高效薄层色谱法鉴别6种中药多糖

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高效薄层色谱法鉴别6种中药多糖
杨成,管佳,章江生,李绍平*
(澳门大学中华医药研究院,澳门)
摘要:目的鉴别不同来源的中药多糖。

方法采用高效薄层色谱法分析多糖酸水解产物,同时应用2种显色剂以及薄层扫描技术,获得可区别中药多糖的特征图谱。

结果以正丁醇:甲醇:氯仿:冰醋酸:水=12.5: 5:4.5:1.5:1.5(v/v)为展开剂,7种标准单糖和2种糖醛酸为对照,使用苯胺-二苯胺为糖类成分显色剂,结合茚三酮显色剂检查氨基酸类成分,获得了多糖酸水解产物中两类成分的特征薄层色谱,可用于区分来自冬虫夏草、灵芝、黄芪、人参、西洋参和三七的6种多糖组分。

结论建立了一种可鉴别6种中药多糖的高效薄层色谱法,此法简单快速,经济实用,可以用于多糖类成分质量控制。

关键词:多糖,高效薄层色谱,质量控制,中药
Discrimination of Polysaccharides from Six Traditional Chinese Medicines using High-performance Thin-layer Chromatography
YANG Cheng, GUAN Jia, ZHANG Jiang-sheng, LI Shao-ping* (Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China)
ABSTRACT: OBJECTIVE To distinguish the polysaccharides from different Traditional Chinese medicines (TCMs). METHODS The acid hydrolyzates of polysaccharides were analyzed by high-performance thin-layer chromatography (HPTLC) combined with two coloration methods and thin layer scanning technique. RESULTS The chromatography was performed on nano silica gel 60 plate with n-butanol -methanol-chloroform- acetic acid-water (12.5:5:4.5:1.5:1.5, v/v/v/v/v) as mobile phase. 7 monosaccharides and 2 glycuronic acids were used as reference compounds. The aniline-diphenylamine solution and ninhydrin solution were employed for detection of saccharides and amino acids, respectively. The polysaccharides from Cordyceps sinensis, Ganoderma lucidum, Astragalus memberanaceus, Panax ginseng, Panax quinquefolii and Panax notogiseng were easily discriminated based on their characteristic TLC profiles. CONCLUSION A simple, rapid and effective HPTLC method was developed for distinguishing the polysaccharides from 6 TCMs, which is helpful to control the quality of polysaccharides from Chinese medicine.
KEY WORDS: Polysaccharides; HPTLC; Quality control; TCMs
多糖是一类由单糖(通常大于10个)通过糖苷键连接而成的生物大分子聚合物,是生物体维持生命活动的必需物质。

近年来,由传统中药及天然药物中分离得到的多糖类成分,因其广泛的生物活性,如抗肿瘤,调节免疫,抗病毒等[1-4]已成为多糖研究的热点。

然而,如何鉴别不同来源的中药多糖一直是个难题,也是多糖质量控制的关键问题。

目前多种现代仪器分析方法,如薄层色谱[5]、气相色谱[6]、高效液相色谱[7]、质谱[8]、核磁共振[9]等已应用于多糖的结构分析中,其中薄层色谱因其简单、快速、样本量大、成本低等优点已成为单糖、寡糖成分鉴别的常用方法[5]。

本文应用高效薄层色谱(HPTLC)法对6种常用中药多糖的酸水解产物进行分析,以7种单糖和2种糖醛酸为对照,采用2种不同的显色剂对组成糖类成分及结合氨基酸类成分分别显色,获得了可用于鉴别的特征薄层色谱。

1 仪器与试药
Desga 高效薄层系统(含AS30自动点样器,CD60扫描仪,Pro Quant扫描软件德国Desga公司);双槽展开缸;高效硅胶60板(德国MACHEREY-NAGEL 公司)。

微波提取仪(Multiwave3000, Antonpaar, 奥地利)
D-半乳糖,D-葡萄糖,D-核糖,D-木糖,D-甘露糖,L-阿拉伯糖,L-鼠李糖,D-半乳糖醛酸,D-葡萄糖醛酸(美国Sigma公司); 水(MilliQ 纯水);其他试剂均为分析纯。

人参(Panax ginseng),西洋参(Panax quinquefolii),三七(Panax notoginseng),冬虫夏草(Cordyceps sinesis)购于澳门中侨参茸公司,黄芪(Astragalus memberanaceus)采自山西,灵芝(Ganoderma lucidum)采自安徽金寨,均由通讯作者鉴定。

2 方法
2.1 对照品溶液的制备
取D-葡萄糖0.5 mg,D-核糖1.5 mg,D-木糖1.5 mg,D-甘露糖0.5 mg,L-阿拉伯糖1.0 mg,L-鼠李糖0.5 mg,D-半乳糖醛酸1.0 mg,D-葡萄糖醛酸1.0 mg,精确称定,溶于1 mL 95%乙醇制成混合对照品溶液。

2.2 供试品溶液的制备
取干燥药材粉末1 g,加入10 mL水,置微波提取仪中于120 ◦C 下提取15 min,提取液于4500 rpm下离心10 min后取上清液,加入40 mL 95%乙醇后于4 ◦C冰箱内醇沉过夜。

混悬液再次离心,弃去上清液,沉淀以5 mL 95%乙醇洗涤2次后冷冻干燥得粗多糖。

取粗多糖10 mg溶于5 mL三氟醋酸(TFA),置于氮气保护密封试管内100 ◦C水解2 h。

水解液低压旋干,残渣溶于1 mL 50%乙醇得供试品溶液。

2.3展开剂和显色剂
以正丁醇:甲醇:氯仿:冰醋酸:水=12.5:4.5:5:1.5:1.5(v/v) 展开,苯胺-二苯胺溶液(二苯胺4 g、苯胺4 mL、85%磷酸20mL混合溶解于200 mL丙酮溶液中)和茚三酮溶液(0.2 g 茚三酮溶解于100 mL 丙酮中)为显色剂。

2.4 薄层层析
高效薄层板(20 cm×10 cm),点样量10 μL,混合对照品点样1 μL,样品条带宽10 mm,间隔15 mm,起始点样高度10 mm。

点样后薄层板放入已预先饱和30 min的双槽层析缸中展开,展开距离9 cm,取出吹干,喷显色剂苯胺-二苯胺显色后,130 ◦C加热显色至斑点清晰;或喷茚三酮后,105◦C加热显色至斑点清晰,覆盖同样大小玻璃板,四周用胶布封固后作薄层扫描。

3结果
3.1多糖水解条件的优化
3.1.1酸的选择
参考文献[10]的方法,以人参多糖为样品分别使用硫酸、盐酸和三氟醋酸进行完全酸水解考察。

硫酸水解:10 mg样品加入5mL 1 mol•L-1硫酸,密封试管100 ◦C下水解4 h,水解液冷却后加入足量碳酸钡中和,4500 rpm下离心10min后收集上清液,沉淀以5 mL 50%乙醇洗涤后再离心,合并上清液。

上清液于40 ◦C下低压蒸干,残渣溶于1 mL 50%乙醇备用。

盐酸水解:10mg样品加入5 mL 2 mol•L-1盐酸,100 ◦C水解4 h,水解液冷却后加入NaOH 溶液中和,溶液于40 ◦C下低压蒸干,残渣溶于1mL 50%乙醇备用。

三氟醋酸水解:水解方法同2.2,水解时间为4 h。

结果见图1,由图可见,盐酸水解后因中和步骤产生大量的NaCl,干扰了展开条带;硫酸水解产物可得清晰条带,但因中和步骤繁琐而导致产物损失;采用TFA水解,操作简单,条带多且清晰,产物损失较小,故选用TFA进行多糖水解。

图1多糖水解用酸的选择
L1-TFA水解;L2-硫酸水解;L3-盐酸水解;L4-混合对照品;1,D-半乳糖醛酸;2,D-葡萄糖醛酸;3,D-半乳糖;4,D-葡萄糖;5,D-甘露糖;6,D-阿拉伯糖;7,D-木糖;8,D-核糖;9,L-鼠李糖
Fig1 Selection of the acid for hydrolysis of polysaccharides
L1-TFA hydrolysate; L2-H2SO4 hydrolysate; L3-HCl hydrolysate; L4-Mixed standards; 1, D-Galacturonic acid; 2,D-Glucuronic acid; 3,D-Galactose; 4, D-Glucose; 5,D-Mannose; 6 L-Arabinose; 7,D-Xylose; 8,D-Ribose; 9, L-Rhamnose
3.1.2 酸浓度的优化
以3.1.1中TFA水解的条件,分别使用2、1.5、1 mol•L-1 TFA进行水解,考察不同浓度TFA对多糖水解的影响。

结果如图2,由图可见,随酸浓度降低,水解不完全,释放出的半乳糖醛酸(条带1)减少,且条带3下方条带(可能是未水解寡糖)增多,干扰糖醛酸检测,因此酸浓度选用2 mol•L-1。

图2三氟乙酸浓度的优化
L1-2 mol•L-1;L2-1.5 mol•L-1;L3-1 mol•L-1;L4-混合对照品;1-9,同图1
Fig 2 Optimization of TFA concentration for the hydrolysis
L1-2 mol•L-1; L2-1.5 mol•L-1; L3-1mol•L-1; L4-Mixed standards; 1-9,same as in Fig 1
3.1.3水解时间的优化
以3.1.2中确定的TFA水解条件,分别考察4 h、2 h、1 h等不同水解时间。

结果如图3,由图可见,1 h时水解不完全,条带3下方可见明显未水解寡糖条带,干扰糖醛酸检测,2 h与4 h水解效果相近,因此选择水解2 h。

图3多糖酸水解时间的优化
L1-4 h;L2-2 h;L3-1 h;L4-混合对照品;1-9,同图1
Fig 3 Optimization of TFA hydrolysis time
L1-4 h ; L2-2 h; L3-1 h; L4-Mixed standards; 1-9,same as in Fig 1
3.1.4 重复性考察
以3.1.3中所确定的TFA水解条件,取3份人参多糖样品平行水解,考察重复性,结果如图4,表明本水解条件重复性良好。

图4水解重复性考察
L1-L3,3份平行水解样品;L4-混合对照品;1-9,同图1
Fig 4 Repeatability for acid hydrolysis of polysaccharides from ginseng
L1-L3,3 hydrolyzates; L4-Mixed standards; 1-9,same as in Fig 1
3.2多糖的薄层色谱鉴别
3.2.1组成糖类成分特征色谱
6种中药多糖经完全酸水解后,以苯胺-二苯胺试剂显色,可得组成糖类成分特征色谱,如图5。

由图可见,6种多糖的主要组成单糖均有葡萄糖,半乳糖,甘露糖,其中黄芪多糖、人参多糖、西洋参多糖及三七多糖中还含有少量阿拉伯糖与鼠李糖,并伴有少量半乳糖醛酸。

灵芝多糖中呈现一条特殊的黄绿色条带(图中箭头所示),可与其他多糖区分。

冬虫夏草多糖中没有检测到糖醛酸。

综上,通过糖类成分特征图谱,冬虫夏草多糖及灵芝多糖可明显区别与其他四种植物多糖。

图5 6种中药多糖酸水解产物的苯胺-二苯胺显色薄层色谱图
L1,黄芪;L2,冬虫夏草;L3,灵芝;L4,西洋参;L5,人参;L6 三七;L7-混合对照品;1-9,同图1
Fig 5 HPTLC photographs of acid hydrolyzates of polysaccharides from six TCMs colorized by aniline-diphenylamine solution
LI,Astragalus memberanaceus;L2,Cordyceps sinesis;L3,Ganoderma lucidum;L4,Panax quinquefolii;L5,Panax ginseng;L6,Panax notoginseng;L7-Mixed standards; 1-9,same as in Fig 1
3.2.2氨基酸类成分特征色谱
6种多糖经完全酸水解后,以茚三酮试剂显色,可得多糖中氨基酸类成分的特征色谱,如图6。

图6 6种中药多糖水解产物的茚三酮显色薄层色谱图
L1-L6,同图5;A-K,特征条带
Fig 6 HPTLC photographs of acid hydrolyzates of polysaccharides from six TCMs colorized by ninhydrin solution
LI-L6,same as in Fig 5;A-K,characteristic bands
另对灵芝中5个特征条带(A,B,K,D和J)做光谱扫描,发现该类显色成分在550 nm处有最大吸收,故以550 nm为扫描波长,背景吸收较弱的700 nm为参比波长,对所有样品进行透射模式扫描,狭缝宽度为6.00 nm × 0.02 nm。

结果如图7。

图7 6种中药多糖水解产物的茚三酮显色光谱扫描图(λ= 550 nm)
L1-L6,同图5;A-K,图6中特征条带对应的色谱峰
Fig 7 HPTLC scanning profiles of acid hydrolyzates of polysaccharides from six TCMs colorized by ninhydrin solution
LI-L6,same as in Fig 5;A-K,peaks of characteristic bands in Fig 6.
由图可见,黄芪、灵芝、冬虫夏草多糖水解产物中含有较多可使茚三酮显色的物质,而人参、三七和西洋参多糖中则较少。

冬虫夏草多糖(L2)可见H、I 两个特征的条带;而灵芝多糖(L3)亦含有一特征条带K;黄芪多糖(L1)则含有一特征条带C,另外黄芪中含有条带F而灵芝与虫草中几乎没有,且虫草和灵芝中有J带而黄芪则没有,由此可区分黄芪多糖。

西洋参多糖(L4)有明显的D条带,而三七与人参中不含有;三七与人参多糖(L5与L6)的结果较为相似,但L5中的A条带的颜色明显深于L6。

综上,通过氨基酸类成分特征图谱,6种中药多糖基本可以明确区分。

4 讨论
4.1本研究通过优化酸水解条件,以获得多糖的完全酸水解产物,保证结果的重现及特征图谱的稳定。

另本文应用薄层色谱成功分离分析了七种单糖及两种糖醛酸,可用于多糖的组成分析。

4.2多糖经完全酸水解后可释放出组成单糖及其他结合物质,应用苯胺-二苯胺试剂可对糖类成分显色,检测组成单糖的种类;而水解产生的氨基酸类成分,则可由茚三酮试剂显色。

所获得的两类成分特征图谱,较全面反映了多糖组分的信息,增强了谱图的特征性。

4.3本文所建立的高效薄层色谱法简单快速,操作简便,结果直观,可有效鉴别不同来源的中药多糖,为其质量控制提供了一条新思路。

REFERENCES
[1] FANG J N, DING K.Bioactivities, isolation and purification methods of polysaccharide [J]. Chin J Nat Med (中国天然药物), 2007, 5 (5): 338-347.
[2] BAO X F, ZHEN Y, RUAN L,et al. Purification, characterization and m odification of T lymphocyte-stimulating polysaccharide from spores of Ganoderma lucidum.[J]. Chem Pharm Bull,2002,50 (5): 623-629.
[3] DONG Q, YAO J, FANG J N, et al .[J]. Carbohydr Res, 2007, 342 (10): 1343-1349.
[4] YAMAGUCHI Y, KAGOTA S, NAKAMURA K ,et al. Antioxidant activity of the extracts from fruiting bodies of cultured Cordyceps sinensis.[J]. Phytother. Res., 2002, 14 (8): 647–649.
[5] DI X, CHAN K C, LEUNG H W et al. Fingerprint profiling of acid hydrolyzates of polysaccharides extracted from the fruiting bodies and spores of lingzhi by high-performance thin-layer chromatography [J]. J. Chromatogr.
A 2003, 1018 (1): 85-95.
[6] ENDWIN P, CROWELL P, Burnett P. Determination of the carbohydrate composition of wood pulps by gas chromatography of the alditol acetates.[J]. Anal Chem, 1967, 39 (1): 121-124.
[7] LEHRFELD J. Separation of some perbenzoylated carbohydrates by high performance liquid chromatography [J]. J Chromatogr. A, 1976, 120 (1): 141-147.
[8] ANNE D, HOWARD R M. Glycoprotein structure determination by mass spectrometry [J]. Science, 2001, 291 (5512): 2351-2356.
[9] WU Y L, HU N, PAN Y J et al Isolation and characterization of a mannoglucan from edible cordyceps sinensis mycelium.[J] Carbohydr Res, 2007, 342 (6) : 870-875.
[10] NATHALIE D,JEAN F,VERQNIQUE P, et al. A New method for quantitative determination of polysaccharides in the yeast cell wall application to the cell wall defective mutants of saccharomyces cerevisiae. [J].Yeast, 1998, 14 (14): 1297-1306.。

相关文档
最新文档