等比数列练习题(有答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,
1021031
01
a a -<-,则使得1n T >成立的最大自然数n 的值为( )
A .102
B .203
C .204
D .205
2.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=
( ) A .4
B .5
C .8
D .15
3.已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1=2,且a 1,a 3,a 4成等比数列,则S n 取最大值时n 的值为( ) A .4
B .5
C .4或5
D .5或6
4.已知正项等比数列{}n a 满足11
2
a =
,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( )
A .
312
或112
B .
31
2
C .15
D .6
5.已知等比数列{}n a 中,1354a a a ⋅⋅=
,公比q =,则456a a a ⋅⋅=( ) A .32
B .16
C .16-
D .32-
6.等比数列{}n a 中11a =,且14a ,22a ,3a 成等差数列,则()*n
a n N n
∈的最小值为( ) A .
16
25
B .
49
C .
12
D .1
7.已知数列{}n a 的前n 项和为n S 且满足111
30(2),3
n n n a S S n a -+=≥=,下列命题中错误的是( )
A .1n S ⎧⎫⎨⎬⎩⎭
是等差数列 B .13n S n =
C .1
3(1)
n a n n =-
-
D .{}
3n S 是等比数列
8.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )
A .-3+(n +1)×2n
B .3+(n +1)×2n
C .1+(n +1)×2n
D .1+(n -1)×2n
9.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则2020
2021
ln ln a a =
( )
A .1:3
B .3:1
C .3:5
D .5:3
10.设n S 为等比数列{}n a 的前n 项和,若11
0,,22
n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4
⎛⎤ ⎥⎝
⎦
B .20,3
⎛⎤ ⎥⎝
⎦
C .30,4⎛⎫ ⎪⎝⎭
D .20,3⎛⎫ ⎪⎝⎭
11.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,
416a =,则6S =( )
A .32
B .63
C .123
D .126
12.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n n
n S a b n =---⨯+,*n N ∈,则
存在数列{}n b 和{}n c 使得( )
A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列
B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列
C .·
n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·
n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 13.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=1
4
,且a n =1n n b b +,则b 2020=( )
A .22017
B .22018
C .22019
D .22020
14.一个蜂巢有1只蜜蜂,第一天,它飞出去找回了5个伙伴;第二天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第六天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂. A .55989
B .46656
C .216
D .36
15.公差不为0的等差数列{}n a 中,2
3711220a a a -+=,数列{}n b 是等比数列,且
77b a =,则68b b =( )
A .2
B .4
C .8
D .16
16.在数列{}n a 中,12a =,121n n a a +=-,若513n a >,则n 的最小值是( ) A .9
B .10
C .11
D .12
17.正项等比数列{}n a 满足:241a a =,313S =,则其公比是( ) A .
14
B .1
C .
12
D .
13
18..在等比数列{}n a 中,若11a =,54a =,则3a =( ) A .2
B .2或2-
C .2-
D
19.已知1,a 1,a 2,9四个实数成等差数列,1,b 1,b 2,b 3,9五个数成等比数列,则b 2(a 2﹣a 1)等于( )
A .8
B .﹣8
C .±8
D .98
20.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三
个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于,若第六个单音的频率为f ,则( ) A .第四个单音的频率为1
122f - B .第三个单音的频率为1
42f - C .第五个单音的频率为162f
D .第八个单音的频率为1
122f
二、多选题
21.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,13511121
4
a a a ++=,则( ) A .{}n a 必是递减数列 B .5314
S =
C .公比4q =或
14
D .14a =或
14
22.已知数列{}n a 的前n 项和为n S ,1+14,()n n a S a n N *
==∈,数列12(1)n n n n a +⎧⎫+⎨⎬+⎩
⎭的
前n 项和为n T ,n *∈N ,则下列选项正确的是( ) A .24a =
B .2n
n S =
C .38
n T ≥
D .12
n T <
23.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,781a a ⋅>,
871
01
a a -<-,则下列结论正确的是( ) A .01q << B .791a a ⋅> C .n S 的最大值为9S
D .n T 的最大值为7T
24.设{}n a 是各项均为正数的数列,以n a ,1n a +为直角边长的直角三角形面积记为
n S ()n *∈N ,则{}n S 为等比数列的充分条件是( )
A .{}n a 是等比数列
B .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅或 2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列
C .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅和 2a ,4a ,⋅⋅⋅,2n a ,⋅⋅⋅均是等比数列
D .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅和 2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅均是等比数列,且公比相同 25.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫
⎨⎬⎩⎭
的前n 项和,则下列结论中正确的是( ) A .()211
21n n
S n a -=-⋅
B .212
n n S S =
C .2311222
n n n S S ≥
-+ D .212
n n S S ≥+
26.已知数列{}n a 前n 项和为n S .且1a p =,122(2)n n S S p n --=≥(p 为非零常数)测下列结论中正确的是( ) A .数列{}n a 为等比数列 B .1p =时,41516
S =
C .当12
p =
时,()*
,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+ 27.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,671a a >,
671
01
a a -<-,则下列结论正确的是( ) A .01q <<
B .8601a a <<
C .n S 的最大值为7S
D .n T 的最大值为6T
28.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )
A .数列{}n S n +为等比数列
B .数列{}n a 的通项公式为1
21n n a -=-
C .数列{}1n a +为等比数列
D .数列{}2n S 的前n 项和为2224n n n +---
29.已知数列{}n a 的前n 项和为S n ,22n n S a =-,若存在两项m a ,n a ,使得
64m n a a =,则( )
A .数列{}n a 为等差数列
B .数列{}n a 为等比数列
C .22
212413
n
n a a a -++
+=
D .m n +为定值
30.数列{}n a 为等比数列( ). A .{}1n n a a ++为等比数列 B .{}1n n a a +为等比数列 C .{
}
22
1n n a a ++为等比数列
D .{}n S 不为等比数列(n S 为数列{}n a 的前n 项)
31.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,781a a >,
871
01
a a -<-.则下列结论正确的是( ) A .01q <<
B .791a a <
C .n T 的最大值为7T
D .n S 的最大值为7S
32.在递增的等比数列{a n }中,S n 是数列{a n }的前n 项和,若a 1a 4=32,a 2+a 3=12,则下列说法正确的是( ) A .q =1 B .数列{S n +2}是等比数列
C .S 8=510
D .数列{lga n }是公差为2的等差数列
33.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,991001
01
a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的
D .使1n T >成立的最大自然数n 等于198
34.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列
{}n a 的“谷值”,k 是数列{}n a 的“谷值点”,在数列{}n a 中,若9
8n a n n =+-,下面
哪些数不能作为数列{}n a 的“谷值点”?( ) A .3
B .2
C .7
D .5
35.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )
A .m =3
B .7
67173a =⨯
C .()1
313
j ij a i -=-⨯
D .()()1
31314
n S n n =
+-
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.C
【分析】
由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解. 【详解】
由10210310a a ->,即1021031a a >,则有2
1021a q ⨯>,即0q >。
所以等比数列{}n a 各项为正数, 由
1021031
01
a a -<-,即102103(1)(1)0a a --<, 可得:1021031,1a a ><, 所以10220412203204102103()1T a a a a a a =⋅⋅
⋅=⋅>,
103205122032042051031T a a a a a a =⋅⋅
⋅⋅=<,
故使得1n T >成立的最大自然数n 的值为204,
故选:C 【点睛】
关键10220412203204102103()1T a a a a a a =⋅⋅
⋅=⋅>点点睛:在分析出1021031a a >,
1021031,1a a ><的前提下,由等比数列的性质可得102204102103()1T a a ==⋅>,
1032051031T a =<,即可求解,属于难题.
2.C 【分析】
由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解. 【详解】 ∵a 3a 11=4a 7, ∴2
7a =4a 7, ∵a 7≠0, ∴a 7=4, ∴b 7=4, ∴b 5+b 9=2b 7=8. 故选:C 3.C 【分析】
由等比数列的性质及等差数列的通项公式可得公差1
2
d =-,再由等差数列的前n 项和公式即可得解. 【详解】
设等差数列{}n a 的公差为,0d d ≠,
134,,a a a 成等比数列,2
314a a a ∴=即2(22)2(23)d d +=+,则12
d =-,
()()2
111198122
4
4216
n n n n n S a n d n n --⎛⎫∴=+
=-
=--+ ⎪⎝⎭,
所以当4n =或5时,n S 取得最大值. 故选:C. 4.B 【分析】
由等比中项的性质可求出3a ,即可求出公比,代入等比数列求和公式即可求解. 【详解】
正项等比数列{}n a 中,
2432a a a =+,
2332a a ∴=+,
解得32a =或31a =-(舍去) 又11
2
a =
, 23
1
4a q a ∴=
=, 解得2q
,
5
151
(132)
(1)312112
a q S q --∴===--,
故选:B 5.A 【分析】
由等比数列的通项公式可计算得出()6
456135a a a q a a a ⋅⋅=⋅⋅,代入数据可计算得出结果.
【详解】
由6
3
2
6
456135135432a a a a q a q a q a a a q ⋅⋅=⋅⋅⋅⋅⋅=⋅⋅⋅=⨯=.
故选:A. 6.D 【分析】
首先设等比数列{}n a 的公比为(0)q q ≠,根据14a ,22a ,3a 成等差数列,列出等量关系式,求得2q ,比较
()*n
a n N n
∈相邻两项的大小,求得其最小值. 【详解】
在等比数列{}n a 中,设公比(0)q q ≠, 当11a =时,有14a ,22a ,3a 成等差数列,
所以21344a a a =+,即2
44q q =+,解得2q
,
所以1
2
n n
a ,所以1
2n n a n n
-=
, 1
2111n n a n n a n n
++=≥+,当且仅当1n =时取等号, 所以当1n =或2n =时,()*
n a n N n
∈取得最小值1,
故选:D. 【点睛】
该题考查的是有关数列的问题,涉及到的知识点有等比数列的通项公式,三个数成等差数列的条件,求数列的最小项,属于简单题目. 7.C 【分析】
由1
(2)n n n a S S n -=-≥代入得出{}n S 的递推关系,得证1n S ⎧⎫
⎨⎬⎩⎭
是等差数列,可判断A ,求出n S 后,可判断B ,由1a 的值可判断C ,求出3n S 后可判断D . 【详解】
2n ≥时,因为130n n n a S S -+=,所以1130n n n n S S S S ---+=,所以
1
113n n S S --=, 所以1n S ⎧⎫
⎨⎬⎩⎭
是等差数列,A 正确;
1113S a ==,113S =,公差3d =,所以133(1)3n
n n S =+-=,所以13n S n
=,B 正确; 11
3
a =不适合13(1)n a n n =--,C 错误;
1313n n S +=
,数列113n +⎧⎫
⎨⎬⎩⎭
是等比数列,D 正确. 故选:C . 【点睛】
易错点睛:本题考查由数列的前n 项和求数列的通项公式,考查等差数列与等比数列的判断,
在公式1n n n a S S -=-中2n ≥,不包含1a ,因此由n S 求出的n a 不包含1a ,需要特别求解检验,否则易出错.
8.D 【分析】
利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】
设等比数列{a n }的公比为q ,易知q ≠1,
所以由题设得()
()
3136
1617
11631a q S q a q S q ⎧-⎪==-⎪
⎨-⎪
=
=⎪-⎩
, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.
设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,
两式作差得-T n =1+2+22
+…+2n -1
-n ×2n
=
1212
n
---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】
本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 9.A 【分析】
由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得2020
2021
ln ln a a . 【详解】
{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,
所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,
22021201820213()1a a a q ==,2
202020192020()1a a a q
==,即322021a q =,122020a q =,
所以
12
20203
2021
2
1ln ln ln 123ln 3ln ln 2
q
a q a q q ===. 故选:A . 【点睛】
本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论. 10.A 【分析】
设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1
102n q -⨯>,
1
(1)
221n q q
-<-,即可求出参数q 的取值范围;
【详解】
解:设等比数列{}n a 的公比为q ,依题意可得1q ≠.
11
0,2
n a a >=
,2n S <, ∴1
102n q -⨯>,1
(1)221n q q
-<-, 10q ∴>>. 144q ∴-,解得3
4
q
. 综上可得:{}n a 的公比的取值范围是:30,4
⎛⎤ ⎥⎝
⎦
.
故选:A . 【点睛】
等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 11.D 【分析】
根据等比数列的通项公式建立方程,求得数列的公比和首项,代入等比数列的求和公式可得选项. 【详解】
设等比数列{}n a 的公比为(0)q q >.∵312283S a a =+, ∴123122()83a a a a a ++=+,即321260a a a --=.
∴2
260q q --=,∴2q 或3
2
q =-(舍去),
∵416a =,∴4
13
2a a q =
=, ∴6616(1)2(12)
126112
a q S q --=
==--, 故选:D. 12.D 【分析】
由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:
(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,
∴当1n =时,有110S a a ==≠;
当2n ≥时,有1
1()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,0
1()2a a b b a =-+⋅=也适合上式,
1()2n n a a bn b -∴=-+⋅,
令n b a b bn =+-,1
2n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,
故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;
因为11
()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{
}1
2
n bn -⋅即不是等差数列,也不是等比数
列,故AB 错. 故选:D. 【点睛】 方法点睛:
由数列前n 项和求通项公式时,一般根据11
,2
,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能
力. 13.A 【分析】
根据已知条件计算12320182019a a a a a ⋅⋅⋅⋅的结果为2020
1
b b ,再根据等比数列下标和性质求
解出2020b 的结果. 【详解】 因为1
n n n
b a b +=
,所以3201920202020
24
12320182019123
201820191
b b b b b b a a a a a b b b b b b ⋅⋅⋅⋅=
⋅⋅⋅⋅
⋅=,
因为数列{}n a 为等比数列,且10102a =, 所以()()
()123
201820191201922018100910111010a a a a a a a a a a a a ⋅⋅⋅=⋅⋅⋅⋅⋅⋅
2222019
201910101010
1010101010102a a a a a =⋅⋅⋅==
所以
20192020
12b b =,又114
b =,所以201720202b =, 故选:A. 【点睛】
结论点睛:等差、等比数列的下标和性质:若(
)*
2,,,,m n p q t m n p q t N +=+=∈,
(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2
m n p q t a a a a a ⋅=⋅=.
14.B 【分析】
第n 天蜂巢中的蜜蜂数量为n a ,则数列{}n a 成等比数列.根据等比数列的通项公式,可以算出第6天所有的蜜蜂都归巢后的蜜蜂数量. 【详解】
设第n 天蜂巢中的蜜蜂数量为n a ,根据题意得 数列{}n a 成等比数列,它的首项为6,公比6q = 所以{}n a 的通项公式:1
66
6n n n a -=⨯=
到第6天,所有的蜜蜂都归巢后, 蜂巢中一共有66646656a =只蜜蜂. 故选:B . 15.D 【分析】
根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2
687b b b ==16.
【详解】
等差数列{}n a 中,31172a a a +=,故原式等价于2
7a -740a =解得70a =或74,a =
各项不为0的等差数列{}n a ,故得到774a b ==,
数列{}n b 是等比数列,故2
687b b b ==16.
故选:D. 16.C 【分析】
根据递推关系可得数列{}1n a -是以1为首项,2为公比的等比数列,利用等比数列的通项
公式可得1
21n n a -=+,即求.
【详解】
因为121n n a a +=-,所以()1121n n a a +-=-,即
11
21
n n a a +-=-, 所以数列{}1n a -是以1为首项,2为公比的等比数列.
则112n n a --=,即1
21n n a -=+.
因为513n a >,所以121513n -+>,所以12512n ->,所以10n >. 故选:C 17.D 【分析】
根据241a a =,由2
243a a a =,解得31a =,再根据313S =求解.
【详解】
因为正项等比数列{}n a 满足241a a =,
由于2
243a a a =,
所以2
31a =,31a =,211a q =.
因为313S =, 所以1q ≠. 由()()31231111a q S a q q q
-=
=++-
得2
2
131q q q =++, 即2
1210q q --=, 解得13q =,或1
4
q =-(舍去). 故选:D 18.A 【分析】
由等比数列的性质可得2
315a a a =⋅,且1a 与3a 同号,从而可求出3a 的值
【详解】
解:因为等比数列{}n a 中,11a =,54a =,
所以2
3154a a a =⋅=,
因为110a =>,所以30a >, 所以32a =, 故选:A 19.A 【分析】
由已知条件求出公差和公比,即可由此求出结果. 【详解】
设等差数列的公差为d ,等比数列的公比为q , 则有139d +=,4
19q ⋅=,
解之可得83
d =
,2
3q =, ()22218
183
b a a q ∴-=⨯⨯=.
故选:A. 20.B 【分析】
根据题意得该单音构成公比为四、五、八项即可得答案. 【详解】
解:根据题意得该单音构成公比为 因为第六个单音的频率为f ,
14
14
22f f -==.
6
6
112
2
f f -
=
=.
所以第五个单音的频率为1
122f =.
所以第八个单音的频率为12
6
2f f =
故选:B.
二、多选题
21.BD 【分析】
设设等比数列{}n a 的公比为q ,则0q >,由已知得11121
14
a a ++=,解方程计算即可得答案. 【详解】
解:设等比数列{}n a 的公比为q ,则0q >,
因为2
153
1a a a ==,2311a a q == , 所以511151351515111111121
11114
a a a a a a a a a a a a a ++=++=++=+=+++=,
解得1412a q =⎧⎪⎨=⎪⎩或1
142.
a q ⎧=⎪⎨
⎪=⎩, 当14a =,12q =时,5514131
21412
S ⎛
⎫- ⎪
⎝⎭==-,数列{}n a 是递减数列;
当11
4
a =
,2q 时,531
4
S =
,数列{}n a 是递增数列; 综上,5314
S =. 故选:BD. 【点睛】
本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为11121
14
a a ++=,进而解方程计算. 22.ACD 【分析】
在1+14,()n n a S a n N *
==∈中,令1n =,则A 易判断;由3
2122S a a =+=,B 易判断;
令12(1)n n n b n n a ++=
+,13
8
b =,
2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++=
==-++⋅+⋅,裂项求和3182
n T ≤<,则CD 可判断. 【详解】
解:由1+14,()n n a S a n N *
==∈,所以2114a S a ===,故A 正确;
32212822S a a =+==≠,故B 错误;
+1n n S a =,12,n n n S a -≥=,所以2n ≥时,11n n n n n a S S a a -+=-=-,
1
2n n
a a +=, 所以2n ≥时,2422n n
n a -=⋅=,
令12(1)n n n b n n a ++=
+,12123
(11)8
b a +==+,
2n ≥时,()()11
12211
(1)12212n n n n n n n b n n a n n n n +++++=
==-++⋅+⋅,
113
8
T b ==,2n ≥时,
()()2334
113111111111
8223232422122122
n n n n T n n n ++=+-+-+
+
-=-<⨯⋅⋅⋅⋅+⋅+⋅
所以n *∈N 时,31
82
n T ≤<,故CD 正确;
故选:ACD. 【点睛】
方法点睛:已知n a 与n S 之间的关系,一般用()11,12n n
n a n a S S n -=⎧=⎨-≥⎩递推数列的通项,注
意验证1a 是否满足()12n n n a S S n -=-≥;裂项相消求和时注意裂成的两个数列能够抵消求和. 23.AD 【分析】
根据题意71a >,81a <,再利用等比数列的定义以及性质逐一判断即可. 【详解】
因为11a >,781a a ⋅>,
871
01
a a -<-, 所以71a >,81a <,所以01q <<,故A 正确.
27981a a a =<⋅,故B 错误;
因为11a >,01q <<,所以数列{}n a 为递减数列,所以n S 无最大值,故C 错误; 又71a >,81a <,所以n T 的最大值为7T ,故D 正确. 故选:AD 【点睛】
本题考查了等比数列的性质、定义,考查了基本知识的掌握情况,属于基础题. 24.AD 【分析】
根据{}n S 为等比数列等价于2
n n
a a +为常数,从而可得正确的选项. 【详解】
{}n S 为等比数列等价于
1n n S S +为常数,也就是等价于12
+1n n n n a a a a ++即2n n
a a +为常数.
对于A ,因为{}n a 是等比数列,故
22
n n
a q a +=(q 为{}n a 的公比)为常数,故A 满足; 对于B ,取21221,2n
n n a n a -=-=,此时满足2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列,
1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅不是等比数列,
21
21
n n a a +-不是常数,故B 错. 对于C ,取2123,2n n
n n a a -==,此时满足2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列,
1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅是等比数列,
21213n n a a +-=,2222n n
a
a +=,两者不相等,故C 错.
对于D ,根据条件可得2
n n
a a +为常数. 故选:AD. 【点睛】
本题考查等比数列的判断,此类问题应根据定义来处理,本题属于基础题. 25.CD 【分析】
根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:
22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.
【详解】
因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,
所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()13
22122
⨯-⋅=,故错误; B. 令1n =时, 213122
S =+=,而 111
22S =,故错误;
C. 当1n =时, 213122
S =+
=,而 3113
2222-+=,成立,当2n ≥时,
211111...23521n n S S n =++++--,因为221n n >-,所以
11212n n >-,所以111111311...1 (352148222)
n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n
-=+++++++,令()1111
...1232f n n n n n
=+++++++,因为
()11111
1()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,
所以()()1
12
f n f ≥=,故正确;
故选:CD 【点睛】
本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应
用,还考查了转化求解问题的能力,属于较难题. 26.AC 【分析】
由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 错误;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】
由122(2)n n S S p n --=≥,得22
p a =
. 3n ≥时,1222n n S S p ---=,相减可得120n n a a --=,
又
2112a a =,数列{}n a 为首项为p ,公比为1
2
的等比数列,故A 正确; 由A 可得1p =时,441
11521812
S -
=
=-,故B 错误; 由A 可得m n m n a a a +⋅=等价为212
1122
m n m n
p p ++⋅=⋅,可得12p =,故C 正确; 38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫
+=+=⋅ ⎪⎝⎭
,
则3856a a a a +>+,即D 不正确; 故选:AC. 【点睛】
本题考查等比数列的通项公式和求和公式,考查数列的递推关系式,考查学生的计算能力,属于中档题. 27.ABD 【分析】
先分析公比取值范围,即可判断A ,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】
若0q <,则67670,00a a a a <>∴<与671a a >矛盾; 若1q ≥,则
11a >∴671,1a a >>∴
67101a a ->-与671
01
a a -<-矛盾; 因此01q <<,所以A 正确;
667710101
a a a a -<∴>>>-,因此2
768(,1)0a a a =∈,即B 正确; 因为0n a >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;
因为当7n ≥时,(0,1)n a ∈,当16n ≤≤时,(1,)n a ∈+∞,所以n T 的最大值为6T ,即D
正确; 故选:ABD 【点睛】
本题考查等比数列相关性质,考查综合分析判断能力,属中档题. 28.AD 【分析】 由已知可得
11222n n n n S n S n
S n S n
++++==++,结合等比数列的定义可判断A ;可得
2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断B ;由
1231,1,3a a a ===可判断C ;
由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】
因为121n n S S n +=+-,所以
11222n n n n S n S n
S n S n
++++==++. 又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故A 正确;
所以2n n S n +=,则2n
n S n =-.
当2n ≥时,1121n n n n a S S --=-=-,但11
121a -≠-,故B 错误;
由1231,1,3a a a ===可得12312,12,14a a a +=+=+=,即
322111
11
a a a a ++≠++,故C 错; 因为1
222n n S n +=-,所以2
3
1
1222...2221222...22n n S S S n ++++=-⨯+-⨯++-
()()()23122412122...2212 (22412)
2n n n n n n n n n ++--⎡
⎤=+++-+++=
-+=---⎢⎥-⎣
⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:AD . 【点睛】
本题考查等比数列的定义,考查了数列通项公式的求解,考查了等差数列、等比数列的前
n 项和,考查了分组求和.
29.BD 【分析】
由n S 和n a 的关系求出数列{}n a 为等比数列,所以选项A 错误,选项B 正确;利用等比数
列前n 项和公式,求出 1
22
212443
n n a a a +-++
+=,故选项C 错误,由等比数列的通项公式
得到62642m n +==,所以选项D 正确. 【详解】
由题意,当1n =时,1122S a =-,解得12a =,
当2n ≥时,1122n n S a --=-,
所以()111222222n n n n n n n a S S a a a a ----=-=---=,
所以1
2n
n a a -=,数列{}n a 是以首项12a =,公比2q 的等比数列,2n n a =,
故选项A 错误,选项B 正确; 数列{}2
n
a 是以首项214a
=,公比14q =的等比数列,
所以()
()211122
2121
141444114
3
n n n n
a q a a a q +-⨯--++
+=
=
=
--,故选项C 错误; 6222642m n m n m n a a +====,所以6m n +=为定值,故选项D 正确.
故选:BD 【点睛】
本题主要考查由n S 和n a 的关系求数列的通项公式,等比数列通项公式和前n 项和公式的应用,考查学生转化能力和计算能力,属于中档题. 30.BCD 【分析】
举反例,反证,或按照等比数列的定义逐项判断即可. 【详解】
解:设{}n a 的公比为q ,
A. 设()1n
n a =-,则10n n a a ++=,显然{}1n n a a ++不是等比数列.
B.
221
1
n n n n a a q a a +++=,所以{}1n n a a +为等比数列. C. ()()242222212222
11n n n n n n
a q q a a q a a a q +++++==++,所以{}
221n n a a ++为等比数列. D. 当1q =时,n S np =,{}n S 显然不是等比数列; 当1q ≠时,若{}n S 为等比数列,则()2
2
2
112n n n S S n S -+=≥,
即()
(
)()2
11
111
111111n n n a q a q a q q q q
-+⎛⎫⎛⎫⎛⎫---
⎪
⎪⎪= ⎪ ⎪⎪---⎝
⎭⎝
⎭⎝
⎭
,所以1q =,与1q ≠矛盾,
综上,{}n S 不是等比数列. 故选:BCD. 【点睛】
考查等比数列的辨析,基础题. 31.ABC 【分析】
由11a >,781a a >,87101
a a -<-,可得71a >,81a <.由等比数列的定义即可判断A ;运用等比数列的性质可判断B ;由正数相乘,若乘以大于1的数变大,乘以小于1的数变小,可判断C; 因为71a >,801a <<,可以判断D.
【详解】
11a >,781a a >,87101
a a -<-, 71a ∴>,801a <<,
∴A.01q <<,故正确;
B.2798
1a a a =<,故正确; C.7T 是数列{}n T 中的最大项,故正确.
D. 因为71a >,801a <<,n S 的最大值不是7S ,故不正确.
故选:ABC .
【点睛】
本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题.
32.BC
【分析】
先根据题干条件判断并计算得到q 和a 1的值,可得到等比数列{a n }的通项公式和前n 项和公式,对选项进行逐个判断即可得到正确选项.
【详解】
由题意,根据等比中项的性质,可得
a 2a 3=a 1a 4=32>0,a 2+a 3=12>0,
故a 2>0,a 3>0.
根据根与系数的关系,可知
a 2,a 3是一元二次方程x 2﹣12x +32=0的两个根.
解得a 2=4,a 3=8,或a 2=8,a 3=4.
故必有公比q >0,
∴a 12a q
=>0. ∵等比数列{a n }是递增数列,∴q >1.
∴a 2=4,a 3=8满足题意.
∴q =2,a 12a q
==2.故选项A 不正确. a n =a 1•q n ﹣1=2n .
∵S n ()21212n
-==-2n +1﹣2.
∴S n +2=2n +1=4•2n ﹣1.
∴数列{S n +2}是以4为首项,2为公比的等比数列.故选项B 正确.
S 8=28+1﹣2=512﹣2=510.故选项C 正确.
∵lga n =lg 2n =n .
∴数列{lga n }是公差为1的等差数列.故选项D 不正确.
故选:BC
【点睛】
本题考查了等比数列的通项公式、求和公式和性质,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.
33.ABD
【分析】
由已知9910010a a ->,得0q >,再由99100101
a a -<-得到1q <说明A 正确;再由等比数列的性质结合1001a <说明B 正确;由10099100·
T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.
【详解】
对于A ,9910010a a ->,21971·1a q ∴>,()2
981··1a q q ∴>. 11a >,0q ∴>. 又99100101
a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;
对于B ,299101100100·01a a a a ⎧=⎨<<⎩,991010?
1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·
T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·
····991T a a a a a a a a a a a =⋯=⋯=⨯>, ()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确.
∴不正确的是C .
故选:ABD .
【点睛】
本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.
34.AD
【分析】
计算到12a =,232
a =
,32a =,474a =,565a =,612a =,727a =,898a =,根据“谷值点”的定义依次判断每个选项得到答案.
【详解】
98n a n n =+
-,故12a =,232
a =,32a =,474a =,565a =,612a =,727a =,898a =. 故23a a <,3不是“谷值点”;12a a >,32a a >,故2是“谷值点”;
67a a >,87a a >,故7是“谷值点”;65a a <,5不是“谷值点”.
故选:AD .
【点睛】
本题考查了数列的新定义问题,意在考查学生的计算能力和应用能力.
35.ACD
【分析】
根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a , 再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假.
【详解】
∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-
(舍去), ∴a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1,
∴a 67=17×36,
∴S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn ) 111211313131313
13n n n n a a a ---=+++---()()() 12=
(3n ﹣1)•2312n n +-() 14
=n (3n +1)(3n ﹣1) 故选:ACD.
【点睛】
本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n 项和公式的应用,属于中档题.。