基于鱼群神经网络的信息安全性评价与研究论文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于鱼群神经网络的信息安全性评价与研究论文

基于鱼群神经网络的信息安全性评价与研究论文

信息安全评估是保障和维护网络信息安全的重要环节。针对BP神经网络技术在对信息安全进行评估时存在的收敛速度慢、不易获得全局最优解、诊断精度低以及网络结构不确定等缺点,而人工鱼群算法具有较优的全局收敛能力及较快的寻优速度。因此,本文利用人工鱼群算法对BP神经网络的初始权值和阈值进行了优化,建立了一种新的网络信息安全评价模型,并将该模型应用到具体的评价实例中。结果表明,人工鱼群神经网络算法具有收敛速度快及泛化能力强的优点,为信息安全评估提供一种高效、准确及可靠的方法。

目前国内外常用的信息安全风险评价模型主要由层次分析法(AHP)、基于概率统计的ALE算法,模糊综合评价法等,也取得了一定的研究成果。但上述算法的基本思想是基于线性映射和概率密度分布的,即各风险指标与最终评价结果之间存在着线性关系[2]。然而,这种关系的存在是否科学至今也没有得到准确的答复,同时这些方法在实施时虽然给出了定量计算的算法,但操作较为繁琐,难以达到快速识别的要求。目前应用较广泛的BP神经网络评价算法存在着网络参数难确定、收敛速度较慢且易陷入极小值等问题。为了解决上述问题,本文应用鱼群算法对BP神经网络进行了改进,结合信息安全评价实例进行了测试,并将测试数据与标准BP神经网络进行了比较与分析,取得了理想的结果。

一、信息安全的概念

所谓的信息安全评估指的是通过分析信息系统所包含的资产总值、识别系统本身的防御机制以及所受到的危险性系数,利用数学模型综合判断出系统当前的风险值。信息安全风险评估主要包括三方面的内容,分别是资产总值识别、外部威胁识别以及脆弱性识别。资产总值识别是为了识别出系统所涉及的资产总值,外部威胁识别指的是识别当前状态下系统受攻击或威胁的程度,而脆弱性识别指的是系统自身的脆弱性程度。其中综合考虑外部威胁以及内部脆弱性可以得出发生

风险事件的危害性,而自然总值识别再加上脆弱性识别就可以得到系统的易损性,基于上述过程可以得到信息安全系统的风险值。

二、基本BP神经网络算法

BP神经网络算法是一种采用误差反向传播的多层前馈感知器。其特点是具有分布式的信息存储方式,能进行大规模并行处理,并具有较强的自学习及自适应能力。BP网络由输入层(感知单元)、计算层(隐藏层)、输出层三部分组成。输入层神经元首先将输入信息向前传递至隐含层节点,经过激活函数预处理后,隐层节点再将输出信息传送至输出层得到结果输出。输入层与输出层节点的个数取决于输入、输出向量的维数,隐含层节点个数目前并没有统一的标准进行参考,需通过反复试错来确定。根据Kolmogorov定理,具有一个隐层的三层BP 神经网络能在闭集上以任意精度逼近任意非线性连续函数,所以本文选择单隐层的BP神经网络。

三、人工鱼群算法

3.1基本原理

通过对鱼类觅食的观察可知,鱼类一般能自行或者尾随其他同伴找到食物数量相对充足的地方。因此,一般鱼类数量较多的地区即为食物相对充足的区域。人工鱼群算法是指通过长期对鱼类觅食行为的观察,构造人工鱼来模拟鱼类的觅食、群聚、尾随以及随机行为,从而完成全局最优值的寻找。算法所包含的基本过程如下:

觅食行为:鱼类会利用视觉或嗅觉来感知水中食物浓度的高低,以此来选择觅食的路线。

聚群行为:鱼类一般会以群体形式进行觅食,以此来躲避天敌的伤害并以最大概率获得准确的觅食路线。

尾随行为:当群体中的某条鱼或几条鱼寻找到食物后,其附近的其他同伴会立刻尾随而来,其他更远处的鱼也会相继游过来。

随机行为:鱼在水中的活动是不受外界支配的,基本上处于随机状态,这种随机性有利于鱼类更大范围的寻找食物及同伴。

3.2 鱼群算法优化BP神经网络的原理

BP神经网络在求解最优化问题时容易陷入局部极值,并且网络的

收敛速度较慢。鱼群算法通过设定人工鱼个体,模拟鱼群在水中的觅食、尾随和群聚行为,通过个体的局部寻优,最终实

现全局寻优。人工鱼在不断感知周围环境状况及同伴状态后,集结在几个局部最优点处,而值较大的最优点附近一般会汇集较多的人工鱼,这有助于判断并实现全局最优值的获取。因此用人工鱼群算法来优化BP神经网络是一种合理的尝试。

3.3 具体工作步骤

人工鱼群算法用于优化神经网络时的具体步骤如下:

①设定BP神经网络结构,确定隐层节点数目;

②设定人工鱼参数,主要包括个体间距离、有效视线范围以及移动步长等;

③人工鱼进行觅食、群聚及尾随行为来优化BP神经网络;

④通过设定的`状态参量,判断是否达到目标精度;

⑤若达到精度要求则输出网络优化权值,并执行网络循环,否则继续改化参数进行优化;

⑥输出最终优化参数并进行计算机网络安全评价。

四、仿真实验

将信息安全风险评估常用的3项评价指标的分值作为BP神经网络的输入,网络的期望输出只有一项,即安全综合评价分值。目前用于信息安全风险评价的数据还很少,本文采用文献[3]所列的15组典型信息安全单项指标评价数据,其中1-10项作为训练,11-15项用于仿真。通过实际实验分析,本文将权值调整参数α=0.1,阈值调整参数β=0.1,隐层神经元数目为6,学习精度ε=0.0001。网络经过2000次训练,收敛于所要求的误差,人工鱼群算法的相关参数:种群大小为39;可视域为0.8;最大移动步长为0.6;拥挤度因子为3.782。然后对检验样本及专家评价样本进行仿真,结果如表1所示。可以看出,鱼群神经网络得到的仿真结果与期望值之间的平均误差为0.001,而标准BP神经网络为0.0052,所以鱼群神经网络的得到的仿真精度较高,取得了理想的实验结果。

五、结论

本文将鱼群算法和神经网络结合起来对信息安全评价进行了研究,得到了如下几个结论:

(1) 基于鱼群算法优化后的BP神经网络具有收敛速度快、拟合精度高等优点,克服了标准BP神经网络收敛速度慢、容易陷入局部极小值的缺点。同时,优化算法编码过程简单,并具有较强的鲁棒性。

(2) 本文采用的实验数据仅有15个,基于鱼群算法优化后的BP神经网络精度有明显提高,避免了由于样本数量少造成的拟合精度低等缺点。

(3) 通过将标准BP神经网络算法与鱼群神经网络算法进行对比发现,后者的收敛速度明显加快并且自组织能力也有一定提高,在实际的工程建设中可以将其代替传统的BP神经网络算法来进行信息安全的风险评估。

相关文档
最新文档