶界本身使滑移受阻而不易直接传到相邻晶粒。
滑移带中 止与晶界 处 拉伸后晶界处呈竹节状
2.取向差效应: 多晶体中,不同位向晶粒的滑移系取向不相同,滑 移不能从一个晶粒直接延续到另一晶粒中。
3.滑移的传递,必须激发相邻晶粒的位错源。 4.多晶体的变形抗力比单晶体大,变形更不均匀。 由于晶界阻滞效应及取向差效应,使多晶体的变形抗力比 单晶体大,其中,取向差效应是多晶体加工硬化更主要的原 因,一般说来,晶界阻滞效应只在变形早期较重要. 5.塑性变形时,导致一些物理、化学性能的变化。 6.时间性 hcp系的多晶体金属与单晶体比较,前者具有明显的晶界 阻滞效应和极高的加工硬化率,而在立方晶系金属中,多 晶和单晶试样的应力—应变曲线就没有那么大的差别。
一般每出现一新的吕德斯带,都相应的要 产生一次应力松弛,对应一次新的应力下 降,当试样表面被吕德斯带全部扫过之后, 再继续拉伸就会出现硬化现象。 由于试样出现新的吕德斯带,吕德斯带相 遇以及传播受阻使载荷波动引起曲线在下屈 服点波动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多晶体的塑性变形机制
多晶体是由大量晶体颗粒组成的晶粒体,其内部包含了许多晶界。
而塑性变形机制是多晶体在外力作用下发生形变的过程。
在多晶体的
塑性变形中,晶界扮演着关键的角色,影响着材料的塑性行为。
本文
将探讨多晶体的塑性变形机制及其影响因素。
多晶体的塑性变形机制主要有晶体滑移、孪晶形变和再结晶等方式。
晶体滑移是晶格内平面沿晶胞平面方向发生相对滑动,使晶体产生形变。
孪晶形变是晶体中出现特殊结构的孪晶,通过孪晶界的移动来实
现形变。
再结晶是材料在高温下形成新的晶粒结构以释放应力。
在多晶体的塑性变形中,晶界的性质对材料的塑性行为有重要影响。
晶界的迁移与扩散是晶粒体在形变过程中的重要机制,影响了晶粒的
重新排列以适应外力。
此外,晶界强化机制也影响了材料的变形性能,不同形态和性质的晶界对材料的硬度、韧性等性能具有不同影响。
除了晶界的影响,晶体取向和织构对多晶体的塑性变形也具有重要
作用。
晶体取向决定了材料在外力作用下的各向异性表现,不同取向
的晶粒在形变中的行为也有所不同。
织构是晶粒在材料中的排布规律,直接影响了材料的力学性能和变形行为。
总的来说,多晶体的塑性变形机制是一个复杂的过程,受到多种因
素的影响。
晶界、晶体取向和织构等因素共同作用,决定了材料的塑
性行为和性能。
通过深入研究多晶体的塑性变形机制,可以为材料设
计与加工提供科学依据,实现材料性能的优化与提升。