重庆市九龙坡区2018-2019年八年级(下)期末数学试卷 解析版

合集下载

2018-2019学年重庆八中八年级(下)第二学期期末数学试卷及答案 含解析

2018-2019学年重庆八中八年级(下)第二学期期末数学试卷及答案 含解析

2018-2019学年重庆八中八年级第二学期期末数学试卷一、选择题1.反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3B.C.﹣3D.﹣2.若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°3.分式有意义,则x的取值范围为()A.x≠0B.x≠2C.x≠0且x≠2D.x为一切实数4.六边形的内角和等于()A.180°B.360°C.540°D.720°5.方程x2=3x的解是()A.x=3B.x=﹣3C.x=0D.x=3或x=0 6.下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形7.如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4B.k>4C.k<0D.k>08.菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2B.4C.6D.89.某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=9010.函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题(共6个小题)11.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为.12.一组数据10,9,10,12,9的中位数是.13.关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=.14.若=3,则=.15.已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为.16.双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为.三、解答题17.解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=2018.先化简,再求值:(﹣a+1+)÷,其中a=3.19.近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为人;(2)在扇形统计图中,B所对应扇形的圆心角是度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.20.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b ≥的解集.四、填空题:(共5个小题,每小题4分,共20分)请将每小題的答案直接填在答题卡中对应的横线上.21.因式分解:x3﹣2x2y+xy2=.22.如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.23.若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为.24.2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C地,其中AC=2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为千米.25.为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.五、解答题(共3个小题,每题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.26.为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B两种原材料,A的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.27.如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.28.如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D 作DE∥AB交BC于E.(1)点C的坐标为;(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.参考答案一、选择题(10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卡中对应的表格内.1.反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3B.C.﹣3D.﹣【分析】把点(﹣1,3)代入解析式即可求出k的值.解:把(﹣1,3)代入反比例函数y=(k≠0),得3=,解得:k=﹣3.故选:C.2.若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°【分析】根据相似三角形的对应角相等可得∠D=∠A.解:∵△ABC∽△DEF,∠A=50°,∴∠D=∠A=50°.故选:A.3.分式有意义,则x的取值范围为()A.x≠0B.x≠2C.x≠0且x≠2D.x为一切实数【分析】直接利用分式有意义则分母不等于零进而得出答案.解:分式有意义,则x﹣2≠0,解得:x≠2.故选:B.4.六边形的内角和等于()A.180°B.360°C.540°D.720°【分析】根据n边形的内角和可以表示成(n﹣2)•180°,即可求得六边形的内角和.解:六边形的内角和是(6﹣2)×180°=720度.故选:D.5.方程x2=3x的解是()A.x=3B.x=﹣3C.x=0D.x=3或x=0【分析】先移项得x2﹣3x=0,然后利用因式分解法解方程.解:x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,所以x1=0,x2=3.6.下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形【分析】根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.解:A、正确.B、错误,对应边不一定成比例.C、错误,不一定中奖.D、错误,对角线相等的四边形不一定是矩形,故选:A.7.如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4B.k>4C.k<0D.k>0【分析】利用一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:方程有两个不相等的两个实数根,△>0,进而求出即可.解:∵关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,∴b2﹣4ac=16﹣4k>0,解得:k<4.故选:A.8.菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2B.4C.6D.8【分析】首先根据题意画出图形,由菱形周长为20,可求得其边长,又由它的一条对角线长6,利用勾股定理即可求得菱形的另一条对角线长.解:如图,∵菱形ABCD的周长为20,对角线AC=6,∴AB=5,AC⊥BD,OA=AC=3,∴OB==4,∴BD=2OB=8,即菱形的另一条对角线长为8.故选:D.9.某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=90【分析】设月平均增长率的百分数为x,根据某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,可列方程求解.解:设月平均增长率的百分数为x,20+20(1+x)+20(1+x)2=90.故选:D.10.函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.【分析】先根据反比例函数的性质判断出k的取值,再根据一次函数的性质判断出k取值,二者一致的即为正确答案.解:在函数y=kx+b(k≠0)与y=(k≠0)中,当k>0时,图象都应过一、三象限;当k<0时,图象都应过二、四象限.故选:D.二、填空题(6个小题,每小题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.11.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为1:2.【分析】根据相似三角形的周长的比等于相似比得出.解:∵△ABC∽△DEF,△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的周长比为1:2.故答案为:1:2.12.一组数据10,9,10,12,9的中位数是10.【分析】根据中位数的意义,将数据排序后找中间位置的数会中间两个数的平均数即可.解:将数据按从小到大排列为:9,9,10,10 12,处于中间位置也就是第3位的是10,因此中位数是10,故答案为:10.13.关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=4.【分析】利用根与系数的关系可得出方程的两根之积为﹣4,结合方程的一个根为﹣1,可求出方程的另一个根,此题得解.解:∵a=1,b=m,c=﹣4,∴x1•x2==﹣4.∵关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,∴另一个根为﹣4÷(﹣1)=4.故答案为:4.14.若=3,则=4.【分析】根据比例的合比性质即可直接完成题目.解:根据比例的合比性质,原式=;15.已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为15.【分析】用因式分解法可以求出方程的两个根分别是3和6,根据等腰三角形的三边关系,腰应该是6,底是3,然后可以求出三角形的周长.解:x2﹣9x+18=0(x﹣3)(x﹣6)=0解得x1=3,x2=6.由三角形的三边关系可得:腰长是6,底边是3,所故周长是:6+6+3=15.故答案为:15.16.双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为3.【分析】根据S△AOC﹣S△BOC=S△AOB,列出方程,求出k的值.解:由题意得:S△AOC﹣S△BOC=S△AOB,﹣=1,解得,k=3,故答案为:3.三、解答题(17题8分,18题8分,19题10分,20题10分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上,17.解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=20【分析】(1)先求出b2﹣4ac的值,再代入公式求出即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.解:(1)x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,x=,x1=,x2=;(2)(x+2)(x+3)=20,整理得:x2+5x﹣14=0,(x+7)(x﹣2)=0,x+7=0,x﹣2=0,x1=﹣7,x2=2.18.先化简,再求值:(﹣a+1+)÷,其中a=3.【分析】先算括号里面的加法,再将除法转化为乘法,将结果化为最简,然后把a的值代入进行计算即可.解:原式=,=,=.当a=3时,原式=.19.近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为50人;(2)在扇形统计图中,B所对应扇形的圆心角是144度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.【分析】(1)根据“优”的人数和所占的百分比即可求出总人数;(2)用360°乘以“良”所占的百分比求出B所对应扇形的圆心角;用总人数减去“优”、“良”、“差”的人数,求出“中”的人数,即可补全统计图;(3)根据题意画出树状图得出所以等情况数和所选的两位同学测试成绩恰好都为“良”的情况数,然后根据概率公式即可得出答案.解:(1)本次调查的学生总数为:15÷30%=50(人);故答案为:50;(2)在扇形统计图中,B所对应扇形的圆心角是360°×=144°;“中”等级的人数是:50﹣15﹣20﹣5=10(人),补图如下:故答案为:10;(3)“优秀”和“良”的分别用A1,A2,和B1,B2表示,则画树状图如下:共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,则所选的两位同学测试成绩恰好都为“良”的概率是=.20.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b ≥的解集.【分析】(1)根据在函数y=|kx﹣1|+b中,当x=1时,y=3;当x=0时,y=4,可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象;(3)根据图象可以直接写出所求不等式的解集.解:(1)∵在函数y=|kx﹣1|+b中,当x=1时,y=3;当x=0时,y=4,∴,得,∴这个函数的表达式是y=|x﹣1|+3;(2)∵y=|x﹣1|+3,∴y=,∴函数y=x+2过点(1,3)和点(4,6);函数y=﹣x+4过点(0,4)和点(﹣2,6);该函数的图象如图所示:(3)由函数图象可得,不等式|kx﹣1|+b≥的解集是x≥2或x<0.四、填空题:(共5个小题,每小题4分,共20分)请将每小題的答案直接填在答题卡中对应的横线上.21.因式分解:x3﹣2x2y+xy2=x(x﹣y)2.【分析】原式提取公因式,再利用完全平方公式分解即可.解:原式=x(x2﹣2xy+y2)=x(x﹣y)2,故答案为:x(x﹣y)222.如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.【分析】过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,根据平行线分线段成比例定理得:NO=2MO=2,从而可得F(2,2),结合E(﹣1,1)可得直线EF的解析式,求出点G的坐标后即可求解.解:过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图:∴EM∥GO∥FN∵2EG=FG∴根据平行线分线段成比例定理得:NO=2MO∵E(﹣1,1)∴MO=1∴NO=2∴点F的横坐标为2∵F在y=(x>0)的图象上∴F(2,2)又∵E(﹣1,1)∴由待定系数法可得:直线EF的解析式为:y=当x=0时,y=∴G(0,)∴OG=故答案为:23.若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为﹣3.【分析】不等式组整理后,根据所有整数解的和为﹣9,确定出x的值,进而求出a的范围,分式方程去分母转化为整式方程,检验即可得到满足题意a的值,求出符合条件的所有整数a即可.解:,不等式组整理得:﹣4≤x<a,由不等式组所有整数解的和为﹣9,得到﹣2<a≤﹣1,或1<a≤2,即﹣6<a≤﹣3,或3<a≤6,分式方程1﹣=,去分母得:y2﹣4+2a=y2+(a+2)y+2a,解得:y=﹣,经检验a=﹣3,2,﹣1,﹣6,则符合条件的所有整数a为﹣3.故答案为:﹣3.24.2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C地,其中AC=2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为360千米.【分析】由图象可知4.5小时两列车与C地的距离之和为0,于是高铁列车和普快列车在C站相遇,由于AC=2BC,因此高铁列车的速度是普快列车的2倍,相遇后图象的第一个转折点,说明高铁列车到达B站,此时两车距C站的距离之和为360千米,由于V=2V普快,因此BC距离为360千米的三分之二,即240千米,普快离开C占的距离为高铁360千米的三分之一,即120千米,于是可以得到全程为240+240×2=720千米,当高铁列车到达B站时,普快列车离开B站240+120=360千米,此时距A站的距离为720﹣360=360千米.解:∵图象过(4.5,0)∴高铁列车和普快列车在C站相遇∵AC=2BC,∴V高铁=2V普快,BC之间的距离为:360×=240千米,全程为AB=240+240×2=720千米,此时普快离开C站360×=120千米,当高铁列车到达B站时,普快列车距A站的距离为:720﹣120﹣240=360千米,故答案为:360.25.为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品320件.【分析】可设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,根据第一次三种纪念品总数量不超过1000件,列出方程组和不等式求解即可.解:设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,依题意有,则24x=29y﹣200=19z﹣370=m,∵0<m≤1000,∴0<x≤41,6<y≤41,19<z≤72,∵x,y、z均为正整数,∴1≤x≤41,7≤y≤41,20≤z≤72,24x=29y﹣200化为:x=y﹣8+,∴5y﹣8=24n(n为正整数),∴5y=8+24n=8(1+3n),∴y=8k(k为正整数),5k=3n+1,∴7≤8k≤41,n=k+,∴1≤k≤5,1≤2k﹣1≤9,∵2k﹣1必为奇数且是3的整数倍.∴2k﹣1=3或2k﹣1=9,∴k=2或k=5,当k=2时,y=16,x=11,z=33(舍)∴k只能为5,∴y=40,x=40,z=70.∴8x=8×40=320.答:第一次购进A种纪念品320件.故答案为:320.五、解答题(共3个小题,每题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.26.为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B两种原材料,A的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.【分析】(1)设该同学购买x件B种原材料,则购买x件A种原材料,由购买原材料的总费用不超过480元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内的最大正整数即可;(2)设y=a%,根据该同学在本次活动中赚了a%,即可得出关于y的一元二次方程,解之即可得出结论.解:(1)设该同学购买x件B种原材料,则购买x件A种原材料,根据题意得:6×x+3×x≤480,解得:x≤80,∴x最大值为80,答:该同学最多可购买80件B两种原材料.(2)设y=a%,根据题意得:(520+480)×(1+2y)(1﹣y)=(520+480)×(1+y),整理得:4y2﹣y=0,解得:y=0.25或y=0(舍去),∴a%=0.25,a=25.答:a的值为25.27.如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.【分析】(1)作BJ⊥AE于J.证明BJ是∠ABE的角平分线即可解决问题.(2)作EM⊥AD于M,CN⊥AD于N,连接CH.证明△AEF≌△AEM(HL),△AGE ≌△HGC(SAS),△EMA≌△CNH(HL),即可解决问题.【解答】(1)解:作BJ⊥AE于J.∵BF⊥AB,∴∠ABJ+∠BAJ=90°,∠AEF+∠EAF=90°,∵四边形ABCD是平行四边形,∴∠D=∠ABC,∵∠D=2∠AEF,∴∠ABE=2∠AEF=2∠ABJ,∴∠ABJ=∠EBJ,∵∠ABJ+∠BAJ=90°,∠EBJ+∠BEJ=90°,∴∠BAJ=∠BEJ,∵∠BAE=70°,∴∠BEA=70°.(2)证明:作EM⊥AD于M,CN⊥AD于N,连接CH.∵AD∥BC,∴∠DAE=∠BEA,∵∠BAE=∠BEA,∴∠BAE=∠DAE,∵EF⊥AB,EM⊥AD,∴EF=EM,∵EA=EA,∠AFE=∠AME=90°,∴Rt△AEF≌Rt△AEM(HL),∴AF=AM,∵EG⊥CG,∴∠EGC=90°,∵∠ECG=45°,∠GCE=45°,∴GE=CG,∵AD∥BC,∴∠GAH=∠ECG=45°,∠GHA=∠CEG=45°,∴∠GAH=∠GHA,∴GA=GH,∴△AGE≌△HGC(SAS),∴EA=CH,∵CM=CN,∠AME=∠CNH=90°,∴Rt△EMA≌Rt△CNH(HL),∴AM=NH,∴AN=HM,∵△ACN是等腰直角三角形,∴AC=AN,即AN=AC,∴AH=AM+HM=AF+AC.28.如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D 作DE∥AB交BC于E.(1)点C的坐标为(3,3);(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.【分析】(1)想办法求出A,D,B的坐标,求出直线AC,BC的解析式,构建方程组即可解决问题.(2)如图2中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.利用三角形的面积公式求出点D坐标,再证明PH=PB,把问题转化为垂线段最短即可解决问题.(3)在旋转过程中,符号条件的△GD0H有8种情形,分别画出图形一一求解即可.解:(1)如图1中,在Rt△AOD中,∵∠AOD=90°,∠OAD=30°,OD=2,∴OA=OD=6,∠ADO=60°,∴∠ODC=120°,∵BD平分∠ODC,∴∠ODB=∠ODC=60°,∴∠DBO=∠DAO=30°,∴DA=DB=4,OA=OB=6,∴A(﹣6,0),D(0,2),B(6,0),∴直线AC的解析式为y=x+2,∵AC⊥BC,∴直线BC的解析式为y=﹣x+6,由,解得,∴C(3,3).(2)如图2中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.∵∠FD′G=∠D′GF=60°,∴△D′FG是等边三角形,∵S△D′FG=•D′G2=,∴D′G=,∴DD′=GD′=2,∴D′(2,2),∵C(3,3),∴CD′==2,在Rt△PHB中,∵∠PHB=90°,∠PBH=30°,∴PH=PB,∴CD'+D'P+PB=2+D′P+PH≤2+D′O′=2+2,∴CD'+D'P+PB的最小值为2+2.(3)如图3﹣1中,当D0H⊥GH时,连接ED0.∵ED=ED0,EG=EG.DG=D0G,∴△EDG≌△ED0G(SSS),∴∠EDG=∠ED0G=30°,∠DEG=∠D0EG,∵∠DEB=120°,∠A′EO′=60°,∴∠DEG+∠BEO′=60°,∵∠D0EG+∠D0EO′=60°,∴∠D0EO′=∠BEO′,∵ED0=EB,E=EH,∴△EO′D0≌△EO′B(SAS),∴∠ED0H=∠EBH=30°,HD0=HB,∴∠CD0H=60°,∵∠D0HG=90°,∴∠D0GH=30°,设HD0=BH=x,则DG=GD0=2x,GH=x,∵DB=4,∴2x+x+x=4,∴x=2﹣2.如图3﹣2中,当∠D0GH=90°时,同法可证∠D0HG=30°,易证四边形DED0H是等腰梯形,∵DE=ED0=DH=4,可得D0H=4+2×4×cos30°=4+4.如图3﹣3中,当D0H⊥GH时,同法可证:∠D0GH=30°,在△EHD0中,由∠D0HE=45°,∠HD0E=30°,ED0=4,可得D0H=4×+4×=2+2,如图3﹣4中,当D G⊥GH时,同法可得∠D0HG=30°,设DG=GD0=x,则HD0=BH=2x,GH=x,∴3x+x=4,∴x=2﹣2,∴D0H=2x=4﹣4.如图3﹣5中,当D0H⊥GH时,同法可得D0H=2﹣2.如图3﹣6中,当D G G⊥GH时,同法可得D0H=4+4.如图3﹣7中,如图当D0H⊥HG时,同法可得D0H=2+2.如图3﹣8中,当D0G⊥GH时,同法可得HD0=4﹣4.综上所述,满足条件的D0H的值为2﹣2或2+2或4﹣4或4+4.。

2018-2019学年重庆八中八年级(下)期末数学试卷(含解析)

2018-2019学年重庆八中八年级(下)期末数学试卷(含解析)

2018-2019学年重庆八中八年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题10个小题,每小题4分,共40分)1.反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3 B.C.﹣3 D.﹣2.若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°3.分式有意义,则x的取值范围为()A.x≠0 B.x≠2C.x≠0且x≠2 D.x为一切实数4.六边形的内角和等于()A.180°B.360°C.540°D.720°5.方程x2=3x的解是()A.x=3 B.x=﹣3 C.x=0 D.x=3或x=06.下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形7.如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4 B.k>4 C.k<0 D.k>08.菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2 B.4 C.6 D.89.某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=9010.函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题(本大题6个小题,每小题4分,共24分)11.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为.12.一组数据10,9,10,12,9的中位数是.13.关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=.14.若=3,则=.15.已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为.16.双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为.三、解答题(17题8分,18题8分,19题10分,20题10分)17.(8分)解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=2018.(8分)先化简,再求值:(﹣a+1+)÷,其中a=3.19.(10分)近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为人;(2)在扇形统计图中,B所对应扇形的圆心角是度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.20.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b≥的解集.B卷(50分)一、填空题:(本大题共5个小题,每小题4分,共20分)21.因式分解:x3﹣2x2y+xy2=.22.如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.23.若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为.24.2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B 地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C地,其中AC =2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为千米.25.为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.二、解答题(本大题共3个小题,每题10分,共30分)26.(10分)为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B两种原材料,A 的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.27.(10分)如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.28.(10分)如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D作DE∥AB交BC于E.(1)点C的坐标为;(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.参考答案与试题解析一、选择题1.【解答】解:把(﹣1,3)代入反比例函数y=(k≠0),得3=,解得:k=﹣3.故选:C.2.【解答】解:∵△ABC∽△DEF,∠A=50°,∴∠D=∠A=50°.故选:A.3.【解答】解:分式有意义,则x﹣2≠0,解得:x≠2.故选:B.4.【解答】解:六边形的内角和是(6﹣2)×180°=720°.故选:D.5.【解答】解:x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,所以x1=0,x2=3.6.【解答】解:A、正确.B、错误,对应边不一定成比例.C、错误,不一定中奖.D、错误,对角线相等的四边形不一定是矩形,故选:A.7.【解答】解:∵关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,∴b2﹣4ac=16﹣4k>0,解得:k<4.故选:A.8.【解答】解:如图,∵菱形ABCD的周长为20,对角线AC=6,∴AB=5,AC⊥BD,OA=AC=3,∴OB==4,∴BD=2OB=8,即菱形的另一条对角线长为8.故选:D.9.【解答】解:设月平均增长率的百分数为x,20+20(1+x)+20(1+x)2=90.故选:D.10.【解答】解:在函数y=kx+b(k≠0)与y=(k≠0)中,当k>0时,图象都应过一、三象限;当k<0时,图象都应过二、四象限.故选:D.二、填空题11.【解答】解:∵△ABC∽△DEF,△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的周长比为1:2.故答案为:1:2.12.【解答】解:将数据按从小到大排列为:9,9,10,10 12,处于中间位置也就是第3位的是10,因此中位数是10,故答案为:10.13.【解答】解:∵a=1,b=m,c=﹣4,∴x1•x2==﹣4.∵关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,∴另一个根为﹣4÷(﹣1)=4.故答案为:4.14.【解答】解:根据比例的合比性质,原式=;15.【解答】解:x2﹣9x+18=0(x﹣3)(x﹣6)=0解得x1=3,x2=6.由三角形的三边关系可得:腰长是6,底边是3,所故周长是:6+6+3=15.故答案为:15.16.【解答】解:由题意得:S△AOC﹣S△BOC=S△AOB,﹣=1,解得,k=3,故答案为:3.三、解答题17.【解答】解:(1)x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,x=,x1=,x2=;(2)(x+2)(x+3)=20,整理得:x2+5x﹣14=0,(x+7)(x﹣2)=0,x+7=0,x﹣2=0,x1=﹣7,x2=2.18.【解答】解:原式=,=,=.当a=3时,原式=.19.【解答】解:(1)本次调查的学生总数为:15÷30%=50(人);故答案为:50;(2)在扇形统计图中,B所对应扇形的圆心角是360°×=144°;“中”等级的人数是:50﹣15﹣20﹣5=10(人),补图如下:故答案为:10;(3)“优秀”和“良”的分别用A1,A2,和B1,B2表示,则画树状图如下:共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,则所选的两位同学测试成绩恰好都为“良”的概率是=.20.【解答】解:(1)∵在函数y=|kx﹣1|+b中,当x=1时,y=3;当x=0时,y=4,∴,得,∴这个函数的表达式是y=|x﹣1|+3;(2)∵y=|x﹣1|+3,∴y=,∴函数y=x+2过点(1,3)和点(4,6);函数y=﹣x+4过点(0,4)和点(﹣2,6);该函数的图象如图所示:(3)由函数图象可得,不等式|kx﹣1|+b≥的解集是x≥2或x<0.B卷一、填空题21.【解答】解:原式=x(x2﹣2xy+y2)=x(x﹣y)2,故答案为:x(x﹣y)222.【解答】解:过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图:∴EM∥GO∥FN∵2EG=FG∴根据平行线分线段成比例定理得:NO=2MO∵E(﹣1,1)∴MO=1∴NO=2∴点F的横坐标为2∵F在y=(x>0)的图象上∴F(2,2)又∵E(﹣1,1)∴由待定系数法可得:直线EF的解析式为:y=当x=0时,y=∴G(0,)∴OG=故答案为:23.【解答】解:,不等式组整理得:﹣4≤x<a,由不等式组所有整数解的和为﹣9,得到﹣2<a≤﹣1,或1<a≤2,即﹣6<a≤﹣3,或3<a≤6,分式方程1﹣=,去分母得:y2﹣4+2a=y2+(a+2)y+2a,解得:y=﹣,经检验y=﹣为方程的解,得到a≠﹣2,∵1﹣有整数解,则符合条件的所有整数a为﹣3,﹣4(舍去).故答案为:﹣3.24.【解答】解:∵图象过(4.5,0)∴高铁列车和普快列车在C站相遇∵AC=2BC,∴V高铁=2V普快,BC之间的距离为:360×=240千米,全程为AB=240+240×2=720千米,此时普快离开C站360×=120千米,当高铁列车到达B站时,普快列车距A站的距离为:720﹣120﹣240=360千米,故答案为:360.25.【解答】解:设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,依题意有,则24x=29y﹣200=19z﹣370=m,∵0<m≤1000,∴0<x≤41,6<y≤41,19<z≤72,∵x,y、z均为正整数,∴1≤x≤41,7≤y≤41,20≤z≤72,24x=29y﹣200化为:x=y﹣8+,∴5y﹣8=24n(n为正整数),∴5y=8+24n=8(1+3n),∴y=8k(k为正整数),5k=3n+1,∴7≤8k≤41,n=k+,∴1≤k≤5,1≤2k﹣1≤9,∵2k﹣1必为奇数且是3的整数倍.∴2k﹣1=3或2k﹣1=9,∴k=2或k=5,当k=2时,y=16,x=11,z=33(舍)∴k只能为5,∴y=40,x=40,z=70.∴8x=8×40=320.答:第一次购进A种纪念品320件.故答案为:320.二、解答题26.【解答】解:(1)设该同学购买x件B种原材料,则购买x件A种原材料,根据题意得:6×x+3×x≤480,解得:x≤80,∴x最大值为80,答:该同学最多可购买80件B种原材料.(2)设y=a%,根据题意得:(520+480)×(1+2y)(1﹣y)=(520+480)×(1+y),整理得:4y2﹣y=0,解得:y=0.25或y=0(舍去),∴a%=0.25,a=25.答:a的值为25.27.【解答】(1)解:作BJ⊥AE于J.∵BF⊥AB,∴∠ABJ+∠BAJ=90°,∠AEF+∠EAF=90°,∴∠ABJ=∠AEF,∵四边形ABCD是平行四边形,∴∠D=∠ABC,∵∠D=2∠AEF,∴∠ABE=2∠AEF=2∠ABJ,∴∠ABJ=∠EBJ,∵∠ABJ+∠BAJ=90°,∠EBJ+∠BEJ=90°,∴∠BAJ=∠BEJ,∵∠BAE=70°,∴∠BEA=70°.(2)证明:作EM⊥AD于M,CN⊥AD于N,连接CH.∵AD∥BC,∴∠DAE=∠BEA,∵∠BAE=∠BEA,∴∠BAE=∠DAE,∵EF⊥AB,EM⊥AD,∴EF=EM,∵EA=EA,∠AFE=∠AME=90°,∴Rt△AEF≌Rt△AEM(HL),∴AF=AM,∵EG⊥CG,∴∠EGC=90°,∵∠ECG=45°,∠GCE=45°,∴GE=CG,∵AD∥BC,∴∠GAH=∠ECG=45°,∠GHA=∠CEG=45°,∴∠GAH=∠GHA,∴GA=GH,∵∠AGE=∠CGH,∴△AGE≌△HGC(SAS),∴EA=CH,∵EM=CN,∠AME=∠CNH=90°,∴Rt△EMA≌Rt△CNH(HL),∴AM=NH,∴AN=HM,∵△ACN是等腰直角三角形,∴AC=AN,即AN=AC,∴AH=AM+HM=AF+AC.28.【解答】解:(1)如图1中,在Rt△AOD中,∵∠AOD=90°,∠OAD=30°,OD=2,∴OA=OD=6,∠ADO=60°,∴∠ODC=120°,∵BD平分∠ODC,∴∠ODB=∠ODC=60°,∴∠DBO=∠DAO=30°,∴DA=DB=4,OA=OB=6,∴A(﹣6,0),D(0,2),B(6,0),∴直线AC的解析式为y=x+2,∵AC⊥BC,∴直线BC的解析式为y=﹣x+6,由,解得,∴C(3,3).(2)如图2中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.∵∠FD′G=∠D′GF=60°,∴△D′FG是等边三角形,∵S△D′FG=•D′G2=,∴D′G=,∴DD′=GD′=2,∴D′(2,2),∵C(3,3),∴CD′==2,在Rt△PHB中,∵∠PHB=90°,∠PBH=30°,∴PH=PB,∴CD'+D'P+PB=2+D′P+PH≤2+D′O′=2+2,∴CD'+D'P+PB的最小值为2+2.(3)如图3﹣1中,当D0H⊥GH时,连接ED0.∵ED=ED0,EG=EG.DG=D0G,∴△EDG≌△ED0G(SSS),∴∠EDG=∠ED0G=30°,∠DEG=∠D0EG,∵∠DEB=120°,∠A′EO′=60°,∴∠DEG+∠BEO′=60°,∵∠D0EG+∠D0EO′=60°,∴∠D0EO′=∠BEO′,∵ED0=EB,EH=EH,∴△EHD0≌△EHB(SAS),∴∠ED0H=∠EBH=30°,HD0=HB,∴∠CD0H=60°,∵∠D0HG=90°,∴∠D0GH=30°,设HD0=BH=x,则DG=GD0=2x,GH=x,∵DB=4,∴2x+x+x=4,∴x=2﹣2.如图3﹣2中,当∠D0GH=90°时,同法可证∠D0HG=30°,易证四边形DED0H是等腰梯形,∵DE=ED0=DH=4,可得D0H=4+2×4×cos30°=4+4.如图3﹣3中,当D0H⊥GH时,同法可证:∠D0GH=30°,在△EHD0中,由∠D0HE=45°,∠HD0E=30°,ED0=4,可得D0H=4×+4×=2+2,如图3﹣4中,当D0G⊥GH时,同法可得∠D0HG=30°,设DG=GD0=x,则HD0=BH=2x,GH=x,∴3x+x=4,∴x=2﹣2,∴D0H=2x=4﹣4.如图3﹣5中,当D0H⊥GH时,同法可得D0H=2﹣2.如图3﹣6中,当D0G⊥GH时,同法可得D0H=4+4.如图3﹣7中,如图当D0H⊥HG时,同法可得D0H=2+2.如图3﹣8中,当D0G⊥GH时,同法可得HD0=4﹣4.综上所述,满足条件的D0H的值为2﹣2或2+2或4﹣4或4+4。

2018-2019下期八年级期末数学试题

2018-2019下期八年级期末数学试题

八年级数学试题卷 第 1 页 共6页重庆市2018—2019学年度下期八年级期末考试数 学 试 题(考试时间:120分钟,满分:150分)一、选择题:(本大题12个小题,每小题4分,共48分)1.用下面各组数据为边,能构成直角三角形的是( ).A.1,2,3B.2,3,4C.3,4,5D. 4,5,62.如图,若四边形ABCD 是平行四边形,则下列结论正确的是( ).第1题图 第12题图A.12∠∠B.23∠∠C.1∠∠4D.24∠∠3.下列各点在函数1-=x y 的图象上的是( ).A .(-3,-5)B . (1,1)C . (0,1)D . (2,1)4..一组数据7,8,10,12,13的平均数是( ).A .7B .9C .10D .125. 如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b应满足的条件是( ).A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <06.将一次函数y=2x ﹣3的图象沿y 轴向上平移8个单位长度,所得直线的解析式为( ).A .y=2x ﹣5B .y=2x+5C .y=2x+8D .y=2x ﹣87.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h 与注水时间t 之间的函数关系图象可能是( ).A. B. C. D.8.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为().A.8B.4C.6D.无法计算9.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.成绩/m 1.50 1.60 1.65 1.70 1.75 1 .80人数 2 3 2 3 4 1则这些运动员成绩的中位数,众数分别为().A.1.65,1.70 B.1.65,1.75C.1.70,1.75 D.1.70,1.7010.关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是().A.k>﹣1 B.k>﹣1且k≠0 C.k<﹣1 D.k<﹣1或k=0 11.若13x2﹣2x+c=0的一个根,则c的值为(A)+A.﹣2 B.432 C.33 D.1312.如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为().A.7+1B.7-1C.27D.27-1二、填空题(本大题共6小题,每小题4分,共计24分)13.已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD= .八年级数学试题卷第2页共6页第13题图第14题图14.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______.15.一元二次方程220-=的根是 .x x16.已知一组数据:3,2,5,7,8则它的方差是___________.17.甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中点E的坐标为.90第17题图第18题图18. 如图,四边形ABCD是矩形,边AB长为6,∠ABD=60º,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于G,F两点,若M,N分别是DG,CE的中点,则MN的长为 .三、解答题(每小题8分,共16分)19. 已知:如图,E,F为平行四边形ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.八年级数学试题卷第3页共6页八年级数学试题卷 第 4 页 共6页20.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了 名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为 度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.四. 解答题(每小题10分,共50分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡...中对应的位置上. 21.(1)解方程:01452=--x x(2)用待定系数法求一次函数的解析式:已知一次函数b kx y +=的图象经过两点A (0,3),B (1,1),求该函数的解析式。

重庆市九龙坡区2018-2019年八年级(下)期末数学试卷 解析版

重庆市九龙坡区2018-2019年八年级(下)期末数学试卷  解析版

2018-2019学年八年级(下)期末数学试卷一.选择题:本大题共12个小题,每小题4分,共48分在每个小题的下面都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填涂在对应题号的答题卡上1.(4分)下列二次根式中是最简二次根式的是()A.B.C.D.2.(4分)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2 D.y=2x+23.(4分)二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤24.(4分)在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17.2,则四个班体考成绩最稳定的是()A.甲班B.乙班C.丙班D.丁班5.(4分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°6.(4分)下列说法正确的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.三条边相等的四边形是菱形D.三个角是直角的四边形是矩形7.(4分)若a<+2<b,其中a,b是两个连续整数,则a+b=()A.20 B.21 C.22 D.238.(4分)在平面直角坐标系中,直线y=kx+b的位置如图所示,则不等式kx+b<0的解集为()A.x>﹣2 B.x<﹣2 C.x>1 D.x<19.(4分)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.510.(4分)将若干个小菱形按如图所示的规律排列:第一个图形有5个菱形,第二个图形有9个菱形第三个图形有13个菱形,…,则第9个图形有()个菱形.A.33 B.36 C.37 D.4111.(4分)如图,在平面直角坐标系中,已知矩形OABC,点O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,OA=4,OC=6,点E为OC的中点,将△OAE沿AE翻折,使点O落在点O′处,作直线CO',则直线CO'的解析式为()A.y=﹣x+6 B.y=﹣x+8 C.y=﹣x+10 D.y=﹣x+8 12.(4分)从﹣3、﹣2、﹣1、1、2、3这六个数中,随机抽取一个数记作a,使关于x的分式方程=有整数解,且使直线y=3x+8a﹣17不经过第二象限,则符合条件的所有a的和是()A.﹣4 B.﹣1 C.0 D.1二.填空题:本大题6个小题,每小题4分,共24分,请将答案直接填在答题卡中对应的13.(4分)计算:=.14.(4分)在平行四边形ABCD中,若∠A+∠C=160°,则∠B=.15.(4分)在一次函数y=(k﹣3)x+2中,y随x的增大而减小,则k的取值范围为.16.(4分)如图,菱形ABCD的面积为24cm,正方形ABCF的面积为18cm,则菱形的边长为.17.(4分)甲乙两人同时开车从A地出发,沿一条笔直的公路匀速前往相距400千米的B 地,1小时后,甲发现有物品落在A地,于是立即按原速返回A地取物品,取到物品后立即提速25%继续开往B地(所有掉头和取物品的时间忽略不计),甲乙两人间的距离y 千米与甲开车行驶的时间x小时之间的部分函数图象如图所示,当甲到达B地时,乙离B地的距离是.18.(4分)如图,已知正方形ABCD,点E在AB上,点F在BC的延长线上,将正方形ABCD 沿直线EF翻折,使点B刚好落在AD边上的点G处,连接GF交CD于点H,连接BH,若AG=4,DH=6,则BH=.三.解答题:本大题7个小题,每题10分,共70分.解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上19.(10分)计算:(1)+15﹣+(2)4×﹣+20.(10分)已知在▱ABCD中,点E、F在对角线BD上,BE=DF,点M、N在BA、DC延长线上,AM=CN,连接ME、NF.试判断线段ME与NF的关系,并说明理由.21.(10分)“赏中华诗词,寻文化基因,品生活之美”某校举办了首届“中国诗词比赛”,全校师生同时默写50首古诗,每正确默写出一首古诗得2分,结果有600名学生进入决赛,从进入决赛的600名学生中随机抽取40名学生进行成绩分析,根据比赛成绩绘制出部分频数分布表和部分频数分布直方图如下列图表组别成绩x(分)频数(人数)第1组60≤x<68 4第2组68≤x<76 8第3组76≤x<84 12第4组84≤x<92 a第5组92≤x<100 10第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82请结合以上数据信息完成下列各题:(1)填空:a=所抽取的40名学生比赛成绩的中位数是(2)请将频数分布直方图补充完整(3)若比赛成绩不低于84分的为优秀,估计进入决赛的学生中有多少名学生的比赛成绩为优秀?22.(10分)如图,直线l1:y=x+6与直线l2:y=kx+b相交于点A,直线l1与y轴相交于点B,直线l2与y轴负半轴相交于点C,OB=2OC,点A的纵坐标为3.(1)求直线l2的解析式;(2)将直线l2沿x轴正方向平移,记平移后的直线为l3,若直线l3与直线l1相交于点D,且点D的横坐标为1,求△ACD的面积.23.(10分)黄连是重庆市石柱县的特产,近几年黄连的种植在石柱县脱贫攻坚战中发挥着重要的作用.今年6月,某药材公司与黄连种植户签订收购协议:收购5﹣6年期黄连和6年以上期黄连共1000千克,其中5﹣6年期的黄连收购价格为每千克240元,6年以上期的黄连收购价格为每千克200元(1)若药材公司共支付黄连种植户224000元,那么药材公司收购的5﹣6年期黄连和6年以上期黄连各多少千克?(2)预计今年10﹣12月黄连收割上市后,5﹣6年期黄连的售价为每千克280元,6年以上期黄连的售价为每千克250元;药材公司收购的5﹣6年期黄连的数量不少于6年以上期黄连数量的3倍,药材公司应收购5﹣6年期黄连多少千克才能使售完这批黄连后获得的利润最大,最大利润是多少?24.(10分)阅读下列材料,解决问题:学习了勾股定理后我们知道:直角三角形两条直角边的平方和等于斜边的平方.根据勾股定理我们定义:如图①,点M、N是线段AB上两点,如果线段AM、MN、NB能构成直角三角形,则称点M、N是线段AB的勾股点解决问题(1)在图①中,如果AM=2,MN=3,则NB=(2)如图②,已知点C是线段AB上一定点(AC<BC),在线段AB上求作一点D,使得C、D是线段AB的勾股点.李玉同学是这样做的:过点C作直线GH⊥AB,在GH上截取CE=AC,连接BE,作BE的垂直平分线交AB于点D,则C、D是线段AB的勾股点你认为李玉同学的做法对吗?请说明理由(3)如图③,DE是△ABC的中位线,M、N是AB边的勾股点(AM<MN<NB),连接CM、CN分别交DE于点G、H求证:G、H是线段DE的勾股点.25.(10分)如图,在菱形ABCD中,∠BAD=120°,E为AB边上一点,过E作EG⊥BC于点G,交对角线BD于点F.(1)如图(1),若∠ACE=15°,BC=6,求EF的长;(2)如图(2),H为CE的中点,连接AF,FH,求证:AF=2FH.四.解答题:本大题共1个小题,8分,解答时必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上26.(10分)如图,在平面直角坐标系中,直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y 轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题:本大题共12个小题,每小题4分,共48分在每个小题的下面都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填涂在对应题号的答题卡上1.(4分)下列二次根式中是最简二次根式的是()A.B.C.D.【分析】利用最简二次根式定义判断即可.【解答】解:A、==,不符合题意;B、=2|x|,不符合题意;C、为最简二次根式,符合题意;D、=3,不符合题意,故选:C.2.(4分)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2 D.y=2x+2【分析】据一次函数图象与几何变换得到直线y=2x向下平移2个单位得到的函数解析式为y=2x﹣2.【解答】解:直线y=2x向下平移2个单位得到的函数解析式为y=2x﹣2.故选:C.3.(4分)二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤2【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选:C.4.(4分)在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17.2,则四个班体考成绩最稳定的是()A.甲班B.乙班C.丙班D.丁班【分析】直接根据方差的意义求解.【解答】解:∵S>S>S>S,∴四个班体考成绩最稳定的是甲班.故选:A.5.(4分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.6.(4分)下列说法正确的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.三条边相等的四边形是菱形D.三个角是直角的四边形是矩形【分析】由矩形和菱形的判定方法得出选项A、B、C错误,选项D正确.【解答】解:A、∵对角线互相垂直平分的四边形是菱形,∴选项A错误;B、∵对角线互相平分且相等的四边形是矩形,∴选项B错误;C、∵四条边相等的四边形是菱形,∴选项C错误;D、∵三个角是直角的四边形是矩形,∴选项D正确;故选:D.7.(4分)若a<+2<b,其中a,b是两个连续整数,则a+b=()A.20 B.21 C.22 D.23【分析】直接利用8<<9,进而得出a,b的值即可得出答案.【解答】解∵8<<9,∴8+2<+2<9+2,∵a<+2<b,其中a,b是两个连续整数,∴a=10,b=11,∴a+b=10+11=21.故选:B.8.(4分)在平面直角坐标系中,直线y=kx+b的位置如图所示,则不等式kx+b<0的解集为()A.x>﹣2 B.x<﹣2 C.x>1 D.x<1【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b<0的解集.【解答】解:直线y=kx+b的图象经过点(1,0),且函数值y随x的增大而减小,∴不等式kx+b<0的解集是x<﹣2.故选:B.9.(4分)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5【分析】原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.【解答】解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选:C.10.(4分)将若干个小菱形按如图所示的规律排列:第一个图形有5个菱形,第二个图形有9个菱形第三个图形有13个菱形,…,则第9个图形有()个菱形.A.33 B.36 C.37 D.41【分析】设第n个图形有a n个菱形(n为正整数),观察图形,根据各图形中菱形个数的变化可得出变化规律“a n=3n+2(n为正整数)”,再代入n=10即可求出结论.【解答】解:设第n个图形有a n个菱形(n为正整数).观察图形,可知:a1=5=4+1,a2=9=4×2+1,a3=13=4×3+1,a4=17=4×4+1,∴a n=4n+1(n为正整数),∴a9=4×9+1=37.故选:C.11.(4分)如图,在平面直角坐标系中,已知矩形OABC,点O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,OA=4,OC=6,点E为OC的中点,将△OAE沿AE翻折,使点O落在点O′处,作直线CO',则直线CO'的解析式为()A.y=﹣x+6 B.y=﹣x+8 C.y=﹣x+10 D.y=﹣x+8 【分析】连接OO'交AE与点M,过点O'作O'H⊥OC于点H,由轴对称的性质可知AE垂直平分OO',先用面积法求出OM的长,进一步得出OO'的长,再证△AOE∽△OHO',分别求出OH,O'H的长,得出点O'的坐标,再结合点C坐标即可用待定系数法求出直线CO'的解析式.【解答】解:连接OO'交AE与点M,过点O'作O'H⊥OC于点H,∴点E为OC中点,∴OE=EC=OC=3,在Rt△AOE中,OE=3,AO=4,∴AE==5,∵将△OAE沿AE翻折,使点O落在点O′处,∴AE垂直平分OO',∴OM=O'M,在Rt△AOE中,∵S△AOE=AO•OE=AE•OM,∴×3×4=×5×OM,∴OM=,∴OO'=,∵∠O'OH+∠AOM=90°,∠MAO+∠AOM=90°,∴∠MAO=∠O'OH,又∵∠AOE=∠OHO'=90°,∴△AOE∽△OHO',∴==,即==,∴OH=,O'H=,∴O'的坐标为(,),将点O'(,),C(6,0)代入y=kx+b,得,,解得,k=﹣,b=8,∴直线CO'的解析式为y=﹣x+8,故选:D.12.(4分)从﹣3、﹣2、﹣1、1、2、3这六个数中,随机抽取一个数记作a,使关于x的分式方程=有整数解,且使直线y=3x+8a﹣17不经过第二象限,则符合条件的所有a的和是()A.﹣4 B.﹣1 C.0 D.1【分析】先求出满足分式方程条件存立时a的值,再求出使直线y=3x+8a﹣17不经过第二象限时a的值,进而求出同时满足条件a的值.【解答】解:解分式方程=得:x=﹣,∵x是整数,∴a=﹣3,﹣2,1,3;∵分式方程=有意义,∴x≠0或2,∴a≠﹣3,∴a=﹣2,1,3,∵直线y=3x+8a﹣17不经过第二象限,∴8a﹣17≤0∴a≤,∴a的值为:﹣3、﹣2、﹣1、1、2,综上,a=﹣2,1,和为﹣2+1=﹣1,故选:B.二.填空题:本大题6个小题,每小题4分,共24分,请将答案直接填在答题卡中对应的13.(4分)计算:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:=3﹣=2.故答案为:2.14.(4分)在平行四边形ABCD中,若∠A+∠C=160°,则∠B=100°.【分析】由平行四边形的性质得出对角相等,邻角互补,∠A=∠C,∠A+∠B=180°,由∠A+∠C=160°,得出∠A=∠C=80°,即可求出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B=180°﹣∠A=100°;故答案为:100°.15.(4分)在一次函数y=(k﹣3)x+2中,y随x的增大而减小,则k的取值范围为k <3 .【分析】根据已知条件“一次函数y=(k﹣3)x+2中y随x的增大而减小”知,k﹣3<0,然后解关于k的不等式即可.【解答】解:∵一次函数y=(k﹣3)x+2中y随x的增大而减小,∴k﹣3<0,解得,k<3;故答案是:k<3.16.(4分)如图,菱形ABCD的面积为24cm,正方形ABCF的面积为18cm,则菱形的边长为5cm.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为18cm2,所以AC==6cm,因为菱形ABCD的面积为24cm2,所以BD==8cm,所以菱形的边长==5cm.故答案为:5cm.17.(4分)甲乙两人同时开车从A地出发,沿一条笔直的公路匀速前往相距400千米的B 地,1小时后,甲发现有物品落在A地,于是立即按原速返回A地取物品,取到物品后立即提速25%继续开往B地(所有掉头和取物品的时间忽略不计),甲乙两人间的距离y 千米与甲开车行驶的时间x小时之间的部分函数图象如图所示,当甲到达B地时,乙离B地的距离是40 .【分析】结合题意分析函数图象:线段OC对应甲乙同时从A地出发到A返回前的过程,此过程为1小时;线段CD对应甲返回走到与乙相遇的过程(即甲的速度大于乙的速度);线段DE对应甲与乙相遇后继续返回走至到达A地的过程,因为速度相同,所以甲去和回所用时间相同,即x=2时,甲回到A地,此时甲乙相距120km,即乙2小时行驶120千米;线段EF对应甲从A地重新出发到追上乙的过程,即甲用(5﹣2)小时的时间追上乙,可列方程求出甲此时的速度,进而求出甲到达B地的时刻,再求出此时乙所行驶的路程.【解答】解:∵甲出发到返回用时1小时,返回后速度不变,∴返回到A地的时刻为x=2,此时y=120,∴乙的速度为60千米/时,设甲重新出发后的速度为v千米/时,列得方程:(5﹣2)(v﹣60)=120,解得:v=100,设甲在第t小时到达B地,列得方程:100(t﹣2)=400解得:t=6,∴此时乙行驶的路程为:60×6=360(千米),乙离B地距离为:400﹣360=40(千米).故答案为:4018.(4分)如图,已知正方形ABCD,点E在AB上,点F在BC的延长线上,将正方形ABCD 沿直线EF翻折,使点B刚好落在AD边上的点G处,连接GF交CD于点H,连接BH,若AG=4,DH=6,则BH=6.【分析】通过证明△AEG∽△DGH,可得=,可设AE=2a,GD=3a,可求GE的长,由AB=AD,列出方程可求a的值,由勾股定理可求BH的长.【解答】解:∵将正方形ABCD沿直线EF翻折,使点B刚好落在AD边上的点G处,∴AB=AD=BC=CD,EG=BE,∠ABC=∠EGH=90°∵∠AGE+∠DGH=90°,∠AGE+∠AEG=90°∴∠AEG=∠DGH,且∠A=∠D=90°∴△AEG∽△DGH∴=∴设AE=2a,GD=3a,∴GE==∵AB=AD∴2a+=4+3a∴a=∴AB=AD=BC=CD=12,∴CH=CD﹣DH=12﹣6=6∴BH==6故答案为:6三.解答题:本大题7个小题,每题10分,共70分.解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上19.(10分)计算:(1)+15﹣+(2)4×﹣+【分析】(1)先根据负整数指数的意义计算,然后把二次根式化为最简二次根式后合并即可;(2)根据二次根式的乘法法则和完全平方公式计算.【解答】解:(1)原式=3+5﹣+3=2+8;(2)原式=2﹣(3+2+2)=2﹣5﹣2=﹣5.20.(10分)已知在▱ABCD中,点E、F在对角线BD上,BE=DF,点M、N在BA、DC延长线上,AM=CN,连接ME、NF.试判断线段ME与NF的关系,并说明理由.【分析】利用SAS证得△BME≌△DNF后即可证得结论.【解答】证明:ME=NF且ME∥NF.理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EBM=∠FDN,AB=CD,∵AM=CN,∴MB=ND,∵BE=DF,∴BF=DE,∵在△BME和△DNF中,∴△BME≌△DNF(SAS),∴ME=NF,∠MEB=∠NFD,∴∠MEF=∠BFN.∴ME∥NF.∴ME=NF且ME∥NF.21.(10分)“赏中华诗词,寻文化基因,品生活之美”某校举办了首届“中国诗词比赛”,全校师生同时默写50首古诗,每正确默写出一首古诗得2分,结果有600名学生进入决赛,从进入决赛的600名学生中随机抽取40名学生进行成绩分析,根据比赛成绩绘制出部分频数分布表和部分频数分布直方图如下列图表组别成绩x(分)频数(人数)第1组60≤x<68 4第2组68≤x<76 8第3组76≤x<84 12第4组84≤x<92 a第5组92≤x<100 10第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82请结合以上数据信息完成下列各题:(1)填空:a= 6 所抽取的40名学生比赛成绩的中位数是78(2)请将频数分布直方图补充完整(3)若比赛成绩不低于84分的为优秀,估计进入决赛的学生中有多少名学生的比赛成绩为优秀?【分析】(1)根据题意和频数分布表中的数据可以求得a的值和这组数据的中位数;(2)根据(1)中a的值和分布表中成绩为76≤x<84的频数可以将频数分布直方图补充完整;(3)根据频数分布表中的数据可以计算出进入决赛的学生中有多少名学生的比赛成绩为优秀.【解答】解:(1)a=40﹣4﹣8﹣12﹣10=6,∵第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82,∴中位数是78,故答案为:6,78;(2)由(1)知a=6,补全的频数分布直方图如右图所示;(3)600×=240(名),答:进入决赛的学生中有240名学生的比赛成绩为优秀22.(10分)如图,直线l1:y=x+6与直线l2:y=kx+b相交于点A,直线l1与y轴相交于点B,直线l2与y轴负半轴相交于点C,OB=2OC,点A的纵坐标为3.(1)求直线l2的解析式;(2)将直线l2沿x轴正方向平移,记平移后的直线为l3,若直线l3与直线l1相交于点D,且点D的横坐标为1,求△ACD的面积.【分析】(1)根据y轴上点的坐标特征可求B点坐标,再根据OB=2OC,可求C点坐标,根据点A的纵坐标为3,可求A点坐标,根据待定系数法可求直线l2的解析式;(2)根据点D的横坐标为1,可求D点坐标,再用长方形面积减去3个小三角形面积即可求解.【解答】解:(1)∵当x=0时,y=0+6=6,∴B(0,6),∵OB=2OC,∴C(0,﹣3),∵点A的纵坐标为3,∴﹣3=x+6,解得x=﹣3,∴A(﹣3,3),则,解得.故直线l2的解析式为y=﹣2x﹣3;(2)∵点D的横坐标为1,∴y=1+6=7,∴D(1,7),∴△ACD的面积=10×4﹣×3×6﹣×4×4﹣×1×10=18.23.(10分)黄连是重庆市石柱县的特产,近几年黄连的种植在石柱县脱贫攻坚战中发挥着重要的作用.今年6月,某药材公司与黄连种植户签订收购协议:收购5﹣6年期黄连和6年以上期黄连共1000千克,其中5﹣6年期的黄连收购价格为每千克240元,6年以上期的黄连收购价格为每千克200元(1)若药材公司共支付黄连种植户224000元,那么药材公司收购的5﹣6年期黄连和6年以上期黄连各多少千克?(2)预计今年10﹣12月黄连收割上市后,5﹣6年期黄连的售价为每千克280元,6年以上期黄连的售价为每千克250元;药材公司收购的5﹣6年期黄连的数量不少于6年以上期黄连数量的3倍,药材公司应收购5﹣6年期黄连多少千克才能使售完这批黄连后获得的利润最大,最大利润是多少?【分析】(1)根据题意列方程或方程组进行解答即可,(2)先求出利润与销售量之间的函数关系式和自变量的取值范围,再根据函数的增减性确定何时利润最大.【解答】解:(1)设收购的5﹣6年期黄连x千克,则6年以上期黄连(1000﹣x)千克,由题意得:240x+200(1000﹣x)=224000,解得:x=600,当x=600时,1000﹣x=400,答:收购的5﹣6年期黄连600千克,6年以上期黄连400千克,(2)设收购的5﹣6年期黄连y千克,则6年以上期黄连(1000﹣y)千克,销售利润为z元,由题意得:z=(280﹣240)y+(250﹣200)(1000﹣y)=﹣10y+50000,z随y的增大而减小,又∵y≥3(1000﹣y),∴y≥750,当y=750时,z最小=﹣7500+50000=42500元,答:收购5﹣6年期黄连750千克,销售利润最大,最大利润是42500元.24.(10分)阅读下列材料,解决问题:学习了勾股定理后我们知道:直角三角形两条直角边的平方和等于斜边的平方.根据勾股定理我们定义:如图①,点M、N是线段AB上两点,如果线段AM、MN、NB能构成直角三角形,则称点M、N是线段AB的勾股点解决问题(1)在图①中,如果AM=2,MN=3,则NB=或(2)如图②,已知点C是线段AB上一定点(AC<BC),在线段AB上求作一点D,使得C、D是线段AB的勾股点.李玉同学是这样做的:过点C作直线GH⊥AB,在GH上截取CE=AC,连接BE,作BE的垂直平分线交AB于点D,则C、D是线段AB的勾股点你认为李玉同学的做法对吗?请说明理由(3)如图③,DE是△ABC的中位线,M、N是AB边的勾股点(AM<MN<NB),连接CM、CN分别交DE于点G、H求证:G、H是线段DE的勾股点.【分析】(1)分两种情形分别求解即可解决问题.(2)想办法证明DB2=AC2+CD2即可.(3)利用三角形的中位线定理以及勾股定理证明EH2=GH2+DG2即可.【解答】解:(1)当BN是斜边时,BN==.当MN是斜边时,BN==,故答案为或.(2)如图②中,连接DE.∵点D在线段BE的垂直平分线上,∴DE=DB,∵GH⊥BC,∴∠ECD=90°,∴DE2=EC2+CD2,∵AC=CE,DE=DB,∴DB2=AC2+CD2,∴C、D是线段AB的勾股点.(3)如图3中,∵CD=DA,CE=EB,∴DE∥AB,∴CG=GM,CH=HN,∴DG=AM,GH=MN,EH=BN,∵BN2=MN2+AM2,∴BN2=MN2+AM2,∴(BN)2=(MN)2+(AM)2,∴EH2=GH2+DG2,∴G、H是线段DE的勾股点.25.(10分)如图,在菱形ABCD中,∠BAD=120°,E为AB边上一点,过E作EG⊥BC于点G,交对角线BD于点F.(1)如图(1),若∠ACE=15°,BC=6,求EF的长;(2)如图(2),H为CE的中点,连接AF,FH,求证:AF=2FH.【分析】(1)首先证明EG=CG,设BG=x,则EG=CG=x,根据BC=4,构建方程求出x,证明EF=BF,求出BF即可解决问题.(2)如图2,作CM⊥BC交FH的延长线于M,连接AM,AH.利用全等三角形的性质证明△FAM是等边三角形即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD是菱形,∵AB=BC=CD=AD=6,AD∥BC,∴∠ABC=180°﹣∠BAD=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACE=15°,∴∠ECG=∠ACB﹣∠ACE=45°,∵EG⊥CG,∴∠EGC=90°,∴EG=CG,设BG=x,则EG=CG=x,∴x+x=4,∴x=2﹣2,∵四边形ABCD是菱形,∴∠FBG=∠EBF=30°,∵∠BEG=30°,∴FB=FE,∵BF===4﹣,∴EF=4﹣.(2)如图2,作CM⊥BC交FH的延长线于M,连接AM,AH.∵EG⊥BC,MC⊥BC,∴EF∥CM,∴∠FEH=∠HCM,∵∠EHF=∠CHM,EH=CH,∴△EFH≌△CMH(ASA),∴EF=CM,FH=HM,∵EF=BF,∴BF=CM,∵∠ABF=∠ACM=30°,BA=CA,∴△BAF≌△CAM(SAS),∴AF=AM,∠BAF=∠CAM,∴∠FAM=∠BAC=60°,∴△FAM是等边三角形,∵FH=HM,∴AH⊥FM,∠FAH=∠FAM=×60°=30°,∴AF=2FH.四.解答题:本大题共1个小题,8分,解答时必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上26.(10分)如图,在平面直角坐标系中,直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y 轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)由直线解析式易求AB两点坐标,利用等腰直角△ABC构造K字形全等易得OE=CE=4,C点坐标为(4,4)DB=∠CEB=90°,可知B、C、D、E四点共圆,由等腰直角△ABC可知∠CBD=45°,同弧所对圆周角相等可知∠CED=45°,所以∠OEF=45°,CE、OE是关于EF对称,作PH⊥CE于H,作PG⊥OE于Q,AK⊥EC于K.把AP+PQ的最小值问题转化为垂线段最短解决问题.(2)由直线l与直线AC成45°可知∠AMN=45°,由直线AC解析式可设M点坐标为(x,),N在y轴上,可设N(0,y)构造K字形全等即可求出M点坐标.【解答】解:(1)过A点作AK⊥CE,在等腰直角△ABC中,∠ACB=90°,AC=BC,∵CE⊥x轴,∴∠ACK+∠ECB=90°,∠ECB+∠CBE=90°,∴∠ACK=∠CBE在△AKC和△CEB中,,△AKC≌△CEB(AAS)∴AK=CE,CK=BE,∵四边形AOEK是矩形,∴AO=EK=BE,由直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,可知A点坐标为(0,2),B (6,0)∴E点坐标为(4,0),C点坐标为(4,4),∵∠CDB=∠CEB=90°,∴B、C、D、E四点共圆,∵,∠CBA=45°,∴∠CED=45°,∴FE平分∠CEO,过P点作PH⊥CE于H,作PG⊥OE于G,过A点作AK⊥EC于K.∴PH=PQ,∵PA+PQ=PA+PH≥AK=OE,∴OE=4,∴AP+PQ≥4,∴AP+PQ的最小值为4.(2)∵A点坐标为(0,2),C点坐标为(4,4),∴直线AC解析式为:y=,设M点坐标为(x,),N坐标为(0,y).∵MN∥AB,∠CAB=45°,∴∠CMN=45°,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90°,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS =NR.∴,解得:,∴M点坐标为(﹣12,﹣4)Ⅱ.如解图2﹣2,∠MNC=90°,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴,解得:,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣4)或(12,8).。

2018-2019学年重庆八中八年级(下)第二学期期末数学试卷及答案 含解析

2018-2019学年重庆八中八年级(下)第二学期期末数学试卷及答案 含解析

2018-2019学年重庆八中八年级第二学期期末数学试卷一、选择题1.反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3B.C.﹣3D.﹣2.若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°3.分式有意义,则x的取值范围为()A.x≠0B.x≠2C.x≠0且x≠2D.x为一切实数4.六边形的内角和等于()A.180°B.360°C.540°D.720°5.方程x2=3x的解是()A.x=3B.x=﹣3C.x=0D.x=3或x=0 6.下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形7.如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4B.k>4C.k<0D.k>08.菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2B.4C.6D.89.某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=9010.函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题(共6个小题)11.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为.12.一组数据10,9,10,12,9的中位数是.13.关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=.14.若=3,则=.15.已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为.16.双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为.三、解答题17.解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=2018.先化简,再求值:(﹣a+1+)÷,其中a=3.19.近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为人;(2)在扇形统计图中,B所对应扇形的圆心角是度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.20.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b ≥的解集.四、填空题:(共5个小题,每小题4分,共20分)请将每小題的答案直接填在答题卡中对应的横线上.21.因式分解:x3﹣2x2y+xy2=.22.如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.23.若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为.24.2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C地,其中AC=2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为千米.25.为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.五、解答题(共3个小题,每题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.26.为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B两种原材料,A的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.27.如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.28.如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D 作DE∥AB交BC于E.(1)点C的坐标为;(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.参考答案一、选择题(10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卡中对应的表格内.1.反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3B.C.﹣3D.﹣【分析】把点(﹣1,3)代入解析式即可求出k的值.解:把(﹣1,3)代入反比例函数y=(k≠0),得3=,解得:k=﹣3.故选:C.2.若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°【分析】根据相似三角形的对应角相等可得∠D=∠A.解:∵△ABC∽△DEF,∠A=50°,∴∠D=∠A=50°.故选:A.3.分式有意义,则x的取值范围为()A.x≠0B.x≠2C.x≠0且x≠2D.x为一切实数【分析】直接利用分式有意义则分母不等于零进而得出答案.解:分式有意义,则x﹣2≠0,解得:x≠2.故选:B.4.六边形的内角和等于()A.180°B.360°C.540°D.720°【分析】根据n边形的内角和可以表示成(n﹣2)•180°,即可求得六边形的内角和.解:六边形的内角和是(6﹣2)×180°=720度.故选:D.5.方程x2=3x的解是()A.x=3B.x=﹣3C.x=0D.x=3或x=0【分析】先移项得x2﹣3x=0,然后利用因式分解法解方程.解:x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,所以x1=0,x2=3.6.下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形【分析】根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.解:A、正确.B、错误,对应边不一定成比例.C、错误,不一定中奖.D、错误,对角线相等的四边形不一定是矩形,故选:A.7.如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4B.k>4C.k<0D.k>0【分析】利用一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:方程有两个不相等的两个实数根,△>0,进而求出即可.解:∵关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,∴b2﹣4ac=16﹣4k>0,解得:k<4.故选:A.8.菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2B.4C.6D.8【分析】首先根据题意画出图形,由菱形周长为20,可求得其边长,又由它的一条对角线长6,利用勾股定理即可求得菱形的另一条对角线长.解:如图,∵菱形ABCD的周长为20,对角线AC=6,∴AB=5,AC⊥BD,OA=AC=3,∴OB==4,∴BD=2OB=8,即菱形的另一条对角线长为8.故选:D.9.某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=90【分析】设月平均增长率的百分数为x,根据某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,可列方程求解.解:设月平均增长率的百分数为x,20+20(1+x)+20(1+x)2=90.故选:D.10.函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.【分析】先根据反比例函数的性质判断出k的取值,再根据一次函数的性质判断出k取值,二者一致的即为正确答案.解:在函数y=kx+b(k≠0)与y=(k≠0)中,当k>0时,图象都应过一、三象限;当k<0时,图象都应过二、四象限.故选:D.二、填空题(6个小题,每小题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.11.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为1:2.【分析】根据相似三角形的周长的比等于相似比得出.解:∵△ABC∽△DEF,△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的周长比为1:2.故答案为:1:2.12.一组数据10,9,10,12,9的中位数是10.【分析】根据中位数的意义,将数据排序后找中间位置的数会中间两个数的平均数即可.解:将数据按从小到大排列为:9,9,10,10 12,处于中间位置也就是第3位的是10,因此中位数是10,故答案为:10.13.关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=4.【分析】利用根与系数的关系可得出方程的两根之积为﹣4,结合方程的一个根为﹣1,可求出方程的另一个根,此题得解.解:∵a=1,b=m,c=﹣4,∴x1•x2==﹣4.∵关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,∴另一个根为﹣4÷(﹣1)=4.故答案为:4.14.若=3,则=4.【分析】根据比例的合比性质即可直接完成题目.解:根据比例的合比性质,原式=;15.已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为15.【分析】用因式分解法可以求出方程的两个根分别是3和6,根据等腰三角形的三边关系,腰应该是6,底是3,然后可以求出三角形的周长.解:x2﹣9x+18=0(x﹣3)(x﹣6)=0解得x1=3,x2=6.由三角形的三边关系可得:腰长是6,底边是3,所故周长是:6+6+3=15.故答案为:15.16.双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为3.【分析】根据S△AOC﹣S△BOC=S△AOB,列出方程,求出k的值.解:由题意得:S△AOC﹣S△BOC=S△AOB,﹣=1,解得,k=3,故答案为:3.三、解答题(17题8分,18题8分,19题10分,20题10分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上,17.解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=20【分析】(1)先求出b2﹣4ac的值,再代入公式求出即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.解:(1)x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,x=,x1=,x2=;(2)(x+2)(x+3)=20,整理得:x2+5x﹣14=0,(x+7)(x﹣2)=0,x+7=0,x﹣2=0,x1=﹣7,x2=2.18.先化简,再求值:(﹣a+1+)÷,其中a=3.【分析】先算括号里面的加法,再将除法转化为乘法,将结果化为最简,然后把a的值代入进行计算即可.解:原式=,=,=.当a=3时,原式=.19.近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为50人;(2)在扇形统计图中,B所对应扇形的圆心角是144度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.【分析】(1)根据“优”的人数和所占的百分比即可求出总人数;(2)用360°乘以“良”所占的百分比求出B所对应扇形的圆心角;用总人数减去“优”、“良”、“差”的人数,求出“中”的人数,即可补全统计图;(3)根据题意画出树状图得出所以等情况数和所选的两位同学测试成绩恰好都为“良”的情况数,然后根据概率公式即可得出答案.解:(1)本次调查的学生总数为:15÷30%=50(人);故答案为:50;(2)在扇形统计图中,B所对应扇形的圆心角是360°×=144°;“中”等级的人数是:50﹣15﹣20﹣5=10(人),补图如下:故答案为:10;(3)“优秀”和“良”的分别用A1,A2,和B1,B2表示,则画树状图如下:共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,则所选的两位同学测试成绩恰好都为“良”的概率是=.20.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b ≥的解集.【分析】(1)根据在函数y=|kx﹣1|+b中,当x=1时,y=3;当x=0时,y=4,可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象;(3)根据图象可以直接写出所求不等式的解集.解:(1)∵在函数y=|kx﹣1|+b中,当x=1时,y=3;当x=0时,y=4,∴,得,∴这个函数的表达式是y=|x﹣1|+3;(2)∵y=|x﹣1|+3,∴y=,∴函数y=x+2过点(1,3)和点(4,6);函数y=﹣x+4过点(0,4)和点(﹣2,6);该函数的图象如图所示:(3)由函数图象可得,不等式|kx﹣1|+b≥的解集是x≥2或x<0.四、填空题:(共5个小题,每小题4分,共20分)请将每小題的答案直接填在答题卡中对应的横线上.21.因式分解:x3﹣2x2y+xy2=x(x﹣y)2.【分析】原式提取公因式,再利用完全平方公式分解即可.解:原式=x(x2﹣2xy+y2)=x(x﹣y)2,故答案为:x(x﹣y)222.如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.【分析】过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,根据平行线分线段成比例定理得:NO=2MO=2,从而可得F(2,2),结合E(﹣1,1)可得直线EF的解析式,求出点G的坐标后即可求解.解:过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图:∴EM∥GO∥FN∵2EG=FG∴根据平行线分线段成比例定理得:NO=2MO∵E(﹣1,1)∴MO=1∴NO=2∴点F的横坐标为2∵F在y=(x>0)的图象上∴F(2,2)又∵E(﹣1,1)∴由待定系数法可得:直线EF的解析式为:y=当x=0时,y=∴G(0,)∴OG=故答案为:23.若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为﹣3.【分析】不等式组整理后,根据所有整数解的和为﹣9,确定出x的值,进而求出a的范围,分式方程去分母转化为整式方程,检验即可得到满足题意a的值,求出符合条件的所有整数a即可.解:,不等式组整理得:﹣4≤x<a,由不等式组所有整数解的和为﹣9,得到﹣2<a≤﹣1,或1<a≤2,即﹣6<a≤﹣3,或3<a≤6,分式方程1﹣=,去分母得:y2﹣4+2a=y2+(a+2)y+2a,解得:y=﹣,经检验a=﹣3,2,﹣1,﹣6,则符合条件的所有整数a为﹣3.故答案为:﹣3.24.2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C地,其中AC=2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为360千米.【分析】由图象可知4.5小时两列车与C地的距离之和为0,于是高铁列车和普快列车在C站相遇,由于AC=2BC,因此高铁列车的速度是普快列车的2倍,相遇后图象的第一个转折点,说明高铁列车到达B站,此时两车距C站的距离之和为360千米,由于V=2V普快,因此BC距离为360千米的三分之二,即240千米,普快离开C占的距离为高铁360千米的三分之一,即120千米,于是可以得到全程为240+240×2=720千米,当高铁列车到达B站时,普快列车离开B站240+120=360千米,此时距A站的距离为720﹣360=360千米.解:∵图象过(4.5,0)∴高铁列车和普快列车在C站相遇∵AC=2BC,∴V高铁=2V普快,BC之间的距离为:360×=240千米,全程为AB=240+240×2=720千米,此时普快离开C站360×=120千米,当高铁列车到达B站时,普快列车距A站的距离为:720﹣120﹣240=360千米,故答案为:360.25.为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品320件.【分析】可设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,根据第一次三种纪念品总数量不超过1000件,列出方程组和不等式求解即可.解:设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,依题意有,则24x=29y﹣200=19z﹣370=m,∵0<m≤1000,∴0<x≤41,6<y≤41,19<z≤72,∵x,y、z均为正整数,∴1≤x≤41,7≤y≤41,20≤z≤72,24x=29y﹣200化为:x=y﹣8+,∴5y﹣8=24n(n为正整数),∴5y=8+24n=8(1+3n),∴y=8k(k为正整数),5k=3n+1,∴7≤8k≤41,n=k+,∴1≤k≤5,1≤2k﹣1≤9,∵2k﹣1必为奇数且是3的整数倍.∴2k﹣1=3或2k﹣1=9,∴k=2或k=5,当k=2时,y=16,x=11,z=33(舍)∴k只能为5,∴y=40,x=40,z=70.∴8x=8×40=320.答:第一次购进A种纪念品320件.故答案为:320.五、解答题(共3个小题,每题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.26.为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B两种原材料,A的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.【分析】(1)设该同学购买x件B种原材料,则购买x件A种原材料,由购买原材料的总费用不超过480元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内的最大正整数即可;(2)设y=a%,根据该同学在本次活动中赚了a%,即可得出关于y的一元二次方程,解之即可得出结论.解:(1)设该同学购买x件B种原材料,则购买x件A种原材料,根据题意得:6×x+3×x≤480,解得:x≤80,∴x最大值为80,答:该同学最多可购买80件B两种原材料.(2)设y=a%,根据题意得:(520+480)×(1+2y)(1﹣y)=(520+480)×(1+y),整理得:4y2﹣y=0,解得:y=0.25或y=0(舍去),∴a%=0.25,a=25.答:a的值为25.27.如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.【分析】(1)作BJ⊥AE于J.证明BJ是∠ABE的角平分线即可解决问题.(2)作EM⊥AD于M,CN⊥AD于N,连接CH.证明△AEF≌△AEM(HL),△AGE ≌△HGC(SAS),△EMA≌△CNH(HL),即可解决问题.【解答】(1)解:作BJ⊥AE于J.∵BF⊥AB,∴∠ABJ+∠BAJ=90°,∠AEF+∠EAF=90°,∵四边形ABCD是平行四边形,∴∠D=∠ABC,∵∠D=2∠AEF,∴∠ABE=2∠AEF=2∠ABJ,∴∠ABJ=∠EBJ,∵∠ABJ+∠BAJ=90°,∠EBJ+∠BEJ=90°,∴∠BAJ=∠BEJ,∵∠BAE=70°,∴∠BEA=70°.(2)证明:作EM⊥AD于M,CN⊥AD于N,连接CH.∵AD∥BC,∴∠DAE=∠BEA,∵∠BAE=∠BEA,∴∠BAE=∠DAE,∵EF⊥AB,EM⊥AD,∴EF=EM,∵EA=EA,∠AFE=∠AME=90°,∴Rt△AEF≌Rt△AEM(HL),∴AF=AM,∵EG⊥CG,∴∠EGC=90°,∵∠ECG=45°,∠GCE=45°,∴GE=CG,∵AD∥BC,∴∠GAH=∠ECG=45°,∠GHA=∠CEG=45°,∴∠GAH=∠GHA,∴GA=GH,∴△AGE≌△HGC(SAS),∴EA=CH,∵CM=CN,∠AME=∠CNH=90°,∴Rt△EMA≌Rt△CNH(HL),∴AM=NH,∴AN=HM,∵△ACN是等腰直角三角形,∴AC=AN,即AN=AC,∴AH=AM+HM=AF+AC.28.如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D 作DE∥AB交BC于E.(1)点C的坐标为(3,3);(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.【分析】(1)想办法求出A,D,B的坐标,求出直线AC,BC的解析式,构建方程组即可解决问题.(2)如图2中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.利用三角形的面积公式求出点D坐标,再证明PH=PB,把问题转化为垂线段最短即可解决问题.(3)在旋转过程中,符号条件的△GD0H有8种情形,分别画出图形一一求解即可.解:(1)如图1中,在Rt△AOD中,∵∠AOD=90°,∠OAD=30°,OD=2,∴OA=OD=6,∠ADO=60°,∴∠ODC=120°,∵BD平分∠ODC,∴∠ODB=∠ODC=60°,∴∠DBO=∠DAO=30°,∴DA=DB=4,OA=OB=6,∴A(﹣6,0),D(0,2),B(6,0),∴直线AC的解析式为y=x+2,∵AC⊥BC,∴直线BC的解析式为y=﹣x+6,由,解得,∴C(3,3).(2)如图2中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.∵∠FD′G=∠D′GF=60°,∴△D′FG是等边三角形,∵S△D′FG=•D′G2=,∴D′G=,∴DD′=GD′=2,∴D′(2,2),∵C(3,3),∴CD′==2,在Rt△PHB中,∵∠PHB=90°,∠PBH=30°,∴PH=PB,∴CD'+D'P+PB=2+D′P+PH≤2+D′O′=2+2,∴CD'+D'P+PB的最小值为2+2.(3)如图3﹣1中,当D0H⊥GH时,连接ED0.∵ED=ED0,EG=EG.DG=D0G,∴△EDG≌△ED0G(SSS),∴∠EDG=∠ED0G=30°,∠DEG=∠D0EG,∵∠DEB=120°,∠A′EO′=60°,∴∠DEG+∠BEO′=60°,∵∠D0EG+∠D0EO′=60°,∴∠D0EO′=∠BEO′,∵ED0=EB,E=EH,∴△EO′D0≌△EO′B(SAS),∴∠ED0H=∠EBH=30°,HD0=HB,∴∠CD0H=60°,∵∠D0HG=90°,∴∠D0GH=30°,设HD0=BH=x,则DG=GD0=2x,GH=x,∵DB=4,∴2x+x+x=4,∴x=2﹣2.如图3﹣2中,当∠D0GH=90°时,同法可证∠D0HG=30°,易证四边形DED0H是等腰梯形,∵DE=ED0=DH=4,可得D0H=4+2×4×cos30°=4+4.如图3﹣3中,当D0H⊥GH时,同法可证:∠D0GH=30°,在△EHD0中,由∠D0HE=45°,∠HD0E=30°,ED0=4,可得D0H=4×+4×=2+2,如图3﹣4中,当D G⊥GH时,同法可得∠D0HG=30°,设DG=GD0=x,则HD0=BH=2x,GH=x,∴3x+x=4,∴x=2﹣2,∴D0H=2x=4﹣4.如图3﹣5中,当D0H⊥GH时,同法可得D0H=2﹣2.如图3﹣6中,当D G G⊥GH时,同法可得D0H=4+4.如图3﹣7中,如图当D0H⊥HG时,同法可得D0H=2+2.如图3﹣8中,当D0G⊥GH时,同法可得HD0=4﹣4.综上所述,满足条件的D0H的值为2﹣2或2+2或4﹣4或4+4.。

2018-2019学年重庆八中八年级(下)期末数学试卷

2018-2019学年重庆八中八年级(下)期末数学试卷

2018-2019学年重庆八中八年级(下)期末数学试卷一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卡中对应的表格内.1.(4分)反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3B.C.﹣3D.﹣2.(4分)若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°3.(4分)分式有意义,则x的取值范围为()A.x≠0B.x≠2C.x≠0且x≠2D.x为一切实数4.(4分)六边形的内角和等于()A.180°B.360°C.540°D.720°5.(4分)方程x2=3x的解是()A.x=3B.x=﹣3C.x=0D.x=3或x=0 6.(4分)下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形7.(4分)如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4B.k>4C.k<0D.k>08.(4分)菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2B.4C.6D.89.(4分)某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=9010.(4分)函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.11.(4分)若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为.12.(4分)一组数据10,9,10,12,9的中位数是.13.(4分)关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=.14.(4分)若=3,则=.15.(4分)已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为.16.(4分)双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为.三、解答题(17题8分,18题8分,19题10分,20题10分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上,17.(8分)解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=2018.(8分)先化简,再求值:(﹣a+1+)÷,其中a=3.19.(10分)近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为人;(2)在扇形统计图中,B所对应扇形的圆心角是度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.20.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b≥的解集.四、填空题:(本大题共5个小题,每小题4分,共20分)请将每小題的答案直接填在答题卡中对应的横线上.21.(4分)因式分解:x3﹣2x2y+xy2=.22.(4分)如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.23.(4分)若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为.24.(4分)2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C 地,其中AC=2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为千米.25.(4分)为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C 三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C 三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.五、解答题(本大题共3个小题,每题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.26.(10分)为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B 两种原材料,A的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.27.(10分)如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.28.(10分)如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D作DE∥AB交BC于E.(1)点C的坐标为;(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.。

2018年重庆八年级下学期期末考试数学试题word版含答案

2018年重庆八年级下学期期末考试数学试题word版含答案

2018年重庆八年级下学期期末考试数学试题(本试卷满分150分,考试时间120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了 代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填入对应的表格内.1.若分式011=+-x x ,则的值是( ) A . 1=x B .1-=x C .0=x D .1-≠x 2.下列分解因式正确的是( )A .)1(23-=-x x x xB .)1)(1(12-+=-x x xC .2)1(22+-=+-x x x xD .22)1(12-=-+x x x3.下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B . C . D . 4.方程x x 32=的解是( )A .3=xB .3-=xC .0=xD . 3=x 或0=x 5.根据下列表格的对应值:判断方程012=-+x x 一个解的取值范围是( )A .61.059.0<<xB .61.060.0<<xC .62.061.0<<xD .63.062.0<<x6.将点P (-3,2)向右平移2个单位后,向下平移3个单位得到点Q ,则点Q 的坐标为( ) A .(-5,5) B .(-1,-1) C .(-5,-1) D .(-1,5)7.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率. 设平均每次降价的百分率为,可列方程为( )A .100)1(1202=-xB .120)1(1002=-xC .120)1(1002=+xD .100)1(1202=+x8.如图,在平行四边形ABCD 中,E 是AB 的中点,CE 和BD 交于点O ,若2=∆BOE S ,则DOC S ∆是( ) A .4B .6C .8D .99.已知0=x 是关于的一元二次方程012)1(22=-++-k x x k的根,则常数的值为( ) A .0或1 B .1 C .-1 D .1或-1 10.如图,菱形ABCD 中,对角线AC 、BD 交于点O ,菱形ABCD 周长为32,点P 是边CD 的中点,则线段OP 的长为( ) A .3 B .5 C .8 D .411.如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为( )A .83B .84C .85D .86 12.如图,□ABCD 中,∠B =70°,点E 是BC 的中点,点F 在 AB 上,且BF=BE ,过点F 作FG ⊥CD 于点G ,则∠EGC 的度数 为( )A .35°B .45°C .30°D .55°二.填空题(本大题6个小题,每小题4分,共24分)请将正确答案填入对应的表格内. 题号 13 14 15 16 17 18 答案13.已知23=y x ,则yy x + = . 14.已知点C 是线段AB 的黄金分割点,且AC >BC ,AB =2,CO PA BD第10题图第12题图第8题图①④ ③ ② F G A EB C D 3-=kx y xybx y +=24-6O POEDCB A则AC 的长为 .15.如图,已知函数b x y +=2与函数3-=kx y 的图象交于点P ,则不等式b x kx +>-23的解集是 .16. 已知一元二次方程01892=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为 .17. 关于的方程15=+x m的解是负数,则的取值范围是 . 18. 如图,矩形ABCD 中,AD=10,AB=8,点P 在边CD 上,且BP=BC ,点M 在线段BP 上,点N 在线段BC的延长线上,且PM=CN ,连接MN 交BP 于点F ,过 点M 作ME ⊥CP 于E ,则EF= .三.解答题(本大题3个小题,19题12分,20,21题各6分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.19.解方程: (1) 121=--xx x (2) 01322=-+x x20. 解不等式组: ()⎪⎩⎪⎨⎧-≥-+<-42211513x x x xP B DNA MC F E 第18题图 第15题图21. 如图,矩形ABCD 中,点E 在CD 边的延长线上,且∠EAD =∠CAD . 求证:AE=BD .四.解答题(本大题3个小题,每小题10分,共30分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.22.先化简,再求值:41)2122(216822+-+--÷++-x x x xx x x ,其中满足0342=-+x x .BC D EA 第21题图23.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?24.在正方形ABCD 中,点F 是BC 延长线上一点,过点B 作BE ⊥DF 于点E ,交CD 于点G ,连接CE . (1)若正方形ABCD 边长为3,DF =4,求CG 的长; (2)求证:EF+EG =2CE .第24题图GEA BCDF五.解答题(本大题2个小题,每小题12分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.25. 为深化“携手节能低碳,共建碧水蓝天”活动,发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.今年1月份,再生资源处理量为40吨,从今年1月1日起,该单位每月再生资源处理量每一个月将提高10吨.月处理成本(元)与月份之间的关系可近似地表示为:450100502++=x x p ,每处理一吨再生资源得到的新产品的售价定为100元. 若该单位每月再生资源处理量为(吨),每月的利润为(元). (1)分别求出与,与的函数关系式; (2)在今年内....该单位哪个月获得利润达到5800元? (3)随着人们环保意识的增加,该单位需求的可再生资源数量受限.今年三月的再生资源处理量比二月份减少了%,该新产品的产量也随之减少,其售价比二月份的售价增加了m 6.0%.四月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了20%.如果该单位四月份在保持三月份的再生资源处理量和新产品售价的基础上,其利润比二月份的利润减少了60元,求的值.26. 如图1,菱形ABCD 中,AB =5,AE ⊥BC 于E ,AE =4.一个动点P 从点B 出发,以每秒个单位长度的速度沿线段BC 方向运动,过点P 作PQ ⊥BC ,交折线段BA-AD 于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线BC 上,当P 点到达C 点时,运动结束.设点P 的运动时间为秒(0t >). (1)求出线段BD 的长,并求出当正方形PQMN 的边PQ 恰好经过点A 时,运动时间的值; (2)在整个运动过程中,设正方形PQMN 与△BCD 的重合部分面积为S ,请直接写出S 与之间的函数关系式和相应的自变量的取值范围;(3)如图2,当点M 与点D 重合时,线段PQ 与对角线BD 交于点O ,将△BPO 绕点O 逆时针旋转︒α (1800<<α),记旋转中的△BPO 为△O P B '',在旋转过程中,设直线P B ''与直线BC 交于G ,与直线BD 交于点H ,是否存在这样的G 、H 两点,使△BGH 为等腰三角形?若存在,求出此时2OH 的值;若不存在,请说明理由.第26题图1第26题图2CABDOQ PB 'P 'E P NCBD MQA2018年重庆八年级下学期期末考试数学试题参考答案一、选择题(每小题4分,共48分)ABCD CBAC CDCD二、填空题(每小题4分,共24分)13. 14.15- 15. 4<x 16.15 17.5<m 且0≠m 18. 52 19. (1)解:方程两边同乘以)1(-x x ,得)1()1(22-=--x x x x ……………… 3分∴02=+-x ……………… 4分 ∴2=x . ……………… 5分 经检验2=x 是原方程的解.∴原方程的解为2=x . ……………… 6分(2)解:∵2=a ,3=b ,1-=c∴17)1(24942=-⨯⨯-=-ac b ……………… 2分∴4173±-=x ……………… 5分 ∴41731+-=x ,41732--=x . ……………… 6分20. 解:解不等式①得: 2->x ……………… 2分 解不等式②得: 37≤x ……………… 4分 ∴原不等式组的解集为:372≤<-x……………… 6分21..证明:∵四边形ABCD 是矩形∴∠CDA =∠EDA =90°,AC=BD . ……………… 3分∵∠CAD=∠EAD ,AD=AD∴△ADC ≌△ADE . ……………… 5分 ∴AC =AE. 分∴BD=AE . ……………… 6分22. 解:原式=41216)2()4(22+-+-÷+-x x x x x x ··················· 3分=41)4)(4(2)2()4(2+--++⋅+-x x x x x x x ················· 4分=41)4(4+-+-x x x x ························ 5分 =)4(4+-x x=xx 442+-. ························· 6分∵0342=-+x x∴342=+x x . ························ 8分∴原式=34-. ························· 10分 23.解:(1)设第一次所购该蔬菜的进货价是每千克元,根据题意得5.07002400-=⋅x x …………………………3分 解得4=x .经检验4=x 是原方程的根,∴第一次所购该蔬菜的进货价是每千克4元; ············· 5分 (2)由(1)知,第一次所购该蔬菜数量为400÷4=100第二次所购该蔬菜数量为100×2=200 设该蔬菜每千克售价为元,根据题意得[100(1-2%)+200(1-3%)]944700400≥--y . ··········· 8分 ∴7≥y . ···························· 9分∴该蔬菜每千克售价至少为7元. ················ 10分24. (1)∵四边形ABCD 是正方形∴∠BCG =∠DCB=∠DCF=90°,BC=DC .∵BE ⊥DF∴∠CBG+∠F=∠CDF+∠F .∴∠CBG=∠CDF . ……………………………………2分 ∴△CBG ≌△CDF .∴BG=DF=4. ……………………………………3分∴在Rt △BCG 中,222BG BC CG =+∴CG =73422=-. …………………………4分 (2)过点C 作CM ⊥CE 交BE 于点M∵∠BCG=∠MCE =∠DCF =90°M∴∠BCM=∠DCE ,∠MCG=∠ECF ∵BC=DC ,∠CBG=∠CDF∴△CBM ≌△CDE ……………………………………6分 ∴CM=CE∴△CME 是等腰直角三角形 ……………………………………7分 ∴ME=CE 2 ,即MG+EG=CE 2又∵△CBG ≌△CDF ∴CG=CF∴△CMG ≌△FCE ……………………………………9分 ∴MG=EF∴EF+EG =2CE ……………………………………10分25. (1)3010+=x y ……………………………………2分 p y w -=100255090050)45010050()3010(10022++-=++-+=x x x x x ……………………………………4分(2)由58002550900502=++-x x 得 ……………………………………6分065182=+-x x∴131=x ,52=x∵12≤x ∴5=x . ……………………………………8分 ∴在今年内....该单位第5个月获得利润达到5800元. (3)二月份再生资源处理量为:40+10=50(吨)二月份月处理成本为:85045021002502=+⨯+⨯=p (元)50(1-%)×100(1+m 6.0%)-850×(1-20%)=50×100-850-60………10分 设%=,则023*******=-+t t∴30131060067600200±-=±-=t ∵0>t ,∴1.0=t∴%=0.1,即10=m . ……………………………………12分26.(1)过点D 作DK ⊥BC 延长线于K∴Rt △DKC 中,CK =3.∴Rt △DBK 中,BD=544)35(22=-+ ……………………2分在Rt △ABE 中,AB =5,AE =4, . ∴BE =3,∴当点Q 与点A 重合时,3=t . …………3分(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<+-≤<++-≤<-+-≤<=)54(1041)43(31031032)3715(35091402768)7150(9102222t t t t t t t t t t S …………8分(3)当点M 与点D 重合时,BP=QM=4,∠BPO=∠MQO ,∠BOP=∠MOQ∴△BPO ≌△MQO ∴PO=2,BO=52 若HB=HG 时,∠HBC=∠HGB=∠O B H ' ∴B O '∥BG ∴HO=B H '∴设HO=B H '=222)4(2x x -+=, ∴25=x ∴4252=OH . ……………………………………9分 若GB=GH 时, ∠GBH=∠GHB∴此时,点G 与点C 重合,点H 与点D 重合∴20)52(222===OD OH . ……………………………………10分 当BH=BG 时, ∠BGH=∠BHG∵∠HBG=∠B ', ∴∠B OH B HO '∠='∴B O B H '='=52,∴P H '=452-.∴51640)452(2222-=-+=OH . 或∠BGH=∠HA P 'BB 'O CDHGA BC D OP 'B '(G)(H)ABC DOB 'P 'GH P 'GHBADOCB '∴∠OBG=∠H P B O ∠=''2 ∴∠H B HO ∠='∴B O B H '='=52, ∴P H '=452+.∴51640)452(2222+=++=OH . ……………………………………12分 综上所述,当4252=OH 、20、51640-、51640+时,△BGH 为等腰三角形.。

2018-2019学年八年级下期末数学试卷及答案

2018-2019学年八年级下期末数学试卷及答案

2018-2019学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是()A.B.C. D.10.下列计算正确的是()A.2B. C.D.=﹣311.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.12.一次函数y=kx+b的图象如图所示,则k、b的符号()A.k<0,b>0 B.k>0,b>0 C.k<0,b<0 D.k>0,b<013.下列命题中,为真命题的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组对边平行的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:3458月用水量(吨)户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.2018-2019学年八年级(下)期末考试八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分…………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形,∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分 ②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分 ∴∠EPF=90°∴∠BPE=∠QPF ,………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPEQPF PF PE QFPBEP∴△PEB ≌△PFQ (ASA )………………………9分 ∴PB=PQ .………………………10分 (其它做法参照给分)。

2019-2020学年重庆市九龙坡区八年级(下)期末数学试卷(含答案解析)

2019-2020学年重庆市九龙坡区八年级(下)期末数学试卷(含答案解析)

2019-2020学年重庆市九龙坡区八年级(下)期末数学试卷一、选择题(本大题共12小题,共48.0分)1.下列各组数中,不能构成直角三角形的是()A. 3,4,5B. 6,8,10C. 4,5,6D. 5,12,132.下列各式是最简二次根式的是()A. √13B.√2C. √12D. √203.下列一次函数中,y的值随x的增大而减小()A. y=10x−9B. y=0.3x+2C. y=√5x−4D. y=(√2−√3)x4.在实数范围内,若√x+1有意义,则x的取值范围是()A. x≤−1B. x≥−1C. x>−1D. x<−15.如果给定数组中每一个数都加上同一个非零常数,则数据的()A. 平均数不变,方差不变B. 平均数改变,方差改变C. 平均数改变,方差不变D. 平均数不变,方差改变6.如图,在▱ABCD中,以A为圆心,AB长为半径画弧交AD于F.分别以点F,B为圆心,大于12BF长为半径作弧,两弧交于点G,作射线AG交BC于点E,若BF=6,AB=5,则AE的长为()A. 4B. 6C. 8D. 107.下列各图表示变量x与y之间满足函数关系的是()A. B.C. D.8.数据4,8,4,6,3的众数和平均数分别是()A. 5,4B. 8,5C. 6,5D. 4,59.直线y=kx−4与y轴相交,所成的锐角的正切值为12,则k的值为()A. 2B. −2C. ±2D. 无法确定10.下列计算正确的是()A. √x2=xB. x2⋅x5=x10C. (x2)3=x6D. √x+y=√x+√y11.如图,点D是△ABC的边AB的延长线上一点,点F是边BC上的一个动点(不与点B重合).以BD、BF为邻边作平行四边形BDEF,又AP‖BE(点P、E在直线AB的同侧),如果BD=14AB,那么△PBC的面积与△ABC面积之比为()A. 14B. 35C. 15D. 3412.如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A. EB=EDB. 折叠后∠ABE和∠CBD一定相等C. AE=ECD. △EBA和△EDC一定是全等三角形二、填空题(本大题共6小题,共24.0分)13.计算√43×√13的结果为______.14.正比例函数y=kx(k≠0)的图象过点(−3,2),则图象位于第______象限.15.△ABC的周长为16,点D,E,F分别是△ABC的边AB、BC、CA的中点,连接DE,EF,DF,则△DEF的周长是________.16.某校倡导学生在家积极参加劳动,开学后,统计了九年级(1)班30名学生每天劳动时间的情况,具体数量如表:则这30名学生平均每人每天劳动______ 小时.劳动时间(ℎ)0.51 1.52人数10126217.拖拉机工作时,油箱中的余油量Q(升)与工作时间t(时)d关系式为Q=40−5t.当t=4时,Q=______ 升,从关系式可知道这台拖拉机最多可工作______ 小时.18. 已知在平面直角坐标系中放置了5个如图所示的正方形,点B 1在y 轴上且坐标是(0,2),点C 1,E 1,E 2,C 2,E 3,E 4,C 3在x 轴上,C 1的坐标是(1,0),B 1C 1//B 2C 2//B 3C 3,以此继续下去,则点A 2018到x 轴距离是______.三、解答题(本大题共8小题,共78.0分) 19. 先化简,再求值:(a −2aa+1)÷a 2−2a+1a 2−1−a 2,其中a 是方程x 2−x −3=0的解.20. 如图,在△ABC 中,D 、E 分别是AC 、AB 的中点,CF//AB 交ED 的延F 长线于点F ,连接AF 、CE .(1)求证:四边形BCFE 是平行四边形;(2)当△ABC 满足什么条件时,四边形AECF 是菱形?并说明理由.21. 已知函数y 1=x −2,y 2=3x +1.当x 取何值时,y 1>y 2?y 1<y 2?22. 某校要从小明和小亮两名运动员中挑出一人参加立定跳远比赛,学校记录了二人在最近的6次立定跳远选拔赛中的成绩(单位:cm),并进行整理、描述和分析.下面给出了部分信息. a.如图b.小亮最近6次选拔赛成绩如下: 250 254 260 271 255 240c.小明和小亮最近6次选拔赛中成绩的平均数、中位数、方差如下:平均数中位数方差小明252252.5129.7小亮255m88.7根据以上信息,回答下列问题:(1)m=______;(2)历届比赛表明:成绩达到266cm就有可能夺冠,成绩达到270cm就能打破纪录(积分加倍),根据这6次选拔赛成绩,你认为应选______(填“小明”或“小亮”)参加这项比赛,理由是______.(至少从两个不同的角度说明推断的合理性)23.南京红山动物园与南京牛首山大约相距30千米,一辆电动车和一辆自行车从两地同时出发相向而行,1小时后相遇.相遇后,自行车继续前进,电动车没电了,通过路边充电站速充20分钟后,按原路返回,在电动车再次出发15分钟后追上了自行车,这时电动车、自行车从出发到现在各自行驶了多少千米?24.如图,点M(1,−3)在抛物线y=ax2+bx−2上,且该抛物线与x轴分别交于点A和点B(−1,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点D是抛物线对称轴上的一个动点,求OD+MD的最小值;(3)点N是抛物线上除点M外的一点,若△ACN与△ACM的面积相等,求点N的坐标.25.如图,已知AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)连接AF、CE,当EF与AC满足什么条件时,四边形AFCE是菱形?请说明理由.26.如图,直线y=kx+4(k≠0)与x轴,y轴分别交于点B,A,直线y=−2x+1与y轴交于点C,与直线y=kx+4交于点D,△ACD的面积3.2(1)求直线AB的表达式;(2)设点E在直线AB上,当△ACE是直角三角形时,请直接写出点E的坐标.【答案与解析】1.答案:C解析:解:A、32+42=52,能构成直角三角形,故不符合题意;B、62+82=102,能构成直角三角形,故不符合题意;C、42+52≠62,不能构成直角三角形,故符合题意;D、52+122=132,能构成直角三角形,故不符合题意.故选:C.根据勾股定理的逆定理对四个选项中所给的数据看是否符合两个较小数的平方和等于最大数的平方即可.本题考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2.答案:A解析:解:A.√13,不能再开方,是最简二次根式;B.√2=√22,不是最简二次根式;C.√12=√22,不是最简二次根式;D.√20=2√5,不是最简二次根式.故选:A.最简二次根式的条件是:①被开方数的因数是整数,因式是整式.②被开方数中不含能开得尽方的因数和因式,显然A正确,BCD错误.本题考查了最简二次根式,正确理解二次根式的意义是解题的关键.3.答案:D解析:试题分析:对于一次函数y=kx+b,当k<0时,y随x的增大而减小,比较四个函数k的值可确定答案.一次函数y=kx+b,当k<0时,y随x的增大而减小,A,B,C中的k都大于0,D中√2−√3<0,所以D对.故选D.4.答案:B解析:解:∵二次根式√x+1有意义,∴x+1≥0,解得x≥−1.故选B.根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是二次根式有意义的条件,即二次根式中的被开方数是非负数.5.答案:C解析:解:一组数都加上同一个非零常数后,平均数变大,一组数都减去同一个非零常数后,平均数变小,则一组数都加上或减去同一个非零的常数后,平均数改变,但是方差不变;故选:C.根据平均数和方差的特点,一组数都加上或减去同一个非零的常数后,方差不变,平均数改变,即可得出答案.[(x1−x)2+本题考查了方差和平均数,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n(x2−x)2+⋯+(x n−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.掌握平均数和方差的特点是本题的关键.6.答案:C解析:解:如图,设AE交BF于点O.由作图可知:AB=AF,AE⊥BF,∴OB=OF,∠BAE=∠EAF,∵四边形ABCD是平行四边形,∴AD//BC,∴∠EAF=∠AEB,∴∠BAE=∠AEB,∴AB=BE=AF,∵AF//BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴OA=OE,OB=OF=3,在Rt△AOB中,∵∠AOB=90°,∴OA=√AB2−OB2=√52−33=4,∴AE=2OA=8.故选:C.设AE交BF于点O.证明四边形ABEF是菱形,利用勾股定理求出OA即可解决问题.本题考查平行四边形的性质,菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.答案:D解析:本题考查了函数的概念,运用图象求解判断,体现了数形结合的思想.根据函数的概念,直线x=a与函数的图象至多有1个交点,可判断出答案.解:A,B,C中,对于x的某些值,y都有2个值与其对应,所以y不是x的函数.只有D符合函数的定义.故选D.8.答案:D解析:解:∵4出现了2次,出现的次数最多,∴众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5;故选:D.根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可.此题考查了众数和平均数,众数是一组数据中出现次数最多的数,注意众数不止一个.9.答案:C解析:解:由直线的解析式可知直线与y轴的交点为(0,−4),与x轴的交点为(4k,0),∵直线y=kx−4与y轴相交所成锐角的正切值为12,即4|k|4=12,解得k=±2.故选:C.首先确定直线y=kx−4与y轴和x轴的交点,然后利用直线y=kx−4与y轴相交所成锐角的正切值为1这一条件求出k的值.2本题考查了一次图象上点的坐标特征,解直角三角形等,求得直线与坐标轴的交点坐标是解题的关键.10.答案:C解析:本题考查同底数幂的乘法,二次根式的性质和化简,幂的乘方.题目比较简单,解题需细心.根据同底数幂的乘法,底数不变指数相加;二次根式的性质和化简;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解:A、√x2=|x|,错误;B、x2⋅x5=x7,错误;C、(x2)3=x6,正确;D、√x+y与√x+√y不一定相等,错误.故选:C.11.答案:D解析:首先过点P作PH//BC交AB于H,连接CH,PF,易得四边形APEB,BFPH是平行四边形,又由四边形BDEF是平行四边形,设BD=a,则AB=4a,可求得BH=PF=3a,又由S△HBC=S△PBC,S△HBC:S△ABC=BH:AB,即可求得△PBC的面积与△ABC面积之比.12.答案:B解析:解:如图,∵把矩形纸片ABC′D沿对角线折叠,∴∠CBD=∠DBC′,CD=C′D=AB,BC=BC′,∵AD//BC′,∴∠ADB=∠DBC′,∴∠ADB=∠CBD,∴BE=DE,∴AE=CE,在△ABE和△CDE中,{AB=CD ∠A=∠C AE=CE,∴△ABE≌△CDE(SAS),∴选项A、C、D都不符合题意,故选:B.由折叠的性质和平行线的性质可得∠ADB=∠CBD,可得BE=DE,可证AE=CE,由“SAS”可证△ABE≌△CDE,即可求解.本题考查了翻折变换,全等三角形的判定和性质,矩形的性质,掌握折叠的性质是本题的关键.13.答案:23解析:解:√43×√13=√43×13=√49=23.故答案为:23.直接利用二次根式的乘法运算法则计算得出答案.此题主要考查了二次根式的乘法,正确掌握二次根式的性质是解题关键.14.答案:二、四解析:把点(−3,2)代入正比例函数y=kx求出k的值,根据k的值,判定图象所在的象限,得出答案.考查一次函数的图象和性质,求出k的值,根据k的符号确定图象所在的象限是解决问题的关键.解:把点(−3,2)代入正比例函数y=kx得,k=−23<0,∴正比例函数的图象过二、四象限;故答案为:二、四.15.答案:8解析:根据三角形中位线定理得到DE=12AC,EF=12AB,DF=12BC,根据三角形的周长公式计算即可.。

2018-2019学年八年级下期末数学试卷2(含答案解析)

2018-2019学年八年级下期末数学试卷2(含答案解析)

2018-2019学年八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣22.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65 4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.109.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.810.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是.12.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD 的面积和对角线长.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试8085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是.24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣2【解答】解:由题意得:a+2≥0,解得:a≥﹣2,故选:B.2.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣【解答】解:A、=2,故原题计算错误;B、+=+2=3,故原题计算错误;C、==4,故原题计算正确;D、2和不能合并,故原题计算错误;故选:C.3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65【解答】解:由表可知1.75m出现次数最多,有4次,所以众数为1.75m,这15个数据最中间的数据是第8个,即1.70m,所以中位数为1.70m,故选:A.4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位【解答】解:要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象向上平移5个单位,故选:C.5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角【解答】解:∵菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分,每一条对角线平分一组对角,;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:每一条对角线平分一组对角.故选:D.6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)【解答】解:在y=3x﹣2中,∵k=3>0,∴y随x的增大而增大;∵b=﹣2<0,∴函数与y轴相交于负半轴,∴可知函数过第一、三、四象限;∵当x=﹣2时,y=﹣8,所以与x轴交于(﹣2,0)错误,∵当y=﹣2时,x=0,所以与y轴交于(0,﹣2)正确,故选:C.8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.10【解答】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴AD=6,∵CD=AB=8,∴AC==10,∴BO=AC=5.故选:A.9.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选:A.10.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6【解答】解:联立两函数的解析式,得:,解得;即两函数图象交点为(﹣3,﹣2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而增大;因此当x=5时,m值最大,即m=6.故选:D.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是5.【解答】解:=5,故答案为:512.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=8.【解答】解:根据勾股定理得:a2+b2=c2,∵a=6,c=10,∴b===8,故答案为8.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为2.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD﹣AE=BC﹣AB=5﹣3=2.故答案为2.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为y=2x﹣7.【解答】解:∵B(8,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC的对称中心,∴平行四边形OABC的对称中心D(4,1),设直线QD的解析式为y=kx+b,∴,∴,∴该直线的函数表达式为y=2x﹣7,故答案为:y=2x﹣7.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为87°.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠DAE=∠AEB,∵∠EAB=∠EAD,∴∠EAB=∠AEB,∴BA=BE,∵AB=AE,∴AB=BE=AE,∴∠B=∠BAE=∠AEB=60°,∴∠EAD=∠CDA=60°,∵EA=AB,CD=AB,∴EA=CD,∵AD=DA,∴∠AED≌△DCA,∴∠AED=∠DCA,∵AB∥CD,∴∠ACD=∠BAC=60°+27°=87°,∴∠AED=87°.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.【解答】解:∵AB∥CD,CD=BC=AB,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∴B、D关于AC对称,连接BE交AC于H′,连接DH′,此时DH′+EH′的值最小,最小值=BE,作AM⊥EC于M,EN⊥BA交BA的延长线于N.∵四边形ABCD是菱形,∴AD∥BC,∴∠ADM=∠BCD=30°,∵AD=2,∴AM=AD=1,∵∠AEC=45°,∴AM=EM=1,∵AM⊥CE,EN⊥BN,CE∥NB,∴∠AME=∠N=∠MAN=90°,∴四边形AMEN是矩形,∴AN=EM=AM=EN=1,在Rt△BNE中,BE===,故答案为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)【解答】解:原式=42﹣()2=16﹣7=9.18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD的面积和对角线长.【解答】解:连接BD.∵ABCD为正方形,∴∠A=∠C=90°.在Rt△BCE中,BC=.在Rt△ABD中,BD=.∴正方形ABCD的面积=.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【解答】解:(1)∵一次函数图象过原点,∴,解得:m=3(2)∵一次函数的图象经过第二、三、四象限,∴,∴1<m<3.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试908085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.【解答】解:(1)观察图象1可知:A的面试成绩为90分.故答案为90.条形图如图所示:(2)A的得票数:300×35%=105(人)B的得票数:300×40%=120(人)C的得票数:300×25%=75(人);(3)A的成绩:=93B的成绩:=96.5C的成绩:=83.5,故B学生成绩最高,能当选学生会主席.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.【解答】解:(1)∵A(0,3)、点B(3,0),∴直线AB的解析式为y=﹣x+3,由,解得,∴P(﹣3,6).(2)设Q(m,0),由题意:•|m﹣3|•6=6,解得m=5或1,∴Q(1,0)或(5,0).(3)当直线y=﹣2x+m经过点O时,m=0,当直线y=﹣2x+m经过点B时,m=6,∴若直线y=﹣2x+m与△AOB三条边只有两个公共点,则有0<m<6.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.【解答】解:(1)设每件A商品的单价是x元,每件B商品的单价是y元,由题意得,解得.答:A商品、B商品的单价分别是50元、40元;(2)当0<x≤10时,y=50x;当x>10时,y=10×50+(x﹣10)×50×0.6=30x+200;(3)设购进A商品a件(a>10),则B商品消费40a元;当40a=30a+200,则a=20所以当购进商品正好20件,选择购其中一种即可;当40a>30a+200,则a>20所以当购进商品超过20件,选择购A种商品省钱;当40a<30a+200,则a<20所以当购进商品少于20件,选择购B种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是MN=(BM+ND).【解答】证明:(1)延长NO交BM交点为F,如图∵四边形ABCD是菱形∴AC⊥BD,BO=DO∵DN⊥MN,BM⊥MN∴BM∥DN∴∠DBM=∠BDN,且BO=DO,∠BOF=∠DON∴△BOF≌△DON∴NO=FO,∵BM⊥MN,NO=FO∴MO=NO=FO(2)如图:延长MO交ND的延长线于F∵BM⊥PC,DN⊥PC∴BM∥DN∴∠F=∠BMO∵BO=OD,∠F=∠BMO,∠BOM=∠FOD ∴△BOM≌△FOD∴MO=FO∵FN⊥MN,OF=OM∴NO=OM=OF(3)如图:∵∠BAD=120°,四边形ABCD是菱形,∴∠ABC=60°,AC⊥BD∵∠OBC=30°∵BM⊥PC,AC⊥BD∴B,M,C,O四点共圆∴∠FMN=∠OBC=30°∵FN⊥MN∴MN=FN=(BM+DN)答案为MN=(BM+FN)24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.【解答】解:(1)▱A′B′CD如图所示,A′(2,2t).(2)∵C′(6,t),A(2,0),=12t﹣×2×2t﹣×6×t﹣×4×t=9.∵S△OA′C∴t=.(3)∵D(0,t),B(6,0),∴直线BD的解析式为y=﹣x+t,∴线BD沿x轴的方向平移m个单位长度的解析式为y=﹣x+(6+m),把点A(2,2t)代入得到,2t=﹣+t+,解得m=8.。

[精品]2018-2019学年度八年级(下)期末数学试卷及解析(十二)-打印版-

[精品]2018-2019学年度八年级(下)期末数学试卷及解析(十二)-打印版-

2018-2019学年度八年级(下)期末数学试卷(十二)班级 姓名 一、选择题(本题共12个小题,每小题2分,共24分)1.的值等于( )A.4B.±4C.±2D.22.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ) A.3,4,5 B.7,24,25 C.1,,D.2,3,43.某班为筹备毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查,最终确定买什么水果,则最值得关注的调查数据是( )A.中位数B.平均数C.众数D.方差4.下列二次根式中,最简二次根式是( ) A.B.C.D.5.如果代数式有意义,那么x 的取值范围是( )A.x ≥0B.x ≠1C.x >0D.x ≥0且x ≠16.如图,四边形ABCD 的对角线交于O,下列哪组条件不能判断ABCD 是平行四边形( ) A.OA=OC,OB=OD B.AB=CD,AO=COC.AD ∥BC,AD=BCD.∠BAD=∠BCD,AB ∥CD7.下列计算正确的是( )A.﹣=B.3+=4C.÷=6 D.×(﹣)=38.如图,数轴上的点A 所表示的数为x,则x 的值为( )A.B.+1 C.﹣1 D.1﹣9.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为( ) A.3.5,3B.3,4C.3,3.5D.4,310.如图,在菱形ABCD 中,BE ⊥AD 于E,BF ⊥CD 于F,且AE=DE,则∠EBF 的度数是( ) A.75° B.60° C.50° D.45°11.对于一次函数y=﹣2x +4,下列结论错误的是( ) A.若两点A(x 1,y 1),B(x 2,y 2)在该函数图象上,且x 1<x 2,则y 1>y 2 B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x 的图象D.函数的图象与x 轴的交点坐标是(0,4)12.甲、乙两车从A 城出发前往B 城,在整个行驶过程中,汽车离开A 城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有( )①甲车的速度为50km/h ②乙车用了3h 到达B 城③甲车出发4h 时,乙车追上甲车 ④乙车出发后经过1h 或3h 两车相距50km. A.1个 B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)13.某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:甲=1.69m,乙=1.69m,s =0.0006,s =0.0315,则这两名运动员中的 的成绩更稳定.14.对于正比例函数y=mx |m |﹣1,若y 的值随x 的值增大而减小,则m 的值为 . 15. 小明在七年级第二学期的数学成绩如表,如果按如图显示的权重要求,那么小明该 学期的总评得分为 .16.菱形ABCD 的边AB 为5,对角线AC 为8,则菱形ABCD 的面积为 .17.如图,函数y=ax ﹣1的图象过点(1,2),则不等式ax ﹣1>2的解集是 .18.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8,在OC 边上取一点D,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,则D 点的坐标是 .三、解答题(本大题共7小题,共58分) 19.(1)计算:﹣(﹣2)+(﹣1)0﹣()﹣1 +(2)比较与0.5的大小.20.已知x=2﹣,y=2+,求代数式的值:(1)x 2+2xy +y 2; (2)x 2﹣y 2.第6题图第8题图第10题图第16题图第17题图第18题图21.在一次课外实践活动中,同学们要知道校园内A,B 两处的距离,但无法直接测得.已知校园内A 、B 、C 三点形成的三角形如图所示,现测得AC=6m,BC=14m,∠CAB=120°,请计算A,B 两处之间的距离.22.某厂生产A,B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B 产品单价变化统计表并求得了A 产品三次单价的平均数和方差:=5.9,s A 2= [(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1) 在折线图中画出B 产品的 单价变化的情况;(2)求B 产品三次单价的方差;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调m%(m >0),但调价 后不能超过4元/件,并且使得A 产品这四次单价的 中位数是B 产品四次单价中位数的2倍少1,求m 的值.23.如图,函数y=﹣2x +3与y=﹣x +m 的图象交于P(n,﹣2). (1)求出m 、n 的值; (2)求出△ABP 的面积.24. 已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E,使CE=CG,连接BG 并延长交DE 于F. (1)求证:△BCG ≌△DCE ;(2)将△DCE 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由.25.某超市经销A 、B 两种商品,A 种商品每件进价20元,售价30元;B 种商品每件进价35元,售价48元. (1)该超市准备用800元去购进A 、B 两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大?(其中B 种商品不少于7件)(2)在“五•一”期间,该商场对A 、B 两种商品进行优惠促销活动:促销活动期间小颖去该超市购买A 种商品,小华去该超市购买B 种商品,分别付款210元与268.8元.促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?2018-2019学年度八年级(下)期末数学试卷(十二)参考答案与试题解析一、选择题(本题共12个小题,每小题2分,共24分) 1.的值等于( ) A.4 B.±4 C.±2 D.2 【考点】22:算术平方根.【分析】直接利用算术平方根的定义求出即可. 【解答】解:=2.故选:D.2.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ) A.3,4,5 B.7,24,25C.1,,D.2,3,4【考点】KS :勾股定理的逆定理.【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【解答】解:A 、∵32+42=25=52,∴能够成直角三角形,故本选项不符合题意; B 、∵72+242=625=252,∴能够成直角三角形,故本选项不符合题意; C 、∵12+()2=3=2,∴能够成直角三角形,故本选项不符合题意;D 、∵22+32=13≠(4)2,∴不能够成直角三角形,故本选项符合题意.故选D.3.某班为筹备毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查,最终确定买什么水果,则最值得关注的调查数据是( ) A.中位数B.平均数C.众数D.方差【考点】WA :统计量的选择.【分析】班长最值得关注的应该是哪种水果爱吃的人数最多,即众数.【解答】解:由于众数是数据中出现次数最多的数,故班长最值得关注的应该是统计调查数据的众数.故选C.4.下列二次根式中,最简二次根式是( ) A.B. C. D.【考点】74:最简二次根式.【分析】A 选项的被开方数中,含有能开得尽方的因式a 2;B 、C 选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.D 选项的被开方数是个平方差公式,它的每一个因式的指数都是1,所以D 选项符合最简二次根式的要求.【解答】解:因为:A 、=|a |;B 、=;C 、=;所以,这三个选项都可化简,不是最简二次根式. 故本题选D.5.如果代数式有意义,那么x 的取值范围是( )A.x ≥0B.x ≠1C.x >0D.x ≥0且x ≠1【考点】62:分式有意义的条件;72:二次根式有意义的条件. 【分析】代数式有意义的条件为:x ﹣1≠0,x ≥0.即可求得x 的范围.【解答】解:根据题意得:x ≥0且x ﹣1≠0. 解得:x ≥0且x ≠1.故选:D.6.如图,四边形ABCD 的对角线交于点O,下列哪组条件不能判断四边形ABCD 是平行四边形( )A.OA=OC,OB=OD B .AB=CD,AO=CO C.AD ∥BC,AD=BCD.∠BAD=∠BCD,AB ∥CD【考点】L6:平行四边形的判定.【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A 、根据对角线互相平分,可得四边形是平行四边形,可以证明四边形ABCD 是平行四边形,故本选项错误;B 、AB=CD,AO=CO 不能证明四边形ABCD 是平行四边形,故本选项正确;C 、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD 是平行四边形,故本选项错误;D 、根据AB ∥CD 可得:∠ABC +∠BCD=180°,∠BAD +∠ADC=180°,又由∠BAD=∠BCD 可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定,故本选项错误; 故选:B.7.下列计算正确的是( ) A.﹣=B.3+=4C.÷=6 D.×(﹣)=3【考点】79:二次根式的混合运算.【分析】对每一个选项先把各二次根式化为最简二次根式,再进行计算. 【解答】解:A.﹣不能计算,故A 选项错误; B.3+=4,故B 选项正确; C.÷=3÷=,故C 选项错误;D.×(﹣)=﹣3,故D 选项错误;故选B.8.如图,数轴上的点A 所表示的数为x,则x 的值为( )A. B. +1 C.﹣1 D.1﹣【考点】29:实数与数轴.【分析】由题意,利用勾股定理求出点A 到﹣1的距离,即可确定出点A 表示的数x. 【解答】解:根据题意得:x=﹣1=﹣1,故选C9.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为( )A.3.5,3B.3,4C.3,3.5D.4,3【考点】W4:中位数;W1:算术平均数.【分析】根据题意可知x=2,然后根据平均数、中位数的定义求解即可. 【解答】解:∵这组数据的众数是2, ∴x=2,将数据从小到大排列为:2,2,2,4,4,7, 则平均数=(2+2+2+4+4+7)÷6=3.5, 中位数为:3.故选:A.10.如图,在菱形ABCD 中,BE ⊥AD 于E,BF ⊥CD 于F,且AE=DE,则∠EBF 的度数是( )A.75°B.60°C.50°D.45°【考点】L8:菱形的性质.【分析】连结BD,如图,先利用线段垂直平分线的性质得到BA=BD,再根据菱形的性质得AB=AD,AB ∥CD,则可判断△ABD 为等边三角形得到∠A=60°,再计算出∠ADC=120°,然后利用四边形内角和可计算出∠EBF 的度数. 【解答】解:连结BD,如图, ∵BE ⊥AD,AE=DE, ∴BA=BD,∵四边形ABCD 为菱形, ∴AB=AD,AB ∥CD, ∴AB=AD=BD,∴△ABD 为等边三角形, ∴∠A=60°, ∵AB ∥CD, ∴∠ADC=120°, ∵BF ⊥CD,∴∠EBF=360°﹣120°﹣90°﹣90°=60°. 故选B.11.对于一次函数y=﹣2x+4,下列结论错误的是()A.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1>y2B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与x轴的交点坐标是(0,4)【考点】F5:一次函数的性质.【分析】根据一次函数的性质对各选项进行判断.【解答】解:A、若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1>y2,所以A选项的说法正确;B、函数的图象经过第一、二、四象限,不经过第三象限,所以B选项的说法正确;C、函数的图象向下平移4个单位长度得y=﹣2x的图象,所以C选项的说法正确;D、函数的图象与y轴的交点坐标是(0,4),所以D选项的说法错误.故选D.12.甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ②乙车用了3h到达B城③甲车出发4h时,乙车追上甲车④乙车出发后经过1h或3h两车相距50km.A.1个B.2个C.3个D.4个【考点】FH:一次函数的应用.【分析】根据路程、时间和速度之间的关系判断出①正确;根据函数图象上的数据得出乙车到达B城用的时间,判断出②正确;根据甲的速度和走的时间得出甲车出发4h时走的总路程,再根据乙的总路程和所走的总时间求出乙的速度,再乘以2小时,求出甲车出发4h时,乙走的总路程,从而判断出③正确;再根据速度×时间=总路程,即可判断出乙车出发后经过1h或3h,两车相距的距离,从而判断出④正确.【解答】解:①甲车的速度为=50km/h,故本选项正确;②乙车到达B城用的时间为:5﹣2=3h,故本选项正确;③甲车出发4h,所走路程是:50×4=200(km),甲车出发4h时,乙走的路程是:×2=200(km),则乙车追上甲车,故本选项正确;④当乙车出发1h时,两车相距:50×3﹣100=50(km),当乙车出发3h时,两车相距:100×3﹣50×5=50(km),故本选项正确;故选D.二、填空题(本大题共6小题,每小题3分,共18分)13.某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:甲=1.69m,乙=1.69m,s=0.0006,s=0.0315,则这两名运动员中的甲的成绩更稳定.【考点】W7:方差.【分析】根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【解答】解:∵S2甲=0.0006,S2乙=0.0315,∴S2甲<S2乙,∴这两名运动员中甲的成绩更稳定.故答案为:甲.14.对于正比例函数y=mx|m|﹣1,若y的值随x的值增大而减小,则m的值为﹣2.【考点】F6:正比例函数的性质.【分析】根据正比例函数的意义,可得答案.【解答】解:∵y的值随x的值增大而减小,∴m<0,∵正比例函数y=mx|m|﹣1,∴|m|﹣1=1,∴m=﹣2,故答案为:﹣215.小明在七年级第二学期的数学成绩如表,如果按如图显示的权重要求,那么小明该学期的总评得分为 87 .【考点】W2:加权平均数.【分析】根据平时,期中以及期末的成绩乘以各自的百分比,结果相加即可得到总得分. 【解答】解:根据题意得:90×10%+90×30%+85×60%=9+27+51=87(分), 则小明该学期的总评得分为87,故答案为:87.16.菱形ABCD 的边AB 为5,对角线AC 为8,则菱形ABCD 的面积为 24 .【考点】L8:菱形的性质.【分析】连接BD,交AC 于O,根据菱形的两条对角线互相垂直且平分可得AO=CO=AC=4,BO=DO,CA ⊥BD,然后利用勾股定理计算出BO 的长,进而可得BD 长,再利用菱形的面积公式进行计算即可.【解答】解:连接BD,交AC 于O, ∵四边形ABCD 是菱形,∴AO=CO=AC=4,BO=DO,CA ⊥BD,∵AB=5, ∴BO==3,∴BD=6,∴菱形ABCD 的面积为:6×8=24,故答案为:24.17.如图,函数y=ax ﹣1的图象过点(1,2),则不等式ax ﹣1>2的解集是 x >1 .【考点】FD :一次函数与一元一次不等式.【分析】根据已知图象过点(1,2),根据图象的性质即可得出y=ax ﹣1>2的x 的范围是x >1,即可得出答案.【解答】解:方法一∵把(1,2)代入y=ax ﹣1得:2=a ﹣1, 解得:a=3, ∴y=3x ﹣1>2,解得:x >1,方法二:根据图象可知:y=ax ﹣1>2的x 的范围是x >1, 即不等式ax ﹣1>2的解集是x >1,故答案为:x>1.18.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8,在OC 边上取一点D,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,则D 点的坐标是 (0,5) .【考点】PB :翻折变换(折叠问题);D5:坐标与图形性质;LB :矩形的性质.【分析】先由矩形的性质得到AB=OC=8,BC=OA=10,再根据折叠的性质得AE=AO=10,DE=DO,在Rt△ABE中,利用勾股定理可计算出BE=6,则CE=BC﹣BE=4,设OD=x,则DE=x,DC=8﹣x,在Rt △CDE中根据勾股定理有x2=(8﹣x)2+42,解方程求出x,即可确定D点坐标.【解答】解:∵四边形ABCD为矩形,∴AB=OC=8,BC=OA=10,∵纸片沿AD翻折,使点O落在BC边上的点E处,∴AE=AO=10,DE=DO,在Rt△ABE中,AB=8,AE=10,∴BE==6,∴CE=BC﹣BE=4,设OD=x,则DE=x,DC=8﹣x,在Rt△CDE中,∵DE2=CD2+CE2,∴x2=(8﹣x)2+42,∴x=5,∴D点坐标为(0,5).故答案为(0,5).三、解答题(本大题共7小题,共58分)19.(1)计算:﹣(﹣2)+(﹣1)0﹣()﹣1+(2)比较与0.5的大小.【考点】2C:实数的运算;2A:实数大小比较;6E:零指数幂;6F:负整数指数幂.【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.(2)应用放缩法,比较与0.5的大小即可.【解答】解:(1)﹣(﹣2)+(﹣1)0﹣()﹣1+=3+2+1﹣3+3=6(2)∵>==0.5,∴>0.5.20.已知x=2﹣,y=2+,求代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.【考点】76:分母有理化.【分析】(1)直接利用完全平方公式分解因式进而代入计算得出答案;(2)直接利用平方差公式分解因式进而代入计算得出答案.【解答】解:(1)x2+2xy+y2=(x+y)2=[(2﹣)+(2+)]2=42=16;(2)x2﹣y2=(x+y)(x﹣y)=(2﹣+2+)(2﹣﹣2﹣)=4×(﹣2)=﹣8.21.在一次课外实践活动中,同学们要知道校园内A,B两处的距离,但无法直接测得.已知校园内A、B、C三点形成的三角形如图所示,现测得AC=6m,BC=14m,∠CAB=120°,请计算A,B两处之间的距离.【考点】KU:勾股定理的应用.【分析】过C作CH⊥AB于H构造直角三角形,在两个直角三角形中分别求得BH、AH,相减即可求得AB的长.【解答】解:过C作CH⊥AB于H,∵∠CAB=120°,∴∠CAH=60°,∵AC=6,∴AH=3,HC=,在Rt△BCH中,∵BC=14,HC=,∴BH=∴AB=BH﹣AH=13﹣3=10即A,B两处之间的距离为10米.22.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表=5.9,s A2= [(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)在折线图中画出B产品的单价变化的情况;(2)求B产品三次单价的方差;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),但调价后不能超过4元/件,并且使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.【考点】VD:折线统计图;W2:加权平均数;W4:中位数;W7:方差.【分析】(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A产品这四次单价的中位数是B产品四次单价中位数的2倍少1”列式求m即可.【解答】解:(1)如图2所示:(2)=(3.5+4+3)=3.5,S==,∵B产品的方差小,∴B产品的单价波动小;(3)第四次调价后,对于A产品,这四次单价的中位数为=;对于B产品,∵m>0,∴第四次单价大于3,∵第四次单价小于4,∴×2﹣1=,∴m=25.23.如图,函数y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2).(1)求出m、n的值;(2)求出△ABP的面积.【考点】FF:两条直线相交或平行问题.【分析】(1)先把P(n,﹣2)代入y=﹣2x+3即可得到n的值,从而得到P点坐标为(,﹣2),然后把P点坐标代入y=﹣x+m可计算出m的值;(2)解方程确定A,B点坐标,然后根据三角形面积公式求解.【解答】解:(1)∵y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2).∴﹣2=﹣2n+3,∴n=,∴P(,﹣2),∴﹣2=﹣×+m,∴m=﹣;(2)∵在y=﹣2x+3中,令x=0,得y=3,∴A(0,3),∵在y=﹣x﹣中,令x=0,得y=﹣,∴B(0,﹣),∴AB=,∴△ABP的面积=×=.24.已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由.【考点】L6:平行四边形的判定;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】(1)由正方形ABCD,得BC=CD,∠BCD=∠DCE=90°,又CG=CE,所以△BCG≌△DCE(SAS).(2)由(1)得BG=DE,又由旋转的性质知AE′=CE=CG,所以BE′=DG,从而证得四边形E′BGD为平行四边形.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°.∵∠BCD+∠DCE=180°,∴∠BCD=∠DCE=90°.又∵CG=CE,∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′,∴CE=AE′.∵CE=CG,∴CG=AE′.∵四边形ABCD是正方形,∴BE′∥DG,AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.25.某超市经销A、B两种商品,A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元.(1)该超市准备用800元去购进A、B两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大?(其中B种商品不少于7件)(2)在“五•一”期间,该商场对A、B两种商品进行如下优惠促销活动:B种商品,分别付款210元与268.8元.促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?【考点】FH:一次函数的应用.【分析】利润=(售价﹣进价)×件数,总价=A进价×A件数+B进价×B件数,可得到一个一次函数,再由一次函数的性质,可得出y和w的值.所购件数=总价÷售价.小华的付款不是48的整数倍,则说明,他享受了优惠,应该是打八折.【解答】解:(1)设购进A、B两种商品分别为x件、y件,所获利润w元则:,解之得,∵w是y的一次函数,随y的增大而减少,又∵y是大于等于7的整数,且x也为整数,∴当y=8时,w最大,此时x=26所以购进A商品26件,购进B商品8件才能使超市经销这两种商品所获利润最大;(2)∵300×0.8=240,210<240,∴小颖去该超市购买A种商品:210÷30=7(件)又268.8不是48的整数倍∴小华去该超市购买B种商品:268.8÷0.8÷48=7(件)小明一次去购买小颖和小华购买的同样多的商品:7×30+7×48=546>400小明付款为:546×0.7=382.2(元)答:小明付款382.2元.。

重庆市2018-2019学年下期第二阶段考试八年级数学试题含答案

重庆市2018-2019学年下期第二阶段考试八年级数学试题含答案

重庆市2018-2019学年下期第二阶段考试八年级数学试题总分:150分 时间:120分钟一 、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请用2B 铅笔将答题卡上对应题目右侧正确答案所在的方框涂黑.1.下列二次根式是最简二次根式的是( )ABCD0)a > 2.下列四组线段中,能构成直角三角形的是( ) A . 2,3,4B .3,4,6C .3,4D . 1,1,23.下列关于x 的函数中,是一次函数的是( )A .y=3x 2+2B .y=2xC .y=5x 2D .y=-12x +24. 如图,关于x 的一次函数1(0)y kx k =+≠的图象可能是( )5. 在四边形 A BCD 中,两对角线交于点 O ,若 O A = OC , OB = OD ,AC ⊥BD,则这个四边形( ) A .不是平行四边形 B .一定是菱形 C .一定是正方形 D .一定是矩形6. 设a1m a m ≤<+(m 是整数),则m 的值是( ) A .1B .2C .3D .47.下列命题的逆命题是真命题的是( ) A. 对顶角相等B. 正方形的四个角都是直角C .平行四边形的对角线互相平分D .菱形的对角线互相垂直8. 对于函数23y x =-+,下列结论正确的是( )A .它的图象必经过点(﹣1,1)B .它的图象经过第一、二、三象限C .若1(4, )y -,2(2, )y 两点都在直线上,则12y y >D .y 的值随x 的增大而增大9. 如图所示,将形状大小完全相同的“●”按照一定规律摆成下列图形,第1个图形中“●”的个数为3,第2个图形中“●”的个数为6,第3个图形中“●”的个数为9,…,以此类推,第7幅图形中“●”的个数为( )A. 24B. 23C. 22D. 2110. 根据如图所示的程序计算y 的值,若输出y 的值是1时,则输入x 的值等于( ) A.4 B.5或7 C.4或7 D.4或511. 已知四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,连接AC 、BD,E 是AC 的中点.若AC=10,BD=8,则∆BDE 的面积是()A. 40B.48C.24D.12 12.如图,矩形OABC 中,OA 、OC 分别在平面直角坐标系x 轴、y 轴的正半轴上,点D 在AB 上,将∆CDB 沿着CD 翻折,点B 恰好落在OA 的中点E 处,若四边形OCDA 的面积为则直线ED 的解析式为( ) A. y =+B. y =-C. y x =D. y x =+10题图11题图12题图ABC D17题图18题图AB二、填空题:(本大题共6个小题,每小题4分,共24分)请将每个小题的答案填在答题卡中对应的横线上. 13= . 14.在□ABCD 中,∠A+∠C=270°,则∠A=_____. 15.函数 y x 的取值范围是__________. 16. 如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,点E 是AB 的中点,已知AC=24cm ,BD=10cm ,则OE=________cm .17.小明和小华先后从甲地出发到乙地,小明先乘坐客车出发1小时,小华才开车前住乙地,小华到达乙地后立即按原速从乙地返回甲地。

2018-2019学年八年级下期末数学试卷含答案解析

2018-2019学年八年级下期末数学试卷含答案解析

2018-2019学年八年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,34.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.36.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠57.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.810.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=4811.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.1812.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.当x时,有意义.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=cm.16.直线y=﹣3x+5向下平移6个单位得到直线.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.20.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】74:最简二次根式.【分析】根据最简二次根式的概念即可求出答案.【解答】解:(A)原式=2,故A不是最简二次根式;(B)原式=4,故B不是最简二次根式;(C)原式=,故C不是最简二次根式;故选(D)2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分【考点】LB:矩形的性质;L5:平行四边形的性质.【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,3【考点】KS:勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、32+42=52,能构成直角三角形,故符合题意;C、52+62≠72,不能构成直角三角形,故不符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选B.4.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定【考点】W7:方差;W1:算术平均数.【分析】方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,据此判断即可.【解答】解:∵1.5<2,∴S小明2<S小李2,∴成绩最稳定的是小明.故选:A.5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.3【考点】LE:正方形的性质.【分析】根据正方形的面积=对角线的乘积的一半.【解答】解:因为正方形的对角线互相垂直且相等,所以正方形的面积=对角线的乘积的一半=×6×6=18,故选C.6.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠5【考点】E4:函数自变量的取值范围.【分析】根据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0且x﹣5≠0,解得x≥1且x≠5,故选:D.7.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】F5:一次函数的性质.【分析】利用一次函数的性质求解.【解答】解:∵k=3>0,b=5>0,∴一次函数y=3x+5的图象经过第一、二、三象限.故选D.8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC【考点】L6:平行四边形的判定.【分析】A、B、D,都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形.【解答】解:根据平行四边形的判定:A、B、D可判定为平行四边形,而C不具备平行四边形的条件,故选:C.9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.8【考点】LB:矩形的性质.【分析】只要证明△AOB是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=2,∴AC=2OA=4,故选B.10.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=48【考点】L8:菱形的性质.【分析】画出几何图形,利用菱形的面积等于对角线乘积的一半即可得到此菱形的面积,根据菱形的性质得AC⊥BD,AO=OC=4,OB=OD=3,然后根据勾股定理计算AB即可.【解答】解:如图,菱形ABCD的对角线AC=8,BD=6,菱形的面积=•AC•BD=×8×6=24,∵四边形ABCD为菱形,∴AC⊥BD,AO=OC=4,OB=OD=3,在Rt△AOB中,AB===5,即菱形的边长为5.∴a=5,S=24,故选A.11.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.18【考点】KP:直角三角形斜边上的中线;KH:等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.12.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.【考点】E6:函数的图象.【分析】在江边休息10分钟后,应是一段平行与x轴的线段,B是10分钟,而A是20分钟,依此即可作出判断.【解答】解:根据题意,从20分钟到30分钟在江边休息,离家距离没有变化,是一条平行于x轴的线段.故选B.二、填空题(共6小题,每小题3分,满分18分)13.当x≥2时,有意义.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得3x﹣6≥0,再解不等式即可.【解答】解:由题意得:3x﹣6≥0,解得:x≥2,故答案为:≥2.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是2.【考点】W7:方差;W1:算术平均数.【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…x n的平均数为,=(x1+x2+…+x n),则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=2cm.【考点】L5:平行四边形的性质.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=4cm,∵BC=AD=6cm,∴EC=BC﹣BE=2cm,故答案为:2.16.直线y=﹣3x+5向下平移6个单位得到直线y=﹣3x﹣1.【考点】F9:一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,y=﹣3x+5向下平移6个单位,所得直线解析式是:y=﹣3x+5﹣6,即y=﹣3x﹣1.故答案为:y=﹣3x﹣1.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为5.【考点】KQ:勾股定理;KP:直角三角形斜边上的中线.【分析】根据勾股定理求得斜边的长,从而不难求得斜边上和中线的长.【解答】解:∵直角三角形两条直角边分别是6、8,∴斜边长为10,∴斜边上的中线长为5.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是m <8.【考点】F5:一次函数的性质.【分析】先根据一次函数的增减性判断出(m﹣8)的符号,再求出m的取值范围即可.【解答】解:∵一次函数y=(m﹣8)x+5中,若y的值随x值的增大而减小,∴m﹣8<0,∴m<8.故答案为:m<8.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.【考点】2C:实数的运算;6E:零指数幂.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017=3﹣2﹣×1﹣1=﹣﹣1=﹣120.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE ≌△CDF即可推出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF,∴AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?【考点】VC:条形统计图;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)用2册的人数除以其所占百分比可得;(2)总人数减去其余各项目人数可得答案;(3)根据中位数和众数定义求解可得.【解答】解:(1)15÷30%=50,答:该班有学生50人;(2)捐4册的人数为50﹣(10+15+7+5)=13,补全图形如下:(3)八(1)班全体同学所捐图书的中位数=3(本),众数为2本.22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.【考点】L8:菱形的性质;JA:平行线的性质.【分析】(1)猜想:四边形CEDO是矩形;(2)根据平行四边形的判定推出四边形是平行四边形,根据菱形性质求出∠DOC=90°,根据矩形的判定推出即可;【解答】(1)解:猜想:四边形CEDO是矩形.(2)证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形OCED是矩形.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?【考点】FH:一次函数的应用.【分析】把x=60,y=5代入里待定系数法求解即可得到解析式,再把x=84代入求解即可;令y=0,即可求得旅客最多可免费携带30千克行李.【解答】解:(1)将x=60,y=5代入了y=kx﹣5中,解得,∴一次函数的表达式为,将x=84代入中,解得y=9,∴京京该交行李费9元;(2)令y=0,即,解得,解得x=30,∴旅客最多可免费携带30千克行李.答:京京该交行李费9元,旅客最多可免费携带30千克行李.24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.【考点】FH:一次函数的应用.【分析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;(2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解.=60(千米/时).【解答】解:(1)根据图象信息:货车的速度V货=∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5).。

重庆市年八年级(下)期末数学试卷

重庆市年八年级(下)期末数学试卷

重庆市2018-2019学年度八年级(下)期末数学试卷(满分:150分.120分钟完卷)一、选择题(本大题12个小题,每小题4发,共48分。

)1.下列式子中,属于最简二次根式的是()A.B.C.D.2.下列根式中,不能与合并的是()A.B.C.D.3.下列函数:①y=﹣2x,②y=﹣3x2+1,③y=x﹣2,其中一次函数的个数有()A.0个B.1个C.2个D.3个4.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:队员1队员2队员3队员4平均数(秒)51505150方差s2(秒2) 3.5 3.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.队员2B.队员1C.队员4D.队员35.点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0C.y1<y2D.y1=y26.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,,B.3,4,5C.5,12,13D.2,2,37.实数k、b满足kb﹥0,不等式kx<b的解集是那么函数y=kx+b的图象可能是()A. B. C. D.8.下列条件中,能判定四边形为平行四边形的是()A.∥,B.,C.,D.,9.如图,在直角△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长为A.6B.5C.4D.310.2016年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是()A.众数是6B.中位数是6C.平均数是6D.方差是411.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A.20L B.25L C.27L D.30L12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC 于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB ⊥OC ,OM=CM ;②△EOB ≌△CMB ;③四边形EBFD 是菱形;④MB :OE=3:2.其中正确结论的个数是()A .1B .2C .3D .4二、填空题(本大题6个小题,每小题4分,共24分。

重庆九龙坡区2018年八年级第二学期数学期终考试试题

重庆九龙坡区2018年八年级第二学期数学期终考试试题

八年级第二学期数学期终考试试题(2018.6) 时量:120分钟 总分:120分1.下列各组数代表三角形的三条边长,能组成直角三角形的一组数是 ( ) A .2,3,4 B .3,4,5 C .6,8,12 D .3,4,5 2.在□ABCD 中,如果∠A +∠C =140°,那么∠C 等于 ( )A. 20°B. 40°C. 60°D. 70°3.在平面直角坐标系中,将点A (1 ,2 )的横坐标和纵坐标都乘以﹣1得到点A ′,则点A 和点A ′的关系是 ( ) A . 关于x 轴对称 B. 关于y 轴对称C. 关于原点对称D. 将点A 向x 轴负方向平移一个单位长度得到点A ′ 4.八年级某班50位同学中,7月份出生的频率是0.30,那么这个班7月份出生的同学有 ( ) A .15B .14C .13D .125.在平面直角坐标系x O y 中,已知点P 的坐标为(3,-4),则OP 的长为 ( ) A .3 B .4 C .5 D .76.如图,△ABC 为等腰三角形,如果把它沿底边BC 翻折后,得到△DBC ,那么四边形ABDC 为 ( ) A .菱形 B .正方形 C .矩形 D . 一般平行四边形 7.一次函数b kx y +=的图像如图所示,则方程0=+b kx 的解为 ( ) A .2=x B .2=y C . 1-=x D . 1-=y8.如图,在△ABC 中,∠C =90°,角平分线AD 交BC 于点D ,若BC =32,BD ∶CD =9∶7,则D 点到AB 边的距离为 ( ) A . 18 B. 16 C. 14 D. 129.对平面上任意一点),(b a ,定义g f 、两种变换:),(),(b a b a f -=,如)2,1()2,1(-=f ;),(),(a b b a g =,如)1,2()2,1(=g .据此得=-))9,5((f g ( )A .)9,5(-B .)5,9(--C .)9,5(D .)5,9(10.均匀地向一个如图所示的容器中注水,最后把容器注满,在注水过程中水面高度h 随时间t 变化的函数图象大致是 ( )二.展示你的才华(3分×8=24分)11.每一个内角都等于144°的多边形的边数是 。

重庆九龙坡区2019年八年级第二学期数学期终考试试题

重庆九龙坡区2019年八年级第二学期数学期终考试试题

八年级第二学期数学期终考试试题(2019.6) 时量:120分钟 总分:150分一 .相信你的选择(4分×10 =40分 ,每小题只有一个正确答案)1.下列图形中,内角和等于360°的是 ( ) A .三角形 B .四边形 C .五边形 D .六边形 2.下列各组数中,可以作为直角三角形的边长的是 ( )A. 1,2,3B.543222,, C.5,3,2 D. 5,2,33.一次函数62+-=x y 与x 轴的交点坐标是 ( ) A . )6,0( B. )6,0(- C. )0,3(- D. )0,3(4.如图,∠ACB=90°,CD ⊥AB ,垂足为D ,下列结论错误的是( ) A .图中有三个直角三角形 B .∠1=∠2 C .∠1和∠B 都是∠A 的余角 D .∠2=∠A5.已知一组数据:10,8,6,10,8,13,11,12,10,10,7,9,8,12,9,11,12,9,10,11,则分组后频率为0.2的一组是( )A .6~7B .8~9C .10~11D .12~13 6.如图,BE=CF ,AE ⊥BC ,DF ⊥BC ,要根据“HL”证明Rt △ABE ≌Rt △DCF ,则还需要添加一个条件是 ( ) A .AE=DF B. ∠A=∠D C. ∠B=∠C D. AB= CD7.如果点)3,2()12,2(P b P '+-与点关于y 轴对称,则b 的值是( )A .2-B .1-C . 1D . 28.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE ∶EC =2∶1,则线段CH 的长是( )A .3B .4C .5D .69.已知正比例函数)0(≠=k kx y 的函数值y 随x 的增大而减少,则一次函数k kx y -=的图象大致是( )10.如图是一个由 5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为 ( )A .S 41B .S 42C .S S 314+D .S S 3143+ 二.展示你的才华(4分×8=32分)11.在Rt △ABC 中,点E 是斜边AB 的中点.若AB =10,则CE =________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年八年级(下)期末数学试卷一.选择题:本大题共12个小题,每小题4分,共48分在每个小题的下面都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填涂在对应题号的答题卡上1.(4分)下列二次根式中是最简二次根式的是()A.B.C.D.2.(4分)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2 D.y=2x+23.(4分)二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤24.(4分)在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17.2,则四个班体考成绩最稳定的是()A.甲班B.乙班C.丙班D.丁班5.(4分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°6.(4分)下列说法正确的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.三条边相等的四边形是菱形D.三个角是直角的四边形是矩形7.(4分)若a<+2<b,其中a,b是两个连续整数,则a+b=()A.20 B.21 C.22 D.238.(4分)在平面直角坐标系中,直线y=kx+b的位置如图所示,则不等式kx+b<0的解集为()A.x>﹣2 B.x<﹣2 C.x>1 D.x<19.(4分)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.510.(4分)将若干个小菱形按如图所示的规律排列:第一个图形有5个菱形,第二个图形有9个菱形第三个图形有13个菱形,…,则第9个图形有()个菱形.A.33 B.36 C.37 D.4111.(4分)如图,在平面直角坐标系中,已知矩形OABC,点O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,OA=4,OC=6,点E为OC的中点,将△OAE沿AE翻折,使点O落在点O′处,作直线CO',则直线CO'的解析式为()A.y=﹣x+6 B.y=﹣x+8 C.y=﹣x+10 D.y=﹣x+8 12.(4分)从﹣3、﹣2、﹣1、1、2、3这六个数中,随机抽取一个数记作a,使关于x的分式方程=有整数解,且使直线y=3x+8a﹣17不经过第二象限,则符合条件的所有a的和是()A.﹣4 B.﹣1 C.0 D.1二.填空题:本大题6个小题,每小题4分,共24分,请将答案直接填在答题卡中对应的13.(4分)计算:=.14.(4分)在平行四边形ABCD中,若∠A+∠C=160°,则∠B=.15.(4分)在一次函数y=(k﹣3)x+2中,y随x的增大而减小,则k的取值范围为.16.(4分)如图,菱形ABCD的面积为24cm,正方形ABCF的面积为18cm,则菱形的边长为.17.(4分)甲乙两人同时开车从A地出发,沿一条笔直的公路匀速前往相距400千米的B 地,1小时后,甲发现有物品落在A地,于是立即按原速返回A地取物品,取到物品后立即提速25%继续开往B地(所有掉头和取物品的时间忽略不计),甲乙两人间的距离y 千米与甲开车行驶的时间x小时之间的部分函数图象如图所示,当甲到达B地时,乙离B地的距离是.18.(4分)如图,已知正方形ABCD,点E在AB上,点F在BC的延长线上,将正方形ABCD 沿直线EF翻折,使点B刚好落在AD边上的点G处,连接GF交CD于点H,连接BH,若AG=4,DH=6,则BH=.三.解答题:本大题7个小题,每题10分,共70分.解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上19.(10分)计算:(1)+15﹣+(2)4×﹣+20.(10分)已知在▱ABCD中,点E、F在对角线BD上,BE=DF,点M、N在BA、DC延长线上,AM=CN,连接ME、NF.试判断线段ME与NF的关系,并说明理由.21.(10分)“赏中华诗词,寻文化基因,品生活之美”某校举办了首届“中国诗词比赛”,全校师生同时默写50首古诗,每正确默写出一首古诗得2分,结果有600名学生进入决赛,从进入决赛的600名学生中随机抽取40名学生进行成绩分析,根据比赛成绩绘制出部分频数分布表和部分频数分布直方图如下列图表组别成绩x(分)频数(人数)第1组60≤x<68 4第2组68≤x<76 8第3组76≤x<84 12第4组84≤x<92 a第5组92≤x<100 10第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82请结合以上数据信息完成下列各题:(1)填空:a=所抽取的40名学生比赛成绩的中位数是(2)请将频数分布直方图补充完整(3)若比赛成绩不低于84分的为优秀,估计进入决赛的学生中有多少名学生的比赛成绩为优秀?22.(10分)如图,直线l1:y=x+6与直线l2:y=kx+b相交于点A,直线l1与y轴相交于点B,直线l2与y轴负半轴相交于点C,OB=2OC,点A的纵坐标为3.(1)求直线l2的解析式;(2)将直线l2沿x轴正方向平移,记平移后的直线为l3,若直线l3与直线l1相交于点D,且点D的横坐标为1,求△ACD的面积.23.(10分)黄连是重庆市石柱县的特产,近几年黄连的种植在石柱县脱贫攻坚战中发挥着重要的作用.今年6月,某药材公司与黄连种植户签订收购协议:收购5﹣6年期黄连和6年以上期黄连共1000千克,其中5﹣6年期的黄连收购价格为每千克240元,6年以上期的黄连收购价格为每千克200元(1)若药材公司共支付黄连种植户224000元,那么药材公司收购的5﹣6年期黄连和6年以上期黄连各多少千克?(2)预计今年10﹣12月黄连收割上市后,5﹣6年期黄连的售价为每千克280元,6年以上期黄连的售价为每千克250元;药材公司收购的5﹣6年期黄连的数量不少于6年以上期黄连数量的3倍,药材公司应收购5﹣6年期黄连多少千克才能使售完这批黄连后获得的利润最大,最大利润是多少?24.(10分)阅读下列材料,解决问题:学习了勾股定理后我们知道:直角三角形两条直角边的平方和等于斜边的平方.根据勾股定理我们定义:如图①,点M、N是线段AB上两点,如果线段AM、MN、NB能构成直角三角形,则称点M、N是线段AB的勾股点解决问题(1)在图①中,如果AM=2,MN=3,则NB=(2)如图②,已知点C是线段AB上一定点(AC<BC),在线段AB上求作一点D,使得C、D是线段AB的勾股点.李玉同学是这样做的:过点C作直线GH⊥AB,在GH上截取CE=AC,连接BE,作BE的垂直平分线交AB于点D,则C、D是线段AB的勾股点你认为李玉同学的做法对吗?请说明理由(3)如图③,DE是△ABC的中位线,M、N是AB边的勾股点(AM<MN<NB),连接CM、CN分别交DE于点G、H求证:G、H是线段DE的勾股点.25.(10分)如图,在菱形ABCD中,∠BAD=120°,E为AB边上一点,过E作EG⊥BC于点G,交对角线BD于点F.(1)如图(1),若∠ACE=15°,BC=6,求EF的长;(2)如图(2),H为CE的中点,连接AF,FH,求证:AF=2FH.四.解答题:本大题共1个小题,8分,解答时必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上26.(10分)如图,在平面直角坐标系中,直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y 轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题:本大题共12个小题,每小题4分,共48分在每个小题的下面都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填涂在对应题号的答题卡上1.(4分)下列二次根式中是最简二次根式的是()A.B.C.D.【分析】利用最简二次根式定义判断即可.【解答】解:A、==,不符合题意;B、=2|x|,不符合题意;C、为最简二次根式,符合题意;D、=3,不符合题意,故选:C.2.(4分)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2 D.y=2x+2【分析】据一次函数图象与几何变换得到直线y=2x向下平移2个单位得到的函数解析式为y=2x﹣2.【解答】解:直线y=2x向下平移2个单位得到的函数解析式为y=2x﹣2.故选:C.3.(4分)二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤2【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选:C.4.(4分)在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17.2,则四个班体考成绩最稳定的是()A.甲班B.乙班C.丙班D.丁班【分析】直接根据方差的意义求解.【解答】解:∵S>S>S>S,∴四个班体考成绩最稳定的是甲班.故选:A.5.(4分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.6.(4分)下列说法正确的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.三条边相等的四边形是菱形D.三个角是直角的四边形是矩形【分析】由矩形和菱形的判定方法得出选项A、B、C错误,选项D正确.【解答】解:A、∵对角线互相垂直平分的四边形是菱形,∴选项A错误;B、∵对角线互相平分且相等的四边形是矩形,∴选项B错误;C、∵四条边相等的四边形是菱形,∴选项C错误;D、∵三个角是直角的四边形是矩形,∴选项D正确;故选:D.7.(4分)若a<+2<b,其中a,b是两个连续整数,则a+b=()A.20 B.21 C.22 D.23【分析】直接利用8<<9,进而得出a,b的值即可得出答案.【解答】解∵8<<9,∴8+2<+2<9+2,∵a<+2<b,其中a,b是两个连续整数,∴a=10,b=11,∴a+b=10+11=21.故选:B.8.(4分)在平面直角坐标系中,直线y=kx+b的位置如图所示,则不等式kx+b<0的解集为()A.x>﹣2 B.x<﹣2 C.x>1 D.x<1【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b<0的解集.【解答】解:直线y=kx+b的图象经过点(1,0),且函数值y随x的增大而减小,∴不等式kx+b<0的解集是x<﹣2.故选:B.9.(4分)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5【分析】原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.【解答】解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选:C.10.(4分)将若干个小菱形按如图所示的规律排列:第一个图形有5个菱形,第二个图形有9个菱形第三个图形有13个菱形,…,则第9个图形有()个菱形.A.33 B.36 C.37 D.41【分析】设第n个图形有a n个菱形(n为正整数),观察图形,根据各图形中菱形个数的变化可得出变化规律“a n=3n+2(n为正整数)”,再代入n=10即可求出结论.【解答】解:设第n个图形有a n个菱形(n为正整数).观察图形,可知:a1=5=4+1,a2=9=4×2+1,a3=13=4×3+1,a4=17=4×4+1,∴a n=4n+1(n为正整数),∴a9=4×9+1=37.故选:C.11.(4分)如图,在平面直角坐标系中,已知矩形OABC,点O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,OA=4,OC=6,点E为OC的中点,将△OAE沿AE翻折,使点O落在点O′处,作直线CO',则直线CO'的解析式为()A.y=﹣x+6 B.y=﹣x+8 C.y=﹣x+10 D.y=﹣x+8 【分析】连接OO'交AE与点M,过点O'作O'H⊥OC于点H,由轴对称的性质可知AE垂直平分OO',先用面积法求出OM的长,进一步得出OO'的长,再证△AOE∽△OHO',分别求出OH,O'H的长,得出点O'的坐标,再结合点C坐标即可用待定系数法求出直线CO'的解析式.【解答】解:连接OO'交AE与点M,过点O'作O'H⊥OC于点H,∴点E为OC中点,∴OE=EC=OC=3,在Rt△AOE中,OE=3,AO=4,∴AE==5,∵将△OAE沿AE翻折,使点O落在点O′处,∴AE垂直平分OO',∴OM=O'M,在Rt△AOE中,∵S△AOE=AO•OE=AE•OM,∴×3×4=×5×OM,∴OM=,∴OO'=,∵∠O'OH+∠AOM=90°,∠MAO+∠AOM=90°,∴∠MAO=∠O'OH,又∵∠AOE=∠OHO'=90°,∴△AOE∽△OHO',∴==,即==,∴OH=,O'H=,∴O'的坐标为(,),将点O'(,),C(6,0)代入y=kx+b,得,,解得,k=﹣,b=8,∴直线CO'的解析式为y=﹣x+8,故选:D.12.(4分)从﹣3、﹣2、﹣1、1、2、3这六个数中,随机抽取一个数记作a,使关于x的分式方程=有整数解,且使直线y=3x+8a﹣17不经过第二象限,则符合条件的所有a的和是()A.﹣4 B.﹣1 C.0 D.1【分析】先求出满足分式方程条件存立时a的值,再求出使直线y=3x+8a﹣17不经过第二象限时a的值,进而求出同时满足条件a的值.【解答】解:解分式方程=得:x=﹣,∵x是整数,∴a=﹣3,﹣2,1,3;∵分式方程=有意义,∴x≠0或2,∴a≠﹣3,∴a=﹣2,1,3,∵直线y=3x+8a﹣17不经过第二象限,∴8a﹣17≤0∴a≤,∴a的值为:﹣3、﹣2、﹣1、1、2,综上,a=﹣2,1,和为﹣2+1=﹣1,故选:B.二.填空题:本大题6个小题,每小题4分,共24分,请将答案直接填在答题卡中对应的13.(4分)计算:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:=3﹣=2.故答案为:2.14.(4分)在平行四边形ABCD中,若∠A+∠C=160°,则∠B=100°.【分析】由平行四边形的性质得出对角相等,邻角互补,∠A=∠C,∠A+∠B=180°,由∠A+∠C=160°,得出∠A=∠C=80°,即可求出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B=180°﹣∠A=100°;故答案为:100°.15.(4分)在一次函数y=(k﹣3)x+2中,y随x的增大而减小,则k的取值范围为k <3 .【分析】根据已知条件“一次函数y=(k﹣3)x+2中y随x的增大而减小”知,k﹣3<0,然后解关于k的不等式即可.【解答】解:∵一次函数y=(k﹣3)x+2中y随x的增大而减小,∴k﹣3<0,解得,k<3;故答案是:k<3.16.(4分)如图,菱形ABCD的面积为24cm,正方形ABCF的面积为18cm,则菱形的边长为5cm.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为18cm2,所以AC==6cm,因为菱形ABCD的面积为24cm2,所以BD==8cm,所以菱形的边长==5cm.故答案为:5cm.17.(4分)甲乙两人同时开车从A地出发,沿一条笔直的公路匀速前往相距400千米的B 地,1小时后,甲发现有物品落在A地,于是立即按原速返回A地取物品,取到物品后立即提速25%继续开往B地(所有掉头和取物品的时间忽略不计),甲乙两人间的距离y 千米与甲开车行驶的时间x小时之间的部分函数图象如图所示,当甲到达B地时,乙离B地的距离是40 .【分析】结合题意分析函数图象:线段OC对应甲乙同时从A地出发到A返回前的过程,此过程为1小时;线段CD对应甲返回走到与乙相遇的过程(即甲的速度大于乙的速度);线段DE对应甲与乙相遇后继续返回走至到达A地的过程,因为速度相同,所以甲去和回所用时间相同,即x=2时,甲回到A地,此时甲乙相距120km,即乙2小时行驶120千米;线段EF对应甲从A地重新出发到追上乙的过程,即甲用(5﹣2)小时的时间追上乙,可列方程求出甲此时的速度,进而求出甲到达B地的时刻,再求出此时乙所行驶的路程.【解答】解:∵甲出发到返回用时1小时,返回后速度不变,∴返回到A地的时刻为x=2,此时y=120,∴乙的速度为60千米/时,设甲重新出发后的速度为v千米/时,列得方程:(5﹣2)(v﹣60)=120,解得:v=100,设甲在第t小时到达B地,列得方程:100(t﹣2)=400解得:t=6,∴此时乙行驶的路程为:60×6=360(千米),乙离B地距离为:400﹣360=40(千米).故答案为:4018.(4分)如图,已知正方形ABCD,点E在AB上,点F在BC的延长线上,将正方形ABCD 沿直线EF翻折,使点B刚好落在AD边上的点G处,连接GF交CD于点H,连接BH,若AG=4,DH=6,则BH=6.【分析】通过证明△AEG∽△DGH,可得=,可设AE=2a,GD=3a,可求GE的长,由AB=AD,列出方程可求a的值,由勾股定理可求BH的长.【解答】解:∵将正方形ABCD沿直线EF翻折,使点B刚好落在AD边上的点G处,∴AB=AD=BC=CD,EG=BE,∠ABC=∠EGH=90°∵∠AGE+∠DGH=90°,∠AGE+∠AEG=90°∴∠AEG=∠DGH,且∠A=∠D=90°∴△AEG∽△DGH∴=∴设AE=2a,GD=3a,∴GE==∵AB=AD∴2a+=4+3a∴a=∴AB=AD=BC=CD=12,∴CH=CD﹣DH=12﹣6=6∴BH==6故答案为:6三.解答题:本大题7个小题,每题10分,共70分.解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上19.(10分)计算:(1)+15﹣+(2)4×﹣+【分析】(1)先根据负整数指数的意义计算,然后把二次根式化为最简二次根式后合并即可;(2)根据二次根式的乘法法则和完全平方公式计算.【解答】解:(1)原式=3+5﹣+3=2+8;(2)原式=2﹣(3+2+2)=2﹣5﹣2=﹣5.20.(10分)已知在▱ABCD中,点E、F在对角线BD上,BE=DF,点M、N在BA、DC延长线上,AM=CN,连接ME、NF.试判断线段ME与NF的关系,并说明理由.【分析】利用SAS证得△BME≌△DNF后即可证得结论.【解答】证明:ME=NF且ME∥NF.理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EBM=∠FDN,AB=CD,∵AM=CN,∴MB=ND,∵BE=DF,∴BF=DE,∵在△BME和△DNF中,∴△BME≌△DNF(SAS),∴ME=NF,∠MEB=∠NFD,∴∠MEF=∠BFN.∴ME∥NF.∴ME=NF且ME∥NF.21.(10分)“赏中华诗词,寻文化基因,品生活之美”某校举办了首届“中国诗词比赛”,全校师生同时默写50首古诗,每正确默写出一首古诗得2分,结果有600名学生进入决赛,从进入决赛的600名学生中随机抽取40名学生进行成绩分析,根据比赛成绩绘制出部分频数分布表和部分频数分布直方图如下列图表组别成绩x(分)频数(人数)第1组60≤x<68 4第2组68≤x<76 8第3组76≤x<84 12第4组84≤x<92 a第5组92≤x<100 10第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82请结合以上数据信息完成下列各题:(1)填空:a= 6 所抽取的40名学生比赛成绩的中位数是78(2)请将频数分布直方图补充完整(3)若比赛成绩不低于84分的为优秀,估计进入决赛的学生中有多少名学生的比赛成绩为优秀?【分析】(1)根据题意和频数分布表中的数据可以求得a的值和这组数据的中位数;(2)根据(1)中a的值和分布表中成绩为76≤x<84的频数可以将频数分布直方图补充完整;(3)根据频数分布表中的数据可以计算出进入决赛的学生中有多少名学生的比赛成绩为优秀.【解答】解:(1)a=40﹣4﹣8﹣12﹣10=6,∵第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82,∴中位数是78,故答案为:6,78;(2)由(1)知a=6,补全的频数分布直方图如右图所示;(3)600×=240(名),答:进入决赛的学生中有240名学生的比赛成绩为优秀22.(10分)如图,直线l1:y=x+6与直线l2:y=kx+b相交于点A,直线l1与y轴相交于点B,直线l2与y轴负半轴相交于点C,OB=2OC,点A的纵坐标为3.(1)求直线l2的解析式;(2)将直线l2沿x轴正方向平移,记平移后的直线为l3,若直线l3与直线l1相交于点D,且点D的横坐标为1,求△ACD的面积.【分析】(1)根据y轴上点的坐标特征可求B点坐标,再根据OB=2OC,可求C点坐标,根据点A的纵坐标为3,可求A点坐标,根据待定系数法可求直线l2的解析式;(2)根据点D的横坐标为1,可求D点坐标,再用长方形面积减去3个小三角形面积即可求解.【解答】解:(1)∵当x=0时,y=0+6=6,∴B(0,6),∵OB=2OC,∴C(0,﹣3),∵点A的纵坐标为3,∴﹣3=x+6,解得x=﹣3,∴A(﹣3,3),则,解得.故直线l2的解析式为y=﹣2x﹣3;(2)∵点D的横坐标为1,∴y=1+6=7,∴D(1,7),∴△ACD的面积=10×4﹣×3×6﹣×4×4﹣×1×10=18.23.(10分)黄连是重庆市石柱县的特产,近几年黄连的种植在石柱县脱贫攻坚战中发挥着重要的作用.今年6月,某药材公司与黄连种植户签订收购协议:收购5﹣6年期黄连和6年以上期黄连共1000千克,其中5﹣6年期的黄连收购价格为每千克240元,6年以上期的黄连收购价格为每千克200元(1)若药材公司共支付黄连种植户224000元,那么药材公司收购的5﹣6年期黄连和6年以上期黄连各多少千克?(2)预计今年10﹣12月黄连收割上市后,5﹣6年期黄连的售价为每千克280元,6年以上期黄连的售价为每千克250元;药材公司收购的5﹣6年期黄连的数量不少于6年以上期黄连数量的3倍,药材公司应收购5﹣6年期黄连多少千克才能使售完这批黄连后获得的利润最大,最大利润是多少?【分析】(1)根据题意列方程或方程组进行解答即可,(2)先求出利润与销售量之间的函数关系式和自变量的取值范围,再根据函数的增减性确定何时利润最大.【解答】解:(1)设收购的5﹣6年期黄连x千克,则6年以上期黄连(1000﹣x)千克,由题意得:240x+200(1000﹣x)=224000,解得:x=600,当x=600时,1000﹣x=400,答:收购的5﹣6年期黄连600千克,6年以上期黄连400千克,(2)设收购的5﹣6年期黄连y千克,则6年以上期黄连(1000﹣y)千克,销售利润为z元,由题意得:z=(280﹣240)y+(250﹣200)(1000﹣y)=﹣10y+50000,z随y的增大而减小,又∵y≥3(1000﹣y),∴y≥750,当y=750时,z最小=﹣7500+50000=42500元,答:收购5﹣6年期黄连750千克,销售利润最大,最大利润是42500元.24.(10分)阅读下列材料,解决问题:学习了勾股定理后我们知道:直角三角形两条直角边的平方和等于斜边的平方.根据勾股定理我们定义:如图①,点M、N是线段AB上两点,如果线段AM、MN、NB能构成直角三角形,则称点M、N是线段AB的勾股点解决问题(1)在图①中,如果AM=2,MN=3,则NB=或(2)如图②,已知点C是线段AB上一定点(AC<BC),在线段AB上求作一点D,使得C、D是线段AB的勾股点.李玉同学是这样做的:过点C作直线GH⊥AB,在GH上截取CE=AC,连接BE,作BE的垂直平分线交AB于点D,则C、D是线段AB的勾股点你认为李玉同学的做法对吗?请说明理由(3)如图③,DE是△ABC的中位线,M、N是AB边的勾股点(AM<MN<NB),连接CM、CN分别交DE于点G、H求证:G、H是线段DE的勾股点.【分析】(1)分两种情形分别求解即可解决问题.(2)想办法证明DB2=AC2+CD2即可.(3)利用三角形的中位线定理以及勾股定理证明EH2=GH2+DG2即可.【解答】解:(1)当BN是斜边时,BN==.当MN是斜边时,BN==,故答案为或.(2)如图②中,连接DE.∵点D在线段BE的垂直平分线上,∴DE=DB,∵GH⊥BC,∴∠ECD=90°,∴DE2=EC2+CD2,∵AC=CE,DE=DB,∴DB2=AC2+CD2,∴C、D是线段AB的勾股点.(3)如图3中,∵CD=DA,CE=EB,∴DE∥AB,∴CG=GM,CH=HN,∴DG=AM,GH=MN,EH=BN,∵BN2=MN2+AM2,∴BN2=MN2+AM2,∴(BN)2=(MN)2+(AM)2,∴EH2=GH2+DG2,∴G、H是线段DE的勾股点.25.(10分)如图,在菱形ABCD中,∠BAD=120°,E为AB边上一点,过E作EG⊥BC于点G,交对角线BD于点F.(1)如图(1),若∠ACE=15°,BC=6,求EF的长;(2)如图(2),H为CE的中点,连接AF,FH,求证:AF=2FH.【分析】(1)首先证明EG=CG,设BG=x,则EG=CG=x,根据BC=4,构建方程求出x,证明EF=BF,求出BF即可解决问题.(2)如图2,作CM⊥BC交FH的延长线于M,连接AM,AH.利用全等三角形的性质证明△FAM是等边三角形即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD是菱形,∵AB=BC=CD=AD=6,AD∥BC,∴∠ABC=180°﹣∠BAD=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACE=15°,∴∠ECG=∠ACB﹣∠ACE=45°,∵EG⊥CG,∴∠EGC=90°,∴EG=CG,设BG=x,则EG=CG=x,∴x+x=4,∴x=2﹣2,∵四边形ABCD是菱形,∴∠FBG=∠EBF=30°,∵∠BEG=30°,∴FB=FE,∵BF===4﹣,∴EF=4﹣.(2)如图2,作CM⊥BC交FH的延长线于M,连接AM,AH.∵EG⊥BC,MC⊥BC,∴EF∥CM,∴∠FEH=∠HCM,∵∠EHF=∠CHM,EH=CH,∴△EFH≌△CMH(ASA),∴EF=CM,FH=HM,∵EF=BF,∴BF=CM,∵∠ABF=∠ACM=30°,BA=CA,∴△BAF≌△CAM(SAS),∴AF=AM,∠BAF=∠CAM,∴∠FAM=∠BAC=60°,∴△FAM是等边三角形,∵FH=HM,∴AH⊥FM,∠FAH=∠FAM=×60°=30°,∴AF=2FH.四.解答题:本大题共1个小题,8分,解答时必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上26.(10分)如图,在平面直角坐标系中,直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y 轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)由直线解析式易求AB两点坐标,利用等腰直角△ABC构造K字形全等易得OE=CE=4,C点坐标为(4,4)DB=∠CEB=90°,可知B、C、D、E四点共圆,由等腰直角△ABC可知∠CBD=45°,同弧所对圆周角相等可知∠CED=45°,所以∠OEF=45°,CE、OE是关于EF对称,作PH⊥CE于H,作PG⊥OE于Q,AK⊥EC于K.把AP+PQ的最小值问题转化为垂线段最短解决问题.(2)由直线l与直线AC成45°可知∠AMN=45°,由直线AC解析式可设M点坐标为(x,),N在y轴上,可设N(0,y)构造K字形全等即可求出M点坐标.【解答】解:(1)过A点作AK⊥CE,在等腰直角△ABC中,∠ACB=90°,AC=BC,∵CE⊥x轴,∴∠ACK+∠ECB=90°,∠ECB+∠CBE=90°,∴∠ACK=∠CBE在△AKC和△CEB中,,△AKC≌△CEB(AAS)∴AK=CE,CK=BE,∵四边形AOEK是矩形,∴AO=EK=BE,由直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,可知A点坐标为(0,2),B (6,0)∴E点坐标为(4,0),C点坐标为(4,4),∵∠CDB=∠CEB=90°,∴B、C、D、E四点共圆,∵,∠CBA=45°,∴∠CED=45°,∴FE平分∠CEO,过P点作PH⊥CE于H,作PG⊥OE于G,过A点作AK⊥EC于K.∴PH=PQ,∵PA+PQ=PA+PH≥AK=OE,∴OE=4,∴AP+PQ≥4,∴AP+PQ的最小值为4.(2)∵A点坐标为(0,2),C点坐标为(4,4),∴直线AC解析式为:y=,设M点坐标为(x,),N坐标为(0,y).∵MN∥AB,∠CAB=45°,∴∠CMN=45°,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90°,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS =NR.∴,解得:,∴M点坐标为(﹣12,﹣4)Ⅱ.如解图2﹣2,∠MNC=90°,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴,解得:,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣4)或(12,8).。

相关文档
最新文档