【真题】四川省绵阳市2017年中考数学试题含答案(word版)

合集下载

2017年四川省绵阳市中考数学试卷(含答案解析)

2017年四川省绵阳市中考数学试卷(含答案解析)

绝密★启用前四川省绵阳市2017年高中阶段学校招生暨初中学业水平考试数学本试卷满分140分,考试时间120分钟.第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,0.5-的相反数是( )A.0.5B.0.5±C.0.5-D.52.下列图案中,属于轴对称图形的是( )A B C D3.中国幅员辽阔,陆地面积约为960万平方公里.“960万”用科学记数法表示为( )A.70.9610⨯B.69.610⨯C.59610⨯D.29.610⨯4.如图所示的几何体的主视图正确的是( )A B C D5.使代数式433xx+-+有意义的整数x有( )A.5个B.4个C.3个D.2个6.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------_____________________________刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B .测得脚掌中心位置B 到镜面中心C 的距离是50cm ,镜面中心C 距旗杆底部D 的距离为4m ,如图所示.已知小丽同学的身高是1.54m ,眼睛位置A 距离小丽头顶的距离是4cm ,则旗杆DE 的高度等于( )A .10mB .12mC .12.4mD .12.32m 7.关于x 的方程220x mx n ++=的两个根是2-和1,则m n 的值为( )A .8-B .8C .16D .16-8.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径8cm AB =,圆柱体部分的高6cm BC =,圆锥体部分的高3cm CD =,则这个陀螺的表面积是( )A .268πcmB .274πcmC .284πcmD .2100πcm9.如图,矩形ABCD 的对角线AC 与BD 交于点O .过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若23AC =,120AEO =︒∠,则FC 的长度为( )A .1B .2C .2D .310.将二次函数2y x =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数2y x b =+的图象有公共点,则实数b 的取值范围是( ) A .8b >B .8b >-C .8b ≥D .8b ≥-11.如图,Rt ABC △中,30B ∠=︒.点O 是ABC △的重心,连接CO 并延长交AB 于点E ,过点E 作EF AB ⊥交BC 于点F ,连接AF 交CE 于点M ,则MOMF的值为 ( ) A .12B .5C .23D .3312.如图所示,将形状、大小完全相同的“”和线段按照一定规律摆成下列图形.第1幅图形中“”的个数为1a ,第2幅图形中“”的个数为2a ,第3幅图形中“”的个数为3a ,……,以此类推,则123111a a a +++ (19)1a +的值为 ( )A .2021B .6184C .589840D .431760第Ⅱ卷(非选择题 共104分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 13.因式分解:282a -= .14.关于x 的分式方程211111x x x-=-+-的解是 . 15.如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中,O 为坐标原点.若点A 的坐标是(6,0),点C 的坐标是(1,4),则点B 的坐标是 .16.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 .17.将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上.DEF △绕点D 旋转,腰DF 和底边DE 分别交CAB △的两腰CA ,CB 于M ,N 两点.若5CA =,6AB =,:1:3AD AB =,则12MD MA DN+的最小值为 .18.如图,过锐角ABC △的顶点A 作//DE BC ,AB 恰好平分DAC ∠.AF 平分EAC ∠交BC 的延长线于点F .在AF 上取点M ,使得13AM AF =.连接CM 并延长交直线DE 于点H .若2AC =,AMH △的面积是112,则1tan ACH∠的值是 .三、解答题(本大题共7小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分16分,每题8分)(1)计算:2110.04cos 45(2)||2-+︒----;(2)先化简,再求值:222()222x y x yx xy y x xy x y--÷-+--,其中22x =,2y =.20.(本小题满分11分)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查.从试验田中随机抽取了30株,得到的数据如下(单位:颗):182 195 201 179 208 204 186 192 210 204 175 193 200 203 188 197 212 207 185 206 188 186 198 202 221 199 219 208 187 224(上图所示的扇形统计图中,扇形A 对应的圆心角为 度,扇形B 对应的圆心角为 度; (2)该试验田中大约有3000株水稻.据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?21.(本小题满分11分)江南农场收割小麦.已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元.两种型号的收割机一共有10台.要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元.有几种方案?请指出费用最低的一种方案,并求出相应的费用.22.(本小题满分11分)如图,设反比例函数的解析式为3 (0)ky k x=>. (1)若该反比例函数与正比例函数2y x =的图象有一个交点的纵坐标为2,求k 的值;(2)若该反比例函数与过点(2,0)M -的直线l y kx b =+:的图象交于A ,B 两点,如图所示.当ABO△毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------的面积为163时,求直线l 的解析式.23.(本小题满分11分)如图,已知AB 是圆O 的直径.弦CD AB ⊥,垂足为H .与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F .连接AF 交CD 于点N . (1)求证:CA CN =;(2)连接DF ,若4cos 5DFA ∠=,AN =.求圆O 的直径的长度.24.(本小题满分12分)如图,已知抛物线2(0)y ax bx c a =++≠的图象的顶点坐标是(2,1),并且经过点(4,2).直线112y x =+与抛物线交于B ,D 两点.以BD 为直径作圆,圆心为点C .圆C 与直线m 交于对称轴右侧的点(t,1)M .直线m 上每一点的纵坐标都等于1. (1)求抛物线的解析式; (2)证明:圆C 与x 轴相切;(3)过点B 作BE m ⊥,垂足为E ,再过点D 作DF m ⊥,垂足为F .求:BE MF 的值.25.(本小题满分14分)如图,已知ABC △中,90C ∠=︒.点M 从点C 出发沿CB 方向以1cm/s 的速度匀速运动,到达点B 停止运动.在点M 的运动过程中,过点M 作直线MN 交AC 于点N ,且保持45NMC =︒∠.再过点N 作AC 的垂线交AB 于点F ,连接MF .将MNF △关于直线NF 对称后得到ENF △.已知8cm AC =,4cm BC =.设点M 运动时间为(s)t ,ENF △与ANF △重叠部分的面积为2)(cm y .(1)在点M 的运动过程中,能否使得四边形MNEF 为正方形?如果能,求出相应的t 值;如果不能,说明理由;(2)求y 关于t 的函数解析式及相应t 的取值范围; (3)当y 取最大值时,求sin NEF ∠的值.四川省绵阳市2017年高中阶段学校招生暨初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】解:0.5-的相反数是0.5,故选:A. 【提示】根据相反数的定义求解即可. 【考点】相反数的概念 2.【答案】A【解析】解:A ,此图案是轴对称图形,有5条对称轴,此选项符合题意;B.此图案不是轴对称图形,此选项不符合题意;C.此图案不是轴对称图形,而是旋转对称图形,不符合题意;D.此图案不是轴对称图形,不符合题意;故选:A.【提示】根据轴对称图形的定义求解可得. 【考点】轴对称图形的概念 3.【答案】B【解析】解:“960万”用科学记数法表示为69.610⨯,故选:B.2219111111132435461921a ++=+++++⨯⨯⨯⨯⨯11435461921++-⎪⎭222021840⎪⎝⎭【解析】解:画树状图为:4MA DN BD MD MD ==,∴114MA DN MD=12MD MD M A DN D M M +=+ ⎝3MD,即12MA DN有最4 MA DN MD=AH m∴16 m=14AC HG=∴HG tan4ACH HG∠2x y y ⎤-⎥⎦ 2x yy ⎫-⎪⎭2)x yy -谷粒颗数 175185x ≤< 185195x ≤< 195205x ≤< 205215x ≤< 215225x ≤<频数 3 8 10 6 3 对应扇形 图中区域 BDEAC如图所示:1116232223k k +=,解得1116232223k k +=,解方程即可解与O 相切,∴AB ,∴∠BOF OAF =∠+AC ,∴M ∠33圆的半径,∴圆C与x轴相切;10 EF5。

四川省绵阳市 中考数学模拟试卷(三)(解析版)

四川省绵阳市 中考数学模拟试卷(三)(解析版)

四川省绵阳市中考数学模拟试卷(三)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作()A.﹣0.15 B.+0.22 C.+0.15 D.﹣0.222.”造林见林,见林见效”这是退耕还林、造林的基本要求,更是农民的朴实愿望,四川省林业厅副厅长包建华说,退耕还林直补给退耕农户带来实惠,累计兑现政策性补助资金331.92亿元,户均5500元.将331.92亿用科学记数法表示为()A.3.3192×108B.3.3192×109C.3.3192×1010D.3.3192×10113.下列事件中是随机事件的是()A.一星期有7天B.袋中有三个红球,摸出一个球是红球C.字母M、N都轴对称图形D.任意买一张车票,座位刚好靠窗口4.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0 B.x≤2且x≠0 C.x≠0 D.x≤﹣25.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C.D.6.已知四边形ABCD,则下列说法中正确的是()A.若AB∥CD,AB=CD,则四边形ABCD是平行四边形B.若AC⊥BD,AC=BD,则四边形ABCD是矩形C.若AC⊥BD,AB=AD,CB=CD则四边形ABCD是菱形D.若AB=BC=CD=AD,则四边形ABCD是正方形7.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则每张甲票、每张乙票的价格分别是()A.10元和8元B.8元和10元C.12元和10元D.10元和12元8.为了调查某班的学生每天使用零花钱的使用情况,张华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 1 3 6 5 5则这20名同学每天使用的零花钱的平均数和中位数分别是()A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,39.如图是一个长方形的铝合金窗框,其长为a(m),高为b(m),装有同样大的塑钢玻璃,当第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,用含a与b的式子表示这时窗子的通风面积是()m2.A.B.C.D.10.如图,已知AD∥BC,AC与BD相交于点O,点G是BD的中点,过G作GE∥BC交AC于点E,如果AD=1,BC=3,GE:BC等于()A.1:2 B.1:3 C.1:4 D.2:311.已知二次函数y=x2﹣5x+6,当自变量x取m时,对应的函数值小于0,当自变量x取m﹣1、m+1时,对应的函数值为y1、y2,则y1、y2满足()A.y1>0,y2>0 B.y1<0,y2>0 C.y1<0,y2<0 D.y1>0,y2<012.已知,如图,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,EF⊥AB于F,连接OE交DC于点P,则下列结论不正确的是()A.OE∥AB B.BC=2DE C.AC•DF=DE•CD D.DE=PD二.填空题(本大题共6小题,每小题3分,共18分)13.小明身高为140cm,比他高20cm的哥哥的身高为cm.14.如图,把一块直角三角板直角顶点放在直尺的一边上,若∠1=25°,则∠2=.15.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是.16.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是.17.如图,在△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,△AP′C是由△BPC绕着点C旋转得到的,PA=,PB=1,∠BPC=135°.则PC=.18.有依次排列的3个数:3,9,8.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作,做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8.继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是.三.解答题(本大题共7小题,共86分)19.(1)计算:3tan45°+|1﹣|﹣(3.14﹣π)0﹣(2)化简:÷(﹣a﹣2)20.中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了市区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计市区80000名中学生家长中有多少名家长持反对态度?21.如图,直角三角形ABC,点A的坐标为(0,2),点B的坐标为(0,﹣2),BC的长为3,反比例函数y=的图象经过点C.(1)求反比例函数与直线AC的解析式;(2)点P是反比例函数图象上的点,若使△OAP的面积恰好等于△ABC的面积,求P点的坐标.22.某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过20%,则该商家经过两次连续降价(两次降价百分率相等)后,使该商品的利润为20%;(1)若已知该商家商品原来定价为30元,求每次降价的百分率;(2)若每件商品定价为x(x为整数)元,将剩余170件商品全部卖出,商店预期至少盈利340元,则有哪几种定价方案?23.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)24.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B点左侧),与y轴交于点C,对称轴为直线x=,OA=2,OD平分∠BOC交抛物线于点D(点D在第一象限);(1)求抛物线的解析式和点D的坐标;(2)点M是抛物线上的动点,在x轴上存在一点N,使得A、D、M、N四个点为顶点的四边形是平行四边形,求出点M的坐标;(3)在抛物线的对称轴上,是否存在一点P,使得△BPD的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.25.已知△ABC,AC=BC,CD⊥AB于点D,点F在BD上,连接CF,AM⊥CF于点M,AM交CD于点E.(1)如图1,当∠ACB=90°时,求证:DE=DF;(2)如图2,当∠ACB=60°时,DE与DF的数量关系是(3)在2的条件若tan∠EAF=,EM=,连接EF,将∠DEF绕点E逆时针旋转,旋转后角的两边交线段CF于N、G两点,交线段BC于P、T两点(如图3),若CN=3FN,求线段GT的长.四川省绵阳市中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作()A.﹣0.15 B.+0.22 C.+0.15 D.﹣0.22【考点】正数和负数.【分析】根据高于标准记为正,可得低于标准记为负.【解答】解:∵以4.00米为标准,若小东跳出了4.22米,可记做+0.22,∴小东跳出了3.85米,记作﹣0.15米,故选:A.【点评】本题考查了正数和负数,注意高于标准用正数表示,低于标准用负数表示.2.”造林见林,见林见效”这是退耕还林、造林的基本要求,更是农民的朴实愿望,四川省林业厅副厅长包建华说,退耕还林直补给退耕农户带来实惠,累计兑现政策性补助资金331.92亿元,户均5500元.将331.92亿用科学记数法表示为()A.3.3192×108B.3.3192×109C.3.3192×1010D.3.3192×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:331.92亿=331 9200 0000=3.3192×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.下列事件中是随机事件的是()A.一星期有7天B.袋中有三个红球,摸出一个球是红球C.字母M、N都轴对称图形D.任意买一张车票,座位刚好靠窗口【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、一星期有7天是必然事件,故A错误;B、袋中有三个红球,摸出一个球是红球是必然事件,故B错误;C、字母M是轴对称图形,字母N不是轴对称图形,故C错误;D、任意买一张车票,座位刚好靠窗口是随机事件,故D正确;故选:D.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0 B.x≤2且x≠0 C.x≠0 D.x≤﹣2【考点】函数自变量的取值范围.【专题】函数思想.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+2≥0且3x≠0,解得:x≥﹣2且x≠0.故选A.【点评】考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选:A.【点评】本题考查了三视图的知识,关键是掌握三视图所看的位置.6.已知四边形ABCD,则下列说法中正确的是()A.若AB∥CD,AB=CD,则四边形ABCD是平行四边形B.若AC⊥BD,AC=BD,则四边形ABCD是矩形C.若AC⊥BD,AB=AD,CB=CD则四边形ABCD是菱形D.若AB=BC=CD=AD,则四边形ABCD是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】分别利用平行四边形以及矩形、菱形和正方形的判定方法分别判断得出即可.【解答】解;A、若AB∥CD,AB=CD,则四边形ABCD是平行四边形,故此选项正确;B、若AC⊥BD,AC=BD,无法得到四边形ABCD是矩形,故此选项错误;C、若AC⊥BD,AB=AD,CB=CD,无法得到四边形ABCD是菱形,故此选项错误;D、若AB=BC=CD=AD,无法得到四边形ABCD是正方形,故此选项错误.故选:A.【点评】此题主要考查了平行四边形以及矩形、菱形和正方形的判定方法,正确掌握相关判定定理是解题关键.7.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则每张甲票、每张乙票的价格分别是()A.10元和8元B.8元和10元C.12元和10元D.10元和12元【考点】二元一次方程组的应用.【专题】计算题.【分析】设每张甲票、每张乙票的价格分别是x元,y元,列方程组得,求解即可.【解答】解:设每张甲票、每张乙票的价格分别是x元,y元,则,解得,答:每张甲票、每张乙票的价格分别是10元,8元.故选A.【点评】本题考查了二元一次方程组的应用,找出等量关系,列出方程组,是解此题的关键.8.为了调查某班的学生每天使用零花钱的使用情况,张华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 1 3 6 5 5则这20名同学每天使用的零花钱的平均数和中位数分别是()A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,3【考点】中位数;加权平均数.【分析】根据平均数和中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,则平均数为:=3.5,中位数为:=3.5.故选C.【点评】本题考查了平均数和中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.如图是一个长方形的铝合金窗框,其长为a(m),高为b(m),装有同样大的塑钢玻璃,当第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,用含a与b的式子表示这时窗子的通风面积是()m2.A.B.C.D.【考点】列代数式.【分析】第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,第一块和第二块玻璃之间的距离是(﹣)×.窗子的通风面积为①中剩下的部分.【解答】解:[a﹣﹣﹣×(﹣)]×b=ab.故选B.【点评】此题有一定的难度,主要是不能准确的找到窗子的通风部位.应该根据图示找到窗子通风的部位在那里,是那个长方形,其长和宽式多少,都需要求出来,再进行面积计算.10.如图,已知AD∥BC,AC与BD相交于点O,点G是BD的中点,过G作GE∥BC交AC于点E,如果AD=1,BC=3,GE:BC等于()A.1:2 B.1:3 C.1:4 D.2:3【考点】相似三角形的判定与性质.【分析】由AD∥BC,GE∥BC,易证得△AOD∽△COB,△OGE∽△OBC,又由AD=1,BC=3,点G是BD 的中点,根据相似三角形的对应边成比例,易得OG=OD,继而求得答案.【解答】解:∵AD∥BC,∴△AOD∽△COB,∵AD=1,BC=3,∴OD:OB=AD:BC=1:3,∴OD=BD,∵点G是BD的中点,∴DG=BD,∴OD=OG,∵GE∥BC,∴△OGE∽△OBC,∴GE:BC=OG:OB=OD:OB=1:3.故选:B.【点评】此题考查了相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.已知二次函数y=x2﹣5x+6,当自变量x取m时,对应的函数值小于0,当自变量x取m﹣1、m+1时,对应的函数值为y1、y2,则y1、y2满足()A.y1>0,y2>0 B.y1<0,y2>0 C.y1<0,y2<0 D.y1>0,y2<0【考点】二次函数图象上点的坐标特征.【分析】根据函数的解析式求得函数与x轴的交点坐标,利用自变量x取m时对应的值小于0,确定m ﹣1、m+1的位置,进而确定函数值为y1、y2.【解答】解:令y=x2﹣5x+6=0,解得:x=2或x=3.∵当自变量x取m时对应的值小于0,∴2<m<3,∴m﹣1<2,m+1>3,∴y1>0,y2>0.故选:A.【点评】此题考查了抛物线与x轴的交点和二次函数图象上的点的特征,解题的关键是求得抛物线与横轴的交点坐标.12.已知,如图,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,EF⊥AB于F,连接OE交DC于点P,则下列结论不正确的是()A.OE∥AB B.BC=2DE C.AC•DF=DE•CD D.DE=PD【考点】切线的性质.【分析】证明BC是⊙O的切线,进而得到P是CD的中点,利用中位线定理求出OE∥AB,据此判断A 正确;证明E是BC的中点,利用∠CDB是直角,据此得到BC=2DE,判断B选项正确;证明△ACD∽△EDF,即可得到AC•DF=DE•CD,判断C选项正确;只有当PE=PD时DE才等于PD,据此判断D选项错误.【解答】解:∵∠ACB=90°,∴BC是⊙O的切线,∵BC是⊙O的切线,∴OE垂直平分CD,∠OEC=∠OED,∴P是CD的中点,∴OP∥AB,∴OE∥AB,A选项正确,∵OE∥AB,O是AC的中点,∴E是BC的中点,∵AC是直径,∴∠ADC=90°,∴CD⊥AB,∴∠CDB=90°,∴BC=2DE,B选项正确;∵EF⊥AB,∴∠DFE=∠ADC=90°,∵DE=CD,BC是⊙O的切线,∴DE是⊙O的切线,∴∠EDF=∠CAD,∴△ACD∽△EDF∴,∴AC•DF=DE•CD,C选项正确.在四边形PDFE中,我们可以证明它是矩形,而不具备证明它是正方形的条件, ∴DE=,只有PE=PD时DE才等于PD,D选项错误,故选D.【点评】本题考查了圆的切线的性质、圆周角定理,相似三角形的判定与性质,切线长性质及三角形的中位线的运用,解答本题的关键是熟练掌握切线的判定定理以及切线的性质,此题有一定的难度.二.填空题(本大题共6小题,每小题3分,共18分)13.小明身高为140cm,比他高20cm的哥哥的身高为160cm.【考点】有理数的加法.【专题】应用题.【分析】根据有理数的加法,即可解答.【解答】解:140+20=160(cm).故答案为:160.【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数加法法则.14.如图,把一块直角三角板直角顶点放在直尺的一边上,若∠1=25°,则∠2=65°.【考点】平行线的性质.【分析】由题意知,∠1+∠3=90°;然后根据“两直线平行,内错角相等”推知∠2=∠3.【解答】解:如图,根据题意,知∠1+∠3=90°.∵∠1=25°,∠3=65°.又∵AB∥CD,∴∠2=∠3=65°;故答案是“65°.【点评】本题考查了平行线的性质.解题时,要注意挖掘出隐含在题中的已知条件∠1+∠3=90°.15.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是3或4.【考点】三角形三边关系;一元一次不等式的整数解.【分析】先求出不等式的解集,再根据x是符合条件的正整数判断出x的可能值,再由三角形的三边关系求出x的值即可.【解答】解:2x﹣1<9,解得:x<5,∵x是它的正整数解,∴x可取1,2,3,4,根据三角形第三边的取值范围,得2<x<14,∴x=3,4.故答案为:3或4.【点评】本题综合考查了求不等式特殊解的方法及三角形的三边关系,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.16.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是2+2.【考点】剪纸问题.【专题】压轴题.【分析】严格按照图的示意对折,裁剪后得到的是直角三角形,虚线①为矩形的对称轴,依据对称轴的性质虚线①平分矩形的长,即可得到沿虚线②裁下的直角三角形的短直角边为10÷2﹣4=1,虚线②为斜边,据勾股定理可得虚线②为,据等腰三角形底边的高平分底边的性质可以得到,展开后的等腰三角形的底边为2,故得到等腰三角形的周长.【解答】解:根据题意,三角形的底边为2(10÷2﹣4)=2,腰的平方为32+12=10,因此等腰三角形的腰为,因此等腰三角形的周长为:2+2.答:展开后等腰三角形的周长为2+2.【点评】本题主要考查学生的动手能力和对相关性质的运用能力,只要亲自动手操作,答案就会很容易得出来.17.如图,在△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,△AP′C是由△BPC绕着点C旋转得到的,PA=,PB=1,∠BPC=135°.则PC=.【考点】旋转的性质;勾股定理.【专题】计算题.【分析】根据旋转的性质可以得到∠P′CA=∠PCB,进而可以得到∠P′CP=∠ACB=90°,进而得到等腰直角三角形,求解即可.【解答】解:∵△AP′C是由△BPC绕着点C旋转得到的,∴∠P′CA=∠PCB,CP′=CP,∴∠P′CP=∠ACB=90°,∴△P′CP为等腰直角三角形,可得出∠AP′B=90°,∵PA=,PB=1,∴AP′=1,∴PP′==2,∴PC=,故答案为.【点评】本题考查了旋转的性质及勾股定理的知识,解题的关键是正确的利用旋转的性质得到相等的量.18.有依次排列的3个数:3,9,8.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作,做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8.继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是520.【考点】规律型:数字的变化类.【分析】首先具体地算出每一次操作以后所产生的那个新数串的所有数之和,从中发现规律,进而得出操作第100次以后所产生的那个新数串的所有数之和.【解答】解:设A=3,B=9,C=8,操作第n次以后所产生的那个新数串的所有数之和为S n.n=1时,S1=A+(B﹣A)+B+(C﹣B)+C=B+2C=(A+B+C)+1×(C﹣A);n=2时,S2=A+(B﹣2A)+(B﹣A)+A+B+(C﹣2B)+(C﹣B)+B+C=﹣A+B+3C=(A+B+C)+2×(C﹣A);…故n=100时,S100=(A+B+C)+100×(C﹣A)=﹣99A+B+101C=﹣99×3+9+101×8=520.故答案为:520.【点评】此题主要考查了数字变化类,本题中理解每一次操作的方法是前提,得出每一次操作以后所产生的那个新数串的所有数之和的规律是关键.三.解答题(本大题共7小题,共86分)19.(1)计算:3tan45°+|1﹣|﹣(3.14﹣π)0﹣(2)化简:÷(﹣a﹣2)【考点】分式的混合运算;零指数幂;二次根式的混合运算;特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值,绝对值,零指数次幂以及分母有理化进行计算即可;(2)根据运算顺序,先算括号里面的,再算除法即可.【解答】解:(1)原式=3×1+﹣1﹣1﹣=3﹣2=1;(2)原式=÷=•=﹣=﹣.【点评】本题考查了特殊角的三角函数值,二次根式的混合运算以及分式的混合运算,通分、因式分解和约分是解答分式混合运算的关键.20.中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了市区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了200名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计市区80000名中学生家长中有多少名家长持反对态度?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】计算题.【分析】(1)由无所谓的人数除以所占的百分比即可求出学生家长的总数;(2)求出赞成的人数,补全统计图即可;(3)求出反对的人数占得百分比,乘以80000即可得到结果.【解答】解:(1)根据题意得:40÷20%=200(人),则共调查了200名中学生的家长;(2)赞成家长数为200﹣(40+120)=40(人),补全统计图,如图所示:(3)根据题意得:80000×=48000(人),则市区80000名中学生家长中有48000名家长持反对态度.【点评】此题考查了条形统计图,扇形统计图,用样本估计总体,弄清题意是解本题的关键.21.如图,直角三角形ABC,点A的坐标为(0,2),点B的坐标为(0,﹣2),BC的长为3,反比例函数y=的图象经过点C.(1)求反比例函数与直线AC的解析式;(2)点P是反比例函数图象上的点,若使△OAP的面积恰好等于△ABC的面积,求P点的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)求出C的坐标,代入反比例函数的解析式,即可求出反比例函数的解析式,设直线AC的解析式是y=ax+b,把A、C的坐标代入即可求出直线AC的解析式;(2)设P的坐标是(x,y),根据三角形面积求出x的值,代入反比例函数的解析式,求出y即可.【解答】解:(1)∵点A的坐标为(0,2),点B的坐标为(0,﹣2),∴AB=4,∵BC的长是3,∴C点的坐标是(3,﹣2),∵反比例函数y=的图象经过点C,∴k=3×(﹣2)=﹣6,∴反比例函数的解析式是y=﹣;设直线AC的解析式是y=ax+b,把A(0,2),C(3,﹣2)代入得:,解得:b=2,k=﹣,即直线AC的解析式是y=﹣x+2;(2)设P的坐标是(x,y),∵△OAP的面积恰好等于△ABC的面积,∴×OA•|x|=×3×4,解得:x=±6,∵P点在反比例函数y=﹣上,∴当x=6时,y=﹣1;当x=﹣6时,y=1;即P点的坐标为(6,﹣1)或(﹣6,1).【点评】本题考查了三角形的面积,用待定系数法求一次函数、反比例函数的解析式的应用,主要考查学生的推理和计算能力,题目比较好,难度适中.22.某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过20%,则该商家经过两次连续降价(两次降价百分率相等)后,使该商品的利润为20%;(1)若已知该商家商品原来定价为30元,求每次降价的百分率;(2)若每件商品定价为x(x为整数)元,将剩余170件商品全部卖出,商店预期至少盈利340元,则有哪几种定价方案?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设每次降价的百分率为x,根据商家经过两次连续降价(两次降价百分率相等)后,该商品的利润为20%,列出方程,求解即可;(2)若每件商品定价为x(x为整数)元,根据物价局限定每件商品的利润不得超过20%和剩余170件商品全部卖出,商店预期至少盈利340元,列出不等式组,求解即可.【解答】解:(1)设每次降价的百分率为x,根据题意得:30(1﹣x)2=16(1+20%),解得:x1=0.2=20%,x2=1.8(不合题意,舍去),答:每次降价的百分率为20%.(2)若每件商品定价为x(x为整数)元,根据题意得:,解得:18≤x≤,∵x为整数,∴x=18,19,∴共有2种方案,方案①:每件商品定价为18元,方案②:每件商品定价为19元.【点评】此题考查了一元二次方程和一元一次不等式组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程和不等式组,再求解;注意把不合题意的解舍去.23.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)【考点】切线的判定与性质;扇形面积的计算.【专题】综合题.【分析】(1)连接OD,由BC为圆O的切线,利用切线的性质得到∠ABC为直角,由CD=CB,利用等边对等角得到一对角相等,再由OB=OD,利用等边对等角得到一对角相等,进而得到∠ODC=∠ABC,确定出∠ODC为直角,即可得证;(2)根据图形,利用外角性质及等边对等角得到∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD⊥EC 于点D,可得∠E+∠C=∠E+∠DOE=90°,等量代换即可得证;(3)作OF⊥DB于点F,利用垂径定理得到F为BD中点,连接AD,由EA=AO可得:AD是Rt△ODE 斜边的中线,利用直角三角形斜边上的中线等于斜边的一半得到AD=AE=AO,即三角形AOD为等边三角形,确定出∠DAB=60°,即∠OBD=30°,在直角三角形BOF中,利用30°所对的直角边等于斜边的一半求出OF的长,利用勾股定理求出BFO的长,得到BD的长,得出∠DOB为120°,由扇形BDO面积减去三角形BOD面积求出阴影部分面积即可.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)证明:如图,∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD ⊥EC 于点D,∴∠E+∠C=∠E+∠DOE=90°,∴∠C=∠DOE=2∠DBE ;(3)解:作OF ⊥DB 于点F,连接AD,由EA=AO 可得:AD 是Rt △ODE 斜边的中线,∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°,又∵OB=AO=2,OF ⊥BD,∴OF=1,BF=, ∴BD=2BF=2,∠BOD=180°﹣∠DOA=120°,∴S 阴影=S 扇形OBD ﹣S △BOD =﹣×2×1=﹣.【点评】此题考查了切线的判定与性质,以及扇形面积的计算,熟练掌握切线的判定与性质是解本题的关键.24.如图,抛物线y=﹣x 2+bx+c 与x 轴交于A 、B 两点(A 在B 点左侧),与y 轴交于点C,对称轴为直线x=,OA=2,OD 平分∠BOC 交抛物线于点D (点D 在第一象限);(1)求抛物线的解析式和点D 的坐标;(2)点M 是抛物线上的动点,在x 轴上存在一点N,使得A 、D 、M 、N 四个点为顶点的四边形是平行四边形,求出点M 的坐标;(3)在抛物线的对称轴上,是否存在一点P,使得△BPD 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.。

2020年四川省绵阳市中考数学试题及参考答案(word解析版)

2020年四川省绵阳市中考数学试题及参考答案(word解析版)

绵阳市2020年高中阶段学校招生暨初中学业水平考试数学(满分140分,考试时间120分钟)第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.1.﹣3的相反数是()A.﹣3 B.﹣C.D.32.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×1064.下列四个图形中,不能作为正方体的展开图的是()A.B.C.D.5.若有意义,则a的取值范围是()A.a≥1 B.a≤1 C.a≥0 D.a≤﹣16.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱7.如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1 B.2 C.3 D.48.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.B.C.D.9.在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD =()A.16°B.28°C.44°D.45°10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米B.5米C.2米D.7米12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′=()A.B.2C.D.第Ⅱ卷(非选择题共104分)二、填空题:本大题共6小题,每小题4分,共24分.13.因式分解:x3y﹣4xy3=.14.平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为.15.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是万元.(利润=销售额﹣种植成本)17.如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.18.若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是.三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19.(16分)(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.(2)先化简,再求值:(x+2+)÷,其中x=﹣1.20.(12分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?21.(12分)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B 两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:A加工厂74 75 75 75 73 77 78 72 76 75B加工厂78 74 78 73 74 75 74 74 75 75 (1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?22.(12分)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD 交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.23.(12分)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.24.(12分)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.25.(14分)如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.(1)求BC,CD;(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D 时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.①将△AHI沿AC翻折得△AH′I,是否存在时刻t,使点H′恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.答案与解析第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.1.﹣3的相反数是()A.﹣3 B.﹣C.D.3【知识考点】相反数.【思路分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解题过程】解:﹣3的相反数是3,故选:D.【总结归纳】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条【知识考点】正方形的性质;轴对称的性质;轴对称图形.【思路分析】根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数.【解题过程】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故选:B.【总结归纳】本题考查了正方形的性质、轴对称的性质、轴对称图形,解决本题的关键是掌握轴对称的性质.3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×106【知识考点】科学记数法—表示较大的数.【思路分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【解题过程】解:690万=6900000=6.9×106.故选:D.【总结归纳】本题考查了科学记数法﹣表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,4.下列四个图形中,不能作为正方体的展开图的是()A.B.C.D.【知识考点】几何体的展开图.【思路分析】根据正方体的展开图的11种不同情况进行判断即可.【解题过程】解:正方体展开图的11种情况可分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,因此选项D符合题意,故选:D.【总结归纳】本题考查正方体的展开图,理解和掌握正方体的展开图的11种不同情况,是正确判断的前提.5.若有意义,则a的取值范围是()A.a≥1 B.a≤1 C.a≥0 D.a≤﹣1【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式有意义的条件分析得出答案.【解题过程】解:若有意义,则a﹣1≥0,解得:a≥1.故选:A.【总结归纳】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.6.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱【知识考点】一元一次方程的应用;二元一次方程组的应用.【思路分析】设共有x人合伙买羊,羊价为y钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解题过程】解:设共有x人合伙买羊,羊价为y钱,依题意,得:,解得:.故选:C.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1 B.2 C.3 D.4【知识考点】角平分线的性质;勾股定理.【思路分析】过E作EM⊥BC,交FD于点N,可得EN⊥GD,得到EN与GH平行,再由E为HD中点,得到HG=2EN,同时得到四边形NMCD为矩形,再由角平分线定理得到AE=ME,进而求出EN的长,得到HG的长.【解题过程】解:过E作EM⊥BC,交FD于点N,∵DF∥BC,∴EN⊥DF,∴EN∥HG,∴=,∵E为HD中点,∴=,∴=,即HG=2EN,∴∠DNM=∠HMC=∠C=90°,∴四边形NMCD为矩形,∴MN=DC=2,∵BE平分∠ABC,EA⊥AB,EM⊥BC,∴EM=AE=3,∴EN=EM﹣MN=3﹣2=1,则HG=2EN=2.故选:B.【总结归纳】此题考查了勾股定理,矩形的判定与性质,角平分线定理,以及平行得比例,熟练掌握定理及性质是解本题的关键.8.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.B.C.D.【知识考点】列表法与树状图法.【思路分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.【解题过程】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为=.故选:A.【总结归纳】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD =()A.16°B.28°C.44°D.45°【知识考点】平行线的性质;等腰三角形的性质.【思路分析】延长ED,交AC于F,根据等腰三角形的性质得出∠A=∠ACB=28°,根据平行线的性质得出∠CFD=∠A=28°,由三角形外角的性质即可求得∠ACD的度数.【解题过程】解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,故选:C.【总结归纳】本题考查了等腰三角形的性质,平行线的性质,三角形外角的性质,熟练掌握性质定理是解题的关键.10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时【知识考点】分式方程的应用.【思路分析】设乙驾车时长为x小时,则甲驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据“各匀速行驶一半路程”列出方程求解即可.【解题过程】解:设乙驾车时长为x小时,则甲驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据题意得:=,解得:x1=1.8或x2=9,经检验:x1=1.8或x2=9是原方程的解,x2=9不合题意,舍去,故选:C.【总结归纳】考查了分式方程的应用,解题的关键是能够分别表示出各自的实际速度,难度中等.11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米B.5米C.2米D.7米【知识考点】二次函数的应用.【思路分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.【解题过程】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+,∴a=﹣,∴大孔所在抛物线解析式为y=﹣x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为﹣7,∴点E坐标为(﹣7,﹣),∴﹣=m(x﹣b)2,∴x1=+b,x2=﹣+b,∴MN=4,∴|+b﹣(﹣+b)|=4∴m=﹣,∴顶点为A的小孔所在抛物线的解析式为y=﹣(x﹣b)2,∵大孔水面宽度为20米,∴当x=﹣10时,y=﹣,∴﹣=﹣(x﹣b)2,∴x1=+b,x2=﹣+b,∴单个小孔的水面宽度=|(+b)﹣(﹣+b)|=5(米),故选:B.【总结归纳】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C 顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′=()A.B.2C.D.【知识考点】等腰三角形的判定;直角梯形;旋转的性质.【思路分析】过D作DE⊥BC于E,则∠DEC=∠DEB=90°,根据矩形的想知道的BE=AD=2,DE=AB=2,根据旋转的性质得到∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,推出△B′CD为等腰直角三角形,得到CD=B′C,设B′C=BC=x,则CD=x,CE=x﹣2,根据勾股定理即可得到结论.【解题过程】解:过D作DE⊥BC于E,则∠DEC=∠DEB=90°,∵AD∥BC,∠ABC=90°,∴∠DAB=∠ABC=90°,∴四边形ABED是矩形,∴BE=AD=2,DE=AB=2,∵将△ABC绕点C顺时针方向旋转后得△A′B′C,∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,∴△A′CA∽△B′CB,∴=,∵△B′CD为等腰三角形,∴△B′CD为等腰直角三角形,∴CD=B′C,设B′C=BC=x,则CD=x,CE=x﹣2,∵CD2=CE2+DE2,∴(x)2=(x﹣2)2+(2)2,∴x=4(负值舍去),∴BC=4,∴AC==2,∴=,∴A′A=,故选:A.【总结归纳】本题考查了旋转的性质,等腰直角三角形的性质,矩形的判定和性质,相似三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.第Ⅱ卷(非选择题共104分)二、填空题:本大题共6小题,每小题4分,共24分.13.因式分解:x3y﹣4xy3=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提取公因式xy,再对余下的多项式利用平方差公式继续分解.【解题过程】解:x3y﹣4xy3=xy(x2﹣4y2)=xy(x+2y)(x﹣2y).故答案为:xy(x+2y)(x﹣2y).【总结归纳】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为.【知识考点】坐标与图形变化﹣平移.【思路分析】根据在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)即可得结论.【解题过程】解:∵将点A(﹣1,2)先向左平移2个单位,横坐标﹣2,再向上平移1个单位纵坐标+1,∴平移后得到的点A1的坐标为:(﹣3,3).故答案为:(﹣3,3).【总结归纳】本题考查了坐标与图形变化﹣平移,解决本题的关键是掌握平移定义.15.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.【知识考点】多项式.【思路分析】直接利用多项式的次数确定方法得出答案.【解题过程】解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.【总结归纳】此题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是万元.(利润=销售额﹣种植成本)【知识考点】一元一次不等式组的应用;F一次函数的应用.【思路分析】设甲种火龙果种植x亩,乙钟火龙果种植(100﹣x)亩,此项目获得利润w,根据题意列出不等式求出x的范围,然后根据题意列出w与x的函数关系即可求出答案.【解题过程】解:设甲种火龙果种植x亩,乙钟火龙果种植(100﹣x)亩,此项目获得利润w,甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:,解得:50≤x≤60,此项目获得利润w=1.1x+1.4(100﹣x)=140﹣0.3x,当x=50时,w的最大值为140﹣15=125万元.【总结归纳】本题考查一次函数,解题的关键是根据题意给出的等量关系列出函数关系式,本题属于中等题型.17.如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD 内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.【知识考点】垂线段最短;三角形三边关系;勾股定理.【思路分析】取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.求出OM,OF即可解决问题.【解题过程】解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O 作OF⊥BC于F,交CD于G,则OM+ME≥OF.∵∠AMD=90°,AD=4,OA=OD,∴OM=AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=2,GF=,OF=3,∴ME≥OF﹣OM=3﹣2,∴当O,M,E共线时,ME的值最小,最小值为3﹣2.【总结归纳】本题考查解直角三角形,垂线段最短,直角三角形斜边中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.18.若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是.【知识考点】解一元一次不等式.【思路分析】解不等式>﹣x﹣得x>﹣4,据此知x>﹣4都能使不等式(m﹣6)x<2m+1成立,再分m﹣6=0和m﹣6≠0两种情况分别求解.【解题过程】解:解不等式>﹣x﹣得x>﹣4,∵x>﹣4都能使不等式(m﹣6)x<2m+1成立,①当m﹣6=0,即m=6时,则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0,则不等式(m﹣6)x<2m+1的解要改变方向,∴m﹣6<0,即m<6,∴不等式(m﹣6)x<2m+1的解集为x>,∵x>﹣4都能使x>成立,∴﹣4≥,∴﹣4m+24≤2m+1,∴m≥,综上所述,m的取值范围是≤m≤6.故答案为:≤m≤6.【总结归纳】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤和依据及不等式的基本性质.三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19.(16分)(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.(2)先化简,再求值:(x+2+)÷,其中x=﹣1.【知识考点】分式的化简求值;零指数幂;分母有理化;二次根式的混合运算;特殊角的三角函数值.【思路分析】(1)先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解题过程】解:(1)原式=3﹣+2×﹣×2﹣1=3﹣+﹣2﹣1=0;(2)原式=(+)÷=•=,当x=﹣1时,原式===1﹣.【总结归纳】本题主要考查实数的混合运算与分式的化简求值,解题的关键是掌握绝对值性质、二次根式的性质、零指数幂的规定、熟记三角函数值及分式的混合运算顺序和运算法则.20.(12分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?【知识考点】一元一次不等式的应用;一次函数的应用.【思路分析】(1)根据题意给出的等量关系即可求出答案.(2)先求出两书店所需费用相同时的书本数量,从而可判断哪家书店省钱.【解题过程】解:(1)甲书店:y=0.8x,乙书店:y=.(2)令0.8x=0.6x+40,解得:x=200,当x<200时,选择甲书店更省钱,当x=200,甲乙书店所需费用相同,当x>200,选择乙书店更省钱.【总结归纳】本题考查一次函数的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.21.(12分)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:A加工厂74 75 75 75 73 77 78 72 76 75B加工厂78 74 78 73 74 75 74 74 75 75 (1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?【知识考点】用样本估计总体;算术平均数;中位数;众数;方差.【思路分析】(1)根据中位数、众数和平均数的计算公式分别进行解答即可;(2)用总数乘以质量为75克的鸡腿所占的百分比即可;(3)根据方差的定义,方差越小数据越稳定即可得出答案.【解题过程】解:(1)把这些数从小到大排列,最中间的数是第5和第6个数的平均数,则中位数是=75(克);因为75出现了4次,出现的次数最多,所以众数是75克;平均数是:(74+75+75+75+73+77+78+72+76+75)=75(克);(2)根据题意得:100×=30(个),答:质量为75克的鸡腿有30个;(3)选B加工厂的鸡腿.∵A、B平均值一样,B的方差比A的方差小,B更稳定,∴选B加工厂的鸡腿.【总结归纳】本题考查了方差、平均数、中位数、众数,熟悉计算公式和意义是解题的关键.22.(12分)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC 于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.【知识考点】圆的综合题.【思路分析】(1)由圆周角定理与已知得∠BAC=∠DCA,即可得出结论;(2)连接EO并延长交⊙O于G,连接CG,则EG为⊙O的直径,∠ECG=90°,证明∠DCE =∠EGC=∠OCG,得出∠DCE+∠OCE=90°,即可得出结论;(3)由三角函数定义求出cos∠ACD=,证出∠ABC=∠ACD=∠CAB,求出BC=AC=10,AB=12,过点B作BG⊥AC于C,设GC=x,则AG=10﹣x,由勾股定理得出方程,解方程得GC=,由勾股定理求出BG=,由三角函数定义即可得答案.【解题过程】(1)证明:∵∠BAC=∠CEB,∠CEB=∠DCA,∴∠BAC=∠DCA,∴AB∥CD;(2)证明:连接EO并延长交⊙O于G,连接CG,如图1所示:则EG为⊙O的直径,∴∠ECG=90°,∵OC=OG,∴∠OCG=∠EGC,∵∠EAC=∠EGC,∠EAC=∠DCE,∴∠DCE=∠EGC=∠OCG,∵∠OCG+∠OCE=∠ECG=90°,∴∠DCE+∠OCE=90°,即∠DCO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(3)解:在Rt△ADC中,由勾股定理得:AC===10,∴cos∠ACD===,∵CD是⊙O的切线,AB∥CD,∴∠ABC=∠ACD=∠CAB,∴BC=AC=10,AB=2BC•cos∠ABC=2×10×=12,过点B作BG⊥AC于C,如图2所示:设GC=x,则AG=10﹣x,由勾股定理得:AB2﹣AG2=BG2=BC2﹣GC2,即:122﹣(10﹣x)2=102﹣x2,解得:x=,∴GC=,∴BG===,∴tan∠ACB===.【总结归纳】本题是圆的综合题目,考查了切线的判定与性质、圆周角定理、平行线的判定与性质、等腰三角形的判定与性质、三角函数定义、勾股定理等知识;本题综合性强,熟练掌握圆周角定理和切线的判定是解题的关键.23.(12分)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.【知识考点】反比例函数综合题.【思路分析】(1)将点A坐标代入反比例函数解析式中求出k,进而得出点B坐标,最后用待定系数法求出直线AB的解析式;(2)先判断出BF=AE,进而得出△AEG≌Rt△BFG(AAS),得出AG=BG,EG=FG,即BE =BG+EG=AG+FG=AF,再求出m=﹣n,进而得出BF=2+n,MN=n+3,即BE=AF=n+3,再判断出△AME∽△ENB,得出==,得出ME=BN=,最后用勾股定理求出m,即可得出结论.【解题过程】解:(1)当m=1时,点A(﹣3,1),∵点A在反比例函数y=的图象上,∴k=﹣3×1=﹣3,∴反比例函数的解析式为y=﹣;∵点B(n,2)在反比例函数y=﹣图象上,∴2n=﹣3,∴n=﹣,设直线AB的解析式为y=ax+b,则,∴,∴直线AB的解析式为y=x+3;(2)如图,过点A作AM⊥x轴于M,过点B作BN⊥x轴于N,过点A作AF⊥BN于F,交BE于G,则四边形AMNF是矩形,∴FN=AM,AF=MN,∵A(﹣3,m),B(n,2),∴BF=2﹣m,∵AE=2﹣m,∴BF=AE,在△AEG和△BFG中,,∴△AEG≌Rt△BFG(AAS),∴AG=BG,EG=FG,∴BE=BG+EG=AG+FG=AF,∵点A(﹣3,m),B(n,2)在反比例函数y=的图象上,∴k=﹣3m=2n,∴m=﹣n,∴BF=BN﹣FN=BN﹣AM=2﹣m=2+n,MN=n﹣(﹣3)=n+3,∴BE=AF=n+3,∵∠AEM+∠MAE=90°,∠AEM+∠BEN=90°,∴∠MAE=∠NEB,∵∠AME=∠ENB=90°,∴△AME∽△ENB,∴====,∴ME=BN=,在Rt△AME中,AM=m,AE=2﹣m,根据勾股定理得,AM2+ME2=AE2,∴m2+()2=(2﹣m)2,∴m=,∴k=﹣3m=﹣,∴反比例函数的解析式为y=﹣.【总结归纳】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,矩形的判定和性质,全等三角形的判定和性质,构造出△AEG≌△BFG(AAS)是解本题的关键.24.(12分)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.【知识考点】二次函数综合题.【思路分析】(1)由待定系数法求出直线AB的解析式为y=﹣x+1,求出F点的坐标,由平。

2019四川省绵阳中考数学试卷(word版,含答案)

2019四川省绵阳中考数学试卷(word版,含答案)

2019四川省绵阳中考数学试卷(word版,含答案)2019年四川省绵阳市中考数学试卷⼀、选择题(本⼤题共12⼩题,共36.0分)1.若√a=2,则a的值为()A. ?4B. 4C. ?2D. √22.据⽣物学可知,卵细胞是⼈体细胞中最⼤的细胞,其直径约为0.0002⽶.将数0.0002⽤科学记数法表⽰为()A. 0.2×10?3B. 0.2×10?4C. 2×10?3D. 2×10?43.对如图的对称性表述,正确的是()A. 轴对称图形B. 中⼼对称图形C. 既是轴对称图形⼜是中⼼对称图形D. 既不是轴对称图形⼜不是中⼼对称图形4.下列⼏何体中,主视图是三⾓形的是()A. B. C. D.5.如图,在平⾯直⾓坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对⾓线交点E的坐标为()A. (2,√3)B. (√3,2)C. (√3,3)D. (3,√3)6.已知x是整数,当|x-√30|取最⼩值时,x的值是()A. 5B. 6C. 7D. 87.帅帅收集了南街⽶粉店今年6⽉1⽇⾄6⽉5⽇每天的⽤⽔量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A. 极差是6B. 众数是7C. 中位数是5D. ⽅差是88.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A. ab2B. a+b2C. a2b3D. a2+b39.红星商店计划⽤不超过4200元的资⾦,购进甲、⼄两种单价分别为60元、100元的商品共50件,据市场⾏情,销售甲、⼄商品各⼀件分别可获利10元、20元,两种商品均售完.若所获利润⼤于750元,则该店进货⽅案有()A. 3种B. 4种C. 5种D. 6种10.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所⽰,它是由四个全等的直⾓三⾓形与中间的⼩正⽅形拼成的⼀个⼤正⽅形.如果⼤正⽅形的⾯积是125,⼩正⽅形⾯积是25,则(sinθ-cosθ)2=()A. 15B. √55C. 3√55D. 9511.如图,⼆次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a-c>0;③a+2b+4c>0;④4ab +ba<-4,正确的个数是()A. 1B. 2C. 3D. 412. 如图,在四边形ABCD 中,AB ∥DC ,∠ADC =90°,AB =5,CD =AD =3,点E 是线段CD 的三等分点,且靠近点C ,∠FEG 的两边与线段AB 分别交于点F 、G ,连接AC 分别交EF 、EG 于点H 、K .若BG =32,∠FEG =45°,则HK =()A. 2√23B. 5√26C. 3√22D. 13√26⼆、填空题(本⼤题共6⼩题,共18.0分) 13. 因式分解:m 2n +2mn 2+n 3=______.14. 如图,AB ∥CD ,∠ABD 的平分线与∠BDC 的平分线交于点E ,则∠1+∠2=______.15. 单项式x -|a -1|y 与2x √b?1y 是同类项,则a b =______.16. ⼀艘轮船在静⽔中的最⼤航速为30km /h ,它以最⼤航速沿江顺流航⾏120km 所⽤时间,与以最⼤航速逆流航⾏60km 所⽤时间相同,则江⽔的流速为______km /h . 17. 在△ABC 中,若∠B =45°,AB =10√2,AC=5√5,则△ABC 的⾯积是______. 18. 如图,△ABC 、△BDE 都是等腰直⾓三⾓形,BA =BC ,BD =BE ,AC =4,DE =2√2.将△BDE 绕点B 逆时针⽅向旋转后得△BD ′E ′,当点E ′恰好落在线段AD ′上时,则CE ′=______.三、解答题(本⼤题共7⼩题,共66.0分)19. (1)计算:2√23+|(-12)-1|-2√2tan30°-(π-2019)0;(2)先化简,再求值:(a a 2?b 2-1a+b )÷bb?a ,其中a =√2,b =2-√2.20.胜利中学为丰富同学们的校园⽣活,举⾏“校园电视台主待⼈“选拔赛,现将36名参赛选⼿的成绩(单位:分)统计并绘制成频数分布直⽅图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直⽅图,并求扇形统计图中扇形D对应的圆⼼⾓度数;(2)成绩在D区域的选⼿,男⽣⽐⼥⽣多⼀⼈,从中随机抽取两⼈临时担任该校艺术节的主持⼈,求恰好选中⼀名男⽣和⼀名⼥⽣的概率.21.⾠星旅游度假村有甲种风格客房15间,⼄种风格客房20间.按现有定价:若全部⼊住,⼀天营业额为8500元;若甲、⼄两种风格客房均有10间⼊住,⼀天营业额为5000元.(1)求甲、⼄两种客房每间现有定价分别是多少元?(2)度假村以⼄种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天⽀出80元的各种费⽤.当每间房间定价为多少元时,⼄种风格客房每天的利润m最⼤,最⼤利润是多少元?22.如图,⼀次函数y=kx+b(k≠0)的图象与反⽐例函数y=m2?3m(m≠0x且m≠3)的图象在第⼀象限交于点A、B,且该⼀次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂⾜分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反⽐例函数的解析式;(2)若点M为⼀次函数图象上的动点,求OM长度的最⼩值.23.如图,AB是⊙O的直径,点C为BD?的中点,CF为⊙O的弦,且CF⊥AB,垂⾜为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.24.在平⾯直⾓坐标系中,将⼆次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所⽰的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的⼀次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另⼀个交点为D,△ABD的⾯积为5.(1)求抛物线和⼀次函数的解析式;(2)抛物线上的动点E在⼀次函数的图象下⽅,求△ACE⾯积的最⼤值,并求出此时点E的坐标;PA的最⼩值.(3)若点P为x轴上任意⼀点,在(2)的结论下,求PE+3525.如图,在以点O为中⼼的正⽅形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停⽌.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直⾓三⾓形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的⾯积为S,求S关于时间t的关系式.答案和解析1.【答案】B【解析】解:若=2,则a=4,故选:B.根据算术平⽅根的概念可得.本题主要考查算术平⽅根,解题的关键是掌握算术平⽅根的定义.2.【答案】D【解析】解:将数0.0002⽤科学记数法表⽰为2×10-4,故选:D.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:如图所⽰:是中⼼对称图形.故选:B.直接利⽤中⼼对称图形的性质得出答案.此题主要考查了中⼼对称图形的性质,正确把握定义是解题关键.4.【答案】C【解析】解:A、正⽅体的主视图是正⽅形,故此选项错误;B、圆柱的主视图是长⽅形,故此选项错误;C、圆锥的主视图是三⾓形,故此选项正确;D、六棱柱的主视图是长⽅形,中间还有两条竖线,故此选项错误;故选:C.主视图是从找到从正⾯看所得到的图形,注意要把所看到的棱都表⽰到图中.此题主要考查了⼏何体的三视图,关键是掌握主视图所看的位置.5.【答案】D【解析】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO-AF=4-1=3,∴.故选:D.过点E作EF⊥x轴于点F,由直⾓三⾓形的性质求出EF长和OF长即可.本题考查了菱形的性质、勾股定理及含30°直⾓三⾓形的性质.正确作出辅助线是解题的关键.6.【答案】A【解析】解:∵,∴5<,且与最接近的整数是5,∴当|x-|取最⼩值时,x的值是5,故选:A.根据绝对值的意义,由与最接近的整数是5,可得结论.本题考查了算术平⽅根的估算和绝对值的意义,熟练掌握平⽅数是关键.7.【答案】D【解析】解:由图可知,6⽉1⽇⾄6⽉5⽇每天的⽤⽔量是:5,7,11,3,9.A.极差=11-3=8,结论错误,故A不符合题意;B.众数为5,7,11,3,9,结论错误,故B不符合题意;C.这5个数按从⼩到⼤的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C不符合题意;D.平均数是(5+7+11+3+9)÷5=7,⽅差S2=[(5-7)2+(7-7)2+(11-7)2+(3-7)2+(9-7)2]=8.结论正确,故D符合题意;故选:D.根据极差、众数、中位数及⽅差的定义,依次计算各选项即可作出判断.本题考查了折线统计图,主要利⽤了极差、众数、中位数及⽅差的定义,根据图表准确获取信息是解题的关键.8.【答案】A【解析】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m?(23)2n=4m?82n=4m?(8n)2=ab2,故选:A.将已知等式代⼊22m+6n=22m×26n=(22)m?(23)2n=4m?82n=4m?(8n)2可得.本题主要考查幂的运算,解题的关键是熟练掌握幂的乘⽅与积的乘⽅的运算法则.9.【答案】C【解析】解:设该店购进甲种商品x件,则购进⼄种商品(50-x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货⽅案有5种,故选:C.设该店购进甲种商品x件,则购进⼄种商品(50-x)件,根据“购进甲⼄商品不超过4200元的资⾦、两种商品均售完所获利润⼤于750元”列出关于x的不等式组,解之求得整数x 的值即可得出答案.本题主要考查⼀元⼀次不等式组的应⽤,解题的关键是理解题意,找到题⽬蕴含的不等关系,并据此列出不等式组.10.【答案】A【解析】解:∵⼤正⽅形的⾯积是125,⼩正⽅形⾯积是25,∴⼤正⽅形的边长为5,⼩正⽅形的边长为5,∴5cosθ-5sinθ=5,∴cosθ-sinθ=,∴(sinθ-cosθ)2=.故选:A.根据正⽅形的⾯积公式可得⼤正⽅形的边长为5,⼩正⽅形的边长为5,再根据直⾓三⾓形的边⾓关系列式即可求解.本题考查了解直⾓三⾓形的应⽤,勾股定理的证明,正⽅形的⾯积,难度适中.11.【答案】D【解析】解:①∵抛物线开⼝向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上⽅,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴<-<,∴1<-<,当-<时,b>-3a,∵当x=2时,y=4a+2b+c=0,∴b=-2a-c,∴-2a-c>-3a,∴2a-c>0,故②正确;③∵-,∴2a+b>0,∵c>0,4c>0,∴a+2b+4c>0,故③正确;④∵-,∴2a+b>0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>-4ab,∵a>0,b<0,∴ab<0,dengx∴,即,故④正确.故选:D.⼆次函数y=ax2+bx+c(a≠0)①⼆次项系数a决定抛物线的开⼝⽅向和⼤⼩.当a>0时,抛物线向上开⼝;当a<0时,抛物线向下开⼝;|a|还可以决定开⼝⼤⼩,|a|越⼤开⼝就越⼩.②⼀次项系数b和⼆次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).本题考查了⼆次函数图象与系数关系,熟练掌握⼆次函数图象的性质是解题的关键.12.【答案】B【解析】解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG=,∴AG=,∵AB∥DC,∴△CEK∽△AGK,∴==,∴==,∴==,∵CK+AK=3,∴CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG=,∴EG==,∵=,∴EK=,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴==,∴设HE=3x,HK=x,∵△HEK∽△HCE,∴=,∴=,解得:x=,∴HK=,故选:B.根据等腰直⾓三⾓形的性质得到AC=3,根据相似三⾓形的性质得到==,求得CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,得到EM=AD=3,AM=DE=2,由勾股定理得到EG==,求得EK=,根据相似三⾓形的性质得到==,设HE=3x,HK=x,再由相似三⾓形的性质列⽅程即可得到结论.本题考查了勾股定理,相似三⾓形的判定和性质,等腰直⾓三⾓形的性质,矩形的判定和性质,熟练掌握相似三⾓形的判定和性质是解题的关键.13.【答案】n(m+n)2【解析】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.⾸先提取公因式n,再利⽤完全平⽅公式分解因式得出答案.此题主要考查了公式法以及提取公因式法分解因式,正确应⽤公式是解题关键.14.【答案】90°【解析】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1=∠ABD,∵BE是∠BDC的平分线,∴∠2=∠CDB,∴∠1+∠2=90°,故答案为:90°.根据平⾏线的性质可得∠ABD+∠CDB=180°,再根据⾓平分线的定义可得∠1=∠ABD,∠2=∠CDB,进⽽可得结论.此题主要考查了平⾏线的性质,关键是掌握两直线平⾏,同旁内⾓互补.15.【答案】1【解析】解:由题意知-|a-1|=≥0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.根据同类项的定义(所含字母相同,相同字母的指数相同)列出⽅程,结合⼆次根式的性质可求出a,b的值,再代⼊代数式计算即可.此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项的定义,难度⼀般.16.【答案】10【解析】解:设江⽔的流速为xkm/h,根据题意可得:=,解得:x=10,经检验得:x=10是原⽅程的根,答:江⽔的流速为10km/h.故答案为:10.直接利⽤顺⽔速=静⽔速+⽔速,逆⽔速=静⽔速-⽔速,进⽽得出等式求出答案.此题主要考查了分式⽅程的应⽤,正确得出等量关系是解题关键.17.【答案】75或25【解析】解:过点A作AD⊥BC,垂⾜为D,如图所⽰.在Rt△ABD中,AD=AB?sinB=10,BD=AB?cosB=10;在Rt△ACD中,AD=10,AC=5,∴CD==5,∴BC=BD+CD=15或BC=BD-CD=5,∴S△ABC=BC?AD=75或25.故答案为:75或25.过点A 作AD ⊥BC ,垂⾜为D ,通过解直⾓三⾓形及勾股定理可求出AD ,BD ,CD 的长,进⽽可得出BC 的长,再利⽤三⾓形的⾯积公式可求出△ABC 的⾯积.本题考查了解直⾓三⾓形、勾股定理以及三⾓形的⾯积,通过解直⾓三⾓形及勾股定理,求出AD ,BC 的长度是解题的关键. 18.【答案】√2+√6【解析】解:如图,连接CE′,∵△ABC 、△BDE 都是等腰直⾓三⾓形,BA=BC ,BD=BE ,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE 绕点B 逆时针⽅向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS ),∴∠D′=∠CE′B=45°,过B 作BH ⊥CE′于H ,在Rt △BHE′中,BH=E′H=BE′=,在Rt △BCH 中,CH==,∴CE′=+,故答案为:.如图,连接CE′,根据等腰三⾓形的性质得到AB=BC=2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三⾓形的性质得到∠D′=∠CE′B=45°,过B 作BH ⊥CE′于H ,解直⾓三⾓形即可得到结论.本题考查了旋转的性质,全等三⾓形的判定和性质,等腰直⾓三⾓形的性质,解直⾓三⾓形,正确的作出辅助线是解题的关键.19.【答案】解:(1)2√23+|(-12)-1|-2√2tan30°-(π-2019)0 =2√63+2-2√2×√33-1=2√63+2-2√63-1=1;(2)原式=a(a+b)(a?b)×b?ab -1a+b ×b?ab =-ab(a+b)-b?ab(a+b) =-b b(a+b) =-1a+b ,当a =√2,b =2-√2时,原式=-√2+2?√2=-12.【解析】(1)根据⼆次根式的性质、负整数指数幂、零指数幂的运算法则、特殊⾓的三⾓函数值计算;(2)根据分式的混合运算法则把原式化简,代⼊计算即可.本题考查的是分式的化简求值、实数的运算,掌握分式的混合运算法则、分式的通分、约分法则、实数的混合运算法则是解题的关键. 20.【答案】解:(1)80~90的频数为36×50%=18,则80~85的频数为18-11=7, 95~100的频数为36-(4+18+9)=5,补全图形如下:扇形统计图中扇形D 对应的圆⼼⾓度数为360°×536=50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学⽣恰好是⼀名男⽣和⼀名⼥⽣的结果数为12,所以抽取的学⽣恰好是⼀名男⽣和⼀名⼥⽣的概率为1220=35.【解析】(1)由B 组百分⽐求得其⼈数,据此可得80~85的频数,再根据各组频数之和等于总⼈数可得最后⼀组频数,从⽽补全图形,再⽤360°乘以对应⽐例可得答案;(2)画树状图展⽰所有20种等可能的结果数,找出抽取的学⽣恰好是⼀名男⽣和⼀名⼥⽣的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利⽤列表法或树状图法展⽰所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数⽬m ,然后根据概率公式计算事件A 或事件B 的概率. 21.【答案】解:设甲、⼄两种客房每间现有定价分别是x 元、y 元,根据题意,得:{10x +10y =500015x+20y=8500,解得{y =200x=300,答:甲、⼄两种客房每间现有定价分别是300元、200元;(2)设当每间房间定价为x 元, m =x (20-x?20020×2)-80×20=?110(x ?200)2+2400,∴当x =200时,m 取得最⼤值,此时m =2400,答:当每间房间定价为200元时,⼄种风格客房每天的利润m 最⼤,最⼤利润是2400元.【解析】(1)根据题意可以列出相应的⼆元⼀次⽅程组,从⽽可以解答本题;(2)根据题意可以得到m 关于⼄种房价的函数关系式,然后根据⼆次函数的性质即可解答本题.本题考查⼆次函数的应⽤、⼆元⼀次⽅程组的应⽤,解答本题的关键是明确题意,利⽤⼆次函数的性质解答.22.【答案】解:(1)将点A (4,1)代⼊y =m2?3mx,得,m 2-3m =4,解得,m 1=4,m 2=-1,∴m 的值为4或-1;反⽐例函数解析式为:y =4x ;(2)∵BD ⊥y 轴,AE ⊥y 轴,∴∠CDB =∠CEA =90°,∴△CDB ∽△CEA ,∴CDCE =BDAE ,∵CE =4CD ,∴AE =4BD ,∵A (4,1),∴AE =4,∴BD =1,∴x B =1,∴y B =4x =4,∴B (1,4),将A (4,1),B (1,4)代⼊y =kx +b ,得,{k +b =44k+b=1,解得,k =-1,b =5,∴y AB =-x +5,设直线AB 与x 轴交点为F ,当x =0时,y =5;当y =0时x =5,∴C (0,5),F (5,0),则OC =OF =5,∴△OCF 为等腰直⾓三⾓形,∴CF =√2OC =5√2,则当OM 垂直CF 于M 时,由垂线段最知可知,OM 有最⼩值,即OM =12CF =5√22.【解析】。

2017年四川省绵阳市中考数学试卷(含答案解析版)

2017年四川省绵阳市中考数学试卷(含答案解析版)

2017年四川省绵阳市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5B.±0.5C.﹣0.5D.52.(3分)下列图案中,属于轴对称图形的是()A.B.C.D.3.(3分)中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×1024.(3分)如图所示的几何体的主视图正确的是()A.B.C.D.5.(3分)使代数式+√4−3x有意义的整数x有()√x+3A.5个B.4个C.3个D.2个6.(3分)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于()A.10m B.12m C.12.4m D.12.32m7.(3分)关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m的值为()A.﹣8B.8C.16D.﹣168.(3分)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm29.(3分)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2√3,∠AEO=120°,则FC的长度为()A.1B.2C.√2D.√310.(3分)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8B.b>﹣8C.b≥8D.b≥﹣811.(3分)如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则MOMF的值为()A.12B.√54C.23D.√3312.(3分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则1a1+1a2+1a3+…+1a19的值为()A.2021B.6184C.589840D.431760二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:8a2﹣2=.14.(3分)关于x的分式方程2x−1−1x+1=11−x的解是.15.(3分)如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是.16.(3分)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.17.(3分)将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA=5,AB=6,AD :AB=1:3,则MD +12MA⋅DN的最小值为 .18.(3分)如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF 平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM=13AF ,连接CM 并延长交直线DE 于点H .若AC=2,△AMH 的面积是112,则1tan∠ACH的值是 .三、解答题(本大题共7小题,共86分) 19.(16分)(1)计算:√0.04+cos 245°﹣(﹣2)﹣1﹣|﹣12| (2)先化简,再求值:(x−y x 2−2xy+y 2﹣x x 2−2xy)÷y x−2y,其中x=2√2,y=√2.20.(11分)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗): 182 195 201 179 208 204 186 192 210 204 175 193 200 203 188 197 212 207 185 206 188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图: 谷粒颗数175≤x <185185≤x <195 195≤x <205 205≤x <215 215≤x <225 频数8103对应扇形图中区域D E C如图所示的扇形统计图中,扇形A对应的圆心角为度,扇形B对应的圆心角为度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?21.(11分)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.22.(11分)如图,设反比例函数的解析式为y=3kx(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为163时,求直线l的解析式.23.(11分)如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N . (1)求证:CA=CN ;(2)连接DF ,若cos ∠DFA=45,AN=2√10,求圆O 的直径的长度.24.(12分)如图,已知抛物线y=ax 2+bx +c (a ≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=12x +1与抛物线交于B ,D 两点,以BD 为直径作圆,圆心为点C ,圆C 与直线m 交于对称轴右侧的点M (t ,1),直线m 上每一点的纵坐标都等于1. (1)求抛物线的解析式; (2)证明:圆C 与x 轴相切;(3)过点B 作BE ⊥m ,垂足为E ,再过点D 作DF ⊥m ,垂足为F ,求BE :MF 的值.25.(14分)如图,已知△ABC中,∠C=90°,点M从点C出发沿CB方向以1cm/s的速度匀速运动,到达点B停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°,再过点N作AC的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF,已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值;如果不能,说明理由;(2)求y关于t的函数解析式及相应t的取值范围;(3)当y取最大值时,求sin∠NEF的值.2017年四川省绵阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•绵阳)中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5B.±0.5C.﹣0.5D.5【考点】14:相反数.【分析】根据相反数的定义求解即可.【解答】解:﹣0.5的相反数是0.5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2017•绵阳)下列图案中,属于轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的定义求解可得.【解答】解:A,此图案是轴对称图形,有5条对称轴,此选项符合题意;B、此图案不是轴对称图形,此选项不符合题意;C、此图案不是轴对称图形,而是旋转对称图形,不符合题意;D、此图案不是轴对称图形,不符合题意;故选:A.【点评】本题主要考查轴对称图形,掌握其定义是解题的关键:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3.(3分)(2017•绵阳)中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×102【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:“960万”用科学记数法表示为9.6×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•绵阳)如图所示的几何体的主视图正确的是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】先细心观察原立体图形和正方体的位置关系,结合四个选项选出答案.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选D.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.(3分)(2017•绵阳)使代数式√x+3+√4−3x有意义的整数x有()A.5个B.4个C.3个D.2个【考点】72:二次根式有意义的条件.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得x+3>0且4﹣3x≥0,解得﹣3<x≤4 3,整数有﹣2,﹣1,0,1,故选:B.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.6.(3分)(2017•绵阳)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于()A.10m B.12m C.12.4m D.12.32m【考点】SA:相似三角形的应用.【分析】根据题意得出△ABC∽△EDC,进而利用相似三角形的性质得出答案.【解答】解:由题意可得:AB=1.5m,BC=0.4m,DC=4m,△ABC∽△EDC,则ABED=BCDC,即1.5DE=0.54,解得:DE=12,故选:B.【点评】此题主要考查了相似三角形的应用,正确得出相似三角形是解题关键.7.(3分)(2017•绵阳)关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m的值为()A.﹣8B.8C.16D.﹣16【考点】AB:根与系数的关系.【分析】由方程的两根结合根与系数的关系可求出m、n的值,将其代入n m中即可求出结论.【解答】解:∵关于x的方程2x2+mx+n=0的两个根是﹣2和1,∴﹣m2=﹣1,n2=﹣2 ∴m=2,n=﹣4,∴n m=(﹣4)2=16.故选C.【点评】本题考查了根与系数的关系,根据方程的两根结合根与系数的关系求出m、n的值是解题的关键.8.(3分)(2017•绵阳)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm2【考点】MP:圆锥的计算;I4:几何体的表面积.【分析】圆锥的表面积加上圆柱的侧面积即可求得其表面积.【解答】解:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.【点评】考查了圆锥的计算及几何体的表面积的知识,解题的关键是能够了解圆锥的有关的计算方法,难度不大.9.(3分)(2017•绵阳)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2√3,∠AEO=120°,则FC的长度为()A.1B.2C.√2D.√3【考点】LB:矩形的性质;KD:全等三角形的判定与性质;T7:解直角三角形.【分析】先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF 的长.【解答】解:∵EF⊥BD,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°﹣30°=30°,∴OF=CF,又∵Rt△BOF中,BO=12BD=12AC=√3,∴OF=tan30°×BO=1,∴CF=1,故选:A.【点评】本题主要考查了矩形的性质以及解直角三角形的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.10.(3分)(2017•绵阳)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8B.b>﹣8C.b≥8D.b≥﹣8【考点】H6:二次函数图象与几何变换;F7:一次函数图象与系数的关系.【分析】先根据平移原则:上→加,下→减,左→加,右→减写出解析式,再列方程组,有公共点则△≥0,则可求出b的取值.【解答】解:由题意得:平移后得到的二次函数的解析式为:y=(x﹣3)2﹣1,则{y=(x−3)2−1 y=2x+b,(x﹣3)2﹣1=2x+b,x2﹣8x+8﹣b=0,△=(﹣8)2﹣4×1×(8﹣b)≥0,b≥﹣8,故选D.【点评】主要考查的是函数图象的平移和两函数的交点问题,两函数有公共点:说明两函数有一个交点或两个交点,可利用方程组→一元二次方程→△≥0的问题解决.11.(3分)(2017•绵阳)如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则MOMF的值为()A.12B.√54C.23D.√33【考点】K5:三角形的重心;S9:相似三角形的判定与性质.【分析】根据三角形的重心性质可得OC=23CE,根据直角三角形的性质可得CE=AE,根据等边三角形的判定和性质得到CM=12CE,进一步得到OM=16CE,即OM=16AE,根据垂直平分线的性质和含30°的直角三角形的性质可得EF=√33AE,MF=12EF,依此得到MF=√36AE,从而得到MOMF的值.【解答】解:∵点O是△ABC的重心,∴OC=23 CE,∵△ABC是直角三角形,∴CE=BE=AE ,∵∠B=30°,∴∠FAE=∠B=30°,∠BAC=60°,∴∠FAE=∠CAF=30°,△ACE 是等边三角形,∴CM=12CE , ∴OM=23CE ﹣12CE=16CE ,即OM=16AE , ∵BE=AE ,∴EF=√33AE , ∵EF ⊥AB ,∴∠AFE=60°,∴∠FEM=30°,∴MF=12EF , ∴MF=√36AE , ∴MO MF =16AE √36AE =√33. 故选:D .【点评】考查了三角形的重心,等边三角形的判定和性质,垂直平分线的性质,含30°的直角三角形的性质,关键是得到OM=16AE ,MF=√36AE . 12.(3分)(2017•绵阳)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+…+1a 19的值为( )A.2021B.6184C.589840D.431760【考点】38:规律型:图形的变化类.【分析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【解答】解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴1a1+1a2+1a3+…+1a19=11×3+12×4+13×5+14×6+…+119×21=12(1﹣13+12﹣14+13﹣15+14﹣16+…+119﹣121)=12(1+12﹣120﹣121)=589840,故选C.【点评】此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•绵阳)分解因式:8a2﹣2=2(2a+1)(2a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:8a2﹣2,=2(4a2﹣1),=2(2a+1)(2a﹣1).故答案为:2(2a+1)(2a﹣1).【点评】本题考查了提公因式法,公式法分解因式.注意分解要彻底.14.(3分)(2017•绵阳)关于x的分式方程2x−1−1x+1=11−x的解是﹣2.【考点】B3:解分式方程.【分析】把分式方程转化为整式方程即可解决问题.【解答】解:两边乘(x+1)(x﹣1)得到,2x+2﹣(x﹣1)=﹣(x+1),解得x=﹣2,经检验,x=﹣2是分式方程的解.∴x=﹣2.故答案为﹣2.【点评】本题考查分式方程的解,记住即为分式方程的步骤,注意解分式方程必须检验.15.(3分)(2017•绵阳)如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是(7,4).【考点】L5:平行四边形的性质;D5:坐标与图形性质.【分析】根据平行四边形的性质及A点和C的坐标求出点B的坐标即可.【解答】解:∵四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(6,0),点C的坐标是(1,4),∴BC=OA=6,6+1=7,∴点B的坐标是(7,4);故答案为:(7,4).【点评】本题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质是解决问题的关键.16.(3分)(2017•绵阳)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是14.【考点】X6:列表法与树状图法.【专题】11 :计算题.【分析】画树状图展示所有36种等可能的结果数,再找出“两枚骰子的点数和小于8且为偶数”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率=936=14. 故答案为14. 【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.17.(3分)(2017•绵阳)将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA=5,AB=6,AD :AB=1:3,则MD +12MA⋅DN的最小值为 2√3 .【考点】S9:相似三角形的判定与性质;KH :等腰三角形的性质;R2:旋转的性质.【分析】先求出AD=2,BD=4,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AMD +∠A=∠EDF +∠BDN ,然后求出∠AMD=∠BDN ,从而得到△AMD 和△BDN 相似,根据相似三角形对应边成比例可得MA BD =MD DN,求出MA•DN=4MD ,再将所求代数式整理出完全平方的形式,然后根据非负数的性质求出最小值即可.【解答】解:∵AB=6,AD :AB=1:3,∴AD=6×13=2,BD=6﹣2=4, ∵△ABC 和△FDE 是形状、大小完全相同的两个等腰三角形,∴∠A=∠B=∠FDE ,由三角形的外角性质得,∠AMD +∠A=∠EDF +∠BDN ,∴∠AMD=∠BDN ,∴△AMD ∽△BDN ,∴MA BD =MD DN =AD BN, ∴MA•DN=BD•MD=4MD ,∴1MA⋅DN =14MD ,∴MD +12MA⋅DN =MD +3MD=(√MD )2+(√3MD )2﹣2√3+2√3=(√MD ﹣√3MD )2+2√3, ∴√MD =√3MD ,即MD=√3, 如图,连接CD ,过点C 作CG ⊥AB 于G ,∵AC=BC=5,AB=6,∴AG=3,CG=4,∴DG=AG ﹣AD=3﹣2=1,在Rt △CDG 中,根据勾股定理得,CD=√DG 2+CG 2=√17当点M 和点C 重合时,DM 最大,即:DM 最大=√17当DM ⊥AC 时,DM 最小,过点D 作DH ⊥AC 于H ,即:DM 最小=DH ,在Rt △ACG 中,sin ∠A=CG AC =45, 在Rt △ADH 中,sin ∠A=DH AD ,∴DH=ADsin ∠A=2×45=85, ∵85≤DM ≤√17, ∴DM=√3时,MD +12MA⋅DN有最小值为2√3. 故答案为:2√3.【点评】本题考查了相似三角形的判定与性质,等腰三角形的性质,旋转变换,难点在于将所求代数式整理出完全平方的形式从而判断出最小值.18.(3分)(2017•绵阳)如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM=13AF ,连接CM 并延长交直线DE 于点H .若AC=2,△AMH 的面积是112,则1tan∠ACH的值是 8﹣√15 .【考点】S9:相似三角形的判定与性质;T7:解直角三角形.【分析】过点H 作HG ⊥AC 于点G ,由于AF 平分∠CAE ,DE ∥BF ,∠HAF=∠AFC=∠CAF ,从而AC=CF=2,利用△AHM ∽△FCM ,AM MF =AH CF ,从而可求出AH=1,利用△AMH 的面积是112,从而可求出HG ,利用勾股定理即可求出CG 的长度,所以1tan∠ACH =CG HG. 【解答】解:过点H 作HG ⊥AC 于点G ,∵AF 平分∠CAE ,DE ∥BF ,∴∠HAF=∠AFC=∠CAF ,∴AC=CF=2,∵AM=13AF , ∴AM MF =12, ∵DE ∥CF ,∴△AHM ∽△FCM ,∴AM MF =AH CF, ∴AH=1,设△AHM 中,AH 边上的高为m , △FCM 中CF 边上的高为n , ∴m n =AM MF =12, ∵△AMH 的面积为:112, ∴112=12AH•m ∴m=16, ∴n=13, 设△AHC 的面积为S ,∴SS △AHM =m+n m =3,∴S=3S △AHM =14, ∴12AC•HG=14, ∴HG=14, ∴由勾股定理可知:AG=√154, ∴CG=AC ﹣AG=2﹣√154∴1tan∠ACH =CGHG=8﹣√15故答案为:8﹣√15【点评】本题考查相似三角形综合问题,解题的关键是通过相似三角形的性质求出HG 、CG 、AH 长度,本题属于难题.三、解答题(本大题共7小题,共86分) 19.(16分)(2017•绵阳)(1)计算:√0.04+cos 245°﹣(﹣2)﹣1﹣|﹣12| (2)先化简,再求值:(x−y x 2−2xy+y2﹣x x 2−2xy)÷y x−2y,其中x=2√2,y=√2.【考点】6D :分式的化简求值;2C :实数的运算;6F :负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、绝对值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【解答】解:(1)√0.04+cos 245°﹣(﹣2)﹣1﹣|﹣12| =0.2+(√22)2−(−12)−12=0.2+12+12−12=0.7;(2)(x−yx −2xy+y ﹣xx −2xy )÷yx−2y=[x−y (x−y)2−x x(x−2y)]⋅x−2y y =(1x−y −1x−2y )⋅x−2yy=x−2y−x+y (x−y)(x−2y)⋅x−2y y=−y y(x−y)=1y−x,当x=2√2,y=√2时,原式=√2−2√2=−√2=−√22. 【点评】本题考查分式的化简求值、特殊角的三角函数值、负整数指数幂、绝对值,解答本题的关键是明确它们各自的计算方法.20.(11分)(2017•绵阳)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗): 182 195 201 179 208 204 186 192 210 204 175 193 200 203 188 197 212 207 185 206 188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图: 谷粒颗数175≤x <185185≤x <195 195≤x <205 205≤x <215 215≤x <225 频数 3 8 10 6 3 对应扇形 图中区域BDEAC如图所示的扇形统计图中,扇形A 对应的圆心角为 72 度,扇形B 对应的圆心角为 36 度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB :扇形统计图.【分析】(1)根据表格中数据填表画图即可,利用360°×其所占的百分比求出扇形对应的圆心角度数;(2)用360°乘以样本中稻穗谷粒数大于或等于205颗的水稻所占百分比即可. 【解答】解:(1)填表如下: 谷粒颗数175≤x <185185≤x <195 195≤x <205 205≤x <215 215≤x <225 频数 3 8 10 6 3 对应扇形 图中区域 BDEAC如图所示:如图所示的扇形统计图中,扇形A 对应的圆心角为:360°×630=72度,扇形B 对应的圆心角为360°×330=36度.故答案为3,6,B ,A ,72,36;(2)3000×6+330=900.即据此估计,其中稻穗谷粒数大于或等于205颗的水稻有900株.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.21.(11分)(2017•绵阳)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷. (1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【考点】CE :一元一次不等式组的应用;9A :二元一次方程组的应用.【分析】(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据“1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10﹣m )台,根据总费用=大型收割机的费用+小型收割机的费用,即可得出w 与m 之间的函数关系式,由“要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,依此可找出各方案,再结合一次函数的性质即可解决最值问题. 【解答】解:(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据题意得:{x +3y =1.42x +5y =2.5,解得:{x =0.5y =0.3.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷. (2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10﹣m )台, 根据题意得:w=300×2m +200×2(10﹣m )=200m +4000. ∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元, ∴{2×0.5m +2×0.3(10−m)≥8200m +4000≤5400,解得:5≤m ≤7, ∴有三种不同方案.∵w=200m +4000中,200>0, ∴w 值随m 值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元. 【点评】本题考查了二元一次方程组的应用、一次函数的性质以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据总费用=大型收割机的费用+小型收割机的费用,找出w 与m 之间的函数关系式. 22.(11分)(2017•绵阳)如图,设反比例函数的解析式为y=3k x(k >0).(1)若该反比例函数与正比例函数y=2x 的图象有一个交点的纵坐标为2,求k 的值; (2)若该反比例函数与过点M (﹣2,0)的直线l :y=kx +b 的图象交于A ,B 两点,如图所示,当△ABO 的面积为163时,求直线l 的解析式.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)由题意可得A (1,2),利用待定系数法即可解决问题;(2)把M (﹣2,0)代入y=kx +b ,可得b=2k ,可得y=kx +2k ,由{y =3kx y =kx +2k消去y 得到x 2+2x ﹣3=0,解得x=﹣3或1,推出B (﹣3,﹣k ),A (1,3k ),根据△ABO 的面积为163,可得12•2•3k +12•2•k=163,解方程即可解决问题;【解答】解:(1)由题意A (1,2),把A (1,2)代入y=3kx ,得到3k=2,∴k=23.(2)把M (﹣2,0)代入y=kx +b ,可得b=2k , ∴y=kx +2k ,由{y =3k x y =kx +2k消去y 得到x 2+2x ﹣3=0,解得x=﹣3或1, ∴B (﹣3,﹣k ),A (1,3k ),∵△ABO 的面积为163,∴12•2•3k +12•2•k=163, 解得k=43,∴直线l 的解析式为y=43x +83.【点评】本题考查一次函数与反比例函数图象的交点、待定系数法、二元一次方程组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(11分)(2017•绵阳)如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N .(1)求证:CA=CN ;(2)连接DF ,若cos ∠DFA=45,AN=2√10,求圆O 的直径的长度.【考点】MC:切线的性质;KQ:勾股定理;M5:圆周角定理;T7:解直角三角形.【分析】(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,由圆周角定理结合cos∠DFA=45、AN=2√10,即可求出CH、AH的长度,设圆的半径为r,则OH=r﹣6,根据勾股定理即可得出关于r的一元一次方程,解之即可得出r,再乘以2即可求出圆O直径的长度.【解答】(1)证明:连接OF,则∠OAF=∠OFA,如图所示.∵ME与⊙O相切,∴OF⊥ME.∵CD⊥AB,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF,∠FOH+∠BOF=180°,∴∠M=2∠OAF.∵ME∥AC,∴∠M=∠C=2∠OAF.∵CD⊥AB,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°﹣∠OAF,∠BAC=90°﹣∠C=90°﹣2∠OAF,∴∠CAN=∠OAF+∠BAC=90°﹣∠OAF=∠ANC,∴CA=CN .(2)连接OC ,如图2所示.∵cos ∠DFA=45,∠DFA=∠ACH ,∴CH AC =45. 设CH=4a ,则AC=5a ,AH=3a , ∵CA=CN , ∴NH=a ,∴AN=√AH 2+NH 2=√(3a)2+a 2=√10a=2√10, ∴a=2,AH=3a=6,CH=4a=8. 设圆的半径为r ,则OH=r ﹣6,在Rt △OCH 中,OC=r ,CH=8,OH=r ﹣6, ∴OC 2=CH 2+OH 2,r 2=82+(r ﹣6)2,解得:r=253,∴圆O 的直径的长度为2r=503.【点评】本题考查了切线的性质、勾股定理、解直角三角形、圆周角定理以及解一元一次方程,解题的关键是:(1)通过角的计算找出∠CAN=90°﹣∠OAF=∠ANC;(2)利用解直角三角形求出CH、AH的长度.24.(12分)(2017•绵阳)如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=12x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF的值.【考点】HF:二次函数综合题.【分析】(1)可设抛物线的顶点式,再结合抛物线过点(4,2),可求得抛物线的解析式;(2)联立直线和抛物线解析式可求得B、D两点的坐标,则可求得C点坐标和线段BD的长,可求得圆的半径,可证得结论;(3)过点C作CH⊥m于点H,连接CM,可求得MH,利用(2)中所求B、D的坐标可求得FH,则可求得MF和BE的长,可求得其比值.【解答】解:(1)∵已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),∴可设抛物线解析式为y=a(x﹣2)2+1,∵抛物线经过点(4,2),∴2=a(4﹣2)2+1,解得a=1 4,∴抛物线解析式为y=14(x ﹣2)2+1=14x 2﹣x +2;(2)联立直线和抛物线解析式可得{y =14x 2−x +2y =12x +1,解得{x =3−√5y =52−√52或{x =3+√5y =52+√52, ∴B (3﹣√5,52﹣√52),D (3+√5,52+√52),∵C 为BD 的中点,∴点C 的纵坐标为52−√52+52+√522=52, ∵BD=√[(3−√5)−(3+√5)]+[(52−52)−(52+52)]=5, ∴圆的半径为52,∴点C 到x 轴的距离等于圆的半径, ∴圆C 与x 轴相切;(3)如图,过点C 作CH ⊥m ,垂足为H ,连接CM ,由(2)可知CM=52,CH=52﹣1=32,在Rt △CMH 中,由勾股定理可求得MH=2,∵HF=3+√5−(3−√5)2=√5,∴MF=HF ﹣MH=√5﹣2,。

中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)

中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)

一、选择题目1.(2017四川省南充市)下列计算正确的是( ) A.842a a a ÷= B .236(2)6a a = C .3232a a a -=D .23(1)33a a a a -=-【答案】D . 【解析】试题分析:A .原式=4a ,不符合题意; B .原式=68a ,不符合题意; C .原式不能合并,不符合题意; D .原式=233a a -,符合题意. 故选D .考点:整式的混合运算.2.(2017四川省广安市)下列运算正确的是( )A .|√2−1|=√2−1B .x 3⋅x 2=x 6C .x 2+x 2=x 4D .(3x 2)2=6x 4 【答案】A . 【解析】试题分析:A .|√2−1|=√2−1,正确,符合题意; B .325x x x ⋅=,故此选项错误; C .2222x x x +=,故此选项错误;D .224(3)9x x =,故此选项错误;故选A .考点:1.幂的乘方与积的乘方;2.实数的性质;3.合并同类项;4.同底数幂的乘法.学科*网 3.(2017四川省广安市)要使二次根式√2x −4在实数范围内有意义,则x 的取值范围是( ) A .x >2 B .x ≥2 C .x <2 D .x =2 【答案】B .【解析】试题分析:∵二次根式√2x −4在实数范围内有意义,∴2x ﹣4≥0,解得:x ≥2,则实数x 的取值范围是:x ≥2.故选B .考点:二次根式有意义的条件.4.(2017四川省眉山市)下列运算结果正确的是( )A-= B .2(0.1)0.01--= C .222()2a b ab a b ÷= D .326()m m m -=-【答案】A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.5.(2017四川省眉山市)已知2211244m n n m +=--,则11m n -的值等于( ) A .1 B .0 C .﹣1 D .14-【答案】C . 【解析】试题分析:由2211244m n n m +=--,得:22(2)(2)0m n ++-= ,则m =﹣2,n =2,∴11m n -=1122--=﹣1.故选C .考点:1.分式的化简求值;2.条件求值. 6.(2017四川省绵阳市)使代数式√x+3+√4−3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个 【答案】B .考点:二次根式有意义的条件.7.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+⋯+1a 19的值为( )A .2021B .6184C .589840D .421760【答案】C . 【解析】试题分析:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);∴1a 1+1a 2+1a3+⋯+1a 19=11111 (13243546)1921+++++⨯⨯⨯⨯⨯ =1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=589840,故选C .学科#网 考点:1.规律型:图形的变化类;2.综合题. 8.(2017四川省达州市)下列计算正确的是( ) A .235a b ab +=B 6=±C .22122a b ab a ÷=D .()323526ab a b =【答案】C .【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确; C .22122a b ab a÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 9.(2017山东省枣庄市)下列计算,正确的是( )A-= B .13|2|22-=-C= D .11()22-=【答案】D . 【解析】=,A 错误;13|2|22-=,B 错误;2,C 错误;11()22-=,D 正确,故选D .考点:1.立方根;2.有理数的减法;3.算术平方根;4.负整数指数幂. 10.(2017山东省枣庄市)实数a ,b在数轴上对应点的位置如图所示,化简||a 的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b 【答案】A .考点:1.二次根式的性质与化简;2.实数与数轴.11.(2017山东省济宁市)单项式39m x y 与单项式24n x y 是同类项,则m +n 的值是( ) A .2 B .3 C .4 D .5 【答案】D . 【解析】试题分析:由题意,得m =2,n =3.m +n =2+3=5,故选D . 考点:同类项.12.(20171+在实数范围内有意义,则x 满足的条件是( )A .x ≥12B .x ≤12C .x =12D .x ≠12【答案】C . 【解析】试题分析:由题意可知:210120x x -≥⎧⎨-≥⎩,解得:x =12.故选C .考点:二次根式有意义的条件. 13.(2017山东省济宁市)计算()322323a a a a a -+-÷,结果是( )A .52a a - B .512a a -C .5aD .6a【答案】D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂.14.(2017山西省)如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20B .30C .35D .55 【答案】A . 【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A . 考点:1.平行线的性质;2.翻折变换(折叠问题). 15.(2017广东省)下列运算正确的是( )A .223a a a +=B .325a a a ⋅=C .426()a a =D .424a a a +=【答案】B . 【解析】试题分析:A .a +2a =3a ,此选项错误; B .325a a a ⋅=,此选项正确;C .428()a a =,此选项错误;D .4a 与2a 不是同类项,不能合并,此选项错误;故选B .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 16.(2017广西四市)下列运算正确的是( )A .−3(x −4)=−3x +12B .(−3x)2⋅4x 2=−12x 4C .3x +2x 2=5x 3D .x 6÷x 2=x 3 【答案】A .考点:整式的混合运算.17.(2017江苏省盐城市)下列运算中,正确的是( )A .277a a aB .236a aa C .32a aa D .22abab【答案】C . 【解析】 试题分析:A .错误、7a +a =8a .B .错误.235aa a . C .正确.32a aa .D .错误.222aba b故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.18.(2017江苏省连云港市)计算2a a 的结果是( )A .aB .2aC .22aD .3a 【答案】D .考点:同底数幂的乘法.19.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O 上的A 0点出发,沿着射线A 0O 方向运动到⊙O 上的点A 1处,再向左沿着与射线A 1O 夹角为60°的方向运动到⊙O 上的点A 2处;接着又从A 2点出发,沿着射线A 2O 方向运动到⊙O 上的点A 3处,再向左沿着与射线A 3O 夹角为60°的方向运动到⊙O 上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.23C.2D.0【答案】A.【解析】试题分析:如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴OA2017=2R=4.故选A.考点:1.规律型:图形的变化类;2.综合题.20.(2017河北省)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.446+=B.004446++=C.46+=D.1446-=【答案】D.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.图表型.21.(2017河北省)若321xx--= +11x-,则中的数是()A.﹣1B.﹣2C.﹣3D.任意实数【答案】B.【解析】试题分析:∵321xx-- = +11x-,∴321xx--﹣11x-=3211xx---=2(1)1xx--=﹣2,故____中的数是﹣2.故选B.考点:分式的加减法.22.(2017浙江省丽水市)计算23a a⋅,正确结果是()A.5a B.4a C.8a D.9a 【答案】A.【解析】试题分析:23a a⋅=23a+=5a,故选A.考点:同底数幂的乘法.23.(2017浙江省丽水市)化简2111x x x +--的结果是( )A .x +1B .x ﹣1C .21x -D .211x x +-【答案】A .考点:分式的加减法.24.(2017浙江省台州市)下列计算正确的是( ) A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+D .()2222a b a ab b -=-+【答案】D . 【解析】试题分析:A .原式=24a -,不符合题意;B .原式=22a a --,不符合题意; C .原式=222a ab b ++,不符合题意;D .原式=222a ab b -+,符合题意. 故选D .考点:整式的混合运算.25.(2017湖北省襄阳市)下列运算正确的是( )A .32a a -=B .()325a a = C . 235a a a = D .632a a a ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.学科*网 26.(2017重庆市B 卷)计算53a a ÷结果正确的是( ) A .a B .2a C .3a D .4a 【答案】B . 【解析】试题分析:53a a ÷=2a .故选B . 考点:同底数幂的除法.27.(2017重庆市B 卷)若x =﹣3,y =1,则代数式2x ﹣3y +1的值为( ) A .﹣10 B .﹣8 C .4 D .10 【答案】B . 【解析】试题分析:∵x =﹣3,y =1,∴2x ﹣3y +1=2×(﹣3)﹣3×1+1=﹣8,故选B . 考点:代数式求值.28.(2017重庆市B卷)若分式13x -有意义,则x 的取值范围是( )A .x >3B .x <3C .x ≠3D .x =3 【答案】C . 【解析】试题分析:∵分式13x -有意义,∴x ﹣3≠0,∴x ≠3;故选C .考点:分式有意义的条件.29.(2017重庆市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 【答案】B .考点:规律型:图形的变化类. 二、填空题目30.(2017四川省南充市)计算:0|1(π+= .【解析】试题分析:原式1+1 考点:1.实数的运算;2.零指数幂.31.(2017四川省广安市)分解因式:24mx m -= . 【答案】m (x +2)(x ﹣2). 【解析】试题分析:24mx m -=2(4)m x -=m (x +2)(x ﹣2).故答案为:m (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.32.(2017四川省眉山市)分解因式:228ax a -= . 【答案】2a (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.33.(2017四川省绵阳市)分解因式:282a -= . 【答案】2(2a +1)(2a ﹣1). 【解析】试题分析:282a -=22(41)a - =2(2a +1)(2a ﹣1).故答案为:2(2a +1)(2a ﹣1).考点:提公因式法与公式法的综合运用.34.(2017四川省达州市)因式分解:3228a ab -= .【答案】2a (a +2b )(a ﹣2b ). 【解析】试题分析:2a 3﹣8ab 2 =2a (a 2﹣4b 2) =2a (a +2b )(a ﹣2b ).故答案为:2a (a +2b )(a ﹣2b ). 考点:提公因式法与公式法的综合运用.35.(2017山东省枣庄市)化简:2223321(1)x x xx x x ++÷-+-= . 【答案】1x .【解析】试题分析:2223321(1)x x x x x x ++÷-+-=223(1)(1)(3)x x x x x +-⋅-+=1x ,故答案为:1x . 考点:分式的乘除法.36.(2017山东省济宁市)分解因式:222ma mab mb ++=.【答案】2()m a b + .【解析】试题分析:原式=22(2)m a ab b ++=2()m a b +,故答案为:2()m a b +.考点:提公因式法与公式法的综合运用.37.(2017山西省)计算:-= .【答案】.考点:二次根式的加减法.38.(2017广东省)分解因式:a a +2= .【答案】a (a +1). 【解析】试题分析:a a +2=a (a +1).故答案为:a (a +1).考点:因式分解﹣提公因式法.学&科网39.(2017广东省)已知4a +3b =1,则整式8a +6b ﹣3的值为 . 【答案】﹣1. 【解析】试题分析:∵4a +3b =1,∴8a +6b =2,8a +6b ﹣3=2﹣3=﹣1;故答案为:﹣1. 考点:1.代数式求值;2.整体思想.40.(2017江苏省盐城市)分解因式2a b a 的结果为 .【答案】a (ab ﹣1). 【解析】试题分析:2a b a =a (ab ﹣1),故答案为:a (ab ﹣1).考点:提公因式法与公式法的综合运用.41.(2017在实数范围内有意义,则x 的取值范围是 . 【答案】x ≥3. 【解析】试题分析:根据题意得x ﹣3≥0,解得x ≥3.故答案为:x ≥3. 考点:二次根式有意义的条件.42.(2017江苏省连云港市)分式11x 有意义的x 的取值范围为 . 【答案】x ≠1.考点:分式有意义的条件.43.(2017江苏省连云港市)计算(a ﹣2)(a +2)=. 【答案】24a -. 【解析】试题分析:(a ﹣2)(a +2)=24a -,故答案为:24a -. 考点:平方差公式.44.(2017浙江省丽水市)分解因式:22m m += . 【答案】m (m +2). 【解析】试题分析:原式=m (m +2).故答案为:m (m +2). 考点:因式分解﹣提公因式法.45.(2017浙江省丽水市)已知21a a +=,则代数式23a a --的值为 . 【答案】2. 【解析】试题分析:∵21a a +=,∴原式=23()a a -+=3﹣1=2.故答案为:2.考点:1.代数式求值;2.条件求值;3.整体思想.46.(2017浙江省台州市)因式分解:26x x += .【答案】x (x +6). 【解析】试题分析:原式=x (6+x ),故答案为:x (x +6). 考点:因式分解﹣提公因式法.47.(2017浙江省绍兴市)分解因式:2x y y -= .【答案】y (x +1)(x ﹣1).考点:1.提公因式法与公式法的综合运用;2.因式分解.48.(2017重庆市B 卷)计算:0|3|(4)-+- .【答案】4. 【解析】试题分析:原式=3+1=4.故答案为:4. 考点:1.实数的运算;2.零指数幂.三、解答题49.(2017四川省南充市)化简21(1)1x x x x x --÷++,再任取一个你喜欢的数代入求值.【答案】1x x -,当x =5时,原式=54.【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.试题解析:原式=2211x x x x x xx +-+⋅+-=21(1)1x x x x x +⋅+-=1x x - ∵x ﹣1≠0,x (x +1)≠0,∴x ≠±1,x ≠0,当x =5时,原式=551-=54.考点:分式的化简求值.50.(2017四川省广安市)计算:6118cos 4520173--+⨯-+.【答案】13 .考点:1.二次根式的混合运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.51.(2017四川省广安市)先化简,再求值:2211a a a aa +-⎛⎫+÷⎪⎝⎭,其中a =2. 【答案】11a a +-,3.【解析】试题分析:先化简分式,再代入求值.试题解析:原式=221(1)(1)a a a a a a ++⨯+-=2(1)(1)(1)a a a a a +⨯+-=11a a +- 当a =2时,原式=3. 考点:分式的化简求值.52.(2017四川省眉山市)先化简,再求值:2(3)2(34)a a +-+,其中a =﹣2. 【答案】21a +,5. 【解析】试题分析:原式利用完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值. 试题解析:原式=26968a a a ++--=21a +,当a =﹣2时,原式=4+1=5. 考点:整式的混合运算—化简求值.53.(2017四川省绵阳市)(1)计算:√0.04+cos 2450−(−2)−1−|−12|;(2)先化简,再求值:(x−y x 2−2xy +y 2−x x 2−2xy )÷yx−2y ,其中x=y.【答案】(1)0.7;(2)1y x -,.考点:1.分式的化简求值;2.实数的运算;3.负整数指数幂;4.特殊角的三角函数值.54.(2017四川省达州市)计算:11201712cos453-⎛⎫--+︒⎪⎝⎭.【答案】5.【解析】试题分析:首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=1132+++55.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.学科#网55.(2017四川省达州市)设A=223121a aaa a a-⎛⎫÷-⎪+++⎝⎭.(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:()()()27341124x xf f f---≤+++,并将解集在数轴上表示出来.【答案】(1)21a a+;(2)x≤4.考点:1.分式的混合运算;2.在数轴上表示不等式的解集;3.解一元一次不等式;4.阅读型;5.新定义.56.(2017山东省枣庄市)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=p q.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3 4.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)3 4.考点:1.因式分解的应用;2.新定义;3.因式分解;4.阅读型.57.(2017广东省)计算:()11713π-⎛⎫---+ ⎪⎝⎭.【答案】9. 【解析】试题分析:直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案. 试题解析:原式=7﹣1+3=9.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.58.(2017广东省)先化简,再求值:()211422x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x【答案】2x , 【解析】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.试题解析:原式=()()()()222222x x x x x x ++-+--+=2x当x= 考点:分式的化简求值.59.(2017广西四市)先化简,再求值:2211121x x x x x ---÷++,其中x =√5−1. 【答案】11x +考点:分式的化简求值.60.(201711()20172.【答案】3. 【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 试题解析:原式=2+2﹣1=3.考点:1.实数的运算;2.零指数幂;3.负整数指数幂. 61.(2017江苏省盐城市)先化简,再求值:35222x x x x ,其中33x .【答案】13x -.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 的值代入计算即可求出值. 试题解析:原式=3(2)(2)5[]222x x x x x x =23922x x x x +-÷--=322(3)(3)x x x x x +-⋅-+-=13x -当33x 时,原式.考点:分式的化简求值.62.(2017江苏省连云港市)计算:0318 3.14.【答案】0. 【解析】试题分析:先去括号、开方、零指数幂,然后计算加减法. 试题解析:原式=1﹣2+1=0.考点:1.实数的运算;2.零指数幂.63.(2017江苏省连云港市)化简: 211a aa a .【答案】21a .考点:分式的乘除法.64.(2017河北省)发现 任意五个连续整数的平方和是5的倍数.验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍.(2)()()()()() 2222222 211251052n n n n n n n-+-+++++=+=+.∵n为整数,∴这个和是5的倍数.延伸余数是2.理由:设中间的整数为n,()()22221132n n n n-+++=+被3除余2.考点:1.完全平方公式;2.整式的加减.65.(2017浙江省丽水市)计算:011(2017)()3---【答案】1.【解析】试题分析:本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.学&科网试题解析:原式=1﹣3+3=1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.66.(2017)013 +---.【答案】1.考点:1.实数的运算;2.零指数幂.67.(2017浙江省台州市)先化简,再求值:1211x x⎛⎫-⋅⎪+⎝⎭,其中x=2017.【答案】21x+,11009.【解析】试题分析:根据分式的减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.试题解析:原式=1121xx x+-⨯+ =21xx x⨯+=21x+当x =2017时,原式=220171+=22018=11009.考点:分式的化简求值.68.(2017浙江省绍兴市)(1)计算:()4π-+-(2)解不等式:()4521x x +≤+.【答案】(1)﹣3;(2)x ≤32-.考点:1.解一元一次不等式;2.实数的运算;3.零指数幂.69.(2017湖北省襄阳市)先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中2x =,2y =-.【答案】2xy x y -,12.【解析】试题分析:先根据分式的混合运算顺序和法则化简原式,再将x 、y 的值代入求解可得.试题解析:原式=1[]()()()()()x y x y x y x y x y x y y x y -++÷+-+-+=2()()()x y x y x y x y ⋅++- =2xyx y -当2x =+,2y =-时,原式24=12. 考点:分式的化简求值. 70.(2017重庆市B 卷)计算:(1)2()(2)x y x y x+--;(2)23469 (2)22a a aaa a--++-÷--.【答案】(1)222x y+;(2)3aa-.考点:1.分式的混合运算;2.单项式乘多项式;3.完全平方公式.71.(2017重庆市B卷)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2)54.【解析】试题分析:(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k= ()()F sF t中,找出最大值即可.试题解析:(1)F (243)=(423+342+234)÷111=9; F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6.∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴16x y =⎧⎨=⎩或25x y =⎧⎨=⎩或34x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩或61x y =⎧⎨=⎩.∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5,∴16x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩,∴()6()12F s F t =⎧⎨=⎩或()9()9F s F t =⎧⎨=⎩或()10()8F s F t =⎧⎨=⎩,∴k =()()F s F t =12或k =()()F s F t =1或k =()()F s F t =54,∴k 的最大值为54.考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.祝你考试成功!祝你考试成功!。

2022年四川省绵阳市中考数学(word版有解析)

2022年四川省绵阳市中考数学(word版有解析)

2022年四川省绵阳市中考数学试卷一、选择题:本大题共12个小题,每题3分,共36分,每题只有一个选项最符合题目要求1.﹣4的绝对值是〔〕A.4B.﹣4C.D.【解析】∵|﹣4|=4,∴﹣4的绝对值是4.应选:A.2.以下计算正确的选项是〔〕A.x2+x5=x7B.x5﹣x2=3xC.x2•x5=x10D.x5÷x2=x3【解析】x2与x5不是同类项,不能合并,A错误;x2与x5不是同类项,不能合并,B错误;x2•x5=x7,C错误;x5÷x2=x3,D正确,应选:D.3.以下列图案,既是轴对称又是中心对称的是〔〕A.B.C.D.【解析】A、不是轴对称图形,也不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.应选C.4.如图是一个由7个相同正方体组合而成的几何体,它的主视图为〔〕A.B.C.D.【解析】根据主视图的定义可知,此几何体的主视图是A中的图形,应选:A.5.假设关于x的方程x2﹣2x+c=0有一根为﹣1,那么方程的另一根为〔〕A.﹣1B.﹣3C.1D.3【解析】关于x的方程x2﹣2x+c=0有一根为﹣1,设另一根为m,可得﹣1+m=2,解得:m=3,那么方程的另一根为3.应选D.6.如图,沿AC方向开山修建一条公路,为了加快施工进度,要在小山的另一边寻找点E同时施工,从AC 上的一点B取∠ABD=150°,沿BD的方向前进,取∠BDE=60°,测得BD=520m,BC=80m,并且AC,BD和DE在同一平面内,那么公路CE段的长度为〔〕A.180mB.260mC.〔260﹣80〕mD.〔260﹣80〕m【解析】在△BDE中,∵∠ABD是△BDE的外角,∠ABD=150°,∠D=60°,∴∠E=150°﹣60°=90°,∵BD=520m,∵sin60°==,∴DE=520•sin60°=260〔m〕,公路CE段的长度为260﹣80〔m〕.答:公路CE段的长度为〔260﹣80〕m.应选:C.7.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,那么AE的长度为〔〕A.3cmB.4cmC.5cmD.8cm【解析】∵▱ABCD的周长为26cm,∴AB+AD=13cm,OB=OD,∵△AOD的周长比△AOB的周长多3cm,∴〔OA+OB+AD〕﹣〔OA+OD+AB〕=AD﹣AB=3cm,∴AB=5cm,AD=8cm.∴BC=AD=8cm.∵AC⊥AB,E是BC中点,∴AE=BC=4cm;应选:B.8.在关于x、y的方程组中,未知数满足x≥0,y>0,那么m的取值范围在数轴上应表示为〔〕A.B.C.D.【解析】,①×2﹣②得:3x=3m+6,即x=m+2,把x=m+2代入②得:y=3﹣m,由x≥0,y>0,得到,解得:﹣2≤m<3,表示在数轴上,如下列图:,应选C9.如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,那么cosA的值为〔〕A.B.C.D.【解析】∵△ABC中,AB=AC=4,∠C=72°,∴∠ABC=∠C=72°,∠A=36°,∵D是AB中点,DE⊥AB,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°,∠BEC=180°﹣∠EBC﹣∠C=72°,∴∠BEC=∠C=72°,∴BE=BC,∴AE=BE=BC.设AE=x,那么BE=BC=x,EC=4﹣x.在△BCE与△ABC中,,∴△BCE∽△ABC,∴=,即=,解得x=﹣2±2〔负值舍去〕,∴AE=﹣2+2.在△ADE中,∵∠ADE=90°,∴cosA===.应选C.10.有5张看上去无差异的卡片,上面分别写着1,2,3,4,5,随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是〔〕A.B.C.D.【解析】剩下的三边长包含的根本领件为:〔1,2,3〕,〔1,2,4〕,〔1,2,5〕,〔1,3,4〕,〔1,3,5〕,〔1,4,5〕,〔2,3,4〕,〔2,3,5〕,〔2,4,5〕,〔3,4,5〕共10个;设事件B=“剩下的三张卡片上的数字作为边长能构成三角形“那么事件B包含的根本领件有:〔2,3,4〕,〔2,4,5〕,〔3,4,5〕共3个,故p〔A〕=应选A.11.如图,点E,点F分别在菱形ABCD的边AB,AD上,且AE=DF,BF交DE于点G,延长BF交CD的延长线于H,假设=2,那么的值为〔〕A.B.C.D.【解析】∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵AF=2DF,设DF=a,那么DF=AE=a,AF=EB=2a,∵HD∥AB,∴△HFD∽△BFA,∴===,∴HD=1.5a, =,∴FH=BH,∵HD∥EB,∴△DGH∽△EGB,∴===,∴=,∴BG=HB,∴==.应选B.12.二次函数y=ax2+bx+c的图象如下列图,以下结论:①b<2a;②a+2c﹣b>0;③b>a>c;④b2+2ac<3ab.其中正确结论的个数是〔〕A.1B.2C.3D.4【解析】由图象可知,a>0,b>0,c>0,∵﹣>﹣1,∴b<2a,故①正确,∵|a﹣b+c|<c,且a﹣b+c<0,∴﹣a+b﹣c<c,∴a﹣b+2c>0,故②正确,∵﹣<﹣,∴b>a,∵x1<﹣1,x2>﹣,∴x1•x2<1,∴<1,∴a>c,∴b>a>c,故③正确,∵b2﹣4ac>0,∴2ac<b2,∵b<2a,∴<3ab,∴b2=b2+b2>b2+2ac,b2+2ac<b2<3ab,∴b2+2ac<3ab.故④正确.应选D.二、填空题:本大题共6个小题,每题3分,共18分,将答案填写在答题卡相应的横线上.13.因式分解:2mx2﹣4mxy+2my2= 2m〔x﹣y〕2.【解析】2mx2﹣4mxy+2my2,=2m〔x2﹣2xy+y2〕,=2m〔x﹣y〕2.故答案为:2m〔x﹣y〕2.14.如图,AC∥BD,AB与CD相交于点O,假设AO=AC,∠A=48°,∠D= 66°.【解析】∵OA=AC,∴∠ACO=∠AOC=×〔180°﹣∠A〕=×〔180°﹣48°〕=66°.∵AC∥BD,∴∠D=∠C=66°.故答案为:66°.15.根据绵阳市统计年鉴,2022年末绵阳市户籍总人口数已超过548万人,548万人用科学记数法表示为5.48×106人.【解析】将548万用科学记数法表示为:5.48×106.故答案为5.48×106.16.△OAB三个顶点的坐标分别为O〔0,0〕,A〔4,6〕,B〔3,0〕,以O为位似中心,将△OAB缩小为原来的,得到△OA′B′,那么点A的对应点A′的坐标为〔﹣2,﹣3〕或〔2,3〕.【解析】∵以原点O为位似中心,将△OAB缩小为原来的,A〔4,6〕,那么点A的对应点A′的坐标为〔﹣2,﹣3〕或〔2,3〕,故答案为:〔﹣2,﹣3〕或〔2,3〕.17.如图,点O是边长为4的等边△ABC的内心,将△OBC绕点O逆时针旋转30°得到△OB1C1,B1C1交BC于点D,B1C1交AC于点E,那么DE= 6﹣2.【解析】令OB1与BC的交点为F,B1C1与AC的交点为M,过点F作FN⊥OB于点N,如下列图.∵将△OBC绕点O逆时针旋转30°得到△OB1C1,∴∠BOF=30°,∵点O是边长为4的等边△ABC的内心,∴∠OBF=30°,OB=AB=4,∴△FOB为等腰三角形,BN=OB=2,∴BF===OF.∵∠OBF=∠OB1D,∠BFO=∠B1FD,∴△BFO∽△B1FD,∴.∵B1F=OB1﹣OF=4﹣,∴B1D=4﹣4.在△BFO和△CMO中,有,∴△BFO≌△CMO〔ASA〕,∴OM=BF=,C 1M=4﹣,在△C 1ME 中,∠C 1ME=∠MOC+∠MCO=60°,∠C 1=30°,∴∠C 1EM=90°,∴C 1E=C 1M •sin ∠C 1ME=〔4﹣〕×=2﹣2.∴DE=B 1C 1﹣B 1D ﹣C 1E=4﹣〔4﹣4〕﹣〔2﹣2〕=6﹣2.故答案为:6﹣2.18.如下列图的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形.现用A i 表示第三行开始,从左往右,从上往下,依次出现的第i 个数,例如:A 1=1,A 2=2,A 3=1,A 4=1,A 5=3,A 6=3,A 7=1,那么A 2022= 1953 .【解析】由题意可得,第n 行有n 个数,故除去前两行的总的个数为:,当n=63时, =2022, ∵2022<2022, ∴A 2022是第64行第三个数,∴A 2022==1953,故答案为:1953.三、解答题:本大题共7个小题,共86分,解容许写出文字说明、证明过程或演算步骤19.计算:〔π﹣3.14〕0﹣|sin60°﹣4|+〔〕﹣1. 【解】:〔π﹣3.14〕0﹣|sin60°﹣4|+〔〕﹣1=1﹣|2×﹣4|+2 =1﹣|﹣1|+2=2.20.先化简,再求值:〔﹣〕÷,其中a=.【解】原式=[﹣]• =[﹣]• =• =,当a=+1时,原式==.21.绵阳七一中学开通了空中教育互联网在线学习平台,为了解学生使用情况,该校学生会把该平台使用情况分为A 〔经常使用〕、B 〔偶尔使用〕、C 〔不使用〕三种类型,并设计了调查问卷、先后对该校初一〔1〕班和初一〔2〕班全体同学进行了问卷调查,并根据调查结果绘制成如下两幅不完整的统计图,请根据图中信息解答以下问题:〔1〕求此次被调查的学生总人数;〔2〕求扇形统计图中代表类型C 的扇形的圆心角,并补全折线统计图;〔3〕假设该校初一年级学生共有1000人,试根据此次调查结果估计该校初一年级中C 类型学生约有多少人.【解】〔1〕由扇形统计图知B 类型人数所占比例为58%,从折线图知B 类型总人数=26+32=58人, 所以此次被调查的学生总人数=58÷58%=100人;〔2〕由折线图知A 人数=18+14=32人,故A 的比例为32÷100=32%,所以C 类比例=1﹣58%﹣32%=10%,所以类型C 的扇形的圆心角=360°×10%=36°,C 类人数=10%×100﹣2=8人,折线图如下:〔3〕根据此次可得C 的比例为10%,估计该校初一年级中C 类型学生约1000×10%=100人.22.如图,直线y=k 1x+7〔k 1<0〕与x 轴交于点A ,与y 轴交于点B ,与反比例函数y=〔k 2>0〕的图象在第一象限交于C 、D 两点,点O 为坐标原点,△AOB 的面积为,点C 横坐标为1. 〔1〕求反比例函数的解析式;〔2〕如果一个点的横、纵坐标都是整数,那么我们就称这个点为“整点〞,请求出图中阴影局部〔不含边界〕所包含的所有整点的坐标.【解】〔1〕∵当x=0时,y=7,当y=0时,x=﹣, ∴A 〔﹣,0〕、B 〔0、7〕.∴S △AOB =|OA|•|OB|=×〔﹣〕×7=,解得k 1=﹣1. ∴直线的解析式为y=﹣x+7.∵当x=1时,y=﹣1+7=6,∴C 〔1,6〕.∴k 2=1×6=6.∴反比例函数的解析式为y=.〔2〕∵点C 与点D 关于y=x 对称,∴D 〔6,1〕.当x=2时,反比例函数图象上的点为〔2,3〕,直线上的点为〔2,5〕,此时可得整点为〔2,4〕; 当x=3时,反比例函数图象上的点为〔3,2〕,直线上的点为〔3,4〕,此时可得整点为〔3,3〕; 当x=4时,反比例函数图象上的点为〔4,〕,直线上的点为〔4,3〕,此时可得整点为〔4,2〕; 当x=5时,反比例函数图象上的点为〔5,〕,直线上的点为〔5,2〕,此时,不存在整点. 综上所述,符合条件的整点有〔2,4〕、〔3,3〕、〔4,2〕.23.如图,AB 为⊙O 直径,C 为⊙O 上一点,点D 是的中点,DE ⊥AC 于E ,DF ⊥AB 于F .〔1〕判断DE 与⊙O 的位置关系,并证明你的结论;〔2〕假设OF=4,求AC 的长度.【解】〔1〕DE与⊙O相切.证明:连接OD、AD,∵点D是的中点,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切.〔2〕连接BC交OD于H,延长DF交⊙O于G,由垂径定理可得:OH⊥BC, ==,∴=,∴DG=BC,∴弦心距OH=OF=4,∵AB是直径,∴BC⊥AC,∴OH∥AC,∴OH是△ABC的中位线,∴AC=2OH=8.24.绵阳人民商场准备购进甲、乙两种牛奶进行销售,假设甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.〔1〕求甲种牛奶、乙种牛奶的进价分别是多少元?〔2〕假设该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,那么购进的甲、乙两种牛奶全部售出后,可使销售的总利润〔利润=售价﹣进价〕超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?【解】〔1〕设乙种牛奶的进价为每件x元,那么甲种牛奶的进价为每件〔x﹣5〕元,由题意得, =,解得x=50.经检验,x=50是原分式方程的解,且符合实际意义.〔2〕设购进乙种牛奶y件,那么购进甲种牛奶〔3y﹣5〕件,由题意得,解得23<y≤25.∵y为整数,∴y=24或25,∴共有两种方案:方案一:购进甲种牛奶67件,乙种牛奶24件;方案二:购进甲种牛奶70件,乙种牛奶25件.25.〔12分〕如图,抛物线y=ax2+bx+c〔a≠0〕与x轴交于A、B两点,与y轴交于点C〔0,3〕,且此抛物线的顶点坐标为M〔﹣1,4〕.〔1〕求此抛物线的解析式;〔2〕设点D为抛物线对称轴上的任意一点,当△ACD与△ACB面积相等时,求点D的坐标;〔3〕点P 在线段AM 上,当PC 与y 轴垂直时,过点P 作x 轴的垂线,垂足为E ,将△PCE 沿直线CE 翻折,使点P 的对应点P ′与P 、E 、C 处在同一平面内,请求出点P ′坐标,并判断点P ′是否在该抛物线上.【解】〔1〕∵抛物线y=ax 2+bx+c 经过点C 〔0,3〕,顶点为M 〔﹣1,4〕, ∴,解得:.∴所求抛物线的解析式为y=﹣x 2﹣2x+3.〔2〕依照题意画出图形,如图1所示.令y=﹣x 2﹣2x+3=0,解得:x=﹣3或x=1,故A 〔﹣3,0〕,B 〔1,0〕,∴OA=OC ,△AOC 为等腰直角三角形.设AC 交对称轴x=﹣1于F 〔﹣1,y F 〕,由点A 〔﹣3,0〕、C 〔0,3〕可知直线AC 的解析式为y=x+3,∴y F =﹣1+3=2,即F 〔﹣1,2〕.设点D 坐标为〔﹣1,y D 〕,那么S △ADC =DF •AO=×|y D ﹣2|×3.又∵S △ABC =AB •OC=×[1﹣〔﹣3〕]×3=6,且S △ADC =S △ABC , ∴×|y D ﹣2|×3.=6,解得:y D =﹣2或y D =6.∴点D 的坐标为〔﹣1,﹣2〕或〔1,6〕.〔3〕如图2,点P ′为点P 关于直线CE 的对称点,过点P ′作PH ⊥y 轴于H ,设P ′E 交y 轴于点N . 在△EON 和△CP ′N 中,,∴△EON ≌△CP ′N 〔AAS 〕.设NC=m ,那么NE=m ,∵A 〔﹣3,0〕、M 〔﹣1,4〕可知直线AM 的解析式为y=2x+6,∴当y=3时,x=﹣,即点P 〔﹣,3〕.∴P ′C=PC=,P ′N=3﹣m ,在Rt △P ′NC 中,由勾股定理,得:+〔3﹣m 〕2=m 2,解得:m=. ∵S △P ′NC =CN •P ′H=P ′N •P ′C ,∴P ′H=.由△CHP ′∽△CP ′N 可得:, ∴CH==,∴OH=3﹣=,∴P′的坐标为〔,〕.将点P′〔,〕代入抛物线解析式,得:y=﹣﹣2×+3=≠,∴点P′不在该抛物线上.26.如图,以菱形ABCD对角线交点为坐标原点,建立平面直角坐标系,A、B两点的坐标分别为〔﹣2,0〕、〔0,﹣〕,直线DE⊥DC交AC于E,动点P从点A出发,以每秒2个单位的速度沿着A→D→C的路线向终点C匀速运动,设△PDE的面积为S〔S≠0〕,点P的运动时间为t秒.〔1〕求直线DE的解析式;〔2〕求S与t之间的函数关系式,并写出自变量t的取值范围;〔3〕当t为何值时,∠EPD+∠DCB=90°?并求出此时直线BP与直线AC所夹锐角的正切值.【解】由菱形的对称性可得,C〔2,0〕,D〔0,〕,∴OD=,OC=2,tan∠DCO==,∵DE⊥DC,∴∠EDO+∠CDO=90°,∵∠DCO+∠CD∠=90°,∴∠EDO=∠DCO,∵tan∠EDO=tan∠DCO=,∴,∴OE=,∴E〔﹣,0〕,∴D〔0,〕,∴直线DE解析式为y=2x+,〔2〕由〔1〕得E〔﹣,0〕,∴AE=AO﹣OE=2﹣=,根据勾股定理得,DE==,∴菱形的边长为5,如图1,过点E作EF⊥AD,∴sin∠DAO=,∴EF==,当点P在AD边上运动,即0≤t<,S=PD×EF=×〔5﹣2t〕×=﹣t+,如图2,点P在DC边上运动时,即<t≤5时,S=PD×DE=×〔2t﹣5〕×=t﹣;∴S=,〔3〕设BP与AC相交于点O,在菱形ABCD中,∠DAB=∠DCB,DE⊥DC,∴DE⊥AB,∴∠DAB+∠ADE=90°,∴∠DCB+∠ADE=90°,∴要使∠EPD+∠DCB=90°,∴∠EPD=∠ADE,当点P在AD上运动时,如图3,∵∠EPD=∠ADE,∴EF垂直平分线PD,∴AP=AD﹣2DF=AD﹣2,∴2t=5﹣,∴t=,此时AP=1,∵AP∥BC,∴△APQ∽△CBQ,∴,∴,∴,∴AQ=,∴OQ=OA﹣AQ=,在RT△OBQ中,tan∠OQB===,当点P在DC上运动时,如图4,∵∠EPD=∠ADE,∠EDP=EFD=90°∴△EDP∽△EFD,∴,∴DP===,∴2t=AD﹣DP=5+,∴t=,此时CP=DC﹣DP=5﹣=,∵PC∥AB,∴△CPQ∽△ABQ,∴,∴,∴,∴CQ=,∴OQ=OC﹣CQ=2﹣=,在RT△OBD中,tan∠OQB===1,即:当t=时,∠EPD+∠DCB=90°.此时直线BP与直线AC所夹锐角的正切值为.当t=时,∠EPD+∠DCB=90°.此时直线BP与直线AC所夹锐角的正切值为1.。

四川省绵阳市 中考数学模拟试卷含答案解析

四川省绵阳市 中考数学模拟试卷含答案解析

四川省绵阳市中考数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.下列四个数中,比0大的是()A.﹣B.﹣C.0 D.|﹣2|2.下列计算正确的是()A.2x+x=x3B.x3÷x=x2C.(﹣2x2y)3•4x﹣3=﹣32x2y3 D.(x﹣y)2=x2﹣y23.与如图所示的三视图对应的几何体是()A.B.C.D.4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10 D.3.4×10﹣115.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0 B.﹣3 C.﹣2 D.﹣16.下列说法中正确的是()A.四边相等的四边形是菱形B.一组对边相等,另一组对边平行的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相平分的四边形是菱形7.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tanB的值为()A.B.C.D.8.清明小长假期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩,已知甲地到乙地有2条公路,乙地到丙地有3条公路,每一条公路的长度如图,梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是()A.B.C.D.9.已知a、b为两个连续整数,且a<﹣<b,则a+b=()A.4 B.5 C.6 D.810.如图,在正五边形ABCDE中,∠ACD=()A.30°B.36°C.40°D.72°11.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使点C和点A重合,则折痕EF的长为()A.B.C.15 D.1612.如图,已知在⊙O中,AB=4,AF=6,AC是直径,AC⊥BD于F,图中阴影部分的面积是()A.π﹣2B.π﹣2C.π﹣4D.π﹣4二.填空题(本大题共6小题,每小题3分,共18分)13.因式分解:x3﹣9x=.14.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=.15.如图,直线a∥b,点B在直线b上,∠1=38°,∠ABC=90°,则∠2=.16.绵阳市在改造剑南路西段工程中为治理污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽量减少施工对城市交通所造成的影响,后来每天的工作效率比原计划提高20%,结果共用30天完成这一任务.如果设原计划每天铺设x米管道,那么根据题意可列方程.17.已知M,N两点关于y轴对称,且点M在双曲线y=上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a﹣b)x的顶点坐标为.18.如图,在△ABC中,AB=AC=3,高BD=,AE平分∠BAC,交BD于点E,则DE的长为.三.解答题(本大题共7小题,共86分)19.(1)计算:(sin30°)﹣1﹣(2015)0+|1﹣|﹣.(2)解不等式组:,并判断x=是否为该不等式组的解.20.某中学在“五月份学习竞赛月”中举办了演讲、书法、作文、手抄报、小品、漫画六项比赛(2013•红河州模拟)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地1800元/台1600元/台B地1600元/台1200元/台(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.22.关于x的一元二次方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β.(1)求k的取值范围;(2)若α+β+αβ=6,求(α﹣β)2+3αβ﹣5的值.23.如图,AB为⊙O的直径,BC⊥AB,CP切⊙O于点P,连OC,交⊙O于N,交BP于E,连BN,AP.(1)求证:BN平分∠PBC.(2)连AC交BP于M,若AB=BC=4,求tan∠PAC的值.24.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.25.已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD.(1)如图1,若AB=BC=AC,求证:AE=EF;(2)如图2,若AB=BC,(1)中的结论是否仍然成立?证明你的结论;(3)如图3,若AB=kBC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出AE与EF 之间的数量关系,并证明.四川省绵阳市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.下列四个数中,比0大的是()A.﹣B.﹣C.0 D.|﹣2|【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:因为|﹣2|=2,所以根据实数比较大小的方法,可得2,所以比0大的是|﹣2|.故选:D.【点评】此题主要考查了实数比较大小的方法,要熟练掌握.2.下列计算正确的是()A.2x+x=x3B.x3÷x=x2C.(﹣2x2y)3•4x﹣3=﹣32x2y3 D.(x﹣y)2=x2﹣y2【考点】整式的混合运算.【专题】计算题.【分析】A、利用合并同类项法则合并得到结果,即可做出判断;B、利用同底数幂的除法法则计算,即可做出判断;C、先利用积的乘方及幂的乘方运算法则计算,再利用单项式乘以单项式的法则计算,即可做出判断;D、利用差的完全平方公式展开,即可做出判断.【解答】解:A、2x+x=3x,本选项错误;B、x3÷x=x3﹣1=x2,本选项正确;C、(﹣2x2y)3•4x﹣3=﹣8x6y3•4x﹣3=﹣32x3y3,本选项错误;D、(x﹣y)2=x2﹣2xy+y2,本选项错误,故选B【点评】此题考查了整式的混合运算,涉及的知识有:完全平方公式,合并同类项法则,积的乘方及幂的乘方运算法则,以及同底数幂的除法法则,熟练掌握公式及法则是解本题的关键.3.与如图所示的三视图对应的几何体是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从正视图可以排除C,故C选项错误;从左视图可以排除A,故A选项错误;从左视图可以排除D,故D选项错误;符合条件的只有B.故选:B.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认知能力,可通过排除法进行解答.4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10 D.3.4×10﹣11【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0 B.﹣3 C.﹣2 D.﹣1【考点】在数轴上表示不等式的解集.【专题】计算题.【分析】首先根据不等式的性质,解出x≤,由数轴可知,x≤﹣1,所以,=﹣1,解出即可;【解答】解:不等式2x﹣a≤﹣1,解得,x≤,由数轴可知,x≤﹣1,所以,=﹣1,解得,a=﹣1;故选:D.【点评】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.下列说法中正确的是()A.四边相等的四边形是菱形B.一组对边相等,另一组对边平行的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相平分的四边形是菱形【考点】菱形的判定.【分析】根据菱形的判定:一组邻边相等的平行四边形是菱形;四条边都相等的四边形是菱形.对角线互相垂直的平行四边形是菱形分别进行分析即可.【解答】解:A、四边相等的四边形是菱形,说法正确;B、一组对边相等,另一组对边平行的四边形是菱形,说法错误;C、对角线互相垂直的四边形是菱形,说法错误;D、对角线互相平分的四边形是菱形,说法错误;故选:A.【点评】此题主要考查了菱形的判定,关键是掌握菱形的判定定理.7.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tanB的值为()A.B.C.D.【考点】解直角三角形.【专题】计算题.【分析】在直角三角形ACM中,利用锐角三角函数定义表示出sin∠CAM,由已知sin∠CAM的值,设CM=3x,得到AM=5x,根据勾股定理求出AC=4x,由M为BC的中点,得到BC=2CM,表示出BC,在直角三角形ABC中,利用锐角三角函数定义表示出tanB,将表示出的AC与BC代入即可求出值.【解答】解:在Rt△ACM中,sin∠CAM==,设CM=3x,则AM=5x,根据勾股定理得:AC==4x,又M为BC的中点,∴BC=2CM=6x,在Rt△ABC中,tanB===.故选B【点评】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握锐角三角函数定义是解本题的关键.8.清明小长假期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩,已知甲地到乙地有2条公路,乙地到丙地有3条公路,每一条公路的长度如图,梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】依据题意先分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:如图所示:由树状图可知共有2×3=6种可能,这条路线正好是最短路线的有1种,所以概率是.故选:A.【点评】此题主要考查了列表法求概率,正确列举出所有可能是解题关键.9.已知a、b为两个连续整数,且a<﹣<b,则a+b=()A.4 B.5 C.6 D.8【考点】估算无理数的大小.【分析】先估算出与的取值范围,再求出a,b的值,进而可得出结论.【解答】解:∵16<20<25,∴4<<5.∵4<5<9,∴2<<3,∴﹣3<﹣<﹣2,∴4﹣3<﹣<5﹣2,即1<﹣<3,∵a、b为两个整数,∴a=2,b=3,∴a+b=5.故选:B.【点评】本题考查的是估算无理数的大小,熟知用有理数逼近无理数,求无理数的近似值是解答此题的关键.10.如图,在正五边形ABCDE中,∠ACD=()A.30°B.36°C.40°D.72°【考点】全等三角形的判定与性质;等腰三角形的性质;多边形内角与外角.【分析】根据正多边形的性质求出AB=BC=AE=DE,∠EAB=∠B=∠ACD=∠CDE=∠E,根据多边形内角和定理求出∠B=∠BCD=108°,根据等腰三角形性质和三角形内角和定理求出∠BAC=∠BCA=36°,代入∠ACD=∠BCD﹣∠BCA求出即可.【解答】解:∵五边形ABCDE是正五边形,∴AB=BC=AE=DE,∠EAB=∠B=∠ACD=∠CDE=∠E,∴∠B=∠BCD==108°,∴∠BAC=∠BCA=(180°﹣∠B)=36°,∴∠ACD=∠BCD﹣∠BCA=108°﹣36°=72°,故选D.【点评】本题考查了等腰三角形的性质,多边形的内角和定理,正多边形的性质的应用,解此题的关键是求出∠BCD和∠ACB的度数,注意:正多边形的所有边都相等,所有角都相等.11.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使点C和点A重合,则折痕EF的长为()A.B.C.15 D.16【考点】翻折变换(折叠问题).【分析】先连接AF,由于矩形关于EF折叠,所以EF垂直平分AC,那么就有AF=CF,又ABCD是矩形,那么AB=CD,AD=BC,在Rt△ABF中,(设CF=x),利用勾股定理可求出CF=,在Rt△ABC中,利用勾股定理可求AC=5,在Rt△COF中再利用勾股定理可求出OF=,同理可求OE=,所以EF=OE+OF=.【解答】解:连接AF.∵点C与点A重合,折痕为EF,即EF垂直平分AC,∴AF=CF,AO=CO,∠FOC=90°.又∵四边形ABCD为矩形,∴∠B=90°,AB=CD=3,AD=BC=4.设CF=x,则AF=x,BF=4﹣x,在Rt△ABC中,由勾股定理得AC2=BC2+AB2=52,且O为AC中点,∴AC=5,OC=AC=.∵AB2+BF2=AF2∴32+(4﹣x)2=x2∴x=.∵∠FOC=90°,∴OF2=FC2﹣OC2=()2﹣()2=()2∴OF=.同理OE=.即EF=OE+OF=.故选:A.【点评】该题主要考查了翻折变换的性质及其应用问题;解题的关键是作辅助线,灵活运用翻折变换的性质、勾股定理等几何知识点来分析、判断、推理或解答.12.如图,已知在⊙O中,AB=4,AF=6,AC是直径,AC⊥BD于F,图中阴影部分的面积是()A.π﹣2B.π﹣2C.π﹣4D.π﹣4【考点】扇形面积的计算.【分析】利用勾股定理求得BD=2BF=4,连接OB、OD、BC,先求得∠ABC=90°,进而根据射影定理=S 求得FC=2,从而求得直径的长,根据余弦函数求得∠BAF=30°,进而得出∠BOD=120°,最后根据S阴影﹣S△BOD即可求得阴影的面积.扇形【解答】解:∵AC是直径,AC⊥BD于F,∴BF=DF,=,∴∠BAC=∠DAC,在RT△ABF中,BF==2,∴BD=2BF=4,连接OB、OD、BC,∵AC是直径,∴∠ABC=90°,∴BF2=AF•FC,即(2)2=6FC,∴FC=2,∴直径AC=AF+FC=6+2=8,∴⊙O 的半径为4,∵AB=4,AF=6,∴cos ∠BAF===, ∴∠BAF=30°,∴∠BAD=60°,∴∠BOD=120°,∵OC=4,FC=2,∴OF=2,∴S 阴影=S 扇形﹣S △BOD =﹣×4×2=π﹣4;故选D .【点评】本题考查了垂径定理,扇形的面积、及直角三角函数和勾股定理等知识,难度适中.二.填空题(本大题共6小题,每小题3分,共18分)13.因式分解:x 3﹣9x= x (x+3)(x ﹣3) .【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再利用平方差公式进行分解.【解答】解:x 3﹣9x,=x (x 2﹣9),=x (x+3)(x ﹣3).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.14.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=125°.【考点】作图—基本作图.【分析】根据角平分线的作法可得AD平分∠CAB,再根据三角形内角和定理可得∠ADB的度数.【解答】解:由题意可得:AD平分∠CAB,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°﹣20°﹣35°=125°.故答案为:125°.【点评】此题主要考查了角平分线的作法以及角平分线的性质,熟练根据角平分线的性质得出∠ADB 度数是解题关键.15.如图,直线a∥b,点B在直线b上,∠1=38°,∠ABC=90°,则∠2=52°.【考点】平行线的性质.【分析】由AB⊥BC,可得∠1+∠3=90°,求出∠3,又由a∥b推出∠2=∠3,从而求出∠2.【解答】解:∵∠ABC=90°,∠1+∠2+∠ABC=90°,∴∠1+∠3=90°,∴∠3=90°﹣∠1=90°﹣38°=52°,∵a∥b,∴∠2=∠3=52°.故答案为:52°.【点评】此题考查的知识点是平行线的性质及余角、补角,解题的关键是先由余角、补角求出∠3,再由平行线的性质求出∠2.16.绵阳市在改造剑南路西段工程中为治理污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽量减少施工对城市交通所造成的影响,后来每天的工作效率比原计划提高20%,结果共用30天完成这一任务.如果设原计划每天铺设x米管道,那么根据题意可列方程120+(1+20%)x•(30﹣)=300.【考点】由实际问题抽象出分式方程.【分析】设原计划每天铺设x米管道,提高工作效率之后每天铺设(1+20%)x米管道,根据共用30天完成这一任务,列方程.【解答】解:设原计划每天铺设x米管道,提高工作效率之后每天铺设(1+20%)x米管道,由题意得,120+(1+20%)x•(30﹣)=300.故答案为:120+(1+20%)x•(30﹣)=300.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.17.已知M,N两点关于y轴对称,且点M在双曲线y=上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a﹣b)x的顶点坐标为(﹣3,).【考点】二次函数的性质;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】首先根据函数图象上点的坐标特点可得ab=,a﹣b=﹣3,进而得到二次函数解析式y=﹣x2﹣3x,再利用顶点坐标公式求解即可.【解答】解:∵M,N两点关于y轴对称,点M坐标为(a,b),∴N(﹣a,b),∵点M在双曲线y=上,∴ab=,∵点N在直线y=﹣x+3上,∴b=a+3,∴a﹣b=﹣3,∴y=﹣abx2+(a﹣b)x变为y=﹣x2﹣3x,∴=﹣3,=即顶点坐标为(﹣3,),故答案为:(﹣3,).【点评】此题主要考查了函数图象上点的坐标性质,以及求二次函数顶点坐标,关键是掌握凡是函数图象经过的点必能满足解析式.18.如图,在△ABC中,AB=AC=3,高BD=,AE平分∠BAC,交BD于点E,则DE的长为.【考点】勾股定理;角平分线的性质;等腰三角形的性质.【分析】延长AE交BC于点F.在Rt△ADB中,根据勾股定理得到AD,进一步得到CD;在Rt△BDC 中,根据勾股定理得到BC;根据等腰三角形的性质和角平分线的性质得到CF,在Rt△AFC中,根据勾股定理得到AF,通过AA证明△DAE∽△FAC,根据相似三角形的性质即可求解.【解答】解:延长AE交BC于点F.∵在△ABC中,AB=AC=3,高BD=,∴在Rt△ADB中,AD==2,∴CD=AC﹣AD=1,∴在Rt△BDC中,BC==,∵AE平分∠BAC,∴CF=,∠AFC=90°,∴在Rt△AFC中,AF==,∵∠DAE=∠FAC,∠ADE=∠AFC=90°,∴△DAE∽△FAC,∴DE:AD=CF:AF,DE===.故答案为:.【点评】考查了勾股定理,等腰三角形的性质和角平分线的性质,相似三角形的判定和性质,关键是根据题意作出辅助线.三.解答题(本大题共7小题,共86分)19.(1)计算:(sin30°)﹣1﹣(2015)0+|1﹣|﹣.(2)解不等式组:,并判断x=是否为该不等式组的解.【考点】实数的运算;估算无理数的大小;零指数幂;负整数指数幂;解一元一次不等式组;特殊角的三角函数值.【专题】计算题.【分析】(1)原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项化为最简二次根式,计算即可得到结果;(2)分别求出不等式中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可做出判断.【解答】解:(1)原式=2﹣1+﹣1﹣2=﹣;(2),由①得:x>﹣3,由②得:x≤1,∴不等式组的解集为﹣3<x≤1,则x=不是不等式组的解.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.某中学在“五月份学习竞赛月”中举办了演讲、书法、作文、手抄报、小品、漫画六项比赛(2013•红河州模拟)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地1800元/台1600元/台B地1600元/台1200元/台(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.【考点】一次函数的应用;一元一次不等式的应用.【分析】(1)派往A地x台乙型联合收割机,那么派往B地(30﹣x)台,派往A地的(30﹣x)台甲型收割机,派往B地(20﹣30+x)台,可得y=(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200,10≤x≤30.(2)根据题意可列不等式(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200≥79600,解出x 看有几种方案.【解答】解:(1)y=(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200=200x+74000,10≤x≤30;(2)200x+74000≥79600,解得x≥28,三种方案,依次为x=28,29,30的情况①当x=28时,派往A地28台乙型联合收割机,那么派往B地2台乙,派往A地的2台甲型收割机,派往B地18台甲.②当x=29时,派往A地29台乙型联合收割机,那么派往B地1台乙,派往A地的1台甲型收割机,派往B地19台甲.③当x=30时,派往A地30台乙型联合收割机,那么派往B地0台乙,派往A地的0台甲型收割机,派往B地20台甲.【点评】本题考查的是用一次函数解决实际问题,根据题意列出函数式以及根据题意列出不等式结合自变量的取值范围确定方案.22.关于x的一元二次方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β.(1)求k的取值范围;(2)若α+β+αβ=6,求(α﹣β)2+3αβ﹣5的值.【考点】根与系数的关系;解一元二次方程-因式分解法;根的判别式.【分析】(1)由于关于x的一元二次方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β,那么其判别式应该是一个正数,由此即可求出k的取值范围;(2)根据根与系数的关系可以得到α+β=﹣(2k﹣3),αβ=k2,而α+β+αβ=6,由此可以求出k的值,再把(α﹣β)2+3αβ﹣5变为(α+β)2﹣αβ﹣5,代入前面的值就可以求出结果.【解答】解:(1)∵方程x2+(2k﹣3)x+k2=0有两个不相等的实数根,∴△>0即(2k﹣3)2﹣4×1×k2>0解得k<;(2)由根与系数的关系得:α+β=﹣(2k﹣3),αβ=k2.∵α+β+αβ=6,∴k2﹣2k+3﹣6=0解得k=3或k=﹣1,由(1)可知k=3不合题意,舍去.∴k=﹣1,∴α+β=5,αβ=1,故(α﹣β)2+3αβ﹣5=(α+β)2﹣αβ﹣5=19.【点评】此题首先利用一元二次方程的判别式求出k的取值范围,然后利用根与系数的关系求出k的值,接着把所求的代数式变形为两根之和与两根之积的形式,代入值就解决问题.23.如图,AB为⊙O的直径,BC⊥AB,CP切⊙O于点P,连OC,交⊙O于N,交BP于E,连BN,AP.(1)求证:BN平分∠PBC.(2)连AC交BP于M,若AB=BC=4,求tan∠PAC的值.【考点】切线的性质.【分析】(1)连接OP,证OC垂直平分PB,求出∠NBE+∠ENB=90°,∠CBN+∠NBO=90°,根据∠ONB=∠OBN求出∠NBP=∠NBC,即可得出答案;(2)证△OEB∽△BEC,求出BE=2OE,CE=2BE=4OE,设OE=x,则CE=4x,过C作CQ⊥AP交AP延长线于Q,得出四边形QPEC是矩形,推出QC=PE=BE=2x,QP=CE=4x,AQ=6x,代入tan∠PAC=求出即可.【解答】(1)证明:连接PO,∵CB⊥AB,∴CB是⊙O切线,∵CP是⊙O切线,∴PC=BC,即C在PB垂直平分线上,∵OP=OB,∴O在PB的垂直平分线上,∴OC⊥PB,PE=BE,∴∠BEC=∠CBO=90°,∴∠NBE+∠ENB=90°,∠CBN+∠NBO=90°, ∵ON=OB,∴∠ONB=∠OBN,∴∠NBP=∠NBC,∴BN平分∠PBC.(2)解:∵BE⊥OC,∴∠OEB=∠CEB=∠OBC=90°,∴∠OBE+∠EOB=90°,∠EBO+∠EBC=90°, ∴∠EOB=∠EBC,∴△OEB∽△BEC,∴==,∵OB=AB=2,BC=4,∴BE=2OE,CE=2BE=4OE,设OE=x,则CE=4x,∵PE=BE,AO=OB,∴AP=2OE=2x,过C作CQ⊥AP交AP延长线于Q,则∠Q=∠QPE=∠PEC=90°,∴四边形QPEC是矩形,∴QC=PE=BE=2x,QP=CE=4x,∴AQ=4x+2x=6x,在Rt△AQC中,tan∠PAC===.【点评】本题考查了切线的性质,矩形的性质和判定,解直角三角形,线段垂直平分线性质的应用,主要考查学生综合运用性质进行推理和计算的能力.24.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.【考点】二次函数综合题;二次函数的最值;待定系数法求二次函数解析式;等腰三角形的性质;勾股定理.【专题】代数几何综合题;压轴题;分类讨论.【分析】(1)设y=ax(x﹣4),把A点坐标代入即可求出答案;(2)根据点的坐标求出PC=﹣m2+3m,化成顶点式即可求出线段PC的最大值;(3)当0<m<3时,仅有OC=PC,列出方程,求出方程的解即可;当m≥3时,PC=CD﹣PD=m2﹣3m,OC=,分为三种情况:①当OC=PC时,,求出方程的解即可得到P的坐标;同理可求:②当OC=OP时,③当PC=OP时,点P的坐标.综合上述即可得到答案.【解答】解:(1)设y=ax(x﹣4),把A点坐标(3,3)代入得:a=﹣1,函数的解析式为y=﹣x2+4x,答:二次函数的解析式是y=﹣x2+4x.(2)解:0<m<3,PC=PD﹣CD,∵D(m,0),PD⊥x轴,P在y=﹣x2+4x上,C在OA上,A(3,3),∴P(m,﹣m2+4m),C(m,m)∴PC=PD﹣CD=﹣m2+4m﹣m=﹣m2+3m,=﹣+,∵﹣1<0,开口向下,∴有最大值,当D(,0)时,PC max=,答:当点P在直线OA的上方时,线段PC的最大值是.(3)当0<m<3时,仅有OC=PC,∴,解得,∴;当m≥3时,PC=CD﹣PD=m2﹣3m,OC=,由勾股定理得:OP2=OD2+DP2=m2+m2(m﹣4)2,①当OC=PC时,,解得:或m=0(舍去),∴;②当OC=OP时,,解得:m1=5,m2=3,∵m=3时,P和A重合,即P和C重合,不能组成三角形POC,∴m=3舍去,∴P(5,﹣5);③当PC=OP时,m2(m﹣3)2=m2+m2(m﹣4)2,解得:m=4,∴P(4,0),答:存在,P的坐标是(3﹣,1+2)或(3+,1﹣2)或(5,﹣5)或(4,0).【点评】本题主要考查对用待定系数法求二次函数的解析式,等腰三角形的性质,勾股定理,二次函数的最值等知识点的理解和掌握,用的数学思想是分类讨论思想,此题是一个综合性比较强的题目,(3)小题有一定的难度.25.已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD.(1)如图1,若AB=BC=AC,求证:AE=EF;(2)如图2,若AB=BC,(1)中的结论是否仍然成立?证明你的结论;(3)如图3,若AB=kBC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出AE与EF 之间的数量关系,并证明.【考点】四边形综合题.【分析】(1)中所给的是最特殊的一种情况,但对整个题来说,要从(1)中找到基本的解题思路,此题难的是构造全等三角形,从而证明线段相等.虽然(1)中没有要求步骤,但能正确的解出(1)可以给(2)和(3)定一个基调;(2)是将(1)中的等边三角形变为等腰三角形,但起关键作用的条件没变,任然可以仿照(1)中的方法去做;(3)中将三角形变为更一般的三角形,但和(1)比较起来还是有两个条件没变,而利用这两个条件能证明两个三角形相似,从而利用相似的对应边成比例得出结论.【解答】解:(1)证明:如图1,过点E作EH∥AB交AC于点H.则∠BAC+∠AHE=180°,∠BAC=∠CHE,∵AB=BC=AC,∴∠BAC=∠ACB=60°,∴∠CHE=∠ACB=∠B=60°,∴EH=EC.∵AD∥BC,∴∠FCE=180°﹣∠B=120°,又∵∠AHE=180°﹣∠BAC=120°,∴∠AHE=∠FCE,∵∠AOE=∠COF,∠AEF=∠ACF,∴∠EAC=∠EFC,∴△AEH≌△FEC,∴AE=EF;(2)(1)中的结论仍然成立.证明:如图2,过点E作EH∥AB交AC于点H,则∠BAC+∠AHE=180°,∠BAC=∠CHE,∵AB=BC,∴∠BAC=∠ACB∴∠CHE=∠ACB,∴EH=EC∵AD∥BC,∴∠D+∠DCB=180°.∵∠BAC=∠D,∴∠AHE=∠DCB=∠ECF∵∠AOE=∠COF,∠AEF=∠ACF,∴∠EAC=∠EFC,∴△AEH≌△FEC,∴AE=EF;(3)猜想:(1)中的结论仍然成立.证明:如图3,过点E作EH∥AB交AC于点H.由(2)可得∠EAC=∠EFC,∵AD∥BC,∠BAC=∠D,∴∠AHE=∠DCB=∠ECF,∴△AEH∽△FEC,∴AE:EF=EH:EC,∵EH∥AB,∴△ABC∽△HEC,∴EH:EC=AB:BC=k,∴AE:EF=k,∴AE=kEF.【点评】主要考查了四边形的综合知识.本题三问由特殊到一般,注意比较它们之间的异同,关键抓住不变量,从而得出结论.本题难度很大.。

2017年中考数学真题试题及答案(word版)

2017年中考数学真题试题及答案(word版)

保密 ★ 启用前2017年中考题数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上) 1、计算2(1)⨯-的结果是( ) A 、12-B 、2-C 、1D 、22、若∠α的余角是30°,则cos α的值是( )A 、12B 、 32C 、22D 、33 3、下列运算正确的是( ) A 、21a a -= B 、22a a a +=C 、2a a a ⋅=D 、22()a a -=-4、下列图形是轴对称图形,又是中心对称图形的有( )A 、4个B 、3个C 、2个D 、1个5、如图,在平行四边形ABCD 中,∠B=80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( ) A 、40° B 、50° C 、60° D 、80°6、已知二次函数2y ax =的图象开口向上,则直线1y ax =-经过的象限是( )A 、第一、二、三象限B 、第二、三、四象限C 、第一、二、四象限D 、第一、三、四象限 7、如图,你能看出这个倒立的水杯的俯视图是( )8、如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是( ) A 、28℃,29℃ B 、28℃,29.5℃ C 、28℃,30℃ D 、29℃,29℃A B C D9、已知拋物线2123y x =-+,当15x ≤≤时,y 的最大值是( ) A 、2B 、23C 、 53D 、 7310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是( ) A 、2 B 、5C 、22D 、3 11、如图,是反比例函数1k y x=和2ky x =(12k k <)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若2AOB S ∆=,则21k k -的值是( ) A 、1B 、2C 、4D 、812、一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,…按照这种倒水的方法,倒了10次后容器内剩余的水量是( ) A 、1011升 B 、19升C 、110升 D 、111升 二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上) 13、2011-的相反数是__________14、近似数0.618有__________个有效数字. 15、分解因式:39a a -= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为__________17、如图,等边△ABC 绕点B 逆时针旋转30°时,点C 转到C ′的位置,且BC ′与AC 交于点D ,则'C DCD的值为__________18、如图,AB 是半圆O 的直径,以0A 为直径的半圆O ′与弦AC 交于点D ,O ′E ∥AC ,并交OC 于点E .则下列四个结论:16题图 17题图 18题图①点D 为AC 的中点;②'12O OE AOC S S ∆∆=;③2AC AD = ;④四边形O'DEO 是菱形.其中正确的结论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤).19、计算:101()(5)342π-----+20、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC 的长为10米,小强的身高AB 为1.55米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到1米,参考数据2≈1.413 1.73 )21、如图,△OAB 的底边经过⊙O 上的点C ,且OA=OB ,CA=CB ,⊙O 与OA 、OB 分别交于D 、E 两点. (1)求证:AB 是⊙O 的切线;(2)若D 为OA 33π,求⊙O 的半径r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A 、白B 、白C 表示),若从中任意摸出一个棋子,是白色棋子的概率为34. (1)求纸盒中黑色棋子的个数;(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元. (1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元? (利润率=100%⨯利润进价)24、如图,点G 是正方形ABCD 对角线CA 的延长线上任意一点,以线段AG 为边作一个正方形AEFG ,线段EB 和GD 相交于点H . (1)求证:EB=GD ;(2)判断EB 与GD 的位置关系,并说明理由; (3)若AB=2,2,求EB 的长.25、已知抛物线223 (0)y ax ax a a =--<与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,点D 为抛物线的顶点. (1)求A 、B 的坐标;(2)过点D 作DH 丄y 轴于点H ,若DH=HC ,求a 的值和直线CD 的解析式;(3)在第(2)小题的条件下,直线CD 与x 轴交于点E ,过线段OB 的中点N 作NF 丄x 轴,并交直线CD 于点F ,则直线NF 上是否存在点M ,使得点M 到直线CD 的距离等于点M 到原点O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B A CCBDBACBCD二、填空题 13. 201114. 315. (3)(3)a a a +- 16. 144°17. 23- 18. ①③④三、解答题19. 解:原式=2-1-3+2, =0.故答案为:0.20. 解:∵一元二次方程x 2-4x+1=0的两个实数根是x 1、x 2, ∴x 1+x 2=4,x 1•x 2=1, ∴(x 1+x 2)2÷( )=42÷=42÷4 =4.21. 解:在Rt △CEB 中, sin60°=,∴CE=BC•sin60°=10×≈8.65m ,∴CD=CE+ED=8.65+1.55=10.2≈10m , 答:风筝离地面的高度为10m .22. (1)证明:连OC ,如图, ∵OA=OB ,CA=CB , ∴OC ⊥AB ,∴AB 是⊙O 的切线;(2)解:∵D 为OA 的中点,OD=OC=r , ∴OA=2OC=2r , ∴∠A=30°,∠AOC=60°,AC= r , ∴∠AOB=120°,AB=2 r , ∴S 阴影部分=S △OAB -S 扇形ODE = •OC•AB - =- ,∴ •r•2r- r 2=- ,∴r=1,即⊙O 的半径r 为1. 23. 解:(1)3÷ -3=1.答:黑色棋子有1个;(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为.24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依据题意得:,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700,答:这两批水果功够进700千克;(2)设售价为每千克a元,则:,630a≥7500×1.26,∴,∴a≥15,答:售价至少为每千克15元.25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB,∴EB=GD;(2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则在△BDH中,∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD;(3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= ,∴EB=GD= .26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得x1=-1,x2=3,∴点A的坐标(-1,0),点B的坐标(3,0);(2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a-(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4),设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得,,解得,∴直线CD的解析式为y=x+3;(3)存在.由(2)得,E(-3,0),N(- ,0)∴F(,),EN= ,作MQ⊥CD于Q,设存在满足条件的点M(,m),则FM= -m,EF= = ,MQ=OM=由题意得:Rt△FQM∽Rt△FNE,∴= ,整理得4m2+36m-63=0,∴m2+9m= ,m2+9m+ = +(m+ )2=m+ =±∴m1= ,m2=- ,∴点M的坐标为M1(,),M2(,- ).。

2017年四川省绵阳市中考数学试卷(含答案解析)

2017年四川省绵阳市中考数学试卷(含答案解析)

2017年四川省绵阳市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,每个小题只有一个选项符合题目要求)1.(3分)中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5 B.±0.5 C.﹣0.5 D.52.(3分)下列图案中,属于轴对称图形的是()A. B.C.D.3.(3分)中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×1024.(3分)如图所示的几何体的主视图正确的是()A.B.C.D.5.(3分)使代数式+有意义的整数x有()A.5个 B.4个 C.3个 D.2个6.(3分)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于()A.10m B.12m C.12.4m D.12.32m7.(3分)关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m的值为()A.﹣8 B.8 C.16 D.﹣168.(3分)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm29.(3分)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2,∠AEO=120°,则FC的长度为()A.1 B.2 C.D.10.(3分)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8 B.b>﹣8 C.b≥8 D.b≥﹣811.(3分)如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则的值为()A.B.C.D.12.(3分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则+++…+的值为()A.B.C. D.二、填空题(本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上)13.(3分)分解因式:8a2﹣2=.14.(3分)关于x的分式方程=的解是.15.(3分)如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是.16.(3分)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.17.(3分)将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AD:AB=1:3,则MD +的最小值为.18.(3分)如图,过锐角△ABC的顶点A 作DE∥BC,AB恰好平分∠DAC,AF 平分∠EAC交BC的延长线于点F.在AF上取点M,使得AM=AF ,连接CM并延长交直线DE于点H.若AC=2,△AMH的面积是,则的值是.三、解答题(本大题共7小题,共86分,解答应写出文字说明、证明过程或演算步骤)19.(16分)(1)计算:+cos245°﹣(﹣2)﹣1﹣|﹣|(2)先化简,再求值:(﹣)÷,其中x=2,y=.20.(11分)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):182195201179208204186192210204 175193200203188197212207185206 188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:谷粒颗数175≤x<185185≤x<195195≤x<205205≤x<215215≤x<225频数8103D E C对应扇形图中区域如图所示的扇形统计图中,扇形A对应的圆心角为度,扇形B对应的圆心角为度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?21.(11分)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.22.(11分)如图,设反比例函数的解析式为y=(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k 的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为时,求直线l的解析式.23.(11分)如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DFA=,AN=2,求圆O的直径的长度.24.(12分)如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF 的值.25.(14分)如图,已知△ABC中,∠C=90°,点M从点C出发沿CB方向以1cm/s 的速度匀速运动,到达点B停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°,再过点N作AC的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF,已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值;如果不能,说明理由;(2)求y关于t的函数解析式及相应t的取值范围;(3)当y取最大值时,求sin∠NEF的值.2017年四川省绵阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,每个小题只有一个选项符合题目要求)1.(3分)(2017•绵阳)中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5 B.±0.5 C.﹣0.5 D.5【分析】根据相反数的定义求解即可.【解答】解:﹣0.5的相反数是0.5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2017•绵阳)下列图案中,属于轴对称图形的是()A. B.C.D.【分析】根据轴对称图形的定义求解可得.【解答】解:A,此图案是轴对称图形,有5条对称轴,此选项符合题意;B、此图案不是轴对称图形,此选项不符合题意;C、此图案不是轴对称图形,而是旋转对称图形,不符合题意;D、此图案不是轴对称图形,不符合题意;故选:A.【点评】本题主要考查轴对称图形,掌握其定义是解题的关键:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3.(3分)(2017•绵阳)中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:“960万”用科学记数法表示为9.6×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•绵阳)如图所示的几何体的主视图正确的是()A.B.C.D.【分析】先细心观察原立体图形和正方体的位置关系,结合四个选项选出答案.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选D.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.(3分)(2017•绵阳)使代数式+有意义的整数x有()A.5个 B.4个 C.3个 D.2个【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得x+3>0且4﹣3x≥0,解得﹣3<x≤,整数有﹣2,﹣1,0,1,故选:B.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.6.(3分)(2017•绵阳)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于()A.10m B.12m C.12.4m D.12.32m【分析】根据题意得出△ABC∽△EDC,进而利用相似三角形的性质得出答案.【解答】解:由题意可得:AB=1.5m,BC=0.5m,DC=4m,△ABC∽△EDC,则=,即=,解得:DE=12,故选:B.【点评】此题主要考查了相似三角形的应用,正确得出相似三角形是解题关键.7.(3分)(2017•绵阳)关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m 的值为()A.﹣8 B.8 C.16 D.﹣16【分析】由方程的两根结合根与系数的关系可求出m、n的值,将其代入n m中即可求出结论.【解答】解:∵关于x的方程2x2+mx+n=0的两个根是﹣2和1,∴﹣=﹣1,=﹣2,∴m=2,n=﹣4,∴n m=(﹣4)2=16.故选C.【点评】本题考查了根与系数的关系,根据方程的两根结合根与系数的关系求出m、n的值是解题的关键.8.(3分)(2017•绵阳)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm2【分析】圆锥的表面积加上圆柱的侧面积即可求得其表面积.【解答】解:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.【点评】考查了圆锥的计算及几何体的表面积的知识,解题的关键是能够了解圆锥的有关的计算方法,难度不大.9.(3分)(2017•绵阳)如图,矩形ABCD的对角线AC与BD交于点O,过点O 作BD的垂线分别交AD,BC于E,F两点.若AC=2,∠AEO=120°,则FC的长度为()A.1 B.2 C.D.【分析】先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF的长.【解答】解:∵EF⊥BD,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°﹣30°=30°,∴OF=CF,又∵Rt△BOF中,BO=BD=AC=,∴OF=tan30°×BO=1,∴CF=1,故选:A.【点评】本题主要考查了矩形的性质以及解直角三角形的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.10.(3分)(2017•绵阳)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8 B.b>﹣8 C.b≥8 D.b≥﹣8【分析】先根据平移原则:上→加,下→减,左→加,右→减写出解析式,再列方程组,有公共点则△≥0,则可求出b的取值.【解答】解:由题意得:平移后得到的二次函数的解析式为:y=(x﹣3)2﹣1,则,(x﹣3)2﹣1=2x+b,x2﹣8x+8﹣b=0,△=(﹣8)2﹣4×1×(8﹣b)≥0,b≥﹣8,故选D.【点评】主要考查的是函数图象的平移和两函数的交点问题,两函数有公共点:说明两函数有一个交点或两个交点,可利用方程组→一元二次方程→△≥0的问题解决.11.(3分)(2017•绵阳)如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则的值为()A.B.C.D.【分析】根据三角形的重心性质可得OC=CE,根据直角三角形的性质可得CE=AE,根据等边三角形的判定和性质得到CM=CE,进一步得到OM=CE,即OM=AE,根据垂直平分线的性质和含30°的直角三角形的性质可得EF=AE,MF=EF,依此得到MF=AE,从而得到的值.【解答】解:∵点O是△ABC的重心,∴OC=CE,∵△ABC是直角三角形,∴CE=BE=AE,∵∠B=30°,∴∠FAE=∠B=30°,∠BAC=60°,∴∠FAE=∠CAF=30°,△ACE是等边三角形,∴CM=CE,∴OM=CE﹣CE=CE,即OM=AE,∵BE=AE,∴EF=AE,∵EF⊥AB,∴∠AFE=60°,∴∠FEM=30°,∴MF=EF,∴MF=AE,∴==.故选:D.【点评】考查了三角形的重心,等边三角形的判定和性质,垂直平分线的性质,含30°的直角三角形的性质,关键是得到OM=AE,MF=AE.12.(3分)(2017•绵阳)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则+++…+的值为()A.B.C. D.【分析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【解答】解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴+++…+=++++…+=(1﹣+﹣+﹣+﹣+…+﹣)=(1+﹣﹣)=,故选C.【点评】此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题.二、填空题(本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上)13.(3分)(2017•绵阳)分解因式:8a2﹣2=2(2a+1)(2a﹣1).【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:8a2﹣2,=2(4a2﹣1),=2(2a+1)(2a﹣1).故答案为:2(2a+1)(2a﹣1).【点评】本题考查了提公因式法,公式法分解因式.注意分解要彻底.14.(3分)(2017•绵阳)关于x的分式方程=的解是x=﹣2.【分析】把分式方程转化为整式方程即可解决问题.【解答】解:两边乘(x+1)(x﹣1)得到,2x+2﹣(x﹣1)=﹣(x+1),解得x=﹣2,经检验,x=﹣2是分式方程的解.∴x=﹣2.故答案为x=﹣2.【点评】本题考查分式方程的解,记住即为分式方程的步骤,注意解分式方程必须检验.15.(3分)(2017•绵阳)如图,将平行四边形ABCO放置在平面直角坐标系xOy 中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B 的坐标是(7,4).【分析】根据平行四边形的性质及A点和C的坐标求出点B的坐标即可.【解答】解:∵四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(6,0),点C的坐标是(1,4),∴BC=OA=6,6+1=7,∴点B的坐标是(7,4);故答案为:(7,4).【点评】本题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质是解决问题的关键.16.(3分)(2017•绵阳)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.【分析】画树状图展示所有36种等可能的结果数,再找出“两枚骰子的点数和小于8且为偶数”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.17.(3分)(2017•绵阳)将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AD:AB=1:3,则MD+的最小值为2.【分析】先求出AD=2,BD=4,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AMD+∠A=∠EDF+∠BDN,然后求出∠AMD=∠BDN,从而得到△AMD和△BDN相似,根据相似三角形对应边成比例可得=,求出MA•DN=4MD,再将所求代数式整理出完全平方的形式,然后根据非负数的性质求出最小值即可.【解答】解:∵AB=6,AD:AB=1:3,∴AD=6×=2,BD=6﹣2=4,∵△ABC和△FDE是形状、大小完全相同的两个等腰三角形,∴∠A=∠B=∠FDE,由三角形的外角性质得,∠AMD+∠A=∠EDF+∠BDN,∴∠AMD=∠BDN,∴△AMD∽△BDN,∴==,∴MA•DN=BD•MD=4MD,∴,∴MD+=MD+=()2+()2﹣2+2=(﹣)2+2,∴=,即MD=,如图,连接CD,过点C作CG⊥AB于G,∵AC=BC=5,AB=6,∴AG=3,CG=4,∴DG=AG﹣AD=3﹣2=1,在Rt△CDG中,根据勾股定理得,CD==当点M和点C重合时,DM最大,即:DM最大=当DM⊥AC时,DM最小,过点D作DH⊥AC于H,即:DM最小=DH,在Rt△ACG中,sin∠A==,在Rt△ADH中,sin∠A=,∴DH=ADsin∠A=2×=,∵≤DM≤,∴DM=时,MD+有最小值为2.故答案为:2.【点评】本题考查了相似三角形的判定与性质,等腰三角形的性质,旋转变换,难点在于将所求代数式整理出完全平方的形式从而判断出最小值.18.(3分)(2017•绵阳)如图,过锐角△ABC的顶点A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延长线于点F.在AF上取点M,使得AM=AF,连接CM并延长交直线DE于点H.若AC=2,△AMH的面积是,则的值是8﹣.【分析】过点H作HG⊥AC于点G,由于AF平分∠CAE,DE∥BF,∠HAF=∠AFC=∠CAF,从而AC=CF=2,利用△AHM∽△FCM,=,从而可求出AH=1,利用△AMH的面积是,从而可求出HG,利用勾股定理即可求出CG的长度,所以=.【解答】解:过点H作HG⊥AC于点G,∵AF平分∠CAE,DE∥BF,∴∠HAF=∠AFC=∠CAF,∴AC=CF=2,∵AM=AF,∴=,∵DE∥CF,∴△AHM∽△FCM,∴=,∴AH=1,设△AHM中,AH边上的高为m,△FCM中CF边上的高为n,∴==,∵△AMH的面积为:,∴=AH•m∴m=,∴n=,设△AHC的面积为S,∴==3,=,∴S=3S△AHM∴AC•HG=,∴HG=,∴由勾股定理可知:AG=,∴CG=AC﹣AG=2﹣∴==8﹣故答案为:8﹣【点评】本题考查相似三角形综合问题,解题的关键是通过相似三角形的性质求出HG、CG、AH长度,本题属于难题.三、解答题(本大题共7小题,共86分,解答应写出文字说明、证明过程或演算步骤)19.(16分)(2017•绵阳)(1)计算:+cos245°﹣(﹣2)﹣1﹣|﹣|(2)先化简,再求值:(﹣)÷,其中x=2,y=.【分析】(1)根据特殊角的三角函数值、负整数指数幂、绝对值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(1)+cos245°﹣(﹣2)﹣1﹣|﹣|=0.2+=0.2+=0.7;(2)(﹣)÷=====,当x=2,y=时,原式=.【点评】本题考查分式的化简求值、特殊角的三角函数值、负整数指数幂、绝对值,解答本题的关键是明确它们各自的计算方法.20.(11分)(2017•绵阳)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):182195201179208204186192210204 175193200203188197212207185206 188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:谷粒颗数175≤x<185185≤x<195195≤x<205205≤x<215215≤x<225频数381063对应扇形B D E A C图中区域如图所示的扇形统计图中,扇形A对应的圆心角为72度,扇形B对应的圆心角为36度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?【分析】(1)根据表格中数据填表画图即可,利用360°×其所占的百分比求出扇形对应的圆心角度数;(2)用360°乘以样本中稻穗谷粒数大于或等于205颗的水稻所占百分比即可.【解答】解:(1)填表如下:谷粒颗数175≤x<185185≤x<195195≤x<205205≤x<215215≤x<225频数3810 6 3对应扇形图中区域B D E A C如图所示:如图所示的扇形统计图中,扇形A对应的圆心角为:360°×=72度,扇形B 对应的圆心角为360°×=36度.故答案为3,6,B,A,72,36;(2)3000×=900.即据此估计,其中稻穗谷粒数大于或等于205颗的水稻有900株.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.21.(11分)(2017•绵阳)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【分析】(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据“1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据总费用=大型收割机的费用+小型收割机的费用,即可得出w与m之间的函数关系式,由“要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,依此可找出各方案,再结合一次函数的性质即可解决最值问题.【解答】解:(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据题意得:,解得:.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴,解得:5≤m≤7,∴有三种不同方案.∵w=200m+4000中,200>0,∴w值随m值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.【点评】本题考查了二元一次方程组的应用、一次函数的性质以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据总费用=大型收割机的费用+小型收割机的费用,找出w与m之间的函数关系式.22.(11分)(2017•绵阳)如图,设反比例函数的解析式为y=(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k 的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为时,求直线l的解析式.【分析】(1)由题意可得A(1,2),利用待定系数法即可解决问题;(2)把M(﹣2,0)代入y=kx+b,可得b=2k,可得y=kx+2k,由消去y得到x2+2x﹣3=0,解得x=﹣3或1,推出B(﹣3,﹣k),A(1,3k),根据△ABO的面积为,可得•2•3k+•2•k=,解方程即可解决问题;【解答】解:(1)由题意A(1,2),把A(1,2)代入y=,得到3k=2,∴k=.(2)把M(﹣2,0)代入y=kx+b,可得b=2k,∴y=kx+2k,由消去y得到x2+2x﹣3=0,解得x=﹣3或1,∴B(﹣3,﹣k),A(1,3k),∵△ABO的面积为,∴•2•3k+•2•k=,解得k=,∴直线l的解析式为y=x+.【点评】本题考查一次函数与反比例函数图象的交点、待定系数法、二元一次方程组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(11分)(2017•绵阳)如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DFA=,AN=2,求圆O的直径的长度.【分析】(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,由圆周角定理结合cos∠DFA=、AN=2,即可求出CH、AH 的长度,设圆的半径为r,则OH=r﹣6,根据勾股定理即可得出关于r的一元一次方程,解之即可得出r,再乘以2即可求出圆O直径的长度.【解答】(1)证明:连接OF,则∠OAF=∠OFA,如图所示.∵ME与⊙O相切,∴OF⊥ME.∵CD⊥AB,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF,∠FOH+∠BOF=180°,∴∠M=2∠OAF.∵ME∥AC,∴∠M=∠C=2∠OAF.∵CD⊥AB,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°﹣∠OAF,∠BAC=90°﹣∠C=90°﹣2∠OAF,∴∠CAN=∠OAF+∠BAC=90°﹣∠OAF=∠ANC,∴CA=CN.(2)连接OC,如图2所示.∵cos∠DFA=,∠DFA=∠ACH,∴=.设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴AN===a=2,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r,则OH=r﹣6,在Rt△OCH中,OC=r,CH=8,OH=r﹣6,∴OC2=CH2+OH2,r2=82+(r﹣6)2,解得:r=,∴圆O的直径的长度为2r=.【点评】本题考查了切线的性质、勾股定理、解直角三角形、圆周角定理以及解一元一次方程,解题的关键是:(1)通过角的计算找出∠CAN=90°﹣∠OAF=∠ANC;(2)利用解直角三角形求出CH、AH的长度.24.(12分)(2017•绵阳)如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF 的值.【分析】(1)可设抛物线的顶点式,再结合抛物线过点(4,2),可求得抛物线的解析式;(2)联立直线和抛物线解析式可求得B、D两点的坐标,则可求得C点坐标和线段BD的长,可求得圆的半径,可证得结论;(3)过点C作CH⊥m于点H,连接CM,可求得MH,利用(2)中所求B、D 的坐标可求得FH,则可求得MF和BE的长,可求得其比值.【解答】解:(1)∵已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),∴可设抛物线解析式为y=a(x﹣2)2+1,∵抛物线经过点(4,2),∴2=a(4﹣2)2+1,解得a=,∴抛物线解析式为y=(x﹣2)2+1=x2﹣x+2;(2)联立直线和抛物线解析式可得,解得或,∴B(3﹣,﹣),D(3+,+),∵C为BD的中点,∴点C的纵坐标为=,∵BD==5,∴圆的半径为,∴点C到x轴的距离等于圆的半径,∴圆C与x轴相切;(3)如图,过点C作CH⊥m,垂足为H,连接CM,由(2)可知CM=,CH=﹣1=,在Rt△CMH中,由勾股定理可求得MH=2,∵HF==,∴MF=HF﹣MH=﹣2,∵BE=﹣﹣1=﹣,∴==.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、切线的判定和性质、勾股定理等知识.在(1)中注意利用抛物线的顶点式,在(2)中求得B、D的坐标是解题的关键,在(3)中求得BE、MF的长是解题的关键.本题考查知识点较多,综合性较强,计算量较大,难度较大.25.(14分)(2017•绵阳)如图,已知△ABC中,∠C=90°,点M从点C出发沿CB方向以1cm/s的速度匀速运动,到达点B停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°,再过点N作AC的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF,已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值;如果不能,说明理由;(2)求y关于t的函数解析式及相应t的取值范围;(3)当y取最大值时,求sin∠NEF的值.【分析】(1)由已知得出CN=CM=t,FN∥BC,得出AN=8﹣t,由平行线证出△ANF∽△ACB,得出对应边成比例求出NF=AN=(8﹣t),由对称的性质得出∠ENF=∠MNF=∠NMC=45°,MN=NE,OE=OM=CN=t,由正方形的性质得出OE=ON=FN,得出方程,解方程即可;(2)分两种情况:①当0<t≤2时,由三角形面积得出y=﹣t2+2t;。

2018年四川省绵阳市中考数学试卷(含答案与解析)

2018年四川省绵阳市中考数学试卷(含答案与解析)

数学试卷 第1页(共36页)数学试卷 第2页(共36页)绝密★启用前四川省绵阳市2018年高中阶段学校招生暨初中学业水平考试数 学(本试卷满分140分,考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.0(2018)-的值是( ) A .2018-B .2018C .0D .12.四川省公布了2017年经济数据GDP 排行榜,绵阳市排名全省第二,GDP 总量为2 075亿元.将2 075亿元用科学计数法表示为 ( ) A .120.207510⨯ B .112.07510⨯ C .1020.7510⨯ D .122.07510⨯3.如图,有一块含有30角的直角三角板的两个顶点放在直尺的对边上.如果244∠=,那么1∠的度数是 ( )A .14B .15C .16D .17 4.下列运算正确的是( )A .236a a a =B .325a a a +=C .248()a a =D .32a a a -= 5.下列图形是中心对称图形的是( )ABCD 6.等式3311x x x x --=++成立的x 的取值范围在数轴上可表示为( )AB C D 7.在平面直角坐标系中,以原点为对称中心,把点(3,4)A 逆时针旋转90,得到点B ,则点B 的坐标为 ( ) A .(4,3)- B .(4,3)- C .(3,4)- D .(3,4)-- 8.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人9.如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25π m 2,圆柱高为3 m ,圆锥高为2 m 的蒙古包,则需要毛毡的面积是( )A .2(30529)πm +B .240πmC .2(30521)πm +D .255πm10.一艘在南北航线上的测量船,于A 点处测得海岛B 在点A 的南偏东30方向,继续向南航行30海里到达C 点时,测得海岛B 在C 点的北偏东15方向,那么海岛B 离此航线的最近距离是(结果保留小数点后两位)(参考数据:3 1.732≈,2 1.414≈) ( ) A .4.64海里 B .5.49海里 C .6.12海里 D .6.21海里11.如图,ACB △和ECD △都是等腰直角三角形,CA CB =,CE CD =,ACB △的顶点A 在ECD △的斜边DE 上,若2AE =,6AD =,则两个三角形重叠部分的面积为( )A .2B .32-C .31-D .33-12.将全体正奇数排成一个三角形数阵: 1 3 57 9 11 13 15 17 19 21 23 25 27 29 ……按照以上排列规律,第25行第20个数是( )A .639B .637C .635D .633毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共36页) 数学试卷 第4页(共36页)第Ⅱ卷(非选择题 共104分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 13.因式分解:234x y y -= .14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,)1-和(3,1)-,那么“卒”的坐标为 .15.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能构成三角形的概率是 .16.如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m ,水面下降2 m ,水面宽度增加 m .17.已知0a b >>,且2130a b b a ++=-,则b a= . 18.如图,在ABC △中,3AC =,4BC =,若AC ,BC 边上的中线BE ,AD 垂直相交于O 点,则AB = .三、解答题(本大题共7小题,共86分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分16分,每题8分) (1)4sin60|23+(2)解分式方程:13222x x x-+=--.20.(本小题满分11分)绵阳某公司销售部统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元).销售部规定:当16x <时为“不称职”,当1620x ≤<时为“基本称职”,当2025x ≤<时为“称职”,当25x ≥时为“优秀”.根据以上信息,解答下列问题: (1)补全折线统计图和扇形统计图;(2)求所有“称职”和“优秀”的销售员月销售额的中位数和众数;(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果取整数)?并简述其理由.21.(本小题满分11分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?数学试卷 第5页(共36页) 数学试卷 第6页(共36页)22.(本小题满分11分)如图,一次函数1522y x =-+的图象与反比例函数()k y k x =>0的图象交于A ,B 两点,过A 点做x 轴的垂线,垂足为M ,AOM △面积为1. (1)求反比例函数的解析式;(2)在y 轴上求一点P ,使PA PB +的值最小,并求出其最小值和P 点坐标.23.(本小题满分11分)如图,AB 是O 的直径,点D 在O 上(点D 不与A ,B 重合),直线AD 交过点B 的切线于点C ,过点D 作O 的切线DE 交BC 于点E . (1)求证:BE CE =;(2)若DE AB ∥,求sin ACO ∠的值.24.(本小题满分12分)如图,已知ABC △的顶点坐标分别为(3,0)A ,(0,4)B ,(3,0)C -.动点M ,N 同时从A 点出发,M 沿A C →,N 沿折线A B C →→,均以每秒1个单位长度的速度移动,当一个动点到达终点C 时,另一个动点也随之停止移动,移动时间记为t 秒.连接MN . (1)求直线BC 的解析式;(2)移动过程中,将AMN △沿直线MN 翻折,点A 恰好落在BC 边上点D 处,求此时t 值及点D 的坐标;(3)当点M ,N 移动时,记ABC △在直线MN 右侧部分的面积为S ,求S 关于时间t 的函数关系式.备用图25.(本小题满分14分)如图,已知抛物线2(0)y ax bx a =+≠过点3)A -和B .过点A 作直线AC x ∥轴,交y 轴与点C .(1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D .连接OA ,使得以A ,D ,P 为顶点的三角形与AOC △相似,求出对应点P 的坐标;(3)抛物线上是否存在点Q ,使得13AOC AOQ S S =△△?若存在,求出点Q 的坐标;若不存在,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第7页(共36页)数学试卷第8页(共36页)数学试卷 第9页(共36页) 数学试卷 第10页(共36页)四川省绵阳市2018年高中阶段学校招生暨初中学业水平考试数学答案解析一、选择题 1.【答案】D【解析】解:∵020181=,故答案为:D . 【考点】零次幂的运算 2.【答案】B【解析】解:∵112075 2.07510=⨯亿,故答案为:B . 【考点】科学记数法 3.【答案】C 【解析】解:如图:依题可得:244∠=,60ABC ∠=,BE CD ∥,∴1CBE ∠=∠,又∵60ABC ∠=,∴2CBE ABC ∠=∠-∠604416=-=,即116∠=.故答案为:C .【考点】平行线的性质 4.【答案】C【解析】解:A .∵235a a a =,故错误,A 不符合题意;B .a 3与a 2不是同类项,故不能合并,B 不符合题意;C .∵248()a a =,故正确,C 符合题意;D .a 3与a 2不是同类项,故不能合并,D 不符合题意;故答案为:C . 【考点】整式的运算 5.【答案】D【解析】解:A .不是中心对称图形,A 不符合题意;B .是轴对称图形,B 不符合题意;C .不是中心对称图形,C 不符合题意;D .是中心对称图形,D 符合题意;故答案为:D .【考点】中心对称图形的概念 6.【答案】B【解析】解:依题可得:30x -≥且10x +>,∴3x ≥,故答案为:B . 【考点】分式和根式有意义的条件,不等式在数轴上的表示 7.【答案】B 【解析】解:如图:由旋转的性质可得:AOC BOD △≌△, ∴OD OC =,BD AC =, 又∵(3,4)A ,∴3OD OC ==,4BD AC ==,∵B 点在第二象限, ∴B (4,3)-. 故答案为:B . 【考点】旋转的性质 8.【答案】C【解析】解:设参加酒会的人数为x 人,依题可得:1(1)552x x -=, 化简得:21100x x --=, 解得:111x =,210x =-(舍去), 故答案为:C . 【考点】一元二次方程数学试卷 第11页(共36页) 数学试卷 第12页(共36页)9.【答案】A【解析】解:设底面圆的半径为r ,圆锥母线长为l ,依题可得: 2π25πr =,∴5r =,∴圆锥的母线l ==∴圆锥侧面积2112ππ(m )2S r l rl ===,圆柱的侧面积222π2π5330π(m )S r h ==⨯⨯⨯=,∴需要毛毡的面积230π(m )=+,故答案为:A .【考点】圆柱和圆锥的侧面积 10.【答案】B【解析】解:根据题意画出图如图所示:作BD AC ⊥,取BE CE =,∵30AC =,30CAB ︒∠=,15ACB ︒∠=,∴135ABC ∠=, 又∵BE CE =, ∴15ACB EBC ∠=∠=, ∴120ABE ∠=, 又∵30CAB ∠=, ∴BA BE =,AD DE =, 设BD x =,在Rt ABD △中,∴AD DE ==,2AB BE CE x ===,∴230AC AD DE EC x =++=+=,∴1)5.492x =≈,故答案为:B .【考点】解直角三角形的应用 11.【答案】D【解析】解:连接BD ,作CH DE ⊥,∵ACB △和ECD △都是等腰直角三角形, ∴90ACB ECD ∠=∠=,45ADC CAB ∠=∠=, 即90ACD DCB ACD ACE ∠+∠=∠+∠=, ∴DCB ACE ∠=∠, 在DCB △和ECA △中,DC EC DCB ACE AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴DCB ECA △≌△,∴DB EA =45CDB E ∠=∠=, ∴90CDB ADC ADB ∠+∠=∠=, 在Rt ABD △中,∴AB ==,在Rt ABC △中, ∴2228AC AB ==, ∴2AC BC ==, 在Rt ECD △中,数学试卷 第13页(共36页) 数学试卷 第14页(共36页)∴2222CDDE ==,∴1CD CE =,∵ACO DCA ∠=∠,CAO CDA ∠=∠, ∴CAO CDA △∽△,∴221)4CAO ACD S S ===-=-△△ 又∵11222ECD S CE DE CH ==△,∴22CH ==∴1122ACD A C S DH =⨯==△, ∴(43CAOACD S S =-⨯=-△△即两个三角形重叠部分的面积为3 故答案为:D .【考点】等腰直角三角形的性质,勾股定理,相似三角形的判定和性质 12.【答案】A【解析】解:依题可得:第25行的第一个数为:(124)24124682*********+⨯+++++⋯⋯+⨯=+⨯=,∴第25行的第第20个数为:601219639+⨯=. 故答案为:A . 【考点】规律的探究13.【答案】(2)(2)y x y x y +-【解析】解:原式(2)(2)y x y x y =++-, 故答案为:(2)(2)y x y x y +-. 【考点】因式分解 14.【答案】(2,2)--【解析】解:建立平面直角坐标系(如图),∵相(3,1)-,兵(3,1)-, ∴卒(2,2)--, 故答案为:(2,2)--. 【考点】平面直角坐标系15.【答案】310【解析】解:从5根木条中任取3根的所有情况为:1、2、3;1、2、4;1、2、5;1、3、4;1、3、5;1、4、5;2、3、4;2、3、5;2、4、5;3、4、5;共10种情况; ∵能够构成三角形的情况有:2、3、4;2、4、5;3、4、5;共3种情况;∴能够构成三角形的概率为:310.故答案为:310.【考点】概率的计算 16.【答案】4【解析】解:根据题意以AB 为x 轴,AB 的垂直平分线为y 轴建立平面直角坐标系(如图),依题可得:(2,0)A -,(2,0)B ,(0,2)C ,设经过A、B 、C 三点的抛物线解析式为:(2)(2)y a x x =-+, ∵(0,2)C 在此抛物线上,数学试卷 第15页(共36页) 数学试卷 第16页(共36页)∴12a =-, ∴此抛物线解析式为:1(2)(2)2y x x =--+,∵水面下降2 m ,∴1(2)(2)22x x --+=-,∴1x =2x =-,∴下降之后的水面宽为:∴水面宽度增加了:4.故答案为:4.【考点】二次函数的图象与性质17.【解析】解:∵2130a b b a ++=-,两边同时乘以()ab b a -得: 22220a ab b --=,两边同时除以a 2得:22()210b ba a +-=, 令(0)bt t a =>,∴22210t t +-=,∴t =,∴b t a ==.【考点】解分式方程,换元法 18.【解析】解:连接DE ,∵AD 、BE 为三角形中线,∴DE AB ∥,12DE AB =,∴DOE AOB △∽△, ∴12DO OE DE OA OB AB ===, 设OD x =,OE y =, ∴2OA x =,2OB y =, 在Rt BOD △中,2244x y += ①,在Rt AOE △中,22944x y += ②,∴+①②得:2225554x y +=, ∴2254x y +=,在Rt AOB △中,∴222225444()44AB xy x y =+=+=⨯,即AB =.【考点】勾股定理,三角形中位线的性质,三角形相似的判定与性质 三、解答题19.【答案】(1)1423=⨯原式,2=+,数学试卷 第17页(共36页) 数学试卷 第18页(共36页)2=.(2)方程两边同时乘以2x -得:12(2)3x x -+-=-, 去括号得:1243x x -+-=-, 移项得:2314x x +=-++,合并同类项得:32x =,系数化为1得:23x =.检验:将23x =代入最简公分母不为0,故是原分式方程的根,∴原分式方程的解为:23x =.【解析】(1)1423=⨯原式, 2=+, 2=.(2)方程两边同时乘以2x -得:12(2)3x x -+-=-, 去括号得:1243x x -+-=-, 移项得:2314x x +=-++,合并同类项得:32x =, 系数化为1得:23x =.检验:将23x =代入最简公分母不为0,故是原分式方程的根,∴原分式方程的解为:23x =.【考点】实数的运算,解分式方程 20.【答案】(1)解:依题可得: “不称职”人数为:224()+=人,“基本称职”人数为:233210()+++=人, “称职”人数为:4543420()++++=人, ∴总人数为:2050%40()÷=人, ∴不称职”百分比:44010%a =÷=,“基本称职”百分比:104025%b =÷=,“优秀”百分比:110%25%50%15%d =---=, ∴“优秀”人数为:4015%6()⨯=人, ∴得26分的人数为:62112()---=人, 补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人, “优秀”25万2人,26万2人,27万1人,28万1人; “称职”的销售员月销售额的中位数为:22万,众数:21万; “优秀”的销售员月销售额的中位数为:26万,众数:25万和26万; (3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.【解析】(1)解:依题可得: “不称职”人数为:224()+=人,“基本称职”人数为:233210()+++=人, “称职”人数为:4543420()++++=人, ∴总人数为:2050%40()÷=人, ∴不称职”百分比:44010%a =÷=, “基本称职”百分比:104025%b =÷=,“优秀”百分比:110%25%50%15%d =---=, ∴“优秀”人数为:4015%6()⨯=人,数学试卷 第19页(共36页) 数学试卷 第20页(共36页)∴得26分的人数为:62112()---=人, 补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人, “优秀”25万2人,26万2人,27万1人,28万1人; “称职”的销售员月销售额的中位数为:22万,众数:21万; “优秀”的销售员月销售额的中位数为:26万,众数:25万和26万; (3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.【考点】扇形统计图,折线统计图,中位数,众数,数据分析21.【答案】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得:3418217x y x y +=⎧⎨+=⎩,, 解得:43.2x y =⎧⎪⎨=⎪⎩,答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10m -辆,依题可得: 34(10)332m m +-≥,0m ≥,10m -≥0,解得:36105m ≤≤,∴8,9,10m =;∴当大货车8辆时,则小货车2辆; 当大货车9辆时,则小货车1辆; 当大货车10辆时,则小货车0辆;设运费为13010010)30100(0W m m m =+-=+,∵300k =>,∴W 随x 的增大而增大, ∴当8m =时,运费最少, ∴30810001240()W =⨯+=元,答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解析】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得:3418217x y x y +=⎧⎨+=⎩,, 解得:43.2x y =⎧⎪⎨=⎪⎩,答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10m -辆,依题可得: 34(10)332m m +-≥,0m ≥,10m -≥0,解得:36105m ≤≤,∴8,9,10m =;∴当大货车8辆时,则小货车2辆;当大货车9辆时,则小货车1辆;当大货车10辆时,则小货车0辆;设运费为13010010)30100(0W m m m=+-=+,∵300k=>,∴W随x的增大而增大,∴当8m=时,运费最少,∴30810001240()W=⨯+=元,答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【考点】二元一次方程组解决实际问题,一次函数的应用22.【答案】(1)解:设(,)A x y,∵A点在反比例函数上,∴k xy=,又∵1111 222AOMS OM AM x y k====,∴2k=.∴反比例函数解析式为:2 yx =.(2)解:作A关于y轴的对称点A',连接A B'交y轴于点P,PA PB+的最小值即为A B'.∴21522yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,,∴12xy=⎧⎨=⎩,或41.2xy=⎧⎪⎨=⎪⎩,∴(1,2)A,1 (4,)2 B,∴(1,2) A'-,∴PA PB A B'+==.设A B'直线解析式为:y ax b=+,∴2142a ba b-+=⎧⎪⎨+=⎪⎩,∴3101710ab⎧=-⎪⎪⎨⎪=⎪⎩,∴A B'直线解析式为:3171010y x=-+,∴17(0,)10P.【解析】(1)解:设(,)A x y,∵A点在反比例函数上,∴k xy=,又∵1111222AOMS OM AM x y k====,∴2k=.∴反比例函数解析式为:2yx=.(2)解:作A关于y轴的对称点A',连接A B'交y轴于点P,PA PB+的最小值即为A B'.∴21522yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,,∴12xy=⎧⎨=⎩,或41.2xy=⎧⎪⎨=⎪⎩,∴(1,2)A,1 (4,)2 B,∴(1,2)A '-,∴PA PB A B '+==.设A B '直线解析式为:y ax b =+,∴2142a b a b -+=⎧⎪⎨+=⎪⎩,∴3101710a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴A B '直线解析式为:3171010y x =-+, ∴17(0,)10P .【考点】一次函数和反比例函数的图象与性质,待勾股定理 23.【答案】(1)证明:连接OD 、BD , ∵EB 、ED 分别为圆O 的切线, ∴ED EB =, ∴EDB EBD ∠=∠, 又∵AB 为圆O 的直径, ∴BD AC ⊥,∴BDE CDE EBD DCE ∠+∠=∠+∠, ∴CDE DCE ∠=∠, ∴ED EC =, ∴EB EC =.(2)解:过O 作OH AC ⊥,设圆O 半径为r ,∵DE AB ∥,DE 、EB 分别为圆O 的切线, ∴四边形ODEB 为正方形,∵O 为AB 中点,∴D 、E 分别为AC 、BC 的中点, ∴2BC r =,AC =, 在Rt COB △中,∴OC =,又∵1122ACO S AO BC ACOH ==,∴2r r OH⨯=⨯, ∴OH =,在Rt COH△中,∴sin OH ACO OC ∠===. 【解析】(1)证明:连接OD 、BD , ∵EB 、ED 分别为圆O 的切线, ∴ED EB =, ∴EDB EBD ∠=∠, 又∵AB 为圆O 的直径, ∴BD AC ⊥,∴BDE CDE EBD DCE ∠+∠=∠+∠, ∴CDE DCE ∠=∠,∴ED EC =, ∴EB EC =.(2)解:过O 作OH AC ⊥,设圆O 半径为r ,∵DE AB ∥,DE 、EB 分别为圆O 的切线, ∴四边形ODEB 为正方形, ∵O 为AB 中点,∴D 、E 分别为AC 、BC 的中点, ∴2BC r =,AC =, 在Rt COB △中,∴OC =,又∵1122ACO S AO BC ACOH ==,∴2r rOH ⨯=⨯, ∴OH =,在RtCOH △中,∴sin OH ACO OC ∠=. 【考点】圆的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理 24.【答案】(1)解:设直线BC 解析式为:y kx b =+, ∵(0,4)B ,(3,0)C -,∴430b k b =⎧⎨-+=⎩,解得:434k b ⎧=⎪⎨⎪=⎩, ∴直线BC 解析式为:443y x =+. (2)解:依题可得:AM AN t ==,∵AMN △沿直线MN 翻折,点A 与点点D 重合, ∴四边形AMDN 为菱形,作NF x ⊥轴,连接AD 交MN 于O ′,∵(3,0)A ,(0,4)B , ∴3OA =,4OB =, ∴5AB =, ∴(3,0)M t -, 又∵ANF ABO △∽△,∴AN AF NF AB AO OB ==, ∴534t AF NF ==, ∴35AF t =,45NF t =,∴34(3,)55N t t -,∴32(3,)55O t t '-,设(,)D x y ,∴34325x t +=-,0225y t +=, ∴835x t =-,45y t =,∴4(3)8,55t D t -,又∵D 在直线BC 上, ∴484(3)4355t t ⨯-+=, ∴3011t =,∴1524(,)1111D -.(3)①当05t <≤时(如图),ABC △在直线MN 右侧部分为AMN △,∴211422255AMN S S AM DF t t t ===⨯⨯=△,②当56t <≤时,ABC △在直线MN 右侧部分为四边形ABNM ,如图∵AM AN t ==,5AB BC ==,∴5BN t =-,5(5)10CN t t =---=-, 又∵CNF CBO △∽△,∴CN NF CB OB =, ∴1054t NF -=, ∴4(10)5NF t =-,∴1122ABC CNM S S S AC OB CM NF =-=-△,11464(6)(10)225t t =⨯⨯-⨯-⨯⨯-, 22321255t t =-+-.【解析】(1)解:设直线BC 解析式为:y kx b =+,∵(0,4)B ,(3,0)C -, ∴430b k b =⎧⎨-+=⎩,解得:434k b ⎧=⎪⎨⎪=⎩, ∴直线BC 解析式为:443y x =+. (2)解:依题可得:AM AN t ==,∵AMN △沿直线MN 翻折,点A 与点点D 重合,∴四边形AMDN 为菱形,作NF x ⊥轴,连接AD 交MN 于O ',∵(3,0)A ,(0,4)B ,∴3OA =,4OB =, ∴5AB =, ∴(3,0)M t -, 又∵ANF ABO △∽△,∴AN AF NF AB AO OB ==, ∴534t AF NF ==, ∴35AF t =,45NF t =,∴34(3,)55N t t -,∴32(3,)55O t t '-,设(,)D x y , ∴34325x t +=-,0225y t +=,∴835x t =-,45y t =,∴4(3)8,55t D t -,又∵D 在直线BC 上, ∴484(3)4355t t ⨯-+=, ∴3011t =,∴1524(,)1111D -.(3)①当05t <≤时(如图),ABC △在直线MN 右侧部分为AMN △,∴211422255AMN S S AM DF t t t ===⨯⨯=△,②当56t <≤时,ABC △在直线MN 右侧部分为四边形ABNM ,如图∵AM AN t ==,5AB BC ==,∴5BN t =-,5(5)10CN t t =---=-, 又∵CNF CBO △∽△, ∴CN NF CB OB =, ∴1054t NF -=, ∴4(10)5NF t =-,∴1122ABC CNM S S S AC OB CM NF =-=-△,11464(6)(10)225t t =⨯⨯-⨯-⨯⨯-, 22321255t t =-+-.【考点】直线的解析式,全等三角形的判定和性质,相似三角形的判定和性质,三角形和四边形的面积,动点问题25.【答案】(1)解:∵点A 、B 在抛物线上, ∴33270aa ⎧+=-⎪⎨+=⎪⎩, 解得:12a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为:212y x=. (2)解:设(,)P x y , ∵3)A -,(0,3)C -,∴(,3)D x -,∴3PD y=+,3CO =,AD x =AC =, ①当ADP ACO Rt △∽△时,∴AD DP =,33y +=,∴6y=-,又∵P 在抛物线上, ∴2126yx y ⎧=-⎪⎨⎪=-⎩,,∴2120x -+=, ∴((0xx --=,∴1x =,2x =,∴6x y ⎧=⎪⎨=⎪⎩3x y ⎧=⎪⎨=-⎪⎩,,∵3)A -,∴P .②当PDA ACO △∽△时, ∴PD DA AC=,=∴4y=-, 又∵P 在抛物线上, ∴2124y x y ⎧=⎪⎪⎨⎪=-⎪⎩,,, 2110x -+=, ∴8)(0x -=,∴1x =2x =解得:43x y⎧=⎪⎪⎨⎪=-⎪⎩或3xy ⎧=⎪⎨=-⎪⎩,∵3)A -,∴4)3P -.综上,P 点坐标为或4)3-. (3)解:∵3)A -,∴AC =,3OC =,∴OA =,∴1133222AOC S OC AC OA h ===△, ∴32h =, 又∵13AOC AOQ S S =△△,∴AOQ △边OA 上的高932h ==, 过O 作OM OA ⊥,截取92OM =,过点M 作MN OA ∥交y 轴于点N ,过M 作HM x⊥轴,(如图),∵3AC =,23OA =, ∴30AOC ∠=, 又∵MN OA ∥,∴30MNO AOC ∠=∠=,OM MN ⊥, ∴29ON OM ==,60NOM ∠=, 即(0,9)N ,∴30MOB ∠=,∴1924MH OM ==,∴OH ==, ∴9)4M , 设直线MN 解析式为:y kx b =+,∴949b b ⎪=⎩+=,,∴9k b ==⎪⎩⎧⎪⎨,, ∴直线MN解析式为:9y =+,∴2912y x y ⎧=⎪⎨⎪=⎩+,,∴2180x --=,()()0x x -+=,∴1x =2x =-∴0x y ⎧=⎪⎨=⎪⎩或15x y ⎧=-⎪⎨=⎪⎩,∴Q点坐标)或()-,∴抛物线上是否存在点Q ,使得13AOCAOQ S S =△△. 【解析】(1)解:∵点A 、B 在抛物线上,∴33270a a ⎧+=-⎪⎨+=⎪⎩,解得:12a b ⎧=⎪⎪⎨⎪=⎪⎩∴抛物线解析式为:212y x =. (2)解:设(,)P x y ,∵3)A -,(0,3)C -,∴(,3)D x -,∴3PD y =+,3CO =,AD x =AC = ①当ADP ACO Rt △∽△时, ∴AD DP AC CO =,33y +=,∴6y =-,又∵P 在抛物线上,∴2126y x y ⎧=-⎪⎨⎪=-⎩,,∴2120x -+=, ∴((0x x --=,∴1x =,2x =,∴6x y ⎧=⎪⎨=⎪⎩3x y ⎧=⎪⎨=-⎪⎩,,∵3)A -,∴P .②当PDA ACO △∽△时, ∴PD DA AC CO =,3x -=∴4y =-, 又∵P 在抛物线上,∴2124y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,,,2110x -+=,∴8)(0x -=,∴1x =2x =,解得:433x y ⎧=⎪⎪⎨⎪=-⎪⎩或3x y ⎧=⎪⎨=-⎪⎩,∵3)A -,∴4)3P -.综上,P点坐标为或4)3-. (3)解:∵3)A -,∴AC =,3OC =,∴OA =,∴1133222AOC S OC AC OA h ===△, ∴32h =,又∵13AOC AOQ S S =△△,∴AOQ △边OA 上的高932h ==,过O 作OM OA ⊥,截取92OM =,过点M 作MN OA ∥交y 轴于点N ,过M 作HM x⊥轴,(如图),∵3AC =,23OA =, ∴30AOC ∠=, 又∵MN OA ∥,∴30MNO AOC ∠=∠=,OM MN ⊥, ∴29ON OM ==,60NOM ∠=, 即(0,9)N ,∴30MOB ∠=,∴1924MH OM ==,∴OH ==, ∴9)4M , 设直线MN 解析式为:y kx b =+,∴949b b ⎪=⎩+=,, ∴9k b ==⎪⎩⎧⎪⎨,, ∴直线MN 解析式为:9y =+,∴2912y x y ⎧=-⎪⎨⎪=⎩+,, ∴2180x --=,()()0x x -+=,∴1x =2x =-∴0x y ⎧=⎪⎨=⎪⎩或15x y ⎧=-⎪⎨=⎪⎩,∴Q 点坐标)或()-,∴抛物线上是否存在点Q ,使得13AOC AOQ S S =△△.【考点】二次函数的图象与性质,三角形相似的判定与性质。

四川省绵阳市 中考数学一诊试卷 (Word版 含解析)

四川省绵阳市 中考数学一诊试卷 (Word版 含解析)

四川省绵阳市中考数学一诊试卷一.选择题(共12小题).1.下列国产车的标志中是中心对称图形的是()A.B.C.D.2.关于x的方程(m﹣1)x2+x+m2+2m﹣3=0的一个根是0,则m的值是()A.7B.﹣3C.1或﹣3D.03.某口罩加工厂今年一月口罩产值达80万元,第一季度总产值达340万元,问二,三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程为()A.80(1+x)2=340B.80+80(1+x)2=340C.80(1+x)+80(1+x)2=340D.80+80(1+x)+80(1+x)2=3404.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣5C.y=(x﹣5)2﹣13D.y=(x+1)2﹣55.如图,在△ABC中,将△ABC绕着点A顺时针旋转后,得到△AB′C′,且点C′在BC上,若∠B′C′B=52°,则∠C的度数为()A.74°B.66°C.64°D.76°6.如图,ABCDEF是中心为原点O,顶点A,D在x轴上,半径为4的正六边形,则顶点F的坐标为()A.(2,2)B.(﹣2,2)C.(﹣2,2)D.(﹣1,)7.如图,A、B、C三点在⊙O上,若∠ACB=∠AOB,则∠AOB的度数是()A.60°B.90°C.100°D.120°8.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲢鱼的概率约为()A.B.C.D.9.如图,矩形ABCD的边长AB=1,BC=2.把BC绕B逆时针旋转,使C恰好落在AD上的点E处,线段BC扫过部分为扇形BCE.若扇形BCE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.C.D.10.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表,下列说法错误的是()x…﹣1013…y…﹣3131…A.a<0B.方程ax2+bx+c=﹣2的正根在4与5之间C.2a+b>0D.若点(5,y1)、(﹣,y2)都在函数图象上,则y1<y211.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=4,CG=3,则CE的长为()A.5B.5C.5D.12.如图,函数y1=|x2﹣m|的图象如图,坐标系中一次函数y2=x+b的图象记为y2,则以下说法中正确的有()①当m=1,且y1与y2恰好有三个交点时b有唯一值为1;②当m=4,且y1与y2只有两个交点时,b>或﹣2<b<2;③当m=﹣b时,y1与y2一定有交点:④当m=b时,y1与y2至少有2个交点,且其中一个为(0,m).A.1个B.2个C.3个D.4个二、填空题(共6小题).13.平面直角坐标系中,P(x,2+y)与Q(2y,x)关于原点对称,则xy=.14.如图,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中∠ABC=90°,AC=50cm,AB=30cm,小明蒙上眼睛用棍子击中了锣面,他击中阴影部分的概率是.15.飞机着陆后滑行的距离s(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=96t﹣1.2t2,那么飞机着陆后秒停下.16.已知△ABC三边的长分别为5、12、13,那么△ABC内切圆的半径为.17.若min{a,b,c}表示a,b,c三个数中的最小值,当y=min{x2,2x+4,12﹣x}时,则y的取值范围是.18.等边△ABC的边长为6,P是AB上一点,AP=2,把AP绕点A旋转一周,P点的对应点为P′,连接BP′,BP′的中点为Q,连接CQ.则CQ长度的最小值是.三、解答题(共7个小题,共90分,解答应写出文字说明、证明过程或演算步骤)19.解方程:x2+2x+1=3x+3.20.在乐善中学组织的体育测试中,小壮掷出的实心球的高度y(m)与水平距离x(m)之间的关系式是y=﹣(x﹣3)2+,求小壮此次实心球推出的水平距离.21.疫情期间,游海中学进行了一次线上数学学情调查,九(1)班数学李老师对成绩进行分析,制作如下的频数分布表和频数分布直方图.60到70之间学生成绩尚未统计,根据情况画出的扇形图如图.请解答下列问题:类别分数段频数(人数)A60≤x<70aB70≤x<8016C80≤x<9024D90≤x<1006(1)完成频数分布表,a=,B类圆心角=°,并补全频数分布直方图;(2)全校九年级共有720名学生全部参加此次测试,估计该校成绩80≤x<100范围内的学生有多少人?(3)九(1)班数学老师准备从D类优生的6人中随机抽取两人进行线上学习经验交流,已知这6人中有两名是无家长管理的留守学生,求恰好只选中其中一名留守学生进行经验交流的概率.22.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(2,4)、B(1,2)、C(5,3).以点(0,0)为旋转中心,将△ABC顺时针旋转90°,得到△A1B1C1.(1)在坐标系中画出△A1B1C1.(2)若△ABC上有一点P(m,n),直接写出旋转后对应点P1的坐标.(3)求旋转中线段AC所经过部分的面积.23.已知关于x的一元二次方程(a﹣3)x2﹣4x+3=0有两个不等的实根.(1)求a的取值范围;(2)当a取最大整数值时,△ABC的三条边长均满足关于x的一元二次方程(a﹣3)x2﹣4x+3=0,求△ABC的周长.24.如图,游仙怡心月季养植园是一个矩形ABCD,AD=32米,AB=20米.为了便于养护与运输,养植园内留有四横四纵等宽道路,养植面积与道路面积比为7:3.(1)求道路的宽度.(2)养植区域内月季盆裁要均匀摆放,即每平方米摆放的盆数一样.每平方米最多能摆放36盆,密度越大,花的品质会下降,每盆月季的出售价也会随之降低.大棚内现在每平米有月季小盆栽10盆,每盆的出售价为5元.分析发现:每平方米每增加5盆,每盆的出售价会下降0.5元.老板准备增加养植数量,以获得最多的出售总额,那么每平米应该养植多少盆月季小盆栽才能使出售总额最多?25.如图1,O是△ABC的边BC的中点,⊙O与BC交于E、F两点,与AB相切于点D,连接AO交⊙O于点P,=.(1)猜想AC与⊙O的位置关系,并证明你的猜想.(2)如图2,延长AO交⊙O于Q点,连接DE、DF,DQ,FQ,FQ=,ED=5,求DQ的长.(3)如图3,若DE=5,连接DF、DP、PF,设DP=x,△DPF的面积为y,求y与x之间的函数关系式.26.如图,抛物线y=ax2+bx+c与x轴交于A(1,0),B(5,0)两点,与y轴交于点C.抛物线顶点纵坐标为﹣4.(1)求抛物线的解析式及C点坐标.(2)如图1,过C作x轴的平行线,与抛物线交于点M,连接AM、BM,在y轴上是否存在点N,使∠ANB=∠AMB?若存在,请求出点N的坐标;若不存在,请说明理由.(3)把线段OC绕O点顺时针旋转,使C点恰好落在抛物线对称轴上的点P处,如图2,再将线段OP绕P点逆时针旋转45°得线段PQ,请计算Q点坐标,并判断Q点在抛物线上吗?参考答案一.选择题(共12小题).1.下列国产车的标志中是中心对称图形的是()A.B.C.D.解:A.不是中心对称图形,不合题意;B.是中心对称图形,符合题意;C.不是中心对称图形,不合题意;D.不是中心对称图形,不合题意;故选:B.2.关于x的方程(m﹣1)x2+x+m2+2m﹣3=0的一个根是0,则m的值是()A.7B.﹣3C.1或﹣3D.0解:把x=0代入方程(m﹣1)x2+x+m2+2m﹣3=0,得m2+2m﹣3=0,解得m=1或﹣3.故选:C.3.某口罩加工厂今年一月口罩产值达80万元,第一季度总产值达340万元,问二,三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程为()A.80(1+x)2=340B.80+80(1+x)2=340C.80(1+x)+80(1+x)2=340D.80+80(1+x)+80(1+x)2=340解:设月平均增长率的百分数为x,80+80(1+x)+80(1+x)2=340.故选:D.4.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣5C.y=(x﹣5)2﹣13D.y=(x+1)2﹣5解:∵y=x2﹣4x﹣4=(x﹣2)2﹣8,∴将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为y=(x﹣2+3)2﹣8+3,即y=(x+1)2﹣5.故选:D.5.如图,在△ABC中,将△ABC绕着点A顺时针旋转后,得到△AB′C′,且点C′在BC上,若∠B′C′B=52°,则∠C的度数为()A.74°B.66°C.64°D.76°解:∵将△ABC绕点A顺时针旋转后,得到△AB′C′,∴AC′=AC,∴∠C=∠AC′C=∠AC′B′,∵∠B′C′B=52°,∴∠CC′B′=180°﹣52°=128°,∴∠C=∠AC′C=∠AC′B′=×128°=64°,故选:C.6.如图,ABCDEF是中心为原点O,顶点A,D在x轴上,半径为4的正六边形,则顶点F的坐标为()A.(2,2)B.(﹣2,2)C.(﹣2,2)D.(﹣1,)解:连接OF.∵∠AOF==60°,OA=OF,∴△AOF是等边三角形,∴OA=OF=4.设EF交y轴于G,则∠GOF=30°.在Rt△GOF中,∵∠GOF=30°,OF=4,∴GF=2,OG=2.∴F(﹣2,2).故选:C.7.如图,A、B、C三点在⊙O上,若∠ACB=∠AOB,则∠AOB的度数是()A.60°B.90°C.100°D.120°解:如图,在优弧AB上取一点D,连接AD,BD.∵∠ACB+∠ADB=180°,∠ACB=∠AOB=2∠ADB,∴2∠ADB+∠ADB=180°,∴∠ADB=60°,∴∠AOB=2∠ADB=120°,故选:D.8.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲢鱼的概率约为()A.B.C.D.解:∵捕捞到草鱼的频率稳定在0.5左右,设草鱼的条数为x,可得:=0.5,解得:x=2400,∴由题意可得,捞到鲢鱼的概率为:=;故选:D.9.如图,矩形ABCD的边长AB=1,BC=2.把BC绕B逆时针旋转,使C恰好落在AD上的点E处,线段BC扫过部分为扇形BCE.若扇形BCE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.C.D.解:∵线段CE由线段BC旋转而成,BC=2,∴BE=BC=2.∵AB=1,∠BAE=90°,∴∠AEB=30°.∵AD∥BC,∴∠EBC=∠AEB=30°,∴S阴影==,设围成的圆锥的底面半径为r,则2πr=,解得:r=.故选:A.10.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表,下列说法错误的是()x…﹣1013…y…﹣3131…A.a<0B.方程ax2+bx+c=﹣2的正根在4与5之间C.2a+b>0D.若点(5,y1)、(﹣,y2)都在函数图象上,则y1<y2解:∵二次函数值先由小变大,再由大变小,∴抛物线的开口向下,∴a<0,故A正确;∵x=﹣1时,y=﹣3,∴x=4时,y=﹣3,∴二次函数y=ax2+bx+c的函数值为﹣2时,﹣1<x<0或3<x<4,即方程ax2+bx+c=﹣2的负根在﹣1与0之间,正根在3与4之间,故B错误;∵抛物线过点(0,1)和(3,1),∴抛物线的对称轴为直线x=,∴﹣=>1,∴2a+b>0,故C正确;∵(﹣,y2)关于直线x=的对称点为(,y2),∵<5,∴y1<y2,故D正确;故选:B.11.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=4,CG=3,则CE的长为()A.5B.5C.5D.解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=7﹣x=BF,FG=CF﹣CG=11﹣x,∴EG=11﹣x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+32=(11﹣x)2,解得x=,∴CE的长为,故选:C.12.如图,函数y1=|x2﹣m|的图象如图,坐标系中一次函数y2=x+b的图象记为y2,则以下说法中正确的有()①当m=1,且y1与y2恰好有三个交点时b有唯一值为1;②当m=4,且y1与y2只有两个交点时,b>或﹣2<b<2;③当m=﹣b时,y1与y2一定有交点:④当m=b时,y1与y2至少有2个交点,且其中一个为(0,m).A.1个B.2个C.3个D.4个解:①错误.如图1中,当直线y=x+b与抛物线相切时,也满足条件只有三个交点.此时b≠1,故①错误.②正确.如图2中,当抛物线经过点(﹣2,0)时,0=4﹣m,m=4.由消去y得到x2+x+b﹣4=0,当△=0时,1﹣4b+16=0,∴b=,观察图象可知当b>或﹣2<b<2时,y1与y2有两个交点.故②正确.③错误.如图3中,当b=﹣4时,观察图象可知,y1与y2没有交点,故③错误.④正确.如图4中,当b=4时,观察图象可知,b>0,y1与y2至少有2个交点,且其中一个为(0,m),故④正确.故选:B.二、填空题(共6个小题,每小题4分,共24分,将答案填写在答题卡相应的横线上)13.平面直角坐标系中,P(x,2+y)与Q(2y,x)关于原点对称,则xy=﹣8.解:∵P(x,2+y)与Q(2y,x)关于原点对称,∴,解得:,则xy=﹣4×2=﹣8.故答案为:﹣8.14.如图,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中∠ABC=90°,AC=50cm,AB=30cm,小明蒙上眼睛用棍子击中了锣面,他击中阴影部分的概率是.解:∵∠ABC=90°,AC=50cm,AB=30cm,∴由勾股定理得:BC=40cm,∴S△ABC=AB•BC=×30×40=600(cm2),∴S阴影=S正方形﹣4S△ABC=502﹣4×600=100(cm2),∴小明蒙上眼睛用棍子击中了锣面,他击中阴影部分的概率是=,故答案为:.15.飞机着陆后滑行的距离s(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=96t﹣1.2t2,那么飞机着陆后40秒停下.解:s=96t﹣1.2t2,当t=﹣==40(秒)时,s将取到最大值,即飞机着陆后40秒停下.故答案为:40.16.已知△ABC三边的长分别为5、12、13,那么△ABC内切圆的半径为2.解:如图,圆O为△ABC内切圆,切点分别为D、E、F,连接OF、OE、OD,则OF⊥AC,OE ⊥BC,OD⊥AB.由切线长定理,可知AF=AD,CF=CE,BD=BE,∴OE=OF=CE=CF,又∵52+122=132,∴∠C=90°,∴四边形FCEO为正方形,∴CE===2.故答案为2.17.若min{a,b,c}表示a,b,c三个数中的最小值,当y=min{x2,2x+4,12﹣x}时,则y的取值范围是y≤9.解:如图,当x=3时y有最大值,y最大=12﹣3=9,故答案为y≤9.18.等边△ABC的边长为6,P是AB上一点,AP=2,把AP绕点A旋转一周,P点的对应点为P′,连接BP′,BP′的中点为Q,连接CQ.则CQ长度的最小值是3﹣1.解:如图,取AB中点D,连接DQ,CD,AP',∵AP=2,把AP绕点A旋转一周,∴AP'=2,∵等边△ABC的边长为6,点D是AB中点,∴BD=AD=3,CD⊥AB,∴CD===3,∵点Q是BP'是中点,∴BQ=QP',又∵AD=BD,∴DQ=AP'=1,在△CDQ中,CQ≥DC﹣DQ,∴CQ的最小值为3﹣1,故答案为3﹣1.三、解答题(本大题共7个小题,共90分,解答应写出文字说明、证明过程或演算步骤)19.解方程:x2+2x+1=3x+3.解:∵x2+2x+1=3x+3,∴(x+1)2﹣3(x+1)=0,则(x+1)(x﹣2)=0,∴x+1=0或x﹣2=0,解得x1=﹣1,x2=2.20.在乐善中学组织的体育测试中,小壮掷出的实心球的高度y(m)与水平距离x(m)之间的关系式是y=﹣(x﹣3)2+,求小壮此次实心球推出的水平距离.解:令y=0,则﹣(x﹣3)2+=0,解得:x1=8,x2=﹣2(舍去),故小壮此次实心球推出的水平距离为:8米.21.疫情期间,游海中学进行了一次线上数学学情调查,九(1)班数学李老师对成绩进行分析,制作如下的频数分布表和频数分布直方图.60到70之间学生成绩尚未统计,根据情况画出的扇形图如图.请解答下列问题:类别分数段频数(人数)A60≤x<70aB70≤x<8016C80≤x<9024D90≤x<1006(1)完成频数分布表,a=2,B类圆心角=120°,并补全频数分布直方图;(2)全校九年级共有720名学生全部参加此次测试,估计该校成绩80≤x<100范围内的学生有多少人?(3)九(1)班数学老师准备从D类优生的6人中随机抽取两人进行线上学习经验交流,已知这6人中有两名是无家长管理的留守学生,求恰好只选中其中一名留守学生进行经验交流的概率.解:(1)调查的总人数为:24÷50%=48(人),∴a=48﹣16﹣24﹣6=2,B类圆心角的度数为360°×=120°,故答案为2,120;补全频数分布直方图为:(2)720×=450(人),所以估计该校成绩80≤x<100范围内的学生有450人;(3)把D类优生的6人分别即为1、2、3、4、5、6,其中1、2为留守学生,画树状图如图:共有30个等可能的结果,恰好只选中其中一名留守学生进行经验交流的结果有16个,∴恰好只选中其中一名留守学生进行经验交流的概率为=.22.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(2,4)、B(1,2)、C(5,3).以点(0,0)为旋转中心,将△ABC顺时针旋转90°,得到△A1B1C1.(1)在坐标系中画出△A1B1C1.(2)若△ABC上有一点P(m,n),直接写出旋转后对应点P1的坐标.(3)求旋转中线段AC所经过部分的面积.解:(1)如图,△A1B1C1即为所求作.(2)P1(n,﹣m).(3)线段AC所经过部分的面积=﹣=(OC2﹣OA2)=•(32+52﹣22﹣42)=,23.已知关于x的一元二次方程(a﹣3)x2﹣4x+3=0有两个不等的实根.(1)求a的取值范围;(2)当a取最大整数值时,△ABC的三条边长均满足关于x的一元二次方程(a﹣3)x2﹣4x+3=0,求△ABC的周长.解:(1)∵关于x的一元二次方程(a﹣3)x2﹣4x+3=0有两个不相等的实数根,∴,解得a<且a≠3.(2)由(1)得a的最大整数值为4;∴x2﹣4x+3=0解得:x1=1 x2=3.∵△ABC的三条边长均满足关于x的一元二次方程(a﹣3)x2﹣4x+3=0,∴①三边都为1,则△ABC的周长为3;②三边都为3,则△ABC的周长为9;③三边为1,1,3,因为1+1<3,此情况不存在;④三边为1,3,3,则△ABC的周长为7.24.如图,游仙怡心月季养植园是一个矩形ABCD,AD=32米,AB=20米.为了便于养护与运输,养植园内留有四横四纵等宽道路,养植面积与道路面积比为7:3.(1)求道路的宽度.(2)养植区域内月季盆裁要均匀摆放,即每平方米摆放的盆数一样.每平方米最多能摆放36盆,密度越大,花的品质会下降,每盆月季的出售价也会随之降低.大棚内现在每平米有月季小盆栽10盆,每盆的出售价为5元.分析发现:每平方米每增加5盆,每盆的出售价会下降0.5元.老板准备增加养植数量,以获得最多的出售总额,那么每平米应该养植多少盆月季小盆栽才能使出售总额最多?解:(1)设道路宽x米,则(32﹣4x)(20﹣4x)=32×20×,解得:x1=1,x2=12(不合题意舍去),故x=1,答:道路宽为1米;(2)∵5:0.5=10:1,故设每平方米增加10z盆,则每盆售价降低z元,出售总额为w元/m2,则:w=(10+10z)(5﹣z)=﹣10(z﹣2)2+90,∵10z≤36﹣10,∴z≤2.6,∴0≤z≤2.6,又∵a=﹣10<0,且z=2在0≤z≤2.6内,∴每平米应该养植20盆月季小盆栽才能使出售总额最多.25.如图1,O是△ABC的边BC的中点,⊙O与BC交于E、F两点,与AB相切于点D,连接AO交⊙O于点P,=.(1)猜想AC与⊙O的位置关系,并证明你的猜想.(2)如图2,延长AO交⊙O于Q点,连接DE、DF,DQ,FQ,FQ=,ED=5,求DQ的长.(3)如图3,若DE=5,连接DF、DP、PF,设DP=x,△DPF的面积为y,求y与x之间的函数关系式.解:(1)结论:AC与⊙O相切,理由:过点O作OH⊥AC于H,∵⊙O与AB相切于点D,∴OD⊥AB,∵,点O是圆心,∴∠BOP=∠COP=90°,又∵O是BC的中点,∴AB=AC,∴∠BAO=∠OAC,又∵OD⊥AB,OH⊥AC,∴OD=OH,∴OH是半径,∴AC与⊙O相切.(2)如图2中,过点Q作QN⊥CD于N,QM⊥DE交DE的延长线于M,连接QE.∵AO⊥BC,O是圆心,∴PQ是直径,∴OQ=OF,∴FQ=OF=,∴FO=,∴EF=13,∵EC是直径,∴∠EDC=90°,∵DE=5∴CD===12,∵∠QDC=∠QOF=45°,∴∠QDM=∠QDN=45°,∴=,∴EQ=FQ,∵QM⊥DM,QN⊥DN,∴QM=QN,∵∠M=∠QNF=90°,∴Rt△QME≌Rt△QNF(HL),∴EM=FN,∵∠M=∠MDN=∠DNQ=90°,∴四边形DMQN是矩形,∵QM=QN,∴四边形DMQN是正方形,∴DM=DN,∴DE+DF=DM﹣EM+DN+NF=2DM=17,∴DM=DN=,∴DQ=DN=.(3)如图3中,过点F作FH⊥DP交DP的延长线于H.∵∠PDF=∠POC=45°,∠H=90°,∴∠HDF=∠DFH=45°,∴DH=FH,DF=FH,∵∠EDF=∠H=90°,∠EFP=∠DFH=45°,∴∠EFD=∠PFH,∴△EFD∽△PFH,∴==,∵DE=5,∴PH=,∴DH=FH=x+,∴y=S△PDF=•DP•FH,∴y=×x×(x+)=x2+x(x>0).26.如图,抛物线y=ax2+bx+c与x轴交于A(1,0),B(5,0)两点,与y轴交于点C.抛物线顶点纵坐标为﹣4.(1)求抛物线的解析式及C点坐标.(2)如图1,过C作x轴的平行线,与抛物线交于点M,连接AM、BM,在y轴上是否存在点N,使∠ANB=∠AMB?若存在,请求出点N的坐标;若不存在,请说明理由.(3)把线段OC绕O点顺时针旋转,使C点恰好落在抛物线对称轴上的点P处,如图2,再将线段OP绕P点逆时针旋转45°得线段PQ,请计算Q点坐标,并判断Q点在抛物线上吗?解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣1)(x﹣5)=a(x2﹣6x+5),函数的对称轴为x=3,当x=3时,y=a(x2﹣6x+5)=﹣4a=﹣4,解得a=1,故抛物线的表达式为y=x2﹣6x+5,当x=0时,y=5,故点C(0,5);(2)存在,理由:根据点的对称性,点C(0,5),函数对称轴为x=3,故点M(6,5),∵∠ANB=∠AMB,则点N、M、B、A四点共圆,∵△ABM的外接圆圆心在抛物线的对称轴上,故设圆心为H(3,m),设点N(0,t),则MH=BH,即(5﹣3)2+(m﹣0)2=(5﹣3)2+(m﹣5)2,解得m=3,故点H(3,3),同样HM=HN,即(5﹣3)2+(m﹣0)2=(0﹣3)2+(t﹣3)2,解得t=1或5,故点N的坐标为(0,1)或(0,5),根据图象的对称性,符合条件的点N还有(0,﹣1)或(0,﹣5),故点N的坐标为(0,1)或(0,5)或(0,﹣1)或(0,﹣5);(3)不在,理由:设函数对称轴交x轴于点D,在Rt△OPD中,OP=OC=5,OD=3,则PD=4,故P(3,4),则OP=5,设直线PQ交x轴于点K,则KR⊥OP于点R,tan∠POD=,在Rt△ORK中,设RK=4x,则OR=3x,OK=5x,在Rt△RKP中,∠RPK=45°,则PR=RK=4x,则OP=OR+PR=7x=5,解得x=,故OK=5x=,故点K(,0),由点P、K的坐标得,直线PK的表达式为y=﹣7x+25,设点Q的坐标为(s,﹣7s+25),由PQ=PO=5得:(3﹣s)2+(4+7s﹣25)2=25,解得s=(不合题意值已舍去),故点Q的坐标为(,),当x=时,y=x2﹣6x+5=﹣3.5≠,故点Q不在抛物线上.。

中考数学专题11圆(第03期)-2017年中考数学试题分项版解析汇编(解析版)

中考数学专题11圆(第03期)-2017年中考数学试题分项版解析汇编(解析版)

一、选择题目1.(2017四川省南充市)如图,在Rt △ABC 中,AC =5cm ,BC =12cm ,∠ACB =90°,把Rt △ABC 所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( )A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 2 【答案】B .考点:1.圆锥的计算;2.点、线、面、体.2.(2017四川省广安市)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD =5,则OH 的长度为( )A .32B .65C .1D .67【答案】D . 【解析】试题分析:连接OD ,如图所示:∵AB 是⊙O 的直径,且经过弦CD 的中点H ,∴AB ⊥CD ,∴∠OHD =∠BHD =90°,∵cos ∠CDB =DHBD=45,BD =5,∴DH =4,∴BH3,设OH =x ,则OD =OB =x +3,在Rt △ODH 中,由勾股定理得:x 2+42=(x +3)2,解得:x =67,∴OH =67;故选D .考点:1.圆周角定理;2.解直角三角形.3.(2017四川省眉山市)如图,在△ABC 中,∠A =66°,点I 是内心,则∠BIC 的大小为( )A .114°B .122°C .123°D .132° 【答案】C . 【解析】试题分析:∵∠A =66°,∴∠ABC +∠ACB =114°,∵点I 是内心,∴∠IBC =12∠ABC ,∠ICB =12∠ACB ,∴∠IBC +∠ICB =57°,∴∠BIC =180°﹣57°=123°,故选C .学*科网 考点:三角形的内切圆与内心.4.(2017四川省绵阳市)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB =8cm ,圆柱体部分的高BC =6cm ,圆锥体部分的高CD =3cm ,则这个陀螺的表面积是( )A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 2【答案】C.【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:1.圆锥的计算;2.几何体的表面积.5.(2017四川省达州市)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A B C.D【答案】A.考点:正多边形和圆.6.(2017山东省枣庄市)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.r << Br << C5r << D.5r <<【答案】B . 【解析】试题分析:给各点标上字母,如图所示. AB==,AC =AD==,AE==,AF==,AG =AM =AN5r <<A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内.故选B .考点:1.点与圆的位置关系;2.勾股定理;3.推理填空题目.7.(2017山东省济宁市)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为,则图中阴影部分的面积是( )A . 6πB . 3πC .122π-D . 12【答案】A.【解析】试题分析:∵∠ACB=90°,AC=BC=1,∴AB,∴S扇形ABD=6π.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=6π.故选A.考点:1.扇形面积的计算;2.等腰直角三角形;3.旋转的性质.学科*网8.(2017广东省)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【答案】C.考点:圆内接四边形的性质.9.(2017广西四市)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧BC的长等于()A.2π3B.π3C.2√3π3D.√3π3【答案】A.【解析】试题分析:如图,连接OB 、OC ,∵∠BAC =30°,∴∠BOC =2∠BAC =60°,又OB =OC ,∴△OBC 是等边三角形,∴BC =OB =OC =2,∴劣弧BC 的长为:602180π⨯ =2π3.故选A .考点:1.弧长的计算;2.圆周角定理. 二、填空题目10.(2017四川省眉山市)如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm ,DC =2cm ,则OC = cm .【答案】5. 【解析】试题分析:连接OA ,∵OC ⊥AB ,∴AD =12AB =4cm ,设⊙O 的半径为R ,由勾股定理得,OA 2=AD 2+OD 2,∴R 2=42+(R ﹣2)2,解得R =5,∴OC =5cm .故答案为:5.考点:1.垂径定理;2.勾股定理.11.(2017四川省达州市)如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取点O ,以O 为圆心,OF 长为半径作⊙O 与AD 相切于点P.若AB =6,BC=F 是CD 的中点;②⊙O 的半径是2;③AE =92CE;④S =阴影.其中正确结论的序号是 .【答案】. 【解析】试题分析:①∵AF 是AB 翻折而来,∴AF =AB =6,∵AD =BC=DF=3,∴F 是CD中点;∴①正确;②连接OP ,∵⊙O 与AD 相切于点P ,∴OP ⊥AD ,∵AD ⊥DC ,∴OP ∥CD ,∴AO OP AF DF =,设OP =OF =x ,则636x x -=,解得:x =2,∴②正确;③∵RT △ADF 中,AF =6,DF =3,∴∠DAF =30°,∠AFD =60°,∴∠EAF =∠EAB =30°,∴AE =2EF ; ∵∠AFE =90°,∴∠EFC =90°﹣∠AFD =30°,∴EF =2EC ,∴AE =4CE ,∴③错误;④连接OG ,作OH ⊥FG ,∵∠AFD =60°,OF =OG ,∴△OFG 为等边△;同理△OPG 为等边△;∴∠POG =∠FOG =60°,OHOG,S 扇形OPG =S 扇形OGF ,∴S 阴影=(S 矩形OPDH ﹣S 扇形OPG ﹣S △OGH )+(S 扇形OGF ﹣S △OFG )=S 矩形OPDH ﹣32S △OFG=312(222-⨯⨯.∴④正确;故答案为:①②④.考点:1.切线的性质;2.矩形的性质;3.扇形面积的计算;4.翻折变换(折叠问题);5.综合题.12.(2017山东省枣庄市)如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则FE的长为.【答案】π.考点:1.切线的性质;2.平行四边形的性质;3.弧长的计算.学&科网13.(2017山东省济宁市)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.考点:1.正多边形和圆;2.规律型;3.综合题.14.(2017四川省南充市)如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径作⊙O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F . (1)求证:DE 是⊙O 的切线;(2)若CF =2,DF =4,求⊙O 直径的长.【答案】(1)证明见解析;(2)6. 【解析】试题分析:(1)连接OD 、CD ,由AC 为⊙O 的直径知△BCD 是直角三角形,结合E 为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.试题解析:(1)如图,连接OD、CD.∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.考点:切线的判定与性质.15.(2017四川省广安市)如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF的长.【答案】(1)证明见解析;(2【解析】试题分析:(1)由直径所对的圆周角是直角得:∠ADB=90°,则∠ADC+∠CDB=90°,所以∠EAC+∠BAC=90°,则直线AE是⊙O的切线;(2)分别计算AC和BD的长,证明△DFB∽△AFC,列比例式得:BF BDFC AC,得出结论.试题解析:(1)连接BD,∵AB是⊙O的直径,∴∠ADB=90°,即∠ADC+∠CDB=90°,∵∠EAC=∠ADC,∠CDB=∠BAC,∴∠EAC+∠BAC=90°,即∠BAE=90°,∴直线AE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,Rt△ACB中,∠BAC=30°,∴AB=2BC=2×4=8,由勾股定理得:AC=,Rt△ADB中,cos∠BAD=34=ADAB,∴34=8AD,∴AD=6,∴BD=,∵∠BDC=∠BAC,∠DFB=∠AFC,∴△DFB∽△AFC,∴BF BDFC AC=,∴103BF=,∴BF=考点:1.切线的判定与性质;2.解直角三角形.16.(2017四川省绵阳市)如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DF A=45,AN=,求圆O的直径的长度.【答案】(1)证明见解析;(2)503.学&科网【解析】试题分析:(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,如图2所示.∵cos∠DF A=45,∠DF A=∠ACH,∴CHAC=45.设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴AN=a=,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r,则OH=r﹣6,在Rt△OCH中,OC=r,CH=8,OH=r﹣6,∴OC2=CH2+OH2,r2=82+(r﹣6)2,解得:r=253,∴圆O的直径的长度为2r=503.考点:1.切线的性质;2.勾股定理;3.圆周角定理;4.解直角三角形.17.(2017四川省达州市)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程4x mx+=的两实根,且tan∠PCD=13,求⊙O的半径.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)根据平行线的性质和圆周角定理得到∠ABD=∠BDQ=∠ACD,连接OB,OD,交AB于E,根据圆周角定理得到∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,根据三角形的内角和得到2∠ODB+2∠O=180°,于是得到∠ODB+∠O=90°,根据切线的判定定理即可得到结论;(2)证明:连接AD,根据等腰三角形的判定得到AD=BD,根据相似三角形的性质即可得到结论;试题解析:(1)证明:∵PQ∥AB,∴∠ABD=∠BDQ=∠ACD,∵∠ACD=∠BCD,∴∠BDQ=∠ACD,如图1,连接OB,OD,交AB于E,则∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,在△OBD中,∠OBD+∠ODB+∠O=180°,∴2∠ODB+2∠O=180°,∴∠ODB+∠O=90°,∴PQ是⊙O的切线;(2)证明:如图2,连接AD,由(1)知PQ是⊙O的切线,∴∠BDQ=∠DCB=∠ACD=∠BCD=∠BAD,∴AD=BD,∵∠DBQ=∠ACD,∴△BDQ∽△ACD,∴AD ACBQ BD=,∴BD2=AC•BQ;(3)解:方程4x mx+=可化为x2﹣mx+4=0,∵AC、BQ的长是关于x的方程4x mx+=的两实根,∴AC•BQ=4,由(2)得BD2=AC•BQ,∴BD2=4,∴BD=2,由(1)知PQ是⊙O的切线,∴OD⊥PQ,∵PQ∥AB,∴OD⊥AB,由(1)得∠PCD=∠ABD,∵tan∠PCD=13,∴tan∠ABD=13,∴BE=3DE,∴DE 2+(3DE )2=BD 2=4,∴DE=,∴BE=,设OB =OD =R ,∴OE =R﹣,∵OB 2=OE 2+BE 2,∴R 2=(R)2+2,解得:R=,∴⊙O的半径为.考点:1.相似三角形的判定与性质;2.分式方程的解;3.圆周角定理;4.切线的判定与性质;5.解直角三角形;6.压轴题.18.(2017山东省枣庄市)如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F . (1)试判断直线BC 与⊙O 的位置关系,并说明理由; (2)若BD=BF =2,求阴影部分的面积(结果保留π).【答案】(1)BC 与⊙O 相切;(2)23π.【解析】试题分析:(1)连接OD ,证明OD ∥AC ,即可证得∠ODB =90°,从而证得BC 是圆的切线;(2)设OF =OD =x ,则OB =OF +BF =x +2,由勾股定理得:OB 2=OD 2+BD 2,即(x +2)2=x 2+12,解得:x =2,即OD =OF =2,∴OB =2+2=4,∵Rt △ODB 中,OD =12OB ,∴∠B =30°,∴∠DOB =60°,∴S扇形AOB =604360π⨯ =23π,则阴影部分的面积为S △ODB ﹣S 扇形DOF =12×2×﹣23π=23π-.故阴影部分的面积为23π.考点:1.直线与圆的位置关系;2.扇形面积的计算;3.探究型.19.(2017山东省济宁市)如图,已知⊙O 的直径AB =12,弦AC =10,D 是BC 的中点,过点D 作DE ⊥AC ,交AC 的延长线于点E . (1)求证:DE 是⊙O 的切线; (2)求AE 的长.【答案】(1)证明见解析;(2)11. 【解析】试题分析:(1)连接OD ,由D 为弧BC 的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE 平行,利用两直线平行同旁内角互补得到OD 与DE 垂直,即可得证;(2)解:过点O 作OF ⊥AC ,∵AC =10,∴AF =CF=12AC =5,∵∠OFE =∠DEF =∠ODE =90°,∴四边形OFED 为矩形,∴FE =OD =12AB ,∵AB =12,∴FE =6,则AE =AF +FE =5+6=11.考点:1.切线的判定与性质;2.勾股定理;3.垂径定理.20.(2017广东省)如图,AB 是⊙O 的直径,AB =E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线; (2)求证:CF =CE ;(3)当34CF CP =时,求劣弧BC 的长度(结果保留π)【答案】(1)证明见解析;(2)证明见解析;(3.【解析】试题分析:(1)根据等角的余角相等证明即可; (2)欲证明CF =CE ,只要证明△ACF ≌△ACE 即可;(3)作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =4a ,PC =4a ,PM =a ,利用相似三角形的性质求出BM ,求出tan ∠BCM 的值即可解决问题;试题解析:(1)证明:∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE .(2)证明:连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°,∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE .(3)解:作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =4a ,PC =4a ,PM =a ,∵△BMC ∽△PMB ,∴BM CMPM BM =,∴BM 2=CM •PM =3a 2,∴BM=a ,∴tan ∠BCM=BM CM =,∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴BC 的长.考点:1.相似三角形的判定与性质;2.垂径定理;3.切线的性质;4.弧长的计算.21.(2017江苏省盐城市)如图,△ABC 是一块直角三角板,且∠C =90°,∠A =30°,现将圆心为点O 的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC 、BC 都相切时,试用直尺与圆规作出射线CO ;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC =9,圆形纸片的半径为2,求圆心O 运动的路径长.【答案】(1)作图见解析;(2)15+ 【解析】试题分析:(1)作∠ACB 的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O ,作射线CO 即可; (2)添加如图所示辅助线,圆心O 的运动路径长为12OO O C ∆,先求出△ABC 的三边长度,得出其周长,证四边形OEDO 1、四边形O 1O 2HG 、四边形OO 2IF 均为矩形、四边形OECF 为正方形,得出∠OO 1O 2=60°=∠ABC 、∠O 1OO 2=90°,从而知△OO 1O 2∽△CBA ,利用相似三角形的性质即可得出答案. 试题解析:(1)如图①所示,射线OC 即为所求;(2)如图2,圆心O 的运动路径长为12OO O C ∆,过点O 1作O 1D ⊥BC 、O 1F ⊥AC 、O 1G ⊥AB ,垂足分别为点D 、F 、G ,过点O 作OE ⊥BC ,垂足为点E ,连接O 2B ,过点O 2作O 2H ⊥AB ,O 2I ⊥AC ,垂足分别为点H 、I ,在Rt △ABC 中,∠ACB =90°、∠A =30°,∴AC =tan 30BC==,AB =2BC =18,∠ABC =60°,∴C △ABC =9++18=27+,∵O 1D ⊥BC 、O 1G ⊥AB ,∴D 、G 为切点,∴BD =BG ,在Rt △O 1BD 和Rt △O 1BG 中,∵BD =BG ,O 1B =O 1B ,∴△O 1BD ≌△O 1BG (HL ),∴∠O 1BG =∠O 1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD=1tan 30O D==,∴OO1=9﹣2﹣=7﹣O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴1212OO OABCC O OC BC∆∆==,∴12OO OC∆=15+,即圆心O运动的路径长为15+考点:1.轨迹;2.切线的性质;3.作图—复杂作图;4.综合题.学科*网22.(2017江苏省连云港市)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D.C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【答案】(1)y=2x+4;(21112.【解析】试题分析:(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m的方程,解方程求得m的值,然后根据弧长公式即可求得.试题解析:(1)∵OB=4,∴B(0,4).∵A(﹣2,0),设直线AB的解析式为y=kx+b,则420bk b,解得24kb,∴直线AB的解析式为y=2x+4;(2)设OB=m,则AD=m+2,∵△ABD的面积是5,∴12AD•OB=5,∴12(m+2)•m=5,即22100m m+-=,解得111m 或111m(舍去),∵∠BOD=90°,∴点B 的运动路径长为:1111211142.考点:1.一次函数图象与几何变换;2.轨迹;3.弧长的计算.学#科网23.(2017河北省)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O 逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=QD的长(结果保留π);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.【答案】(1)见解析;(2)143π;(3)4<OC<8.(2)∵Rt △APO ≌Rt △BQO ,∴∠AOP =∠BOQ ,∴P 、O 、Q 三点共线,∵在Rt △BOQ 中,cos B =43382QB OB==,∴∠B =30°,∠BOQ =60°,∴OQ =12OB =4,∵∠COD =90°,∴∠QOD =90°+60°=150°,∴优弧QD 的长=2104180π⨯=143π;(3)∵△APO 的外心是OA 的中点,OA =8,∴△APO 的外心在扇形COD 的内部时,OC 的取值范围为4<OC <8.考点:1.切线的性质;2.弧长的计算;3.旋转的性质.24.(2017河北省)平面内,如图,在ABCD 中,AB =10,AD =15,tan A =43.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90°得到线段PQ .(1)当∠DPQ =10°时,求∠APB 的大小;(2)当tan∠A tan A=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积(结果保留π).【答案】(1)100°或80°;(2)(3)16π或20π或32π.【解析】试题分析:(1)根据点Q与点B和PD的位置关系分类讨论;(2)因为△PBQ是等腰直角三角形,所以求BQ的长,只需求PB,过点P作PH⊥AB于点H,确定BH,求得AH和BH,解直角△APH求PH,由勾股定理求PB;(2)如图2,过点P作PH⊥AB于点H,连接BQ.∵tan∠A tan A=:3:2PH PHHB AH=,∴HB=3:2.而AB=10,∴AH=6,HB=4.在Rt△PHA中,PH=AH·tan A=8,∴PQ=PB==Rt△PQB中,QBPB=(3)①点Q在AD上时,如图3,由tan A=43得,PB=AB·sin A=8,∴扇形面积为16π.②点A 在CD 上时,如图4,过点P 作PH ⊥AB 于点H ,交CD 延长线于点K ,由题意∠K =90°,∠KDP =∠A .设AH =x ,则PH =AH ·tan A =43x .∵∠BPH =∠KQP =90°-∠KPQ ,PB =QP ,∴Rt △HPB ≌Rt △KQP .∴KP =HB =10-x ,∴AP =53x,PD =()5104x -,AD =15=()551034x x +-,解得x =6.∵22280PB PH HB =+=,∴扇形的面积为20π.③点Q 在BC 延长线上时,如图5,过点B 作BM ⊥AD 于点M ,由①得BM =8.又∠MPB =∠PBQ =45°,∴PB =,∴扇形面积为32π. 所以扇形的面积为16π或20π或32π.考点:1.解直角三角形;2.勾股定理;3.扇形面积的计算;4.分类讨论;5.压轴题.25.(2017浙江省丽水市)如图,在Rt △ABC 中,∠C =Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =16,DE =10,求BC 的长.【答案】(1)证明见解析;(2)15. 【解析】试题分析:(1)只要证明∠A +∠B =90°,∠ADE +∠B =90°即可解决问题;(2)连接CD .∵∠ADE =∠A ,∴AE =DE ,∵BC 是⊙O 的直径,∠ACB =90°,∴EC 是⊙O 的切线,∴ED =EC ,∴AE =EC ,∵DE =10,∴AC =2DE =20,在Rt △ADC 中,DC 12,设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2﹣202,∴x 2+122=(x +16)2﹣202,解得x =9,∴BC 15.考点:1.切线的性质;2.勾股定理.26.(2017浙江省台州市)如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是△ABP 的外接圆⊙O 的直径. (1)求证:△APE 是等腰直角三角形; (2)若⊙O 的直径为2,求22PC PB +的值.【答案】(1)证明见解析;(2)4. 【解析】试题分析:(1)只要证明∠AEP =∠ABP =45°,∠P AB =90°即可解决问题;(2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形,∴PM=AN,∵△PCM,△PNB都是等腰直角三角形,∴PC=2PM,PB=2PN,∴22PC PB+=222()PM PN+ =222()AN PN+=22PA =2PE =22 =4.考点:1.三角形的外接圆与外心;2.等腰直角三角形.27.(2017湖北省襄阳市)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧BC的长l.【答案】(1)证明见解析;(2)23π.【解析】试题分析:(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,∵∠DAC=12∠DOC ,∠OAC=12∠BOC,∴∠DAC=∠OAC,∵ED=1,DC=2,∴sin∠ECD=12DEDC=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l=602180π⨯=23π.考点:1.切线的判定与性质;2.弧长的计算.祝你考试成功!祝你考试成功!。

四川省绵阳市中考数学一诊试卷(Word版含解析)

四川省绵阳市中考数学一诊试卷(Word版含解析)

四川省绵阳市中考数学一诊试卷一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项最符合题目要求.1.下列各项是一元二次方程的是()A.x﹣x3=1B.2x﹣1=a C.x2﹣x+1=0D.x2﹣=5 2.下列手机手势解锁图案中,是中心对称图形的是()A.B.C.D.3.将抛物线y=x2平移得到抛物线y=(x+2)2+3,下列叙述正确的是()A.向右平移2个单位,向上平移3个单位B.向左平移2个单位,向下平移3个单位C.向右平移2个单位,向下平移3个单位D.向左平移2个单位,向上平移3个单位4.风力发电是一种绿色可持续的能源获取方式,我国近年来在西部地区大力发展风电产业,如图的风力发电转子叶片图案绕中心旋转n°后能与原来的图案重合,那么n的值可能是()A.60B.90C.120D.1505.方程x2﹣3x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定6.如图,四边形ABCD是⊙O内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD的度数为()A.50°B.60°C.70°D.80°7.某校初2017级学生毕业时,每一位同学都将自己的照片向全班其他同学各送一张留作纪念,某班共送了1892张照片,设全班有x名学生,根据题意,列出方程应为()A.x2=1892B.x(x﹣1)=1892C.(x﹣1)2=1892D.2x(x﹣1)=18928.如图,⊙O1的直径AB长度为12,⊙O2的直径为8,∠AO1O2=30°,⊙O2沿直线O1O2平移,当⊙O2平移到与⊙O1和AB所在直线都有公共点时,令圆心距O1O2=x,则x的取值范围是()A.2≤x≤10B.4≤x≤16C.4≤x≤4D.2≤x≤89.如图,C、D是抛物线y=x2﹣x﹣3上在x轴下方的两点,且CD∥x轴,过点C、D分别向x轴作垂线,垂足分别为B、A,则矩形ABCD周长的最大值为()A.B.C.D.10.如图,AB是⊙O的直径,C为⊙O上的点,把△AOC沿OC对折,点A的对应点D恰好落在⊙O上,且C、D均在直径AB上方,连接AD、BD,若AC=4,BD=4,则AD的长度应是()A.12B.10C.8D.611.如图,⊙O的半径是4,A为⊙O上一点,M是⊙A上一点(M在⊙O内),过点M作⊙A切线l,且l与⊙O相交于P,Q两点,若⊙A的半径为2,当线段PQ最长时线段OM的长度为m,当线段PQ最短时线段OM的长度为n,则m﹣n的值是()A.2﹣3B.C.2﹣2D.2﹣212.已知P1(x1,y1),P2(x2,y2),…,P n(x n,y n),…是二次函数y=x2﹣2x+1图象上的一系列点,其中x1=1,x2=2,…,x n=n,…,记A1=x1+y2,A2=x2+y3,…,A n=x n+y n+1(n为正整数),令S=+++…+,则S的值是()A.B.C.D.二、填空题:本小题共6个小题,每小题4分,共24分。

四川省绵阳市 中考数学二诊试卷(Word版 含解析) (3)

四川省绵阳市 中考数学二诊试卷(Word版 含解析) (3)

四川省绵阳市中考数学二诊试卷一、选择题(本大题共12个小题,每小题3分,共36分,每个小题给出的四个选项中只有一项是符合要求的)1.计算|﹣1|﹣3,结果正确的是()A.﹣4B.﹣3C.﹣2D.﹣12.太阳半径约696000000米,其中数据696000000科学记数法表示为()A.0.696×109B.6.96×109C.6.96×108D.696×1063.下列计算正确的是()A.2x+3y=5xy B.x10÷x5=x5C.(xy2)3=xy6D.(x﹣y)2=x2+y24.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多455.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°6.随着全球能源危机的逐渐加重,太阳能发电行业发展迅速.全球太阳能光伏应用市场持续稳步增长,2019年全球装机总量约600GW,预计到2021年全球装机总量达到864GW.设全球新增装机量的年平均增长率为x,则x值为()A.20%B.30%C.40%D.50%7.不等式组的解集是x>4,那么m的取值范围是()A.m=3B.m≥3C.m<3D.m≤38.在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,则∠CBD的度数为()A.12°B.13°C.14°D.15°9.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为20,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为14,现从1,2,3,4,5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作CD⊥AB,垂足为D,点E为BC的中点,AE与CD交于点F,若DF的长为,则AE的长为()A.B.C.D.11.如图,抛物线y=ax2+bx+c经过(﹣1,0)和(0,﹣1)两点,则抛物线y=cx2+bx+a的图象大致为()A.B.C.D.12.如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B′,C′上.在点M从点A运动到点B 的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为()cm.A.﹣B.C.D.二、填空题(共6个小题,每小题4分,共24分,将答案填写在答题卡相应的横线上)13.把多项式mx2﹣4mxy+4my2分解因式的结果是.14.将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a﹣4b﹣11的值是.15.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.16.关于x的方程的解是正数.则a的取值范围是.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=5,点E、F分别在CA,CB上,且CE=CF=1,点M、N分别为AF、BE的中点,则MN的长为.18.如图,在矩形ABCD中,AB=1,BC=2,P为线段BC上的一动点,且和B、C不重合,连接PA,过点P作PE⊥PA交CD于E,将△PEC沿PE翻折到平面内,使点C恰好落在AD边上的点F,则BP长为.三、解答题(本大题共7个小题,共90分,解答应写出文字说明、证明过程或演算步骤)19.(16分)(1)计算:2﹣1+|﹣3|+2sin45°﹣(﹣2)2021×()2021.(2)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.20.新冠肺炎疫情期间,我市对学生进行了“停课不停学”的线上教学活动.某中学为了解这期间九年级学生数学学习的情况,开学后进行了两次诊断性练习.综合成绩由两次练习成绩组成,其中第一次练习成绩占40%,第二次练习成绩占60%.当综合成绩不低于135分时,该生数学学科综合评价为优秀.(1)小明同学的两次练习成绩之和为260分,综合成绩为132分,则他这两次练习成绩各得多少分?(2)如果小张同学第一次练习成绩为120分,综合成绩要达到优秀,他的第二次练习成绩至少要得多少分?21.某市有A,B,C,D,E五个景区很受游客喜爱.对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了两幅不完整的统计图.(1)该小区居民在这次随机调查中被调查的人数是人,m=;(2)补全条形统图,若该小区有居民1500人,试估计去C景区旅游的居民约有多少人?(3)甲、乙两人暑假打算游玩,甲从B,C两个景点中任意选择一个游玩,乙从B,C,E三个景点中任意选择一个游玩,用列表法或树状图法求甲、乙恰好游玩同一景点的概率.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD.过点E作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当=,CE=3时,求AG的长.24.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你直接写出AE与DF的关系.(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,AC,当△ACE为等腰三角形时,求CE:CD的值.(3)如图3,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动.若AD=2,求线段CP的最小值.25.如图1,已知抛物线y=﹣(x+3)(x﹣4)与x轴交于A、B两点,与y轴交于点C.(1)写出A、B、C三点的坐标.(2)若点P为△OBC内一点,求OP+BP+CP的最小值.(3)如图2,点Q为对称轴左侧抛物线上一动点,点D(4,0),直线DQ分别与y轴、直线AC交于E、F两点,当△CEF为等腰三角形时,请直接写出CE的长.参考答案一、选择题(本大题共12个小题,每小题3分,共36分,每个小题给出的四个选项中只有一项是符合要求的)1.计算|﹣1|﹣3,结果正确的是()A.﹣4B.﹣3C.﹣2D.﹣1【分析】首先应根据负数的绝对值是它的相反数,求得|﹣1|=1,再根据有理数的减法法则进行计算.解:原式=1﹣3=﹣2.故选:C.2.太阳半径约696000000米,其中数据696000000科学记数法表示为()A.0.696×109B.6.96×109C.6.96×108D.696×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于696000000有9位,所以可以确定n=9﹣1=8.解:696000000=6.96×108.故选:C.3.下列计算正确的是()A.2x+3y=5xy B.x10÷x5=x5C.(xy2)3=xy6D.(x﹣y)2=x2+y2【分析】直接利用同类项定义,同底数幂的除法,积的乘方运算法则以及完全平方公式分别分析得出答案.解:A、2x与3y不是同类项,不能合并,故此选项错误;B、x10÷x5=x5,故此选项正确;C、(xy2)3=x3y6,故此选项错误;D、(x﹣y)2=x2﹣2xy+y2,故此选项错误;故选:B.4.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多45【分析】从折线图中获取信息,通过折线图和中位数、众数的定义及极差等知识求解.解:因为58出现了两次,其他数据都出现了一次,所以每月阅读课外书本数的众数是58,故选项A错误;每月阅读课外书本数从小到大的顺序为:28、33、45、58、58、72、78,最中间的数字为58,所以该组数据的中位数为58,故选项B正确;从折线图可以看出,从2月到4月阅读课外书的本数下降,4月到5月阅读课外书的本数上升,故选项C错误;从1到7月份每月阅读课外书本数的最大值78比最小值多28多50,故选项D错误.故选:B.5.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°【分析】根据平行线的性质解答即可.解:∵点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.6.随着全球能源危机的逐渐加重,太阳能发电行业发展迅速.全球太阳能光伏应用市场持续稳步增长,2019年全球装机总量约600GW,预计到2021年全球装机总量达到864GW.设全球新增装机量的年平均增长率为x,则x值为()A.20%B.30%C.40%D.50%【分析】根据增长后的装机总量=增长前的装机总量×(1+增长率)列出方程并解答.解:根据题意,得600(1+x)2=864.解得x1=0.2=20%,x2=﹣2.2(舍去),故选:A.7.不等式组的解集是x>4,那么m的取值范围是()A.m=3B.m≥3C.m<3D.m≤3【分析】不等式组中两不等式整理后,根据已知解集确定出m的范围即可.解:不等式组整理得:,∵不等式组的解集为x>4,∴m+1≤4,解得:m≤3.故选:D.8.在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,则∠CBD的度数为()A.12°B.13°C.14°D.15°【分析】可过C作CE⊥AD于E,过D作DE⊥BC于F,依据题意可得∠FCD=∠ECD,由角平分线到角两边的距离相等可得DF=DE,进而的△CED≌△CFD,由对应边又可得Rt △CDF≌Rt△BDF,进而可得出结论.解:如图,过C作CE⊥AD于E,过D作DF⊥BC于F.∵∠CAD=30°,∴∠ACE=60°,且CE=AC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠FCD=90°﹣∠ACD=15°,∠ECD=∠ACD﹣∠ACE=15°,在△CED和△CFD中,,∴△CED≌△CFD(AAS),∴CF=CE=AC=BC,∴CF=BF.∴BD=CD,∴∠DCB=∠CBD=15°,故选:D.9.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为20,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为14,现从1,2,3,4,5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为()A.B.C.D.【分析】画树状图,共有20个等可能的结果,恰好使该图形为“和谐图形”的结果有4个,再由概率公式求解即可.解:画树状图如图:共有20个等可能的结果,恰好使该图形为“和谐图形”的结果有4个,∴恰好使该图形为“和谐图形”的概率为=,故选:B.10.如图,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作CD⊥AB,垂足为D,点E为BC的中点,AE与CD交于点F,若DF的长为,则AE的长为()A.B.C.D.【分析】连接DE,首先推知ED为△ABC的中位线,然后由中位线的性质得到△DEF∽△CAF,从而求得CD的长度;继而推知AC=BC=4;最后由勾股定理求得AE的长度.解:连接DE,如图所示:在Rt△ABC中,∠ACB=90°,AC=BC,∵CD⊥AB,∴AD=BD,即点D为AB的中点.∵E为BC的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=AC,∴△DEF∽△CAF,∴==,∴DF=CD=,∴CD=.∴AB=2.∵AC=BC,∴AC2+BC2=2AC2=AB2=8.∴AC=BC=2.∴CE=1.在直角△ACE中,由勾股定理知:AE===.故选:C.11.如图,抛物线y=ax2+bx+c经过(﹣1,0)和(0,﹣1)两点,则抛物线y=cx2+bx+a的图象大致为()A.B.C.D.【分析】根据题意得到a﹣b+c=0,a>0,b<0,c=﹣1,即可得到抛物线y=cx2+bx+a的开口向下,对称轴直线x=﹣<0,交y轴正半轴,经过点(﹣1,0),据此即可判断.解:∵抛物线y=ax2+bx+c经过(﹣1,0)和(0,﹣1)两点,∴开口向上,对称轴在y轴的右侧,∴a﹣b+c=0,a>0,b<0,c=﹣1,∴抛物线y=cx2+bx+a的开口向下,对称轴直线x=﹣<0,交y轴正半轴,当x=﹣1时,y=c﹣b+a=0,∴抛物线y=cx2+bx+a经过点(﹣1,0),故选:B.12.如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B′,C′上.在点M从点A运动到点B 的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为()cm.A.﹣B.C.D.【分析】探究点E的运动轨迹,寻找特殊位置解决问题即可.解:如图1中,∵四边形ABCD是矩形,∴AB∥CD,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM=MB′,∴∠2=∠3,∴MB′=NB′,∵NB′===(cm),∴BM=NB′=(cm).如图2中,当点M与A重合时,AE=EN,设AE=EN=xcm,在Rt△ADE中,则有x2=22+(4﹣x)2,解得x=,∴DE=4﹣=(cm),如图3中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=5﹣1﹣2=2(cm),如图4中,当点M运动到点B′落在CD时,DB′(即DE″)=5﹣1﹣=(4﹣)(cm),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=2﹣+2﹣(4﹣)=(﹣)(cm).故选:A.二、填空题(共6个小题,每小题4分,共24分,将答案填写在答题卡相应的横线上)13.把多项式mx2﹣4mxy+4my2分解因式的结果是m(x﹣2y)2.【分析】直接提取公因式m,再利用完全平方公式分解因式即可.解:原式=m(x2﹣4xy+4y2)=m(x﹣2y)2.故答案为:m(x﹣2y)2.14.将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a﹣4b﹣11的值是﹣5.【分析】根据二次函数的平移得出平移后的表达式,再将点(﹣2,5)代入,得到4a﹣2b=3,最后将8a﹣4b﹣11变形求值即可.解:将抛物线y=ax2+bx﹣1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(﹣2,5),代入得:4a﹣2b=3,则8a﹣4b﹣11=2(4a﹣2b)﹣11=2×3﹣11=﹣5,故答案为:﹣5.15.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有5cm.【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:20﹣15=5(cm).故答案为:5.16.关于x的方程的解是正数.则a的取值范围是a<﹣2且a≠﹣6.【分析】将a看成一个常数,然后按照分式方程的解法求出x即可求出a的范围.解:3x+a=x﹣2∴x=把x=代入x﹣2≠0,∴a≠﹣6∵x>0,∴>0,∴a<﹣2∴a<﹣2且a≠﹣6故答案为:a<﹣2且a≠﹣617.如图,在Rt△ABC中,∠ACB=90°,AC=BC=5,点E、F分别在CA,CB上,且CE=CF=1,点M、N分别为AF、BE的中点,则MN的长为2.【分析】取AB的中点D,连接MD、ND,如图,先判断DM为△ABF的中位线,DN为△ABE 的中位线得到DM=BF=2,DM∥BF,DN=AE=2,再证明AE⊥BF,则DM⊥DN,然后根据△DMN为等腰直角三角形确定MN的长.解:取AB的中点D,连接MD、ND,如图,AE=BF=5﹣1=4,∵点M、N分别为AF、BE的中点,∴DM为△ABF的中位线,DN为△ABE的中位线,∴DM=BF=2,DM∥BF,DN=AE=2,DN∥AE,∵AE⊥BF,∴DM⊥DN,∴△DMN为等腰直角三角形,∴MN=DM=2.故答案为2.18.如图,在矩形ABCD中,AB=1,BC=2,P为线段BC上的一动点,且和B、C不重合,连接PA,过点P作PE⊥PA交CD于E,将△PEC沿PE翻折到平面内,使点C恰好落在AD边上的点F,则BP长为或1.【分析】作PH⊥AD于H,如图,设BP=x,则CP=2﹣x,利用等角的余角相等得到∠1=∠3,则根据相似三角形的判定得到Rt△ABP∽Rt△PCE,利用相似比、折叠的性质得表示相应的线段,然后证明Rt△PHF∽Rt△FDE,利用相似比得到FD,在Rt△DFE中,根据勾股定理即可求解.解:作PH⊥AD于H,如图,设BP=x,则CP=2﹣x.∵PE⊥PA,∴∠2+∠3=90°,∵∠1+∠2=90°,∴∠1=∠3,∴Rt△ABP∽Rt△PCE,∴.即.∴CE=x(2﹣x).∵△PEC沿PE翻折到△PEF位置,使点F落到AD上,∴EF=CE=x(2﹣x),PF=PC=2﹣x,∠PGE=∠C=90°,∴DE=DC﹣CE=1﹣x(2﹣x).∴∠5+∠6=90°.∵∠4+∠6=90°,∴∠5=∠4.∴Rt△PHF∽Rt△FDE,∴,即.∴FD=x,在Rt△DFE中,∵DE2+DF2=FE2,∴[1﹣x(2﹣x)]2+x2=[x(2﹣x)]2,解得x1=,x2=1,∴BP的长为或1.解法二:过点A作AM⊥BF于M.∵△PEF由△PEC翻折得到,∴△PEF≌△PEC,∴PF=PC,∠FPE=∠EPC,又∵∠BPA+∠EPC=90°,∠APM+∠EPF=90°,∴∠APB=∠APM,又∵∠B=∠AMP=90°,AP=AP,∴△ABP≌△AMP(AAS),∴AB=AM=1,BP=PM,令BP=x,则PC=PF=2﹣x,BP=PM=x,∴MF=2﹣x﹣x=2﹣2x,∵AD∥BC,∴∠APB=∠PAD,又∵∠APB=∠APF,∴△APF为等腰三角形,∴AF=PF=2﹣x,在△AMF中,AF2=AM2+MF2,∴(2﹣x)2=12+(2﹣2x)2,∴x=1或.故答案为:或1.三、解答题(本大题共7个小题,共90分,解答应写出文字说明、证明过程或演算步骤)19.(16分)(1)计算:2﹣1+|﹣3|+2sin45°﹣(﹣2)2021×()2021.(2)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.【分析】(1)根据负整数指数幂、绝对值的性质、特殊角的三角函数值、积的乘方法则计算;(2)根据分式的混合运算法则把原式化简,整体代入即可.解:(1)原式=+3﹣+2×﹣(﹣2×)2021=+3﹣++1=;(2)原式=[+]•=(+)•=•=,∵a2+2a﹣15=0,∴a2+2a=15,∴原式=.20.新冠肺炎疫情期间,我市对学生进行了“停课不停学”的线上教学活动.某中学为了解这期间九年级学生数学学习的情况,开学后进行了两次诊断性练习.综合成绩由两次练习成绩组成,其中第一次练习成绩占40%,第二次练习成绩占60%.当综合成绩不低于135分时,该生数学学科综合评价为优秀.(1)小明同学的两次练习成绩之和为260分,综合成绩为132分,则他这两次练习成绩各得多少分?(2)如果小张同学第一次练习成绩为120分,综合成绩要达到优秀,他的第二次练习成绩至少要得多少分?【分析】(1)设第一次练习成绩为x分,第二次练习成绩为y分,根据“小明同学的两次练习成绩之和为260分,综合成绩为132分”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设小张同学第二次练习成绩为m分,根据他的综合成绩不低于135分,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.解:(1)设第一次练习成绩为x分,第二次练习成绩为y分,依题意,得:,解得:.答:第一次练习成绩为120分,第二次练习成绩为140分.(2)设小张同学第二次练习成绩为m分,依题意,得:120×40%+60%m≥135,解得:m≥145.答:小张同学第二次练习成绩至少要得145分.21.某市有A,B,C,D,E五个景区很受游客喜爱.对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了两幅不完整的统计图.(1)该小区居民在这次随机调查中被调查的人数是200人,m=35;(2)补全条形统图,若该小区有居民1500人,试估计去C景区旅游的居民约有多少人?(3)甲、乙两人暑假打算游玩,甲从B,C两个景点中任意选择一个游玩,乙从B,C,E三个景点中任意选择一个游玩,用列表法或树状图法求甲、乙恰好游玩同一景点的概率.【分析】(1)用去D景区旅游的人数除以它所占的百分比得到调查的总人数,然后用去到B景区旅游的居民数除以总人数可得到m的值;(2)先计算出去到C景区旅游的居民数,则可补全条形统计图;然后用去C景区旅游的居民数的百分比乘以1500即可;(3)画树状图展示所有6种等可能的结果,找出甲、乙恰好游玩同一景点的结果数,然后根据概率公式求解.解:(1)该小区居民在这次随机调查中被调查到的人数为20÷10%=200(人);m%=×100%=35%,即m=35;故答案为200;35;(2)去C景区旅游的居民人数为200﹣20﹣70﹣20﹣50=40(人),补全统计图如下:1500×=300(人),所以估计去C景区旅游的居民约有300人;(3)画树状图为:共有6种等可能的结果,其中甲、乙恰好游玩同一景点的结果数为2,所以甲、乙恰好游玩同一景点的概率==.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.【分析】(1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和双曲线的交点坐标即可.解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x﹣,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).23.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD.过点E作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当=,CE=3时,求AG的长.【分析】(1)想办法证明∠B+∠BAE=90°即可解决问题.(2)①连接OA,想办法证明OA⊥AG即可解决问题.②过点C作CH⊥AG于H.设CG=x,GH=y.利用相似三角形的性质构建方程组解决问题即可.【解答】证明:(1)∵EF⊥AB,∴∠AFE=90°,∴∠AEF+∠EAF=90°,∵∠AEF=∠D,∠ABE=∠D,∴∠ABE+∠EAF=90°,∴∠AEB=90°,∴AD⊥BC;(2)①连接OA,AC,∵AD⊥BC,∴AE=ED,∴CA=CD,∴∠D=∠CAD,∵∠GAE=2∠D,∴∠CAG=∠CAD=∠D,∵OC=OA,∴∠OCA=∠OAC,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠CAG+∠OAC=90°,∴OA⊥AG,∴AG是⊙O的切线;②过点C作CH⊥AG于H.设CG=x,GH=y.∵CA平分∠GAE,CH⊥AG,CE⊥AE,∴CH=CE,∵∠AEC=∠AHC=90°,AC=AC,EC=CH,∴Rt△ACE≌Rt△ACH(HL),∴AE=AH,∵EF⊥AB,BC是直径,∴∠BFE=∠BAC,∴EF∥AC,∴==,∵CE=3,∴BE=,∵BC⊥AD,∴,∴∠CAE=∠ABC,∵∠AEC=∠AEB=90°,∴△AEB∽△CEA,∴,∴AE2=3×=,∵AE>0,∴AE=,∴AH=AE=,∵∠G=∠G,∠CHG=∠AEG=90°,∴△GHC∽△GEA,∴,∴=,解得x=7,y=2,∴AG=2+=.24.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你直接写出AE与DF的关系.(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,AC,当△ACE为等腰三角形时,求CE:CD的值.(3)如图3,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动.若AD=2,求线段CP的最小值.【分析】(1)根据正方形的性质得出AD=DC,∠ADE=∠DCF=90°,求出DE=CF,根据SAS推出△ADE≌△DCF,根据全等三角形的性质得出AE=DF,∠DAE=∠FDC即可;(2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE =a即可;②当AE=AC时,设正方形ABCD的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质∠ADC=90°,根据等腰三角形的性质得出DE=CD=a即可;(3)由于点P在运动中保持∠APD=90°,所以点P的路径以AD中点为圆心,AD的一半为半径的弧DG,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.解:(1)AE=DF,AE⊥DF;理由是:∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°﹣90°=90°,∴AE⊥DF;(2)(1)中的结论还成立,CE:CD=2:1或:1.理由:有两种情况:①如图1,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得:AC=CE=a,则CE:CD=a:a=:1;②如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:AC=AE=a,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2:1;综上所述,CE:CD=:1或2:1;故答案为::1或2:1;(3)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD中点为圆心,AD的一半为半径的弧DG,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC===,∴CP=QC﹣QP=﹣1.25.如图1,已知抛物线y=﹣(x+3)(x﹣4)与x轴交于A、B两点,与y轴交于点C.(1)写出A、B、C三点的坐标.(2)若点P为△OBC内一点,求OP+BP+CP的最小值.(3)如图2,点Q为对称轴左侧抛物线上一动点,点D(4,0),直线DQ分别与y轴、直线AC交于E、F两点,当△CEF为等腰三角形时,请直接写出CE的长.【分析】(1)令y=0,可求出点A,点B的坐标,令x=0,可得出点C的坐标;(2)将△BPC绕点B顺时针旋转60°得到△BP'C',连接PP',CC',当O,P,P',C′四点共线,OP+BP+CP的值最小,再在直角三角形中,求出此时的最小值;(3)需要分类讨论,当CE=CF,CE=EF,CF=EF时,分别求解.解:(1)∵y=﹣(x+3)(x﹣4)与x轴交于A、B两点,与y轴交于点C,∴A(﹣3,0),B(4,0),C(0,4).(2)将△BPC绕点B顺时针旋转60°得到△BP'C',连接PP',CC',∴BP=BP',BC=BC,∠PBP'=60°,∠CBC′=60°,PC=P'C′,∴△BPP'和△BCC′为等边三角形,∴BC′=BC,PP′=BP,当O,P,P',C′四点共线,OP+BP+CP的值最小,∴tan∠OBC===,∴∠OBC=30°,∴BC=2OC=8,∴BC′=BC=8,∵∠OBC′=∠OBC+∠CBC′=30°+60°=90°,∴OC′==,∴OP+BP+CP=OP+PP'+C'P'=OC′=4.(3)需要分类讨论:①如图,当CE=CF,且点F在点C左侧时,过点F作FG⊥CE于点G,则△CFG∽△CAO,∵OA=3,OC=4,∴AC=5,∴FG:GC:FC=OA:OC:AC=3:4:5,设FG=3m,则CG=4m,FC=5m,∴CE=FC=5m,∴GE=m,OE=4﹣5m,∵△FGE∽△DOE,∴,∴,∴m=,∴CE=5m=;当点F在点C右侧时,如图所示,过点F作FG⊥y轴于点G,则△FCG∽△ACO,∴FG:GC:FC=OA:OC:AC=3:4:5,设FG=3m,则CG=4m,FC=5m,∴CE=FC=5m,∴GE=9m,OE=5m﹣4,∵△FGE∽△DOE,∴,∴,解得m=,∴CE=5m=16;②如图,当CE=EF时,过点A作AG∥EF交y轴于点G,由EF=CE,可得,AG=CG,设OG=m,则AG=CG=4﹣m,∵OA2+OG2=AG2,∴32+m2=(4﹣m)2,解得,m=.由A(﹣3,0)和G(0,),可得直线AG的解析式为:y=x+,设直线DF为:y=x+b,将D(4,0)代入得:b=﹣,∴E(0,﹣),∴CE=4+=.③如图,当CF=EF时,过点C作CG∥DE交x轴于点G,则∠GCO=∠ACO,∴OG=OA=3,∴G(3,0),由G(3,0),C(0,4)可得直线CG的解析式为:y=﹣x+4,设直线DE为:y=﹣x+n,将D(4,0)代入得:n=,∴E(0,),∴CE=﹣4=.故CE的长为:或或或16.。

(完整版)中考数学试题平均数、中位数、众数、方差

(完整版)中考数学试题平均数、中位数、众数、方差

知识点2:平均数,中位数,众数,方差一、选择题1.(2008年浙江省衢州市)为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如下表:甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是( )A、甲的方差大于乙的方差,所以甲的成绩比较稳定;B、甲的方差小于乙的方差,所以甲的成绩比较稳定;C、乙的方差小于甲的方差,所以乙的成绩比较稳定;D、乙的方差大于甲的方差,所以乙的成绩比较稳定;2.(2008淅江金华)金华火腿闻名遐迩。

某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500克的火腿心片。

现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()A、甲B、乙C、丙D、不能确定3.(2008浙江义乌)国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003年至2007年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是( )A.6969元B.7735元C.8810元D.10255元4.(2008湖南益阳)某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是A. 23,25B. 23,23C. 25,23D. 25,255.(2008年浙江省绍兴市)在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,6.5,9.1,7.7,则这四人中,射击成绩最稳定的是()A.甲B.乙C.丙D.丁6.(2008年四川巴中市)下列命题是真命题的是()A.对于给定的一组数据,它的平均数一定只有一个B.对于给定的一组数据,它的中位数可以不只一个C.对于给定的一组数据,它的众数一定只有一个D.对于给定的一组数据,它的极差就等于方差答案:A7.(2008年四川巴中市)用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为( )A.14.15 B.14.16 C.14.17 D.14.20答案:B8.(2008年陕西省)在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中8位工作者的捐款分别是5万,10万,10万,10万,20万,20万,50万,100万.这组数据的众数和中位数分别是()A.20万,15万B.10万,20万C.10万,15万D.20万,10万答案:C9.(2008北京)众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是()A.50,20 B.50,30 C.50,50 D.135,50答案:C10.(2008湖北鄂州)数据的众数为,则这组数据的方差是()A.2 B.C.D.答案:B11.(2008年浙江省嘉兴市)已知甲、乙两组数据的平均数分别是,,方差分别是,,比较这两组数据,下列说法正确的是()A.甲组数据较好B.乙组数据较好C.甲组数据的极差较大D.乙组数据的波动较小答案:D12.(2008年山东省枣庄市)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8, 4.2.关于这组数据,下列说法错误的是()A.极差是0.4B.众数是3.9C.中位数是3.98D.平均数是3.98答案:B13.(2008山东济南)“迎奥运,我为先”联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题.联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10张,发现有2张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是()A.60张B.80张C.90张D.110答案:B14.(2008湖北黄石)若一组数据2,4,,6,8的平均数是6,则这组数据的方差是()A.B.8 C.D.40答案:B15.(2008 湖南益阳)某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是( )A. 23,25B. 23,23C. 25,23D. 25,25答案:D16.(2008 重庆)数据2,1,0,3,4的平均数是()A、0B、1C、2D、3答案:C17.(08厦门市)某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差答案:C18.(08乌兰察布市)十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,中位数为,众数为,则有()A.B.C.D.答案:B19.(08绵阳市)某校初三·一班6名女生的体重(单位:kg)为:35 36 38 40 42 42则这组数据的中位数等于().A.38 B.39 C.40 D.42答案:B20.(2008浙江金华)金华火腿闻名遐迩。

(完整版)2017年四川省绵阳市中考数学试卷(含答案解析版)(可编辑修改word版)

(完整版)2017年四川省绵阳市中考数学试卷(含答案解析版)(可编辑修改word版)

x + 3 2017 年四川省绵阳市中考数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分)1.(3 分)中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5 的相反数是( )A .0.5B .±0.5C .﹣0.5D .52.(3 分)下列图案中,属于轴对称图形的是()A .B .C .D .3.(3 分)中国幅员辽阔,陆地面积约为 960 万平方公里,“960 万”用科学记数法表示为()A .0.96×107B .9.6×106C .96×105D .9.6×1024.(3 分)如图所示的几何体的主视图正确的是()A .B .C .D .1 5.(3 分)使代数式 +4 ‒ 3x 有意义的整数x 有( )A .5 个B .4 个C .3 个D .2 个6.(3 分)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端 E ,标记好脚掌中心位置为 B ,测得脚掌中心位置 B 到镜面中心 C 的距离是50cm ,镜面中心C 距离旗杆底部D 的距离为4m ,如图所示.已知小丽同学的身高是1.54m ,眼睛位置 A 距离小丽头顶的距离是 4cm ,则旗杆 DE 的高度等于()2A .10mB .12mC .12.4mD .12.32m7.(3 分)关于 x 的方程 2x 2+mx +n=0 的两个根是﹣2 和 1,则 n m 的值为()A .﹣8B .8C .16D .﹣168.(3 分)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径 AB=8cm ,圆柱体部分的高 BC=6cm ,圆锥体部分的高 CD=3cm ,则这个陀螺的表面积是( )A.8πcm 2 B .74πcm 2 C .84πcm 2 D .100πcm 29.(3 分)如图,矩形 ABCD 的对角线 AC 与 BD 交于点 O ,过点 O 作 BD 的垂线分别交 AD ,BC 于 E ,F 两点.若 AC=2 3,∠AEO=120°,则 FC 的长度为()A.1 B .2C .D .10.(3 分)将二次函数 y=x 2 的图象先向下平移 1 个单位,再向右平移 3 个单位,得到的图象与一次函数 y=2x +b 的图象有公共点,则实数 b 的取值范围是()35A.b>8 B.b>﹣8 C.b≥8 D.b≥﹣811.(3 分)如图,直角△ABC 中,∠B=30°,点O 是△ABC 的重心,连接CO 并延长交AB 于M O点E,过点E 作EF⊥AB 交BC 于点F,连接AF 交CE 于点M,则M F的值为()1 2A.B.C.D.2 43 312.(3 分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2 幅图形中“●”的个数为a2,第3 幅图形中“●”的个数为a3,…,1 1 1 1以此类推,则+ + +…+ 的值为()a1a2a3a1920 61 589 431A.B.C.D.21 84 840 760二、填空题(本大题共6 小题,每小题3 分,共18 分)13.(3 分)分解因式:8a2﹣2= .214.(3 分)关于x 的分式方程‒1 1= 的解是.x‒ 1x + 1 1 ‒ x15.(3 分)如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中,O 为坐标原点,若点A的坐标是(6,0),点C 的坐标是(1,4),则点B 的坐标是.316.(3 分)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8 且为偶数”的概率是.17.(3 分)将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA,CB 于M,N 两点,若CA=5,AB=6,AD:AB=1:123,则MD+ 的最小值为.M A⋅ D N18.(3 分)如图,过锐角△ABC 的顶点A 作DE∥BC,AB 恰好平分∠DAC,AF 平分∠EAC 交BC1的延长线于点F.在AF 上取点M,使得AM=3AF,连接CM 并延长交直线DE 于点H.若AC=2,△1 1AMH 的面积是,则的值是.12 tan∠AC H三、解答题(本大题共7 小题,共86 分)119.(16 分)(1)计算:0.04+cos245°﹣(﹣2)﹣1﹣|﹣|2(2)先化简,再求值:(x‒ y﹣x y)÷,其中x=2 2,y= 2.x2‒ 2xy + y2x2‒ 2x y x‒ 2y20.(11 分)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30 株,得到的数据如下(单位:颗):182 195 201179 208 204 186 192 210 204175 193 200 203 188 197 212 207 185 206188 186 198 202 221 199 219 208 187 224(1)对抽取的30 株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:谷粒颗数175≤x<185 185≤x<195195≤x<205205≤x<215215≤x<225频数8 10 3对应扇形图中区域D E C如图所示的扇形统计图中,扇形A 对应的圆心角为度,扇形B 对应的圆心角为度;(2)该试验田中大约有3000 株水稻,据此估计,其中稻穗谷粒数大于或等于205 颗的水稻有多少株?21.(11 分)江南农场收割小麦,已知1 台大型收割机和3 台小型收割机1 小时可以收割小麦 1.4 公顷,2 台大型收割机和 5 台小型收割机 1 小时可以收割小麦2.5 公顷.(1)每台大型收割机和每台小型收割机1 小时收割小麦各多少公顷?(2)大型收割机每小时费用为300 元,小型收割机每小时费用为200 元,两种型号的收割机一共有10 台,要求2 小时完成8 公顷小麦的收割任务,且总费用不超过5400 元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.3k22.(11 分)如图,设反比例函数的解析式为y= x(k>0).(1)若该反比例函数与正比例函数y=2x 的图象有一个交点的纵坐标为2,求k 的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b 的图象交于A,B 两点,如图所示,16当△ABO 的面积为3 时,求直线l 的解析式.23.(11 分)如图,已知AB 是圆O 的直径,弦CD⊥AB,垂足为H,与AC 平行的圆O 的一条切线交CD 的延长线于点M,交AB 的延长线于点E,切点为F,连接AF 交CD 于点N.(1)求证:CA=CN;4 10,求圆O 的直径的长度.(2)连接DF,若cos∠DFA=5,AN=224.(12 分)如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过1点(4,2),直线y=2x+1 与抛物线交于B,D 两点,以BD 为直径作圆,圆心为点C,圆C 与直线m 交于对称轴右侧的点M(t,1),直线m 上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C 与x 轴相切;(3)过点B 作BE⊥m,垂足为E,再过点D 作DF⊥m,垂足为F,求BE:MF 的值.25.(14 分)如图,已知△ABC 中,∠C=90°,点M 从点C 出发沿CB 方向以1cm/s 的速度匀速运动,到达点B 停止运动,在点M 的运动过程中,过点M 作直线MN 交AC 于点N,且保持∠NMC=45°,再过点N 作AC 的垂线交AB 于点F,连接MF,将△MNF 关于直线NF 对称后得到△ENF,已知AC=8cm,BC=4cm,设点M 运动时间为t(s),△ENF 与△ANF 重叠部分的面积为y(cm2).(1)在点M 的运动过程中,能否使得四边形MNEF 为正方形?如果能,求出相应的t 值;如果不能,说明理由;(2)求y 关于t 的函数解析式及相应t 的取值范围;(3)当y 取最大值时,求sin∠NEF 的值.2017 年四川省绵阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12 小题,每小题3 分,共36 分)1.(3 分)(2017•绵阳)中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5 的相反数是()A.0.5 B.±0.5 C.﹣0.5 D.5【考点】14:相反数.【分析】根据相反数的定义求解即可.【解答】解:﹣0.5 的相反数是0.5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3 分)(2017•绵阳)下列图案中,属于轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的定义求解可得.【解答】解:A,此图案是轴对称图形,有 5 条对称轴,此选项符合题意;B、此图案不是轴对称图形,此选项不符合题意;C、此图案不是轴对称图形,而是旋转对称图形,不符合题意;D、此图案不是轴对称图形,不符合题意;故选:A.【点评】本题主要考查轴对称图形,掌握其定义是解题的关键:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3.(3 分)(2017•绵阳)中国幅员辽阔,陆地面积约为960 万平方公里,“960 万”用科学记数法表示为()A.0.96×107 B.9.6×106C.96×105 D.9.6×102【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1 时,n 是非负数;当原数的绝对值<1 时,n 是负数.【解答】解:“960 万”用科学记数法表示为9.6×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及n 的值.4.(3 分)(2017•绵阳)如图所示的几何体的主视图正确的是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】先细心观察原立体图形和正方体的位置关系,结合四个选项选出答案.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选D.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.15.(3 分)(2017•绵阳)使代数式+ 4 ‒ 3x有意义的整数x 有()x + 3A.5 个B.4 个C.3 个D.2 个【考点】72:二次根式有意义的条件.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得x+3>0 且4﹣3x≥0,4解得﹣3<x≤3,整数有﹣2,﹣1,0,1,故选:B.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.6.(3 分)(2017•绵阳)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B 到镜面中心C 的距离是50cm,镜面中心C 距离旗杆底部D 的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A 距离小丽头顶的距离是4cm,则旗杆DE 的高度等于()A.10m B.12m C.12.4m D.12.32m【考点】SA:相似三角形的应用.【分析】根据题意得出△ABC∽△EDC,进而利用相似三角形的性质得出答案.【解答】解:由题意可得:AB=1.5m,BC=0.4m,DC=4m,△ABC∽△EDC,AB BC 1.5 0.5则= ,即= ,解得:DE=12,E D DC D E 4故选:B.【点评】此题主要考查了相似三角形的应用,正确得出相似三角形是解题关键.7.(3 分)(2017•绵阳)关于x 的方程2x2+mx+n=0 的两个根是﹣2 和1,则n m的值为()A.﹣8 B.8 C.16 D.﹣16【考点】AB:根与系数的关系.【分析】由方程的两根结合根与系数的关系可求出m、n 的值,将其代入n m中即可求出结论.【解答】解:∵关于x 的方程2x2+mx+n=0 的两个根是﹣2 和1,m n∴﹣2 =﹣1,2=﹣2 ∴m=2,n=﹣4,∴n m=(﹣4)2=16.故选C.【点评】本题考查了根与系数的关系,根据方程的两根结合根与系数的关系求出m、n 的值是解题的关键.8.(3 分)(2017•绵阳)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.8πcm2 B.74πcm2 C.84πcm2D.100πcm22 【考点】MP :圆锥的计算;I4:几何体的表面积.【分析】圆锥的表面积加上圆柱的侧面积即可求得其表面积.【解答】解:∵底面圆的直径为 8cm ,高为 3cm ,∴母线长为 5cm ,∴其表面积=π×4×5+42π+8π×6=84πcm 2, 故选 C .【点评】考查了圆锥的计算及几何体的表面积的知识,解题的关键是能够了解圆锥的有关的计算方法,难度不大.9.(3 分)(2017•绵阳)如图,矩形 ABCD 的对角线 AC 与 BD 交于点 O ,过点 O 作 BD 的垂线分别交 AD ,BC 于 E ,F 两点.若 AC=2A.1B .2C .D . 3,∠AEO=120°,则FC 的长度为( )【考点】LB :矩形的性质;KD :全等三角形的判定与性质;T7:解直角三角形.【分析】先根据矩形的性质,推理得到 OF=CF ,再根据 Rt △BOF 求得 OF 的长,即可得到 CF 的长.【解答】解:∵EF ⊥BD ,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形 ABCD 是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°﹣30°=30°,∴OF=CF ,33 则{, 1 1又∵Rt △BOF 中,BO=2BD=2AC= ,∴OF=tan30°×BO=1,∴CF=1,故选:A .【点评】本题主要考查了矩形的性质以及解直角三角形的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.10.(3 分)(2017•绵阳)将二次函数 y=x 2 的图象先向下平移 1 个单位,再向右平移 3 个单位,得到的图象与一次函数 y=2x +b 的图象有公共点,则实数 b 的取值范围是()A .b >8B .b >﹣8C .b ≥8D .b ≥﹣8【考点】H6:二次函数图象与几何变换;F7:一次函数图象与系数的关系.【分析】先根据平移原则:上→加,下→减,左→加,右→减写出解析式,再列方程组,有公共点则△≥0,则可求出 b 的取值.【解答】解:由题意得:平移后得到的二次函数的解析式为:y=(x ﹣3)2﹣1,y = (x ‒ 3)2 ‒ 1 y = 2x + b(x ﹣3)2﹣1=2x +b ,x 2﹣8x +8﹣b=0,△=(﹣8)2﹣4×1×(8﹣b )≥0,5 b ≥﹣8, 故选 D . 【点评】主要考查的是函数图象的平移和两函数的交点问题,两函数有公共点:说明两函数有一个交点或两个交点,可利用方程组→一元二次方程→△≥0 的问题解决.11.(3 分)(2017•绵阳)如图,直角△ABC 中,∠B=30°,点 O 是△ABC 的重心,连接 CO 并M O延长交 AB 于点 E ,过点 E 作 EF ⊥AB 交 BC 于点 F ,连接 AF 交 CE 于点 M ,则M F 的值为( )1 2 A . B . C . D . 2 4 3 3【考点】K5:三角形的重心;S9:相似三角形的判定与性质.2【分析】根据三角形的重心性质可得 OC=3CE ,根据直角三角形的性质可得 CE=AE ,根据等边 1 1 1三角形的判定和性质得到 CM=2CE ,进一步得到 OM=6CE ,即 OM=6AE ,根据垂直平分线的性 3 1 3 M O质和含 30°的直角三角形的性质可得 EF= 3 AE ,MF=2EF ,依此得到 MF= 6 AE ,从而得到M F 的 值.【解答】解:∵点 O 是△ABC 的重心,2 ∴OC=3CE , ∵△ABC 是直角三角形,∴CE=BE=AE ,∵∠B=30°,∴∠FAE=∠B=30°,∠BAC=60°,36A E 3 ∴∠FAE=∠CAF=30°,△ACE 是等边三角形,1∴CM=2CE , 2 1 1 1∴OM=3CE ﹣2CE=6CE ,即 OM=6AE ,∵BE=AE ,3 ∴EF= 3AE , ∵EF ⊥AB ,∴∠AFE=60°,∴∠FEM=30°,1∴MF=2EF , 3∴MF= 6AE , M O 1 6A E 3∴M F = = 3 .故选:D .【点评】考查了三角形的重心,等边三角形的判定和性质,垂直平分线的性质,含 30°的直角13 三角形的性质,关键是得到 OM=6AE ,MF= 6AE .12.(3 分)(2017•绵阳)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第 1 幅图形中“●”的个数为 a 1,第 2 幅图形中“●”的个数为 a 2,第 3 幅图形中“●”的个1 1 1 1 数为 a 3,…,以此类推,则 + + +…+ 的值为( )a 1 a 2 a 3 a 192061 589 431 A. B . C . D . 21 84 840 760【考点】38:规律型:图形的变化类.【分析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【解答】解:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ∴ + + +…+ = + + 1 1 + +…+ 1 1﹣ + ﹣ + ﹣ + ﹣ +…+ ﹣ ) = a 1 1 a2 1 a3 1 a 19 589 1 × 3 2 ×4 3 ×5 4 ×6 = ( 19 × 21 2 3 2 4 3 5 4 6 19 212 (1+ ﹣ ﹣ )= ,2 20 21 840故选 C .【点评】此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题.二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)13.(3 分)(2017•绵阳)分解因式:8a 2﹣2= 2(2a +1)(2a ﹣1) .【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式 2,再根据平方差公式进行二次分解即可求得答案.【解答】解:8a 2﹣2,=2(4a 2﹣1),=2(2a +1)(2a ﹣1).故答案为:2(2a +1)(2a ﹣1).【点评】本题考查了提公因式法,公式法分解因式.注意分解要彻底.2 14.(3 分)(2017•绵阳)关于x 的分式方程‒1 1= 的解是﹣2 .x‒ 1x + 1 1 ‒ x【考点】B3:解分式方程.【分析】把分式方程转化为整式方程即可解决问题.【解答】解:两边乘(x+1)(x﹣1)得到,2x+2﹣(x﹣1)=﹣(x+1),解得x=﹣2,经检验,x=﹣2 是分式方程的解.∴x=﹣2.故答案为﹣2.【点评】本题考查分式方程的解,记住即为分式方程的步骤,注意解分式方程必须检验.15.(3 分)(2017•绵阳)如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中,O 为坐标原点,若点A 的坐标是(6,0),点C 的坐标是(1,4),则点B 的坐标是(7,4).【考点】L5:平行四边形的性质;D5:坐标与图形性质.【分析】根据平行四边形的性质及 A 点和 C 的坐标求出点 B 的坐标即可.【解答】解:∵四边形ABCO 是平行四边形,O 为坐标原点,点A 的坐标是(6,0),点C 的坐标是(1,4),∴BC=OA=6,6+1=7,∴点B 的坐标是(7,4);故答案为:(7,4).【点评】本题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质是解决问题的关键.16.(3 分)(2017•绵阳)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8 且1为偶数”的概率是4 .【考点】X6:列表法与树状图法.【专题】11 :计算题.【分析】画树状图展示所有36 种等可能的结果数,再找出“两枚骰子的点数和小于8 且为偶数” 的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36 种等可能的结果数,其中“两枚骰子的点数和小于8 且为偶数”的结果数为9,9 1所以“两枚骰子的点数和小于8 且为偶数”的概率=36=4.1故答案为.4【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件 A 或 B 的结果数目m,然后利用概率公式求事件 A 或 B 的概率.17.(3 分)(2017•绵阳)将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB3 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA,C B 于M,N两点,若CA=5,A B=6,AD:12AB=1:3,则MD+ 的最小值为 2 .M A⋅ D N【考点】S9:相似三角形的判定与性质;KH:等腰三角形的性质;R2:旋转的性质.【分析】先求出AD=2,BD=4,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ AMD+∠A=∠EDF+∠BDN,然后求出∠AMD=∠BDN,从而得到△AMD 和△BDN 相似,根据相M A M D似三角形对应边成比例可得BD=D N,求出MA•DN=4MD,再将所求代数式整理出完全平方的形式,然后根据非负数的性质求出最小值即可.【解答】解:∵AB=6,AD:AB=1:3,1∴AD=6× =2,BD=6﹣2=4,3∵△ABC 和△FDE 是形状、大小完全相同的两个等腰三角形,∴∠A=∠B=∠FDE,由三角形的外角性质得,∠AMD+∠A=∠EDF+∠BDN,∴∠AMD=∠BDN,∴△AMD∽△BDN,M A M D AD∴BD=D N=B N,∴MA•DN=BD•MD=4MD,1 1∴= ,M A⋅D N 4M D3 M D 12 3∴MD + =MD + =( M D )2+( )2﹣2 3+2 3=(M 2+2 3,M A ⋅ D N M D∴ M D = MD= 3,如图,连接 CD ,过点 C 作 CG ⊥AB 于 G ,∵AC=BC=5,AB=6,∴AG=3,CG=4,∴DG=AG ﹣AD=3﹣2=1,在 Rt △CDG 中,根据勾股定理得,CD= DG 2 + CG 2=当点 M 和点 C 重合时,DM 最大,即:DM 最大=当 DM ⊥AC 时,DM 最小,过点 D 作 DH ⊥AC 于 H ,即:DM 最小=DH ,CG 4在 Rt △ACG 中,sin ∠A=AC =5,D H在 Rt △ADH 中,sin ∠A=AD ,4 8∴DH=ADsin ∠A=2× = ,5 58∵ ≤DM ≤ 5∴DM=3时,MD +12 M A ⋅ D N有最小值为 2 3.故答案为:2 3.1717 17,15【点评】本题考查了相似三角形的判定与性质,等腰三角形的性质,旋转变换,难点在于将所求代数式整理出完全平方的形式从而判断出最小值.18.(3 分)(2017•绵阳)如图,过锐角△ABC 的顶点 A 作 DE ∥BC ,AB 恰好平分∠DAC ,AF1平分∠EAC 交 BC 的延长线于点 F .在 AF 上取点 M ,使得 AM=3AF ,连接 CM 并延长交直线 DE1 1于点 H .若 AC=2,△AMH 的面积是 ,则 的值是 8﹣ .12 tan∠AC H【考点】S9:相似三角形的判定与性质;T7:解直角三角形.【分析】过点 H 作 HG ⊥AC 于点 G ,由于 AF 平分∠CAE ,DE ∥BF ,∠HAF=∠AFC=∠CAF ,从 A M A H 1而 AC=CF=2,利用△AHM ∽△FCM ,M F =CF ,从而可求出 AH=1,利用△AMH 的面积是12,1 CG从而可求出 HG ,利用勾股定理即可求出 CG 的长度,所以 = .tan∠AC H H G【解答】解:过点 H 作 HG ⊥AC 于点 G ,∵AF 平分∠CAE ,DE ∥BF ,∴∠HAF=∠AFC=∠CAF ,∴AC=CF=2,1∵AM=3AF ,A M 1 ∴ = , M F 2154 ∵DE ∥CF ,∴△AHM ∽△FCM ,A M A H ∴M F =CF ,∴AH=1,设△AHM 中,AH 边上的高为 m ,△FCM 中 CF 边上的高为 n ,m A M 1 ∴ n =M F =2, 1∵△AMH 的面积为: ,12 1 1∴ = AH•m 12 21 ∴m=6,1 ∴n= ,3设△AHC 的面积为 S ,S m + n ∴ = =3, S △ A HM m1∴S=3S △AHM =4,1 1 ∴ AC•HG= ,2 41 ∴HG=4,∴由勾股定理可知:AG= ,∴CG=AC ﹣AG=2﹣15 41 CG∴= =8﹣tan∠AC H H G故答案为:8﹣【点评】本题考查相似三角形综合问题,解题的关键是通过相似三角形的性质求出HG、CG、AH 长度,本题属于难题.三、解答题(本大题共7 小题,共86 分)119.(16 分)(2017•绵阳)(1)计算:0.04+cos245°﹣(﹣2)﹣1﹣|﹣|2(2)先化简,再求值:(x‒ y﹣x y)÷,其中x=2 2,y= 2.x2‒ 2xy + y2x2‒ 2x y x‒ 2y【考点】6D:分式的化简求值;2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、绝对值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x、y 的值代入化简后的式子即可解答本题.【解答】解:(1)10.04+cos245°﹣(﹣2)﹣1﹣|﹣|2=0.2+22( 2 )1 1‒( ‒ ) ‒2 21=0.2+2 +1 12‒2=0.7;(2)(2x‒ y x2﹣2y)÷x‒ 2yx‒ 2xy + y x‒ 2xy15151‒ 2 x ‒ y =[ (x ‒ y )x2 ‒ x (x ‒ 2y )] ⋅x ‒ 2yy1 =( ‒ 1 x ‒ 2y ) ⋅ x ‒ y x ‒ 2y yx ‒ 2y ‒ x + y =(x ‒ y )(x ‒ 2y ) ⋅‒ y =y (x ‒ y ) 1= , y ‒ xx ‒ 2y y当 x=22,y=2时,原式=2= =‒ 2 .【点评】本题考查分式的化简求值、特殊角的三角函数值、负整数指数幂、绝对值,解答本题的关键是明确它们各自的计算方法.20.(11 分)(2017•绵阳)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了 30 株,得到的数据如下(单位:颗):(1) 对抽取的 30 株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:12 ‒ 2 2如图所示的扇形统计图中,扇形A 对应的圆心角为 72 度,扇形B 对应的圆心角为36 度;(2)该试验田中大约有3000 株水稻,据此估计,其中稻穗谷粒数大于或等于205 颗的水稻有多少株?【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)根据表格中数据填表画图即可,利用360°×其所占的百分比求出扇形对应的圆心角度数;(2)用360°乘以样本中稻穗谷粒数大于或等于205 颗的水稻所占百分比即可.【解答】解:(1)填表如下:如图所示:6如图所示的扇形统计图中,扇形 A 对应的圆心角为:360°×30=72 度,扇形B 对应的圆心角3为360°×30=36 度.故答案为3,6,B,A,72,36;6 + 3(2)3000×30 =900.即据此估计,其中稻穗谷粒数大于或等于205 颗的水稻有900 株.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.21.(11 分)(2017•绵阳)江南农场收割小麦,已知1 台大型收割机和3 台小型收割机1 小时可以收割小麦1.4 公顷,2 台大型收割机和5 台小型收割机1 小时可以收割小麦2.5 公顷.(1)每台大型收割机和每台小型收割机1 小时收割小麦各多少公顷?(2)大型收割机每小时费用为300 元,小型收割机每小时费用为200 元,两种型号的收割机一共有10 台,要求2 小时完成8 公顷小麦的收割任务,且总费用不超过5400 元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)设每台大型收割机1 小时收割小麦x 公顷,每台小型收割机1 小时收割小麦y 公顷,根据“1 台大型收割机和3 台小型收割机1 小时可以收割小麦1.4 公顷,2 台大型收割机和5 台小型收割机1 小时可以收割小麦2.5 公顷”,即可得出关于x、y 的二元一次方程组,解解得:{.根据题意得:{,∴{, 之即可得出结论;(2)设大型收割机有 m 台,总费用为 w 元,则小型收割机有(10﹣m )台,根据总费用=大型收割机的费用+小型收割机的费用,即可得出 w 与 m 之间的函数关系式,由“要求 2 小时完成 8 公顷小麦的收割任务,且总费用不超过 5400 元”,即可得出关于 m 的一元一次不等式组,解之即可得出 m 的取值范围,依此可找出各方案,再结合一次函数的性质即可解决最值问题. 【解答】解:(1)设每台大型收割机 1 小时收割小麦 x 公顷,每台小型收割机 1 小时收割小麦 y 公顷,x + 3y = 1.42x + 5y = 2.5x = 0.5 y = 0.3答:每台大型收割机 1 小时收割小麦 0.5 公顷,每台小型收割机 1 小时收割小麦 0.3 公顷.(2)设大型收割机有 m 台,总费用为 w 元,则小型收割机有(10﹣m )台, 根据题意得:w=300×2m +200×2(10﹣m )=200m +4000. ∵2 小时完成 8 公顷小麦的收割任务,且总费用不超过 5400 元,2 × 0.5m + 2 × 0.3(10 ‒ m ) ≥ 8 200m + 4000 ≤ 5400解得:5≤m ≤7,∴有三种不同方案.∵w=200m +4000 中,200>0,∴w 值随 m 值的增大而增大,∴当 m=5 时,总费用取最小值,最小值为 5000 元.答:有三种方案,当大型收割机和小型收割机各 5 台时,总费用最低,最低费用为 5000 元.【点评】本题考查了二元一次方程组的应用、一次函数的性质以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据总费用=大型收割机的费用+小型收割机的费用,找出w 与m 之间的函数关系式.3k22.(11 分)(2017•绵阳)如图,设反比例函数的解析式为y= x(k>0).(1)若该反比例函数与正比例函数y=2x 的图象有一个交点的纵坐标为2,求k 的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b 的图象交于A,B 两点,如图所示,16当△ABO 的面积为3 时,求直线l 的解析式.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)由题意可得A(1,2),利用待定系数法即可解决问题;(2)把M(﹣2,0)代入y=kx+b,可得b=2k,可得y=kx+2k,由{y = 3k x消去y 得到x2+2x﹣3=0,y = kx + 2k16 1 1 16解得x=﹣3 或1,推出B(﹣3,﹣k),A(1,3k),根据△ABO 的面积为3 ,可得•2•3k+ •2•k= ,2 2 3解方程即可解决问题;【解答】解:(1)由题意A(1,2),3k把A(1,2)代入y=x,得到3k=2,2∴k=3.y = kx + 2k(2)把 M (﹣2,0)代入 y=kx +b ,可得 b=2k ,∴y=kx +2k , {3k∴B (﹣3,﹣k ),A (1,3k ),16 ∵△ABO 的面积为 3 ,1 1 16 ∴ •2•3k + •2•k= ,2 2 34 解得 k=3,4 8∴直线 l 的解析式为 y= x + .3 3【点评】本题考查一次函数与反比例函数图象的交点、待定系数法、二元一次方程组等知识, 解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(11 分)(2017•绵阳)如图,已知 AB 是圆 O 的直径,弦 CD ⊥AB ,垂足为 H ,与 AC 平行的圆 O 的一条切线交 CD 的延长线于点 M ,交 AB 的延长线于点 E ,切点为 F ,连接 AF 交 CD 于点 N .(1) 求证:CA=CN ;4 (2) 连接 DF ,若 cos ∠DFA=5,AN=210,求圆 O 的直径的长度.x 消去 y 得到 x 2+2x ﹣3=0,解得 x=﹣3 或 1, 由 y =【考点】MC:切线的性质;KQ:勾股定理;M5:圆周角定理;T7:解直角三角形.【分析】(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;410,即可求出CH、AH 的长度,设圆(2)连接OC,由圆周角定理结合cos∠DFA= 、AN=25的半径为r,则OH=r﹣6,根据勾股定理即可得出关于r 的一元一次方程,解之即可得出r,再乘以2 即可求出圆O 直径的长度.【解答】(1)证明:连接OF,则∠OAF=∠OFA,如图所示.∵ME 与⊙O 相切,∴OF⊥ME.∵CD⊥AB,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF,∠FOH+∠BOF=180°,∴∠M=2∠OAF.∵ME∥AC,∴∠M=∠C=2∠OAF.∵CD⊥AB,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°﹣∠OAF,∠BAC=90°﹣∠C=90°﹣2∠OAF,∴∠CAN=∠OAF+∠BAC=90°﹣∠OAF=∠ANC,∴CA=CN.(2)连接OC,如图 2 所示.4∵cos∠DFA= ,∠DFA=∠ACH,5C H 4∴= .AC 5设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴AN= A H2 + NH2=(3a)2 + a2= 10a=2 10,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r,则OH=r﹣6,在Rt△OCH 中,OC=r,CH=8,OH=r﹣6,∴OC2=CH2+OH2,r2=82+(r﹣6)2,25解得:r=3 ,50∴圆O 的直径的长度为2r=3 .【点评】本题考查了切线的性质、勾股定理、解直角三角形、圆周角定理以及解一元一次方程,解题的关键是:(1)通过角的计算找出∠CAN=90°﹣∠OAF=∠ANC;(2)利用解直角三角形求出CH、AH 的长度.24.(12 分)(2017•绵阳)如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),1并且经过点(4,2),直线y=2x+1 与抛物线交于B,D 两点,以BD 为直径作圆,圆心为点C,圆C 与直线m 交于对称轴右侧的点M(t,1),直线m 上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C 与x 轴相切;(3)过点B 作BE⊥m,垂足为E,再过点D 作DF⊥m,垂足为F,求BE:MF 的值.【考点】HF:二次函数综合题.【分析】(1)可设抛物线的顶点式,再结合抛物线过点(4,2),可求得抛物线的解析式;(2)联立直线和抛物线解析式可求得B、D 两点的坐标,则可求得C 点坐标和线段BD 的长,可求得圆的半径,可证得结论;5 5(3) 过点 C 作 CH ⊥m 于点 H ,连接 CM ,可求得 MH ,利用(2)中所求 B 、D 的坐标可求得FH ,则可求得 MF 和 BE 的长,可求得其比值. 【解答】解:(1) ∵已知抛物线 y=ax 2+bx +c (a ≠0)的图象的顶点坐标是(2,1),∴可设抛物线解析式为 y=a (x ﹣2)2+1,∵抛物线经过点(4,2),1 ∴2=a (4﹣2)2+1,解得 a=4,1 1∴抛物线解析式为 y=4(x ﹣2)2+1=4x 2﹣x +2;{y = 1‒ x + 2{x = 3{x(2) 联立直线和抛物线解析式可得4y = 1 x + 1 2,解得 5 5或 y = 2 ‒ 2 5 5, y = 2 + 2∴B (3﹣ ,D (3+ 5 , + ),2 2 2 2∵C 为 BD 的中点,5 5 5 5∴点 C 的纵坐标为 2‒ 2 + 2 + 2 2 5=2,∵BD= [(3 ‒ 5) ‒ (3 + 5 25 5 5 5 2=5, )] + [(2 ‒ ) ‒ ( + 2 2)]5∴圆的半径为 ,2∴点 C 到 x 轴的距离等于圆的半径,∴圆 C 与 x 轴相切;5, 2 2 x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省绵阳市2017年中考数学试题
一、选择题:
1.中国人最早使用负数,可追溯到两千年前的秦汉时期,5.0-的相反数是( )
A .5.0
B .5.0±
C .5.0-
D .5
2.下列图案中,属于轴对称图形的是( )
3.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )
A .71096.0⨯
B .6106.9⨯
C .51096⨯
D .2
106.9⨯
4.如图所示的几何体的主视图正确的是( )
5.使代数式x x 3431
-++有意义的整数x 有( )
A .5个
B .4个
C .3个
D .2个
6.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B ,测得脚掌中心位置B 到镜面中心C 的距离是cm 50,镜面中心C 距旗杆底部D 的距离为cm 4,如图所示.已知小丽图象的身高是m 54.1,眼睛位置A 距离小丽头顶的距离为cm 4,则旗杆的高度等于( )
A .m 10
B .m 12 C. m 4.12 D .m 32.12
7.关于x 的方程022=++n mx x 的两个根是2-和1,则m
n 的值为( )
A .8-
B .8 C. 16 D .16-
8.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图.已知底面圆
的直径cm AB 8=,圆柱体部分的高cm BC 6=,圆锥体部分的高cm CD 3=,则这个陀螺
的表面积是( )
A .268cm π
B .274cm π C. 284cm π D .2
100
cm π 9.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交BC AD ,于F E ,两点.若32=AC , 120=∠AEO ,则FC 的长度为( )
A .1
B .2 C.2 D .3
10.将二次函数2
x y =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一
次函数b x y +=2的图象有公共点,则实数b 的取值范围是( )
A .8>b
B .8->b C.8≥b D .8-≥b
11.如图,直角ABC ∆中, 30=∠B ,点O 是ABC ∆的重心,连接CO 并延长交AB 于点E ,过点E 作AB EF ⊥交BC 于点F ,连接AF 交CE 于点M ,则MF MO
的值为( )
A .21
B .45 C.32 D .33
12.如图所示,将形状、大小完全相同的“
”和线段按照一定规律摆成下列图形.第1幅图形中“ ”的个数为1a ,第2幅图形中“ ”的个数为2a ,第3幅图形中“ ”的
个数为3a ,…,以此类推,则19
3211
111a a a a ++++ 的值为( )
A .2120
B .8461 C.840589 D .760421
二、填空题
13.因式分解:=-282a .
14.关于x 的分式方程x x x -=+--11
1112
的解是 .
15.如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中,O 为坐标原点,若点A 的
坐标是)0,6(,点C 的坐标是)4,1(,则点B 的坐标是 .
16.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率
是 .
17.将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,DEF ∆绕
点D 旋转,腰DF 和底边DE 分别交CAB ∆的两腰CB CA ,于点N M ,两点.若5=CA ,
6=AB ,3:1:=AB AD ,则DN
MA MD ⋅+12的最小值为 .
18.如图,过锐角ABC ∆的顶点A 作BC DE //,AB 恰好平分DAC ∠,AF 平分EAC ∠交
BC 的延长线于点F ,在AF 上取点M ,使得AF AM 3
1=
,连接CM 并延长交直线DE 于点H ,若2=AC ,AMH ∆的面积是121,则ACH ∠tan 1的值是 .
三、解答题
19.(1)计算:|21|)2(45cos 04.0102-
---+-; (2)先化简,再求值:y x y xy
x x y xy x y x 2)22(222-÷--+--,其中22=x ,2=y . 20.红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽
取了30株,得到的数据如下(单位:颗):
182 195 201 179 208 204 186 192 210 204
175 193 200 203 188 197 212 207 185 206
188 186 198 202 221 199 219 208 187 224
(1)对抽取的30株水稻稻穗谷粒数进行分析,请补全下表中空格,并完善直方图:
上图所示的扇形统计图中,扇形A 对应的圆心角为 度,扇形B 对应的圆心角为 度;
(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?
21.江南农场收个小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割2.5公顷.
(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷? 谷粒颗数
185175<≤x 195185<≤x 205195<≤x 215205<≤x 225215<≤x 频数
8 10 3 对应扇形
图中区域
D E C
(2)大型收割机每小时费用为300元,小型收割机每小时费用200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.
22.如图,设反比例函数的解析式为)0(3>=k x
k y .
(1)若该反比例函数与正比例函数x y 2=的图象有一个交点的纵坐标为2,求k 的值;
(2)若该反比例函数与过点)0,2(-M 的直线l :b kx y +=的图象交于B A ,两点,如图所示,当ABO ∆的面积为3
16时,求直线l 的解析式.
23.如图,已知AB 是圆O 的直径,弦AB CD ⊥,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N .
(1)求证:CN CA =;
(2)连接DF ,若5
4cos =∠DFA ,102=AN ,求圆O 的直径的长度.
24.如图,已知抛物线)0(2≠++=a c bx ax y 的图象的顶点坐标是)1,2(,并且经过点)2,4(,直线12
1+=x y 与抛物线交于D B ,两点,以BD 为直径作圆,圆心为点C ,圆C 与直线m 交于对称轴右侧的点)1,(t M ,直线m 上每一点的纵坐标都等于1.
(1)求抛物线的解析式;
(2)证明:圆C 与x 轴相切;
(3)过点B 作m BE ⊥,垂足为E ,再过点D 作m DF ⊥,垂足为F ,求MF BE :的值.
25.如图,已知ABC ∆中,0
90=∠C ,点M 从点C 出发沿CB 方向以s cm /1的速度匀速运动,到达点B 停止运动,在点M 的运动过程中,过点M 作直线MN 交AC 于点N ,且保持045=∠NMC .再过点N 作AC 的垂线交AB 于点F ,连接MF ,将MNF ∆关于直线NF 对称后得到ENF ∆.已知cm AC 8=,cm BC 4=,设点M 运动事件为)(s t ,
ENF ∆与ANF ∆重叠部分的面积为)(2
cm y .
(1)在点M 的运动过程中,能否使得四边形MNEF 为正方形?如果能,求出相应的t 值;如果不能,说明理由;
(2)求y 关于t 的函数解析式及相应t 的取值范围;
(3)当y 取最大值时,求NEF sin 的值.。

相关文档
最新文档